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ABSTRACT

Early cash-in-advance models have the feature that the cash-in-advance
constraint always binds, implying that the velocity of money is constant.
Lucas (1984) and Svensson (1985) propose a change in information structure
that potentially allows velocity to vary. By calibrating a version of these
models using a new solution algorithm, and using U.S. time series data on
consumption growth and money growth, we find that in practice the cash-in-
advance constraint almost always binds. This result is robust to changes in
the forcing process, the inclusion of credit goods along with cash goods,
various preference specifications, and changes in the precision of the
agents' information. We conclude that there is little practical gain in
using these more complicated informational specifications in future

applications of a cash-in-advance technology.
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I. Introduction

It has become quite common to introduce a demand for money in general
equilibrium models through a cash-in-advance (CIA) constraint. Simple CIA
models require that the money held in a given period be at least sufficient to
cover perfectly anticipated expenditures. Agents facing positive nominal
interest rates never hold idle cash balances in these economies, so the entire
money supply turns over each period. Consequently, these models incorrectly
predict that the consumption velocity of money is always unity.

In response to this difficulty, Lucas (1984) and Svensson (1985) modify the
information structure in the basic CIA setup. We focus upon Svensson’s
formulation of a single agent exchange economy in which output and the rate of
growth of the nominal money stock follow a stationary Markov chain. Cash
balances must be chosen before the quantity of output is known. Therefore,
agents may choose to carry unspent cash across periods, and velocity can in
principle vary. Lucas and Stokey (1987) further weaken the tie between money
and expenditures by allowing substitution between "cash" goods and "credit"
goods (ones that are not subject to the CIA constraint).

These models make predictions about the interactions of inflation, real and
nominal interest rates, real balances, velocity, money growth and consumption
growth. Yet the precise nature of Ehese predictions is known for only a few
special cases. Svensson’s analytical results, for example, depend on the
clearly unrealistic assumption that the state of the world is independently and
identically distributed (i.i.d.). On the other hand, the work of Giovannini
(1987) and Hodrick (1989) relaxes the i.i.d. assumption but assumes parameters
are such that the CIA constraint always binds.

This paper examines two CIA models that retain Svensson’s original timing of



information flows and transactions in markets. In the first, agents must buy
all goods with cash (the "cash" model), while in the latter, they can substitute
between goods bought with cash and those bought using credit (a "cash-credit®
model). It sets forth new algorithms to solve these models without restricting
the CIA constraint to be always binding or assuming the state of the world is
i.i.d.. We consider a. representative agent exchange economy in which the joint
stochastic process governing money growth and consumption growth is a Markov
chain calibrated to accord with United States time series data. This exercise
is similar to that of Mehra and Prescott (1985), but we do not use their
calibration procedure. Instead, we estimate a first order bi&ariate vector
autoregression (VAR) using quarterly and annual consumption growth and money
growth data. We then approximate the VAR by a Markov chain using thé quadrature
method of Tauchen (1987). Using this forcing process, we calculate the joint
distribution of endogenous and exogenous variables for several homothetic
utility functions.

We use this method to address two related issues. First, we wish to
understand the models’ qualitative predictions about the joint distribution of
endogenous and exogenods variables. To do this, we graph a variety of
unconditional population moments as a function of the preference parameters.

The second issue is whether either model can generate predictions about
contemporaneous first and second unconditional moments that are consistent with
sample estimates. Svensson (1985) and Lucas and Stokey (1987) allow for
possible slackness in the CIA constraint, which accounts for much of the
analytical difficulty in using these models. For this reason, it is natural to
focus attention upon the models’ predictions of the volatility of velocity and

its correlations with other variables. We find that the cash model typically



fails to generate any variability of velocity for almost all parameter
specifications; the CIA constraint almost always binds. On the other hand, the
cash-credit model can generate large fluctuations in velocity, especially when
the two goods are close substitutes, even though the CIA constraint generally
binds for the cash good. Unfortunately, whenever the cash-credit model predicts
a realistic variance in velocity, it also predicts implausibly large values of
expected velocity. Moreover, the cash-credit model is unable to generate
realistic predictions about the sample moments of many other variables.

Finally, we do extensive sensitivity analyses by altering the timing of
information, the nature of the driving processes, and the specification of the
utility function. We examine the sensitivity of the models to changes in the
information structure by providing agents with signals about the future. In
Svensson’s model, agents know next period’'s money supply and this period’s
output when they trade in the asset market. We modify this framework by giving
them noisy signals of next period’'s output and money. In general, such changes
have only small effects. Similarly, the models’ predictions are highly
invariant to changes in the forcing processes. However, changing preferences to
reflect "habit formation" (Ryder and Heal (1973)) generates substantially
different predictions.

The algorithm used to find stationary equilibria for the models is new, and
has several nice properties. Because it does not rely on a contraction
principle, the speed of convergence does not depend explicitly upon the discount
factor, is generally quite fast, and accommodates discount factors greater than
one. In a growth mode}, a discount factor greater than one cannot be dismissed
a priori (KocherlakotaA(l988)); however, we find“that the models perform no

better in this region.
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Define the multipliers on the constraints (2) and (3), expressed in real terms,
to be functions of the state that do not depend upon the money supply and that
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can be written as p(yt,wt)yt_l and A(yt,wt)yt_l respectively, and define
m(yt,wt) - l/p(yt,wt). Then a stationary equilibrium is a set of functions
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where (6) is the liquidity constraint, with the Kuhn-Tucker multiplier in
braces, é7) is the first order condition associated with c and (8) and (9) a1
modifications of the first order conditions associated with Mt+1 and Zi1-
E(x|y] denotes the expectation of x conditional on y. An equilibrium-must alsc
satisfy the necessary conditions that expected utility and expected nominal
wealth are finite, which is equivalent to requiring that the eigenvalues of the

matrix A, with typical element Ai - ﬁHij(yj)l.a, lie within the unit circle.1

J
In general, equations (6) - (9) do not admit an analytical solution.
Nevertheless, the algorithm in the next section finds the stationary equilibri
(if one exists), which allows numerical exploration of predictions of the mode:
B. The Cash-Credit Model
Modifying the above model to allow cash goods and credit goods as in Lucas
and Stokey (1987) is straightforward. We specialize their model by assuming a

particular preference specification, by choosing an information structure

identical to that of Svensson, and by adding growth to the eﬁdowment:.2



The cash-credit model allows the agent to consume two goods. Good 1 can be
purchased only with cash, while good 2 is bought on credit. Equations (2) and

(3) are replaced with the following:
2" Pc, <M

(3') H +Q
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The goods sell for the same price because sellers receive payments for both
goods in time to make purchases the following period, and because the goods are

perfect substitutes in production. The technology is linear:
(4a’) c,, + ¢
Finally, we generalize (1) by using the period utility function:
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As above, a stationary equilibrium is a set of functions, independent of
time and the level of the money supply, that support the agent’s first order
conditions and the market clearing conditions. We again assume that the
equilibrium functions are separable in Ve and that consumption of both goods
is linear in y . Then (c (v, ,@.), n(y,,w). Blye), Ayw), aly,we)) is a

stationary equilibrium if it satisfies the following:
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where the marginal utilities of consumption of the two goods are
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Note that if the CIA constraint does not bind in state (vy,w), equations (12) and
(16) imply that c1(7,w) = . Also, we can solve for (cl, g, m, X) using only
equations (11)-(14), and then use equation (15) té obtain q.
C. Formulas for the Endogenous Variables

Endogenous stochastic processes for velocity, realized real and nominal
interest rates, inflation, and the growth of real balances can be calculated
from the above equilibrium fupctions. Since these expressions are
straightforward to derive (see Svensson (1985)), we present them in Table 1
without derivation. Although these quantities are algebraically identical in
the cash good and cash-credit models, their predicted values may vary
significantly because the funcFions are based on different equilibrium
conditions. Although the only assets outstanding -in the economy are money and
the endowment stock, we price other assets using the market clearing condition
that they be in zero net supply. When calculating returns, we assume that all
potential assets are traded in the securities market after the goods market
closes. Hence, the payoff received at time t from a one period bond purchased
at time t-1 would not be available for consumption purchases until time t+l.
III. A Solutjon Algorithm

Both models are solved by a similar method, but the algorithm is most

straightforward for the cash model. With the equilibrium of the form described

above, the system (6), (7) and (8) reduces to two functional equations in two



unknown functions g and m:
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The algorithm takes the following steps:
Step 1: Set m0(7,w) = v for all (y,w). (This is equivalent to assuming that
the CIA constraint binds in all states.)
Step 2: Use (18) to solve for u0(7,w). If y0(1,w) > 0 for all (v,w), this
is an equilibrium. If not, go to Step 3.
Step 3: If y0(7,w) < 0 in all states, stop since no equilibrium exists. For
any state in which “0(1’w) = 0, set ml(7,w) - mo(v,w). If u0(7j,wj) < 0 in
some state (7j,wj), set m1(7j,wj) in the denominator of the right-hand
side of (18) so that y(7j,wj) = 0 when (18) is solved using the vector
m0(7,w) in the numerator of the right-hand side.
Step 4: Use (18) to solve for yl(7,w) using ml(7,w) on the right-hand-side.
If u1(1,w) > 0 in all states, this is an equilibrium. If not, set y0(7,w) =
y1(7,w) and m0(7,w) - m1(7,w) for all (vy,w); and repeat Step 3.
Theorem 1: The algorithm converges to a stationary equilibrium if one exists.
The proof of Theorem 1 is in Appendix A.
A similar algorithm solves the cash-credit model (see Appendix B).3 The
programs also check that the conditions for existence are sat:isfied.4
IV. Data and Estimation of the Vector Auto essions
This section describes the calibration of the Markov forcing processes. We
first estimate a bivariate VAR using U.S. consumption growth and money growth
data, and approximate this VAR by a Markov chain as in Tauchen (1987).

We estimate the VARs from quarterly (1959:I-1987:IV) and annual (1950-1986)



data. Quarterly per capita monéy and consumption growths are constructed from
data on the Citibase data tape (see Appendix C for a more complete description).
Real consumption per capita is the sum of quarterly consumption in 1982 dollars"
of nondurables and services divided by total population. The corresponding
price level is the sum of the current dollar series divided by consumption
measured in 1982 dollars. Monthly observations on the money stock, measured by
M2, are converted into per capita quarterly series by averaging the money supply
for the quarter and dividing by total population.

While M2 may not be the monetary aggregate that most closely corresponds to
the money supply of the theories, we use M2 instead of M1l for the following
reason. A first order Maerv process in the growth rates of money and
endowments implies a stationary velocity in the model. Since Ml velocity
appears to be nonstationary during the sample, the model would be rejected
immediately.5 M2 velocity, on the other hand, appears to be stationary. Thus,
in this sense, M2 is the more appropriate monetary aggregate for calibrating
these simple CIA models. The sensitivity analyses (reported below) also suggest
robustness of the results to some misspecifications in the money growth process.

One problem with using M2 as the monetary aggregate is that its expected
velocity is in general smaller than that predicted by the models. To adjust for
this, Eckstein and Leiderman (1988) assume that real balances exceed the amount
spent on the cash good by a constant fraction. We follow this approach by
focussing on the coefficient of variation of velocity as a measure of
volatility. The coefficient of variation is unaffected by scaling factors, while
the standard deviation would be.

In the theory above, the exogenous processes are a first order Markov

process, but our method can accommodate higher order processes. Hence, in each
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case, the appropriate order of the VAR of money growth and consumption growth
was assessed informally by examination of the autocorrelations of the raw data
and formally by examination of the Schwartz (1978) criterion and by likelihood
ratio tests. A first-order VAR is adequate for both series (see Table 2). The
marginal levels of significance of the test statistics indicate that the
restricted models are not rejected at standard levels of significance.

The estimated quarterly VAR is the following:

(19a) w_ = 0.501 + 0.623 w_. - 0.116 v . + ¢
£ (0.134) (0.078) ©1 (o.118) €L @t
(19b) y_ = 0.655 + 0.109 w_. + 0.238 y__ + ¢
£ (0.103) (0.057) &1 (o.091) L 7t

The estimated standard dev?ations of the residuals are o, " 0.00636 and 07 -
0.00489, and their contemporaneous covariance is aw1 ~ 0.282E-06 implying a
correlation coefficient of 0.009. The R2 for (19a) is .375, and the R2 for
(19b) is .079. Standard errors are in parentheses. The unconditional mean
values implied by the VAR are 1.0196 for w and 1.0054 for «.

. Tauchen (1987) describes a quadrature procedure that constructs
approximating Markov chains for VARs. Application of his method to the VAR in

(19) with sixteen states. provides a good approximation. We check this by

estimating the following VAR using data generated from the Markov chain:

(20a) w, = 0.508 + 0.613 w, - 0.113 Ye1 P £

-1 1 wt

(20b) 7, = 0.655 + 0.109 w_, +0.237 v + e

-1
where o, = 0.00628, 07 = 0.00489, and aw1 = 0.287E-06. This corresponds very
closely to (19a-b).

For the annual data, the consumption series is also nondurables plus

services, with prices constructed as above. The money stock is also M2, and per

11



capita series are obtained by dividing by total population.

The estimated VAR for the annual data set is the following:

(21a) w_ = 0.742 + 0.685 w_ . - 0.400 y_ . + ¢

€ 0.350) (0.116) ©1  (0.321) T @t
(21b) y = 0.680 + 0.091w_ . + 0.239 y . +c¢

€ (0.163) (0.054) ©1  (o.1s0y TT1 0 7E

The estimated residual variances are 9, = 0.02243 and 07 = 0.01072; their
contemporaneous covariance is aw7 - -0.0001}, a correlation coefficient of
-0.443; the R2 for (2la) is .489, while forv(Zlb) it is .084. The unconditional
mean values implied by the annual VAR are 1.0599 for » and 1.0203 for 7.

Applying Tauchen's (1987) method to this VAR requires a 16 state Markov
chain. Again, we find a close fit between the actual VAR (2la-b) and the

following VAR estimated using data generated from the Markov chain:

(22a) w_ = 0.756 + 0.635 w_, - 0.362 7, ) + £,

1

(22b) 7, = 0.680 + 0.091 w_, + 0.239 7, ) + ¢

1 1 Tt
where o, = 0.02220, a; = 0.01072, and Ty ™ -0.00011.

The next section compares simulation results to sample values calculated
from quarterly and annual data on velocity, real and nominal interest rates,
inflation, and real balances. Velocity is calculated as the ratio of nominal
consumption to nominal money balances. Ex post real interest rates are
calculated by subtracting one from one plus the nominal interest rate divided by
one plus the inflation rate, which is the ratio of the price level at time t+1
to the price level at time t. Real balances are the nominal money supply
divided by the price level.

V. Simulation Results

Given the specification of the exogenous processes of money growth and

12
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consumption growth, our numerical algorithms find equilibria for a range of
preference parameters. We focus on two related questions:

1) How do changes in the preference parameters a, B, and ¥, affect the joint

distribution of the endogenous and exogenous variables?

2) To what extent does the joint distribution of endogenous and exogenous

variables accord with the behavior of U.S. time series data?

For a partial answer to the first question, consider Figures 1-6. They
graph six unconditional moments, generated using the Markov chain approximation
to the annual VAR, of the joint distribution of money growth, consumption
growth, inflation, velocity, and interest rates as functions of a, 8, and four
values of ¢ (.3, .6, .9, 1).6 Note that the cash-credit model nests the cash
model since the latter is equivalent to the former at ¥ = 1. For small values
of a and large values of B no equilibrium exists. This is denoted by the low
flat regions on the Figures.

A. Effects of Preference Parameters on Predictions of the Model

Figures 1-3 present the expected value of velocity, its seandard deviation,
and its coefficient of variation. In the cash model, there is virtually no
variation in velocity. This can be explained as follows. Consider the agent’s
marginal choice in the time t asset market. He can either hold additional cash
or invest in an interest bearing bond that returns (1+it) in the next asset
market. The benefit of the former is that money provides liquidity services,
while the bond cannot be converted into consumption in period t+l. As long as
the interest rate is sufficiently high and the variation in the marginal utility
of consumption across future states is sufficiently small, agents economize on
cash balances and hold just enough to cover time t+l purchases in all states.

In the cash-credit model, there are two distinct mechanisms that can
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generate variation in velocity. The first is the same as in the cash model;
agents may carry unspent cash across periods. The second is through a
substitution effect between cash and credit goods. Once again we find that
agents rarely carry any cash across periods: the CIA constraint is almost always
binding. However, the substitution effect allows substantial variation in
velocity. Because the CIA constraint generally binds, velocity is approximately

one plus the ratio of the credit good to the cash good, and we can write:

(23) cv[vt] = oglc /(1 + Efc

2¢/°1¢! 2¢/C1e])
where cv[+] is the coefficient of variation, and o[+] is the standard deviation.
As ¢ decreases, the agent substitutes toward the credit good, which for these
particular forcing processes multiplies c2t/clt by a (nearly) time and state
invariant constant that is larger than one. Hence, decreasing y increases the
expectation, standard deviation, and coefficient of variation of velocity. The
coefficient of variation of velocity is fairly insensitive to a and 8.

Figure 4 illustrates the correlation of velocity and nominal interest rates.
The two are highly correlated when ¥ < 1.7 When interest rates are high, real
balances are expensive, and individuals economize by demanding less of the cash
good and more of the credit good. This analysis also helps to explain why
velocity and money growth rates are typically highly positively correlated
(Figure 5). Money growth is positively serially correlated; thus, when w1 is
high, the conditional expectation of w, is high, which increases expected
inflation and nominal interest rates. Hence, agents hold fewer real balances
when money growth is high. Figure 6 shows that consumption growth and velocity
are usually positively correlated.

In Figure 7, the unconditional expected real interest rate is essentially

linear in a and 8 and is insensitive to ¥. Its most important determinant is B;



15
a higher subjective discount factor leads to a lower real interest rate.
Because the models’ predictions of unconditional expected inflation are
insensitive to parameter values, the unconditional expected nominal interest
rate behaves similarly to the expected real interest rate.
B. Consistency with U.S. Time Series Data

Our second question is whether the models’ predictions are consistent with
U.S. data. Since we have weak a priori beliefs about the preference parameters,
and to allow the models the greatest chance of success, we calculate the
unconditional moments of equilibrium variables over a large parameter range.
Tables 3 and 4 show maximum and minimum predictions for each of 17 statistics
considered individually and the corresponding sample statistics from the annual
data with an approximate lgrge sample standard error.8 The parameters
generating the maximum and minimum prediction far each quantity are in
parentheses next to the estimated value.

Tables 3 and & illustrate the poor performance of both models. The sample
value falls outside the range of the cash model (Table 3) for 14 out of 17
statistics, for g between .9 and 1.000, and a between 0 and 9.5. When allowance
is made for asymptotic standard errors around the point estimates of the sample
statistics, the model is still unable to produce 5 of the sample values. The
model predicts virtually no variation in velocity in this range. The cash-
credit model also performs poorly for the same a-§ range, and ¥ between .2 and
.8 (Table 4). It fails to reproduce 11 of the 17 point estimates of the
statistics and cannot reproduce 3 of the sample statistics after allowance for
standard errors. Tables 5 and 6 present the same information for the quarterly
implementation, while Tables 7 through 10 consider g > 1, both annually and

quarterly. None of these changes improves the performance of the models.
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It is important to note that these tests are extremely weak because we only
consider one moment at a time; an accurate model should match all sample moments

for a fixed set of preference parameters. Thus, although the cash-credit model

generates plausible values of the coefficient of variation.of velog%ty, it is
not a successful model. In particular, matching the variation in velocity (with
the restriction 8 < 1) requires B close to one, ¥ close to zero, and a very
large. For these preference parameters, the expected real interest rate is on
the order of 20% per year. When the expected real interest rate is more
realistic, the highest coefficient of variation of velocity that the model
generates is approximately .03 (the sample average is .0456). Thus it appears
impossible to reconcile the low value of average interest rates with the
volatility of velocity in this framework.
Relation to Int;rest Elasticity of Money Demand

Above we examine the correlation of velocity and nominal interest rates,
which is very similar to the estimation of traditional money demand functions.
Here we consider whether a money demand function estimated from model-generated
time series data resembles the results of its sample counterpart.9

A standérd functional form used to estimate money demand relates real

balances, M/P, to real consumption, y, and the nominal interest rate, i:

(24) In(M/P) = §_ + Slln(y) + 8,1 + €,

0 2
Our assumption that equilibria are linear in y implies that real balances

are linear in y and a function of y and w. This is equivalent to restricting 81

to be equal to 1 in (24). Thus, we examine the regression:

i+e, or In(l/v) =6, + 6,1 + ¢

0 2

(25) In(M/(Py)) = &, + &,

The annual estimate is of 82 is -.995, with a standard error of .358. The
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corresponding model estimates are found by calculating cov[ln(l/v),i]/az[i].

When ¥ < .3, §, is within two standard deviations of the sample estimate for a

2
large range of a and 8, which is consistent with the generally better
performance of the cash-credit model for low %.

VI. Sensitivity Analysis

A. Varying the Agent’s Information

An important contribution of Lucas and Stokey (1987) was their
generalization of the information available to the agent in the asset market.

In this section, we expand the state space of the cash-credit model to include a
noisy signal about next period’s money supply or output. This allows us to
examine the sensitivity of the model’s predicgions to changes in the precision
of the signal.

In the above models, agents received information about the time t output and
the time t+l money stock at the beginning of period t, and the actual transfer
of money occurred in the asset market at time t. To consider the effects of a
signal about the monetary injection, we must assume instead that the monetary
transfer occurs after the close of the time t asset market since otherwise the
agent would learn from his own transfer. This timing is similar to that in
Lucas and Stokey.

First, assume agents in the asset market at time t receive a signal about
the growth of the money supply between the cufrent and next period equal to the
true money growth rate plus i.i.d. noise: St - +n with N, - N(O,ai) and
uncorrelated with the time t information set. Time t information includes St’
w1 and Yoo and the evolution of the stationary component of the state can be

estimated with the following VAR:

S - a, + a,S_ + + +
€ a,w ayv,. €

t+l 0 1 27t-1 St



(26) w, = b, + b St +b

0 1 + b37t + &

2%-1 wt

=-c, + +
¥ c St c

t+1 0 1 t ey te

27t-1 yt’

We want to estimate this VAR and discretize the distribution as before, varying
aq to reflect different degrees of uncertainty about next period’s money supply.
It is straightforward to calculate the resulting coefficients of the VAR and the
resulting covariance matrix as a function of 7, and the matrix of independent
variables (see Appendix D).

To test the sensitivity of the predictions, we set uq equal to 0.01, 0.5, 1,
and 2 times the unconditional standard deviation of money growth in the data
(Uw). The equilibrium conditions are unchanged except that w. in (14) must be
inside the expectation operator. The results in Table 11 indicate that the
unconditional expectations of.velocity, inflation, and the real interest rate
are relatively insensitive to the agent’s information about future money growth,
as is the coefficient of variation of velocity.

Similarly, we allow agents at time t to observe a signal St = + n_ of

t+l t

next period’s output growth, where 7. is distributed as above. In this case,
uq is set to 0.01, 0.5, 1, and 2 times the unconditional standard deviation of
output growth. Again, the precision of the signal has little affect on the
predictions of the model, as reported in Table 12.
B. CES and Habit Formation Preferences

It is possible that the cash-credit model generates a larger range of
predictions for an alternative utility specification. The functional form in
(10) is restrictive because it implies a unitary intratemporal elasticity of
substitution between the cash and credit goods for all ¥. If agents regard cash
and credit goods as closer substitutes than is implied by this utility function,

velocity may vary more as they substitute more freely between the two goods. To
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assess this conjecture, we consider a CES alternative:

27) ulep . o) = (el + J T/ L 1y/¢-a)

C1e’ ©2¢
in which the intragemporal elasticity of substitution is 1/(l-). We examine
the model’s predictions for 5 < 1 in Table 13. A comparison with Tables &4
indicates no great improvement in the predictions of the model.

If utility this period ‘depends on the increase in consumption over that in

the previous period, preferences in the cash good model can be written as

c l-a
(28)  u(ep = [(c - bmin{yDe, ) " - 11/(-a)

where b can be varied between zero and one to reflect the degree of habit
formation.lo In (28) we scale b by the minimum growth rate of consumption to
ensure that preferences are well-defined. The effect of these preferences on
the range of predicted values is dramatic. Table 14 reports ranges for a and f
as in Table 3, and b ¢ {0, .2, .4, .6, .8) such that the marginal utility of
consumption is positive. The model can generate predictions that lie within one
standard deviation of all 17 statistics; éleQen of the sample statistics lie
within the range of possible moments generated by the model. Intuitively, these
preferences induce extremely high risk aversion as b approaches 1 even when a is
small because the point of infinite marginal uéility in the current period
utility function is based on last period’'s consumption. Such preferences
generate a large precautionary demand for money in some states, which reduces
the velocity of money and increases its volatility. This interpretation is
consistent with the fact that using the standard preferences, the cash gooa
model can generate large fluctuations in velocity and inflation (e.g., for
values of a > 400 and 8 > 1.15).

Again, though, the model is not successful when we require that it



simultaneously fit the data on several dimensions. Parameters that generate
realistic variability of velocity also generate unrealistically high variability
of inflation and real interest rates. Any parameter specification that
generates a coefficient of variation of velocity larger than 0.04 (the sample
estimate is 0.0456) also produces a standard deviation of inflation larger than
0.05 and a standard deviation of real interest rates larger than 0.06. The
sample estimates of the latter quantities are 0.03 (standard deviation .008) and
0.02 (standard deviation .005).

C. Sensitivity to Forcing Process and Sample Period

We test the robustness of the models’ predictions using the quarterly data
by (a) varying the parameters of the forcing processes, and (b) truncating the
data at 1979:1II. Neither variation substantially changes the ranges reported in
Tables 3 through 6. In particular, the basic inability of the cash model to
generate the observed variability of velocity remains.

In order to consider the robustness of the results to potential
misspecification of the driving process, we consider 18 variations of the
forcing processes (listed in Table 15), always adjusting the constants to
preserve the unconditional means of the forcing processes. The effect of
changing constants is examined in three other experiments. Mean preserving
changes have little effect on the expected values of inflation, real balance
growth, and interest rates. Although there are some changes in the second
moments of the variables, the effects are small in terms of changing the ranges
in Tables 3 and 4. We also look at the effects of changing the intercepts of
the VARs. Importantly, while the second moments are not greatly affected, the
predictions of the model for the expectations of inflation and real balance

growth are quite sensitive to these parameters.
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A strong assumption underlying our results is that quarterly consumption and
money growths follow a stationary process from 1959 to 1987. Since many
researchers argue that there was a fundamental change in the monetary regime in
October 1979, we reconstruct Tables 3-6 using data from the period 1959:1-
1979:2. We find that the model performs worse over this period in the sense
that for all four tables, a larger number of sample estimates fall outside the
ranges consistent with the model.
VII. Conclusions

Lucas (1984) and évensson (1985) show that adding uncertainty about future
cash needs can in principle allow velocity to vary in CIA models. Whether this
change in the information structure has practical implications for the models’
predictions is an empirical. question. Using driving processes estimated from
U.S. time series, we simulate the cash model over a wide range of preference
parameters to generate predictions on the unconditional moments of several
economic time series, including velocity. A striking result is that the model
predicts essentially constant velocity, using the annual data process for any
subjective discount factor between 0.9 and 1.06 and any coeffiéient of relative
risk aversion betweén 0 and 9.5. Velocity is always constant with the quarterly
driving process. Furthermore, the result that the CIA constraint always binds
is robust to substitutability between cash and credit goods, and changes in the
assumed information structure. This strongly suggests that in future
applications of CIA models, assuming an information structure for which the CIA
constraint always binds will simplify the analysis without significantly
changing the results.

Including credit goods, as in Lucas and Stokey (1987), generates variability

in velocity in CIA models without complicated information structures. Our



simulations examine the implications of adding credit goods to the model.
Although the variability of velocity increases, average velocity also increases
Qell above empirically plausible levels. The model is also unable to generate
realistic predictions about the first and second moments of other variables,
even if considered individually. We emphasize, though, that we have not tested
CIA models as a class against any of the popular alternatives, which might
perform just as poorly when imbedded in similarly stylized models.

OQur estimation/calibration procedure is fairly easy to implement, and
quickly reveals the properties of these models under a variety of scenarios.
Although this procedure provides no formal test statistic with which to reject a
model, it is a relatively inexpensive way to assess the probable value of a
theoretical model in explaining datall. Pretesting of this sort is valuable for
understanding new theories that purport to explain the data.

If our calibrations had produced more promising results, we had planmed to
estimate the models with a technique such as Hansen's (1982) Generalized Method
of Moments (GMM), which allows overidentified models to be tested formally. A
true model would predict unconditional moments that are the same as estimated
unconditional moments after allowance for sampling error. Therefore,
orthogonality conditions could be constructed by taking deviations of sample
moments from model moments. A serious methodological problem in estimating
these models with GMM is that the models’ moments depend on the estimated
parameters of the VAR and on the discretization of the state space. The first
problem might be overcome by simultaneous estimation of the VAR and the
parameters of the model. It is not known how the discrete state approximation
affects the GMM parameter estimates and standard errors. One can avoid these

problems by examining Euler equation restrictions, as Finn, Hoffman and

22



Schlagenhauf (1988) and Eckstein and Leiderman (1988) do.12

Although we emphasize macroeconomic predictionms, these models also generate
asset pricing predictions. Labadie (1988) and Backus, Gregory and Zin (1988)
investigate the empirical predictions of the cash model for asset prices,
assuming that the CIA constraint always binds. Our findings provide support for
their results. The asset pricing implications of the cash-credit model have not

been explored; this is a topic of current research.
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Appendix A: Proof of Theorem 1
Lemma 1: A sequence of m(y,w)'’s generated by the procedure described above,
(mt(w,v)), t =0,1,2,..., is non-decreasing.
Proof: On any iteration, if pt_l(y,w) = 0, mt(y,w) - mt_l(y,w) in Step 3. 1If
pt_l(y,w) < 0, then m(vy,w) must be increased in the denominator of the RHS of

(18) until p(y,w) = 0.//

Lemma 2: The equilibrium m(y,w) is bounded for all v and w.
Proof: By examination of (18), if any m(y,w) is unbounded, m(y,w) is unbounded
for all y and w. Say that all m(vy,w) are unbounded. Since v is bounded, the
CIA constraint is slack in all states, and p(y,w) = 0 for all y and w. This
implies a zero nominal interest rate in all states, contradicting the definition
of an equilibrium;//
Lemma 3: If in the sequence of u’s generated by the algorithm, (pt(w,y)), t =
0,1,2,..., it ever occurs that pt(y,w) < 0 for all vy and w, the p’s will always
be negative, and the algorithm does not converge.

Proof: Say that pt(y,w) < 0 for all vy and w. Then by Lemma 1, mt+1(7,w) >

mt(y,w) for all v and w. Therefore on the next iteration, the numerator of the

expectation in (18) increases. Using m (v,w) in the denominator of the

t+1
expectation and solving for pt+1(7,w) in (18) implies that pt+1(1,w) is again

less than zero, since py was equal to zero when the numerator of the expectation
was lower and the denominator the same. Thus m

v,w) >m (v,w), and the

t+2 (¢ t+l

stopping condition never is satisfied.//

Proof of Theorem 1: (by contradiction) Let (m*(y,w), p*(v,w)) be the
equilibrium defined by (17) and (18). By Lemma 1 the m’s are a non-decreasing
sequence, so that if the algorithm fails to converge to the equilibrium, the

sequence must jump over m*(vy,w). Assume that m , W > m*(vy,,w.) for a
q Jump (y,0) 41 (75795 (r5,95)
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subset of states J = ((1j,wj)), but that mt(1,w) < m*(v,w) for all y and w. For

all (v,w) such that pt(y,w) 20, m (y,w) = mt(1,w), so the equilibrium is not

t+l
jumped in these states. Let (1j,wj) e J. Then pt(1j,wj) < 0, and mt+l(7j'wj) >
m*(1j,wj) > mt(wj,wj). Solving for u in (18) with m*(1j,wj) in place of
mt+l(7j’wj) but all else the same implies p < 0. Consider the effect of
increasing m(y,w) to m*(y,w) for all vy and w in the numerator of the expectation
in (18), and solve for p again with m*(1j,wj) in the denominator. Algebra
establishes that the resulting p is < 0. This contradicts m*(y,w) being an
equilibrium.
Appendix B: Solution Algorithm for Cash-Credit Model
First, the system (11)-(l4) reduces to the three equation system:
(Bl) e (v,,w) s mly,,w0).
(BCre.e) 20, and p(y o) (e (v o) - mly,0)] = 0)
(B2) (.00 = uy(v,0p) + plrg,w)

l-a
(B3)  ply,w) = up(v,w) = BE[ug (v gh@ )mlye 100,01 Y9,

w m(y,,w.)
The algorithm solves for 01(1,w), m(y,w) and p(vy,w). We use the notation that

c refers to a value of c1 on the an initial iteration, and c11 refers to c1 on

10

the subsequent iteration. m, and m, are defined similarly.

0 1
Step 1: Set m0(1,w) - c10(1,w) = % for all (v,w).
Step 2: Use (B3) to solve for p0(1,w). If p0(1,w) 2z 0 for all (vy,w), this is

an equilibrium. If not, go to Step 3.

Step 3: If p0(1,w) < 0 in all states, stop since the algorithm will never
converge. For any state in which p0(1,w) < 0, use (B2) to define cll(w,1) with
u = 0, and solve for ml(y,w) in (B3) with g = 0. If cll(w,1) is more than

ml(y,w), reduce cll(w,w) to m1(1,w). On all future iterations, this procedure



will determine < and m in this state. For any state in which uo(y,w) > 0,
substitute for g in (B3) using (B2), and solve (B3) for ml(y,w) = cll(y,w),
using the vector of mo(y,w) and clo(v,w) from the previous iteration in the
‘expectation on the right-hand side of (B3).

Step_4: Use (B3) to solve for yl(v,w) using ml(y,w) and cll(v,w) on the right-
hand-side. If yl(y,w) > 0 in all states, and ml(v,w) =‘m0(7,w) and cll(y,w) =
clo(v,w) this is an equilibrium. If not, set clo(v,w) - cll(v,w) and mo(y,w) =
ml(y,w) and repeat Step 3.

Appendix G: Data Sources

Quarterly data are from the Citibase Data tape of Northwestern University.

The series and their corresponding Citibase acronyms are listed below. National

Income and Product Accounts is denoted NIPA.

Money stock - FM2: The sum of currency, travelers checks, demand deposits, and
other checkable deposits (Ml) plus overnight repurchase agreements and
overnight Eurodollars, money market mutual fund balances, money market
deposit accounts, and savings and small time depoéits.

Population - POP: lst of the month estimate of population, including armed
forces overseas.

Consumption of nondurables in 1982 (current) dollars - GCN82 (GCN): NIPA.

Consumption of services in 1982 (current) dollars - GCS82 (GCS): NIPA.

Nominal interest rates - FGYM3: Three month treasury bill yield in the secondary
market, monthly average of daily rates.

Annual data is from the 1987 Economic Report of the President unless
otherwise indicated.

Consumption of nondurables and services in 1982 (current) dollars: Table B-2,

(B-1). 1987 observations from the 1988 Report.
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Population: Table B-31, 1986-1987 observations from the 1988 Report.

Money stock: M2, 1948-83 from Balke and Gordon (1986), 1984-87 from 1988
Economic Report of the President.

Nominal Interest Rate: Commercial paper interest rates for 4-6 month maturity
prior to 1979, 6 month thereafter. The rates are quoted on a bank discount
basis. 1950-1987 from 1988 Economic Report of the President, Table B-71.

Appendix D: Derivation of Modified VARs for Information Experiments
To represent varying degrees of precision in the agent's knowledge of v, at
time t, suppose there exist (T+2) observations of output growth and money

growth. Define X to be a (T x 4) matrix such that its four columns are: Col. 1,

Vector of ones; Col. 2, observations of w beginning with the second period;

Col. 3, observations of w beginning with the first period; Col. 4, observations

of vy beginning with the second period. Let Y be a vector containing T

observations of w beginning with the third period. Let } be a (4 X 4) matrix

with a single nonzero element, 222 - as. Then a consistent estimator of the
four elements of the vector c¢ is:
c = (X'X + TZ)'lx'Y.

See Chow (pp. 105-6, 1983). We can similarly estimate the vectors a and b.
Decomposing St in (26), the error term can be written as the vector

(alqt+eSt, bl"t+€wt’ Cl"t+€7t)' Since N, is uncorrelated with the time t

information set, the covariance matrix is:

2 2 2 2 2
alan+as alblan+aSw alclan+057
2 22 2 2
alblaq+aSw blan+aw blclan+aw7

2 2 22 2
alclan+057 blcla”+aw7 Clan+07
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Table 1: Expressions for Endogenous Variables

Consumption Yy
Velocity v o=
m(y,w)
Inflation Rate m(y,w)w
(plus ome) x(y,w|y,0') = ———
LIGAPADE |
Nominal Interest Elu(y" 0 )Y (1/x(y, 0|y ., 0')) | (v,0)]
Rate i(y,w) =

E(A(y",0")(1/x(y,0|7",0")) ] (v,0)]

Realized Real 1+i(y,w)
Interest Rate r{v,w|y ,w') = — -1
n(y,w|y’ @)

Growth Rate of m(y',w’' )y

Real Balances mg(7,w|7’,w’) -1

m(y,w)

Note: (v',w') denotes the state of the Markov chain in the next period.
(v,w|v',w’) denotes a transition from the state (vy,w) to the state
(7' ,w’') in the next period.

Table 2: Diagnostics for Choice of Lag Length in the Vector Autoregressions

Sample . Quarterly Annual
SC(1) - 20.401 - 16.171
SC(2) - 20.038 - 15,561
SC(3) - 19.740 - 15.038
IR 1 vs. 2 1.57¢6 1.495
MLS .813 .827
IR 2 vs. 3 9.575 4.063
MLS .048 .398

Note: The value of the Schwartz (1978) criterion for lag length j is SC(j).

The statistic is calculated as equation (16.6.7) of Judge, et.al. (1985, p.
687). The likelihood ratio test of lag length j versus length j+1 is denoted LR
j vs. j+1. The marginal level of significance of the likelihood ratio test is
denoted MLS. The likelihood ratio statistics incorporate the degrees of freedom
correction recommended by Sims (1980).
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Table 3

Cash Model Simulation Results vs. Sample Values
Annual Data: 1950 to 1987

B = .9,.92, ..., .98,1.0; a=20,.5 ...,9.5
min max sample std. dev.
min (a.B) max (a.8) value sample value

E[Vv] 0.9999 (1.,1.0) 1.0000 (9.5,1.0) 0.8826 0.0105 **
alv] 0.0000 (9.5,1.0) 0.0009 (1.0,1.0) 0.0405 0.0086 *x
cv[v] 0.0000 (9.5,1.0) 0.0009 (l1.0,1.0) 0.0456 0.0097 *x*
corr([v,v] -0.1585 (1.5,1.0) 0.0000 (9.5,1.0) -0.5000 0.1447 **
corr([v,w] 0.0000 (9.5,1.0) 0.0711 (0.,.98) -0.0668 0.2263 *x
corr([v,i] 0.0000 (2.5,1.0) 0.1555 (0.,.98) 0.5348 0.2245 *x
E[n] 0.0389 all 0.0389 all 0.0434 0.0079 *
o[n] 0.0297 all 0.0297 all 0.0283 0.0061 =*
E[1] 0.0594 (0.,.98) 0.3901 (9.5,.90) 0.0587 0.0094 *
o[i] 0.0182 (0.,.98) 0.0537 (9.?,.90) 0.0323 0.0076
E[p] 0.0201 (1.,1.0) 0.3377 (9.5,.90) 0.0148 0.0053 *
alp) 0.0116 (4.,1.0) 0.0218 (9.5,.90) 0.0200  0.0046
E[mg] 0.0203 all 0.0203 all 0.0164 0.0063 *
a[mg] 0.0450 (9.5,1.0) 0.0474 (1.0,1.0) 0.0336 0.0061 *
corr[m,w] 0.9227 (1.0,1.0) 0.9254 (9.5,1.0) 0.3421 0.1191 »**
corr[n,1i] 0.9165 (0.,.98) 0.9274 (5.0,.98) 0.7689 0.0805 *
corr[m,p] -0.8812 (0.,.90) 0.4445 (9.5,.98) -0.1808 0.1904

Note: A * indicates that the sample value falls outside the possible

range predicted by model. A ** indicates that the sample value falls outside
the possible range by more than two standard deviations. = = inflation; i =
nominal interest rate; p = real interest rate; w = money growth rate; vy =
consumption growth rate; m_ = real balances growth rate. Correlation of any
variable and money growth Ps contemporaneous (e.g.corr[v,w] = corr{vt,wt_l]).
No equilibrium exists for 8 = 1, a < .5.



Table 4

Cash-Credit Model Simulation Results vs. Sample Values
Annual Data: 1950 to 1987

8 = .9,.92,...,.98,1.; a=20,.5...,9.5; ¥ = .2,.4,.6,.8
min max sample std. dev.
min (a.B.¥) max (a,8.¥) value _sample value
E[v] 1.2649 (1.,1.0,.8) 6.5738 (9.5,.9,.2) 0.8826 0.0105 *%
olv] 0.0071 (0.,.96,.8) 0.3351 (9.5,.9,.2) 0.0405 0.0086
cv([v] 0.0056 (0.,.96,.8) 0.0510 (9.5,.9,.2) 0.0456 0.0097
corr[v,vy] -0.3319 (0,.98,.8) 0.5157 (9.,.92,.4) -0.5000 0.1447 *
corr([v,w] 0.6190 (0.,.98,.8) 0.7520 (7.5,.92,.8) -0.0668 0.2263 *x*
corr[v,i] 0.7342 (9.5,.96,.4) 0.987% (0.,.9,.6) 0.5348 0.2245 *
E{n] 0.0389 (1.,.9,.8) 0.0398 (9.5,.9,.2) 0.0434 0.0079 *
oln] 0.0290 (1.,.9,.8) 0.0529 (v¥.5,.9,.2) 0.0283 0.0061 *
E[i] 0.0594 (0.,.98,.6) 0.3902 (9.5,.9,.8) — 0.0587 0.0094 *
o[i] 0.0181 (0.,.98,.6) 0.0638 (9.5,.9,.8) 0.0323 0.0076
Elp] 0.0201 (1.,1.0,.8) 0.3390  (9.5,.9,.2) 0.0148 0.0053 *
olpl] 0.0138 (3.,1.0,.8) 0.0675 (9.5,.9,.2) 0.0200 0.0046
E[mg] 0.0203 (2.,1.0,.8) 0.0213 (9.5,.9,.2) 0.0157 0.0064 *
o[mg] 0.0648 (0.,.96,.8) 0.3232 (9.5,.9,.2) 0.0334 00,0060 *x*
corrnx,w] 0.4665 (9.5,.9,.2) 0.8746 (2.,1.0,.8) 0.3421 0.1191 *
corr[m,i] 0.4518 (9.5,.9,.2) 0.8867 (3.5,1.0,.8) 0.7689 0.0805
corr(=,p] 7—0.8393 (0.,.9,.8) 0.3004 (9.5,1.0,.8) -0.1808 0.1904

Note: See also Table 3. The algorithm failed to converge for 13 out of the 400
possible parameter specifications.



Table 5

Cash Model Simulation Results vs. Sample Values
Quarterly Data, 1959:2 - 1988:1

cv([v]

corr(v,v]
corr([v,w]
corr[v,i]

E[n]

corr{rm,w]
corr[m,1i]

corr[n,p]

std. dev,

B = .975,.98,...,.995,1.000; a=20,.51,...,9.5
min max sample
min (a.8) max (a.8) value
1.0000 all 1.0000 all 0.2261 0.
0.0000 all 0.0000 all 0.0090 0.
0.0000 all 0.0000 all 0.0398 0
0.0000 all 0.0000 all -0.3420 0
0.0000 all 0.0000 all -0.1634 0
0.0000 all 0.0000 all 0.6208 0
0.0141 all 0.0141 all 0.0122 0
0.0085 all 0.0085 all 0.0074 0
0.0195 (1.0,1.00) 0.0933 (9.5,.975) 0.0151 0
0.0041 (0.0,.990) 0.0122 (9.5,.975) 0.0069 0
0.0054 (1.0,1.00) 0.0781 (9.5,.975) 0.0030 0
0.0051 (3.0,1.00) 0.0075 (9.5,.975) 0.0062 0
0.0054 all 0.0054 all 0.0052 0
0.0205 all 0.0205 all 0.0098 0
0.8042 all 0.8042 all 0.1844 0
0.7811 (9.5,.995) 0.8167 .(0.5,.995) 0.6192 0
-0.9113 (0.0,.985) 0.4570 (9.5,.990)  -0.5047 0

0018

0014

.0061

L1112

.1243

.1526

.0014

.0012

.0014

.0013

.0011

.0010

.0016

.0014

.1012

.0942

.1392

sample value

*%

*%

*%

*%

*%

*%

*%

*%

Note: See also Table 3. Equilibrium does not exist for (a,B8) = (0,.995),

(.5,1).

(0,1,
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Table 6

Cash-Credit Model Simulation Results vs. Sample Values
Quarterly Data, 1959:2 - 1988:1

B = .975,.98,...,.995,1.; a=0,.5,...,9.5; ¥ =.2,.4,.6,.8
min max sample std. dev.

min (. 8. %) max (a,.B.¥) value sample value
E{v] 1.2549 (1.,1.00,.8) 5.3763 (9.5,.975,.2) 0.2261 0.0018 **
ofv] 0.0018 (0.,.99,.8) 0.0890 (9.5,.975,.2) 0.0090 0.0014
cv{v] 0.0014 (0.,.99,.8) 0.0166 (9.5,.975,.2) 0.0398 0.0061 **
corr{v,vy] -0.0692 (0.,.975,.6) 0.6639 (9.5,.975,.6) -0.3420 0.1112 **
corr{v,w] 0.5667 (9.5,.975,.6) 0.6189 (2.5,.975,.2) -0.1634  0.1243 **
corr{v,i] 0.8894 (9.5,.975,.6) 0.9997. (0.,.975,.6) 0.6208 0.1526 *
E{~x] 0.0141 all 0.0141 all 0.0122 0.0014 *
oln] 0.0076 (8.5,.985,.8) 0.0147 (9.5,.975,.2) 0.0074 0.0012 *
E{1i] 0.0195 (1.,1.00,.8) 0.0933 (9.5,.975,.6) 0.0151  0.0014 *x*
ofi] 0.0041 (0.,.99,.6) 0.0132 (9.5,.975,.6) 0.0069 0.0013
Elp] 0.0054 (1.,1.00,.8) 0.0783 (9.5,.975,.2) 0.0030 0.0011 **
ofp]) 0.0050 (3.,1.00,.8) 0.0192 (9.5,.975,.2) 0.0062 0.0010
E{mg] 0.0054 (6.,1.00,.8) 0.0055 (9.5,.975,.2) 0.0052 0.0016 *
o{mg] 0.0224 (2.5,1.00,.8) 0.1099 (9.5,.975,.2) 0.0098 0.0014 **
corr[nm,w] 0.1791 (9.5,.975,.2) 0.7784 (5.5,1.00,.8) 0.1844 0.1012
corr[n,i] 0.0913 (9.5,.975,.2) 0.7808 (2.,1.00,.8) 0.6192 0.0942
corr{n,p] -0.8930 (0.,.975,.8) 0.0695 (9.5,1.00,.8) -0.5047 0.1392
Note: See also Table 3. Equilibrium does not exist for (e,8) = (0,.995), (0,1),

{.5,1).
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Table 7

Cash Model Simulation Results vs. Sample Values
Annual Data: 1950 to 1987

g =1.00,1.02, ...,1.06; a=20,.5 ...,9.5
min max sample std. dev.
min (a.8) max (a.8) value sample value

E[v] 0.9996 (4.0,1.06) 1.0000 (9.5,1.06) 0.8883  0.0104 *x
o[v] 0.0000 (9.5,1.06) 0.0016 (4.0,1.06) 0.0405  0.0086 **
evv] 0.0000 (9.5,1.06) 0.0016 (4.0,1.06) 0.0456  0.0097 **
corr[v,v] -0.2390 (4.0,1.06) 0.0000 (9.5,1.06) -0.5000 0.1447 *
corr[v,w] 0.0000 (9.5,1.06) 0.2651 (4.0,1.06) -0.0668 0.2263 *
corr[v,i] 0.0000 (7.0,1.06) 0.4283 (4.0,1.06) 0.5348  0.2245 *
Elx] 0.0389 all 0.0389 all 0.0434  0.0079 *
o[n] 0.0296 (4.0,1.06) 0.0297 (9.5,1.06) 0.0283 0.0061 *
E[i] 0.0595 (1.0,1.00) 0.2511 (9.5,1.) 0.0587 0.0094 *
oli] 0.0205 (1.0,1.00) 0.0483 (9.5,1.) 0.0323 0.0076
Elp] 0,0201 (1.0,1.00) 0.2040 (9.5,1.) 0.0148 0.0053 *
olp] 0.0111 (4.5,1.06) 0.0196 (9.5,1.00) 0.0200 0.0046 *
E[mg] 0.0203 all 0.0203 all 0.0164  0.0063 *
a[mg] 0.0450 (9.5,1.06) 0.0496 (4.0,1.06) 0.0336 0.0061 *
corr[m,w] 0.9168 (4.0,1.06) 0.9254 (9.5,1.06) 0.3421  0.1191 **
corr(m,ij 0.9207 (4.0,1.06) 0.9274 (5.0,1.06) 0.7689 0.0805 *
corr|m,p] -0.8162 (1.0,1.00) 0.4445 (9.5,1.06) -0.1808 0.1904

Note: See also Table 3. There is no equilibrium for g =1, a < .5; £ = 1.02, o
<1.5; B=1.04, a<2.5;, =106, a<3.5;



Table 8

Cash-Credit Model Simulation Results vs. Sample Values
Annual Data: 1950 to 1987

B =1.00, 1.02, 1.04; a=20,.5,...,9.5; p=.2,.4,.6,.8
min max sample std. dev.
min (a.8.¥) max (a.B.9) value sample value
E{v] 1.2649 (1.,1.,.8) 6.0144 (9.5,1.,.2) 0.8826 0.0105 **
o[v] 0.0078 (1.,1.,.8) 0.2860 (9.5,1.,.2) 0.0405 0.0086
cv(v] 0.0061 (1.,1.,.8) 0.0475 (9.5,1.,.2) 0.0456 0.0097
corr(v,v] -0.2411 (1.,1.,.8) 0.4690 (9.5,1.,.6) -0.5000 0.1447 *
corr(v,w] 0.6564 (1.,1.,.8) 0.7519 (8.,1.,.2) -0.0668 0.2263 **
corr(v,i] 0.7628 (9.5,1.,.6) 0.9788 (1.,1.,.2) 0.5348 0.2245 *
E[n] 0.0389 (1.5,1.,.8) 0.0396 (9.5,1.,.2) 0.0434 0.0079 *
o(x] 0.0290 (1.5,1.,.8) 0.0486 (9.5,1.,.2) 0.0283 0.0061 *
E[i] 0.0595 (1.,1.,.6) 0.2511 (9.5,1.,.6) 0.0587 0.0094 *
o[i] 0.0205 (1.,1.,.8) 0.0570 (9.5,1.,.6) 0.0323 0.0076
E[p] 0.0201 (1.,1.,.8) 0.2049 (9.5,1.,.2) 0.0148 0.0053 *
olp] 0.0133 (3.5,1.04,.8) 0,0555 (9.5,1.,.2) 0.0200 0.0046
E[mg] 0.0203 (4.,1.04,.8) 0.0211 (9.5,1.,12) 0.0164 0.0063 *
o[mg] 0.0653 (2.,1.,.8) 0.2998 (9.5,1.,.2) 0.0334 0.0061 **
corr[x,w] 0.4736 (9.5,1.,.2) 0.8758 (4.,1.04,.8) 0.3728 0.1043 *
corr[=,i] 0.4750 (9.5,1.,.2) 0.8885 (4.,1.04,.8) 0.7689 0.0805
corr=,p] -0.7762 (1.,1.,.2) 0.3099 (9.5,1.04,.8) -0.1808 0.1904

Note: See also Table 3. There is no equilibrium for 8 =1, a = .5; 8=1.02, «

<15 B=104, ax<2.5 =106, a=<3.5;



Table 9

Cash Model Simulation Results vs. Sample Values
Quarterly Data, 1959:2 - 1988:1

g =1.,1.005,...,1.015; a=20,.5...,9.5
min max sample std. dev.
min (a.8) max (a,B) value sample value
E[v] 0.9998 (4.0,1.015) 1.0000 (9.5,1.010) 0.2261 0.0018 =*x
o[v] 0.0000 (9.5,1.010) 0.0010 (4.0,1.015) 0.0090 0.0014 *x*
cv[v] 0.0000 (9.5,1.010) 0.0010 (4.0,1.015) 0.0398 0.0061 **
corr[v,vy] 0.0000 (9.5,1.015) 0.2643 (4.0,1.015) -0.3420 0.1112 **
corr(v,w] 0.0000 (9.5,1.015) 0.2865 (4.0,1.015) -0.1634 0.1243 *
corr(v,i} 0.0000 (9.5,1.015) 0.3968 (4.0,1.015) 0.6208 0.1526 *
E[x] 0.0141 all . 0.0141 all 0.0122 0.0014 =
o[n] 0.0084 (4.0,1.015) 0.0085 (9.5,1.010) 0.0074 0.0012 *
E[1] 0.0195 (1.0,1.000) 0.0659 (9.5,1.000) -0.0151 0.0014 **
ofi] 0.0048 (1.0,1.000) 0.0119 (9.5,1.000) 0.0069 0.0013
E{p] 0.0054 (1.0,1.000) 0.0511 (9.5,1.000) 0.0030 0.0011 **
olp) 0.0050 (3.0,1.010) 0.0074 (9.5,1.000) 0.0062 0.0010
E[mg] 0.0054 all 0.0054 all 0.0052 0.0016 *
a[mg] 0.0205 (5.0,1.010) 0.0218 (4.0,1.015) 0.0098 0.0014 **
corr|n,w] 0.7992 (4.0,1.015) 0.8051 (3.5,1.010) 0.1844 0.1012 **
corr|m,i] 0.7811 (9.5,1.010) 0.8156 (1.0,1.000) 0.6192 0.0942 *
corr{n,p] -0.8574 (1.0,1.000) 0.0483 (9.5,1.015) -0.5047 0.1392
Note: See also Table 3. Equilibrium does not exist for f =1, o < .5; B =

1.005, a<1.5; =101, a<2.5; g=1015 a=<3.5.
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Table 10

Cash-Credit Model Simulation Results vs. Sample Values

Quarterly Data, 1959:2 - 1988:1

1.005, a < 1.5;

g =1.

01, a = 2.5;

A =1.015, a < 3.5.

g =1.00,1.005,...,1.015; a«=20,.5,...,9.5; ¥ = .2,.4,.6,.8
min max sample std. dev.
min (a.8.¥) max (a,8.¥) value sample value
E[v] 1.2549 (1.,1.00,.8) 5.2668 (9.5,1.,.2) 0.2261 0.0018 *%
o[v] ' 0.0020 (1.,1.00,.8) 0.0853 (9.5,1.,.2) 0.0090 0.0014
cv([v] 0.0016 (1.,1.00,.8) 0.0162 (9.5,1.,.2) 0.0398 0.0061 **
corr(v,vy] 0.1070 (1.,1.00,.8) 0.6515 (9.5,1.,.6) -0.3420 0.1112 *%
corr[v,w] 0.5708 (9.5,1.0,.6) 0.6189 (2.5,1.0,.2) -0.1634 0.1242 *%
corr(v,i] 0.8934 (9.5,1.00,.6) 0.9928 (1.,1.0,.2) 0.6268 0.1526 *
E[n] 0.0141 all 0.0141 all 0.0122 0.0014 *
o[n] 0.0076 (8.5,1.,.8) 0.0144 (9.5,1.,.2) 0.0074 0.0012 *
E[1] 0.0195 (1.,1.00,.8) 0.0660 (9.5,1.,.6) 0.0151 0.0014 **
o[i] 0.0048 (1.,1.00,.8) 0.0126 (9.5,1.,.6) 0.0069 0.0013
E[p] 0.0054 (1.,1.00,.8) 0.0513 (9.5,1.,.2) 0.0030 0.0011 **
.U[p] 0.0049 (3.,1.01,.8) 0.0183 (9.5,1.,.2) 0.0062 0.0010
E[mg] 0.0054 (6.;1 01,.8) 0.0055 (9.5,1.,.2) 0.0052 0.0016 *
a[mg] 0.0224 (2.5,1.005,.8) 0.1074 (9.5,1.,.2) 0.0098 0.0014 **
corr{m,w] 0.1861 (9.5,1.00,.2) 0.7787 (5.5,1.01,.8) 0.0989 0.0917 *
corr(m,i] 0.1015 (9.5,1.,.2) 0.7810 (2.,1.005,.8) 0.6192 0.0942
corr{m,p] -0.8264 (1.,1.00,.8) 0.0696 (9.5,1.01,.8) -0.5047 0.1392
Note: See also Table 3. Equilibrium does not exist for g =1, < .5 B =



Table 11

The Effect of a Noisy Signal About Money Growth
in the Cash-Credit Model (8 = .99)
Annual Data: 1958 to 1987

.0lo .50 lo 20
w w w w
(a=1, ¥=.1)
E[v] 10.648 10.705 10.686 10.681
coviv] 0.0l4 0.016 0.016 0.016
E[n] 0.042 0.048 0.045 0.045
E{p] 0.030 0.029 0.030 0.030
(a=1, ¥=.5)
E[v] 2.071 2.078 2.076 2.076
cov[v]  0.008 0.009 0.009 0.009
Efx]) 0.042 0.048 0.045 0.045
E[p] 0.029 0.029 0.030 0.030
(=1, ¥=.9)
E{v] 1.119 1.120 1.120 1.120
cov[v] 0.002 0.002 0.002 0.002
E[x) 0.042 0.048 0.045 0.044
E{p) 0.029 0.029 0.030 0.030
(e=k, ¥=.1) :
E[v] 11.195 11.258 11.273 11.265
coviv] 0.017 0.019 0.019 0.019
E[n] 0.042 0.048 0.045 0.045
Efp] 0.087 0.088 0.093 0.092
(a=b4, ¢=.5)
E[v] 2.132 2.140 2.141 2.141
cov[v] 0.009 0.011 0.012 0.012
E[n) 0.042 0.048 0.045 0.045
E[p) 0.087 0.088 0.093 0.092
(a=b, $=.9)
E[v] 1.126 1.127 1.127 1.127
coviv]  0.002 0.002 0.002 0.002
E[n] 0.042 0.048 0.045 0.044
E{p) 0.087 0.088 0.092 0.092



Table 12

The Effect of a Noisy Signal About Output Growth
in the Cash-Credit Model (8 = .99)
Annual Data: 1958 to 1987

.01lc .50 1o 20
w w w w

(=1, ¢¥=.1)

E[v] 10.780 10.712 10.674 10.749

cov[v] 0.015 0.016 0.016 0.016

E[n] 0.058 0.049 0.044 0.053

E[p] 0.028 0.029 0.030 0.030
(=1, ¥=.5)

E[v] 2.087 2.079 2.075 2.083

cov[v] 0.009 0.009 0.009 0.009

E[n] 0.058 0.049 0.044 0.053

E[p] 0.028 0.029 0.030 0.029
(=1, ¥=.9)

E[v] 1.121 1.120 1.120 1.120

cov([v] 0.002 0.002 0.002 0.002

E[~n] 0.058 0.049 0.044 0.053

E[p] 0.028 0.029 0.030 0.029
(a=h, P=.1)

E[v] 11.301 11.269 11.253 11.311

cov|[v] 0.029 0.020 0.020 0.019

E[n] 0.059 0.049 0.044 0.053

Elp] 0.083 0.088 0.092 0.089
(a=b, ¥=.5)

E[v] 2.145 2.141 2.139 2.146

cov|[v] 0.018 0.012 0.012 0.012

E{x] 0.058 0.049 0.044 0.053

E[p] 0.082 0.088 0.092 0.089
(a=t, $=.9)

E[v] 1.127 1.127 1.127 1.127

cov(v] 0.004 0.002 0.002 0.002

E[n] 0.058 0.049 0.044 0.053

E(p] 0.082 0.088 0.091 0.088



Table 13

Cash-Credit Model Simulation Results vs. Sample Values
Annual Data: 1950 to 1987
CES Utility

B = .92,.94,...,.98,1.; a=20,.5...,9.5; n =-.5,.75,.8,.9,.95,.97
min max sample std. dev.
min (a.8.1) max (a.8.n) value sample value
E[v] 2.1236 (0.,.98,.5) 27314. (9.5,.92,.97) 0.8826 0.0105 *x*
o[v] 0.0496 (0.,.98,.5) 3726.6 (9.5,.92,.97) 0.0405 0.0086 *
ev(v] 0.0234 (0.,.98,.5) 0.1572 (9.5,.92,.8) 0.0456 0.0097
corr[v,y] ~-0.4235 (0.,98,.8) 0.3955 (9.,.98,.5) -0.5000 0.1447 *
corr[v,w] 0.5777 (0.,.92,.97) 0.7481 (7,.92,.5) -0.0668 0.2263 *x

corr(v,i] 0.7715 (9.,.98,.5) 0.9960 (0.,.92,.97) 0.5348 0.2245 *

E(n] 0.0390 (0.,.98,.5) 0.0461 (9.5,.92,.8) 0.0434 0.0079
oln] 0.0325 (0.,.98,.5) 0.1273 (9.5,.92,.8) 0.0283 0.0061 *
E[i] 0.0579 (1.,1.,.97) 0.3599 (9.5,.92,.75) 0.0587 0.0094
o[i] 0.0013 (0.,.94,.97) 0.0547 (8.5,.94,.5) 0.0323 0.0076
E[p] 0.0202 (0.,.98,.5) 0.3193 (9.5,.92,.8) 0.0148 0.0053 *
alp] 0.0265 (0.,.98,.5) 0.1665 (9.5,.92,.8) 0.0200 0.0046 *
Efm,) 0.0206 (0.,.98,.5) 0.0285 (9.5,.92,.8) 0.0157 0.0064 *
olm,] 0.1759 (0.,.98,.5) 1.0380 (9.5,.92,.8) 0.0334 0.0060 *x
corr[r,w] -0.1591 (9.5,.98,.97) 0.5627 (0.,.98,.5) 0.3421 0.1191
corr[r,i] -0.1153 (9.5,.98,.97) 0.5705 (0.,.98,.5) 0.7689 0.0805 *x
corr[rx,p] -0.9968 (0.,.92,.97) -0.7336 (7.,1.,.5) -0.1808 0.1904 *x*

Note: See also Table 3. No equilibrium exists for § = 1, @ < .5. The
algorithm failed to converge for 61 out of 600 possible parameter
specifications.



Table 14

Annual Data:

Cash good model Simulation Results vs. Sample Values
1950 to 1987
Habit Formation Preferences

B = .92,.94,...,.98,1.; a=20,.5...,9.5; b=20,.2,.4,.6,.8
max sample std. dev.
min max (a,8.b) sample value

E[v] .7881 1.0000 (9.5,1.,.8) 0.8826  0.0105
o[v] .0000 0.2382 (3.5,.98,.8) .0405  0.0086
cev([v] .0000 0.3001 (3.5,.98,.8) .0456  0.0097
corr(v,v] .8422 0.0000 (9.5,1.,.8) .5000  0.1447
corr[v,w] .0000 0.2480 (1.,1.,.6) .0668  0.2263
corr[v,i] .0000 0.8342 (3.,1.,.8) .5348  0.2245
E[x]) .0389 0.4304 (3.5,.98,.8) .0434  0.0079
o[n] .0297 3.9709 (3.5,.98,.8) .0283  0.0061
E[1] .0592 0.3599 (9.5,.92,0.) .0587  0.0094
o[i] .0182 0.0954 (9.5,.92,.6) .0323  0.0076
E[p] .0201 0.4773 (3.5,.98,.8) .0148  0.0053
a[p] .0116 3.6304 (9.5,1.,.8) .0200  0.0046
E[mg] .0204 0.3767 (3.5,.98,.8) .0157  0.0064
a[mg] . 0450 19.000 (3.5,.98,.8) .0334  0.0060
cofr[w,w] .3386 0.9254 (9.5,1.,.8) .3421 0.1191
corx[m,i] L4345 0.9274 (5.,.98.,0) .7689  0.0805
corxr(n,p] -0.9667 0.5510 (9.5,.94,.4) .1808  0.1904
Note: See also Table 3. No equilibrium exists for =1, a = .5.



Sensitivity Tests on VAR Process
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Footnotes

We thank Anthony Braun, John Cochrane, Martin Eichenbaum, Lars Peter Hansen,
John Heaton, Robert Korajczyk, Pamela Labadie, Robert Lucas, Mark Watson and the
participants of seminars at the University of Chicago, Northwestern University
and the Federal Reserve Bank of Minneapolis for useful conversations during the
course of writing the paper.

1. It can be demonstrated that if the state space is finite, there is a unique
equilibrium of this form. Equilibrium may not be unique for a countably
infinite state space, although we have been unable to construct examples of
multiple equilibria. A stationary equilibrium may not exist if w is
sufficiently small or 8 too large. When w is very low in many states, money has
a high real rate of return. If the return is high enough, the agent tries to
postpone consumption perpetually, and markets camnnot clear.

2. Lucas and Stokey (1987) have a more general informational structure that
allows a noisy signal about the time t+l momey supply in the time t information
set, rather than the perfectly revealing signal of the Svensson model. We
explore this possibility in Section 6. Lucas and Stokey also assume a different
timing convention: the asset market convenes before the goods market.

3. The computer programs that solve the models are written in Gauss and are
available from the authors.

4. Notice from (17) and (18) that if the CIA constraint is always binding,

1 l-a

(*) Beo= v (1 - BEL (v /)| > 0.

In early CIA models the order of events in a period is information flow, asset
market, and goods market; and positive nominal interest rates imply that the CIA
constraint always binds. The expression in square brackets in (*) is the
nominal interest rate divided by one plus the nominal interest rate in those
models. The expression for nominal interest rates with the alternative timing
of this paper is different. Hence, one cannot simply check that interest rates
are always positive and conclude that the CIA constraint is always binding.
Checking that (*) is always positive is equivalent to following the first two
steps of our algorithm. We thank Andrew Atkeson for drawing our attention to
the fact that changing the timing within a period does not change the states of
the world in which the CIA constraint binds since (*) depends only on the
preferences of agents and the time series properties of the forcing processes.

5. Marshall (1988) notes that M1l growth may be nonstationary and therefore
works with a monetary transactions technology that incorporates technological change.
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6. 1In this section, we focus on the results of the annual data because the
models performed slightly better using these processes. The qualitative
behavior using quarterly driving processes is similar.

7. At first glance, it may appear troubling that the correlations between
velocity and other variables are discontinuous at Yy o= 1. However, note that
the function f(a) = Corr(axt, x.) is discontinuous at a = 0. Similarly, changes
in ¥ leave the correlations in figures 2-4 relatively unaffected until the
credit good sector entirely disappears when ¥ = 1. 1In other words, the
discontinuity exhibited in Figures 2-4 is a property of the correlation function
and not of the model.

8. The approximate asymptotic standard errors of the unconditional moments are
calculated following the suggestions in Hansen and Jagannathan (1988). They are
calculated as Taylor's series approximations of arbitrarily serially correlated
time series.

9. Lucas (1987) notes that traditional money demand functions can be generated
from the first order conditions of the agent’s maximization problem in a
simplified version of the Lucas and Stokey (1987) model. 1In that framework, the
function fits exactly, which is not true with the timing of our magkets and
information flows. For example, with f=.99, a=7, and any ¥, the R statistic
for the regression (25) is approximately .69.

10. These preferences were first suggested by Ryder and Heal (1973), and are
used by Constantinides (1988) as a means of resolving the equity premium puzzle.

11. For example, it would be possible to examine the properties of models such
as those of Hartley (1988) and Marshall (1988) in a similar fashion.

12. Finn, Hoffman, and Schlagenhauf (1988) use GMM to test an equity pricing
Euler equation restrictions for the Svensson model and do not reject the model
using monthly data over the period 1959:02-1985:12. Using Israeli data,
Eckstein and Leiderman (1988) find that money in the utility function
outperforms the cash-credit model.





