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ABSTRACT

Do upstream research shocks impact unconnected downstream product markets? We explore this 
question using a natural experiment involving a publication that identified a pathogenic outbreak 
in India involving a carbapenem antibiotic resistant superbug. Consistent with theory, we find 
that this upstream research shock caused multinational firms selling carbapenem antibiotics in 
India to reduce their downstream market exposure. Rational antibiotic stewardship implies that 
we should observe a similar response by domestic Indian firms. Surprisingly, we observe the 
opposite; domestic Indian firms filled the void in the market left by multinational firms. We 
confirm this aggregate finding with prescription level data, Indian physicians prescribed fewer 
focal multinational products relative to domestic firm products. Results are robust to alternate 
control groups and placebo testing. Implications for antibiotic resistance, global health policy and 
innovation policy are discussed.
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1.0  Introduction 

Research and development (R&D) is often viewed as a linear process. In the pharmaceutical 

industry, for example, university technologies are often commercialized by small, research-

intensive firms and ultimately licensed or acquired by larger firms for development prior to being 

taken to market. This technology push view of innovation (e.g., Mowery and Rosenberg, 1979) 

is long and expensive with high rates of failure (e.g., DiMasi et al, 2016). Shocks to upstream 

research in this kind of system ripple, for example, through development before impacting 

downstream product markets.1 But what if shocks occur elsewhere in the innovation ecosystem? 

Would this imply that shocks to one aspect of R&D could directly impact some other distantly 

connected part of the innovation ecosystem?  

It is not surprising that shocks to research will impact future development activities or that 

development shocks will impact product markets (e.g., Byrsiki et al., 2021). Nor is it surprising 

that product market shocks impact development activities (e.g., Agarwal and Gaule, 2021; 

Manso et al., 2019; Branstetter et al., 2014; Blume-Kohout and Sood, 2013; Dranove et al., 

2021; Dubois et al., 2013; Acemoglu and Linn, 2004; Finkelstein, 2004). In these literatures, 

however, events are occurring between connected parts of the R&D process.2 Complementing 

this are studies that focus on events within one part of the R&D process. For example, a series of 

papers explore the impact of development shocks on future development activities (e.g., Krieger 

et al., 2018; Hermosilla and Wu, 2018; Higgins and Rodriguez, 2006). Missing from the 

literature, however, is a clear understanding whether a causal relationship exists between 

unconnected parts of the R&D process. That is, do upstream research shocks directly impact 

related but disconnected downstream product markets?  

 
1 We follow the standard use of “upstream” and “downstream” in the innovation literature. With specific reference 
to R&D, upstream commonly refers to research-related (“R”) activities while downstream commonly refers to 
development-related (“D”) activities and product markets. 
2 For our purposes we will assume that the R&D process is linear; research-related activities result in new 
development-related activities which translate into new products. When we refer to “connected” parts of this process 
we are referring to those activities located next to each other. Specifically, research and development are connected 
as are development and product markets. In contrast, research and product markets are considered “unconnected”. 
When we refer to events “within” one part of the R&D process we mean those activities entirely contained within 
research, development, or product markets, respectively. 
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Using a natural experiment involving the publication of the discovery of the broad-spectrum 

antibiotic resistant New Delhi Metallo-Beta-Lactamase (NDM-1) superbug in India, we fill this 

gap in the literature. Prior to the publication in Lancet Infectious Diseases (Kumarasamy et al., 

2010) little attention was paid to this particular superbug (Figure 1). Using this event as an 

exogenous shock to research, coupled with unique and disaggregate data from the 

pharmaceutical industry, we are able to examine the impacts of this event on unconnected but 

related downstream antibiotic product markets. Importantly, we exploit variation across product 

markets (i.e., broad spectrum and narrow spectrum antibiotics), firm types (i.e., domestic, and 

multinational firms) and countries (e.g., India and U.S.). 

 We adopt a duopoly model with differentiated goods and linear demand and apply a 

solution concept from Cournot competition in terms of quantity choice (Dixit, 1979) to explain 

ex post strategic behavior of multinational and domestic firms in reaction to the NDM-1 research 

shock. In doing so we make important contributions to the literature. First, we find that the 

effects of the NDM-1 research shock were dramatic in the downstream Indian antibiotic product 

market. More specifically, multinational firms withdrew drugs from the affected antibiotic 

market. Within the context of our model, this pivot away from the Indian market can be 

explained by increases in marginal costs driven by changes to reputational costs faced by 

multinational firms.  

This reaction by multinational firms also aligns with the extant literature focused on the 

trade-offs firms face in deciding between ethics and profits, especially in the presence of 

negative market shocks and given risks to reputation (e.g., Adbi et al., 2018; Cheah et al., 2007; 

Rhee and Haunschild, 2006). Past work also demonstrates how future reputation can ultimately 

become a source of market power allowing firms to charge premium pricing (Allen, 1984; 

Shapiro, 1983; Klein and Leffler, 1981). Building reputation, however, is costly and can have a 

bearing on firm entry and exit decisions (Bachmann et al., 2021; Strittmatter and Lechner, 2020). 

This, in turn, will affect market structure and industry evolution when there are negative shocks 

to reputation. Emerging empirical evidence from the Volkswagen emission scandal aligns with 

this postulate (Bachmann et al., 2021; Strittmatter and Lechner 2020).  

These reputational costs may be more significant for larger, multinational firms facing a 

‘liability of foreignness’ amidst calls for corporate social responsibility in host countries (e.g., 
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Crilly et al., 2016; Campbell et al., 2012; Zaheer and Mosakowski, 1997). This is especially 

pertinent in sectors that have public health implications. For example, reputational costs may be 

higher if multinationals sell ‘dodgy’ medicines in host markets. A negative shock may credibly 

reveal adverse information about a product, impacting the firm’s ability to exercise market power 

not just locally but also globally. Thus if multinationals don’t have the same local institutional 

backing as domestic firms, they will need a higher rate of responsiveness so as to avoid possible 

sanction by regulators (Kostova et al., 2008). 

 This is precisely what we observe in our empirical setting. Not only do we see a 

multinational withdrawal from the market, but correspondingly we also document that 

prescriptions for multinational firm drugs in the affected markets also decline relative to 

domestic firm antibiotic prescriptions. This suggests that the change in physician behavior that 

we observe occurred through the intensive margin. We know from prior literature that 

pharmaceutical advertising and detailing impacts physician behavior (e.g., Datta and Dave, 2017; 

Manchanda and Honka, 2005); this is no different in the Indian pharmaceutical market. 

Specifically, we track bonus doses or quantities that firms provide as a direct incentive to sellers 

(Bhaskarabhatla et al., 2016). In the post-treatment period, we find a significant reduction in 

bonus quantities by multinational firms compared to domestic firms.  

 Within affected markets, variation also exists in terms of drug age or vintage. 

Pharmaceutical innovation within antibiotics has been relatively sparse (e.g., Spellberg and 

Gilbert, 2014). Thus, in the face of newly discovered resistance, firms should respond more 

rapidly to protect newer classes of drugs. Dividing drugs in affected markets by vintage (e.g., 

Chahine et al., 2010; Papp-Wallace et al., 2011), we find that multinational firms do react more 

sharply in pulling newer drugs from the Indian market. More broadly, this finding provides 

evidence of the nature of how an upstream research shock impacts downstream product markets. 

In our context, this suggests that newer innovations are impacted more severely than older 

innovations. This has significant implications for firms as newer innovations (i.e., drugs) tend to 

be higher priced as they are still covered by some type of regulatory or patent protection versus 

older drugs that most likely already face generic competition. To the extent that current revenues 

are used to fund future R&D (e.g., Branstetter et al., 2016), our results suggest there could be 

implications for future innovation. 
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 Next, we find that the void in the market left by multinational firms is filled by domestic 

firms who increase production. Within the context of our model, any reduction in one firm’s 

output (i.e., multinational firm), due to their strategic interaction, creates an opportunity for the 

other firm (i.e., domestic firm) to step in and increase their own output. Importantly, domestic 

firms are manufacturers and are not involved in novel R&D, so their business is driven primarily 

by quantity considerations. Domestic firms, therefore, do not face the same global reputational 

concerns as multinational firms. The important distinction here is that multinational firms are 

producing branded, novel drugs while domestic firms are producing generic versions of 

previously branded drugs. In most countries, branded drugs are held responsible for harm to 

patients, as long as generics versions were truly bioequivalent.3 

 This finding, worryingly, implies that downstream demand for drugs in affected markets 

does not wane. Antibiotic overuse is a global public health crisis (e.g., Ackerman and Gonzales, 

2012) and is even more acute in India (e.g., Thakolkaran et al., 2017) and thus market behavior 

in India may cause a significant negative externality in global antibiotic resistance (Coburn et al. 

2021).4 Our results suggest, however, that some combination of downstream actors, including 

physicians, pharmacists and/or patients are either choosing to act in a medically irrational 

manner or are oblivious to the shock.5 Sadly, survey evidence appears to support both 

explanations. In one survey, 89 percent of physicians believed that providers were 

overprescribing antibiotics (Thakolkaran et al., 2017). In the same survey, however, 80 percent 

of physicians stated that they did not receive periodic information on trends in bacterial 

resistance. Of those that did receive information, 8 percent reported receiving information from 

clinical laboratories, 2 percent from medical journals and 1 percent from the pharmaceutical 

industry. Combined with our core findings, this would imply that as multinational firms pulled 

 
3 For example, in 2011 the U.S. Supreme Court ruled in favor of protecting generic firms from being sued for failing 
to provide adequate label warning about side effects because federal law requires them to use the branded versions’ 
labels. 
4 The WHO just recently (re-)sounded the alarm on drug-resistant bacteria in April 2021: 
https://www.ft.com/content/f04275a3-5095-4f9e-a711-6fe7d59216dc.  
5 To contrast with our focal analysis on the Indian market, we have estimated the market impact using data from the 
U.S.; the effects are not significant. This is in line with the explanation that such aggressive reorientation in market 
structure combined with overprescription of antibiotics is predicated on a weaker regulatory body. Results are 
described more fully in the main text. 
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out of the Indian market, they failed to sufficiently inform physicians as to why they were 

leaving. 

 The heterogeneous firm reaction between multinationals and domestic firms also relates 

to the broader literature on technology choice and product abandonment (e.g., Bayus and 

Agarwal, 2007; Klepper and Simons, 1997). Much of this literature has focused on how 

technologies emerge and diffuse (Murmann and Frenken, 2006; Rogers, 2003) while usually 

finding they are welfare enhancing (e.g., Trajtenberg, 1989). Less investigated is why firms 

reduce their commitment to existing technologies. Reducing market commitment to existing 

technologies is difficult because it entails foregoing sunk cost investments (Finkelstein and 

Gilbert, 1985) and conceding the product market to competitors (Younkin, 2016). Our results - 

increased reputational costs in the face of negative upstream research shocks - provide a new, 

plausible channel that may help explain why firms abandon a product or market.  

 Along with our core findings we conduct numerous robustness and placebo tests to 

ensure the validity of our results. First, using a placebo mid-point test our pre-trends do not 

violate the parallel trends assumption. Second, our findings are robust with respect to three 

different alternate control groups. Third, our results are robust to controlling for regional 

heterogeneity within India. Fourth, we consider whether this research shock spilled over into 

other markets that were not exposed to the levels of NDM-1 antibiotic resistance found in India. 

Using data from the U.S., we find no evidence of any impact on their antibiotic market.  

 Finally, our findings also have important policy implications given the Red Queen Effect 

in antibiotics resistance (Dieckmann et al., 1995). The Red Queen Effect depicts a situation 

where - it takes all the running you can do, to keep in the same place.6 In the context of 

antibiotics, pharmaceutical firms are globally running a (difficult) R&D race to produce newer 

antibiotics, but at the same time, as more antibiotics are consumed (often indiscriminately 

prescribed) it increases the probability of resistance thereby destroying incentives for innovation. 

This horse race between economics and clinical externalities is at the heart of designing optimal 

health and innovation policies (Eswaran and Gallini, 2019), prompting infectious disease experts 

like Dr. Anthony Fauci to comment: “Resistant microbes outstrip new antibiotics. It is an 

 
6 The Red Queen Effect is aptly inspired from Lewis Carroll’s Through the Looking Glass, a sequel to Alice’s 
Adventures in Wonderland. 
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ongoing problem. It is not like we can fix it, and it is over. We have to fight continued resistance 

with a continual pipeline of new antibiotics and continue with the perpetual challenge.”7 

2.0 Institutional Background  

2.1 Antibiotic discovery, consumption, and resistance 

 Alexander Fleming discovered penicillin in 1928. By 1940, scientists had already 

discovered the existence of resistant bacterial strains and acknowledged the fear of over-use 

(Spellberg and Gilbert, 2014).8 By the mid-1940s, streptomycin, a successful drug for 

tuberculosis was introduced, but very soon after resistant bacteria were discovered. The 1950s 

saw the development of many classes of antibiotics that are still used today (e.g., tetracyclines, 

macrolides/lincosamides/streptogramins, glycopeptides, rifamycins and nitroimidazoles). 

Besides the discovery of quinolones and trimethoprim in the 1960s there was a long development 

gap until the oxazolidinones in the early 2000s (e.g., Conly and Johnston, 2005; Davies and 

Davies, 2010). The early triumphs of the global pharmaceutical industry over infectious diseases 

was captured by Nobel laureate M. Burnet’s quip “…the virtual elimination of the infectious 

diseases as a significant factor in social life…” (Burnet et al., 1972).  

 A large set of global pharmaceutical firms including Novartis, AstraZeneca, Sanofi, 

Allergen, Merck, Roche, GlaxoSmithKline, and Pfizer are active in antibiotics development and 

manufacturing. While antibiotics have been shown to positively impact long-run economic 

development (Acemoglu and Johnson, 2007), the supply of new antibiotics has slowly dried up. 

Unfortunately, bacteria continue to evolve (Spellberg and Gilbert, 2014). For example, from the 

World Health Organization’s list of antibiotics in clinical development, only three of them can 

potentially target the NDM-1 bacteria. This bacterium is the focus of our analysis and has shown 

resistance towards carbapenems, the broad-spectrum antibiotic also known as the ‘last line of 

defense’ for bacterial infections.9,10  

 
7 See: https://www.post-gazette.com/healthypgh/2014/05/25/Medical-marathon-Race-is-on-to-develop-new-
antibiotics-Medical-marathon-U-S-Centers-for-Disease-Control-and-Prevention-employ-shotgun-approach-to-bring-
antibiotic-resistance-under-control/stories/201405250015  
8 See: https://www.nytimes.com/1945/06/26/archives/penicillins-finder-assays-its-future-sir-alexander-fleming-
says.html 
9 See: https://www.who.int/news-room/detail/17-01-2020-lack-of-new-antibiotics-threatens-global-efforts-to-
contain-drug-resistant-infections 
10 See: https://www.theguardian.com/business/2020/jan/17/big-pharma-failing-to-invest-in-new-antibiotics-says-
who 
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High levels of antibiotic consumption and the related rise in antibiotic resistance is a 

globally well-recognized problem (e.g., Goff et al., 2016). Antibiotic resistance kills more than 

700,000 people each year with projected deaths exceeding 10 million per year by 2050 (O’Neill, 

2014). While the dangers have been recognized since the 1940s, it has proven difficult to reduce 

the use of the antibiotics. Between 2000 and 2015, global antibiotic consumption has increased 

by 65 percent (Klein et al., 2018). Much of this increase, and resulting rise in resistance, has 

occurred in low-and-middle income countries. India is an important contributor to this global rise 

in antibiotic resistance, including the presumed source of the broad spectrum antibiotic resistant 

NDM-1 superbug.11 NDM-1 has now spread to more than 70 countries and the latest report of its 

outbreak has emerged from as far away as a remote Norwegian archipelago.12 Important, 

however, for our analysis is the fact that during our sample period the spread of NDM-1 to the 

U.S. was extremely limited (and mostly as a result of patients having come into the U.S. from 

foreign countries).  

With respect to India, antibiotic consumption has dramatically outpaced the growth in 

global consumption, expanding by 103 percent over the 2000 to 2015 time period (Klein et al., 

2018). On a relative basis, India’s share in the global antibiotics market increased from 15.1 

percent in 2000 to 18.6 percent in 2015. While it is impossible to pin down a single reason to 

explain this trajectory in India, there are several demand-side culprits contributing to this 

problem. First, rising incomes and economic growth in India do not appear to have translated 

into improvements in water, sanitation, and public health (Laxminarayan and Heymann, 2012). 

Second, physicians continue to prescribe antibiotics for upper respiratory infections and diarrheal 

diseases for which they have limited value (Thakolkaran et al., 2017; Chatterjee et al., 2015; 

Laxminarayan and Heymann, 2012). Third, physicians routinely receive compensation in 

exchange for prescribing antibiotics (Roy et al., 2007).13 Fourth, some antibiotics are available 

over the counter allowing patients easy (and often uninformed) access to drugs (Laxminarayan 

 
11 See: https://www.downtoearth.org.in/blog/health/india-the-antibiotic-capital-of-the-world-63097  
12 See: https://www.wsj.com/articles/superbug-from-india-spread-far-and-fast-study-finds-11548633600 and 
http://outbreaknewstoday.com/italy-superbug-ndm-1-outbreak-reported-in-tuscany-24484/ 
13 Competition between physicians also play a role. Physicians report feeling pressured by patients for a quick 
remedy otherwise they risk losing the patient to other physicians (Kotwani et al., 2010). In conversations with 
physicians, they report to us that they believe it is better to err on the side of caution because they feel that a Type-I 
error is more acceptable both psychologically and socially. 
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and Chaudhury, 2016). Finally, there is increased use of antibiotics in the animal sector driven by 

demand for meat and poultry (Van Boeckel et al., 2015).  

2.2 Indian pharmaceutical industry 

 From the supply side, the Indian pharmaceutical industry is marked by over-dependence 

on antibiotics as their main source of revenue. In 2006, most of the best selling drugs in India 

were antibiotics (Duggan et al., 2016). Some of the highest selling brands in India includes 

products from both multinationals and domestic firms like GlaxoSmithKline’s Augmentin and 

Alkem Laboratories’ Clavam (both having the active ingredient amoxicillin and clavulanic acid), 

and Aristo Pharmaceuticals’ Monocef (active ingredient being ceftriaxone, a cephalosporin).14  

In developed countries, antibiotics account for around 8 percent of total pharmaceutical 

sales, however, in developing countries, such as India, their share is around 20 percent 

(Chaudhuri et al., 2006).15 Prior to the identification of the NDM-1 superbug in India, it would 

be safe to suggest that neither the demand nor the supply side were paying enough attention to 

the brewing problem of drug-resistance. Luckily, rationalizing drug usage globally has slowly 

started to take hold (Pulcini et al., 2012) and it seems India has taken the cue. In 2014, the Indian 

government instructed pharmacists to set up registers to maintain detailed record of drug sales 

and also implemented other community surveillance programs to monitor medically irrational 

prescribing behavior following some prior work that shows positive effects of these in European 

markets (Coburn et al., 2021).16  

Adding to the complexity of the problem, the Indian pharmaceutical industry is highly 

fragmented with over 5,000 firms operating in the market (Adbi et al., 2021; Chattopadhyay and 

Bercovitz 2020; Adbi et al., 2019). Traditionally, the market has been dominated by generic 

manufacturers due to India relaxing their intellectual property regime in the 1970s. The 

liberalization of the Indian economy in the 1990s led many of these generic manufacturers to 

begin to export to other developing economies (Hafner and Popp, 2011). Coupled with the 

passage in the U.S. of The Drug Price Competition and Patent Term Restoration Act (1984), 

 
14 See: https://www.livemint.com/news/india/dcgi-moves-to-curb-sales-of-antibiotics-without-prescriptions-
11577380637918.html  
15 Based on AIOCD reports, we find that anti-infective accounts for 17 percent of sales in 2012. 
16 See: http://origin.searo.who.int/india/topics/antimicrobial_resistance/amr_containment.pdf 
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Indian generic manufacturers also began to export to the U.S. market (Branstetter et al., 2016; 

Chatterjee, 2009; Chaudhuri, 2005). This dynamic shifted in 2005 with the implementation of the 

World Trade Organization’s Trade Related Intellectual Property Rights (WTO-TRIPs) 

requirements which re-strengthened the intellectual property regime in India. One major 

implication of WTO-TRIPs has been the rise of multinational firms within the domestic Indian 

market (e.g., Duggan et al., 2016; Chatterjee et al., 2015; Kapczynski, 2009). 

 2.3 Multinational reputational costs  

Past work in industrial organization shows how the benefit of future reputation can 

induce firms to produce high quality goods whether in monopoly or competitive settings; 

reputation ultimately becomes a source of market power allowing firms to charge premium 

pricing (e.g., Allen, 1984; Shapiro, 1983; Klein and Leffler, 1981). The intuition is straight 

forward, reputation serves as a signal to solve the adverse selection problem. Logically, building 

reputation involves costs that might have a bearing on firm entry and exit decisions. This, in turn, 

will affect market structure and industry evolution when there are negative shocks to reputation. 

Recent empirical evidence from the Volkswagen emission scandal supports this assertion 

(Bachmann et al., 2021; Strittmatter and Lechner, 2020).  

More broadly, prior work has focused on the dynamics of seller reputation (e.g., Cabral 

and Hortacsu, 2010) and the role of buying reputation in online markets (e.g., Li et al., 2020). It 

has also examined the limits of reputation in online platform markets (e.g., Nosko and Tadelis, 

2015; Fan et al., 2016). Collectively, this strand of work clearly demonstrates the importance of 

reputation costs for a firm.  

As discussed above, these reputational costs may be more significant for larger, 

multinational firms facing a liability of foreignness where they face calls for corporate social 

responsibility in host countries (e.g., Crilly et al., 2016; Campbell et al., 2012; Zaheer and 

Mosakowski, 1997). This is especially important in sectors with public health implications. For 

example, reputational costs may be higher if multinationals sell ‘dodgy’ medicines in host 

markets causing trust implications (Aivalli et al., 2018). A negative shock may credibly reveal 

adverse information about a product, impacting the firm’s ability to exercise market power not 

just locally but also globally. Thus if multinationals don’t have the same local institutional 
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support as domestic firms, they will need a higher rate of alertness so as to avoid possible 

sanction by regulators (Kostova et al., 2008).  

Recent empirical evidence suggests broader applicability of these intuitions across 

sectors. For example, Chinese toymakers were perceived as having lousy quality even when the 

mistake was by designers based in the U.S. (Beamish and Bapuji, 2008). Moreover, 

multinationals operating in emerging markets face higher reputational costs due to the risk of 

public crises (Zhao et al., 2014). Both Conoco Phillips failure to admit oil spill-related 

environmental damage in China and the Maggi controversy associated with Nestle in India (Pai, 

2018; Dhanesh and Sriramesh, 2018) negatively impacted multinational firm reputation.17 A 

related literature from marketing also extends these insights with work on country-of-origin 

effects. For example, European consumer response to a beef and horsemeat scandal was 

influenced by their perception of the brand’s home country (Barbarossa et al., 2016).  

Another important aspect of reputational costs for multinational firms comes from the 

risk of potential negative spillover of brand damage from local to global markets. Firms attempt 

to insulate themselves from this kind of damage by outright avoiding markets where these kinds 

of spillover can occur. For example, prior work has shown that firms with higher corporate 

reputations are less likely to have a presence in the least developed countries due to institutional 

uncertainty and the likely risk of negative global spillover to their corporate reputation (Musteen 

et al., 2013). Interestingly, there is now evidence of this same effect in more developed 

economies due to corporate scandals, for example, in the Swedish financial industry (Jonsson et 

al., 2009), the U.S. toy (Freedman et al., 2012) and oil industries (Barrage et al., 2020) as well as 

the Chinese dairy industry (Bai et al., 2021). 

Finally, for pharmaceutical products these issues are particularly sensitive given their 

significant public health implications. For example, in the case of Dengvaxia, a dengue vaccine 

produced by Sanofi Pasteur, the vaccine was effective in reducing dengue cases, however, it led 

to several deaths in the Philippines. Ultimately, the vaccine program was suspended and arrest 

warrants issued for three Sanofi executives translating into significant reputational damages for 

 
17 https://edition.cnn.com/2012/04/27/world/asia/china-oil-spill/index.html  
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Sanofi.18 Critically, the Dengvaxia episode led to an overall negative perception of vaccination in 

the Philippines (Larson et al., 2019).  

3.0  Theoretical Model 

Our theoretical model helps explain and illustrate possible firm-level reactions in 

downstream product markets to upstream research shocks. Given the adverse nature of the shock 

one might expect both multinational firms (MNCs) and domestic firms to face higher 

reputational costs thereby leading them to withdraw from an impacted focal product market. 

However, such an equal likelihood to withdraw is predicated on the assumption that both types 

of firms face similar reputational consequence. Given our discussion in the previous section, this 

might not be the case and we present a simple strategic interaction model that concisely explains 

such behavior. The intuition is that even if the firms were facing identical reputational costs in 

the pre-shock period, a post-shock difference in relative reputational consequences can lead to 

differential responses.  

Consider a duopoly model with linear demand where we will apply the solution concept 

from Cournot competition in terms of quantity choice. The baseline framework is built on Dixit 

(1979). For simplicity and to retain tractability, we treat the multinational and domestic firms as 

two separate sets of firms. This assumption not only simplifies the model considerably but also is 

consistent with our econometric approach as we detail in our empirical approach and 

identification strategy below. We denote the aggregate quantities produced by the multinational 

firms and domestic firms as qf and qd, respectively.  

 We start by defining the demand side and assume a continuum of consumers with a 

quasi-linear utility function (Singh and Vives, 1984) in terms of quantity supplied by 

multinationals (𝑞𝒇) and domestic firms (𝑞𝒅) as follows: 

 𝑈(𝑞#,𝑞$ , 𝑍) = 	𝛼	(𝑞# +	𝑞$) −	
%
&
	(𝑞# +	𝑞$)& 	+ 𝑍    (1) 

where α and β are shape parameters of the utility function. The parameter descriptions 

and restrictions in the current representation are standard (e.g., Haraguchi and Matsumura, 

2014). Z represents a bundle of outside consumption goods that are competitively provided. We 

 
18 https://www.manilatimes.net/2021/02/02/news/top-stories/3-dengvaxia-firm-execs-ordered-arrested/836166  
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assume that the price of commodity bundle Z is normalized to 1. We can generate the inverse 

demand functions for the multinational and domestic firms, respectively, by equating marginal 

utilities to prices: 

      𝑝#	= 𝛼 – β (𝑞# + 𝑞$)             and            𝑝$ 	= 𝛼 – β (𝑞$ + 𝑞#).  (2) 

 On the producer side, we assume that the marginal cost is constant for both the 

multinational and domestic firms. Note that marginal cost is derived from a firm’s total cost 

function which includes all costs faced by the firm, including reputational costs. We denote these 

marginal costs by 𝑐# and 𝑐$, respectively. Assuming that α > 𝑐#,$ , the profit functions of these 

firms are given by: 19  

        𝜋# = (𝑝# −	𝑐#)𝑞#                 and             𝜋$ = (𝑝$ −	𝑐$)𝑞$ .   (3) 

By maximizing profits, we can write 

 ()!
(*!

= 𝛼# − 2𝛽𝑞# − 𝛽𝑞$ = 0         and            ()"
(*"

= 𝛼$ − 2𝛽𝑞$ − 𝛽𝑞# = 0, (4) 

where  𝛼# = 		𝛼 −	𝑐# and  𝛼$ = 		𝛼 −	𝑐$ . 20  

From (4) we can generate the reaction functions for the multinational and the domestic firms, 

respectively: 

 𝑅#(𝑞$) =
+!	–	*"%

&%
           and          𝑅$3𝑞#4 =

+"	–	*!%
&%

  .    (5) 

By solving the reaction functions, we can generate the equilibrium quantities in terms of 

exogenous parameters as: 

 	𝑞#∗ =
&+!/	+"

0%
                   and             𝑞$∗ =

&+"/	+!
0%

 .                      (6) 

This leads to the relative market shares as   

 
19 The autonomous component is greater than the marginal costs for both multinational and domestic firms. This is a 
necessary condition for ensuring an interior solution. 
20 The second-order conditions are satisfied.  
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																		𝑠#∗ =
&+!/	+"
+!1+"

                   and             𝑠$∗ =
&+"/	+!
+!1+"

 .    (7) 

We posit that the NDM-1 research shock leads to differential changes for these firms’ 

strategic choices due to differential changes in reputational costs. The reputational cost for 

multinational firms goes up for selling a potentially controversial product in a foreign market 

(the domestic market of India is a foreign market for multinational firms), reflected by an 

increase in marginal costs, 𝑐#. Their counterpart (domestic firms), on the other hand, do not 

witness such an increase in cost. This may arise due to at least two reasons. First, as discussed 

above, MNCs have presence in many different markets across the globe while domestic firms are 

local in nature. Therefore, the spillover of potential damage to reputation may have larger 

pecuniary consequences for MNCs. Second, MNCs are also more actively engaged in R&D 

which is costly. Therefore, they should be on the margin more protective of their products in the 

face of future obsolescence (should there be deepening of antibiotic resistance) and reduce their 

presence.  

Our model generates a clear prediction for such a differential change in the perceived 

cost. If 𝑐#	goes up, then 𝛼#	goes down (since 𝛼# = 𝛼 −	𝑐#). Consequently, the market share of 

multinational firms, 𝑠#∗, goes down and simultaneously the market share of the domestic firms, 

𝑠$∗ , goes up. Mathematically, the derivative of the market share for MNCs with respect to their 

marginal cost,  
(	2!

∗

(3!
 , is negative while the derivative of the market share for domestic firms with 

respect to the MNC marginal cost,  (	2"
∗

(3!
 , is positive. 

This last effect of market share of domestic firms increasing is due to backfilling linked 

to the strategic response of domestic firms. The economic intuition is that given the fixed 

demand function, any reduction in one type of firms’ presence, creates an opportunity for the 

other type of firms to step in to extract profit. Since we have combined all MNCs into one 

strategic player here for modelling purpose, reduction in market share and firm withdrawal is 

consistent with reducing market presence ultimately leading to exiting the market in an empirical 

sense. From the point of view of the model, both the reduction in share and withdrawal (intensive 

margin) and market exit (extensive margin) would induce effectively the same downward 

adjustment in equilibrium share, 𝑠#∗. The opposite is true for domestic firms.  
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4.0 Data 

We utilize three main sources of data. First, we use the Pharmatrac database maintained 

by the All India Organisation of Chemists and Druggists (AIOCD) for drug sales data at the 

molecule-region-time level in India. This data is collected from more than 500,000 retailers 

representing about 60 percent of drug sales in India. Sales are reported at the stock-keeping unit 

(SKU)-region-month level (aggregated at quarterly level for the purpose of analysis) and 

includes price at which drugs are supplied to the retailer, maximum retail price, bonus quantities 

to retailers and quantity sold. This dataset has become the standard source of sales data to study 

the Indian pharmaceutical market (e.g., Adbi et al., 2021; Adbi et al., 2019; ). Our time frame 

covers the period from 2008 to 2012, with quarterly information consisting of a total of three 

carbapenems and sixteen narrow-spectrum antibiotics sold by more than one hundred firms.  

In our baseline specification, the treatment group consists of the carbapenem antibiotics 

(ATC codes J01DH04, J01DH02 and J01DH51) and the control group consists of narrow-

spectrum antibiotics. 21 Important for our identification strategy, narrow spectrum antibiotics are 

not an effective treatment for the NDM-1 superbug. To compile our control group of narrow 

spectrum antibiotics, we follow the medical literature. In particular, following Kristensen et al. 

(2019), narrow spectrum antibiotics consist of: (1) β-lactamase sensitive penicillin (J0CE01and 

J0CE02); (2) β-lactamase resistant penicillin (J01CF01 and J01CF02); (3) first-generation 

cephalosporins (J01DB01, J01DB04 and J01DB05; and, (4) macrolides (J01FA01). All 

molecules along with their corresponding ATC classification are given in Appendix Table A1. 

Second, we are also interested in physician prescribing behaviour. For this purpose, we 

utilize a unique proprietary dataset drawn from the IQVIA Prescription Audit Database that 

consists of approximately three million physician prescriptions on a quarterly basis covering all 

of India. IQVIA is a well-recognized, global provider of pharmaceutical data. As before, this 

dataset has been used in prior work (e.g., Adbi et al., 2019; Bhaskarabhatla and Chatterjee, 2017; 

Dutta, 2011).  

In our robustness analysis aiding also in enhancing our identification strategy, we 

examine whether the NDM-1 research shock impacted market structures outside India. For this 

 
21 Anatomical Therapeutic Code (ATC) is the standard therapeutic coding scheme developed by the World Health 
Organization. Importantly, drugs are approved by ATC code by the FDA. For details see: 
https://www.whocc.no/atc_ddd_index/  
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analysis we turn to data from IQVIA MIDAS for the U.S market, which has a low level of 

reported carbapenem-resistance (Figure 2). More specifically, we obtain sales data at the 

molecule-time level for the U.S. antibiotics market and conducted a placebo test with this sample 

for the first quarter in 2008 to the fourth quarter in 2012. The U.S. sample covers eight 

molecules; two of them are carbapenems and the remaining six are narrow spectrum antibiotics. 

Finally, a detailed listing of all variables along with their source and a description of how 

they were constructed are given in Table 1. In Table 2 we present a detailed timeline of 

important events that took place after the NDM-1 paper was published in Lancet Infectious 

Diseases. The publication led to the formation of government committees within India as well as 

follow-up publications that were plausibly endogenous to the first publication. 

5.0  Empirical Strategy and Identification 

        5.1 Multinational shares in the downstream carbapenem product market 

 Building on our theoretical arguments in Section 3.0 and to understand the causal effect 

of the upstream NDM-1 research shock on downstream multinational firm product markets, we 

first estimate the following base specification:  

𝑀𝑁𝐶𝑠ℎ𝑎𝑟𝑒45 = 𝛽6 	+ 𝛽7𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚4 	+ 𝛽&𝑁𝐷𝑀15 	+ 𝛽0(𝑁𝐷𝑀15 × 𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚4) 	+

𝛽8𝑇𝑜𝑡𝑎𝑙	𝑅𝑒𝑣𝑒𝑛𝑢𝑒45 + 𝛽9𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒4 +	𝛽:𝑇𝑖𝑚𝑒5 + 𝜖45	      (8)  
 

The dependent variable, 𝑀𝑁𝐶𝑠ℎ𝑎𝑟𝑒45, is defined as multinational firm market share for 

molecule (m) at time (t), where time is defined by quarters. The variable Carbapenemm is defined 

as a dummy variable equal to one if a molecule belongs to the treatment group, zero otherwise. 

NDM1t is defined as a time-varying dummy that differentiates between the pre- and post-Lancet 

publication (i.e., research shock) periods. The coefficient of interest, 𝛽0, provides the estimate 

for the impact of the NDM-1 research shock on downstream multinational firm market share in 

the carbapenem market (i.e., treated group) relative to narrow spectrum antibiotics (i.e., control 

group). As predicted from our model, we anticipate this coefficient of interest to be negative if 

multinational firms withdraw from the market and domestic firms engage in backfilling. Given 
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the nature of the dependent variable we include results from both OLS and Fractional Probit 

models across most specifications. For Equation (8) we cluster the standard errors by molecule.22 

Second, to analyze possible inter-firm heterogeneity, we follow Dutta (2011) and 

estimate firm sales shifts based on Defined Daily Dosages (DDD).23 For this analysis, our unit of 

observation changes to the firm-molecule-time level and we estimate the following triple 

differences specification: 
 

log	(𝑆𝑎𝑙𝑒𝑠#45) = 	𝛼6 +	𝛽7 log	( 𝑃𝑟𝑖𝑐𝑒#45) + 𝛽&𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚4 	+ 	𝛽0𝑁𝐷𝑀15 	+ 𝛽8𝑀𝑁𝐶# 	+

	𝛽9(𝑁𝐷𝑀15 × 	𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚4) + 𝛽:(𝑀𝑁𝐶# × 	𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚4) + 𝛽;(𝑀𝑁𝐶# × 𝑁𝐷𝑀15) +

𝛽<(𝑀𝑁𝐶# × 𝑁𝐷𝑀15 × 𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚4) + 𝛽=𝑇𝑖𝑚𝑒5 + 𝛽76𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒4 + 𝛽77𝐹𝑖𝑟𝑚# +

𝛽7&(𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒4 × 𝐹𝑖𝑟𝑚#) +	𝜖4#5        (9) 

 

where the dependent variable, 𝑆𝑎𝑙𝑒𝑠#45, corresponds to the sales of a particular firm, f, for 

molecule, m, in time t. Again, time is measured in quarters. The interpretations of the dummy 

variables remain identical to those in Equation (8), except MNCf which is defined as a dummy 

equal to one if a firm is multinational, zero otherwise. The coefficient of interest in this 

specification, 𝛽<, provides the estimate of change of multinational sales in carbapenems post-

NDM-1 research shock.  

 In this specification we also control for the log of molecule prices, 𝑃𝑟𝑖𝑐𝑒#45. To account 

for potential endogeneity of prices we utilize the richness of our data. The final cost paid by 

consumers is broken down into retail price plus margin. Retailer margin influences the profit of 

the manufacturer and their marketing expense (Sudhir, 2001; Lal and Narasimhan, 1996) and 

thus acts as a cost shifter (Nevo, 2001; Ellison et al., 1997).24 Hence, retail margin influences the 

 
22 As a robustness check, we re-estimate our baseline specification with cluster bootstrap standard errors. Results are 
reported in Appendix Table A2 and remain robust. Additionally, to account for the presence of zeroes and the 
bounded nature of the dependent variable (between 0 to 1), we use a fractional probit model (Papke & Wooldridge, 
2008). 
23 While computing the Defined Daily Dosage (DDD) in the paper, we followed the recommendation of the World 
Health Organization (WHO). For example, using these recommendations, the DDD of Doripenem is 1500 mg per 
day for a person weighing 70 kg. Thus, for Q mg of Doripenem, the DDD units would be Q/1500. In the case of 
intravenous injections for antibiotics as well as oral administration, we convert the mg content into DDD counts 
following the above method. Thus, all medicines are comparable in terms of DDD.  
24 Quantity demand of a particular product is directly related to the price paid by a consumer. The final price consists 
of two factors, price at which the drug is procured by the retailer and retailer margin which includes profit along 
with marketing, distributional and other expenses borne by the retailer. This variable represents a cost shifter for the 
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price but not sales thereby plausibly satisfying the exclusion criteria. Building on this insight, we 

use it as an instrumental variable for prices.25  

We also control for unobserved heterogeneity at the time, molecule, and firm level with 

respective fixed effects. To account for molecule-firm level idiosyncrasies, such as time-

invariant heterogeneity in historical capabilities of some firms in producing some molecules over 

others, we also control for molecule-firm paired fixed effects. Standard errors in this 

specification are clustered at the molecule-firm level. 

5.2  Physician prescription behaviour 

To unpack the intensive margin mechanisms of our overall market structure effects, we 

explore the impact of the NDM-1 research shock on physician prescription behaviour. Physicians 

are a major stakeholder in this phenomenon as they directly influence patients (Guan et al., 2019; 

Basu et al., 2008). It is not unreasonable to suggest that they would understand the problem of 

over-prescription of antibiotics and the consequent growth of antibiotic resistant strains. 

Additionally, drug firms regularly engage in detailing by sending sales personnel to interface 

with physicians. This should, theoretically, create a clear channel for information to flow from 

firms to physicians. To understand if and how physicians prescribing behaviour changed in 

reaction to the NDM-1 research shock, we test the following specification: 

𝑀𝑁𝐶_𝑅𝑋𝑠ℎ𝑎𝑟𝑒45 = 𝛽6 	+ 𝛽7	𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚4 	+ 𝛽&𝑁𝐷𝑀15 	+ 𝛽0(𝑁𝐷𝑀15 ×

𝐶𝑎𝑟𝑏𝑎𝑝𝑒𝑛𝑒𝑚4) + 𝛽8𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒4 +	𝛽9𝑇𝑖𝑚𝑒5 + 𝜖45                        (10) 

Equation (10) is the same as Equation (8) except we replace the dependent variable with 

MNC-RXsharemt, defined as share of prescriptions written for molecule (m) in quarter(t). As 

before, our coefficient of interest is 𝛽0 which captures the impact of the treatment on the 

prescription share for multinationals in the post-treatment period. Here it will be useful to 

evaluate the possible mode of physician responses in the context of our model. There are two 

possible ways physicians can respond. One, they themselves reduce the prescription quantity 

(perhaps following scientific literature) thereby making MNCs pull back from the domestic 

market. Two, the MNCs themselves pull back from the market, decreasing incentives as they do 

 
firm, as the consumer will be unaware of the mark-up, but the firm needs to incorporate this margin in their profit 
maximizing exercise as this represents a cost for them to distribute and sell their product. 
25 The first stage F-statistic in our instrumental variable estimation is 470 which is greater than the recommended 
value of 10 (Staiger and Stock, 1994). 
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so, leading physicians to prescribe fewer MNC-produced products. As we discuss below, our 

evidence points to this second mechanism.  

 5.3 Analysis of pre-trends 

 Our identification strategy relies on the fact that the control group is not exposed to 

treatment in either period. Importantly, the shock in question did not impact our control sample 

(i.e., narrow spectrum antibiotics). In Figure 3, we can visually observe that our pre-trends do not 

appear to violate the parallel trends assumption. To quantitatively test the parallel assumption 

more formally we follow the approach adopted in (Higgins et al., 2021) and take our pre-trend 

data and split it in half, defining the midpoint as an arbitrary treatment (Placebotreatment) event 

and estimating our main diff-in-diffs specification (Equation 8). If the parallel trend assumption 

is violated the coefficient 𝛽0 will be statistically significant.   

 The results for this placebo test are reported in Table 3. Given the nature of our 

dependent variable we report two specifications, one for OLS (Model 1) and another for 

Fractional Probit (Model 2). In both specifications our coefficient of interest, 𝛽0, is not 

statistically significant. Combined, the visual evidence in Figure 3 along with these placebo test 

results suggest that the parallel trends assumption is not violated. 

           This is consistent with the institutional evolution after the publication of the Lancet article 

(Table 2). Parliamentary discussions were held with a sequence of newspaper reports coming out 

over the following months. Almost one year after publication another article came out in Lancet 

which we view as endogenous to the first publication. All of this coincided with the emergence 

of a national policy to tackle antibiotic resistance in India and the identification of the first case 

in Canada. The cumulative effects of these events show up in firm-level responses, as seen in our 

empirical results. 

 

6.0  Empirical Findings       

            6.1  Descriptive analysis 

 In Table 4, we provide descriptive summary statistics. We see that in terms of the narrow 

spectrum antibiotic market (Panels 1 and 2), the relative size of the market remained relatively 

stable in terms of multinational share. In contrast, in the carbapenem market (Panels 3 and 4), we 

see that the multinational share declined. A complementary analysis in terms of prescribing 

behavior of physicians, indicates a very similar scenario. In Panels 5 and 6, the multinational 
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market share for narrow spectrum antibiotics remained stable while in Panels 7 and 8, the 

multinational market share for carbapenems reduces after treatment. We examine this 

phenomenon more formally in regressions, specifically we quantify the causal impact of our 

shock controlling for unobserved heterogeneity in our models. In Panels 1 and 2 in Table 4, we 

also see that both multinational and local firms increased bonus doses in narrow spectrum 

antibiotics after the shock. In contrast, in Panels 3 and 4, we see that the average bonus doses of 

carbapenems for local firms increased while they decreased for multinational firms. This 

provides descriptive support for the assertion that multinational firms reduced incentives 

(through bonus doses) for carbapenems after the NDM-1 shock while we find local firms 

backfilling, potentially leveraging bonus doses as incentives to physicians. 

            6.2  Impact of the upstream research shock on downstream product markets 

We start by estimating Equation (8). In Model 1, Table 5 we report OLS regression 

results with multinational market share (MNCshare) as the dependent variable. Model 2 reports 

results using a Fractional Probit specification. We find strong support across all the models that 

the market share of multinationals went down for carbapenems in the post-treatment period. 

Interpreting Model 1, we observe that the NDM-1 research shock led to a reduction of 16.9 

percent in multinational firm market share for an average carbapenem molecule. Given average 

sales of 65.17 million DDD per quarter for an average carbapenem molecule, this 16.9 percent 

reduction in market share translates into a 11.03 million DDD reduction per quarter, per 

carbapenem molecule. Next, to test the effects at the intensive margin, we redefine the dependent 

variable as the multinational share of prescriptions by physicians (MNC-RXshare). These results 

are presented in Model 3 and the effect is even stronger.  

Finally, to analyze possible inter-firm heterogeneity we use Equation (9) and redefine the 

dependent variable as firm level sales measured in DDD (Log (Sales)). Price is instrumented in 

this specification and results are presented in Model 1, Table 6. In this triple difference setting, 

we observe a sharp drop in the quantity of carbapenems sold by multinationals in the post-

treatment period (MNC x NDM-1 x Carbapenem). A similar decline is also seen at the 

prescription-level for multinationals (Log (RX per Doctor)), Model 2, Table 6. In this 

specification, average MNC prescriptions per doctor decline. These results, along with those 
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from Model 3, Table 5, suggest that the shift in physician behaviour is occurring through the 

intensive margin, accompanying the sales withdraw we observed for multinational firms.  

 6.3 Unpacking underlying heterogeneous mechanisms 

  6.3.1 Supply-side responses to the NDM-1 research shock 

Beyond firm choices and physician behaviour it is conceivable that the supply-side would 

also react to the NDM-1 research shock. As a mechanism of the average multinational firm’s 

revealed preferences, we can analyze the level of bonus doses or quantities that firms provide as 

a direct way to incentivize sellers. This strategic use of bonus quantities has been highlighted 

earlier to be a pervasive phenomenon in Indian pharmaceutical markets (Bhaskarabhatla et al., 

2016). Bonus quantity represents the extra quantity provided to retailers to increase sales of a 

particular molecule. For example, a firm may give a retailer one extra strip of a drug for free for 

every one hundred strips of drugs they are able to sell within a fixed time period. We examine 

this issue using Equation (9) and present results in Model 3, Table 6. To estimate the effects on 

bonus quantities, we use an inverse hyperbolic sine transform (Bahar et al., 2020; Bellemare and 

Wichman, 2020) which is well-defined for zeros. We find that in the post-treatment period, 

multinational firms reduced bonus quantities of carbapenems compared to domestic firms. This 

reduction in incentives is entirely consistent with a firm that is pulling a product out of a 

market.26 

 6.3.2 Vintage: Old versus new carbapenems 

So far, we have considered carbapenems as one homogeneous group of molecules that 

belong to the same class. But there may be generational differences within carbapenems in terms 

of vintage of the active ingredient, underlying technology, safety or efficacy. It is also more 

likely that older drugs face generic alternatives; reputational costs for selling older vintage 

carbapenems should be muted, at least with respect to newer drugs. An examination of 

differential effects by vintage allows us to indirectly test the variation in reputational risks. 

Therefore, we broadly divide our treatment group of carbapenems into “old” versus “new” 

following prior work (e.g., Chahine et al., 2010; Papp-Wallace et al., 2011) and examine 

 
26 In Appendix Table A3 we split carbapenems into “low” versus “high” MNC bonus doses or quantities as an 
indirect test for the reputational risks multinationals may face in these former cohort of molecules. We find there is 
larger reduction for higher bonus share molecules compared to lower bonus share molecules. 
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whether these subgroups experienced differential reductions in market shares for 

multinationals.27  

To explore whether multinational firms react more aggressively with respect to their 

newer drugs we estimate Equation (8) with this split sample in Table 7. Models 1 and 2 present 

results for multinational sales share in newer carbapenems compared to older carbapenems using 

OLS, while Models 3 and 4 show the same using a Fractional Probit model. Across all models, 

the interaction term (NDM-1 x Carbapenem) is negative and significant. Importantly, we find 

that multinational firms reacted more sharply with respect to their newer carbapenems. In all 

cases, they actively reduced their sales in these new carbapenems consistent with our discussions 

on reputational risks being higher for newer vintage carbapenems suggest.  

             6.3.3 Accounting for regional heterogeneity  

 Previous studies (e.g., Adbi et al., 2021; Dandona et al., 2017) identify the importance of 

regional heterogeneity in India. In order to account for this spatial component, we incorporate 

three sets of dummies into Equation (8): (1) Geography; (2) Molecule x Geography; and (3) 

Geography x Time. Geography is defined as 23 regions in India as per the AIOCD database and 

broadly correspond to state boundaries in India. Results are presented in Table 8. Across Models 

1 to 3 we find that our OLS results are quantitatively consistent with our baseline model (Model 

1, Table 5). Similarly, across Models 4 to 6 we find that our Fractional Probit results are also 

quantitatively consistent with their corresponding baseline model (Model 2, Table 5). 

Collectively, the results from Models 1 to 6, Table 8 demonstrate that, after controlling for 

regional heterogeneity, multinational market share of carbapenems declined in the post-treatment 

period. 

 6.4 Robustness 

  6.4.1. Alternative controls 

Our benchmark control group consists of narrow spectrum antibiotics. To ensure that our 

results are not driven by this choice, we re-examine our core results using several alternate 

control groups. First, we create a control group comprised of all other broad-spectrum 

antibiotics, excluding carbapenems. The rationale for considering this alternate control group 

 
27 See Appendix Table A1 for the set of molecules along with the ATC classification. 
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comes from the Lancet publication itself. More specifically, the paper explicitly mentioned 

carbapenem in its abstract: “Gram-negative Enterobacteriaceae with resistance to carbapenem 

conferred by New Delhi metallo-beta-lactamase 1 (NDM-1) are potentially a major global 

health problem.” (Kumarasamy et al., 2010). Thus, there is a possibility that physicians might 

consider carbapenems as a separate entity within the group of broad-spectrum antibiotics. We re-

estimate Equation (8) this new control group and report results in Models 1 and 2, Table 9; 

results remain robust.  

Next, to ensure we are not splitting controls in ways that may be biasing our results, we 

create a broad control group consisting of all antibiotics, excluding carbapenems. We again re-

estimate Equation (8) with this new control and report results in Models 3 and 4. Results not only 

remain robust but are also quantitatively similar to Models 1 and 2 even though the sample size 

increased by over 50 percent.  

Finally, we explore a third alternate control group based on the synthetic control method 

(Abadie et al., 2010; Abadie and Gardeazabal, 2003). For our analysis, the outcome of interest is 

the mean multinational market share of carbapenems in the pre- and post-NDM-1 research shock 

time period. Using the synthetic control method, we assign weights to narrow-spectrum 

molecules to create an artificial matched sample of carbapenem molecules. This third control 

group along with our treatment group is plotted in Figure 4 and regression results from the 

estimation of Equation (7) are reported in Models 5 and 6, Table 9. As with our prior two set of 

controls, results remain robust.  

6.4.2. Did the NDM-1 research shock spill over to overseas markets? 

Given that antibiotics are globally available; one can reasonably ask whether the 

structural shift in the Indian market spilled over into other countries. If the answer to this 

question is “yes,” it would be a rare example of such shocks spilling from the “Global South” to 

the “Global North.” In addition, it may also raise global welfare concerns with negative 

externalities from carbapenem resistance. If the answer to this question is “no,” that would align 

with the intuition that perhaps institutional monitoring mechanisms of antibiotics in the Global 

North are more well established. In this case, firms there may not be as concerned about a local 

upstream research shock emanating from the Global South. Importantly, it would also provide 

further support for our identification strategy.  
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To explore this question, we obtain additional data for the U.S. antibiotics market, a 

context which also represents a lower ex ante antibiotic resistant market (Figure 2). If our focal 

research shock was general in nature, then we would expect to see similar kinds of effects in 

lower antibiotic resistant markets. Physicians in the U.S., for example, may begin to proactively 

prescribe fewer carbapenems. Regulators and/or multinational firms may also begin to limit the 

sale of these ‘last line of defense’ drugs. If so, we would expect to see a negative impact at the 

aggregate level in the U.S. antibiotics markets.  

Our treatment group for this analysis is a matched sample of carbapenem molecules sold 

both in India and the U.S.; the control group remains narrow spectrum molecules. These are 

plotted in Appendix Figure A1. From this plot there is no visual evidence of any impact from the 

NDM-1 research shock. There is a minor decline in sales but that seems to be happening both in 

carbapenem and narrow spectrum antibiotic markets. Regression results are reported in Table 10 

and are consistent with this lack of visual evidence; the interaction term of interest is not 

significant. From a policy perspective, this non-response suggests that U.S. regulators did not 

(yet) appear concerned that this particular antibiotic resistance would spread to the U.S. or rise to 

a level of concern that warranted a response. 

7.0  Conclusion and Discussion  

The effects of market structure on R&D are well documented; however, the impacts of 

research directly on market structure are less established. We fill this gap by exploring the causal 

impacts of a shock to upstream research on related but unconnected downstream market 

structure. We use a natural experiment involving the publication of the discovery of the broad-

spectrum antibiotic resistant New Delhi Metallo-Beta-Lactamase (NDM-1) superbug in India. 

The focal article was published in August 2010 in the highly prestigious Lancet Infectious 

Diseases, with little evidence that much attention was paid to NDM-1 prior to that event (Figure 

1). This publication stirred an intense policy debate in India ranging from speculation about 

regional discrimination (similar to what was witnessed with the “Wuhan” coronavirus (Hu et al., 

2020; Masters-Waage et al., 2020; Wang et al., 2020)), the potential adverse impact on medical 

tourism in India (Saliba et al., 2016), and what this find meant for health policy in India – 

especially given that these particular drugs are the ‘antibiotics of last resort’.  
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We start with a theoretical model to conjecture about ex post strategic behavior of 

multinational and domestic firms in reaction to this research shock and then empirically examine 

our theoretical propositions. In doing so, we make several contributions to the literature. First, 

we find that the upstream NDM-1 research shock caused multinational firms to withdraw 

products from the downstream domestic Indian market. We theorize that multinational firms 

suffer a reputational cost, due to factors such as to their liability of foreignness (Zaheer and 

Mosakowski, 1997). This, in turn, increased their marginal cost leading them to withdraw from 

the downstream product market. This result contributes to the abandonment literature by 

providing a new channel by which firms may choose to withdraw from a market. We bolster this 

finding by showing that, at the physician level, prescriptions for multinational firm drugs 

declined, relative to domestic drugs. Importantly, we show that these effects do not carry over 

into markets with low-antibiotic resistance. 

While declining antibiotic use in the post-treatment period may be viewed positively for 

public health and antibiotic stewardship reasons, this was not how it ultimately turned out in the 

local Indian antibiotics market. Instead, the void created in the market by multinational firms was 

filled by domestic producers; antibiotic use did not wane. Again, these actions are consistent 

with our theoretical model. Domestic firms are manufacturers and not involved in novel R&D, so 

their business is driven primarily by quantity considerations. Domestic firms, therefore, do not 

face the same global reputation concerns as multinational firms. An important distinction here is 

that multinational firms produce branded, novel drugs while domestic firms are producing 

generics. In most countries, branded drug producers are held responsible for any harm to 

patients, even if generics are also being sold. 

Our findings have profound public health & policy implications. Antibiotic overuse is a 

global public health crisis (Ackerman and Gonzales, 2012) and the resulting issues with 

resistance do not stop at national borders. While 89 percent of physicians believe antibiotics are 

overprescribed (Thakolkaran et al., 2017), in the face of this shock, our results suggest that the 

volume of prescriptions did not decline. The only change in physician behavior observed was the 

rotation from prescribing multinational firm products to domestic firm products. It would be easy 

to blame physicians, especially given some of the financial incentives to prescribe drugs, 

however this ignores the demand from patients (consumers) and the role of government. Patients 
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continually demand antibiotics, even in cases when they are not medically necessary (e.g., most 

ear infections in children). Furthermore, governments could take more aggressive actions with 

respect to antibiotic stewardship and limit their use in other areas, such as farming. Lest we 

believe the implications of antibiotic resistance are not serious, in one study (CDC, 2016) 2 

million illnesses and 23,000 deaths were attributed to antibiotic resistance in just the U.S. That 

same study assigned a direct cost of $20 billion plus an additional $35 billion in lost 

productivity; global costs are even higher. 

Our results also have implications for innovation policy. To the extent that sales from 

current products fund future R&D (e.g., Branstetter et al, 2016), as multinational firms withdraw 

from India, this could dampen future innovation. Antibiotics also suffer from the Red Queen 

Effect – the innovation-resistance cycle is never ending. Multinational firms are globally running 

a (difficult) R&D race to produce newer antibiotics, while at the same time, as more antibiotics 

are consumed there is the probability of increased resistance. This creates the situation where the 

newest antibiotics may be held back in reserve, which may be appropriate from a stewardship 

perspective, but this limits revenues thereby creating disincentives for companies to undertake 

their development. Recent procurement policies from COVID-19 may offer a new path forward. 

In the COVID-19 response governments directly funded both push (i.e., direct funding of R&D) 

and pull (i.e., rewards for successful development of products) mechanisms instead of relying on 

traditional market mechanisms, such as patents (Sampat and Shadlen, 2021).  

It is worth noting that the pathogenic outbreak we explore here is markedly different than 

the one caused by COVID-19. In our case, we were dealing with an established product market 

that experienced an upstream research shock. This upstream shock caused responses in 

downstream product markets. In the case of COVID-19, in contrast, there was no established 

market, this was a shock to the entire system. And while we now see new research (‘R’) taking 

place, the strongest initial response was in development (‘D’) as the underlying technologies 

used for the vaccines (e.g., viral vectors and mRNA) were already developed for use in other 

areas (Agarwal and Gaule, 2021). But the greatest take-away from COVID-19, in terms of 

innovation policy, as Sampat and Shadlen (2021) point out are the extraordinary measures taken 

by governments. It is yet to be seen whether governments will use those bold measures to 

combat other problems, such as antibiotic resistance. 
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Our work is not without limitations and potentially offers avenues for future studies. 

First, while we test and find that there were no effects of the Indian NDM-1 shock in the U.S. 

antibiotics market, it would be worth investigating if there are variations in this result by the 

entirety of the “Global North” and “Global South”. Data for such a study would be costly but a 

more complete analysis could help coordinate global policy responses. Second, the persistence 

(if any) of shocks to reputational costs are a worthy avenue of future work. Does performance 

return to some steady-state, why or why not? Third, our results suggest a more detailed analysis 

on upstream innovation is warranted. Given the public welfare importance of antibiotics, 

understanding possible disincentives for innovation is critical. Our results also point to the public 

value of scientific publications and global pathogenic outbreak databases for surveillance like the 

Berlin Outbreak Database (Vonberg et al., 2011) and the need to study in more detail their 

welfare effects. Fourth, future work should build on our findings and the emerging literature on 

reputation (for firm-level market power) to empirically validate measured reputation effects on 

market structure not just in antibiotics but other markets more generally. Finally, it may be 

worthwhile for future work to understand more nuanced exit distributions and the speed of exit 

between heterogeneous firms. As with all research, more is left to be done. 
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Figure 1. Patterns in Google search: Cumulative frequency of Google searches within India for NDM-1 
from Q1:2008 to Q4:2012. The vertical bar denotes the time of treatment (i.e., publication of NDM-1 
article in The Lancet Infectious Diseases) in August 2010. We utilize the search frequency for each month 
and aggregated them over quarters to match the frequency in the main analysis. Google search does not 
provide the absolute number of searches in a given month. It normalizes the maximum number of 
searches within a given time horizon (month 1, 2008 to month 12, 2012 in this case) to one hundred. On 
this normalized scale, searches for NDM1 in first quarter of treatment were at 100 and this moved beyond 
100 in the post treatment periods, being zero in the pre-treatment periods but ultimately reaching beyond 
250 in Q4 2012. 

    
 

Figure 2. Resistance to carbapenems across countries: Resistance has been measured by randomly 
testing bacteria with respect to treatment in carbapenems and noting the frequency of resistant bacteria. 
India has the highest resistance while the United States is in the group of countries with the lowest 
resistance. Data source: The Center for Disease Dynamics, Economics & Policy. Resistance Map: 
Antibiotic resistance. 2012.  
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Figure 3. Multinational share in sales during pre- and post-treatment periods: Multinational market 
share in sales during pre- and post-treatment periods (separated by the vertical line) in the carbapenems 
(treated) and narrow-spectrum antibiotic markets. The y-axis denotes multinational market share while 
the x-axis denotes the number of quarters from Q1:2008 to Q4:2012. Source: AIOCD Pharmatrac. 

 

 

Figure 4. Synthetic control results for multinational sales share: Multinational market share in sales 
during pre- and post-treatment periods (separated by the vertical line) in the carbapenems (treated) 
market. Using the synthetic control method, we assign weights to narrow-spectrum molecules to create an 
artificial matched sample (control) of carbapenem molecules The y-axis denotes multinational market 
share while the x-axis denotes the number of quarters from Q1:2008 to Q4:2012.  
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Table 1. Variable definition, description, and source. 

Dependent variables Description Data Source 
MNCshare This variable is defined as aggregated 

market share (based on sales) of 
multinational firms for a focal molecule in 
time t. Time is defined in quarters and sales 
are defined as “defined daily dosages” 
(DDD). 

AIOCD 
Pharmatrac 

Log (Sales) Logarithm of sales in DDD for a focal firm 
and molecule at time t. Time is defined in 
quarters. 

AIOCD 
Pharmatrac 

MNC-RXshare Aggregated market share (based on the 
number of prescriptions) of multinational 
firms for a focal molecule in time t. Time is 
defined in quarters. 

IQVIA 
Prescription 
Audit Database- 
India 

Bonus Dose Inverse sine transform of bonus doses for a 
focal firm and molecule in time t. Time is 
defined in quarters and dose in DDD. 

AIOCD 
Pharmatrac 

Log (RX per Doctor) Logarithm of prescriptions per physician for 
a focal firm and molecule in time t. Time is 
defined in quarters.  

IQVIA 
Prescription 
Audit Database- 
India 

Log (Sales: US)  Logarithm of focal molecule sales in time t. 
Time is defined in quarters and sales are in 
standard units, defined by IQVIA.  

IQVIA MIDAS 

Log (Revenue: US) Logarithm of focal molecule revenues in 
time t. Time is defined in quarters. 

IQVIA MIDAS 

   
Independent variables Description Data Source 

NDM-1 Dummy equal to zero for quarters before 
August 2010 (i.e., Q2:2010) and equal to 
one after. 

 

Carbapenem Dummy variable equal to one if a molecule 
is a carbapenem (ATC code J01DH), 0 
otherwise. 

 

NDM-1 × Carbapenem Interaction term between variables NDM-1 
and Carbapenem.  

 

MNC Dummy variable equal to one if a firm had 
majority foreign ownership as of Q3:2010, 
0 otherwise. 

IQVIA 
Prescription 
Audit Database-
India and CMIE 
Prowess 

MNC × NDM-1 × Carbapenem Interaction term between variables: MNC, 
NDM-1 and Carbapenem.  

 

Year Dummy variable for each year defined from 
one (2008) to five (2012). 

 

Placebotreatment Dummy variable equal to zero for quarters 
before Q2:2009 and one after Q2:2009 in 
pre-treatment sample. 

 

Placebotreatment × Carbapenem Interaction term between variables 
Placebotreatment and Carbapenem.  
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Control variables Description Data Source 

Total Revenue Total aggregate revenue of a focal molecule, 
across firms, at time t. Time is defined in 
quarters and revenue in millions of Indian 
Rupees. 

AIOCD 
Pharmatrac 

Log (Price) Logarithm of average maximum retail price 
in Indian Rupees per DDD of molecule. 

AIOCD 
Pharmatrac 

Time  Dummy variable for each quarter t where t 
ranges from 1 (Quarter 1: 2008) to 20 
(Quarter 4: 2012). 

 

Molecule Dummy variable for each molecule m.  AIOCD 
Pharmatrac 

Firm Dummy variable for each firm, f. AIOCD 
Pharmatrac 

Molecule × Firm Interaction between Molecule and Firm 
dummies. 

AIOCD 
Pharmatrac 

Geography Dummy variable for each geographical 
region g covering 23 geographical markets 
in India. 

AIOCD 
Pharmatrac 

Molecule × Geography Interaction between Molecule and 
Geography dummies. 

AIOCD 
Pharmatrac 

Geography × Time Interaction between Geography and Time 
dummies. 

AIOCD 
Pharmatrac 
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Table 2. NDM-1 Timeline. A listing of important events that took place after the publication of the focal 
NDM-1 paper in Lancet Infectious Diseases in August 2010. 

 

 

 

 

 

 

  

Month Event 

August 2010 NDM-1 paper published in Lancet Infectious Diseases. 

August 2010 Countries such as Bahrain and Thailand issue alerts about possible superbug spread 
from the Indian subcontinent. 

August 2010 Indian parliament debates the naming of the superbug. 

September 2010 Indian government forms a committee to draft guidelines for antibiotic prescriptions. 

January 2011 Dr. Richard Horton (The editor of Lancet) acknowledges that naming NDM-1 after 
New Delhi unnecessarily stigmatised a single country or city. 

April 2011 Second NDM-1 paper published in Lancet Infectious Disease. 

April 2011 India announces a national policy for containment of antimicrobial resistance. 

June 2011 First case of NDM-1 identified in Canada without any Indian travel history. 

August 2012 Symposium by medical societies in India to discuss antimicrobial resistance and 
Chennai Declaration intended to curb antimicrobial resistance. 
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Table 3. Analysis of pre-trends. To quantitatively test the parallel trends assumption more formally we 
follow the approach adopted in (Higgins et al., 2021) and take our pre-trend data and split it in half, 
defining the midpoint as an arbitrary treatment (Placebotreatment) event and estimating our main diff-in-
diffs specification (Equation 8). A constant term is included in all the specifications. Time horizon is 
Q1:2008 to Q2:2010. The placebo treatment time is Q2:2009. To account for the presence of zeroes and 
the bounded nature of the dependent variable (between 0 to 1), we include a Fractional Probit model 
(Papke and Wooldridge, 2008). Standard errors in parenthesis are clustered at the molecule level. * p<0.1, 
** p<0.05, *** p<0.01.  

 

 (1) (2) 
 MNCshare 

 (OLS) 
MNCshare 

(Fractional Probit) 
Placebotreatment 0.0000 0.0526 

 (.) (0.0680) 
   

Carbapenem 0.0000 6.4693*** 
 (.) (0.4258) 
   

Placebotreatment ×  Carbapenem -0.0338 -0.2163 
(0.0200) (0.1527) 

   
Total Revenue 0.0002*** 0.0008 

(0.0001) (0.0005) 
   

Time  Yes Yes 
Molecule  Yes Yes 

R2 1.00  
Log pseudo likelihood  -20.51 

N 164 165 
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Table 4. Summary Statistics. This table presents summary statistics of the narrow-spectrum and 
carbapenem antibiotics for the pre- and post-treatment period. We note that during the post-treatment 
period, market share of carbapenem sold by multinationals decreased in terms of sales and prescriptions 
compared to narrow-spectrum antibiotics. Nominal quantities are in Indian rupees. 

 
 Panel (1) 

Narrow spectrum pre-treatment 
Panel (2) 

Narrow spectrum post-treatment 
 Mean Max Min Mean Max Min 

MNCshare 0.1858 0.1972 0.1576 0.1995 0.2241 0.1843 

Number of 
firms 

118.70 137.00 103.00 81.00 105.00 71.00 

Total 
Revenues 

1,165.59 1,345.04 1,045.78 1.273.14 1,456.38 1,073.25 

Sales (Local, 
million DDD) 

35.00 719.00 0.0001 53.50 1050.00 0.0001 

Sales (MNC, 
million DDD) 

153.00 443.00 0.0094 166.00 529.00 0.0011 

Price (Local) 0.3535 4.1600 0.0448 0.3577 4.0800 0.0506 

Price (MNC) 0.3890 0.6562 0.0943 0.4303 0.7812 0.0807 

Bonus Dose 
(Local, million 

DDD) 
0.8306 31.0000 0.0000 2.1286 46.5000 0.0000 

Bonus Dose 
(MNC, million 

DDD) 
1.8461 9.2873 0.0000 2.9366 11.1000 0.0000 

 

 
 

 Panel (3) 
Carbapenem pre-treatment 

Panel (4) 
Carbapenem post-treatment 

 Mean Max Min Mean Max Min 
MNCshare 0.8402 0.9445 0.7579 0.7227 0.7884 0.6361 

Number of 
firms 

12.00 14.00 9.00 22.10 27.00 15.00 

Total 
Revenues 

620.06 992.25 389.43 668.95 902.39 514.92 

Sales (Local, 
million DDD) 

2.2379 7.9793 0.0018 1.9618 16.4000 0.0003 

Sales (MNC, 
million DDD) 

25.8000 92.2000 0.9525 16.7000 66.2000 0.0007 

Price (Local) 4.1233 4.8320 2.9720 5.1676 9.6960 2.8500 

Price (MNC) 5.1712 8.7162 4.2869 6.2808 9.7500 4.4505 

Bonus Dose 
(Local, million 

DDD) 
0.0091 0.1973 0.0000 0.0419 0.5570 0.0000 

Bonus Dose 
(MNC, million 

DDD) 
0.0335 0.4318 0.0000 0.0100 0.1700 0.0000 
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Table 4. Summary Statistics. (continued) 

 
 (5) 

Narrow spectrum pre-treatment 
(prescription) 

(6) 
Narrow spectrum post-treatment 

(prescription) 

 Mean Max Min Mean Max Min 
MNC-

RXshare 
0.0019 0.0035 0.0011 0.0015 0.0047 0.0004 

Number of 
firms 

5,734.50 6382.00 3754.00 2451.70 3690.00 1724.00 

Total 
prescriptions 

11,100,000 12,300,000 10,400,000 9,192,247 10,900,000 8,354,308 

RX per 
Doctor 
(Local) 

34.5618 440.1207 5.5385 77.5288 771.6631 5.5000 

RX per 
Doctor 
(MNC) 

25.4958 47.1186 14.3784 57.0003 137.9153 7.5714 

 

 

 (7) 
Carbapenem pre-treatment 

(prescription) 

(8) 
Carbapenem post-treatment (prescription) 

 Mean Max Min Mean Max Min 
MNC-

RXshare 
0.3055 0.6857 0.0000 0.0494 0.1483 0.0000 

Number of 
firms 

3.50 7.00 1.00 1.33 2.00 1.00 

Total 
prescriptions 

686.25 1868.00 45.00 217.33 472.00 67.00 

RX per 
Doctor 
(Local) 

11.7150 21.9643 6.2093 7.9669 6.7000 9.4961 

RX per 
Doctor 
(MNC) 

22.9127 38.8636 9.0619 7.0000 7.0000 7.0000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

44 

Table 5. Impact of the upstream NDM-1 publication research shock on downstream product 
markets. We estimate the impact of the NDM-1 publication on multinational market share (Equation 8) 
in Models 1 and 2. Given the nature of the dependent variable, Model 1 utilizes OLS while Model 2 
utilizes Fractional Probit. Model 3 redefines the dependent variable as the aggregated market share (based 
on the number of prescriptions) of multinational firms for a focal molecule at time t. Model 3 utilizes a 
Fractional Probit model to test Equation 10 for RXshare. A constant term is included in all the 
specifications but not reported. Time horizon is Q1:2008 to Q4:2012. Standard errors in parenthesis are 
clustered at the molecule level. * p<0.1, ** p<0.05, *** p<0.01. 
 

 

 (1) (2) (3) 
 MNCshare  

 (OLS) 
MNCshare  

(Fractional Probit) 
MNC-RXshare 

(Fractional Probit) 
NDM-1 0.0000 0.5210 0.6942 

 (.) (0.5069) (1.6218) 
    

Carbapenem 0.0000 4.3554*** 6.0669*** 
 (.) (0.4709) (0.6687) 
    

NDM-1 × Carbapenem -0.1693** -0.7283** -4.8282*** 
(0.0622) (0.3355) (0.7088) 

    
Total Revenue 0.0002*** 0.0012  

(0.0001) (0.0008)  
    

Time  Yes Yes Yes 
Molecule  Yes Yes Yes 

R2 0.96   
Log pseudolikelihood  -51.97 -8.38 

N 320 320 181 
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Table 6. Impact of the upstream NDM-1 publication research shock on sales, prescriptions, and 
bonus quantities. We estimate the impact of the NDM-1 publication (Equation 9) on firm level sales 
(Model 1), average MNC prescriptions per physician (Model 2) and bonus dose quantities (Model 3). 
Price is instrumented in Model 1. A constant term is included in all the specifications but not reported. 
Time horizon is Q1:2008 to Q4:2012. Remaining explanatory variables from Equation 9 are not estimated 
due to collinearity with fixed effects and thus not reported. Standard errors in parenthesis are clustered at 
the molecule-firm level. * p<0.1, ** p<0.05, *** p<0.01. 

 
 

(1) (2) (3) 
 Log (Sales) 

(OLS) 
Log (RX per Doctor) 

(OLS) 
Bonus Dose 

(OLS)  
Log (Price) -0.1063   

 (0.1923)   
    

MNC × NDM-1 0.4393 0.1935 0.5785 
 (0.3768) (0.3106) (0.5533) 
    

NDM-1 × Carbapenem 0.6996*** -0.8450*** 1.3715 
 (0.2524) (0.1956) (1.3236) 
    

MNC ×  NDM-1 ×  Carbapenem -0.9391** -0.8324** -5.0279*** 
 (0.4414) (0.3609) (1.7498) 
    

Time Yes Yes Yes 
Molecule Yes Yes Yes 

Firm Yes Yes Yes 
  Molecule × Firm Yes Yes Yes 

R2 0.01 0.61 0.80 
First-stage F 470.12   

N 3523 1892 3523 
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Table 7. Vintage effect in our baseline results: Old versus new Carbapenems. We split our sample 
into ‘new’ and ‘old carbapenems and estimate the impact of the NDM-1 publication on multinational 
market share (Equation 8). Given the nature of the dependent variable, Models 1 and 2 utilizes OLS while 
Models 3 and 4 utilizes Fractional Probit. A constant term is included in all the specifications but not 
reported. Time horizon is Q1:2008 to Q4:2012. Standard errors in parenthesis are clustered at the 
molecule level. * p<0.1, ** p<0.05, *** p<0.01. 

 

 (1) (2) (3) (4) 
 New: MNCshare  

(OLS) 
Old: MNCshare  

(OLS) 
New: MNCshare  

(Fractional 
Probit) 

Old: MNCshare  
(Fractional 

Probit)  
    

NDM-1 0.0000 0.0000 0.7659 0.6212 
 (.) (.) (0.6797) (0.4811) 
     

Carbapenem 0.0000 0.0000 11.8255*** 3.9213*** 
 (.) (.) (0.3106) (0.1923) 
     

NDM-1 × Carbapenem -0.2711*** -0.1021*** -5.3106*** -0.4461*** 
(0.0076) (0.0122) (0.1936) (0.1411) 

     
Total Revenue 0.0001 0.0002*** -0.0009 0.0008 

(0.0001) (0.0001) (0.0016) (0.0005) 
     

Time  Yes Yes Yes Yes 
Molecule  Yes Yes Yes Yes 

R2 0.95 0.97  
 

Log pseudolikelihood 
  

-40.69 -45.76 
N 295 305 295 305 

 

 

 

  



 
 

47 

Table 8. Robustness accounting for regional heterogeneity. We estimate the impact of the NDM-1 
publication on multinational market share (Equation 8) accounting for regional heterogeneity in demand 
for antibiotics in India. We define Geography as a dummy variable for the 23 separate regions in India 
corresponding to state boundaries. Given the nature of the dependent variable, Models 1, 2 and 3 utilizes 
OLS while Models 3, 4 and 5 utilizes Fractional Probit. A constant term is included in all the 
specifications but not reported. Time horizon is Q1:2008 to Q4:2012. Standard errors in parenthesis are 
clustered at the molecule-geography level. * p<0.1, ** p<0.05, *** p<0.01. 
 
 
 
   

 (1) (2) (3) (4) (5) (6) 
 MNCshare 

(OLS) 
MNCshare 

(OLS) 
MNCshare 

(OLS) 
MNCshare 

(Frac. 
Probit) 

MNCshare  
(Frac. 
Probit) 

MNCshare  
(Frac. 
Probit) 

NDM-1 0.0000 0.0000 0.0000 0.1351 0.0215 0.0282 
 (.) (.) (.) (0.1067) (0.1168) (0.2093) 
       

Carbapenem 0.0000 0.0000 0.0000 4.5392 0.9738** 1.0798* 
 (.) (.) (.) (.) (0.3791) (0.6207) 
       

NDM-1 × 
Carbapenem   

-0.1941*** -0.1869*** -0.1861*** -0.7179*** -0.7735*** -0.7567*** 
(0.0357) (0.0352) (0.0342) (0.1261) (0.1442) (0.1310) 

       
Total Revenue 0.0031*** 0.0023*** 0.0023*** 0.0152*** 0.0213*** 0.0202*** 

(0.0008) (0.0009) (0.0008) (0.0056) (0.0038) (0.0038) 
       

Geography  Yes Yes Yes Yes Yes Yes 
Molecule x Geography  No Yes Yes No Yes Yes 

Geography x Time No No Yes No No Yes 
R2 0.82 0.90 0.91    

Log pseudolikelihood    -1152.95 -989.72 -953.89 
N 5403 5389 5389 5403 5403 5403 
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Table 9. Robustness: Alternative control groupings. We re-estimate the impact of the NDM-1 
publication on multinational market share (Equation 8) using three alternative sets of controls. First, we 
use all other broad-spectrum antibiotics as control group, excluding carbapenems (Models 1 and 2). 
Second, we use all other antibiotics as control group, excluding carbapenems (Models 3 and 4). Our 
treated group remains carbapenems. Finally, using the synthetic control method, we assign weights to 
narrow-spectrum molecules to create an artificial matched sample of carbapenem molecules (Models 5 
and 6). Given the nature of the dependent variable both OLS and Fractional Probit specifications are 
estimated. A constant term is included in all the specifications but not reported. Time horizon is Q1:2008 
to Q4:2012. Standard errors in parenthesis are clustered at the molecule level. * p<0.1, ** p<0.05, *** 
p<0.01. 

  

 (1) (2) (3) (4) (5) (6) 
 MNCshare  

(OLS) 
 

MNCshare  
(Fractional 

Probit) 
 

MNCshare  
(OLS) 

 

MNCshare  
(Fractional 

Probit) 
 

MNCshare  
(OLS) 

 

MNCshare  
(Fractional 

Probit) 
 

Control Type: Broad 
spectrum 

Broad  
spectrum 

All 
antibiotics 

All 
antibiotics 

Synthetic 
control 

Synthetic  
control 

NDM-1 0.0000 -0.0170 0.0000 0.0074 0.0000 -0.2066 
 (.) (0.1042) (.) (0.1079) (.) (0.5251) 
       

Carbapenem 0.0000 -1.2580*** 0.0000 4.3639*** 0.0000 0.3372*** 
 (.) (0.3536) (.) (0.3705) (.) (0.0062) 
       

NDM-1 ×  
Carbapenem 

-0.1626*** -0.6287* -0.1621*** -0.6334** -0.2801*** -0.9587*** 
(0.0567) (0.3242) (0.0564) (0.3225) (0.0000) (0.0141) 

       
Total Revenue -0.0000 -0.0001 -0.0000 -0.0001   

(0.0001) (0.0002) (0.0001) (0.0002)   
       

Time  Yes Yes Yes Yes Yes Yes 
Molecule  Yes Yes Yes Yes Yes Yes 

R2 0.97  0.96  0.70  
Log pseudo 

likelihood 
 -311.60  -551.41  -19.25 

N 1539 1539 2668 2668 40 40 
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Table 10. Robustness: Alternative global antibiotic markets, US sample. We re-estimate the impact of 
the NDM-1 publication on aggregate sales (Model 1) and aggregate revenues (Model 2) for the U.S. 
antibiotic market. Sales are in standard units as defined by IQVIA and revenues are in U.S. dollars. A 
constant term is included in all the specifications but not reported. Time horizon is Q1:2008 to Q4:2012. 
Standard errors in parenthesis are clustered at the molecule level. * p<0.1, ** p<0.05, *** p<0.01. 

 

 (1) (2) 
 Log (Sales: US) Log (Revenue: US) 

NDM-1 0.0000 0.0000 
 (.) (.) 
   

Carbapenem 0.0000 0.0000 
 (.) (.) 
   

NDM-1 × Carbapenem -0.2573 0.0955 
(0.5642) (0.5179) 

   
Time Yes Yes 

Molecule Yes Yes 
R2 0.94 0.91 
N 153 153 
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Online Appendix 

 

Figure A1. Robustness: Alternative global antibiotic markets. Sales in millions of standard units as 
defined by IQVIA MIDAS during pre- and post-treatment periods (separated by the vertical line) in the 
U.S. carbapenems (treated) and narrow-spectrum (control) antibiotic markets. The x-axis denotes the 
number of quarters from Q1:2008 to Q4:2012. Source: IQVIA MIDAS. 
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Table A1. Molecule classification based on ATC code 

Molecule ATC code Classification 
U.S. FDA 

approval year 
U.S. patent 

year 
Structure 

AMBROXOL + CEFADROXIL J01DB05 narrow-spectrum Before 1982 1978 First-generation cephalosporins 

CEFADROXIL + CLAVULANIC 
ACID J01DB05 narrow-spectrum 

Before 1982 1978 First-generation cephalosporins 

CEFADROXIL + LACTOBACILLUS 
ACIDOPHILUS J01DB05 narrow-spectrum 

Before 1982 1978 First-generation cephalosporins 

CEFADROXIL + PROBENECID J01DB05 narrow-spectrum Before 1982 1978 First-generation cephalosporins 

CEFADROXIL COMBINATIONS J01DB05 narrow-spectrum Before 1982 1978 First-generation cephalosporins 

CEFADROXIL J01DB05 narrow-spectrum Before 1982 1978 First-generation cephalosporins 

CEFALEXIN + BROMHEXINE J01DB01 narrow-spectrum Before 1982 1975 First-generation cephalosporins 

CEFALEXIN + CARBOCISTEINE J01DB01 narrow-spectrum Before 1982 1975 First-generation cephalosporins 

CEFALEXIN + PROBENECID J01DB01 narrow-spectrum Before 1982 1975 First-generation cephalosporins 

CEFALEXIN J01DB01 narrow-spectrum Before 1982 1975 First-generation cephalosporins 

CEFAZOLIN J01DB04 narrow-spectrum Before 1982 1967 First-generation cephalosporins 

CLOXACILLIN J01CF02 narrow-spectrum Before 1982 1962 First-generation cephalosporins 

DICLOXACILLIN J01CF01 narrow-spectrum Before 1982 1971 Beta-lactamase resistant penicillin 

DORIPENEM J01DH04 carbapenem 2007 1994 Carbapenems 

ERYTHROMYCIN J01FA01 narrow-spectrum 1985 1966 Macrolides 

IMIPENEM + CILASTATIN J01DH51 carbapenem 1985 1975 Carbapenems 

MEROPENEM + SULBACTAM J01DH02 carbapenem 1996 1983 Carbapenems 

PENICILLIN G J01CE01 narrow-spectrum 
Before 1982 NA Beta-lactamase sensitive 

penicillin 

PENICILLIN V J01CE02 narrow-spectrum 
Before 1982 NA Beta-lactamase sensitive 

penicillin 



Table A2. Robustness: Baseline results with wild cluster bootstrap error. We estimate the impact of 
the NDM-1 publication on multinational market share (Equation 8) in Models 1 and 2 with wild cluster 
bootstrap standard errors. Given the nature of the dependent variable, Model 1 utilizes OLS while Model 
2 utilizes Fractional Probit. A constant term is included in all the specifications but not reported. Time 
horizon is Q1:2008 to Q4:2012. Standard errors in parenthesis are clustered at the molecule level. * 
p<0.1, ** p<0.05, *** p<0.01. 
 

 

 (1) (2) 
 MNCshare  

 (OLS) 
MNCshare 

(Fractional Probit) 
   

NDM-1 0.0333 0.4975 
 (0.0591) (0.5822) 
   

Carbapenem 0.1747** 4.3292*** 
 (0.0690) (0.4135) 
   

NDM-1 × Carbapenem   -0.1578** -0.6826** 
 (0.0581) (0.3450) 
   

Total Revenue 0.0002*** 0.0012 
(0.0001) (0.0007) 

   
Number of Firms       -0.0011            -0.0034 

                       (0.0019)            (0.0161)  
   

Time Yes Yes 
Molecule Yes Yes 

R2 0.96  
Log pseudolikelihood  -51.9607 

wildbootpvalue 0.0000  
N 320 320 
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Table A3. Robustness: High versus low bonus quantities. We split our sample into markets with ‘high’ 
(Models 1 and 3) and ‘low’ (Models 2 and 4) bonus quantities by aggregating over our entire sample 
period and estimate the impact of the NDM-1 publication on multinational market share (Equation 8). 
Given the nature of the dependent variable, Models 1 and 2 utilizes OLS while Models 3 and 4 utilizes 
Fractional Probit. A constant term is included in all the specifications but not reported. Time horizon is 
Q1:2008 to Q4:2012. Standard errors in parenthesis are clustered at the molecule level. * p<0.1, ** 
p<0.05, *** p<0.01. 
 
 
 
 

 (1) (2) (3) (4) 
 High Bonus 

Dose (OLS) 
Low Bonus 
Dose (OLS) 

High Bonus Dose 
(Fractional 

Probit) 

Low Bonus Dose 
(Fractional 

Probit) 
NDM-1 0.0000 0.0000 0.7659 0.6212 

 (.) (.) (0.6797) (0.4811) 
     

Carbapenem 0.0000 0.0000 11.8255*** 3.9213*** 
 (.) (.) (0.3106) (0.1923) 
     

NDM-1 × Carbapenem -0.2711*** -0.1021*** -5.3106*** -0.4461*** 
 (0.0076) (0.0122) (0.1936) (0.1411) 
     

Total Revenue 0.0001 0.0002*** -0.0009 0.0008 
 (0.0001) (0.0001) (0.0016) (0.0005) 
     

Time  Yes Yes Yes Yes 
Molecule  Yes Yes Yes Yes 

R2 0.95 0.97   
Log pseudolikelihood   -40.6887 -45.7615 

N 295 305 295 305 
 

 




