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1 Introduction

Jurisdictions often adopt policies at di↵erent times, creating promising opportunities for observa-

tional causal inference. In our motivating application, 33 states passed laws between 1964 and 1987

mandating that school districts bargain with teachers unions (Hoxby, 1996; Paglayan, 2019); our

goal is to estimate the impact of these laws on teacher salaries and school expenditures.

Estimating causal e↵ects under staggered adoption remains challenging, however. Workhorse

methods, such as the regression-based two-way fixed e↵ects model, rely on strong modeling assump-

tions and can give misleading estimates when treatment timing varies (Sun and Abraham, 2020;

Borusyak et al., 2021; Goodman-Bacon, 2021). A promising alternative is the synthetic control

method (SCM; Abadie et al., 2010, 2015). SCM estimates the counterfactual untreated outcome

via a weighted average of untreated units, with weights chosen to match the treated unit’s pre-

treatment outcomes as closely as possible. SCM, however, was developed for settings where only a

single unit is treated, and proposals for extending SCM to the staggered adoption case have been

ad hoc. One common strategy is to estimate SCM weights separately for each treated unit and

then average the estimates (see, e.g., Dube and Zipperer, 2015; Donohue et al., 2019). However,

this relies on being able to find good synthetic controls for every treated unit, which is not possible

in our application.

In this paper, we develop SCM for the staggered adoption setting. Under two common data

generating processes for panel data, an autoregressive model and a linear factor model, we bound

the error of a weighting estimator for the average e↵ect and show that it depends on both the

unit-specific imbalance for each treated unit and the imbalance for the average of the treated

units. This leads to our main proposal, partially pooled SCM, which minimizes a weighted average

of the two imbalances. This approach nests two special cases: separate SCM, which reflects the

current practice of estimating weights that separately minimize the pre-treatment imbalance for

each treated unit; and pooled SCM, which instead minimizes the average pre-treatment imbalance

across all treated units. Both special cases have drawbacks. Separate SCM can lead to poor fit for

the average, leading to possible bias when the average treatment e↵ect is the estimand of interest.

Pooled SCM, by contrast, can achieve nearly perfect fit for the average treated unit but can yield

substantially worse unit-specific fits. This can lead to poor estimates of unit-level treatment e↵ects

and to bias for the average e↵ect if the data generating process varies over time. Partially pooled

SCM moves smoothly between these two extremes, with a hyperparameter denoting the relative

weight of the two balance measures in the optimization problem. We discuss how to select weights

to trade o↵ between these two quantities in practice.

We then explore several extensions. First, we incorporate an intercept shift into the SCM

problem, following proposals by Doudchenko and Imbens (2017) and Ferman and Pinto (2021).

The resulting treatment e↵ect estimator has the form of a weighted di↵erence-in-di↵erences esti-

mator, connecting our proposed approach to a large econometric literature (Sun and Abraham,
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2020; Callaway and Sant’Anna, 2020). We recommend this approach as a reasonable default in

practice; it amounts to applying our partially pooled SCM estimator to de-meaned outcome se-

ries. Second, we modify the SCM problem to incorporate auxiliary covariates alongside lagged

outcomes. We also briefly address inference for SCM-like estimates in the staggered adoption

setting. We implement the proposed methodology in the augsynth package for R, available at

https://github.com/ebenmichael/augsynth.

We apply our methods to estimating the impact of mandatory teacher collective bargaining and

show that they achieve better pre-treatment balance than existing approaches. We find no impact

of teacher collective bargaining laws on either teacher salaries or student expenditures, consistent

with several recent papers (Frandsen, 2016; Paglayan, 2019) but counter to earlier claims (most

notably Hoxby, 1996).

Related work. Our paper contributes to several methodological literatures. First, there is a

large and active applied econometrics literature on challenges and remedies for two-way fixed e↵ects

models with multiple treated units; see Borusyak et al. (2021); Sun and Abraham (2020); Athey

and Imbens (2021); Goodman-Bacon (2021); Callaway and Sant’Anna (2020); Roth and Sant’Anna

(2021). See also Xu (2017) and Athey et al. (2021) for recent generalizations of these models.

SCM has also attracted a great deal of attention; see Abadie (2019) for a recent review. Several

recent papers have explored SCM with multiple treated units. In the case where all units adopt

treatment at the same time, some propose to first average the units and then estimate SCM

weights for the average, analogous to our fully pooled SCM estimate; for discussion, see Kreif et al.

(2016); Robbins et al. (2017). An alternative is Abadie and L’Hour (2018), who instead propose

to estimate separate SCM weights for each treated unit. In particular, they propose a penalized

SCM approach that aims to reduce interpolation bias, allowing for weights that move continuously

between standard SCM and nearest-neighbor matching. Our approach complements these papers

by adapting some of these ideas to the staggered adoption setting. For some other examples of SCM

under staggered adoption, see also Dube and Zipperer (2015); Toulis and Shaikh (2018); Donohue

et al. (2019); Cao and Lu (2019).

Motivating example: Teacher collective bargaining. The United States, like other devel-

oped countries, spends substantial resources on public education. Approximately 80% of education

spending goes to teacher salaries and benefits (U.S. Department of Education, National Center

for Education Statistics, 2018), and research points to teacher quality as a key determinant of

student outcomes (Jackson et al., 2014). Over recent decades, the teacher employment relation-

ship has changed dramatically via the introduction of unions and collective bargaining agreements

(Goldstein, 2015). Critics identify these as a “harmful anachronism” and “the most daunting im-

pediments” to education reform (Hess and West, 2006), while proponents argue that collective

bargaining raises pay and thereby helps to attract and retain high-quality teachers. A major 2018
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Supreme Court decision, Janus v AFSCME, is expected to weaken teachers’ unions, bringing re-

newed attention to this area and raising interest in understanding the e↵ects of teacher collective

bargaining.

Since 1964, a number of states have passed laws mandating that school districts bargain with

teachers’ unions.1 Given the strong criticism directed at teachers’ unions, there is surprisingly

little evidence that they, or the mandatory bargaining laws, have any e↵ect at all. In a seminal

study, Hoxby (1996) uses state-level changes in collective bargaining laws to argue that teacher

collective bargaining raises teacher salaries and school expenditures but reduces student outcomes.

Several more recent papers have disputed Hoxby’s conclusions, however. Using a panel of school

districts, Lovenheim (2009) finds little e↵ect of unionization on teacher pay or class size. Frandsen

(2016) similarly finds little e↵ect of state unionization laws on teacher pay. Finally, Paglayan (2019)

extends the historical state-level data set from Hoxby (1996). Using a variant of the two-way fixed

e↵ect model, she finds precisely estimated zero e↵ects of mandatory bargaining laws on per-pupil

school expenditures2 and teacher salaries. Motivated in part by recent criticisms of such models

(Goodman-Bacon, 2021), we revisit the Paglayan (2019) analysis using di↵erent methods.

Figure 1 shows adoption times of state mandatory bargaining laws between 1964 and 1990.

Adoptions were spread across 14 separate years, though 16 states adopted laws between 1965 and

1970. Following Paglayan (2019), our main outcomes of interest are per-pupil student expenditures

and teacher salaries, both measured in 2010 dollars and log transformed. We observe these outcomes

back to 1959 for 49 states; we exclude Wisconsin, which adopted a mandatory bargaining law in

1960 and thus has only one year of pre-intervention data, as well as Washington, DC. This gives

between 6 and 28 years of data before the adoption of mandatory bargaining, with an average of

13 years.

Paper roadmap Section 2 lays out the technical background and introduces the synthetic control

estimator for a single treated unit. Section 3 bounds the estimation error for general weighting

estimators under two families of data generating process, an autoregressive model and a linear factor

model, with staggered adoption. Section 4 introduces partially pooled SCM as a solution to the

problem of minimizing estimation error and considers two special cases, separate SCM and pooled

SCM. Section 5 proposes several important extensions, including incorporating an intercept shift

and auxiliary covariates, and briefly discusses inference. Section 6 describes a calibrated simulation

study. Section 7 gives additional results for the teacher collective bargaining application. Finally,

Section 8 discusses some directions for future work. The appendix includes further analyses and

technical results. In particular, we provide an alternative motivation for our proposed partially

1Another 10 states allow but do not require collective bargaining, while 7 prohibit it. We focus on estimating the
e↵ects of mandates.

2Paglayan (2019) defines this as “the total current operational expenditures (regardless of funding source) that
are devoted to public schools in a state divided by the number of public school students in that state.”
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Figure 1: Staggered adoption of mandatory collective bargaining laws from 1964 to 1990.

pooled estimator, which we show is based on partially pooling parameters in the Lagrangian dual

of the SCM constrained optimization problem.

2 Preliminaries

2.1 Setup and notation

We consider a panel data setting where we observe outcomes Yit for i = 1, . . . , N units over t =

1, . . . , T time periods. In the teacher collective bargaining application, N = 49 and T = 39 years.

Some but not all of the units adopt the treatment during the panel; once units adopt treatment,

they stay treated for the remainder of the panel. Let Ti represent the time period that unit i

receives treatment, with Ti = 1 denoting never-treated units. Without loss of generality, we order

units so that T1  T2  · · ·  TN . We assume that there are a non-zero number of never-treated

units, N0 ⌘
P

i Ti=1, and we let J = N �N0 =
P

i Ti 6=1. To clearly di↵erentiate units that are

eventually treated, we index them by j = 1, . . . , J .

We adopt a potential outcomes framework to express causal quantities (Neyman, 1923; Rubin,

1974) and assume stable treatment and no interference between units (SUTVA; Rubin, 1980). In

principle, each unit i in each time t might have a distinct potential outcome for each potential

treatment time s, Yit(s), for s = 1, . . . , T,1. Following Athey and Imbens (2021), we assume that

prior to treatment, a unit’s potential outcomes are equal to its never-treated potential outcome

(see also Abbring and Van den Berg, 2003):

Assumption 1 (No anticipation). Yit(s) = Yit(1) for t < s, with treatment time s.
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This assumption generalizes the consistency assumption typically employed in cross-sectional stud-

ies. We maintain it throughout. With it, the observed outcome is Yit = {t < Ti}Yit(1) + {t �
Ti}Yit(Ti).

2.2 Estimands

As is common in many panel data settings, we focus on e↵ects a specified duration after treatment

onset, known as event time. For treated unit j, we index event time relative to treatment time Tj by

k = t�Tj . The unit-level treatment e↵ect for treated unit j at event time k is the di↵erence between

the potential outcome at time Tj + k under treatment at time Tj and under never treatment:

⌧jk = YjTj+k(Tj)� YjTj+k(1).

By Assumption 1, ⌧jk = 0 for any k < 0.

The unit-specific e↵ects, ⌧jk, are often the central quantities of interest in many synthetic

controls analyses. In addition to these e↵ects, we also focus on their average. Our primary averaged

estimand is the Average Treatment E↵ect on the Treated (ATT) k periods after treatment onset:

ATTk ⌘ 1

J

JX

j=1

⌧jk =
1

J

JX

j=1

YjTj+k(Tj)� YjTj+k(1).

We are also interested in the average post-treatment e↵ect, averaging across k: ATT = 1
K+1

PK
k=0ATTk.

Our methods generalize to many other estimands; see Callaway and Sant’Anna (2020) for examples

in this setting.

A challenge for staggered adoption analyses is that a panel that is balanced in calendar time

is necessarily imbalanced in event time. That is, we observe outcomes ` periods before treatment

only for units treated after period `, and we observe outcomes k periods after treatment only for

treated units treated before T � k. This means that populations of treated units over which one

can average treatment e↵ects vary with k, as do the possible donors. To minimize this problem,

we assume that all treated units are observed for at least several periods before being treated (i.e.,

T1 � 1) and for at least K � 0 periods after treatment (TJ  T �K). For treated unit j, we will

consider outcomes up to Lj  Tj � 1 periods before treatment, with L ⌘ maxjJ Lj denoting the

maximum number of lagged outcomes.

With this, the challenge in estimating ATTk for k  K is to impute the average of the missing

never-treated potential outcomes. We define the set of possible “donor units” for treated unit j at

event time k as those units i for which we observe YiTj+k(1), which we denote Djk ⌘ {i : Ti >

Tj + k}. The composition of Djk varies with both treated unit j and event time k; in particular,

unit i with Ti < 1 is in Djk for k < Ti � Tj but not for k � Ti � Tj . We focus on fixed donor

pools DjK rather than allowing the donor pools to vary with k. This limits the number of potential
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donors, but ensures that estimated counterfactual outcomes do not vary spuriously across event

time due to changing composition of the donor pool. Our proposed estimator does not require this

restriction, but it greatly simplifies exposition. If K � TJ � T1 then Djk will only include never

treated units as donors; otherwise Djk will include both never treated and not-yet-treated units.

In our empirical application we exclude Wisconsin — which adopted a mandatory collective

bargaining law in the second year of the sample — so the first treated state is Connecticut with

T1 = 7. We follow Paglayan (2019) in considering treatment e↵ects only up to event time K = 10,

and use as potential donors for treated state j any states that are not treated by Tj + 10.

2.3 Restrictions on the data generating process

We now detail various restrictions on the data generating process that we will consider below.

Because we are interested in treatment e↵ects on treated units — and observe potential outcomes

under treatment — we will place restrictions only on the potential outcomes under the never treated

condition Yit(1) (see, for example Borusyak et al., 2021). Throughout, we follow Chernozhukov

et al. (2021) and Ben-Michael et al. (2021) and write these potential outcomes as a model component

plus additive noise. We consider two alternative restrictions on the model terms and noise terms,

corresponding to two common data generating processes for Yit(1): a time-varying autoregressive

process and a linear factor model.

Assumption 2 (Data generating processes). We consider the following:

(a) The untreated potential outcomes Yit(1) follow a time-varying AR(L) process with coe�-

cients at time t (⇢t1, . . . , ⇢tL) 2 RL:

Yit(1) =
LX

`=1

⇢t`Yit�`(1) + "it, (1)

where "it are mean zero and independent across units and time, with "is+k ?? {Ti = s} for

k � 0 for all i = 1, . . . , N .

(b) There are F latent time-varying factors, where F is typically small relative to both N and

T . The factors, µt 2 RF , are bounded, maxt kµtk1  M . Each unit has a vector of time-

invariant factor loadings �i 2 RF , and the untreated potential outcomes Yit(1) are generated

as:

Yit(1) = �i · µt + "it, (2)

where "it are mean zero, independent across units and time and "it ?? Ti for all i = 1, . . . , N ,

t = 1, . . . , T .

Assumptions 2a and 2b impose di↵erent restrictions on the noise terms. Assumption 2b rules out

correlation between treatment timing and the noise terms for any period while Assumption 2a only
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excludes correlation for noise terms after treatment. Therefore, under Assumption 2b treatment

timing and pre-treatment outcomes are only dependent through the factor loadings, while under

Assumption 2a there is no restriction on their dependence.

Finally, under each process, we assume that the noise terms do not have fat tails.

Assumption 3. "it are sub-Gaussian random variables with scale parameter �.

We use this restriction on the tail behavior for the finite sample estimation error bounds we intro-

duce in Section 3.

2.4 The Synthetic Control Method

In the synthetic control method (SCM), the counterfactual outcome under control is estimated from

a weighted average, known as a synthetic control, of untreated units, where weights are chosen to

minimize the squared imbalance between the lagged outcomes for the treated unit and the weighted

control (“donor”) units.

We consider a modified version of the original SCM estimator of Abadie et al. (2010, 2015)

for a single treated unit j. In this version, the SCM weights �̂j are the solution to a constrained

optimization problem:

min
�j2�scm

j

1

Lj

LjX

`=1

 
YjTj�` �

NX

i=1

�ijYiTj�`

!2

| {z }
objective

+ �
NX

i=1

�2ij

| {z }
regularization

, (3)

where �j 2 �scm
j has elements {�ij} that satisfy �ij � 0 for all i,

P
i �ij = 1, and �ij = 0 whenever

i is not a possible donor, i 62 DjK .

Given an N -vector of weights �̂ij that solve Equation (3), the SCM estimate of the missing

potential outcome for treated unit j at event time k, YjTj+k(1), is:

ŶjTj+k(1) =
NX

i=1

�̂ij YiTj+k,

with estimated treatment e↵ect ⌧̂jk = YjTj+k � ŶjTj+k(1). This formulation can also be applied

when k < 0, generating placebo treatment e↵ect estimates, often referred to as “gaps.” We denote

the vector of placebo pre-treatment e↵ect estimates as ⌧̂prej = (⌧̂j(�L), . . . , ⌧̂j(�1)) 2 RL, where we

define ⌧̂j(�`) to be zero for ` > Lj . With this notation, the synthetic controls objective in Equation

(3) is the mean squared placebo treatment e↵ect on pre-treatment outcomes:

(qj(�̂j))
2 ⌘ 1

Lj

���⌧̂prej

���
2

2
=

1

Lj

LjX

`=1

 
YjTj�` �

NX

i=1

�̂ijYiTj�`

!2

. (4)
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The optimization problem in Equation (3) modifies the original SCM proposal in two key

ways. First, where Abadie et al. (2010, 2015) balance auxiliary covariates, we focus exclusively on

lagged outcomes; we re-introduce auxiliary covariates in Section 5.2. Second, following a suggestion

in Abadie et al. (2015), we include a term that penalizes the weights toward uniformity, with

hyperparameter �. While we penalize the sum of the squared weights, there are many options, e.g.,

an entropy or elastic net penalty (see Doudchenko and Imbens, 2017; Abadie and L’Hour, 2018).

In settings where it is possible to achieve perfect balance, selecting � > 0 ensures that Equation

(3) has a unique solution. This is not the case in our setting, however, and so we largely view this

term as a technical convenience.

Abadie (2019) gives several reasons for preferring SCM to outcome models such as linear re-

gression or directly fitting the factor model. In particular, SCM weights are guaranteed to be

non-negative, and are generally sparse and interpretable. By contrast, alternatives based on ex-

plicit models for Yit(1) often imply negative weights and thus unchecked extrapolation outside the

support of the donor units. Outcome modeling can also be sensitive to model mis-specification,

such as selecting an incorrect number of factors in a factor model. Finally, as we emphasize in our

theoretical results in the next section, SCM can be appropriate under multiple data generating pro-

cesses (e.g., both the autoregressive model and the linear factor model) so that it is not necessary

for the applied researcher to take a strong stand on which is correct.

A central question for SCM is how to assess whether ŶjTj+k(1) is a reasonable estimate for

YjTj+k(1). A minimal condition is that the SCM weights achieve a low root mean squared placebo

treatment e↵ect, i.e., qj(�̂j) is close to zero. If it is not close to zero, there is a concern that

estimated e↵ects also capture systematic di↵erences between ŶjTj+k(1) and YjTj+k(1). Under

versions of either Assumptions 2a or 2b and for a single treated unit, Abadie et al. (2010) show

that if qj(�̂j) = 0 then the bias will tend to zero as Lj ! 1; Ben-Michael et al. (2021) bound the

estimation error of ⌧̂jk in terms of qj(�̂j). Abadie et al. (2010, 2015) recommend that researchers

only proceed with an SCM analysis if the pre-treatment fit is excellent, while Ben-Michael et al.

(2021) propose an augmented SCM estimator that attempts to salvage cases where it is not.

3 Estimation error under staggered adoption

In order to extend SCM to the staggered adoption setting, we first develop appropriate balance

measures for synthetic control-style weighting estimators under staggered adoption. We use these to

develop bounds on the estimation error for the ATT for our two example data generating processes.

These bounds in turn motivate our proposal for partially pooled SCM as a way to choose weights

under staggered adoption.
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3.1 Weights and measures of balance

With multiple treated units, we can generalize the above setup to allow for weights for each treated

unit. For each j  J , let �j 2 �scm
j be an N -vector of weights on potential donor units, where �ij

is the weight on unit i in the synthetic control for treated unit j. We collect the weights into an

N -by-J matrix � = [�1, . . . , �J ] 2 �scm, where �scm = �scm
1 ⇥ . . .⇥�scm

J . The estimated treatment

e↵ect on unit j at event time k is then ⌧̂jk as defined above, and the estimated ATT averages over

the unit-level e↵ect estimates:

[ATTk =
1

J

JX

j=1

⌧̂jk =
1

J

JX

j=1

"
YjTj+k �

NX

i=1

�̂ij YiTj+k

#
=

1

J

JX

j=1

YjTj+k �
NX

i=1

JX

j=1

�̂ij
J

YiTj+k. (5)

Equation (5) highlights two equivalent interpretations of the estimator: as the average of unit-

specific SCM estimates and as an SCM estimate for the average treated unit.

Using the two interpretations of the ATT estimator in Equation (5), we construct goodness-of-

fit measures for the ATT by aggregating ⌧̂prej in two ways. First, we consider the root mean square

of the pre-treatment fits across treated units,

qsep(b�) ⌘

vuut 1

J

JX

j=1

q2j (�̂j) =

vuut 1

J

JX

j=1

1

Lj
k⌧̂prej k22 =

vuuut 1

J

JX

j=1

1

Lj

LjX

`=1

 
YjTj�` �

NX

i=1

�̂ijYiTj�`

!2

.

This is a useful measure of overall imbalance when SCM is estimated separately for each treated

unit and generalizes the objective for the single synthetic control problem. Second, we consider the

pre-treatment fit for the average of the treated units,

qpool(b�) ⌘ 1p
L

������
1

J

JX

j=1

⌧̂prej

������
2

=

vuuut 1

L

LX

`=1

2

4 1

J

X

Tj>`

YjTj�` �
NX

i=1

�̂ijYiTj�`

3

5
2

.

We refer to this interchangeably as the pooled or global fit.

Both qpool and qsep are on the same scale as the estimated treatment e↵ect, [ATTk. However,

the measures di↵er in whether they average before or after evaluating the pre-treatment fit. Thus,

we typically expect (qpool)2 ⌧ (qsep)2, since the lagged outcomes for the average of the treated

units are less extreme than the lagged outcomes for the units themselves. In practice, we therefore

consider normalizing the imbalance measures by their values computed with weights �̂sep, the set of

solutions to Equation (3) applied separately to each treated unit. We define normalized measures

q̃pool(�) ⌘ qpool(�)/qpool(�̂sep) and q̃sep(�) ⌘ qsep(�)/qsep(�̂sep), and use them in our proposed estimator

in Section 4 below.

Ideally, both qsep and qpool would be close to zero; indeed if qsep = 0 then qpool = 0 is also
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zero. When this is not possible, there is a trade o↵ between these two sources of imbalance.

Our proposed “partially pooled” SCM estimator generalizes Equation (3) to minimize a weighted

average of their normalized squares, ⌫(q̃pool)2+(1�⌫)(q̃sep)2, where ⌫ is a hyperparameter selected

by the researcher. To motivate this and to inform the choice of ⌫, we develop error bounds for

SCM-style weights under our two data generating models.

3.2 Error bounds

3.2.1 Autoregressive model

We first bound the estimation error for the ATT under the autoregressive process in Assumption

2a. To simplify notation and concepts, we initially focus on the ATT at event time k = 0, ATT0.

Two summaries of the autoregressive coe�cients are important to our analysis: ⇢̄ = 1
J

PJ
j=1 ⇢Tj ,

the average autoregression coe�cient across the J treatment times, and S2
⇢ ⌘ 1

J

PJ
j=1 k⇢Tj � ⇢̄k22,

the corresponding variance; this variance is zero under simultaneous adoption, S2
⇢ = 0.

Theorem 1. Under Assumptions 2a and 3 with Lj = L < T1 for j = 1, . . . , J , for �̂ 2 �scm, where

�̂j is independent of "·Tj+k, and for any � > 0, the error for [ATT0 is

���[ATT0 �ATT0

��� 
p
Lk⇢̄k2 qpool(�̂)| {z }

pooled fit

+
p
LS⇢ qsep(�̂)

| {z }
unit-specific fit

+
��p
J

⇣
1 + k�̂kF

⌘

| {z }
noise

with probability at least 1� 2e�
�2

2 , where for a matrix A 2 Rn⇥m, kAkF =
qPn

i=1

Pm
j=1A

2
ij is the

Frobenius norm.

Theorem 1 shows that the error for the ATT is bounded by several distinct terms, giving guidance

for the choice of the weights �. First, error arises from the level of both the global fit and the unit-

specific fits. The relative importance of these fits is governed by the ratio of the average coe�cient

value k⇢̄k2 and the standard deviation S⇢ for the autoregressive coe�cients over time.

Second, there is error due to post-treatment noise, inherent to any weighting method. Because

the weights are independent of post-treatment outcomes, this term has mean zero and enters the

finite sample bound above through the standard deviation, which is proportional to the Frobenius

norm of the weight matrix, k�̂kF . Thus, when selecting among weight matrices that yield similar

unit-specific and pooled balance, we should prefer the one that minimizes k�̂kF . This motivates a

penalty term similar to that in Equation (3).

Finally, we can extend the bound in Theorem 1 to ATTk by noting that the autoregressive struc-

ture implies that YiTj+k =
PL

`=1 ⇢
(k)
t` YiTj�`+

Pk
s=0 ⌘

(k)
s "iTj+s for some set of coe�cients ⇢(k)t1 , . . . ⇢(k)tL

and ⌘(k)0 , . . . , ⌘(k)k . We can then apply Theorem 1 to obtain bounds for
���[ATTk �ATTk

��� by defining

⇢̄ and S⇢ in terms of the new coe�cients ⇢(k)t` and replacing � with �

r
1 +

P
s

⇣
⌘(k)s

⌘2
. Similarly,
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we can obtain bounds for the overall ATT = 1
K+1

PK
k=0ATTk, by noting that the average outcome

over K + 1 periods following treatment can again be written as a weighted sum of the last L out-

comes before treatment plus a weighted sum of the K + 1 errors following treatment. Thus, with

suitable redefinition of the parameters, Theorem 1 continues to apply.

3.2.2 Linear factor model

Next we consider the linear factor model in Assumption 2b and begin by defining additional no-

tation. Let ⌦j 2 RL⇥F denote the matrix of factor values for time Tj � L to Tj � 1, and denote

P (j) =
p
L(⌦0

j⌦j)�1⌦0
j 2 RF⇥L as the scaled projection matrix from outcomes to factors. Analo-

gous to the autoregressive process above, the average (projected) factor value across the J treatment

times, µ̄k = 1
J

PJ
j=1 P

(j)0µTj+k, and the variance, S2
k = 1

J

PJ
j=1 kP (j)0µTj+k � µ̄kk22, determine the

relative importance of the pooled and unit-specific fits, respectively.

Theorem 2. Assume that ⌦j is non-singular and k 1p
L
⌦jk2 = 1 for j = 1, . . . , J . With Lj = L < T1

for j = 1, . . . , J , �̂1, . . . , �̂J 2 �scm where �̂j is independent of "·Tj+k, K � 0, and � > 0, under

Assumptions 2b and 3 the error for [ATTk is

���[ATTk �ATTk

���  kµ̄kk2 qpool(b�)| {z }
pooled fit

+ Sk qsep(b�)| {z }
unit-specific fit

+
�M2Fp

L

⇣
3� + 2

p
logNJ

⌘

| {z }
approximation error

+
��p
J

⇣
1 + k�̂kF

⌘

| {z }
noise

with probability at least 1� 6e�
�2

2 , where maxt kµtk1  M .

Theorem 2 shows that under the linear factor model the error for the ATT can again be

controlled by the level of pooled fit and unit-specific fits. As in Theorem 1, the relative importance

of these fits is governed by the ratio of the average factor value µ̄k and the standard deviation Sk;

similarly, under simultaneous adoption, Sk = 0 and qsep does not enter the bound.

Unlike in Theorem 1, this bound also includes an approximation error that arises due to bal-

ancing — and possibly over-fitting to — noisy outcomes rather than to the true underlying factor

loadings. In the worst case, the J synthetic controls match on the noise rather than the factors.

Constraining the weights to lie in the simplex reduces the impact of this worst case, however, and

the error decreases as more lagged outcomes are balanced; see Abadie et al. (2010); Ben-Michael

et al. (2021); Arkhangelsky et al. (2019) for further discussion.

Finally, we can extend Theorem 2 to the estimation error of the overall post-treatment e↵ect,

ATT = 1
K+1

PK
k=0ATTk, by noting that the average post-treatment potential outcome also follows

a linear factor structure with factor values 1
K+1

PK
k=0 µTj+k and noise term 1

K+1

PK
k=0 "iTj+k. Thus

the pooled- and unit-specific fit terms and the approximation error will depend, respectively, on

the average, variance, and maximum of the (projected) average post-treatment factor value, and

the noise term will be reduced by a factor of 1p
K+1

.
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4 Partially Pooled SCM

We now turn to our main proposal, partially pooled SCM. Motivated by the finite sample error

bounds in Theorems 1 and 2, this chooses SCM weights to minimize a weighted average of the

(squared) pooled and unit-specific pre-treatment fits:

min
�2�scm

⌫ (q̃pool(�))2 + (1� ⌫) (q̃sep(�))2 + �k�k2F . (6)

The hyperparameter ⌫ 2 [0, 1] governs the relative importance of the two objectives; higher values

of ⌫ correspond to more weight on the pooled fit relative to the separate fit. In Appendix A.3, we

show that intermediate values of ⌫ correspond to a partial pooling solution for the weights in the

dual parameter space, motivating our choice of a name.

The optimization in Equation (6) di↵ers from the bounds in Section 3 in two practical ways.

First, we minimize the normalized imbalance measures (e.g., q̃pool rather than qpool), so that the

minimum with ⌫ = 0 and � = 0 is indexed to 1. This ensures that the two objectives are on the

same scale, regardless of the number of treated units, and makes it easier to form intuition about ⌫.

Second, we minimize the squared imbalances, which permits a computationally feasible quadratic

program. As with the single synthetic controls problem in Equation (3), we penalize the sum of

the squared weights, k�k2F .

4.1 Special cases: Separate SCM (⌫ = 0) and Pooled SCM (⌫ = 1)

We first consider two special cases of Equation (6), which correspond to extreme values of the

hyperparameter ⌫, and then consider intermediate cases.

To date, common practice for staggered adoption applications of SCM is to estimate separate

SCM fits for each treated unit, then estimate the ATT by averaging the unit-specific treatment

e↵ect estimates. This approach, which we refer to as separate SCM, minimizes qsep alone and is

equivalent to our proposal in Equation (6) with ⌫ = 0. Since this separate SCM strategy prioritizes

the unit-specific estimates, ⌧̂jk, an important question is when this approach will also give reasonable

estimates of ATTk. From Theorems 1 and 2, we can see that if the unit-specific fits are all excellent,

then the estimation error
���[ATTk �ATTk

��� will be small. This is not the case in our application,

however. Figure 2a shows SCM “gap plots” of ⌧̂j` against ` for three illustrative treated states,

taken one at a time. While Ohio shows relatively good pre-treatment fit, there are no synthetic

controls that closely track Illinois or New York’s pre-treatment outcomes. Thus, simply averaging

the estimated treatment e↵ects across these three states without attention to the overall fit does

not yield a convincing estimate. Other recent applications also face the same issue where several

treated units have poor pre-treatment fit (see e.g. Dube and Zipperer, 2015; Donohue et al., 2019).3

3One way to address this is to trim the sample and drop treated units with poor pre-treatment fit, noting that
this changes the estimand.
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(a) SCM “gap plots” for three illustrative states (b) SCM pre-treatment fits by state

Figure 2: (a) SCM pre-treatment fit for three states: (i) Ohio, with good overall fit, (ii) Illinois,
where SCM fails to match an important pre-treatment trend, and (iii) New York, with pre-treatment
imbalance roughly an order of magnitude larger than typical estimates for the impact of teacher
mandatory bargaining. (b) SCM fits by state show that Separate SCM gives better pre-treatment
fit than Pooled SCM for all treated states.

The other extreme case, which we refer to as pooled SCM, instead sets ⌫ = 1, finding weights

that minimize qpool, the root mean squared placebo estimate of the ATT. This ignores the unit-

specific pre-treatment fits in the objective, resulting in poor unit-level synthetic controls and, in

turn, leading to poor estimates of the unit-level treatment e↵ects ⌧jk. Furthermore, even if the ATT

is the only estimand of interest, Theorems 1 and 2 indicate that Separate SCM is unlikely to control

the error. In particular, if the pooled weights do a poor job of matching individual treated units,

the pooled synthetic control may involve a great deal of interpolation and the component of the

error bound due to separate imbalance can be large. In Section 6 we validate through simulation

that pooled SCM leads to substantially worse unit-level estimates than separate SCM, and also

that there are indeed settings where the bounds in Theorems 1 and 2 do bind, leading to large

error in pooled SCM estimates of the ATT. See Abadie and L’Hour (2018) for further discussion

on interpolation bias in synthetic control settings.

There are special cases where only controlling qpool with pooled SCM is su�cient, however.

Theorems 1 and 2 indicate that only the across-treated-unit variation in ⇢Tj+k and µTj+k leads

to unit-specific fits contributing to the error bounds. Thus, when this variation is zero, the ATT

error bound is minimized with ⌫ = 1. As we discuss above, under simultaneous adoption, with
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T1 = . . . = TJ , S⇢ = 0 in the autoregressive model and Sk = 0 in the linear factor model. The

same arises in staggered adoption settings where the data generating process is homogeneous over

time — e.g., where ⇢t ⌘ ⇢ in the autoregressive model. It also holds approximately when the

average autoregressive coe�cient or factor values are large relative to the standard deviations —

i.e., S⇢ ⌧ ⇢̄ or Sk ⌧ µ̄k, which could justify a choice of ⌫ = 1. Finally, when units are treated in

cohorts (with Tj = Tk for units in the same cohort), there is no variation in ⇢t and µt across units

in the same cohort. This suggests fully pooling (i.e., averaging) units that are treated at the same

time, even if there is only partial pooling across treatment cohorts. We discuss this modification

in Appendix A.2.

Figure 2b plots the state-level pre-treatment imbalances in our application for separate SCM

versus pooled SCM. The separate SCM fit is better for all treated states, and so leads to more

credible unit-level estimates. However, these fits are far from perfect and so the results from

Section 3 imply that there is room for improvement by controlling the pooled fit. Figure 3a shows

the implied placebo estimates for the overall ATT using the separate and pooled approaches: they

are consistently positive for separate SCM weights and are all nearly zero for pooled SCM weights.

At the same time, Figure 3b shows that pooled SCM has very poor unit-level fit, leading to the

potential for error for both the overall ATT estimate and the unit-level estimates. This motivates

choosing an intermediate choice of ⌫ 2 (0, 1).

4.2 Intermediate choice of ⌫

As we have seen, it is important to control both the pooled fit (for the ATT) and the unit-level

fits (for both the ATT and the unit-level estimates). The hyper-parameter ⌫ controls the relative

weight of these in the objective.

One approach to choosing ⌫ is to return to the error bounds in Theorems 1 and 2. The

optimization problem in Equation (6) can be seen as a first-order approximation to the squares of

the error bounds. Therefore, if the parameters of those bounds are known — and our only goal is

to estimate the ATT — we can use these to choose an appropriate ⌫.4 Unfortunately, these will

generally be infeasible as the analyst will not know these parameters, though in some applications

it may be possible to obtain pilot estimates.

An alternative approach is to directly assess the implications of the choice of ⌫ for the imbalance

criteria for both the overall ATT and the unit-level e↵ects. Figure 4 provides two views of this for

the teacher collective bargaining application. Figure 4a shows the balance possibility frontier : the

y-axis shows the pooled imbalance qpool and the x-axis shows the unit-level imbalance qsep. The

curve traces out how these change as we vary ⌫ from the separate SCM solution at the upper left

to the pooled solution at the lower right. The relationship is strongly convex, indicating that by

4For example, in the autoregressive model, letting a = k⇢̄k2 q
pool(b�sep) and b = S⇢q

sep(b�sep), we could choose

⌫ = a2

a2+b2
, with comparable quantities for the linear factor model.
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(a) Estimated ATT on per-pupil expenditure
(log, 2010 $)

(b) Distribution of state-level fits

Figure 3: (a) Series of estimated pre- and post-treatment e↵ects [ATT` and (b) state-level pre-

treatment RMSE
q

1
L

PL
`=1 ⌧̂

2
j` using separate, pooled, and partially pooled SCM.

accepting a very small increase in pooled imbalance from the fully pooled solution we can obtain

large reductions in unit-level imbalance, and vice versa starting from the separate ⌫ = 0 solution.

See King et al. (2017) and Pimentel and Kelz (2020) for other examples of balance frontiers in

observational settings.

Figure 4b plots the two imbalances, here normalized as q̃pool and q̃sep, to put them on comparable

scales, against ⌫. As ⌫ rises, pooled imbalance falls while unit-level imbalance rises, though this

is highly nonlinear, as the convex frontier in Figure 4a suggests. Moving from the separate SCM

estimate of ⌫ = 0 to a partially pooled SCM estimate of ⌫ = 0.5 reduces the pooled imbalance by

80 percent, with more modest further reductions as ⌫ ! 1. Meanwhile, the unit-level imbalance

declines quickly as ⌫ falls from 1 to 0.9, then more slowly as ⌫ declines further. Even a very

small deviation from the pooled SCM solution, such as moving from ⌫ = 1 to ⌫ = 0.99, cuts the

unit-level imbalance by 30 percent with essentially no change in the pooled fit. Due to the number

of degrees of freedom involved, the pooled imbalance will often be near zero for ⌫ = 1, and the

objective function qpool will be relatively flat in the neighborhood of the pooled solution. Therefore

we expect that in many cases it will be possible to trade o↵ a small increase in pooled imbalance

for a large decrease in the unit-level imbalance, yielding a better estimator of both the overall

ATT and the unit-level estimates at relatively little cost. We view the balance possibility frontier

plot in Figure 4a as an important tool for using partially-pooled SCM in practice. By tracing out

the curve, practitioners can see the trade-o↵s between the pooled and unit-level fit, and choose ⌫
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(a) The balance possibility frontier (b) Separate and pooled balance versus ⌫.

Figure 4: (a) The trade-o↵ between pooled imbalance (qpool) and unit-specific imbalance (qsep) as
⌫ varies, where ⌫ = 0 is the separate SCM solution and ⌫ = 1 is the pooled SCM solution. (b) qsep

and qpool versus ⌫, each normalized by their values for separate SCM. The dashed red line indicates
⌫̂. The large distance in unit-level imbalance between ⌫ = 0.99 and ⌫ = 1 suggest meaningful gains
in balance from deviating from the complete pooling estimate even by a small amount.

according to the trade-o↵ they desire.

In our application, we use a simple heuristic to set ⌫ based on the pooled fit of separate SCM,

qpool(�̂sep), which we also use to normalize our objective function in Equation (6). We set ⌫ to be

the ratio of the pooled fit to the average unit-level fit: ⌫̂ =
p
L qpool(b�sep)/ 1

J

PJ
j=1

p
Lj qj(�̂

sep
j ).

This is bounded above by 1 due to the triangle inequality.5 The key idea is that, if the separate

SCM problem with ⌫ = 0 achieves good pooled fit on its own, then we want to select a small ⌫,

which will ensure both good unit-specific and pooled fit. Conversely, if the pooled fit of separate

SCM is poor, then there can be substantial gains to giving qpool higher priority by setting ⌫ to be

large. In Section 6 we find through simulation that this heuristic results in weights that significantly

reduce both the estimation error for the ATT relative to separate SCM and the estimation error of

the unit-level e↵ects relative to pooled SCM.

In the teacher bargaining example, our heuristic yields ⌫̂ ⇡ 0.44 for the per-pupil expenditure

outcome, and we label this point in Figure 4a. The heuristic choice has similar global pre-treatment

imbalance to the fully pooled estimator, ⌫ = 1, with only a modest increase in unit-level imbalance

relative to the separate SCM estimate, ⌫ = 0. This is reflected in Figure 3, which also shows

the placebo ATT estimates for partially pooled SCM. While the imbalance for the ATT is slightly

larger than for pooled SCM, it is substantially better than for separate SCM.

5If the SCM fits with ⌫ = 0 are perfect for each unit, 1
J

PJ
j=1

p
Lj qj = 0, then the overall fit will also be perfect,p

L qpool = 0, and our heuristic sets ⌫̂ = 0. This is not a common situation.
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There are many other potential choices for ⌫, and, even if we focus solely on the ATT, this one

is unlikely to be optimal. An alternative strategy when the balance possibility frontier exhibits a

strong “kink” shape is to choose ⌫ to be the point after which small improvements to the pooled

fit lead to substantially worse unit-level fits. Another heuristic is to choose ⌫ to be the point where

the tangent of the frontier is equal to the slope between the end points at ⌫ = 0 and ⌫ = 1 (⌫ = .84

in the teacher bargaining application).

In the end, the nonlinear relationship between ⌫ and {qsep, qpool} in Figure 4b suggests that the

loss from choosing a suboptimal ⌫ is likely to be small, so long as we do not choose something too

close to 0 or 1. We also recommend inspecting the sensitivity of estimates to the particular choice

of ⌫ in practice; we do this in Section 7.

5 Extensions

We now add two elaborations to the basic setup. First, we incorporate an intercept shift into

the SCM problem, following proposals by Doudchenko and Imbens (2017) and Ferman and Pinto

(2021). Second, we incorporate auxiliary covariates alongside lagged outcomes. We conclude by

briefly addressing inference in this setting.

5.1 Incorporating intercept shifts

We have established that the partially pooled SCM estimator achieves nearly as good overall balance

as the fully pooled estimator, while achieving much better balance for each unit. Nevertheless, unit-

level balance is often imperfect. Particularly when the scale of the outcome varies across units,

it can be di�cult to construct an adequate synthetic control, as one needs to match both the

overall level and patterns over time. Several recent papers have proposed modifying SCM for

a single treated unit by allowing for an intercept shift between the treated unit and its synthetic

control (Doudchenko and Imbens, 2017; Ferman and Pinto, 2021; Abadie, 2019). We can adapt this

approach to the staggered adoption setting by including an additional parameter vector ↵ 2 RJ ,

where ↵j is an intercept term for unit j. We include this intercept in the counterfactual estimate

as

Ŷjt(1) = ↵j +
NX

i=1

�ijYit

and in the separate and pooled imbalance measures as

(qsep(↵,�))2 =
1

2J

JX

j=1

2

4 1

Lj

LjX

`=1

 
YjTj�` � ↵j �

NX

i=1

�ijYiTj�`

!2
3

5 ,
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and

(qpool(↵,�))2 =
1

L

LX

`=1

2

4 1

J

X

Tj>`

 
YjTj�` � ↵j �

NX

i=1

�ijYiTj�`

!3

5
2

.

Again we can define normalized versions of these objectives, q̃pool(↵,�) ⌘ qpool(↵,�)/qpool(↵̂sep,b�sep),

where ↵̂sep and b�sep are the minimizers of (qsep(↵,�))2. As above, we then form an overall objective

function as a convex combination of the normalized squares:

min
↵2RJ ,�2�scm

⌫ (q̃pool(↵,�))2 + (1� ⌫) (q̃sep(↵,�))2 + �k�k2F . (7)

The intercept ↵̂ that solves Equation (7) has a closed form in terms of the solution for the weights,

�̂⇤; ↵̂j is the average pre-treatment di↵erence between treated unit j and its synthetic control,

↵̂j =
1

Lj

LjX

`=1

YjTj�` �
1

Lj

NX

i=1

LjX

`=1

�̂⇤ijYjTj�`. (8)

Plugging this value of ↵̂ into Equation (7), we see that this procedure is equivalent to solving

the partially-pooled SCM problem (6) using the residuals ẎiTj�` ⌘ YiTj�` � 1
Lj

PLj

`=1 YiTj�`. The

resulting treatment e↵ect estimates have a particularly useful form:

⌧̂⇤jk =
1

Lj

LjX

`=1

"
�
YjTj+k � YjTj�`

�
�

NX

i=1

�̂⇤ij
�
YiTj+k � YiTj�`

�
#
, (9)

and

[ATT
⇤
k =

1

J
⌧̂⇤jk =

1

J

JX

j=1

2

4 1

Lj

LjX

`=1

"
�
YjTj+k � YjTj�`

�
�

NX

i=1

�̂⇤ij
�
YiTj+k � YiTj�`

�
#3

5 . (10)

We can view this as a weighted di↵erence-in-di↵erences (DiD) estimator. In the special case with

uniform weights over units, �̂⇤ij = 1/kDjk, Equation (9) is the simple average over all two-period,

two-group DiD estimates, averaging over all pre-treatment lags ` and donor units i. This is equiv-

alent to recent proposals for DiD estimators that allow for treatment e↵ect heterogeneity with a

fixed donor set per treatment time cohort (see Sun and Abraham, 2020; Callaway and Sant’Anna,

2020, among others). With non-uniform weights, ⌧̂⇤jk compares the change in outcomes for treated

unit j to the change for the synthetic control, rather than the average change across all potential

donors. Equation (10) averages these estimates across treated units j to form [ATT
⇤
k.

Figure 5 shows the value of including an intercept to improving pre-treatment fit in the teacher

collective bargaining application. Figure 5a presents this as a balance possibility frontier for SCM

with the weights alone and with the intercept, as well as the implied imbalance for the DiD estimator

alone. Here, simple unweighted DiD achieves unit-level and pooled balance that improves on the

no-intercept SCM possibility frontier. However, the intercept-shifted estimator dominates both DiD
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(a) The balance possibility frontier for SCM with
and without an intercept.

(b) Distribution of unit-level fits

Figure 5: (a) The balance possibility frontier for SCM with and without an intercept, as well as the
implied imbalance for DiD. Incorporating unit-level fixed e↵ects leads to substantial improvements

in balance. For DiD, we compute the implied balance as

r
PL

`=1

⇣
[ATT

⇤
�`

⌘2
, the RMSE of the

placebo estimates, from Equation (9) with uniform weights. (b) The distribution of state-level fits
(in terms of RMSE) with and without an intercept and covariates; dashed lines show the pooled
pre-treatment RMSE.

and no-intercept SCM estimates on both criteria, for all but the largest ⌫. We see similar results

when examining the state-specific fits. Figure 5b shows the unit-level fit for both partially pooled

SCM and the intercept-augmented version. Two states, New York and Alaska, have especially

bad pre-treatment fits without including an intercept because they have the highest per-pupil

expenditures of all the states for many years (see Appendix Figure B.5). Accounting for the pre-

treatment average through the intercept dramatically improves the fits for these states.

5.2 Incorporating auxiliary covariates

We have focused thus far on matching pre-treatment values of the outcome variable. In practice,

we typically observe a set of auxiliary covariates Xi 2 Rd as well. In our collective bargaining

application, we consider five covariates, measured as of the start of the sample in 1959-1960: income

per capita, the student to teacher ratio, the percent of the population with 12+ and 13+ years of

education, and the female labor force participation rate.6 We standardize all five covariates to have

mean zero and variance one.
6Due to missing data for these auxiliary covariates, we restrict our analysis here to the contiguous United States.

Note that this drops Alaska, which we have seen is far outside the convex hull of its donor units.
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There are several ways to incorporate auxiliary covariates in the setting with a single treated

unit. Here we directly include them into the optimization problem. Analogous to above, we define

both the unit-level imbalance and pooled imbalance of X,

qsepX (�) =

vuuut 1

J

JX

j=1

�����Xj �
NX

i=1

�ijXi

�����

2

2

,

and another for the pooled synthetic control,

qpoolX (�) =

������
1

J

JX

j=1

Xj �
NX

i=1

�ijXi

������
2

,

with normalized versions q̃sepX (�) and q̃poolX (�).7 We then include these in our objective, with an

additional hyper-parameter ⇠:

min
↵2RJ ,�2�scm

⌫
⇣
(q̃pool(↵,�))2 + ⇠(q̃poolX (�))2

⌘
+ (1� ⌫)

�
(q̃sep(↵,�))2 + ⇠(q̃sepX (�))2

�
+ �k�k2F .

(11)

While we write this optimization problem with an intercept shift, we could also include auxiliary

covariates but no intercept. The choice of ⇠ determines the relative importance of the outcomes

and the auxiliary covariates. Setting ⇠ = 0 recovers the optimization problem (7) without auxiliary

covariates, while in the extreme case setting ⇠ = 1 will, if feasible, enforce exact balance on the

auxiliary covariates. We decide to give equal priority to both terms. Since the auxiliary covariates

are standardized, we set ⇠ to be the sample variance of the pre-TJ outcomes for the never treated

units. This equally weights both components in the objective functions, and reduces the number

of hyper-parameters and specification choices. Finally, we can incorporate time-varying covariates

by including the values at time periods before the first treatment time T1 into the vector Xi.

Figure 6 shows the level of covariate balance between each treated unit and its synthetic con-

trol, as well as for the average across treated units. Before weighting there are large di↵erences

between the treated units and their donor sets, and weighting on the outcomes alone does little to

alleviate these di↵erences. Including the auxiliary covariates into the optimization procedure finds

weights that give nearly perfect covariate balance for the pooled synthetic control (indicated as the

black squares), while also significantly improving covariate balance for the individual treated units

(indicated as boxplots). Figure 5b shows that this improved covariate balance comes at a small

7Specifically, let ↵̂sep and b�sep be the minimizers of (qsep(↵,�))2 + ⇠(qsepX (�))2, and (Csep)2 = (qsep(↵̂sep, b�sep))2 +

⇠(qsepX (b�sep))2 and (Cpool)2 = (qpool(↵̂sep, b�sep))2 + ⇠(qpoolX (b�sep))2 be the combined separate and pooled imbalances.

We define the normalized objectives as q̃poolX (�) = qpool
X (�)/Cpool, q̃sepX (�) = qsepX (�)/Csep, and slightly abuse notation by

re-defining q̃pool(↵,�) ⌘ qpool(↵,�)/Cpool and q̃sep(↵,�) ⌘ qsep(↵,�)/Csep.
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Figure 6: Distribution of the absolute di↵erence between each treated unit and its synthetic control
for the (standardized) auxiliary covariates, before weighting and with/without including covariates
in the optimization procedure. Black squares show the absolute average di↵erence.

cost to the fit on the pre-treatment outcomes: the distribution of unit-level pre-treatment RMSE

shifts slightly to the right.

5.3 Inference

There is a growing literature on inference for SCM-type estimators, though no proposed approach

is fully satisfactory for all cases. In settings where multiple units adopt treatment simultaneously,

Abadie and L’Hour (2018) propose an extension of the original permutation procedure of Abadie

et al. (2010), and Arkhangelsky et al. (2019) propose resampling-based approaches. In a staggered

adoption setting, Toulis and Shaikh (2018) propose a weighted permutation approach based on a

Cox proportional hazards model. This is not appropriate in our application, however, since multiple

units have the same treatment time, which is incompatible with the Cox model. Finally, Cao

and Lu (2019) propose an Andrews test for inference with intercept-shifted SCM under staggered

adoption. Building on the existing literature, we consider constructing confidence intervals via

the wild bootstrap. We briefly describe this method here; we address asymptotic Normality and

inference via the jackknife in Appendix A.1.

The wild bootstrap approach we implement adapts the proposal from Otsu and Rai (2017) for

bias-corrected matching estimators; see also Imai et al. (2019). First, we can re-write [ATTk as the
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following average over units:

[ATTk =
1
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i=1
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This bootstrap procedure draws a sequence of random variables W (b)
1 , . . . ,W (b)

N independently with

P (Wi = �(
p
5� 1)/2) = (

p
5+1)/2

p
5 and P (Wi = (

p
5+1)/2) = (

p
5� 1)/2

p
5 for b = 1, . . . , B,

and computes the boostrap statistic:

S(b) =
1

J

NX

i=1

W (b)
i

⇣
⌧̃i � [ATTk

⌘
, (13)

for each draw. Letting q↵/2 and q1�↵/2 denote the ↵/2 and 1� ↵/2 quantiles of S(b), we construct

confidence intervals via [[ATTk � q1�↵/2, [ATTk + q↵/2]. Importantly, we keep the weights and

outcomes fixed, and only re-sample the multiplier variables W (b)
i .

In the next section, we evaluate the coverage of the wild bootstrap with a simulation study

that mimics the structure of the collective bargaining application. In Appendix A.1, we take

an alternative route and motivate the use of resampling methods via asymptotic Normality. In

particular, we provide a set of su�cient conditions for [ATTk�ATTk to be asymptotically Normal.

We consider an asymptotic regime in which J,N0 ! 1, with the number of lags L fixed and the

number of control units growing faster than the number of treated units J
N0

! 1. We also adapt

a generalization of the conditional parallel trends assumption in Abadie (2005) to the staggered

adoption setting. However, there are several ways such asymptotic results can be misleading. First,

our result assumes that the synthetic control weights can achieve perfect fit within treatment time

cohorts, which ensures that the distribution of [ATTk is centered around ATTk. Poor fit, either

overall or across time cohorts, can lead to under-coverage. Second, the asymptotic approximation

can be poor when there are relatively few total units, and the use of resampling methods can

exacerbate this. Thus, while we show that these approaches yield reasonable results in simulations,

we suggest interpreting any confidence intervals for typical applications with caution.

6 Simulation study

We now consider the performance of di↵erent approaches in a simulation study calibrated to the

collective bargaining dataset; we turn to the impacts of mandatory teacher collective bargaining

laws in the actual data in the next section. We evaluate performance with three di↵erent data

generating processes. First, we generate never treated outcomes according to a two-way fixed

e↵ects model,

Yit(1) = int + uniti + timet + "it, (14)
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with both unit and time e↵ects are normalized to have mean zero. This model satisfies the parallel

trends assumption needed for the DiD estimator we consider below. We estimate (14) using only

the never-treated observations, and extract the estimated variance of the unit e↵ects, ⌃̂, and of the

error term, �̂2
" . We then generate uniti

iid⇠ N(0, ⌃̂) and "it
iid⇠ N(0, �̂2

").

Second, we use a factor model with a 2-dimensional latent time-varying factor µt 2 R2 and

unit-specific coe�cients �i 2 R2:

Yit(1) = int + uniti + timet + �0
iµt + "it. (15)

We estimate (15) using the R package gsynth (Xu, 2017) for the untreated units and time periods,

then estimate the variance-covariance matrix of the unit fixed e↵ects and factor loadings, ⌃̂, and

the variance of the error term �̂2
" . Here we use the estimated {dtimet, µ̂t}, and draw {uniti,�i}

iid⇠
MVN(0, ⌃̂) and "it

iid⇠ N(0, �̂2
").

Finally, we have a random e↵ects autoregressive model:

Yit(1) =
3X

`=1

⇢`Yit�`(1) + "it, ⇢ ⇠ N(µ⇢,�
2
⇢), (16)

that we fit using lme4 (Bates et al., 2015) to obtain estimates µ̂⇢ and �̂⇢. In order to increase

the level of heterogeneity across time, we simulate from this hierarchical model with 8 times the

standard deviation 8�̂⇢. For all three outcome processes we generate simulated data sets with the

same dimensions as the data, N = 49 and T = 39, and impose a sharp null of no treatment e↵ect,

Yit(s) = Yit(1) = Yit.

A key component of the simulation model is selection into treatment. We fix the treatment

times to be the same as in the teacher unionization application. For each treatment time, we

assign treatment to those units not already treated with probability ⇡i, sweeping through the

fixed set of treatment times. For the two-way fixed e↵ects model, we set the probability that

unit i is treated at each treatment time to be ⇡i = logit(✓0 + ✓1 · uniti), with ✓0 = �2.7 and

✓1 = �1, yielding around 30 units that are eventually treated in each simulation draw. For the

factor model we choose ⇡i = logit(✓0 + ✓1(uniti + �i1 + �i2)), and set ✓0 = �2.7 and ✓1 = �1 so

that around 32 units are eventually treated in each simulation draw, following the distribution of

the data. For the autoregressive process we allow selection to depend on the three lagged outcomes

⇡i = logit
⇣
✓0 + ✓1

P3
`=1 Yit�`

⌘
, where ✓0 = log 0.04 and ✓1 = �2.

Estimation. We consider several estimators for the average post-treatment e↵ect ATT. Figure 7

shows four: (1) A di↵erence-in-di↵erences estimator following Equation (9) with uniform weights,

(2) the partially pooled SCM estimator, as we vary ⌫ between 0 and 1, (3) partially pooled SCM

with an intercept, again varying ⌫, and (4) directly estimating the factor model. Solid points
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Figure 7: Monte Carlo estimates of the MAD for the overall ATT vs the MAD the individual ATT
estimates. The lines trace out values for ⌫ 2 [0, 1], the solid points are the average value using the
heuristic ⌫̂. In the two-way fixed e↵ects and factor model simulations, the estimated factor model
is the oracle estimator. Among the alternatives, the intercept-shifted partially pooled SCM has
lowest MAD for both the overall ATT and the individual ATT estimates.

indicate the heuristic choice of ⌫̂ above. The vertical axis of each panel shows the Mean Absolute

Deviation (MAD) for the ATT, E
h���ATT� [ATT

���
i
, while the horizontal axis shows the average of

the individual post-treatment e↵ect estimates, E
h
1
J

PJ
j=1 |⌧j � ⌧̂j |

i
. Appendix Figures B.1 and B.2

show the analogous results for the bias and Root Mean Square Error (RMSE).

There are several key takeaways from Figure 7. First, under each data generating process there

is a tradeo↵ between estimating the ATT and the individual e↵ects, with ⌫ = 1 at the top left of

the “MAD frontier” and ⌫ = 0 at the bottom right. Partially pooled SCM significantly reduces

the bias for the overall ATT relative to separate SCM, and a small amount of pooling also leads

to slightly better individual ATT estimates. The gains to pooling, however, diminish for ⌫ close

to 1, with the fully pooled SCM yielding poor individual ATT estimates under all three models.

Under a two-way fixed-e↵ects model there is no penalty to pooling in terms of MAD for the overall

ATT. This comports with Theorem 2, which shows that targeting the pooled pre-treatment fit is

su�cient under a two-way fixed e↵ects model. However, under the factor model and AR process

the fully pooled estimator leads to worse MAD for the overall ATT estimates than partially pooled

SCM. Second, when mis-specified, the DiD estimator does not do particularly well at controlling

the MAD for either overall ATT or the unit-level estimates. Third, the intercept-shifted estimator

dominates either of the alternatives in terms of both overall and unit-level estimates. Here again

there are gains to partially pooling SCM, albeit with the possibility for a large amount of error

from over-pooling. Fourth, our heuristic choices of ⌫ perform reasonably well at selecting a point

close to the value that minimizes the MAD for the ATT, while also reducing the MAD for the
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individual estimates. Finally, the partially-pooled SCM estimator with an intercept shift performs

as well as or better than fitting the factor model directly.

Inference. We conclude by examining the finite-sample coverage of approximate 95% confidence

intervals from the wild bootstrap. Figure 8 shows the coverage of approximate confidence intervals

for partially pooled SCM with an intercept shift, using the wild bootstrap to construct the intervals.

Under the two-way fixed e↵ects model, in which there is no bias from inexact fit, the wild bootstrap

has close to 95% coverage. Under both the linear factor model and the autoregressive model,

however, the wild bootstrap is somewhat conservative.8 Overall, the wild bootstrap appears to be

a reasonable, if conservative, choice.

7 Impacts of mandatory teacher collective bargaining laws

We now return to measuring the impact of mandatory teacher collective bargaining. The left of

Figure 9a shows the placebo estimates from Equation (9), where k < 0.9 We see that along with

the good unit-specific fits shown in Figure 5b and the good covariate balance shown in Figure 6,

the pooled synthetic control estimate is near zero for k < 0. The right side of the figure shows the

estimated impact on per-pupil current expenditures, with approximate 95% confidence intervals

computed via the wild bootstrap.

Consistent with Paglayan (2019), we find weakly negative e↵ects of mandatory teacher collective

bargaining laws on student expenditures. Pooled across the eleven years after treatment adoption,

the overall estimate is [ATT = �0.03, or a 3 percent decrease in per-pupil expenditures, with an

approximate 95% confidence interval of [�0.06,+0.005]. In Appendix Figure B.6 we show the

average post-treatment e↵ect for each state and the unit-level fits. For those states with good pre-

treatment fit, we find small positive and negative e↵ects, while we estimate larger negative e↵ects

for those with worse fit. These estimates are in stark contrast to the results from Hoxby (1996),

who argues for a 12 percent positive e↵ect, although she gives a range of estimates. One possible

explanation for this is that school districts are able to divert funds from other purposes to fund

higher teacher salaries with minimal net e↵ect on total expenditures. In Appendix Figure B.7 we

show estimates of the e↵ect on teacher salaries, finding evidence against a positive e↵ect.

We can assess the strength of evidence by conducting robustness and placebo checks. First,

following Abadie et al. (2015), we begin by assessing out-of-sample validity via in time placebo

8Appendix Figure B.4 shows the analogous results for partially-pooled SCM without including an intercept. In
this case, the wild bootstrap is extremely conservative.

9These placebo checks di↵er from those typically performed in traditional event studies, which test for the parallel
trends assumption by comparing pre-treatment outcomes between treated and control units. These tests generally
have low power, however; see, e.g., Roth (2018); Bilinski and Hatfield (2018); Kahn-Lang and Lang (2019). In
contrast, the intercept-shifted estimator uses pre-treatment outcomes to select donor units that best balance the
treated units, in e↵ect optimizing for the placebo test. It is still possible to inspect pre-treatment fit, as in standard
SCM, but this is best seen as an assessment of the quality of the match rather than as a formal placebo test.
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Figure 8: Monte Carlo estimates of the coverage of approximate 95% confidence intervals k =
0, . . . , 9 periods after treatment. The solid line indicates the coverage for the overall ATT estimate
averaged across all post-treatment periods.

checks. These checks hold out some pre-treatment time periods by re-indexing treatment time to

be earlier (i.e. setting T 0
j = Tj � x for some x), then estimate placebo e↵ects for the held-out pre-

intervention time periods. Figure 9b shows the placebo estimates for the intercept-shifted partially

pooled SCM estimator with covariates using a placebo treatment time two and four periods before

the true treatment time. Both estimators achieve excellent pre-treatment fit and estimate placebo

e↵ects that are indistinguishable from zero.

Another important check that we recommend in practice is to gauge the sensitivity of the

ATT estimates to the particular choice of pooling parameter ⌫. Figure 10a shows the overall ATT

estimates varying ⌫ from separate SCM ⌫ = 0 to pooled SCM ⌫ = 1. No choice of ⌫ substantively

changes the conclusions, and each rules out large positive e↵ects. Finally, we consider the result of

trimming states with poor pre-treatment fit, following common practice in the matching and SCM

literatures. Figure 10b shows the overall ATT estimates when removing an increasing number of

treated units with poor fits, in order of decreasing unit-level fit. Overall, omitting the worst-fit

states decreases the magnitude of the estimated e↵ect, and increases the variability of the estimate.

However, all estimates still rule out large positive e↵ects.

An important feature of SCM-based methods over model-based methods is that we can directly

inspect the weights, and that these weights are non-negative and sum to one. Appendix Figures

B.8 and B.9 show the state-specific weights over donor states for each treated unit for partially

pooled SCM without an intercept and with both an intercept and auxiliary covariates, respectively.

Without the intercept, both Illinois and Wyoming are consistently important donor states. Both

states had relatively high levels of per-pupil expenditures throughout the study period and several

synthetic controls place nearly all of the weight on these two states in order to match the level.

However, after removing pre-treatment averages via an intercept, the weights are much more evenly
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(a) E↵ect of mandatory collective bargaining on
per-pupil expenditures (⌫̂ = 0.22)

(b) Placebo estimates

Figure 9: Estimates of the ATT on per-pupil current expenditures (log, 2010 $) and placebo
estimates re-indexing treatment time to two and four years before the true treatment time. The
placebo e↵ects are very close to zero and are indistinguishable from zero at this level of precision.

distributed across the donor pool, suggesting that estimates are not overly reliant on a single control

unit.

8 Discussion

In this paper, we develop a new framework for estimating the impact of a treatment adopted

gradually by units over time. In our motivating example, 33 states have enacted laws mandating

school districts to bargain with teachers unions (Paglayan, 2019), and we seek to estimate the

e↵ects of these laws on educational expenditures. To do so, we adapt SCM to the staggered

adoption setting. We argue that current practice of estimating separate SCM weights for each

treated unit is unlikely to yield good results, but also that fully pooled SCM may over-correct; our

preferred approach, partially pooled SCM, finds weights that balance both state-specific and overall

pre-treatment fit. We then extend this basic approach to incorporate an intercept shift as well as

auxiliary covariates. We apply this approach to the teacher bargaining example and, consistent

with recent analyses, find weakly negative estimates on student expenditures.

We briefly note some directions for future work. First, we could extend these ideas to other

settings with multiple treated units, such as where treatment can “shut o↵” for some units (Imai

and Kim, 2021), or where all units are eventually treated (Athey and Imbens, 2021). This would

likely require additional assumptions. We could similarly incorporate other structure from our

application. For example, in staggered adoption settings where multiple units adopt treatment at
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(a) Varying ⌫ from 0 to 1. (b) Dropping 1 to 20 treated units according to
their worst fit.

Figure 10: (a) [ATT and approximate 95% confidence intervals as ⌫ varies between 0 and 1, ⌫̂
highlighted. (b) Estimates are not especially sensitivity to dropping an increasing number of units
(ranked by pre-treatment imbalance), although the uncertainty intervals are wider with fewer units
in the analysis.

the same time, we could add a layer in the hierarchy and more closely pool units treated at the

same time while still partially pooling di↵erent treatment cohorts. See Appendix A.2.

Second, many SCM analyses explore multiple outcomes. As in other SCM studies, we treat

each outcome separately, choosing di↵erent synthetic control weights for each. In many settings,

however, lagged values from one outcome may predict future values of another, suggesting that

balancing multiple outcome variables would be useful. This seems especially important in settings

like ours with relatively few units.

Finally, we could adapt recent proposals for bias correction and other “doubly robust” estimators

to this setting, which will be important for both estimation and inference (Ben-Michael et al., 2021;

Abadie and L’Hour, 2018; Arkhangelsky et al., 2019). Existing approaches have largely been limited

to the case with a single treated unit or, if multiple units are treated, to a single adoption time.

More complex models are possible and may be desirable in the staggered adoption setting. For

example, Fesler and Pender (2019) apply the Ridge Augmented SCM proposal in Ben-Michael et al.

(2021) to a staggered adoption setting, modeling each treated unit separately. Partial pooling may

be helpful here. In another direction, we might consider an outcome model that incorporates the

time weights used in Arkhangelsky et al. (2019). We anticipate that, unlike in the simple case with

unit fixed e↵ects, these augmented approaches likely require more elaborate shrinkage estimation,

such as via matrix penalties.
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Supplementary Materials for:
“Synthetic Controls with Staggered Adoption”

A Additional theoretical results

A.1 Further discussion of inference

We now continue the discussion of inference from the main text in Section 5.3. Our goal here
is to discuss the conditions under which the proposed estimator is asymptotically Normal. Since
asymptotic theory is not the focus of our paper, we leave for future work a rigorous derivation of
the validity of the wild bootstrap procedure, in particular, adapting the proof of the main theorem
in Otsu and Rai (2017) and showing that the additional conditions in that proof are satisfied with
our proposed procedure.

In order to discuss inferential procedures for partially pooled SCM with an intercept shift, we
will consider a generalization of parallel trends. For each time period g, we assume that the expected
di↵erences between post-g and pre-g outcomes do not depend on whether unit i is treated at time
g, conditional on auxiliary covariates Xi and the vector of pre-g residuals Ẏ g

i ⌘ (Yig�L, . . . , Yig�1)�
1
L

PL
`=1 Yig�`.

Assumption A.1 (Conditional parallel trends). With L < T1, for all k � 0 and ` � 1

E[Yig+k(1)� Yig�`(1) | Ti = g, Ẏ g
i , Xi] = E[Yig+k(1)� Yig�`(1) | Ẏ g

i , Xi] ⌘ mgk`(Ẏ
g
i , Xi)

Assumption A.1 is a generalization of the conditional parallel trends assumption in Abadie
(2005) to the staggered adoption setting, including the pre-treatment residuals Ẏ g

i . It loosens the
usual parallel trends assumption by allowing trends to di↵er depending on the auxiliary covariates
and the deviation of lagged outcomes from their baseline value. Thus, we are essentially conditioning
on pre-treatment “dynamics,” rather than pre-treatment levels. For instance, even if two states
have very di↵erent levels of student expenditures, under conditional parallel trends we can compare
them so long as they have similar pre-treatment trends and shocks. See Hazlett and Xu (2018) and
Callaway and Sant’Anna (2020) for related conditional parallel trends assumptions. In addition,
we will assume that the conditional expectation of the post- and pre-g di↵erences is linear.

Assumption A.2.
mgk`(Ẏ

g
i , Xi) = �Y

gk` · Ẏ
g
i + �X

gk` ·Xi

We make two further assumptions that allow for asymptotic normality as the number of units
grows while the number of lags L stays fixed. First, we assume that the synthetic controls have
perfect fit when averaged within time-cohorts; second, we assume that the sum of the squared
weights is bounded.
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Assumption A.3 (Exact balance within treatment cohorts and bounded weights). Assume that

1

ng

X

Ti=g

Ẏ g
i =

1

ng

NX

i=1

X

Tj=g

�̂ij Ẏ
g
i and

1

ng

X

Ti=g

Xi =
1

ng

NX

i=1

X

Tj=g

�̂ijXi,

for all g = T1, . . . , TJ . Furthermore, k�̂jk2  Cp
N0

for all j = 1, . . . , J and some constant C.

Note that by transforming from the penalized optimization problem (7) to the constrained form,
there is a choice of � that guarantees that the constraint on the weights are satisfied, if there
exists a feasible solution. Finally, we make two assumptions on the noise terms "igk ⌘ Yig+k(1)�
1
L

PL
`=1 Yig�`(1)� 1

L

PL
`=1mk`(g, Ẏ

g
i , Xi). First, we assume that they are independent across units;

second, we assume that they are su�ciently regular so that their average satisfies a central limit
theorem.

Assumption A.4. "igk are independent across units i = 1, . . . , N , and for some � > 0, the 2+ �th

moment exists, E
h
|"igk|2+�

i
< 1, and furthermore

lim
N!1

P
Ti 6=1 E

h
|"iTik|

2+�
i

⇣P
Ti 6=1 E

h
"2iTik

i⌘1+ �
2

= 0.

Under these assumptions, the estimate of the e↵ect k periods after treatment, [ATTk, will be
asymptotically normal as N grows with a fixed number of lags L, and where the number of control
units N0 grows more quickly than the number of treated units J .

Theorem A.1. Assume that J
N0

! 0 as both J,N0 ! 1, with L fixed. Under Assumptions A.1,
A.2, A.3, and A.4

p
J
⇣
[ATTk �ATT

⌘
=

1p
J

X

Ti 6=1
"iTj+k + op(1).

Furthermore,
[ATTk�ATT

1
J

P
Ti 6=1 E

h
"2iTik

i d! N(0, 1).

Jackknife. Finally, we briefly discuss constructing confidence intervals via the leave-one-unit-out
jackknife approach, which proceeds as follows. Fix hyperparameter values ⌫, ⇠, and �; for each unit
i = 1, . . . , N : drop unit i and re-fit the intercepts and the weights via Equation (11) to obtain ↵̂(�i),
b�(�i), and the synthetic control estimates Ŷ (�i)

jTj+k. Then compute the leave-one-unit-out estimate

[ATT
(�i)

k = 1
J(�i)

PJ
j=1 j 6=i

n
YjTj+k � Ŷ (�i)

jTj+k

o
, where J (�i) ⌘ J � Ti<1. The jackknife estimate

of the standard error is then:

V̂k =
n� 1

n

nX

i=1

0

@[ATT
(�i)

k � 1

n

nX

j=1

[ATT
(�j)

k

1

A
2

, (A.1)

with an approximate 95% confidence interval [ATTk±1.96
q
V̂k. We include Monte Carlo estimates

of the coverage under our simulation setup in Figures B.3 and B.4.
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A.2 Fully pooling within time cohorts

As we discuss in Section 3, if all units are treated at the same time, T1 = · · · = TJ , our error
bounds depend only on the pooled imbalance and do not include the unit-level imbalance. Thus, if
units are treated in cohorts (i.e., several units treated at the same time), then the bounds suggest
modeling variation in pre-treatment outcomes between treatment cohorts separately from the pooled
average. This leads to a natural modification of our partially pooled estimator: We can fully pool
within cohorts by applying the estimator to treatment cohorts rather than individual treated units,
optimizing a weighted average of the overall imbalance and the average cohort-level imbalance.
Concretely, let G be the number of distinct treatment times, which we denote T (g), g = 1, . . . , G,
and let ng =

PN
i=1 {Ti = T (g)} be the number of units treated in time T (g). We can modify the

optimization problem to find G sets of weights, where the individual objective for treatment cohort
g is

qg(�g)
cohort =

vuut 1

Lg

LgX

`=1

 
NX

i=1

{Tj = T (g)}YiT (g)�` �
NX

i=1

�igYiT (g)�`

!2

.

As before, we will restrict the set of donor units for cohort g to those not yet treated K periods
after T (g), D(g) ⌘ {i : Ti > T (g) + K}, and we will restrict the weights so that �g 2 �scm(g)
satisfies �ig � 0 for all i,

P
i �ig = ng, and �ig = 0 if i 62 D(g). We then define the relevant separate

and pooled balance measures:

qsep cohort(�) =

vuuut 1

G

GX

g=1

1

Lg

LgX

`=1

 
NX

i=1

{Tj = T (g)}YiT (g)�` �
NX

i=1

�igYiT (g)�`

!2

,

and

qpool cohort(�) =

vuuut 1

maxg Lg

maxg LgX

`=1

0

@ 1

G

GX

g=1

NX

i=1

{Tj = T (g)}YiT (g)�` �
NX

i=1

�igYiT (g)�`

1

A
2

.

We can then use these cohort-level measures of imbalance in the partially pooled SCM optimization
problem (6), and similarly can include an intercept as in (7). More generally, if we do not want to
fully pool within clusters, we can include three (or more) imbalance terms in our objective function
to capture unit-level, pooled, and intermediate cluster-level imbalance.

A.3 Partially pooled SCM: Dual shrinkage

We now inspect the Lagrangian dual problem to the partially pooled SCM problem in Equation (6),
showing that the optimization problem partially pools a set of unit-specific dual variables toward
global dual variables. We focus on balancing the first Lj = L  T1 � 1 lagged outcomes, which are
observed for each treated unit.

For each treated unit j, the sum-to-one constraint induces a Lagrange multiplier ↵j 2 R, and the
state-level balance measure induces a set of Lagrange multipliers �j 2 RL, with elements �`j . We
combine these dual parameters into a vector ↵ = [↵1, . . . ,↵J ] 2 RJ and a matrix � = [�1, . . . ,�J ] 2
RL⇥J . In addition to the J sets of Lagrange multipliers — one for each treated unit — the pooled
balance measure in the partially pooled SCM problem Equation (6) induces a set of global Lagrange

3



multipliers µ� 2 RL. As we see in the following proposition, in the dual problem the parameters
�1, . . . ,�J are regularized toward this set of pooled Lagrange multipliers, µ� .

Proposition A.1. The Lagrangian dual to Equation (6) with un-normalized objevtices qsep and
qpool with Lj = L < T1 and � > 0 is:

min
↵,µ� ,�

L(↵,�) + �L

2

0

@ 1

(1� ⌫)

JX

j=1

k�j � µ�k22 +
J

⌫
kµ�k22

1

A , (A.2)

where the dual objective function is

L(↵,�) ⌘ 1

J

JX

j=1

2

4
X

i2Dj

"
↵j +

LX

`=1

�`jYiTj�`

#2

+

�
 
↵j +

LX

`=1

�`jYjT1�`

!3

5 , (A.3)

where [x]+ = max{0, x}. For treated unit j, the synthetic control weight on unit i is �̂ij =h
↵̂j +

PL
`=1 �̂`jYjTj�`

i

+
.

Proposition A.1 highlights that the estimator partially pools the individual synthetic controls to
the pooled synthetic control in the dual parameter space, with ⌫ controlling the level of pooling.
When ⌫ = 0 in the separate SCM problem, the parameters �1, . . .�J are shrunk towards zero rather
than a set of global parameters. By contrast, when ⌫ = 1, �1, . . . ,�J are constrained to be equal
to µ� , fitting a single pooled synthetic control in the dual parameter space. By choosing ⌫ 2 (0, 1),
we move continuously between the two extremes of J separate Lagrangian dual problems and a
single dual problem, regularizing the individual �js toward the pooled µ� , allowing for some limited
di↵erences between the J dual parameters.
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B Additional figures

B.1 Additional simulation results
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Figure B.1: Monte Carlo estimates of the bias for the overall ATT vs the MAD for the individual
ATT estimates.

Figure B.2: Monte Carlo estimates of the RMSE for the overall ATT vs the RMSE of the individual
ATT estimates.
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Figure B.3: Monte Carlo estimates of the coverage of approximate 95% confidence intervals k =
0, . . . , 9 periods after treatment using partially pooled SCM with an intercept. The solid line
indicates the coverage for the overall ATT estimate averaged across all post-treatment periods.

Figure B.4: Monte Carlo estimates of the coverage of approximate 95% confidence intervals k =
0, . . . , 9 periods after treatment using partially pooled SCM without an intercept. The solid line
indicates the coverage for the overall ATT estimate averaged across all post-treatment periods.
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B.2 Additional results for the mandatory collective bargaining application
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Figure B.5: Per-pupil expenditures for US states over the study period.

Figure B.6: Average post-treatment e↵ect estimates 1
K+1

PK
k=0 ⌧̂jk for the treated states, plotted

against the root-mean square pre-treatment fit qj(�̂j).
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Figure B.7: Partially-pooled SCM with intercept shifts and covariates (⌫̂ = 0.26), estimates of the
impact of mandatory collective bargaining laws on average teacher salary (log, 2010 $).
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Figure B.8: Partially pooled SCM weights. White cells indicate zero weight, black cells indicate a
weight of 1.
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Figure B.9: Partially pooled SCM weights when including an intercept. White cells indicate zero
weight, black cells indicate a weight of 1.
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C Proofs

C.1 Error bounds

Proof of Theorem 1. Defining ⇠t = ⇢t � ⇢̄, the error is

⌧̂j0 � ⌧j0 =
LX

`=1

(⇢̄+ ⇠Tj )

0

@YjTj�` �
X

i2Dj

�̂ijYiTj�`

1

A+

0

@"jTj �
X

i2Dj

�̂ij"iTj

1

A

So by the triangle and Cauchy-Schwarz inequalities,

|⌧̂j0 � ⌧j0|  k⇢̄+ ⇠Tjk2

vuuut
LX

`=1

0

@YjTj�` �
X

i2Dj

�ijYiTj�`

1

A
2

+

������
"jTj �

X

i2Dj

�ij"iTj

������

Since �̂j is fit on pre-Tj outcomes, the weights are independent of "Tj , and so the second term

above is sub-Gaussian with scale parameter �
p

1 + k�̂jk22  �(1 + k�̂jk2). This implies that

P

0

@

������
"jTj �

X

i2Dj

�̂ij"iTj

������
� �� (1 + k�̂jk2)

1

A  2 exp

✓
��2

2

◆

For the bound on [ATT0, notice that

[ATT0 �ATT0 =
1

J

JX

j=1

⌧̂j0 � ⌧j0 =
1

J

JX

j=1
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(A.4)
By Cauchy-Schwarz the absolute value of the first term is
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Similarly, the absolute value of the second term is
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Finally, notice that 1
J

PJ
j=1 "jTj is the average of J independent sub-Gaussian random variables and

so is itself sub-Gaussian with scale parameter �p
J
. However, 1

J

PJ
j=1

P
i2Dj

�̂ij"iTj is the weighted

average of sub-Gaussian variables that are independent over i but not necessarily independent over
j, and so the weighted average is sub-Gaussian with scale parameter �p

J
k�kF . The two averages

are independent of each other, so
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Putting together the pieces completes the proof.

Proof of Theorem 2. Following Abadie et al. (2010), we can re-write �i in terms of the lagged
outcomes as

�i = (⌦0
j⌦j)

�1
LX

`=1

µTj�`(YiTj�` � "iTj�`)

=
1p
L

LX
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P (j)
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(A.5)

where ⌦j 2 RL⇥F is the matrix of factors from time t = Tj�L, . . . , Tj�1, 1p
L
P (j)
` = (⌦0

j⌦j)�1µTj�` 2

RF , and 1p
L
P (j) = 1p

L
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1 , . . . , P (j)
J ] 2 RF⇥L. Using Equation (A.5), we can write the error for

the ATT as
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(A.6)

From the proof of Theorem 1, we can bound the final term in Equation (A.6). We now bound
the first two terms. First, as in the proof of Theorem 1, we decompose the first term into a time
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constant, and a time varying component:
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We now turn to the second term in Equation (A.6). Since "it are independent sub-Gaussian
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Next, since �̂1, . . . , �̂J 2 �scm, 1
J

PJ
j=1 k�̂jk1 = 1, by Hölder’s inequality
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where the final inequality holds with probability at least 1 � 2 exp
⇣
� �2

2

⌘
by the standard tail

bound on the maximum of sub-Gaussian random variables. Putting together the pieces with a
union bound completes the proof.

C.2 Asymptotic normality

Proof of Theorem A.1. Define �̄Y
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So the estimation error for the treatment e↵ect for unit j at time k is
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Aggregating across treated units we see that
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where ng is the number of units treated at time g. Now from Assumption A.3, we have exact

balance within each cohort, so this reduces to [ATTk �ATT = 1
J

Pj
j=1 "jTjk �

P
i �̂ij"iTjk. We now

show that the second term is op(J�1/2). Denote �2
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theorem to the first term and Slutsky’s theorem shows asymptotic normality.
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C.3 Partial pooling of dual parameters

Lemma A.1. The Lagrangian dual to Equation (6) with ⌫ = 0, � > 0, and Lj = L < T1 is
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Proof of Lemma A.1. Notice that the separate synth problem separates into J optimization prob-
lems:
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Thus the Lagrangian dual objective is the sum of the Langrangian dual objectives of the individual
objectives in Equation (A.8). Inserting the dual objectives derived by Ben-Michael et al. (2021)
and scaling by 1

J yields the result.

Proof of Proposition A.1. We start be defining auxiliary variables, E0, E1, . . . , EJ 2 RL where Ej` =
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min
�1,...,�J ,E0,...,EJ

⌫

2J2L�

LX

`=1

E2
0` +

1� ⌫

2J�

JX

j=1

1

L
E2
j` +

JX

j=1

NX

i=1

1

2
�2ij

subject to Ej` = YjTj�` �
NX

i=1

�ijYiTj�`

E0` =
X

Tj>`

 
YjTj�` �

NX

i=1

�ijYiTj�`

!

�j 2 �scm
j

(A.9)

With Lagrange multipliers µ� , ⇣1, . . . , ⇣J 2 RL and ↵1, . . . ,↵J 2 R, the Lagrangian to Equation
(A.9) is
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Defining �j = µ� + ⇣j , the dual problem is:
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From Lemma A.1, we see that the first term is L(↵,�) and we have the same form for the
implied weights. The next two terms are the convex conjugates of a scaled L2 norm. Using the
computation that the convex conjugate of a

2kxk
2
2 is 1

2akxk
2
2. We then scale the whole dual problem

by 1
J . Finally, the primal problem (6) is still convex and a primal feasible point exists, so by Slater’s

condition strong duality holds.
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