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This paper considers two models for analyzing the dynamics of firm
behavior that allow for heterogeneity among firms, idiosyncratic (or firm-
specific) sources of uncertainty, and discrete outcomes (exit and/or entry).
Models with these characteristics are needed for the structural econometric
analysis of several economic phenomena, including the behavior of capital
markets when there are significant failure probabilities, and the analysis of
productivity movements in industries with large amounts of entry and exit.

In addition, these models provide a means of correcting for the self-section
induced by liquidation decisions in empirical studies of firms responses to
alternative policy and environmental changes. It is shown that the two
models have different nonparametric implications - implications that depend
only on basic behavioral assumptions and mild regularity conditions on the
functional forms of interest (one distinction between them corresponds to the
distinction between heterogeneity and an ergodic form of state-dependence; a
form in which the effect of being in a state in a particular period erodes
away as time from that period lapses). The nonparametric implications enable
the construction of testing and selection correction procedures that are easy
to implement (they do not require the computationally difficult, and
functional-form specific, estimation algorithms that have been used to
empirically analyze stochastic control models with discrete outcomes in the
past). The paper concludes by checking for the implications of the two
models on an eight-year panel of Wisconsin firms. We find one model to be

consistent with the data for retail trade.
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1. Introduction

This paper considers the empirical implications of two models of the
dynamics of firm behavior that allow for heterogeneity among firms,
idiosyncratic (or firm-specific) sources of uncertainty, and discrete
events (exit and/or entry). Our reason for providing an empirical
framevork with these features are twofold. First, the mature of
uncertainty, and its relationship to exit and/or entry, is at the heart of
several issues we, as economists, try to analyze. Examples include the
analysis of capital markets when there are diverse possible outcome paths
and significant failure probabilities; the evolution of the size
distribution of the firms in an industry; and the analysis of industry
supply (or productivity) changes vhen more efficient firms thrive and grow,
and less efficient contract and, in the extreme case, exit. The second
reason for studying models that allow for uncertainty and exit is that some
allovance has to be made for these phenomena before we can get an accurate
empirical picture of firms’ responses to any policy or enviornmental
change. Table 1 illustrates why this is so.

The table provides information on the fraction of firms operating in
Visconsin in 1978 that were liquidated by 1986 (more details on the data
will be given in Section 5). Firms are classified as liquidated only if
they physically closed down (changes of ownership are treated separately).
If ve were to use these data to build a panel of firms to follow the impact
of some (say) policy change, ve would, at least traditionally, start from
the 1978 cross—section and then construct the panel by eliminating those
firms not in operation over the emtire eight-year period. Column 5 shows
that this procedure would lose a third of the firms due to liquidations,

and column 6 shows that this third would account for about a fifth of the



jobs in 1978. If wve decided to consider only the larger of the 1978 firms,
say those with more than 50 employees (and as column 7 shows, this is a
selection which, by itself, omits over a third of the 1978 jobs),
liquidation would be somewhat less prevalent, but would still cause an
attrition rate of about 15 percent. The last two rows of the table give an
indication of the extent of changes in ownership in this data (this
includes mergers and acquisitions). To the extent that the pre and post
change firms cannot be spliced together, changes in ownership also generate
attrition. It is a relatively more important source of attrition among
larger firms, but even if we confine ourselves to firms with over 50
employees, and assume that all the changes in ownership result in
attrition, changes of ownership would still only account for 40 percent of
total attrition (liquidation accounts for the rest). Note that, vhen taken
together, liquidations and changes of ownership would cause the attrition
of almost half the firms in the 1978 sample, and of about a quarter of
those with more than 50 employees. |

If liquidation decisions were independent of the economic phenomena
typically being investigated, then the omission of the liquidated firms
from the sample might lead to an imprecise, but would not lead to an
inconsistent, description of the phenomena of interest. This is, however,
hardly likely. Firms terminate their activities vhen they perceive adverse
changes in the distribution of their future profit streams. The phenomena
ve typically want to investigate involve the actual profitability (and
productivity) changes resulting from alternative policy and environmental
changes. If there is any relationship at all between perceptions and
realizations we will, by eliminating those firms which liquidate, omit

precisely those firms for vhom the events in question are likely to have



had a particularly negative impact. That is, we will tend to omit one tail
of the distribution of responses we set out to study.!

To control for the selection induced by the liquidation process we
need a model that explains why firms operating in similar environments
develop differently — a model vith idiosyncratic outcomes that allows for
exit. At least two such models are currently available, and each will, no
doubt, prove more useful in approximating the characteristics of different
industries in different time periods. This paper provides a simple set of
procedures which enable the researcher to determine vhether either of them
might be relevant for the problem at hand.

The first model considered here is a model with passive Bayesian
learning. Firms are endoved at ‘birth with an unknown value of a
time-invariant profitability parameter vhich determines the distribution of
its profits thereafter. Past profit realizations contain information on
the value of the parameter which determines the distribution of possible
future profit streams, and this fact is used by management to form a
probability distribution over future net cash flows (see Jovanovic, 1982).
The second model is a model of active exploration. It assumes that the
firm knows the current value of the parameter that determines the
distribution of its profits, but that the value of that profitability
parameter changes over time in response to the stochastic outcomes of the
firm’s ovn investments, and those of other actors in the same market (see
Ericson and Pakes, 1989). In both models firms act so as to maximize the
expected discounted value of future net cash flow, and in both cases
optimal behavior generates a set of stopping states; i.e. outcomes which,
if realized, vould induce the firm to exit. Noreover, both models are

‘complete’ in the sense that if ve were willing to append a set of precise



functional form assumptions to them, they would produce frameworks rich
enough to take directly to data.

The strategy of appending precise functional form assumptions and then
using their implications to structure the data, is the strategy taken in
all of the recent econometric literature on analyzing stochastic control
models involving discrete outcomes (see Miller, 1984; Wolpin, 19884; Pakes,
1986; and Rust, 1987). Its success depends upon, among other diverse
factors, the extent of prior information on the relevance of alternative
assumptions. Ve eschew it here because there is not a great deal of a

information on either which of the models (if any) is appropriate
for different data sets or on the relevance of alternative functional form
assumptions. MNoreover, just as in all the previous literature on discrete
choice optimal stochastic control models, were we to estimate fully
parametric versions of these models ve would have to build a different
-~*ion algorithm for each form estimated. This makes it difficult, if

.mpossible, to examine the robustmess of the major empirical results to
cnanges in the specification of the model.

The alternative strategy we choose is to look for empirical
implications of the different models that depend only on the models’ basic
behavioral assumptions, and some mild regularity conditions on the relevant
functional forms. Precisely because these 'nonparametric’ implicatioms
have to be valid for a variety of functional forms, they cannot require

_onal form specific estimation and testing algorithms. Consequently,
inere a£g computationally simple ways of checking whether they are
consistent with the data. Therefore, in addition to not being dependent on
particular functional form assumptions, our strategy is easy to implement.

On the other hand, the nonmparametric procedures provided here do not



produce precise values for alternative response parameters. Their goals
are only to provide a low cost, easily interpretable, characterization of
the data which suffices to: 1) distinguish vhich, if either, of the
alternative models seems relevant for the problem at hand, and 2) act as a
basis for building a procedure for correcting for the selection problem
induced by the liquidation process when one of the models seems
appropriate.

One of the nonparametric differences between the two models
corresponds to the distinction between heterogemeity and state dependence
that has played so large a role in labor econometrics (see Heckman, 1981;
Chamberlain, 1984; and Heckman and Singer; 1984). Im particular the
passive learning model implies that the stochastic process gemerating the
size of a firm is characterized by a generalized form of heterogeneity,
while the model with active exploration implies that this stochastic
process is generated by a quite general form of state dependence. Theory
restricts the state dependence in the active learning model to have ergodic
characteristics; i.e. the effect of being in a state in a particular period
erodes away as time from that period lapses. So we develop a test for the
distinction between heterogeneity and ergodic forms of state dependence
based on ¢-mixing conditions. The test is simple, intuitive, and seems to
be able to distinguish between the two models on panel data sets the size
of the ones used here (these follow about 400 observations over eight
years).

In particular, we find both the ¢-mixing test, and an analysis of the
evolution of the size distribution of firms in a cohort, suggest that one
model is consistent with the data for manufacturing, while the other seems

consistent with the data for retail trade. The importance of this result



is twofold. First the different models have distinctly different
implications for the manner and the extent to which firm-specific
uncertainties get resolved over time, and hence for the vay in which issues
related to these uncertainties ought to be analyzed. Second, the two
models imply different determinants for the probability of liquidation, and
hence different procedures for correcting for liquidation induced attrition
in the analysis of firm’s responses to alternative policy and environmental
changes.

Section 2 of the paper outlines the passive learning model and then
derives its nonparametric implications. Section 3 does the same for the
model with active exploration. In Section 4 we develop appropriate
estimation and testing procedures. Section 5 begins with a description of
the Visconsin panel, and then examines various subsets of it for the
implications of the two models. Section 6 considers further implications

of the empirical results.

Notation

The distribution of any random variable, say x, conditional on any
event, say z, is denoted P _(-|z), and its density (vith respect to the
implied dominating measure) by px(-|z). Superscripts denote the vector of
all prior realizations of a process, and subscripts denote a particular
value, so xt = (xl, . xt). Veak vector inequalities are interpreted
element by element, but a strong vector inequality means only that at least
one of the element by element inequalities is strong. 2 will be used for
the generic set, and z for a member of that set. Lemmas, theorems,
examples etc. will be numbered in one consecutive ordering within each

section. They are referred to in the following sections with a section



prescript.

Section 2. Passive Learning.

This section considers models in which each firm is endowed vith a
time—invariant characteristic which determines the distribution of its
profits, but whose value is not knovn to management at the time the firm
begins operation. Models of industries composed of firms which learn about
an unknown profitability parameter have been provided by Jovanovic (1982)
and Lippman and Rumelt (1982). Following Jovanovic (1982), ve conmsider a
Bayesian learning process. At entry the firm believes the value of its
characteristic, say #, is a random drav from some known distribution. Each
period the firm is in operation it obtains a realization from the
distribution of profits conditional on the true value of its 4. These
realizations are used to compute a sequence of posterior distributions.

The posterior available in each period is used as a basis for
decision-making in that period. The decisions of interest are whether to
produce at all and, if so, at what scale. If the firm does decide not to
produce it sells off its assets and exits, never to reappear again. Note
that in this model learning is passive in the sense that inforsation is
obtained as a costless byproduct of operating. One possible analogy is to
the operation of a retail outlet. The outlet learns vhether its
neighborhood will support its product, and, if so, at which scale of
operation.

Jovanovic (1982) focuses on establishing the existence of a perfect
foresight equilibrium for a homogeneous product industry composed of firms
vhich operate in this manner. Ve focus on the implications of the learning

process on the evolution of cohorts of firms, vhere cohorts are defined by



entry dates. In particular we shall look for empirical implications that
rely on the nature of the learning process, and only some mild regularity
conditions on the form of the profit function and the underlying
distributions of interest. Later ve compare these implications to data in
an attempt to identify those sectors in which this form of learning process

seems relevant.

2.1 The Model

It will be assumed that each entrant is endovwed with a value of §
which, in turn, determines the distribution of a payoff relevant random
variable 7, say P”(-IB). To motivate our assumptions, consider the example
of a homogeneous product industry of price-takers whose production
efficiencies are subject to random perturbations so that profits in period
tare 7, = o 17, F(lt) - ut’lt vhere; lt is a vector of input quantities,
ey provides their prices, F(-) is a concave production function, {”t} is a
sequence of independent and identically distributed.(i.i.d.) random .
variables, and e, is the product price. Assume n is known at the time lt

is chosen. Then
T, = I(Ut; Vg pt) = na.xtt {atr]tF(lt) - vt’lt},

and 7(7; Ve s pt) is an increasing function of 5. In a perfect foresight
equilibrium future prices will be known, so that if # were also known the
distribution of future profits could be calculated directly from Pﬂ(-|0).
Since management does not know f# it is assumed to summarize its beliefs

about that parameter in terms of a probability distribution over the
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possible values of §. At entry, management only knows that f is a random
drav from Go(ﬂ). The first period produces an g which management uses,
together with Bayes law, to update its prior [Go(ﬂ)] and form a posterior
which is then used to make second period decisions. If the firm stays in
operation, this updating process continues and decisions are made on the
basis of the sequence of updated posteriors.

s the example illustrates, the model vill require at least four
primitives; a sequence of random variables, a class of distributions for
those random variables indexed by #, a prior distribution for #, and a
payoff function. Before introducing these primitives we need a vay of
comparing distribution functions; i.e. we need an interpretation for the
statement that one value of § is ’better than’ another. Ve shall assume
that the family of distributions formed from different values of f can be
ordered in the likelihood ratio sense defined below. This ensures that
higher realizations of the payoff relevant n lead to Bayesian posteriors
for § that assign larger probability to higher values of ¢ (see below, and

¥ilgrom, 1981).

1. Definition (likelihood ratio ordering, or >lr)

Let Pl(') and P,(-) be two distributions possessing densities pl(-)
and p2(-) (with respect to some dominating measure), and with support, Zk,
a compact subset of Rk, k—dimensional Euclidean space. We will say that P1
likelihood ratio dominates PZ’ in the strong semse, and write P1 >ir PZ’ if

and only if,

Pl(zl)Pg(zz) - Pz(zl)Pl(zg) > 0,
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vhenever z, > z,, and pl(zl) or p2(z2) >0, 2,29 € X, If weak
inequalities replace the strong inequalities in this definition, we will

say that P1 likelihood ratio dominates P2 in the veak sense, and write

PJ ?try P2' (]

If P1 >¢r P2 then, for any two possible values of z, the ratio of the
probabilities of a larger to the smaller z value is alvays higher for P,;
i.e., P, is more likely to have generated the higher z value.? The
following lemma points out that >,. is a stronger criteria for ordering
distribution functions than the more familiar first order stochastic

-ie criteria.

9. Lemma (likelihood ratios and stochastic dominmance).
Say P1 stochastically dominates P2, and vrite P1 > P2, if and only if

for every nondecreasing nonconstant function, h(-), such that

[h(O)P,(d0) < =,
h(()P,(dC) > [h(()Py(d().
Then,
Py >, By implies, Py 5. Py.
If weak.Inequalities replace the strong inequalities in this definition we

say that P1 stochastically dominates P2 in the weak sense, and write

P1 . P2. P1 v P2 implies P1 . P,.
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Proof See Ross (1983), Appendix 1, 3.1, and 4.1. 0]

Assumption 3 provides the primitives of the passive learning model and
endows them with some regularity conditions. It gemeralizes the
assumptions used in our example. In particular the example assumed that
conditional on a f¢B, the sequence of payoff relevant random variables,
{n.}, are independently and identically distributed (i.i.d.) over time.
Then the joint distribution of the sequemce {n,} conditional on a feB is
entirely described by the single distribution, Pﬂ(-|0). Though the i.i.d.
case is easy to deal with, it produces a host of very strong empirical
implications which are a result of the i.i.d. assumption and not of the
logic of the passive leérning model per se. Ve, therefore, allow for
dependence in the stochastic process genmerating {qt} conditional on #. In
(3.i) ve assume only that the marginal distribution of m, conditional on ¢
is stationary (does not depend on time), and that the conditional
distribution of g, (conditional on past 7-realizations) satisfies the
condition that higher past values of 7 are at least as likely to lead to
higher future values of . (3.ii) insures that higher values of 0 are
better in the fr-sense; i.e. it insures that for amy t, higher values of
the vector qt = (ql, cey ”t) are more likely to be generated by larger ¢
values. (3.iv) provides the profit and size functions. It is important

that both be increasing in 5.3

3. Assumption (primitives of the model)
(i) {n.} is a sequence of payoff relevant random variables (a

stochastic process) whose joint distribution, say P(6), is indexed by a

feB, vhere 8 is a compact subset of R+. The marginal distribution of n is
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stationary and is denoted by P”(-lﬁ), vhile its conditional distribution

t-1 t-1,

satisfies a weak {r—ordering in realizations of 5~ °, say n i.e.

t-1 t-1

t-1 t-1
whenever n; 2 n, .

(ii) The family of distributions
P = {P(6): 6¢6},

have marginal distributions with support N (a compact subset of R ) and
densities with respect to some dominating measure. Further, these
distributions satisfy an fr—ordering in #; i.e., provided # > 8’ we have,

for every t .-

P”t('“’) >4 P”t(-|0’).

(ii1) GU(') is a prior probability distribution vith density g (-) on

(iv) r(-) and S(-) are continuous increasing functions from N into R_.

7(-) provides the payoff to, and S(-) the size of, the firm. [ ]

Dur behavioral assumption is that management acts 50 as to maximize
the expected discounted value of future net cash flow conditional on

current information, where the conditional distribution of future net cash
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flows are formed, in a Bayesian fashion, from; the family of 5 processes
(P), the prior for ¢ [GU(-)], and past realizations of 7, say
nt = (“1’ ceny “t)' The next assumption provides these conditional

distributions.

4. Assumption [posterior distributions)

Let Jt contain all information available in period t. Then
Pr{f < 2|3} = p (a¥18 < 2)6(2)/IP (A*1)6y(d() = Py(z]n®),
" ]

for zeB. Noreover Pa(-|nt) has a density, po(-lnt), vith respect to the G,

neasure (for nt ¢ XY, and all t).

Lemma 5 states that, under the fr—ordering assumptions, higher past g
realizations lead to more favorable posteriors for §. It follows directly

from Bayes law and assumption (3.ii).4

5. Lemma (monotonicity of posteriors)

For any t, let ni, n; ¢ N with n} > n; , then

Po(-In}) >4 Pyl-In3). []

Now consider the decision problem facing the owners of a firm which
has been in existence t periods and has had g realizations of nt. The
owners musf choose whether to continue in operation over the coming period,

or close down and sell the firm at the value, #. If the owners decide to
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operate the firm they will obtain the profits over the coming period, plus
the option of keeping the firm in operation over subsequent periods should
they desire to do 50.5

Assume, temporarily, the existence of a bounded function, say

¥ (nt+1), from K**! into R, which provides the value of continuing in

t+1
operation from period t+1 given a realization of qt+1 equal to ot Then,

letting fe(0,1) be the discount factor, we have
(6) V,(n%) = Bfa(ng,q)[n%) + BE[max{#,V,,; (""" ))}in%),

where for any h(-), the expectation E[h(qt+1)|nt] = fh((,nt)Pﬂ (d(lnt).
t

Given (6) the optimal strategy of the owner is straightforvard. Operate
the firm if and only if Vt(nt) > ¢. Theorem 7 insures that the value

function in (6) exists and then provides some of its properties.

7. Theorem (existence and montonicity of the value function)

At each t there exists a unique Vt(-):Nt - R, vhich provides the value
of continuing in operation assuming optimal behavior in each future period.
V.(-) is bounded, satisfies (6), and is nondecreasing in nt; i.e., if n: 2

t t t t
ng, then V (ny) 2 V (n,) [for n eNt, and all t]

Proof See Appendix I. []

Note that Theorem 7 depends only on Assumption 3. It does not depend

on: the precise functional form (or even the curvature) of the profit
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function (so the production function could display regions of increasing
returns); on the form of Go(-); or on the family P provided that it satisfy
the monotone likelihood ratio properties in (3) (in particular the
posteriors for # need not possess simple sufficient statistics, mor need
they be veakly continuous in their arguments). Ve nov move on to comsider
the empirical implications of the passive learning model and ve shall focus

on implications which require only the assumptions reviewed above.

2.2 Empirical Implications of Passive ni

Throughout we shall focus on the empirical implications of the passive
learning model that are true at each age (that model also has limit
properties as age grows large, but it is hard to use these as a basis for
empirical analysis without further, a priori, information). Ve begin by
deriving the implications of the passive learning model on the evolution of
the size distribution of firms.

The theorem that underlies our results on the evolution of the size
distribution is the economist’s (far more palatable) version of the
Darwinian dictum of -"survival of the fittest." It states that as age
increases the f-distribution of the surviving firms improves (in the
stochastic dominance sense). This is a result of self-selection. 4s time
passes firms with lower #’s are more likely to draw lower 5’s and

self-liquidate.

8. Theorem (the evolution of the #—distribution)
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Let A = {nt = gy ees n): Vi(ny) > 8, .00y Vt(nt) > §}, and

( t) 1 if nt € At
X (n) = .
t o if nt gt

Then a firm is still operating in period t if and omly if y, = 1. Purther,

for every z ¢ 8 and all t let

Py(z|t) = Pr{f < z{y, = 1).
Then

Pa(' lt‘*l) >SV Pa(- |t).
(io0f Take an arbitrary (z, t). Then, by Bayes law,

Pylzlt) = Pr(x, = 110 < 2)6y(2) Prix, = 1)

= [p ¢ IPrixg = 10)65(d0)] / [gfPr{x, = 116}6p(40)].

We must show that Pa(zlt—l) 2 Pp(z|t). For this is suffices that

DGO s U 1S
(8:1) TPy, =TTOIGTa0) 2 i, TPETX, =TTAGg(@0)"

Using the fact that

Prix, =116} = Pr{x,=1]x,_;=1,0}Pr{x,_s=116},
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and letting

0,(d8) = Pry, ;=110)6o(d6) / g/Prix, y=1|0}6o(d0), and

(8.2)
0 for > 2

dé) =
1,e0) Pr{xt_1=1|0}Go(d0)/0s z]Pr{xt_1=1|‘}G°(d0), otherwise

(8.1) can be rewritten as
(8. 3) BIP?{Xt=1 | Xt_1=1 ’ 0}01(d0) 2 ngl’{Xt=1 |Xt—1=1 ’0}02(‘10) .

Since (8.2) implies Q (-) >, (), (8.3) will be true provided
Pr{xt=1|xt_1=1,0} is nondecreasing in #. To see that this is indeed the

case write

Prix,=1lx,_s=1,6} = [Pr{x,=1n"", 0)p (glant Tttt g,
7

Then, taking 6 > 6’

eyttt op et et et )
1
lpr{xt=1 I nt—l’ 01}P t_l{dnt—l |nt"1(‘t"1 , 0} 2
1

t- H - = - H
fPr{x=1n*"1,0 }Pnt_l{dnt ot lat 1 e},

vhere the first inequality follows from the monotonicity of V(-) and the

fact that P t(-|nt_1,0) is stochastically increasing in 4, and the second
n
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from (3.1) and the fact that if P t(-|0) > P t(-|0’), then, for any AeNt,
7 7

P (-1n%h,0) >, P (-[n%,8°) (see Ross, 1982, appendix I). [ ]
7 7

Qur first empirical implication of the passive learning model is a
direct corollary of theorem 8. Since size is an increasing function of 7,
and 5 is stochastically increasing in #, the fact that the # distribution
of the surviving firms is stochastically increasing over time implies that
the size distribution of surviving firms ought to be stochastically

increasing in time.

9. Corollary (The evolution of the size distribution.)
Let Xy be defined as in Theorem 8, recall that St = S(”t)’ and for all

z and t define
P (z]t) = Pr{S.< z}y,=1}.
Then, provided t > t’
Ps(llt) >SW Ps('lt’)' []
There are many ways of employing Corollary 9 to identify industries
that might abide by the passive learning model. The simplest is to plot

the size distribution for different ages and compare them; the proportion

of the sample greater than any given size should increase in age. MNore
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generally the corollary implies that if h(-) is any increasing function,

then wvhenever t ¢ t’
R(t) = /h(()P(dCIt) < /u(¢)Pg(d(Ie’) = B(v’).

So ve could take the sample analogue of R(t) [the sample mean of h(S)], and
investigate whether it increases in age. Ve come back to these points
below. Note also that Theorem (8) and Corollary (9) imply that each
sequence of distribution functionms, {Pa(-lt)}, and {Ps(-lt)}, converges
(pointwise), to a well-defined limiting distribution, say Pa(-lw) and
Po(-le).

Implications of the.passive learning model that specify a monotonic
relationship betveen two or more observables are particularly useful since
they can be checked against data without imposing undue functional form
restrictions. Though the literature on the passive learning model seems to
have missed Corollary 9, it has associated at least three other momotonic
relationships with passive learning. These are that:

i) the hazard rate is nonincreasing in current size; i.e., that
Prix=01x;_4=1, st—lzst—l} is nonincreasing in 8, _;;

ii) the hazard rate is nondecreasing in age (usually, but not always,
conditional on size);

iii) and that the variance in growth rates (again usually conditional
on size) is nonincreasing in age

(these implications are discussed in Jovamovic, 1982; Evans, 1987a and
1987b; and Dunne, Roberts and Samuelson, 1987).

The next example shows that of these three only the first survives our

search for nonparametric implications of the passive learning model (the
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example assumes, as did Jovanovic, 1982, that the distribution of {nt}
conditional on # is i.i.d.). It is true, however, that the first
implication, that is that hazard rates are nonincreasing in size at a given
age, both persists and is consistent with the data from every empirical
study ve are avare of [Churchill, 1955; Vedervang, 1965; Evans 1987a and
1987b; Dumne, Roberts, and Samuelson, 1987]. Bowever, most other models
that allow for mortality, including Ericson and Pakes’s (1989) model of
active exploration, also imply mortality rates that decrease in size for a
given age. Therefore, this proﬁerty fails to distinguish among the
alternative models, and we do not pay further attention to it in this
paper.

As to the other implications, the fact that the passive learning model
does not imply that either hazard rates, or the variance in growth rates,
decline in age (at least not without further ad hoc assumptions) is
somevhat disconcerting. Decreasing hazards and decreasing variances in
grovth rates have both been associated with the passive learning model in
the past, and, in addition, have been shown to be fairly robust features of:
the data. On the other hand, the intuition underlying our counterexample
is clear enough. For many functional forms it will take time to accumulate
the information necessary to ensure that exit is optimal, and this fact
generates an initial increasing portion to the hazard function (actually
the example generalizes this intuition and generates a hazard function
which oscillates over age). As to differences in the variance in growth
rates over age, these will depend upon, among other factors, the relative
variances of 5 conditional on @ for different values of 6. If 6—values

which are more likely to induce exit are associated with low variances, the
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observed variance in growth rates may well increase over age.

10. [Example
Let r, = r-n,, vith {n;} i.i.d. conditional on 4,

1 vith probability 4 6 with probability £
" ; and @ =
0 otherwise 0 othervise

The posterior for # in this problem depends only on the couple (xt,t),

vhere x, = max[n;, ..., nt]. Consequently the value function in (6) has

t
the simple form,

V. (n") = V(x,,t).

x, is either 0 or 1. If x =1 management knows that 6=6 and a direct

t
calculation shows

V(1,t) = 16/(1-6)>4,

vhere the inequality is by assumption. This inequality ensures that if
x,=1 management will never drop out. If xt=0 the firm continues in
operation if and only if V(0,t) 2> &. It is easy to show that

Prix,, ;=1]x,=0,t} =7Pr{nt*1=1|xt=0,t} decreases in t, and converges to
zero. This ensures that V(0,t) decreases in t and converges to zero.
Clearly then, there exists a unique t‘ such that Y(0,t) > & if and only if
t <t Let S(r,=1) = S, S(n,=0) = 0, H(t,S,) be the hazard rate for the

firms of size S, in period t, and H(t) be the unconditional hazard.
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Straightforvard calculations show that for

B(t,5,=0) K(t,5,=5) E(t)
st 0 , o, 0
=t {(1-6)Y 1+ (1-0)]/ [(1-6) £+ (1-0)], o, -t -0
o1 0 , o, 0

So neither the conditional, nor the unconditional, hazard declines in age.
T.  simply reflects the fact that for many possible assumptions on the
relevant functional forms it will take time to gather the information
required to decide whether exit is optimal.

Next we consider the variance in growth rates. Provided t > t*, any
firm that is active has 6 = &, and V(S ~S,1S,)=V(S,,,|6=6) = $25(1-6),
~osardless of §,. If t <t and S, = S, then § still is § with probability

and V(8 - t|S ) is still given by the sbove formulae. So the
,e-iance in growth rates conditioned on St = § is constant over age.
However, if t < t*, and St = 0, then # can equal either § or 0 with
positive probability, and the variance in the growth rate is

(652 (1-€) (1-6)€] /[ (1-€) + (1-6)€]°. Thus

2
V(S¢h1S¢lSg = 0> © t')/V(S,“l S, 15,20, t<t % = L%—t ad 1'131 ,

which c4dn be made as large as we like by choosing § or £ small enough. The
variance in growth rates need not decline in age. Whether or not they do

will depend upon whether growth rates associated with high §’s are more
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variant than growth rates associated with low #’s, an issue which the basic
passive learning model is silent on.

To see how this example generalizes, comsider the case where # has a
beta prior distribution with parameters (r,s), i.e., Gn(-) = B(r,s), so

that 4 can take any value between zero and one. The posterior im this case

t
is another beta with parameters r + Zni and 8 + t - Zni, 8o that the sum,

t
= Zni, and t, can be used as sufficient statistics. (Note that x, is a

X
nonnegative integer.) Using an argument analogous to that given above we
find that for any fixed x, V(x,t) declines to zero with t. Thus for each x
there exists a t*(x) such that V(x,t) 2 § according as t $ t*(x) [see
Figure 1]. Both the mortality, and the hazard rate will be zero for a
value of t such that t*(x) <t< t*(x+1) (for x =1, 2, ...). MNoreover it
can be shown that t*(x+1) cannot equal t‘(x)+1 for consecutive values of x.
That is, the hazard function will usually have a zero between any two
positive portions, making it oscillate over age. For t = t*(x) the hazard
and mortality rates will be determined by the precise form of the prior.

One such sequence of hazard rates is given in the bottom part of Figure 1.

Similar pictures could be drawn for the variance in growth rates. [ ]

This example illustrates that if we are interested in other
nonparametric implications of the passive learning model we should look
beyond the implications of passive learning on the pattern of either the
hazard or the variance in growth rates. It is, therefore, fortunate that
the passive learning model has some very distinctive implications on the
underlying structure of the conditional probabilities gemerating growth and

mortality.
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These implications stem primarily from the fact that 4 is
time-invariant. As a result, early realizations of g contain information
about the parameter that determines the distribution of its future values;
and this will be true no matter the time that elapses in the interim. Put
differently, the dependence in the joint distribution of n and N does not
erode avay as t grows large. This is seen most clearly in the special case
vhere, conditional on 4, the {”t} are an i.i.d. process. In this case, for

any n’ and z

Po(eln = ) = glPy (el OFg(@lny = n)
= g/P,(z| O)F (0" 18)g,(6)d8/g/P, (] O)g, (£)d¢;

which is independent of t and k. This strong invariance property is
destroyed when we allow # to index the more general family of stochastic

processes permitted in (3). In the general case we have, for any zeN,

by (2lny = ) = [P (2l = 2, Og(80Imen’),

and since P, (z[n = n’,f) can depend upon t and k, 8o can P (z|n =1n’).
Ny ¢

However, the passive learning model does imply that the dependence in this
latter distribution has two sources, one of which will pot erode away as t
grows large. That is, though the dependence in the process generating f,
conditional on # (in the integrand) may erode away with t (it will if the
process generating 1. is ergodic), the dependence that results from the
effect of the realization of n On the posterior for # will not.

This argument can be formalized and then used to produce a test for
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the passive learning model based on differemnces between the marginal
distribution of S, = §(n,), and the distribution of S, conditional on §,.
Actually we can do better than this and produce tests based on a comparison
of the distribution of St conditional on st-l""’st—k to the distribution
of S, conditional on st-l""’st-k’ and S, for any k>0. Vith a positive k
this test is likely to be more poverful against alternatives in which the
value of the parameter determining the firm’s distribution of profits
evolves in a Markovian fashion over time (and ome such alternative is the
podel of active exploration considered in the mext section).

Our test is a direct implication of the following theorem. The
theorem states that if we choose gny group of years for which there is
information on past realizations of 7, and derive the family of posterior
distributions for # conditional on possible g-realizations in those years,
then members of the family with higher past p-realizations will

stochastically dominate those with lower gp-realizations.
11. Theorem (conditional distributions for 7,)

Let t and k be positive integers with tXk, and (il""’ik) be any

selection of k distinct elements from {1,...,t-1}. Then if nj =
(ni ,...,n}k) and ny = (n?l,...,nfk) are arbitrary (il""ik) histories of

n satisfying By > My, and y, is defined as in (8),

Pﬂt(.lr'll,xt:l) )s Pnt(-lr.|2, Xt = 1)_

Proof. See Appendix I. []



The empirical implication of theorem (11) that we will be using is

that it implies that for any k 2 0, and any (nt—l’ ceey nt_k)eNk_l,

(12) Pqt('|nt-1""nt—k’n1’xt=1) > Pqt('|nt—1""’nt—k’ni’xt=1)’
vhenever n, > ni. Corollary (13) is an immediate implication of (12).

13. Corollary
Let t and k be nonnegative integers with t>k, and let y, be defined as

in Theorem 8. Then

E[S¢1Sy 1 = Sggr- 25tk = Sgk, 517 Sp Xt * 1]
is strictly increasing in s, for almost every (st-l""’st—k)' [1]

That is, expected future size conditional on k past sizes and survival
vill be strictly increasing in the initial size. This is because the
parameter which determines the conditional distribution of the payoff
relevant g is time-invariant. In models in vhich these conditional
distributions depend on a parameter which evolves over time in response to,
say, the outcomes of a firm’s exploratory investment, corollary (13) will

not necessarily be true. Ve turn to these types of models now.

Section 3. Active Exploration
This section considers the empirical implications of a model

(originally developed by Ericson and Pakes, 1989), in which firms can
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invest to improve the value of a parameter, say v, which determines the
distribution of its profits. In the model with active exploration (in
contrast to in the passive learning model) management is assumed to know
its current value of ¢ (and hence the actual profit distribution it faces),
and makes current production decision based on it. On the other hand v
itself evolves over time in response to the outcomes of the firm’s own
investment process, and the investments of other firms operating in related
mﬁrkets. These outcomes are stochastic; in the active exploration model
the firm invests to explore and develop alternative market niches which
may, or may not, prove profitable.

In this model the distribution of futures states is determined
entirely by the current state and the optimal investment policy. It is,
therefore, independent of the age of the firm per se. Startup is treated
as the appearance of an idea which, given current market conditions,
---~oars worth exploring. Formally it is an initial location on the e—axis.

idea requires substantial successful developnen{>before it can
_ _.iete noticeable profits, the initial ¢ is associated vith a
distribution of profits which is degenerate (or nearly so) at zero.
Successful investment will enable the idea to be embodied in a more
profitable marketable good or service. Unsuccessful exploration may well
convince the entrepeneur that the whole idea is mot worth pursuing and lead
to liquidation.

Ericson and Pakes begin with a simple model in which the distribution
of the fi}m’s profits depends only on the difference betveen the firm’s own
level of development and an exogenous aggregate index of the state of the
industry. They then generalize to cases in which the firm’s profit

distribution also depends explicitly on the levels of development of all
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the encumbents in, and the potential entrants to, the industry. BHere we
suffice with a brief description of the simpler model, as this special case
of the more general framework is sufficient to comtrast its empirical
implications to those of the passive learning model just described. Again
ve consider only those empirical implications that are momparametric in the
sense that they require only mild regularity conditions on the relevant

functional forms.

The Active Exploration Nodel

Ve will assume that the state space is countable and index it by the
integers so that wel. Each firm operating in period t is emdoved with an
vy - Bigher values of v are better in the sense that the distribution of
the payoff relevant n is stochastically increasing in ». Nanagement has
three choices to make in each period, and they are made to maximize the
expected discounted value of future net cash flows. First the firm must
decide whether to operate at all. If it decides against it receives a
liquidation value of & and exits never to reappear again. If the firm does
operate management must decide on both a level of current input demand, and
an amount of exploratory investment, say X, . Given a realization of 7,

current input choices will determine current operating profits, say f(ﬂt).

Current cash flows are

l(ﬂt’ut’xt) = l’(r)t)—C(Ut)Xt

vhere c(-)>0, and can be decreasing in # to reflect the possibility that
more profitable firms may find it easier to raise finance capital.

Increases in current investment decrease current cash flow but make higher



30

values of Vs,10 and hence higher future profits, more likely. In
particular, let Teo1 Va1 Vg and Jt be the information available to

management at t. Then ve assume that for zel,

PT(rt+lgz|Jt) = P (2,1%),

vhere P7(-|xt) is stochastically increasing in x. Henmce, to formalize the

firm’s decision problem we will require the following primitives.®
1. Assumption (primitives of the active exploration model)

i) P-= {Pﬂ(-|u):ueﬂ}, is a family of distribution functions indexed
by . The family has support, N, a compact subset of I containing zero,

and exhibits a weak first order stochastic dominance ordering in v, i.e.

P 16) 3y Pp(-107)

vhenever v > «’. It is assumed that {im Pﬂ(olu)zl. (This, together with
&+

the assumption that r(0) = 0, insures that for small emough ¢ payoffs are

zero with probability arbitrarily close to one.)

ii) P = {PT(-|x):xeR+} is a family of distributions with support T,
" a compact subset of I, exhibiting a weak first order stochastic dominance

ordering in x, i.e.
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P(-1x) 3¢, P,(-1X)
whenever x > x’, and satisfying the condition that
PT(0|0) =1,

50 that the firm’s product cannot be improved without some investment. The
family of densities {pT(-lx):xeR+}, is (pointwise) differentiable in x with
derivatives which are decreasing in x for 7 > 0, and increasing in x for 7

< 0 (this insures that the investment problem is concave and therefore has

a unique solution), and both p_(0|x) and p,(-1]|x) are strictly positive for
all x less than any finite upper bound (these are technical conditions

whose roles are explained in more detail below).

iii) () and $(-) are increasing functions of 7, and c(-) is
non-increasing function of w, into R . () provides the profits, and S(-)
provides the size, of the firm; while c(-) provides the cost of a unit of

x. 7(0) = 0, and c(-) is bounded away from zero. []

Ve now consider management’s choice of policies. Letting v, be the
initial state and X, be the indicator function which takes the value one if
- the firm is active in period 7 and zero elsewhere, a policy, say d, is a
sequence of functions mapping available information into operating and

investment decisions, that is
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d = {XO(JO)’ xu(Ju), XI(JI)’ xl(J1)s---};

with X, = xT(JT) and y, =0 implying x,,, = 0 for tel , x, = xr(Jr)’ and
= {”r’xr—l’xr—l’”r—l’""”D}' Recall that l(nT,uT,xT,xT) = 1(g,)—c(v,)x.
if x,=1 and zero othervise, 50 the expected discounted value of net cash

flows given the policy d is
Vd(wo) = By {Eﬂfk(nT,wT,xT,XT) + .(17_1‘1,)J|"u}

where fe(0,1) is a discount factor, and the expectation is taken assumin
that the d-policy is followed. Note the (1) implies that R(-) is bounde

and let
V(w) = sup Vd(w)
d

for each v. A policy d' will be optimal if Vy*(s) = ¥(s) for all v. If
optimal policy exists management chooses it, in which case the expected
discounted value of future net cash flow is V(¢). MNanagement will opera
the firm if and only if V(v) > &, the liquidation value. The following
theorem combines the results from Ericson and Pakes (1989) that are used
our derivation of the empirical implications of their model. The theore

is followed by diagrammatic and verbal expositions of its contents.

2. Theorem (properties of the active exploration model).
A unique optimal policy and associated value function exist and the

have the following characteristics:
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i) V() is bounded and nondecreasing in .
*
ii) The optimal policy, x,(J.) is bounded, depends only on current ¢, and

is stationary, i.e. for all 7

iii) There exists a couple, (g, ¥) with, —= < g ¢ ¥ ¢ », such that

' < ¥}

&
A
«

x*(u) =0if v f {v’: ¥

iv) There exists a second couple (g, v), with - @ < g < g ¢ V<w <a,

such that

¥(v) > ¢ if and only if ¢ > g,

and
inf inf_ Pr{v, ¢ v | e} =1
t ¢y Cw
Proof: See Appendix 2. []

Parts (i) and (ii) of this theorem ensure that both the value function
and investment policy are stationary functions of u; the value function
being increasing in ¢. Figure 2 illustrates this with ome special case.

In the figure A(e) = jr(n)Pn(dn[w), provides expected profits conditional

on ¢. The value of  belov which a firm exits, i.e. the ¢ in (2.iv), is
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determined by the point at which V(#) equals &#. In this example ¢ = g,
that value of v below vhich a firm stops investment. So positive
investment occurs at ¢ + 1, even though profits at that point are zero wi
probability one. The incentive for the investment is that it makes highe
values of AR and hence higher future profits, more likely. The moneta
value of an increase in v is V(ut+1) - V(v;). Since V(#) is bounded, aft
some point increases in ¢ cannot brimg with it much of a change in V(-).
It follows that, after some v, it will not be in the firm’s interest to
invest at all. The v at which this occurs is the ¥ of (2.iii). If v > &
no investment takes place and this insures (see 1.ii) that the firm’s ¢
a0t increase (in fact it will stochastically deteriorate as other
firms gradually develop goods and services that obsolete the product of
this firm). Let r be the largest value of r that has positive probabili
when x = X (recall that x = max x‘(u), and that r is finite by virtue of
1.ii). Then firms with v, < v have W, $ v+ r* = v, and firms with

v < < v have Vo1 < oy So if vy < v, 50 must be v, 4. This explains

o
t
the second statement in 2.iv; that is, if vy < v, then, with probability

one, so will be the entire sequence {v }?_o-

Q:

S

Figure 2: Policies in the Active Exploration Nodel
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Since all values of ¢ < » induce permanent exit, there is no need to
distinguish among them. It is, therefore, convenient to transform the

state space by the map f(-), vhere

0 forw¢w
f(o) =

v - w  elsevhere.

let K = v — ¢, so that if f(”t) < K, so is f(”t+1)' Ve shall vork only
vith values of f(v) in what follows. At the risk of some notational
confusion, then, ve also label its values by o.

Vith this understanding, theorem 2.2, implies that the sequence {v}
together with any ¢, ¢ K is a finite state Markov chain on # = {0,1,...,K}.
Its ‘zero’ or ’death’ state is absorbing, so the transition matrix for the

chain is given by P, where ]

1,0...,0
P= [pi,j] = [pi i ’ }
b

and for 0 <1 <K g (3)

p (rj-ilx (1)), forEK2j >0
*
I p(r=j-ilx (1)), for j
7<-1

Pi,j *

1]
o

Twé remarks are in order here. First, recall that realizatioms of v
are not observable. Realizations of {S,} are, but S(nt)=5(ut)+U(nt), vhere
S(ey) = /S(nt)P(dnlwt), and U(7,) = S(nt) - S(Ut). Since the distribution

of f(nt) is also determined by Vg s and {”t} is a Markov process, St is a

sur of two Markov processes., But a process which is a sum of Markov
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processes is not, in general, Markov. So the observable {S,} process is
not Markov.
The second point to note concerns the mortality of firms. Assumption

* *
(1.iii) insures that there exists a finite n , such that for m>n

. n .
min {p, ,: 1€} 2 € >0
iep 10 ’

vhere pg,j= Pr{v,,, = jleg = i}. Since Po,0 * 1, this implies that all
states but 0 are ’transient’. That is, no matter its initial «, a firm
will, with probability one, reach zero in finite time and stay there.
Firms, like people, eventually die.

Since the passive learning model implies that firms can survive
forever there is a sense in which this latter result differentiates the
model with active exploration from the passive learning model. However, i
order to make empirical use of this distinction we would require a very
long time series of data. On the other hand, the passive learning model
did have the additional implication that the size distribution of survivir
firms ought to be stochastically increasing in any finite range of ages
(corollary 2.9). For comparison, we now consider the properties of the
sequence of survivor distributions generated by the model with active
exploration.

Let
0t - {qeBl: Zq;=1)

be an L-1 dimensional simplex, so that any quK+1 can be regarded as a
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density on fi. Note that a potential entrant with an =0 would not enter,
so that the initial distribution of the ¢ in a cohort is a pocQK. It can
be shown (see Ericson and Pakes, 1989) that no matter the initial perK,

the v and § distributions of the survivors in period t, say
0
P,(-It,p") and Pg(-|t, p°)

each converge (point wise), as t grows large, to a unique invariant

distribution, say

Po(+), and 1g(")

0 and to the passage of time).

(these distributions are invariant to both p
One can actually go one step further than this and show that, given some
additional regularity conditions on the location of po and on the
transition probabilities, there will be a finite t*, such that for any po
(4) P(-1t+1, p%) 5, Po(-1t,07)
provided t>t*. That is, not only does the size-distribution of surviving
firms converge to an invariant distribution, but after some t* the
convergence will be ’monotone’ and the size distribution of surviving firms
will stochastically increase from period to period (just as in the passive
learning model).

Still, however, the empirical implicatiohs of the active learning
model on the evolution of the size-distributions of surviving firms are

veaker than those of the passive learning model. In particular the active
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learning model does not predict that the size distribution will be
stochastically increasing at each age. On the other hand, the active
learning model does not bar this event from occurring, and it can predict
that the size distribution will be stochastically increasing at later ages.

There is, however, at least one set of observable implications vhich
differentiate between the two models more sharply. Recall that in the
passive learning model the parameter that determines the distribution of
profits is time invariant. This induces a dependence between the initial
size of a firm and the size at any future date. Indeed as equation (2.12)
shows, the passive learning model implies the stronger result that the
conditional distribution of size at t, conditional on the immediate past
sizes and the initial size, will always be strictly imcreasing in the
initial size. In the active learning model the parameter determining the
firm’s profitability distribution, i.e. w, evolves over time. Later year
size realizations are governed by a different value of_u than those from
earlier years and, as time passes, the dependence between the later and
earlier values of v, and therefore of size, dies out. This is also true
for the conditional distribution of St; i.e. the distribution of St
conditional on immediate past values of S should gradually become
independent of initial year sizes. MNoreover, since the dependence of v, on
its history is only through the value of vy 1s Ve might expect that if we
condition on immediate past sizes the dependence on initial size will die
out relatively quickly. Indeed, in the extreme case where St = S(ut), 80
that sales is a deterministic function of Vs the conditional distribution
of St depends only on st—l' In this case a three year panel is enough to
differentiate the active from the passive learning model.

Vhen there is noise in the relationship between o, and size ve must
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base our distinction between the active and the passive learning model on
more detailed properties of the stochastic process generating size
conditional on survival. Let {S:}:zl be that process (it is described
formally in Appendix 2). Then, the active learning model implies that as 7

2 .) becomes, roughly

grows large the distribution of (s2 el

x+7’
spezking, independent of realizationms of (S?,...,Si). More precisely, we
have lemma 6 and its implications (explained immediately after presentation

of the lemma).

5. Lemma (¢-mixing of the {S:} process).

Let {S:}z=1 be the stochastic process formed from the distribution of
sales conditional on survival and any initial uoe(1,2,...,K), and li be the
r-algebra generated by possible realizations of S:, S:+1,...,S;. Then {S:}
¢-mixes at a geometric rate, i.e.

sup(|P(Ey|E)-P(Ey)|, E; with P(E;) > 0 and Elel’{,EQelz”) < Ag7

with ¢ < 1.
Proof. See Appendix 2 []

Lemma 5 states that any dependence between size realizations that
occur after x+7, and size realizations that occur before x, goes down

geometrically in 7. It implies that for k > 0
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(6) :up f lps(z|st_17'"vst_k75171t=1) - pS(zlst—l""’st—k’Xt:l)l < Ak(
1

for some ¢<1, on a set of (st-l""st—k) vith probability onme. That is b
choosing k sufficiently large we can make the conditional distribution of
S¢» conditional on s, _,,...,6, y, and §;, as close as ve like to being
independent of the precise realization of s;. Note that equation (2.13)
insures that this is not the case in the passive learning model. The next

corollary is an immediate implication of (5) and (6).

7. Corollary

For any k > 0
r {1 - t
E(sl)’ELstlst—l""’St—k’sl’xt'lj E[Stlst_l,...,st_k,xt-lj| < Ad
on a set of (st—l""st—k) with probability one. 0]

Recall that corollary (2.14) insures that in the passive learning
model the conditional expectation of St’ conditional on any realization,
(St—l’ Sy 9y e Sty 51) and survival until t, is strictly increasing in
Sy Hence corollary (1) differentiates the active from the passive
learning model. The distinction between the two models is particularly
striking in the special case vhere §; = S(ut), in which case A =0 for k>1

¥e now consider the econometric techniques needed to bring this

distinction to data.
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Section 3: Estimation and Testing

There are two nonparametric implications of the models we are
considering that will be investigated empirically. The first is whether
the size distribution of surviving firms is stochastically increasing in

age; or whether, for all t
Ps(-|t) >su Ps(-|t—1). (1)

The passive learning model implies it must, while the active exploration
model implies it may, but need not - at least in the early ages. The

second question posed of the data is whether, for different values of k,
E[S, 18,y = 84_ys---sS¢y = By go Sy = 8yy Xy = 1] (2)

is strictly increasing in s,. Again the passive learning model says it
must be. But here there is a sharper contrast with the implications of the
active exploration model. The model with active exploration implies that,
for t large enough, the regression function in (2) cannot depend on s,. To
check vhether (1) seems comsistent with the data, we will simply plot and
compare the size distribution at different ages. It is more difficult to
present a pictoral representation of the regression function in (2). Our
analysis of its properties must, therefore, be somewhat more formal.

This section develops an intuitive nonparametric estimator for (2),
and then considers tests of whether or not it is increasing in §y- Indeed,
since both models imply that the regression function is nondecreasing in

sy, ve employ a two—part testing sequence. Ve first test whether (2) is
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weakly increasing in s,. If this vere not the case we would doubt whether
either of our models provided an adequate approximation to the process
generating the data being analyzed. If, on the other hand, the hypothesis
of weak monotonicity is acceptable, we move on to test the null of whether
the regression function does not depend on 5 against the alternmative of it
being strictly increasing in that variable. Acceptance of both null
hypotheses is interpreted as support for the active exploration model,
vhile acceptance of only the first is interpreted as support for passive
learning.

To obtain our estimator of the regression function we define J
positive numbers, say {3j}§=1’ and use them to break R_into cells, as in

figure 3. Ve then define the function o(-): R = [1,...,J] which assigns

to each St the number of the cell it falls into, i.e. for j=1,...,J,
o, = 0(8,)=J, if and only if, ;j—l <8, 5‘;5, (3a)

where it is understood thatvEO = 0, and ;J = o.

l ! | | |

I o(s,)=1 | ! | |

g1 L=z asys L o(8,)=J
| R | |t
0 ;1 2 v ;J—l
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Similarly for k < t define the function ak(-): R§+1 - [1,...,J]k+1, by
ko ot-1y _
o (§7) = {V(St_l), V(St_z)i ceey ”(St_k)i ”(51)}' (3b)

In the empirical analysis we treat all values of S that fall into the
same cell as equivalent (for the theoretical properties of the test
statistics ve require that the cell or ’band’ width go to zero at an
appropriate rate). For our purposes, then, a {St—l’ St—2""’st—k’sl}

- history of a firm which survives‘until period t is one of the Jk+1 possible
values of ak(St_l). Each of these values is a k+1 dimensional cell, and we
denote the set of such cells by {a:;p=1,...,Jk+1}. Our testing procedure
is based on estimating the mean and the variance of the regression function
in (2) in the intervals defined by these cells.

¥ore precisely let uk and Vk denote the vectors

RS NG S
and : (4)
Vs [V = vargs, | (st = o) O

Now consider a random sample of firms from the population of interest and
let ;k and Qk be the sample analogues of pk and Vk (that is the vector of
the sample’s cell means and the sample’s within cell variances). Finally
let yNk be the vector containing the square root of the number of firms
falling into each cell. Then the central limit theorem and the law of
large numbers imply that |

diag [VF¥1 (*~4¥) > N(0, diag[V¥))
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while (5)
diag[%k] £, diag[Vk];

where diag[x] denotes a diagonal matrix with x on the principal diagonal,
~> reads converges in distribution, —LP, denotes convergence in
probability, and N(-,-) denotes the multivariate normal distribution.

Now consider possible values of 0 = [l(St_l),...,l(St_*)l. The tes
for veak monotonicity of the regression function in §, is a test of

* k
whether, for all ¢ ¢ [1,...,J]

* *

e ‘7(51) = ‘71) > u(o V(Sl) = ’2)

vhenever o, 2 75. Similarly the test of whether the realization of S1 do
*
not effect the regression function is a test of vhether for all ¢ ¢

i,..,00%,

whenever 7y $ 09

¥ore formally assume that, for each a‘, the vector pk is ordered by
the associated values of a(Sl). Then each of the weak monotomicity
constraints can be represented as a linear inequality constraint of the
forn r'4¥ » 0, when 7 = [0,...0,-1,1,0,...0]. Gathering all such
constraints into the matrix R, the null hypothesis of weak monotonicity

written as



HE: Ruk =1t >0, (6).
Note that B is of full row rank, say C. Ve want a test of (6) under the
maintained hypothesis that r ¢ RC.

Using results dating back to Barlow, Bartholemew, Bremmer and Brunk
(197¢), Appendix 3 shows that the difference betveen an unconstrained
estimate of r, and an estimate constrained to satisfy (6), cam be used to
build a test statistic for the hypothesis in (6), say 13, which,
conditional on r=0, has a limiting distribution given by a weighted average
of chi-square deviates. That is, if we let {V(c)}S=o be the required
sequence of weights, then the probability that xi is greater than any a>0,

say Tl(a), has a limit (as N or sample size grows large), given by
2 ¢ 2
(7) Ty(a) = Pr{yy > a|r=0} = T V¥(c)Pr{yy > a}
c=0

Note that, if 12 is the realized value of xi, Tl[xaj provides the "p-value"
(of the probability of type I error) of a test that would reject the null
if zi = 13 when the true value of r was zero. The p-value when r is any
value greater than zero cannot be larger.

Unfortunately there is no simple way of calculating the values of the
weights, that is of the {V(c)}g=0, needed to obtain Tl[xg]. As a result
Appendix 3 develops a simulated estimate of the W(c), say Q, =
[&(1),...,Q(C)], and a consistent (as the number of simulations draws grows
large) estimator for the variance—covariance matrix of Q, say Q(Q). This

allows us to base our empirical work on estimated p—values and their

variances. That is, each test result given in the next section will
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contain the two numbers,

(8) N0 =T Heprid > 4§ £ VI (),
and
(8v)  VIybgl} = VX

The test of the null hypothesis that the regression function in (2)
does not depend on s, conditional on it being nondecreasing in that
variable is a test of the null hypothesis,

0

(9) i

k___
7 Ry =r=0

under the maintained hypothesis given by Hg in (6). The test

statistic for this hypothesis, say x%, is based upon the difference betwet
the estimate that satisfies the nonnegativity constraints in (6) and zero,
and Appendix 3 shows it to have a limit distribution which, conditional or
the null in (9), is also a weighted average of chi-square deviates. Agaii
the weights are difficult to calculate but easy enough to simulate.
Letting the simulated values of these weights be Vo= [i(l),...,i(C)], an
the observed value of the test statistic be xg, the empirical results for

the test that the regression function does not depend on §; conditional ol

it being non-decreasing in that variable each contain the two numbers,



47

R cC - -
(102) T, 0x§) -3 V(O)Pr{x? > a3} £ VX, (say),
and
(10b) V[T, [x01) = DVVIX.

Ve also compare this sequence of tests, that is the test for weak
monstonicity under an unconditional maintained hypothesis coupled with the
test of the hypothesis that s, has no effect on the regression function
conditional on the maintained that any effect is nondecreasing, to the more
familiar test of whether s, has no effect on the regression function
conditional on an unconstrained maintained hypothesis. The latter test
statistic of the null hypothesis in (9), say x%, has the familiar
chi-square limit distribution with C Degrees of freedom. It can be shown

that
2 _ 2
Xt 7 Xy * Xy

with probability one. So the observed value for the test of no effect of
54 conditional on an unconstrained maintained, say 12, will be just the sum
of xﬁ and x%. For comparison, our tables will also provide the p-value of

xg, TT[xg] (these can be found in standard tables).

Section 5. The Data and the Empirical Results

The data used in this study vere obtained from the Visconsin
Department of Industry, Labor and Human Belations’ (DILER’s) records for
unemployment insurance (UI) coverage. The records for the years between

1978 and 1986 (inclusive) were linked together by UI account number by
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David Neuendorf and Ron Shaffer (see Neuendorf and Shaffer, 1987).7

Any private employer hiring at least one worker and paying at least
$1,500 in a quarter is required to file information on the number of
workers, wages, and UI tax contributions to DILHR. For the purposes of our
analysis the first time it does so is treated as the ’birth’ of the firm.
Size in that, and in subsequent, years is measured by the number of
employees.

The unit used to match observations over time was the UI account
number. When a new business changes ownership or legal status, DILER
freezes its current account and either creates a new account, or, in the
case of an acquisition, merges the employment information into another
account. When this occurs the old account has a successor code, and a new
account, if created, will have a predecessor code. New accounts which were
a result of a change in legal status (and therefore had a predecessor code)
were separated out and not treated as a part of a birth cohort in this
analysis. Analogously we use the successor code to di;tinguish between
attrition due to liquidation, and attrition due to mergers (and other
changes in legal status). A major advantage of this type of data is that
it can distinguish between these two sources of ’exit’.

Tables 2 and 3 provide information on the evolution of the size
distribution of the surviving firms from the 1979 birth cohort in retail
and in manufacturing, respectively (recall, from Table 1, that these two
sectors account for 80 percent of the employment in our sample). The row
labelled ’count’ gives the number of firms active in the column age. The
rov labelled transferring out provides the number of firms which were
active in the column year but transferred out (due to a change in legal

status) before 1986. This source of attrition accounts for about 8% of the
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1979 cohort in retail trade, and about 4% in manufacturing. This should be
compared to the extent of liquidation (the figures given in the row
labelled mortality rates). Over 60% of the 1979 birth cohort in retail
liquidated before 1986, and the analogous figure in manufacturing was over
50%. Since liquidation was quantitatively so much more important a source
of 2ttrition in these data, we simply omitted those firms who subsequently
changed ownership from the analysis. (However, almost identical empirical
results are obtained if we include the firms in the analysis until the year
before they transfer out.)

The passive learning model implies that the proportion of surviving
firms with size greater than any X, or the numbers in each row of the body
of the tables, should increase with age (i.e., as we move from left to
right on the table). Ve have ’squared off’ the adjacent transitions which
do not satisfy this condition. On the whole, the consistency of the data
with the hypothesis is quite striking — particularly in retail. 0f the
seventy-seven possible adjacent transitions, only six are decreasing, and
none of them indicate-a fall of more than 1.0%. In manufacturing there are
nine transitions which decrease; two fall by more than 1.5%, and two more
by .6%. Given the possibilities for reporting and recording errors in this
type of data (see Neuendorf and Shaffer, 1987), if the null were true, we
would not find these results to be ’surprising’. That is, to us these
results are quite consistent with the implications of passive learning —
indeed amazingly so for retail trade. Note also that, in both sectors, the
means are strictly increasing in age.

A more detailed look at these two tables uncovers some revealing
contrasts between the evolution of the size distribution in the two

sectors. The size distribution in the initial year is not much different
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between the two sectors; indeed if anything the initial size distribution
is slightly ’larger’ in retail trade (retail has the larger initial year
mean, 5.4 vs. 4.9, and a higher percentage of the firms in the largest size
classes). However, by age eight this ordering has turned around. That is,
by age eight the size distribution for manufacturing is stochastically
larger (even in the strict sense) than that in retail (the means are 13.3
vs 8.8, and manufacturing has over twice the fraction of firms with 50 or
more employees). The size distribution is stochastically increasing in age
in both sectors, but it is increasing at a much more rapid rate in
manufacturing.

Moreover, the age eight distribution in retail is quite close to the
cross-sectional distribution of all retail firms active in 1978 (or 1986,
see the last two columns of the table). Both have about 3% of their firms
with more than 50 employees (though the cross—sectional distribution still
has the larger mean, 14 vs. 9). In contrast, the age eight distribution in
manufacturing is much smaller than the 1978 cross—sectional distribution in
that sector. In manufacturing the cross—sectional distribution has more
than three times the fraction of firms with more than 50 employees (19.6
vs. 6.5), and a mean which is almost six times that from the age eight
distribution (73.8 vs. 13.3). Thus, if ve vere to think of the
cross—sectional distribution as an approximation to the limit distribution
(even though formally it is not), then we might conclude that by age eight
the retail cohort had almost reached it, but the manufacturing cohort was
still nowhere near its limit distribution. Indeed, if we also assumed that
eight years was enough time to form a fairly precise posterior about a time
invariant profitability paramenter, then we would conclude that the data

from retail was supportive of the passive learning model, but the data from
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manufacturing was not.

A more formal check of the consistency of the data with the two models
can be derived from an analysis of the regression for size at age eight on
size in the immediate preceding periods, and size at age one. Both models
imply that this function will be weakly increasing in initial size, but the
passive learning model implies that it be strictly increasing in that
variable, and the active learning model implies that it will not.

Tables 4 and 5 provide some evidence on the relevant hypothesis.
Because there were less than half the number of entering firms annually in
manufacturing, ve aggregated the 1979 and 1980 manufacturing cohorts and
examined the regression for expected sales at age seven of the aggregated
cohort. The cell size cutoffs vere set at the beginning of the analysis
and not changed thereafter. For the veak monotonicity, and the zero
conditional on monotonicity, restrictions, we have presented two sets of
'p-values’ for each observed value of the test statistic. The first column
provides the simulated estimates of the true p-values as explaimed in
Section 4 (the estimated standard errors of these estimates appear in
parentheses below their values). The second column provides the p-values
that would be obtained if the components of the estimator of the vector of
constraints being tested had mutually independent distributions under the
null. In this case the weights required for the calculation of the limit
distribution (see equation 4.7) have an analytic form (see appendix 3), so
there is no need for simulation. Though the independence assumption is
wrong in our (and probably in most) cases, it does provide an easily
calculable approximation to the non-analytic true p-value which might be of
use in (at least) the preliminary stages of analysis if the approximation

produced numbers that were sufficiently close to those we are after.
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Comparing columns (1) and (2) in the next four tables it is clear that in
the cases where the true p-values were low (say less than .10), so that
there was some chance of rejecting the null, the approximation did produce
a value within .05 of the value we were after.

Note first that none of the tests reject weak monotonicity at
traditional levels of significance. So both the retail and the
manufacturing data are consistent with the hypothesis that the regression
function is nondecreasing in 51> just as both our lodels predict. There
the similarity in the test results on the two data sets ends. In retail it
is clear that if we condition on one lagged value of S, that is on
realizations of S7, and then vary Si» firms with larger 5 have larger
average sales at age 8. There is really no doubt about this point as the
p-value of the test statistic is essentially zero, so we would reject the
null at any traditional significance level. The same is true if we
condition on Sy and Sg; OT on S,, S¢ and Sg; OT even On Sg, Sg; g and S43
and then vary $;- In all these cases realizations of S1 have an
independent effect on the expectation of sales at age eight. This
dependence only starts to become insignificant at five percent significance
levels when we condition on five past sales realizations. However, this
might well be a result of the possibility that, with our limited amount of
data, a fifth order nonparametric autoregression would provide an adequate
approximation to the expectation for size generated from any stochastic
process — (¢-mixing or not; we come back to this point below).®

The results for the test of zero conditional on veak monotonicity are
strikingly different in manufacturing. Table 5 indicates that, in
manufacturing, once we condition on a single lagged value of S, i.e. a

realization of 56’ any differences in S4 do not effect the expected size at
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age seven. This time there is little doubt about gccepting the null as the
p-value is well above .5. MNoreover, the same results obtain if we
condition instead on Sg and 853 OT ON 8,y B¢, and 845 OT Bgy 55, By and S3-
Tables 6 and 7 push the nonparametric analysis ome step further and
ask what order of Markov process provides an adequate nomparasetric fit to
the (expectation from the) stochastic process gemerating size conditional
on survival in retail and in manufacturing. The tests in these tables
follow a pattern analogous to that in Tables 4 and 5. That is, we first
test whether first year size, size in the first two years, ..., have a
nondecreasing effect conditional on the variables left in the regression
function; and then test whether we can accept a zero effect conditional on
any of the existing effects being nondecreasing. Again the results are
quite clear. Ve never reject weak monotonicity. In retail we need a fifth
order nonparametric Narkov process to adequately approximate the data.
Recall that this is precisely the same ’k’ we needed bgfore ve could accept
the null that the conditional regression fumction for size, conditional on
Sy g0 1Sy did not-depend on 51 In contrast, in manufacturing a third
order nonparametric Markov process seems to provide an adequate fit to the
data. That is, in manufacturing there is a distinction between the orders
needed for the ¢-mixing and the Markov tests (compare tables 7 and 5).
Table 5 says that conditional on realizations of SG realizations of S1 do
not affect the regression function. Table 7 says that realizations of,Ss,
and of S4, do. The active exploration model explains this difference by
allowing the parameter that determines the size distribution to evolve over
time in a ’smooth’ fashion, so that its value in year 5 will tend to be

closer to its value in year 7, and therefore have a more distinct effect on



the regression function for §,, than its value in year 1 will.?

Section 6. Further Implications of th iri 1

Our empirical results can be summarized quite succinctly. The
nonparametric implications of the active exploration model are consistent
with the data in manufacturing, while the nonparametric implications of the
passive learning model definitely are mot. On the other hand, the
nonparametric implications of the passive learning model seem comsistent
with the data in retail trade, while those from the active learning model
do not. These distinctions ought to effect the type -of models we use to
analyze phenomena that depend upon firm—specific uncertainties and
differences in output paths among firms within an industry; phenomena such
as the behavoir of capital markets when there are significant failure
probabilities, or supply responses to envirommental and pblicy changes that
can induce exit.

The nonparametric results ought also to effect how we account for
liquidation induced attrition in the analysis of longitudinal firm-level
data. As an example of the importance of such corrections, consider the
following excerpt from Davis, Gallman, and Hutchins, "Productivity in

American Vhaling: The New Bedford Fleet in the Nineteenth Century."

"The age of the vessel (entered as age and age squared) also
captures the effects of more than a single set of factors.
Elements of wear and tear that influenced productivity, a
technical characteristic that one might hope to capture in the
age variable, are confounded with the consequence of qualitative

differences among survivors; ineffective vessels were transferred
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by their owners to other activities, wvere condemned at an early

age, or were destroyed in service."

Davis, Gallman and Butchins (1987) p.26.

The quotation illustrates how even ome of the most traditional of
varizbles (age), in one of the most traditional of settings (productivity
analysis), can have its "structural" effects (as a measure of the likely
extent of physical deterioration) confounded by the self-selection process
induced by the endogeneity of the liquidation decision (it also
demonstrates a remarkable understanding of the environment generating the
data). Davis, Gallman and Hutchins (1987) do indeed find a significant
positive first order effect of age on vessel productivity.

To see how the nonparametric implications used to test for the
relevance of alternative models can also be used to separate out the
structural production function coefficients in examples such as this one,
assume that output is a parametric function of inputs, say f(xt, g), and an
additive disturbance,-say ¢, whose value is not known when input decisions
are made. Then the expectation of output (yt), conditional on the current
value of inputs (x,), survival until period t (x, = 1), and the information
set available in t-1 (Jt—l) is a sum of two functions; the structural
production function, and the expectation of the disturbance conditional on

x;=1 and 34 4, i.e.
BlygIxgs xy=1s Joyq] = £(xg28) + Bleglng=t I 4l

Now note that both models imply that the decision as to whether to operate

the firm in year t is determined by information available in t-1 (i.e. X,
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is measurable with respect to Jt-l)’ so the last term depends only on
variables in J,_,. This implies that none of the determinants of E[y, |x,,
Xy» Jy_y] are determinants of both, £(-;5) and E[e, |x,=1, Ji 4] s a
result, once we determine which of the dynamic models are relevant for the
data at hand, and therefore what variables determine E[‘t|1t=1s Jt—l]’ ve
can, under mild regularity conditions, obtain a (root n) comsistent
asymptotically normal estimator for ﬂo (the true value of f) by minimizing
a distance between y, and the sum of f(x,,f) and a nonparametric estimator
for the 'nuisance’ function Efe,|x,_4=1, Jt-l] (for details see Robinson,
1988). Note that this method of correcting for the selection process
induced by liquidation behavior is fully consistent with the economic
models generating liquidation behavior and does mot either; 1) depend on
the precise functional form of the relevant dynamic stochastic processes;
or 2)require a solution to the computationally difficult problem of finding
the optimal stopping states as a function of the parameters of the model.
If the model with active exploration were relevant then the

distribution of e, conditional on J, , would be determined by productivity

t
realizations in the immediately proceeding periods and the amount of
exploratory investment; while, in the passive learning model, this
expectation would depend on age and earlier, as well as the immediately
preceeding, productivity realizations. So the selection correction
procedure would differ with the nonparametric implications of the
behavioral model assumed to generate liquidation decisions: implications

which can be checked for their consistency with the data using the framework

outlined above.
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Figure 1: A Beta/Binomial Example
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Table 4, Tests for Mean Independence of the Distribution of St

Conditional on st—l""’ st—k' from S1

Data: Retail, 1979 Cohort and t-B,.

Siza Cutoffs: 2,%,10,25,50, 4=

Veak Zero Conditional Unconditional
k Monotonicity on Montonicity Zero
c Xg p-values c x2 p-values Df Xg p-value
(1) (2) (1) (2)

1 17 1.1 1.00 .99 17 37.2 ,00 O 17 38,2 .00
(.00) (.00)

2 22 6.5 .88 .80 22 23.9 .00 ,02 17 30.4 .11
(.03) (.00)

3 25 11,5 .66 .52 25 28,0 .00 .01 25  39.5 .03
(.05) (.00)

4 22 19.1 .05 .05 22 19.1 .04 ,08 22 38,2 .02
(.o1) (.01)

5 19 17.6 .05 .07 19 13.6 ,12 .19 19 31,2 .04
(.o1) (.02)

8cohort dimensions: number in cohort = 1,275; number of firms reaching
age eight = 464,

bThe value in column (1) 1is a simulated estimate of the true p-value and
the value just below it is the standard error of this estimate, Ten
simulation draws were used to calculate the estimates of the orthant
probabilities. The value in column (2) 1is obtained by assuming each
orthant has equal probability (see the explanation in the text).




Table 5. Tests for Mean Independence of the Distribution of St

Conditional on sc—l""' st—k' froa S1

Data:

Size Cutoffs:

2,5,10,25,50, + =

Manufacturing, Combined 1979 and 1980 Cohorts
for t = 7,8

Weak Zero Conditional Unconditional
Honotoaicity on Hontenicity Zﬁro b
c Xy p-values c X p-values Df Xr p-value

(1) () () )

16 8.0 .54 44 16 3.5 .57 .86 16 11,5 .78
(.06) (.07)

25 17.6 .19 .17 25 5.8 .79 .91 25 23,6 .55
(.03) (.03)

23 14,3 .28 ,27 23 4.9 .81 ,92 23 19,3 .67
(.05) (.06)

15 10.1 .13 ,24 15 5.9 .54 ,59 15 16.0 .39

(.02)

(.03)

%Firn dimensions:
reaching age seven = 333,

bSee note b to Table 4,

number born in cohorts = 737, number of firms



Table 6. Markov Tests for Properties of Retail Regression Function
for Size at Age Eight

Data: Retail, 1979 Cohort®

Size Cutoffs: 2,5,10,25,50, + e°

Markov Weak Markov Conditional Unconditional
Order Monotogicity c on Hontanicity Hnﬁkov
for c Xy p-value c Xy p-value Df XT p-value

Tests (1) (2) (1) (2)

7 +6 13 9.5 .13 .20 13 5.0 .48 .58 13 14,5 .34
(.03) (.05)

7 +5 23 18.3 .16 .11 23 5.9 .64 .87 23 24,2 .40
(.02) (.05)

7+ 4 32 18.3 .47 ,32 32 96 .00 .00 32 114 .00
(.05) (.00)

7 +3 38 18.7 .56 .48 38 100 .00 ,00 32 118 .00
(.05) ~ (.00)

7 +2 43 19.7 .76 ,56 43 107 .00 ,00 43 121 .00
(.03) (.00)

7 +1 48 20.1 .92 ,67 48 149 ,00 .00 48 169 .00
(.o1) (.00)

®cohort Dimensions: number in cohort = 1275; number of firms reaching
age eight = 465; pumber in cells with > 2 = 291,

bCell Dimensions: possible number = 279,936; number populated 228;
number with > 2 observations = 54,

€See note b, Table 4,



Table 7. Tests for Properties of Manufacturing Regression Function

for Size at Age Seven

Data: Manufacturing, Combined 1979 and 1980 Cohortsa

Size Cutoffs:

2,5,10,25,50, + =

Markov Veak Markov Conditional Unconditional
Order Monotopicity c on Hontenicity Hnakov
for c Xy p-value c Xy p-value Df X p-value

Tests (1) (2) (1) (2) N

6 + 5 9 11,9 .02 .04 9 2,0 .65 .75 9 14,0 .12
(.01) (.10)

6 + 4 15 13.3 .09 .10 15 11.7 .07 .16 15 25.1 .05
(.02) (.02)

6 + 3 25 15.5 .24 ,27 25 17.6 .11 ,17 25  33.1 .13
(.05) (.03)

6 + 2 31 16,1 .42 .42 31 61.3 .00 .00 31 77.4 .00
(.04) (.00)

6 + 1 37 16,3 .66 ,59 37 76,0 .00 .00 37 92.3 .00
(.04) (.00)

b

c

Cohort Dimensions: number of firms = 737; number of firms reaching
age seven = 353; number in cells with > 2 = 179.

Cell Dimensions: possible number = 46,656; number populated 2174
number with > 2 observations 43,

See note b, Table 4,



Footnotes

! See Beckman and Robb, 1885, and the literature cited there, for a
discussion of related issues in static frameworks.

2 More detailed discussions of {r orderings can be found in Nilgrom
(1981), Ross (1983), and Marshall and Olkin (1979, chapter 18).

3 Two points should be noted here. First ve are ignoring the effect (on
both z(-) and S(-)) of random variables which have the same valuve for
different individuals at the same point in time, but differ in value over
time (this would have occurred in our example if prices had varied over
time). At the cost of complicating the notation we could add a price
process to our problem without changing any of our major results (though
some modifications would have to be made to the procedure that matches the
model to data; see below). Second, it should be noted that the
interpretation of 7(-) and S(:) as mappings from realizations of 5, would
only be appropriate for our example if % were realized before input
decisions were made (Marschak and Andrews, 1944). In this case both output
and inputs can be determined from Ny and the size measure can be either

output produced or inputs purchased. The extreme alternative is to assume
there is no within-period adjustment to 5 (Zellner, Kmenta, and Dreze,
1966), in which case inputs are chosen to maximize 8,1 E(t) Te+1 P(£t+1) -
L £t+1’ vhere Et provides expectations conditional on current information
(and will be defined more precisely below). In this case ré-) and S(-)
would be interpreted as mappings from Et Ny .q tO Et't+1’ and input demand

in period t-1 respectively. There are, of course, intermediate cases where
within period adjustment is either partial, or more costly (the appropriate
characterization is likely to depend upon the characteristics of the
industry being studied). Ve shall come back to some of the alternatives
below, but for now suffice it to note that the results ve focus attention
on do not depend on the timing of the input decision.

¢ The following counterexample shows that this would not be the case if we
wvere to assume only a weaker first order stochastic dominance ordering.
Let 6 = (6,,0,) with 8, > f,, and consider the following family of

densities (with respect to the counting measure): p(n = 2|4,) =

p(n = 4]6;) = 1/2, and p(1 = 1]6,) = p(7 = 3|6,) = 1/2. Clearly, P (-|6,)
> Pn(-|01). Bovever, if 5, = 2, the posterior is § = 6, with probability
one, whereas if ny = 3, the posterior is 6 = 01 vith probability one; i.e.,
the posterior for 5 = 2 dominates the posterior for g = 3.

' The assumptions that ¢ is the same known value for all agents, and is
constant over time, are made for expositional convenience. Vhat is

required is that & not increase too rapidly with nt. Nore precisely, if




Vt(nt) is the value of continuing in operation at t given that nt=nt (a
more precise definition of this function is given below), then what we need
is that Vt(nt) - it(nt) be nondecreasing in nt. 0f course, the actual

behavior of "exit values" is an empirical question. If the process
generating the exit we are modelling is indeed a liquidation process, and
not a process generated by changes of ownership and continued operation of
the firm in a gifferent guise, the assumptions we require ought not to be
problematic.

6 Just as in our description of the passive learning model ve will assume
here, for expositional simplicity, that imput choices are made after the
realization of n, that liquidation values are a comstant &, and that there
is no time-specific, firm-invariant process. FPurther, the formulation
presented here assumes that the conditional distribution of r does not
depend on v, an assumption not required for our results.

7 Ve are grateful to them for granting us access to their data, and for
graciously answering our subsequent queries. MNore detail on the data can
be found in the appendix of Neuendorf and Shaffer (1987). Though
multiestablishment firms have a choice as to whether to report as a single,
or as multiple units, the establishments of multiestablishment firms that
reported separately have been merged into single observations. This should
therefore be thought of as firm-level data.

¢ Ve have been motivating our two-part testing sequence as a way of
providing additional information on the relevance of alternative models.
Inequality tests were originally motivated as providing more powerful ways
of testing a given null. Table 4 also illustrates this point. Take, for
example, the case where k=2. The p-value in column 2 for acceptance of the
null that realizations of S1 do not matter under the maintained hypothesis

that any effect of S1 is non—decreasing, is zero; but the p-value for the
test that S1 does not matter under the unconstrained maintained hypothesis
(the unconditional zero columns) is a traditionally acceptable .11.

5 Footnote 2 discussed the possibility that imput decisions are either
wholly, or partially, made before the realization of g, and concluded by
asserting that the various alternatives would not affect the results ve
focus on. Table 7 insures this is so for the very special, but important,
case which Jovanovic’s (1982) original article was based on. His
assumptions were a special case o? the folloving ones; the process
generating {”t} conditional on # was i.i.d., the posterior for # had

sufficient statistics (x,, t) with x, = f (x,_,, 7,) for some £,(-), and
that no input could be adjusted after any information about n, vas

available. In this case, if input quantities were our size measure, size
in period t is determined by (x,_,,t) and for a given t, there is a 1:1

correspondence between 5, and x; o- So size is a first order Markov



process. This conclusion would be destroyed if some, sai costly,
adjustments could be made after n were realized, or if there were any
dependence in the process generating {”t} conditional on . However, if

Jovanovic’s restrictions were true, the passive learning model would
satisfy the constraint that the regression for S, conditional on §, ,, ...

§;_i does not depend on S, provided k > 1; i.e., it vould satisfy the

constraint used to test for the active learning model. On the other hand
Table 7 makes it clear that the stochastic process gemerating size is not
first order Markov, so the special case discussed by Jovanovic (1982) is

not relevant.
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Appendices

The three appendices provide results used in Sections 2, 3, and 4
respectively. Lemmas, equations, etc. are numbered in a separate

consecutive orderring within each appendix.

Appendix 1. Proofs of Resyl i jon

Part 1. Theorem 2.7 (existence and montonicity of the value function)

At each t there exists a unique Vt(-):Nt - R, which provides the value
of continuing in operation assuming optimal behavior in each future period.
Vt(-) is bounded, satisfies (6), and is nondecreasing in nt; i.e., if n§ >
n;, then Vt(ni) > Vt(n;) [for nteNt, and all t]. »

The proof proceeds as follows. First it considers the finite horizon
problem in which a firm vhich remains active until period T must liquidate
for & dollars at T+1. For this problem the value of continuing in
operation from period t (as a function of past g-realizations) will be
denoted by V{(-): Nt o R,, and the resulting stopping function by XI(-): yt
- {0,1}. VI(-) can be determined by backward recursion from the terminal
year and a stopping policy which dictates liquidation if and only if the
value of continuing in operation is less than §. The implied stopping
function, XI(nt), is one if and only if ntcAE = {nt: V?(ni) > 8,

Tt ¢
o(ngmy
to a limit function, Vt(-). This limit function is bounded, monotonic in

y ) > i,...,Vf(nt) > #}. As T increases VE(-) converges (pointwise)

nt, and satisfies the Bellman condition, i.e. equation 2.6, in the text.

The proof concludes by showing that V,(-), and the associated limit



stopping policy, xt(-), are indeed the solution to the infinite horizon

problem.

t t .yt t _t .t
A1l lemma Pﬂ (+|n 1) (+|ng) vhemever ny 2 ny  (ny,n5eN”, and all t)

t+1 § ¢4

Proof  Take any zeN. Then P (z[n%) = [ P (z|n%,8)Py(df|n").
" Tt41

t+1

Pﬂ (zlnt,ﬂ) is nonincreasing in nt by (3.i) and strictly decreasing in ¢
t+1

by (3.ii), while Pa(-|nt) is stochastically increasing in nt by (4) [

A2 lemma Fix any T then, VI(n}) VT(n ) whenever nt > n2 (nl,n2,eh , and
t ¢ T).
Proof The proof is by backward induction on t. Note that

Vi@l = 2P, (d¢|nT)+8
T+1

which is nondecreasing in nl by virtue of the monotonicity of r(-), and Al.

Now assume monotonicity at t+1. Then if n; > n;

Vi(ad) = Jr(Q)P,  (d¢|n]) + ﬁ!ﬂax[f,V3+1(C,n§)]Pﬂt+1(d(|nf)

T+t

v

[5(Q)P,  (d([ng) + ﬂllaX[f,V{+1(C,n})]Pﬂt+1(d(|n;)

Tt

I7(()P

(A V4

T
ﬂt+1(d<tn;> ‘ ﬂ!maX[f,VI+1(<,n§)]Pﬂt+1(d(ln§) = Vi (n5),



vhere the inequalities are due to A1, the monotonicity of r(-), and the

hypothesis of the inductive argument. []
A3 Lemma Fix T. Then, V1''(a%) 2 Vi(a%) (a* ¢ K%, and t < 1)

Proof. The proof is again by backward induction on t. For the initial

condition of the inductive argument, note that

n

T = prp, (@l + prmax(#T (DI, (@¢ln")
n M Tt+1

t+1

W

: T
Jx(QP,  (d¢iaT) + gt = VI(aT).
n
t+1
Assuming the condition is true for a = t+1 we have

(d¢In®) B max[8,¥e 1 (¢,n%)IP,  (4¢In")
1 t+1
(6¢in®)opmax (b, Ve ()], 1(d<|n‘)=vI<n‘>- 0

Proof of Theorem 2.7

Lemma A3 insures that for each (t,nt) the limit,
t . T, t
V. (n") = limp V. (n),

exists. Let supﬂ€N1(n) = 7 [r exists and is finite by virtue of the
compactness of N and the continuity of r(:)]. It is straightforvard to
show that VI(-) is bounded, uniformly over t, by the constant function

(1—5)—1maxf?,§j. Since boundedness and (weak) monotonicity are preserved



by limit functions, this insures that Vt(nt) is monotonic and bounded.

Also

Limg V(%) = Jr(OF,  (&CIn")oBLing fuax[d V71 (¢n9)IP, | (§¢Ia’)
= [r()P,  (d¢In*)+Bfmax[¥,V,  (¢n%)IP,  (&¢In%),
t+1 t+1
because 1imT_.m/max[§,v$ji((,nt)]Pn l(d(lnt)'
t+

- Jing_max(8,V 3 (aY]F,(d¢Int)

T1¢,nhy is

by the Lebesgue dominated convergence theorem, since {max[§,V

dominated by max(¢,(1-ﬂ)—1?) which is integrable with respect to

t
SNALYE
Ve have shown that if Vt(-), and the associated stopping policy, were
optimal, then they would satisfy the conditions of the theorem. Vhat
remains is to show that they are indeed optional. To see this assume, to
the contrary, that there exists an alternative stopping policy, say
{X:(')}:=O’ where x:(nf) is one if a firm with 5 realizations of n” is in
operation in period 7 and zero othervise, which generates a value function,

x
say Vt(nt), which satisfies, for at least one (t,nt),
*t t
(A4) Vt(n ) - Vt(n )2 e> 0.

Note that for any arbitary T



* T * + * + * T T— -
V(o) ¢ Et{rfoﬂf[xt”(ﬂt M) a(n )8y (17 ) gy (1 T Y4677/ (16)

(43)

= vTah) « 5 (1-8) < ab) « TFa-n T v + AT

vhere V:T(-) is the value function that arises when the policy {x:(-)} is
followed for a T-horizon problem. The first inequality follows from the
fact that current returns are bounded by 7, the second from the fact that
VI(nt) is the optimum for the T horizon problem, and the third is from A3.
Provided T is chosen to be greater than —fn[e(1-§)/7] / ~{nf, equations A4

and A5 contradict one another. []

Part 2. Theorem 2.11 (conditional distributions for ”t)

Let t and k be positive intergers with t > k, and (il""’ik) be any
selection of k distinct elements from {1,...,t-1}. Then if g; =
(nil,...,nik) and g, = (n?l,...,ngk) are arbitrary (il,...ik) histories of
n satisfying Ny > g and b is defined as in (2.8),

Proof. For any zeN and n = 1, or no,
(46) Pﬂt(zlﬂs thl) = fPﬂt(zH&, Xt=1’ 0) Pg(dolg,xtﬂ)s

where

_ _ t-1 t-1 _
Pﬁr(zlﬂ’lt_l’e) = !Pnt(zM ,0)P (dn |Esxt‘1’0)

Te-1



Now use Bayes law to show that for nt_l > nﬁ_l,

p(n* g, 0)p(n8  ng, O) - p(1" 12, O)p(1¢ 1,16
= k[p(n 17872, 0) plzglni™0) - pla;10¥7,6) p(rgln* ™ 0)] 2 0,

where the inequality is a trivial comsequence of n being determined by

21, Since conditioning on ntcAt = {n%: xt(nt)

1} does not affect the

{r—ordering, we have

(A7) P']t(-lgl’xt = 1,0) erw Pnt(-lgz’xt = 1,0).

Given (A8), (A7) and lemma 2, the theorem requires only that
PB('IEI) e Pe('|52)f But by lemma 4, this condition is satisfied

provided -
PE(-|01) >£} PE(-|02).

whenever 01 > 02. Take any Dy > Do» then
p(n,18,) p(nyl8y) - plny1d,) P(ngléy)

= ![pf)t(dﬂ’ Ellal) pf)t(dn’ E2|02) - pf)t(dn’ Ezlol) pf)t(dn’ 21|02)] > 0,

where the integral runs over those n whose indices are in {1,...,t-1}, but

are not in {i;,...,1;}, and the inequality results from (3.11). []



Appendix 2. Proofs of Results Used In Section 3

Part 1. Theorem 3.2 (properties of the active exploration model)

A unique optimal policy and associated value function exist and they

have the following characteristics:
i) V(v) is bounded and nondecreasing in #.

*
ii) The optimal policy, xT(JT) is bounded, depends only on current v, and

is stationary, i.e. for all 7

iii) There exists a couple, (w, ¥) with, - < g £ ¥ < @, such that

x*(w) =0 Hfwff{o: g ¢ 7).

iv) There exists a second couple (u,v), with = < @ ¢ & ¢ v < ¢ <a, such
that

V(v) > ¢ if and only if v > o,
and

1
—

inf inf
<

n ‘ Pr{v, < wlep}
¥, _



Proof: By Assumption 3.1, the model has a stationary Markovian structure
Hence an optimal policy, if one exists, can be chosen from the class of
¥arkov policies [Dynkin and Yushkevich (1975), p. 148]. Existence and
properties (i) and (ii) are an immediate consequence of Theorem 5 of
Blackwell (1965). That is, let Ue/ (Z) and define an operator T: L -t

pointwise as follows:
(A1) TU(¢) = max{sup(f R(n,0,x)P (dn|e) + BE U(w+7)p, (7]x)), ¢},
x0 " n T T

where p, is the density of P_. It is straightforvard to show that T is a
monotone contraction operator, so that the Banach Fixed Point Theorem [D.R.
Smart (1974), p. 2-3] gives existence of a unique monotone function V: I-R,
uniformly bounded, and satisfying V = TV. That V is nondecreasing in «
follows from the monotonicity of r(y) and c(v) and the dominance properties
of the families PU and P_ (3.1.1, 8.1.ii). As V(v) is uniformly bounded
both above and below, investment x*(w) must also be bounded:
Ve, x*(u) €[0,x1. That x*(w) is unique follows from the strict concavity
of the optimand in (41) in x [Assumption 3.1.iii].

Since the optimal policy solves the pointwise optimization (A1) we

have the first order conditions

(42)  {e(9) = B3 [V(o+r) = V()] g p (r]x)}x = 0

{V(v) - #}-[1x(0)] = 0 .

*
To show property (iii) we note that x (w) > 0 iff

i

;§p7(7|x)} > c(w)ﬂ’l, and that c¢(w) is bounded away from

W(e-7) = V()



zero (3.1.11i). Let ﬂ; = {w]V-V(v) < €} and ﬂ; = {w|V(v)—4<e}, vhere V =
sup V(«). These are clearly nonempty since V(v¢) is momotonic, & =

inf V() = lim V(v) and V= lim V(o). If v e n; then all ¢’ < w are also
o o

contained in ﬂ;, and similarly o ¢ ﬂ; implies that all &' > & are contained
in ﬂ;; hence each of these sets contains infinitely many states. Ve will

shov that Z[V(w+7) — V()] ngT(rlx) can be made arbitrarily small in both
T

sets, implying that investment must optimally cease.
The boundaries, @ — 1 € ﬂ? and ¥+ 1 € 05, for some generally
different €’s, will be the highest, respectively — lowest, » in those sets

such that I[V(w+7)-¥(v}] ng7(1|x) < 91%1—. To compiete this argument we
T

shov that the 1.h.s. of this expression can be made arbitrarily small on

ﬂ;. An identical argument, mutatis mutandus, can be used to show the same

for 1. Note that compact support for P, T, [Assumption 3.1.ii] implies

that there exists an v ¢ ﬂ; such that Ve 2 ;, PT{”\QEIX} =0Vx 20, i.e.

the transition probability puts zero weight on states not in ﬂ;. Then

I [V e)] 8o (110} ¢ €.

Bence the impact of investment on future expected returns becomes
arbitrarily small as ¢ increases in ﬂ;, so we can find a boundary above
vhich no investment will optimally take place. Let & the lowest of such
boundaries. Similarly we can find a greatest # ¢ n;’such that x(¢) = 0,
which we label w.

To show property (iv) we need only note that x(#) = 0 implies
P_{0]0} = 1 so that once v,
insures there exists an J such that for all w < w*, JT(ﬂ)Pﬂ(dUIU) <

ey —1 : *
(1-5)7"%, for v ¢ min (v , W)

¢wforanyt, Vs 2t v, & . Since 3.1.1



(43) V(o) = max{f 7(mP (d lo) + § TEO V(wsr)p, (710), 8} = ¢.

Let v be the greatest such ¢ ¢ g at which 43 holds. To show existence of
U, let k = §{supp T}. As P_{0]0} =1, ¥ ¢ ¥ + k must surely hold since the
probability of transfering to a higher ¢ from any ¢’ > ¥ is zero, and the
highest ¢ potentially achievable from ¢’ ¢ v is ¢’ + k. [Hence, Vuo <,
Pr{v; ¢ ¥lv,} = 1, and by induction Pr{u, ¢ Eluo} = 1, vhere o, is the

state folloving t transitions. Therefore

inf{ inf Pr{e <wle }} =1 .
t w Sw

Part 2. lemma 3.6 (¢-mixing of the {S%} process).

Let {S:}:zl be the stochastic process formed from the distribution of
sales conditional on survival and any initial woe{1,2,...,K}, and li be the

2 st ,s;. Then {S%}

s—algebra generated by possible realizations of Sx, 17

¢-mixes at a geometric rate, i.e.

sup{|P(E,{E;)-P(Ey)|, E; with P(E;) > 0 and E N} Bl } < A7

¥ith ¢ < 1. (]

Proof Briefly, the probability space for this process is constructed from
the finite set § = {S:S=S(n), neN}, the family of probability measures for
7, Pn, and the Markov transition matrix for ¢, P as follows. The sample
space consists of the set of all possible infinite sequences of elements
from §, say ¢, and the required s—algebra is the smallest s-algebra

containing . Let Q be formed from P by dividing its ith rov by 1-p.,,



(for i = 1,...,k) and then deleting its first row and column. § is the
¥arkov transition matrix for w4 conditional on w, and survival until

t+1. Note that 3.1.ii together with 3.2 insure that this transition matrix
is irreducible aperiodic (see Billingsley, 1979, chapter 1). The measures

for the alternative sample paths can be computed directly from §, P _, and

n
UO.
To prove the lemma let SY = {s2, .,S;}. Then it suffices to show
that for any Elel1 such that P(E;) > 0, and any Ezcl;::+r
(A4) [P{(SEIT T eB )N (STeR,)} — P{SE, 1 TeBy} P{STeE }| < A4

(Billingsley 1968, section 20). Since both E, and E, are finite sets we
can, without loss of generality, assume that both are singletons. Taking
r=x=1 for simplicity, and recalling that Si = §(w,) + 4y vhere the
distribution of by conditional on l Uu& depends only on W the first

probability within the absolute value sign can be written as

(45)  P{(ST.y = 5,)N(8] = 5y))
o P{u,, 178 0y 5wy =) ugmsy B (og=i)swp = 3 wp=i)
1 "7+l

P{w,,q =i luy=s -5 (v =1),wy=i} Plug=s,-6(w= i) jw =1}P{w =i}

Kk k . () . 0
33 (s, 50 w=i) o\ P (5,8 (wy=i) lumi)py
i=1 j=1 v ij ’
where q(T) ., provides the r-period transition probabilities from the {

1,]
chain. {Recall that p0 provides the initial uw-distribution]. Since Q is



irreducible aperiodic it has a unique invariant distribution, say
*) *

*
q =[gy,---,q), and

,
q..

(46) max o |- -1 ¢ Wil
(1,7)en 9

(see Billingsley, 1979, sec. 1.8). Using this invariant distribution to

s s a _ a
evaluate the unconditional probability that § , =s . ;, 80 that P(S‘r+1 =
k _ R _ a k
S,,1) = jfl Pu(s .- s(;)lu:g)qj, noting that P(Sy = s,) = ifl
- 0 . . T T * *
P(sl—s(l)luzl)pi, and substituting 94,5 = ST 9 into (A5) we
have
a a a -
[P{SS,q = 5,0 N S7 = 8} - P{ST,p = 5,3} P{S; = s}
k —s . . 0, 7
= 1§1 j§1 Py (5,.178() |w=3)py(5,-5(1) [w=1)p; (a55-a5)1
k k * kK k
L% lq] -al <h¢” I B oq;=Ad,
izt j=1 23 ) i=1 j=1 3
where the last inequality follows from (A8). []

Appendix 3. The Test Statistics!
Ve begin by developing a test for the null hypothesis that

! The reader interested in more detail on the testing procedures used in
this section should consult Barlow et. al. (1972), or the more recent
econometric literature on testing subject to inequality constraints
which begins with the work of Gourieroux, Holly, and Nonfort (1982).
Golberger’s (1987) exposition is particularly clear.



(A1) By: Bu=12 0,

where B has full row rank, say C, under the maintained hypothesis that

reRS. To this end we consider the following two estimators for r

(A2a) 1 = By
and

(A2b) ry = arg min [(r—;)’ R[Qk]—ll’(r—;)]
20

r is an ’unconstrained’ estimator of r obtained from substituting sample

for population means. rl is a ’constrained’ estimator, an estimator forced
to satisfy the inequality constraint of the null. Subject to that

constraint, it is obtained by minimizing a quadratic form in (r-r), where

the weighting matrix, n[vk]‘ln’, is chosen to be the estimated

variance—covariance of r under the hypothesis that Ryk = 0.

Since the quadratic form in (A2b) is nonnegative and equal to zero if
r=r,ifr>0, r= ;l. Figure (4) illustrates possible solutions for r
in the case where C = 2. The ellipsoids represent sets of r which produce

a constant (r—;)’R{Qk]—l B’(r—;) value.

s o O |
(1179l = (ry579)4

Figure 4. Constrained and UntOfstrained Estimates of r




(43) xi = min (r—;)’R[Qk]_IR’(r—;),

20
then large realized values of this statistic are evidence against Hg.
Indeed, Barlow, Bartholemew, Bremner, and Brunk (1972) have shown that for

all a2 0
2 ¢ 2
(A4a) Ty(a) = Prixy > alr=0} » I V(c)Pr{x, > a}
c=0

as sample size grows large, where
(44b) V(c) = Pr{;l has exactly ¢ zero components |r=0},

and 13 denotes a chi-square deviate with precisely c degrees of freedom
(¢=0,...,C). Thus, if 12 is the realized value of xi, Tl[xg] provides the
"p-value" (or the probability of type I error) of a test that would reject
the null if xi = 12 Qhen the true value of r was zero. The p-value when r
is any value greater than zero cannot be larger.

Unfortunately, the orthant probabilities, that is the values of
{Y(c)}gzo needed to obtain (A4a), are difficult to calculate. As a result

we obtain simulated estimates of their values, say Vc, and provide a

simulated estimate of Tl(') say il’ vhere

(45) T,0a] =
C

[ Se Raw]
o]

- 5 .
V. Pr{y>a} = VI
and

Vo

. . 9 .
v+~ ¥l s whereas I’ = (P {xy > a},.. o Pr{yg > a}].



Since the Qc can be regarded as cell means from repeated draws from a
multinomial distribution (vhere NSIN, the number of simulations, is the
number of draws), the variance of il[a] about its expected value of Ty(a]

can be obtained from the formula for the variance of a multinomial as;
(16) Var[Ty(a)] = ¥’ [diag v Jx(asIn) !

So, along with Tl(a), ve provide an estimate of its variance obtained from
substituting the simulated for the actual values of V in this variance

formula.
Next we need a test of

(A7) BO: By¥er=0

under the maintained hypothesis given by Hg in (A1). Once again ;l in
(A2b) will serve as our estimate of r given Hg, vhile under Hg the estimate
of r is zero (thus, in Figure 4, the ellipsoids bring us from r to the
estimator which abides by Hg, while the dashed lines bring us from the
latter to the estimator which abides by lg). A measure of the distance
between the estimator obtained conditional on the null and the estimator

which is only constrained to satisfy the maintained hypothesis is given by
(48) = ey,

Once again, for all a > 0




c .
(Asa)  Tg(a) = Pr{x; > alr = 0} - z V(e)Pr{y? > a)

¢=0

as sample size grows large, where, in this case

(A9b) ¥(c) = Pr{;l has exactly ¢ positive components|r=0}

and xg is defined as above (¢ = 0,1,...,C). Letting xg be the observed
value of x%, ve will provide estimates of Tz[xg], say iz[xg] (obtained from
simulating the i(c)), together with an estimate of the variance of iz[xg].
To compare this sequence of tests, that is the test for weak

monotonicity under an unconditional maintained hypothesis coupled with the
test of the hypothesis that 54 has no effect on the regression function
conditional on the maintained that any effect is nondecreasing, to the more
familiar direct test of whether s, has no effect on the regression function
conditional on an unconstrained maintained hypothesis, note that one test

of the latter would check whether
Y N &

were close to zero. Under the unconstrained maintained hypothesis x% has
the familiar chi-square distribution with C degrees of freedom. Since the

properties of Lagrange multipliers insure that

(-t - o

ve have from (A2b) and (A8), that



2o 92 2
Xy =Xyt Xy

wvith probability one.



