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We show that late 2020 to early 2021 was a historically bad period for shorting strategies.

Numerous press articles were dedicated to one stock, GameStop, whose price sky-rocketed in

January 2021 due to the strong demand by non-professional traders participating in online

forums. However, a broad-based decline in short selling had begun almost two months before

the dramatic events of January 2021. As early as November 2020, short interest went down

in a significant number of stocks that were much larger than GameStop, did not attract the

attention of the online crowd, and did not experience any notable change in retail purchase

volume.

The timing of the retreat suggests that it was not a direct reaction to GameStop losses.1

At the same time, the unremarkable behavior of retail purchase volume for the numerous

stocks whose short interest declined suggests that this retreat was not the result of widespread

“short squeezes,” like the one experienced by GameStop. Rather, we contend that the

behavior of short sellers during this period may be better described as a fearful reaction to

early warning signs of a shifting market environment.

Motivated by these events, in this paper we attempt to explain why short selling may be

a particularly fickle strategy, susceptible to “run-type” behavior. In particular, we provide a

novel reason — unrelated to the well-known Shleifer and Vishny (1997) “limits to arbitrage”

argument — why rational short sellers may choose to abandon a market even as prices

increasingly deviate from fundamentals.

We next provide more detail on our empirical findings, outline the ingredients of the

model, and summarize the basic intuitions for our findings.

As has been extensively reported, in January 2021 the WSB subreddit, an online forum

where contributors exchange views on trading, saw explosive growth, largely centered around

GameStop. Consistent with articles in the popular press linking this online discussion with

retail purchases, we show that high-frequency fluctuations of GameStop mentions on the

WSB subreddit exhibited a very high correlation (above 90 percent at hourly intervals) with

retail purchases of GameStop. This strong high-frequency correlation suggests that the WSB

subreddit was an effective vehicle in coordinating retail purchases for this particular stock.

1In this context, it is worth noting that the dollar value of GameStop shares shorted as of December 31,
2020 was $1.3 billion, 0.1% percent of the total value of all shares shorted in the US stock market at that
time.
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Remarkably, many other high-short-interest stocks experienced significant declines in

short interest starting in November 2020 (thus, six to eight weeks before the GameStop

events), even though these stocks were not heavily discussed on the WSB subreddit, did not

experience any unusual increase in retail purchases, and were much larger than GameStop.

Concurrently, the strategy of shorting these stocks performs strikingly poorly.2 For such

stocks there appears to be no evidence of a coordinated short squeeze by the WSB subreddit

participants, yet short interest nonetheless declined. Interestingly, this decline appears to be

permanent, suggesting a shift in equilibrium.

Using these events as backdrop, we develop a model that explains why short selling can

be unstable. We are not interested in explaining the behavior of GameStop, but rather

situations in which a short-seller exit is not the result of a short squeeze. In particular,

the model emphasizes the feedback loop between the Sharpe ratio and short interest and

shows that the same fundamentals can lead to equilibria in which short interest is high,

intermediate, or zero. This equilibrium multiplicity is a time-honored device to illustrate

the possibility of a run: a shared perception of a shift in equilibrium is enough to cause an

abrupt short-seller exit. In addition, the model provides a novel explanation for why rational

short sellers may choose to abandon a market even as mispricing widens.

The model features investors with heterogeneous beliefs about the expected return of a

positive-supply, risky stock: one group is optimistic, while the other holds rational beliefs.3

This difference of opinion between investors prompts them to trade with each other, with the

rational investors having an incentive to short the stock whenever the expected excess return

becomes negative. Shorting stock requires borrowing it, for a fee determined endogenously

in the lending market as a result of bargaining.

As is recognized, the presence of lending fees modifies the returns experienced by both

long and short investors. The equilibrium risk compensation (the “Sharpe ratio”) is impacted

both by the magnitude of the lending fee and the fraction of a representative lender’s shares

2An illustration of the gloomy mood among short sellers at that time was the emblematic de-
cision of Citron Research to stop publishing short selling research after over 20 years: “Citron to
stop publishing short-selling research, Andrew Left says” (https://financialpost.com/investing/
citron-research-andrew-left-stop-short-selling-research-publishing).

3Motivated by the empirical fact that stocks with high short interest tend to have low subsequent returns,
we assume that the comparatively more pessimistic investors are actually rational, but this is not an essential
assumption for our results.
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that are shorted. (We refer to this quantity as short interest.4) All else equal, a higher short

interest acts as an increased subsidy for long positions. This basic property of the model is

responsible for equilibrium multiplicity. To see this, consider two equilibria. In equilibrium A

the (instantaneous) Sharpe ratio is higher than in equilibrium B, while short interest is lower.

In equilibrium B, the relatively low Sharpe ratio entices short sellers to pay the lending fee,

which in turn provides lending income to the long investors and makes them content to hold

long positions, despite the low Sharpe ratio. By an analogous argument, in equilibrium A

the relatively higher Sharpe ratio deters short sellers, who find the post-lending fee Sharpe

ratio to be unattractive; at the same time, the relatively high Sharpe ratio in equilibrium A

makes long investors content to hold a long stock position despite the lack of lending income.

The discussion in the above paragraph takes the wealth share of short sellers at a given

point in time as fixed. One advantage of our dynamic setup is that we can study the

evolution of the wealth shares depending on whether investors coordinate on a high or a low

shorting equilibrium. We show that the wealth growth of short sellers is higher in the high

shorting equilibrium (A in the above paragraph) than in the no shorting equilibrium (B).

An implication is that the (stochastic) steady-state fraction of wealth controlled by short

sellers is lower in the equilibrium without shorting. Since the Sharpe ratio is increasing in the

wealth share of these investors, the steady state Sharpe ratio may well be lower if investors

coordinate on the low-shorting equilibrium than if they coordinate on the high-shorting

equilibrium.

To fully explore the implications of this dynamic effect in a more realistic setup, we

extend the model to allow for multiple stocks with endogenous participation. After showing

that our conclusions from the single-stock economy extend to the multi-stock economy, we

focus on the case where there is a large and a small stock, with disagreement affecting

only the small stock.5 For realism, we assume that only a small fraction of investors pay

attention to the small stock and incur a small participation cost in doing so. In that extended

4Short interest commonly refers to the number of shares shorted as a fraction of the float. This is a
monotonic transformation of the quantity to which we refer as short interest.

5With this assumption, the interest rate becomes essentially fixed and therefore fluctuations in the Sharpe
ratio are mirrored in the price-dividend ratio of the small stock. By contrast, in the baseline model the
assumption of log utility and i.i.d. dividend growth imply that fluctuations in the Sharpe ratio are exactly
offset by fluctuations in the interest rate, leaving the price-dividend ratio unaffected.
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version of the model, we show that the shift to a low shorting equilibrium causes rational

investors to exit the market for the small stock, since remaining in a market without a

trading opportunity is not worth paying that participation cost. The exit of rational short-

sellers causes a simultaneous rise in the price of the stock — consistent with the empirical

observation that bad returns of shorting strategies coincide with drops in short interest.6

The paper is organized as follows: After a brief literature review, we motivate the model

with some empirical observations (Section 1). The baseline model is contained in Section 2.

Section 3 contains the main analytical results. Section 4 discusses dynamic properties of the

equilibria and some empirical implications of the model. Section 5 presents the extensions

to multiple stocks and Section 6 concludes. Proofs, detailed descriptions of the data, and

additional results are contained in the appendix.

Related Literature

Our work relates to several strands of the asset-pricing literature. The most closely related

one considers the joint determination of lending fees, short interest, and returns. In particu-

lar, D’Avolio (2002), Duffie et al. (2002), Vayanos and Weill (2008), Banerjee and Graveline

(2013), and Atmaz et al. (2020) consider explicit frictions to lending and borrowing shares,

which translate into non-zero lending fees that in turn impact expected returns.7 Similar to

D’Avolio (2002),8 Banerjee and Graveline (2013), and Atmaz et al. (2020), the lending and

spot markets clear simultaneously in our paper, but we use a different micro-foundation to

obtain a positive lending fee. Specifically, we don’t impose any hard constraint on the shares

that a long investor can lend. Instead, we obtain a positive lending fee by assuming that the

process of matching share lenders and borrowers is a time-consuming activity, which requires

compensation, similar in spirit to Duffie et al. (2002). By taking that route, the model allows

for a more general specification of the “supply curve” of lendable shares; it is not confined

6This was the case, for example, in January 2021.
7Such frictions also motivated the empirical studies of Geczy et al. (2002), Lamont (2012), Jones and

Lamont (2002), Kaplan et al. (2013), Porras Prado et al. (2016), and Asquith et al. (2005) among others.
8More precisely, to a working-paper version of this study, which contains a theoretical model that did not

appear in the published article.
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to vertical supply curves.9 This specification of the supply curve for lendable shares leads

to a feedback loop between the Sharpe ratio and short interest that is not present in the

aforementioned papers (which feature unique equilibria). In addition, our model allows us

to explore the dynamic effects of an equilibrium shift, driven by the endogenous fluctuations

in the wealth shares of the different agents.10

An even larger number of papers assume that shorting is prohibited and analyze impli-

cations for returns. Indicative papers here include Harrison and Kreps (1978), Miller (1977),

Diamond and Verrecchia (1987), Detemple and Murthy (1997), Hong and Stein (2003), and

Scheinkman and Xiong (2003). As in Harrison and Kreps (1978) and Miller (1977), we model

the motive for trade in our paper in the convenient form of (dogmatic) differences of opinions

among agents.

A large body of work studies the empirical relation between short interest and stock

returns. Seneca (1967), Senchack and Starks (1993), Desai et al. (2002), Diether et al.

(2009), Asquith et al. (2005), Blocher et al. (2013), Beneish et al. (2015), and Dechow et al.

(2001) study the cross-sectional relation and find that stocks with higher short interest under-

perform those with lower short interest. Later work by Cohen et al. (2007) and Boehmer et al.

(2008) uses proprietary data on quantities lent as well as shorting fees and finds consistent

results. Duong et al. (2017) studies the empirical relation between lending fees and stock

returns and finds that high lending fees predict lower future returns. Drechsler and Drechsler

(2014) documents that asset pricing anomalies concentrate in stocks with high shorting fees.

Lamont and Stein (2004) studies the information content in aggregate short interest and

finds that short interest declined as stock market valuations rose in the late 90’s. Rapach

et al. (2016) shows that the predictive power of aggregate short interest stems predominantly

from a cash-flow channel. Kaplan et al. (2013) finds no evidence of a change in expected

stock returns in response to an exogenous change in the supply of lendable shares.

Our paper is consistent with the main findings of the empirical literature, such as a

9An exception is Atmaz et al. (2020). In their model, individual agents’ supply curves are vertical, but
the aggregate supply curve has finite elasticity due to composition effects when aggregating across agents.

10The fact that shorting requires borrowing shares and is subject to natural collateral requirements has
several interesting general equilibrium implications, as explored by Fostel and Geanakoplos (2008), Simsek
(2013), and Biais et al. (2021). In contrast, our model focuses on the general equilibrium implications of the
associated lending fees.
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declining Sharpe ratio with respect to short interest and lending fees and short sellers earning

a risk compensation even after controlling for the lending fee. In addition, the model can

help address the intriguing findings of Kaplan et al. (2013), as we show in Section 4.3.

Our paper also relates to a sizable theoretical literature analyzing multiple equilibria in

asset pricing and macroeconomics. Multiple equilibria can arise through a number of mech-

anisms, chief among them a) bubbles (or money) in OLG economies, b) increasing returns

to scale and production externalities, and c) portfolio constraints.11 To our knowledge, ours

is the first paper in which multiple equilibria are due to shorting fees that can make a long

position sufficiently attractive to sustain a higher level of the short interest.

Finally, several recent papers target specifically the set of events involving GameStop.

See, for instance, Pedersen (2021) and Allen et al. (2021).

1 Empirical Motivation

We motivate our theoretical model with several empirical facts. The online-forum discus-

sion of January 2021 focused narrowly on GameStop (GME) and only a few other stocks,

while a large number of highly shorted stocks experienced significant price increases rela-

tive to the market concurrently with a declining short interest. The broad retreat of the

short sellers (across a large number of highly shorted stocks) started about two months

before the GameStop events. In addition, unlike GameStop, there is no evidence of a

broad short squeeze affecting these stocks, and the timing of events is not consistent with

a “balance-sheet-style” contagion whereby short sellers react to the losses they experienced

in GameStop.12 Thus, a couple of obvious candidate explanations for this broad decline in

short interest appear incorrect, suggesting the possibility that the behavior of short sellers

was the result of fear, a fear strong enough to keep them away from the market even as the

prices of the stocks that they believed to be mispriced as of November 2020 climbed even

higher.

11We refer the reader to the survey by Benhabib and Farmer (1999), which lists and discusses the different
mechanisms that lead to multiple equilibria and indeterminacies. Recent examples of papers using multiple-
equilibrium models in asset pricing include Gârleanu and Panageas (2021), Khorrami and Zentefis (2020),
Khorrami and Mendo (2021), Zentefis (2018), and Farmer and Bouchaud (2020).

12See, e.g., Kyle and Xiong (2001).
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Figure 1: Seven-day moving average of daily submissions to the WallstreetBets subreddit
(January 1, 2020 – February 7, 2021). The vertical axis is on a logarithmic scale.

In terms of data, we combine standard academic data-sets with social media posts col-

lected from the WallstreetBets subreddit (WSB), a subdomain of the Reddit website. (For a

detailed description of the data collection process, see Appendix F.) Reddit is a large online

website featuring specialized communities in which users post messages and other users can

comment on these posts in message-board fashion. Users on the WSB subreddit actively

discuss financial news, investments, and individual securities with one another. We plot

the daily submissions to WSB in Figure 1 on a logarithmic scale. Although the subreddit

has existed for a number of years (it was created in 2012), daily activity on WSB grew

exponentially in early January 2021.

It is important to note that the vast majority of the discussion on the WSB subreddit

focused on a very limited number of stocks. Our textual analysis enables the creation of high-

frequency time series of ticker-mentions by aggregating mentions within a time interval. As

can be seen in Figure 15 in Appendix G, the “lion’s share” of mentions centered around

GameStop. From December 1, 2020 to February 1, 2021, six most-discussed stocks account

for about half of all discussion. That proportion peaks to over 80% in the week of January

18–25, primarily driven by the rise in GameStop mentions.

The popular press attributed the stratospheric returns of GameStop during that period

to the active discussion of that stock on the WSB subreddit. One advantage of using high-
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Figure 2: Retail trading volume in GME (January 7 – January 29, 2021). Hourly trading
volume in GME, measured using the methodology of Boehmer et al. (2020), plotted together
with hourly mentions of the GME ticker on the WallStreetBets subreddit. Both vertical axes
are on logarithmic scales.

frequency data on WSB mentions is that we are able to identify a strong “real-time” link

between mentions of GameStop on WSB and retail trading volume, which we measure in

TAQ data with the methodology of Boehmer et al. (2020). Figure 2 plots the two series at

hourly frequency. Over the three trading weeks shown, GameStop mentions on WSB and

retail trading purchases exhibit strikingly strong comovement (0.93 rank correlation).

While the events surrounding GameStop made the front page of many newspapers, the

press paid less attention to the broader trend that preceded the events surrounding GameStop

by about two months. Specifically, as early as mid-November 2020, the returns of shorting

strategies started to collapse across a wide array of stocks. The remainder of this section

documents that a) the returns of shorting strategies between November 2020 and January

2021 were historically bad and the losses on short positions extended to a wide array of

highly shorted stocks, not just the few stocks discussed on WSB, b) short interest declines

significantly both in November 2020 and in January 2021, and c) unlike GameStop, which

saw a high increase in its retail purchase volume, most other highly shorted stocks saw a

decline in short interest but without an unusual behavior of retail purchase volume.

To illustrate point a), in Figure 3 we plot the cumulative returns to an equal-weighted
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portfolio that “bets against the shorts.” The portfolio is long the top decile of Russell

3000 stocks, ranked by short interest, and short the broad market. Stock return data are

from CRSP and short interest data are from the SEC.13 The figure shows that the betting-

against-the-shorts strategy is not particularly profitable (or unprofitable) from late June to

mid-November 2020, but becomes strikingly profitable over the following three months. To

put this evidence in historical perspective, in Figure 4 we plot a histogram of the monthly

returns of this betting-against-the-shorts strategy for as long as data are readily available

(since 1973). Figure 4 shows that the January 2021 and November 2020 returns are the

highest and second-highest (respectively) in the historical sample. (December 2020 is also in

the top decile of the historically observed returns). Figure 16 in Appendix G further shows

that November 2020 and January 2021 remain outliers if we exclude the popular reddit tickers

in the sample (top left panel), if we only include S&P500 constituents (i.e., larger stocks)

in the formation of the long leg of the portfolio (top right panel), and if we value-weight

rather than equal-weight returns while including or excluding popular reddit-tickers (bottom

left and bottom right panels, respectively).14 These results are hardly surprising, since the

returns shown in Figures 4 and 16 correspond to portfolios of which GameStop and the other

stocks heavily discussed on the WSB subreddit comprise only a small fraction. Table 1 in

Appendix G presents the results of formal statistical tests (also controlling for Fama-French

factors) of whether the returns in November 2020, December 2020, and January 2021 are

statistically different from the average return on the betting-against-the-shorts strategy over

the full 48-year sample.

Turning to point b), Figure 5 plots a binned scatterplot of short interest on January 15,

2021 against the subsequent realized decline in short interest, in blue. The decline in short

interest is concentrated among those stocks with high short interest on January 15, 2021.

Figure 5 also shows that the decline in short interest among stocks with high short interest

is not just a manifestation of mean reversion. The change in short interest predicted by an

AR(1) model, shown in red in Figure 5, is much smaller than the one observed in the data.15

13For additional details on the construction of this portfolio, see Appendix F.
14The popular stocks on the WSB subreddit in January 2021 were: AMC, BBBY, GME, SPCE, TLRY,

and TSLA.
15Specifically, the predicted changes in short interest come from a regression of short interest of stock i at

time t + 1 against short interest of stock i at time t. To account for non-linearities in mean reversion, we
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Figure 4: Histogram of monthly returns (1973–2021). Equal weighted returns on a portfolio
long stocks in the top decile of short interest and short the market index. The arrows indicate
the portfolio returns in the months of November and December 2020 and January 2021.

Figure 17 in Appendix G repeats the exercise of Figure 5 for the months leading up to the

dramatic events of January 2021. The figure suggests that the onset of the decline in short

interest begins in mid-November 2020, which is also the time when the returns of shorting

also include dummies for the decile of short interest that stock i belongs at time t, along with an interaction
term between short interest of stock i at time t and the decile dummy.
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strategies start exhibiting their historically bad performance in Figure 3.16

To illustrate point c), Figure 6 shows that the broad reduction in short interest in January

2021 cannot be attributed to a similarly broad increase in retail traders’ stock purchases. In

other words, the numerous stocks that saw large reductions in their short interest did not

experience a noticeable change in retail purchase volume. In Figure 6, we plot changes in

retail purchase volume against the change in short interest for all stocks in the top decile

of short interest as of January 15, 2021. Changes in both retail purchase volume and short

interest are reported as standardized z-scores using TAQ and SEC data from January 2015

through January 2021. We can see that, while there is a negative slope coefficient, it is eco-

nomically small and statistically indistinguishable from zero, suggesting no relation between

changes in short interest and changes in retail purchase volume. Indeed, the x-axis values of

most observations are between -2 and 2, indicating that January 2021 was not an unusual

month for retail purchase volume for these highly shorted stocks. This is in sharp contrast

16Interestingly, December 2020, which was a bad month (bottom 10% percentile in the historical sample)
for shorting returns, but not as bad as November 2020 or January 2021, exhibits smaller declines in the short
interest of the portfolio of most shorted stocks (right-most point in the graph). Indeed, the gap between the
right-most circle and the dotted AR(1) line in the November 30 and December 15 panels (corresponding to
the full month of December 2020) is the smallest among the six plots starting with November 13.
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are indicated with “+”, while all other tickers are indicated with “�”.

to the y-axis values, which are overwhelmingly negative, indicating a correlated decline in

short interest in that month.

A concluding empirical observation is that the decline in short interest did not show any

signs of reverting to its old levels in the six months that followed January 2021 (Figure 18 in

Appendix G). This suggests that the short-seller retreat was not just a transient reaction to

let the “dust settle.” Instead, there appears to have been a shift to a new equilibrium with

less shorting.

In summary, the timing of the events suggests that the broad retreat of short sellers could

not have been a direct reaction to GameStop losses. In addition, the unremarkable behavior

of retail purchases suggests that the numerous stocks that saw a retreat of short interest did

not experience outright short squeezes, as GameStop did. Excluding these simple candidate

explanations suggests that the retreat of the short sellers was most likely a fearful reaction

to some early signs of a shifting market environment. The remainder of the paper proposes

a model to explain why short-selling may be susceptible to run-type behavior and retreat

12



even as mispricing widens.

2 Model

2.1 Agents: life-cycle and preferences

Time is continuous and infinite for tractability. To obtain a stationary wealth distribu-

tion, we follow Gârleanu and Panageas (2015) and assume that investors continuously arrive

(“births”) and depart (“deaths”) from the economy. Per unit of time a mass π of investors

arrives, and a mass π departs. By the law of large numbers, the population of agents who

were born at time s ≤ t still remaining at time t is πe−π(t−s), while the total population is

constant and equal to
∫ t
−∞ πe

−π(t−s)ds = 1. “Births” and “deaths” should be understood as

arrivals and departures from the stock market, a point that will become clearer in Section

5, where we introduce multiple stocks.

To introduce trade in equities, we assume that investors have heterogeneous beliefs. For

simplicity, a fraction ν ∈ (0, 1) of investors perceive the correct data-generating process.

We refer to them as rational investors (“R” investors). The remaining fraction are overly

optimistic (we model this optimism shortly), and we refer to these investors as “I” investors.

For tractability, both investors have logarithmic utilities and their expected discounted

utility from consumption is

V i
t ≡ Ei

t

∫ ∞
t

e−(ρ+π)(u−t) log
(
ciu,t
)
du (1)

for i ∈ {I, R}, with ρ a discount factor and ciu,t the time-u consumption of an agent of type i

born at time t ≤ u. The notation Ei
t reflects the different investor beliefs. Because of death,

the effective discount rate is ρ+ π.

Before proceeding, we note that while we require heterogeneous beliefs to introduce a

motivation for trading, the assumption that one group has correct beliefs helps mostly to

save notation and can be easily relaxed. Similarly, the overlapping-generations structure is

just a technical device to ensure that no investor type disappears in the long run.17 Finally,

17In particular, the lack of inter-generational risk sharing, which is a feature of some of these models, is
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in setting up the model we make the (conventional) assumption that agents maximize over

both their consumption and portfolio choices, which we introduce shortly. Our model is,

however, equivalent to one in which agents delegate their portfolio decisions to professional

managers, and managers maximize their clients’ expected portfolio (logarithmic) growth

according to the managers’ beliefs (R or I). The investors in our model can therefore be

equivalently thought of as institutional investors.

2.2 Endowments

In order to support their consumption over their lives, we assume that the arriving investors

at time t are equally endowed with shares of new “trees,” which arrive at time t. Letting

s ≤ t denote the time of arrival of a tree, we specify its time-t dividends as

Dt,s = δe−δ(t−s)Dt, (2)

where δ > 0 captures depreciation and Dt follows a geometric Brownian motion with mean

µD and volatility σD > 0,

dDt

Dt

= µDdt+ σDdBt, (3)

with Bt a standard Brownian motion. Accordingly, the time-t total endowment of this

economy is the sum of the endowment produced by all trees born up to to time t,

∫ t

−∞
Dt,sds =

(∫ t

−∞
δe−δ(t−s)ds

)
×Dt = Dt.

The assumption that investors are endowed with shares of newly arriving trees follows

Gârleanu et al. (2012) and Panageas (2020). We adopt this assumption rather than in-

troducing labor income (as in Gârleanu and Panageas, 2015 or Gârleanu and Panageas,

2020), because — for the purposes of this paper — labor income would just complicate

matters without providing any novel insights.

We note that since the returns of all stocks (across all vintages) are perfectly correlated,

not driving any of the results in this paper.
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in effect there is a single, “representative” stock, which is convenient to model. We define

the return of this stock as

dRt =

(
dPt,s +Dt,sdt

Pt, s

)
= µt dt+ σt dBt, (4)

where µt and σt are to be determined in equilibrium.

In the real world, shorting frictions are more relevant for a small fraction of stocks rather

than the broad stock market. In Section 5 we extend the model to allow for multiple stocks

and study the special case in which the shorting frictions are relevant for small stocks only.

2.3 Beliefs

The irrational investors are optimistic and believe that the aggregate endowment grows at

the rate µI > µD. Irrational investors hold this optimistic view over their life-time and do

not learn (“dogmatic beliefs”). Introducing learning would be a distraction for the purposes

of this paper and therefore we omit it.

For future reference, we define

η ≡ µI − µD
σD

.

2.4 Dynamic budget constraint and short-selling frictions

This section embeds stock lending fees (and lending income) into an investor’s dynamic

budget constraint, which is the novel aspect of our setup. In preparation, we start by defining

the return of the market portfolio and introduce a standard assumption on annuitization.

Specifically, as in Gârleanu et al. (2012) and Panageas (2020), the arriving investors

support their life-time consumption by selling their firms into the stock market. These firms

become part of the market index (the “market portfolio”). Given our assumptions, the

market value of arriving companies, Pt,t, over total market capitalization Pt is Pt,t
Pt

= δ.

Letting Pt denote aggregate stock market capitalization, the instantaneous return of the
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market portfolio is18

dRt =
dPt
Pt︸︷︷︸

Change in
aggregate market cap.

− Pt,t
Pt
dt︸ ︷︷ ︸

cost to purchase
the new firms

+
Dt

Pt
dt︸ ︷︷ ︸

dividend yield

=
dPt +Dtdt

Pt
− δdt.

Aside from investing in shares of the market portfolio and (zero net supply) risk-free

assets, we follow Blanchard (1985) in assuming that each investor annuitizes her entire wealth

(since there are no bequest motives) by pledging it to a competitive insurance company upon

death in exchange for receiving an income stream while alive. This income stream is equal to

the hazard rate of death, π, times the wealth of the investor, so that the insurance company

breaks even.19

The main departure from a frictionless market is that if investors want to short stocks,

they have to pay a lending fee, ft. Specifically, letting W i
t,s denote the time-t wealth of an

investor of type i who was born at time s ≤ t and wit,s the fraction of wealth invested in

stocks, the dynamic budget constraint is

dW i
t,s = W i

t,s

(
rt + π + nt + wit,s

(
µt − rt + λit,s

)
−

cit,s
W i
t,s

)
dt+ wit,sW

i
t,sσtdBt, (5)

where µt and σt are the equilibrium expected return and volatility (respectively) of a stock

investment and rt is the equilibrium interest rate. The non-standard terms in equation (5)

are the terms λit,s and nt, which we describe next.

18For a more detailed derivation, start from Pt =
∫ t
−∞ Pt,sds. Time-differentiating dPt

Pt
, using Leibniz’s

rule, and adding Dt
Pt

=
∫
Dt,sds
Pt

we obtain

dPt
Pt

+
Dt

Pt
dt =

∫ t
−∞ (dPt,s +Dt,sdt) ds

Pt
+
Pt,t
Pt

dt =

∫ t

−∞

(
Pt,s
Pt

)(
dPt,s +Dt,sdt

Pt, s

)
ds+

Pt,t
Pt

dt

=

∫ t

−∞
wt,s

(
dPt,s +Dt,sdt

Pt, s

)
ds+

Pt,t
Pt

dt = dRt +
Pt,t
Pt

dt = dRt + δdt,

where wt,s are market-capitalization weights and the equality dRt =
∫ t
−∞ wt,s

(
dPt,s+Dt,sdt

Pt, s

)
ds constitutes

the definition of a portfolio’s return.
19This conclusion is an implication of the Law of Large Numbers.
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The term λit,s captures the presence of lending fees. The term λit,s is defined as

λit,s ≡ λt(w
i
t,s) ≡ ft ×

(
1{wit,s<0} + τyt1{wit,s≥0}

)
, (6)

where yt is the fraction of a long portfolio that is lent out by the representative “brokerage

house” and τ is the fraction of the lending fees that accrues to the investor. (We discuss the

determination of yt and τ shortly.) Equation (6) reflects that an investor with a short posi-

tion wit,s < 0 has to pay a proportion ft of the value of her entire short position, |wit,s|W i
t,s,

so that the net-of-fee rate of return per dollar shorted is − (µt − rt + ft) dt − σtdBt. Sim-

ilarly, an investor holding a positive position, wit,s > 0, obtains a rate of return equal to

(µt − rt + τytft) dt+ σtdBt on her stock investments.

Market clearing for share lending requires

ytW
+
t = W−

t , (7)

where W−
t is the value of the aggregate short interest and W+

t that of the aggregate long

position,

W−
t ≡

∑
i∈{I,R}

∫ t

−∞
|wit,s|W i

t,s1{wit,s<0}ds (8)

W+
t ≡

∑
i∈{I,R}

∫ t

−∞
wit,sW

i
t,s1{wit,s>0}ds. (9)

To close the model, we need to specify nt and also a “supply curve” for lending shares,

that is, we need to provide a relation between yt and the fee ft. To that end, in Appendix A

we model the supply curve for lendable shares by introducing competitive firms specializing

in servicing either borrowers (“brokers”) or lenders (“dealers”). Brokers are faced with a

demand from would-be short sellers, while dealers obtain investors’ long portfolios. Brokers

and dealers are matched pairwise subject to a “labor cost” and engage in bilateral negotia-

tions that result in a lending fee ft. In equilibrium, the fee is the same for all shares that

are lent, and therefore the total revenue from lending shares equals the fee multiplied by the

value of all shares lent. This revenue is shared between the stock lenders (a fraction τ of
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the lending revenue) and the households as compensation for their labor cost (the remaining

1− τ fraction of lending revenue).

Appendix A derives τ as a function of parameters governing the search-and-bargaining

protocol. In addition, we establish that the lending fee, ft, is a non-decreasing function

ft = l (yt) with l′ (·) ≥ 0, where l (·) depends on the (exogenous) “technology” of finding a

match. From now on, we refer to l(yt) as the supply curve for lendable shares.

The term nt in equation (5) is the fraction (1− τ) of the lending revenue that is paid to

the households as compensation for their labor cost in operating the matching technology.

Denoting aggregate wealth at time t by Wt, we define

nt ≡
(1− τ) ftW

−
t

Wt

. (10)

To better understand (10), use (7) and (10) and aggregate across all households to obtain

ftW
−
t = (1− τ) ftW

−
t + τftW

−
t

= ntWt + τftytW
+
t . (11)

The left hand side of (11) reflects the aggregate lending fees ftW
−
t . The right-hand

side reflects the ultimate division of lending income between the households (who obtain a

fraction 1 − τ of lending, irrespective of their portfolio) and long investors, who obtain a

fraction τ of the lending income.

Equation (11) shows that share lending does not result in any loss of aggregate resources:

All payments made by investors with short positions are received either by investors with

long positions or by brokerage firms, who rebate them to the household sector.

2.5 Equilibrium definition

Equilibrium in the lending market requires that the lending fee be such that the supply of

lendable shares ytW
+
t = l−1(ft)W

+
t is equal to the demanded short interest, W−

t (equation

(7)).

The rest of the equilibrium definition is standard. We require that investors I and R
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maximize (1) over cit,s and wit,s subject to the budget constraint (5), and µt, rt, and σt are such

that the bond market clears,
∑

i∈{I,R}
∫ t
−∞ ν

i
(
1− wit,s

)
W i
t,sds = 0, the stock market clears,∑

i∈{I,R}
∫ t
−∞ ν

iwit,sW
i
t,sds = Pt, and the goods market clears,

∑
i∈{I,R}

∫ t
−∞ ν

icit,sds = Dt. By

Walras’ Law, market clearing of the bond market implies stock market clearing and vice

versa, and accordingly the asset-market clearing requirements can be written equivalently as

Wt =
∑

i∈{I,R}
∫ t
−∞ ν

iW i
t,sds = Pt.

For future reference, we note that stock market clearing requires that yt < 1:

yt =
W−
t

W+
t

=
W−
t

Pt +W−
t

< 1.

3 Analysis

We analyze the model in two steps. First, we consider a special parametric case that allows

us to characterize all equilibrium quantities in closed form. The special case we analyze

is the “elastic supply” case, that is, the limiting case where the supply of lendable shares

is horizontal at some level l(yt) = ϕ. (As we explain in Appendix A, this special case

corresponds to a linear specification for the cost of lending out shares.) In Appendix D we

repeat the analysis for increasing functions l(yt) and show how the key results extend to this

more general case.

3.1 Optimal portfolio and consumption

For a log investor the wealth-to-consumption ratio is constant and equal to

cit,s
W i
t,s

= ρ+ π. (12)

Another convenient property of logarithmic utility is that the portfolio is myopic and maxi-

mizes the logarithmic growth rate of an investor’s wealth, under the investor’s beliefs,

wit,s = arg max
w

{
w
(
µt + ησt1{i=I} − rt + λt(w)

)
− 1

2
(wσt)

2

}
, (13)

where 1{i=I} is an indicator function taking the value one when i = I and zero otherwise.
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Letting

µ̂it ≡ µt + ησt1{i=I}

denote the expected return on the stock as perceived by investor i ∈ {I, R}, the optimal

portfolio is

wit,s =


µ̂it−rt+ft

σ2
t

if µ̂it − rt + ft < 0

µ̂it−rt+τftyt
σ2
t

if µ̂it − rt + τftyt > 0

0 otherwise

. (14)

By inspection, the optimal portfolios do not depend on the cohort s, only on the type of

investor i ∈ {I, R} . Therefore, from now on we drop the subscript s and write wRt and wIt .

One straightforward implication of equation (14) is that if investor R is actively shorting

(wRt < 0) then it must be the case that the excess rate of return per dollar shorted is positive,

even after netting out the fee ft.
20

3.2 Equilibrium

It is useful to start by defining the the wealth-weight ωit

ωit ≡
νi
∫ t
−∞ πe

−π(t−s)W i
t,sds

Wt

. (15)

The goods market and stock market clearing requirements imply

Dt =
∑

i∈{I,R}

∫ t

−∞
νiπe−π(t−s)cit,sds = (ρ+ π)

∑
i∈{I,R}

∫ t

−∞
νiπe−π(t−s)W i

t,sds

= (ρ+ π)Wt = (ρ+ π)Pt. (16)

20Evaluating (14) with i = R, assuming that wRt < 0, and re-arranging leads to −(µt − r − ft) =
−(µ̂Rt − r − ft) = −wRt σ2

t > 0. The term −wRt σ2
t , which corresponds to the absolute value of the covariance

of the stock’s return with the short seller’s portfolio, is the risk compensation to the short seller for taking
a short position.
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Taking logarithms gives d logDt = d logPt and therefore the stock market volatility equals

σ = σD. The implication of a constant stock volatility is convenient for obtaining closed-

form solutions. In Section 5 we discuss extensions of the model that allow for a time-varying

price-dividend ratio and volatility by introducing multiple stocks.

Applying Itô’s Lemma to (15) and using (5) and (16) yields

dωit = µitdt+ σitdBt,

where

σit = ωit
(
wit − 1

)
σD, (17)

µit = ωit
(
−µD + σ2

D − π + rt − ρ+ wit
(
µt − rt + sit

)
− witσ2

D

)
+ νiδ. (18)

The market clearing requirement
∑

i∈{I,R} ω
i
t = 1 implies

∑
i∈{I,R} dω

i
t = 0 and therefore∑

i∈{I,R} σ
i
t = 0 and

∑
i∈{I,R} µ

i
t = 0. To simplify notation, we let ωt ≡ ωRt . As mentioned

earlier, in an effort to obtain a tractable solution, we assume that the supply of lendable

shares is perfectly elastic at the rate ϕ:

Assumption 1 l(y) = ϕ > 0.

We maintain this assumption to develop intuition. In Appendix D we generalize the

results to an upward-sloping supply function l(·), so that the lending fee is increasing with

short interest.

In preparation for the description of the equilibrium, we start with the following definition

and assumptions on the parameters.

Definition 1 Let

ω∗1 ≡ 1− σD
η − ϕ

σD

. (19)

and

F (ω) ≡
(
σD − ω

(
(1 + τ)

ϕ

σD
− η
))2

− 4τ
ω2

1− ω
ϕ

σD

(
σD + (1− ω)

(
ϕ

σD
− η
))

. (20)
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Assumption 2 Assume that η, ϕ, σD, and τ are such that

(1 + τ)
ϕ

σD
> η >

ϕ

σD
, (21)

ω∗1 >
σD

(1 + τ) ϕ
σD
− η

> 0, (22)

and F (ω) has a unique root in the interval (0, 1), denoted by ω∗2.

The following proposition asserts that the set of parameters η, ϕ, σD, and τ that satisfy

Assumption 2 is non-empty.

Proposition 1 There exists an open set of positive values η, ϕ, σD, and τ that jointly satisfy

Assumption 2.

The next proposition describes the equilibria in our economy.

Proposition 2 Suppose that Assumption 2 holds. Then ω∗2 > ω∗1 and the equilibria in this

economy can be described as follows.

i) If ωt ∈ (ω∗2, 1] there is no short-selling in equilibrium. The equilibrium is unique and

the Sharpe ratio κt ≡ µt−rt
σD

is given by

κt =

 σD − (1− ωt) η if ωt > 1− σD
η

σD
1−ωt − η if ωt ∈ (ω∗2, 1− σD

η
]
. (23)

ii) If ωt ∈ [ω∗1, ω
∗
2], then there are three equilibria. The first equilibrium continues to be

given by (23) and involves no short-selling. The second and third equilibria involve shorting

and the ratio of shorted-to-lendable shares yt corresponds to the two roots y+ and y− of the

quadratic equation

y

(
η +

σD
ωt
− ϕ

σD
(1− τy)

)
−
(
η − σD

1− ωt
− ϕ

σD
(1− τy)

)
= 0, (24)

which has two real roots y+ and y− in the interval (0, 1). The Sharpe ratio in the equilibria

associated with y+ and y−) are

κ±t = σD − (1− ωt) η −
ϕ

σD

(
ωt + τy±(1− ωt)

)
. (25)
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Figure 7: An illustration of all possible equilibrium values of the Sharpe ratio, depending on
the value of the wealth ratio ωt, as stated in Proposition 2.

iii) If ωt ∈ [0, ω∗1), then the equilibrium is unique and involves shorting. In this case only

the larger of the two roots (y+) of equation (24) lies in the interval (0, 1), and the unique

equilibrium Sharpe ratio is given by κ+.

In all three cases the interest rate is given by

rt = ρ+ π + µD − δ − κtσD. (26)

Additionally, because κt, rt, and yt are functions of ωt, equations (14), (17), and (18)

imply that µRt and σRt are functions of ωt and hence the equilibrium is Markov in ωt.

Figure 7 illustrates Proposition 2. The figure plots κ (ωt), the Sharpe ratio, as a function

of the wealth share of rational agents. As a benchmark, the line labeled “Costless shorting

eqlm” depicts σD− (1− ωt) η, i.e., the Sharpe ratio that would obtain in this economy in the

absence of any shorting frictions (ϕ = 0). The curve “No shorting eqlm” depicts the Sharpe

ratio in the equilibrium that involves no shorting for the values of ωt that such an equilibrium

exists. Similarly for the curves “Med. shorting eqlm”and “High shorting eqlm,” which depict

equilibria with shorting for the values of ωt that permit such equilibria. To expedite the

exposition of the results, we postpone a discussion of the quantitative implications of the
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Figure 8: The ratio of shorted-to-lendable shares, yt, in all of the equilibria as a function of
ωt.

model until Section 5.2. The figures in the current section are meant to illustrate qualitative

properties of the model.

The figure shows that when ωt is larger than 1 − σD
η

the lines “Zero shorting cost” and

“No shorting eqlm” coincide, reflecting that all investors invest strictly positive amounts in

the stock market in this region.

When ωt becomes smaller than 1 − σD
η

(but larger than ω∗2), the rational investor puts

zero weight on stocks, but the shorting fee ϕ deters her from actively short-selling. Since

only the irrational investor is marginal in financial markets, the lines “Zero shorting cost”

and “No shorting eqlm.” deviate from each other when ωt < 1 − σD
η

. In this region the

magnitude of the lending fee, ϕ, does not impact the Sharpe ratio directly (only by deterring

the R investors from shorting).

If ωt becomes smaller than ω∗2 (but larger than ω∗1) the economy exhibits three equilibria.

In the first equilibrium, there is still no shorting. In the second and third, there is active

shorting by the rational investor. Across these three equilibria, the higher the extent of

shorting, the lower the Sharpe ratio. This is illustrated in Figure 8. If ωt becomes smaller

than ω∗1, then the equilibrium becomes unique and involves shorting.21

21To see why there can be no equilibrium without shorting when ωt < ω∗1 , assume otherwise. Indeed
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Several features of Figure 7 are noteworthy. First, the Sharpe ratio is always (weakly)

lower than it would be in the absence of lending fees, even if investor R is not actively

shorting shares, but is only investing in bonds.

Second, the presence of a region where multiple equilibria co-exist is not a very common

feature of asset pricing models, especially when there is only one good and one positive-

supply asset. To better understand the source of this multiplicity, it is useful to provide a

concise derivation of the key statements in Proposition 1.

Specifically, suppose that we consider equilibria that involve active shorting (wRt < 0).

In such equilibria, the optimal portfolio holdings can be expressed as

wRt =
κt + ϕ

σD

σD
(27)

wIt =
κt + η + ϕ

σD
τyt

σD
, (28)

while asset-market clearing requires

ωtw
R
t + (1− ωt)wIt = 1. (29)

Combining equations (27)–(29) leads to

κt = σD − (1− ωt) η −
ϕ

σD
(ωt + τyt(1− ωt)) , (30)

which is equation (25) of Proposition 1. Note that the partial derivative of κt with respect

to yt is negative. This is intuitive: A higher value of yt increases the effective rate of return

to (long-portfolio) stock holders (I investors). The increased appetite by I investors to hold

long positions lowers the Sharpe ratio. (Phrased differently, the absolute value of the Sharpe

ratio increases, since the Sharpe ratio is negative when wRt < 0.)

assume that the R investor holds zero stocks and is not marginal in the stock market
(
wRt = 0

)
. The

market clearing requirement, ωtw
R
t + (1− ωt)wIt = 1, along with wIt = κt+η

σD
implies that the Sharpe

ratio would be κt = σD
1−ωt − η. Under this supposition, it would therefore be the case that µt − r + ϕ =

σD
(
κt + ϕ

σD

)
= σD

(
σD

1−ωt − η + ϕ
σD

)
< 0, where the inequality follows from ωt < ω∗1 . Because µt−r+ϕ < 0,

equation (14) implies that the R investor would want to short the market, contradicting the assumption that
she is optimally holding zero stocks.
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This lowering of the Sharpe ratio strengthens the short-sellers’ appetite to borrow the

stock and short it. In equilibrium, the increased shorting demand raises the ratio of shorted-

to-lendable shares, yt, increasing the effective return to I investors, which further reduces

the Sharpe ratio, etc.

These self-reinforcing effects are the root cause of the multiple equilibria. The easiest

way to see this is by completing the computation of the Sharpe ratio, which requires us to

determine the value of yt that clears the lending market. Indeed, in any equilibrium involving

wRt < 0 and wIt > 0 we must have

yt =
W−
t

W+
t

=
−wRt WR

t

wItW
I
t

= −w
R
t

wIt
× ωt

1− ωt
. (31)

Using (27) to compute the ratio
wRt
wIt

gives

yt = −
κt + ϕ

σD

κt + ηI + ϕ
σD
τyt
× ωt

1− ωt

=
η − σD

1−ωt −
ϕ
σD
τ (1− yt)

η + σD
ωt
− ϕ

σD
τ (1− yt)

, (32)

where the last line follows from (30) after collecting terms and simplifying. Rearranging (32)

gives the quadratic equation (24), which is the key equation of Proposition 1. The rest of

the proposition is devoted to studying this quadratic equation and confirming that its roots

correspond to valid equilibria.

While equation (32) is particularly simple to analyze, the multiplicity of equilibria does

not hinge on assuming that the supply curve l (yt) is constant at the level ϕ, as we show in

Appendix D.

The intuition behind the multiplicity of equilibria is contained in equation (32). For a

given wealth distribution and belief discrepancy, a higher yt makes long investors content

with holding the same positive position at a lower equilibrium Sharpe ratio. This negative

relation between the Sharpe ratio and yt is responsible for equilibrium multiplicity: For

instance, if something prompts rational investors to abandon their short positions, the re-

sulting reduction in lending income requires a higher Sharpe ratio to compensate the long
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investors and clear the market. But this rise in the Sharpe ratio reinforces the incentive of

short sellers to abandon their positions, which further lowers lending income, and further

raises the Sharpe ratio, etc., until the market settles on a new equilibrium with (possibly

zero) short interest.

Remark 1 The fact that there are three equilibria, one of which features no shorting, is an

implication of there being only two types of agents in the model. With more than two types

of agents, more than three equilibria can obtain. Also, in the case of multiple equilibria, all

of the equilibria can involve strictly positive short interest. We elaborate on these points in

Appendix B.

4 Properties of the Equilibria

In Section 4.1 we show that equilibria with high shorting are beneficial for R investors. This

implies that the worst possible outcome for R investors is for markets to coordinate on the

equilibrium that deters them from short selling. Sections 4.2 and 4.3 discuss some broader

implications of the model that are unrelated to coordination, but help further illustrate the

model’s key intuitions. Specifically, we perform comparative statics with respect to changes

in ϕ, which capture shifts in the supply of lendable shares. Section 4.2 shows how marginal

changes in the supply curve can lead to discontinuous drops in short interest. Section 4.3

shows that exogenous shifts in the supply of lendable shares may impact lending fees and

short interest but have a muted impact on equilibrium expected returns.

4.1 Dynamics of the wealth shares

The three equilibria we identified above have different implications for the dynamics of the

wealth shares of R investors. The next proposition shows that both the drift rate µRt (ωt)

of the wealth share of type R investors and the expected logarithmic growth rate of their

wealth are higher in equilibria that feature higher short interest yt.

Proposition 3 For a fixed wealth share of the R-agents, ωt, consider two equilibria A and

B with the following properties:
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Figure 9: An illustration of Proposition 3. Simulating the model for the case in which market
participants coordinate on the “high shorting” (respectively, “no shorting”) equilibrium, the
figure depicts the stationary distribution of the wealth share of the rational investor, ωt, for
the economy of Figure 7.

1. wRt ≤ 0 in both equilibria A and B.

2. yBt > yAt (and accordingly κBt < κAt ).

Then the drift of investor R’s wealth share in equilibrium i ∈ {A,B}, µR,it (ωt), satisfies

µR,Bt (ωt) > µR,At (ωt) .

In addition, the drift of the logarithmic growth rate of investor R, defined as

gRt ≡ rt + max
wR≤0

{
wRt (κtσD + ϕ)− 1

2

(
wRt σD

)2
}
− (ρ+ π) , (33)

is higher in equilibrium B than in equilibrium A, i.e., gR,Bt (ωt) > gR,At (ωt).

Figure 9 provides an illustration of Proposition 3. The figure shows the stationary dis-

tribution of ωt in the equilibrium associated with no shorting for values ωt ∈ (ω∗1, ω
∗
2) and in

the equilibrium associated with the highest shorting, y+ (ωt) , for ωt ∈ (ω∗1, ω
∗
2). The figure

shows that the distribution of ωt has a higher stationary mean in the second equilibrium
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rather than in the first equilibrium. This is consistent with Proposition 3, which asserts a

higher (logarithmic) growth rate for the wealth of R investors in the second equilibrium.

The comparatively higher probability mass of larger values of ωt in the equilibrium that

features shorting implies that there are two competing effects on the stationary mean of the

Sharpe ratio κt. On the one hand — for a fixed ωt — the Sharpe ratio is lower in equilibria

featuring comparatively higher short selling. On the other hand, low values of ωt become less

likely in equilibria with comparatively more shorting activity. The first effect tends to lower

the stationary mean of the Sharpe ratio in equilibria with comparatively higher shorting,

the second effect tends to raise it. The overall effect on the stationary value of the Sharpe

ratio is ambiguous. We revisit this issue in Section 5, when we discuss an extension of the

model that allows for multiple stocks, a time-varying price-dividend ratio, and endogenous

exit of R investors. Specifically, that section shows that R investors tend to exit the market

for a stock when it is not profitable to short, thus resulting in low values of ωt in the no-

shorting equilibrium (and therefore low values of the Sharpe ratio and high values of the

price-dividend ratio).

4.2 The instability of short interest

Besides the sensitivity that emanates from demand-side coordination, our model also im-

plies that small shifts in the supply of lendable shares can lead to discontinuous changes in

equilibrium short interest.

Lemma 1
dω∗2
dϕ

< 0.

Lemma 1 states that an increase in ϕ lowers the range of values ωt that are associated

with multiple equilibria. By implication, if, say, a given company can take some action to

to reduce the supply of its lendable shares (resulting in an increase in ϕ), this can lead to a

discontinuous change of short interest from a positive value to 0 if ωt is close to ω∗2.

Figure 10 illustrates the effects of an increase in ϕ on the equilibrium Sharpe ratio κ (ωt).

The black curves correspond to the original value of ϕ, while the red curves to the higher

one. The figure shows that points such as A and B, which represent equilibria with positive

short interest for the original value of ϕ, stop being equilibria if ϕ increases.
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Figure 10: The red curve corresponds to a higher fee ϕ. Points A and B, which are equi-
librium points for the low value of ϕ, would entail a discontinuous rise in the Sharpe ratio
when ϕ increases.

4.3 The ambiguous relation between Sharpe ratio and short in-

terest

It would seem natural to expect that an increase in the supply of lendable shares (a reduction

in ϕ) raises the Sharpe ratio, as it incentivizes short sellers to short the stock and thus lowers

the absolute value of the (negative) Sharpe ratio. In our model, this result need not obtain.

Depending on the equilibrium, there is no unambiguous relation between the Sharpe ratio

and shorting costs. This may be one of the reasons why the empirical literature finds that

randomized increases in lendable shares affect short interest and lending rates but not excess

returns.

The following proposition illustrates the novel implications of the model by focusing on

the case of small ωt.

Proposition 4 Assume that the equilibrium involves a positive short interest. In the equi-

librium associated with y+ (which is the unique equilibrium if ωt < ω∗1), it holds that, for

30



sufficiently small ωt,

dκ

dϕ
> 0. (34)

In the equilibrium associated with y−, for any value of ωt,

dκ

dϕ
< 0. (35)

Equation (34) in Proposition 4 appears counterintuitive. The explanation is that decreas-

ing ϕ has two opposing effects. Inspection of equation (30) shows that a decline in ϕ has the

direct effect of raising κt; however, since yt is endogenous, the decline in ϕ also increases yt,

which — for a given ϕ — has the effect of lowering κt. Therefore, it is possible that a decline

in ϕ (say, because of an exogenous change in the cost of supplying shares) lowers the fee ft

and increases the short interest yt, but leaves the expected return on the stock unchanged.

This is consistent with the empirical findings of Kaplan et al. (2013).

Figure 10 illustrates that an increase in ϕ could either raise or lower κt (ωt), depending

on the equilibrium and on whether ωt is large or small.

5 Multiple Risky Assets and Time-Varying Price-Dividend

Ratio

In the baseline model, the price-dividend ratio and the volatility of the stock market are

both constant. This is an implication of a) logarithmic utility over intermediate consumption

(which implies a constant wealth-to-consumption ratio) and b) a single asset in positive net

supply. As is typical of models with similar setups, fluctuations in the interest rate offset

the fluctuations of the risk premium, thus rendering the overall discount rate — and by

implication the price-dividend ratio22 — constant.

We next present a version of the model that features multiple risky assets and, by im-

plication, a time-varying price-dividend ratio. After extending Proposition 2 to allow for

22Note also that the expected dividend growth is constant.
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multiple risky assets — a result of independent interest — we consider a limiting case of

the multi-asset model that permits simple computations. Specifically, we study the limit

in which there is a “small” stock subject to shorting costs and a “large” stock that can

be shorted costlessly. In that limit, only the endowment of the large stock matters for the

interest rate and thus the price-dividend ratio of the small stock is time-varying and reflects

variations in its risk premium. As a byproduct, we can study how the price of the asset

changes when the nature of the equilibrium shifts, a phenomenon that lies at the core of the

paper. In particular, we show that moving to an equilibrium with low shorting can be ac-

companied by a price increase, driven by the shift in the composition of the investors for the

asset: would-be shorters are driven away, and the price is set predominantly by optimists.

5.1 Multiple risky assets

In this section we introduce an additional Lucas tree (stock 2) to our baseline model, which

is not subject to any trading frictions, and comprises a potentially large part of the total

market capitalization. We continue to assume that borrowing stock 1, which now comprises

only (a possibly small) part of the market capitalization, requires lending fees, as in the

baseline model.

We make one more convenient and realistic assumption. Specifically, while all investors

participate in the markets for stock 2 and the risk-free asset, only a fraction of investors pays

any “attention” to stock 1. The remaining fraction of investors simply optimize their portfolio

over the risk-free asset and stock 2 and assign zero weight to stock 1. This assumption is in

the spirit of Robert Merton’s “limited recognition hypothesis,” the idea that only a fraction

of investors actively trade in some smaller stocks. .

Because stock 1 is no longer the only positive-supply asset, consumption-market clearing

no longer implies a constant price-to-dividend ratio for stock 1, and a full analytical solution

of the model is no longer available. However, we can still provide an analytic “CAPM-style”

formula,23 which constitutes a natural extension of the results of Proposition 2.

To start, we assume that in equilibrium the returns on stocks 1 and 2 follow a (possibly

23By CAPM-style formula we mean that the formula provides a connection between expected excess returns
and the covariance matrix of returns.
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correlated) vector diffusion process of the form

dR1,t = µ1,tdt+ σ1,tdB1,t + btσ2,tdB2,t (36)

dR2,t = µ2,tdt+ σ2,tdB2,t, (37)

where B1,t and B2,t are independent Brownian motions, µ1,t and µ2,t are the expected excess

returns of the two stocks, and

σt ≡

σ1,t btσ2,t

0 σ2,t


is a matrix capturing the loadings of the two stocks on the two Brownian motions. We

assume that investors I believe that Brownian motion 1 follows the dynamics24 dB1,t + ηdt,

while no investor has any belief distortions pertaining to Brownian motion 2. We let −→mt

denote the vector of market-capitalization weights of the two stocks, and mj,t, j ∈ {1, 2}, its

entries.

From now on we use W i
t to denote the wealth of all agents of type i that participate

in market 1 and define ωit ≡ W i
t /(W

R
t + W I

t ). Letting ω̂t denote the wealth share of the

investors who actively participate in the market for stock 1, the market clearing condition is

ω̂t
∑

i∈{I,R}

ωt
−→w i

t + (1− ω̂t)

 0

ŵ2,t

 = −→mt, (38)

where ŵ2,t = µ2,t−rt
σ2
2,t

is the optimal portfolio holding of stock 2 by investors who don’t

participate in stock 1, and −→w i
t is the vector of portfolio holdings of an investor i ∈ {I, R}

that is active in the market for stock 1. The market clearning condition (38) leads to the

following result.

24More formally, the Radon-Nikodym derivative of the true probability measure with respect to the sub-
jective one is given by

ZIt ≡ e−
η2

2 t+ηB1,t .
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Proposition 5 Define κ1,t = (µ1,t−r)−bt(µ2,t−r)
σ1,t

as the Sharpe ratio of a portfolio that invests

1 unit in asset 1 and shorts bt units of asset 2. Let m̃1,t ≡ m1,t

ω̂t
.

In an equilibrium with shorting in asset 1 (yt > 0), yt is given by the root(s) of the

quadratic equation

0 = y

(
η +

m̃1,t

ωt
σ1,t −

ϕ

σ1,t

(1− τy)

)
−
(
η − m̃1,t

1− ωt
σ1,t −

ϕ

σ1,t

(1− τy)

)
(39)

that lie(s) in the interval [0, 1), and the Sharpe ratio is given by

κ1,t = m̃1,tσ1,t − (1− ωt) η −
ϕ

σ1,t

(ωt + (1− ωt) τyt) . (40)

Similarly, in an equilibrium without shorting in asset 1 we have κ1,t = σ1,tm̃1,t−(1− ωt) η

if investor R holds an interior position in asset 1 and κ1,t = σ1,tm̃1,t

1−ωt − η otherwise.

The excess return to asset 2 is given by the conventional CAPM relationship

µ2,t − rt = [0, 1]σtσ
′
t
−→mt. (41)

Equations (40) and (39) specialize to (25) and (24), respectively, when m̃1,t = 1 and

σ1,t = σD. In this sense, Proposition 5 is a natural extension of Proposition 2, except that

the Sharpe ratio in Proposition 5 pertains to a portfolio that invests one dollar in asset 1 and

shorts bt units of asset 2 (so as to “hedge out” the exposure of the portfolio to the second

Brownian shock).

As in Proposition 2, the excess return on asset 1 can be decomposed into a risk premium,

a (wealth-weighted) belief distortion, and a component that reflects the impact of shorting

costs. Specifically, equation (40) implies that in an equilibrium with active shorting, the

expected return of stock 1 is

µ1,t − rt = bt (µ2,t − rt) + m̃1,tσ
2
1,t︸ ︷︷ ︸

risk compensation

− (1− ωt) ησ1,t︸ ︷︷ ︸
wealth-weighted optimism

− ϕ (ωt + (1− ωt) τyt)︸ ︷︷ ︸
impact of shorting costs

. (42)

All else equal, a higher level of yt lowers µ1,t − r — consistent with the empirical finding

that short interest negatively predicts returns — and higher values of the lending fee ϕ lower
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equilibrium expected excess returns.

5.2 A limiting economy with a small and a large stock

The CAPM-style formulas provide equilibrium returns conditional on the equilibrium co-

variance matrix and the investor wealth shares. To fully solve the model, we consider a

limiting, multi-stock economy, in which trees of type 1 are small compared to trees of type

2 and also the fraction of investors that pay attention to trees of type 1 is small. Since this

section involves some detailed modeling assumptions, we relegate the full presentation to

Appendix C. In the text we simply summarize the setup and the main findings.

Specifically, suppose that there are two types of trees, namely “small” trees (type-1

trees) and “large” trees (type-2 trees). Type-2 trees have dividends similar to the baseline

model, namely D2,t,s = φ2δ2D2,te
−δ2(t−s), where φ2 > 0, δ2 > 0, and D2,t follows a geometric

Brownian motion, dD2,t

D2,t
= µ2,Ddt+ σ2,DdB2,t. Type-1 trees produce dividends

D1,t,s = φ1δ1D2,se
−δ1(t−s)+σ1,D(B1,t−B1,s),

with φ1 > 0 and δ1 > 0. With the above dividend specifications, the dividend ratio of type-1

to type-2 trees is

D1,t

D2,t

=

∫ t
−∞D1,t,sds∫ t
−∞D2,t,sds

=
φ1

φ2

∫ t

−∞

D2,s

D2,t

δ1e
−δ1(t−s)+σ1,D(B1,t−B1,s)ds, (43)

which is a stationary process.

The above assumptions imply that the dividend shares of type-1 and type-2 trees at an

arbitrary time t are stationary fractions of aggregate consumption D1,t + D2,t, while the

dividends of the tree with which a fixed cohort s is endowed upon entering the economy

follow a geometric Brownian motion.25 Moreover, when type-1 trees are small compared

25Ito’s Lemma implies that

dD1,t,s

D1,t,s
=

(
σ2
1,D

2
− δ1

)
dt+ σ1,DdB1,t and

dD2,t,s

D2,t,s
= (µ2,D − δ2) dt+ σ2,DdB2,t.
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to type-2 trees
(
φ1
φ2
≈ 0
)

, aggregate consumption is approximately equal to the aggregate

dividends of the large, type-2 trees, and therefore aggregate consumption follows a geometric

Brownian motion. The implication is that the interest rate and the risk premium for type-2

trees both converge to constants as the ratio φ1
φ2
→ 0 goes to zero.

In the baseline model, entry and exit of investors into the single stock market was tied

to the arrival and departure of agents in the economy and was essentially exogenous. The

extension to two risky-asset markets requires that we model the entry and exit into the

market for stock 1. Specifically, we assume that investors of both types (R and I) gain and

lose interest in stock 1 at the rate χ per unit of time dt. Phrased differently, a measure χ of

investors becomes interested in market 1 per unit of time and a measure χ of investors loses

interest for exogenous reasons. Of the arriving investors a fraction ν is of type R, as in the

baseline model.

We go further and make an additional assumption that captures the shifts in investor-

base composition that can accompany shifts in equilibrium. Specifically, we assume that

investors incur a small, non-pecuniary, disutility flow ε from paying attention to stock 1. An

investor of type i ∈ (I, R) will consequently choose to keep staying in the market if and only

if her expected discounted utility from remaining attentive to stock 1 is above the present

value of the (small) disutility cost of attention. To anticipate the results, this participation

cost will drive some type-R agents out of the market when no-shorting equilibria prevail,

capturing the notion that short sellers lose interest in stock 1 in such times.

For more detail, observe first that, as long as this disutility is small enough, it is irrelevant

for investors of type I, since they always choose a strictly positive portfolio in stock 1. For

investors of type R, however, there are regions of ωt where their optimal holding of stock 1

is zero. Even a small disutility, therefore, can lead them to exit the market. Formally, an

investor of type R finds it optimal to remain in the market for stock 1 if and only if

V R(ωt) ≡ Et

[
max
wR1,u

∫ T

t

e−ρ(u−t)
(
wR1,u

(
µu − ru + λRu

)
− 1

2

(
wR1,uσu

)2 − ε
)
du

]
≥ 0, (44)

where T is the stochastic time of exit from the market for stock 1 (be it endogenous or

exogenous). Equation (44) uses the assumption of logarithmic preferences — along with the
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simplifying assumption that stocks 1 and 2 are independent — to express the net expected

utility gain from continued presence in market 1 as the increase in investor R’s logarithmic

growth rate of wealth, wR1,u
(
µu − ru + λRu

)
− 1

2

(
wR1,uσu

)2
, net of the flow disutility of presence

in the market ε. The requirement that this net gain stay positive at all times implies that,

for given equilibrium functions κ(ωt) and y(ωt), there is a critical boundary ω̄, typically lying

in the region of ωt where wR1,u(ωt) = 0, that acts as a “reflecting barrier” for ωt. Specifically,

if the process ωt were to ever exceed ω̄, there would be enough exit to restore ωt back to ω̄.26

Some further technical assumptions on investor entry and exit are detailed in Appendix

C. Here we simply state the main result, which provides an ordinary differential equation

(ODE) for the price-dividend ratio. For simplicity, we assume that the Brownian motions

B1,t and B2,t are independent.

Proposition 6 Using the expressions for wit, κ1,t (with b = 0), and yt from Proposition 5,

the wealth share ωt follows the diffusion process

dωt = µRt dt+ σRt dB1,t − dFt, (45)

where Ft is an increasing (singular) process that reflects ωt to remain below the value ω̄ that

makes equation (44) hold as an equality and µRt and σRt are given by

µRt = ωt

((
wR1,t − m̃

)
σ1,t (κt − σ1,tm̃) + wR1,tϕ+

ytm̃

1− yt
ϕ (1− τ)

)
+ χ (ν − ωt) , (46)

σRt = ωt
(
wR1,t − m̃

)
σ1,t, (47)

where σ1,t = p′(ωt)
p(ωt)

σRt +σ1,D is the volatility of stock 1 and the price-dividend ratio pt = p(ωt)

solves the ordinary differential equation

1

2

∂2p

∂ω2
t

(
σRt
)2

+
∂p

∂ωt

(
µRt + (σ1,D − κ1,t)σ

R
t

)
− p (r + δ1 + κ1,tσ1,D) + 1 = 0 (48)

in the region 0 ≤ ωt ≤ ω̄.

Remark 2 Since there are multiple equilibrium values for wit, κ1,t, and yt in Proposition

26This behavior is reminiscent of models of industry equilibrium with endogenous entry and exit (e.g.,
Leahy (1993), Baldursson and Karatzas (1996).)
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6, there are a continuum of solutions for p(·) and ω̄, depending on the equilibria on which

agents coordinate at each value of ωt.

The expressions for µit and σit in Proposition 6 coincide with (18) and (17) when m̃ = 1,

χ = π, and σ1,t = σD.27 Moreover, with the dividend growths of stocks 1 and 2 being

independent, so are their stock-price processes (in the limit where stock 1 becomes small)

and the expressions for yt, w
i
1,t, and κ1,t in Proposition 6 (when m̃ = 1 and σ1,t = σD)

coincide with the respective expressions in the baseline model. Finally, if ε = 0, then ω̄ = 1,

as in the baseline model. In short, if one dropped the goods-market clearing requirement

from the baseline model, the resulting expression for the price-to-dividend ratio would be

given by (48) (with m̃ = 1 and ε = 0).

The main complications with solving (48) are that a) it is a non-linear ODE28 and b) if

ε > 0, this ODE is to be solved over a domain of values of ωt so that (44) holds, together with

the boundary ω̄ implied by Equation (44). The appendix describes an iterative numerical

procedure to solve this problem conditional on the equilibrium that investors coordinate on

at each value of ωt.

To illustrate the results, Figure 11 presents the solution for the price-dividend ratio.

We are interested in situations where the disagreement is large (η = 0.9), and the speed of

investor churn in market 1 is quite large (χ = 2), to capture short-termism. The idiosyncratic

dividend volatility is not too large, σ1,D = 7%, and the shorting fee is at the high levels that

one encounters for stocks that are “on special” (ϕ = 5.7%). A proportion ν = 0.7 of

new investors are of type R. In equilibrium, this value of ν ensures that the endogenous

exit decision is meaningful, that is, under any equilibrium there would a possibility that ωt

“spends time” in a region where a zero holding of asset 1 is optimal for investor R. Finally,

we assume that the sum of interest rate and depreciation r+ δ1 for stock 1 is 0.1. We choose

a value of τ = 0.8 based on the industry practice of rebating about 80% to the mutual funds

or ETFs that provide their shares for lending.29 Finally, for the disutility ε we intentionally

27To see this, substitute the expression for the equilibrium interest rate (26) to (18).
28The reason why (48) is non-linear is that µit and σit depend on σ1,t, which in turn depends on p(ωt) and

p′(ωt).
29Source: “Unlocking the potential of your portfolios: iShares Security Lending.” Blackrock, 2021. Avail-

able at https://www.ishares.com.
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Figure 11: The price-dividend ratio in the equilibria involving the highest and the lowest
extent of shorting.

choose a very small amount (2.5 basis points).

Figure 11 shows the price-dividend ratio under two different assumptions on the equilib-

rium that investors coordinate on (when multiple equilibria are possible). Specifically, the

line “low shorting” assumes that investors always coordinate on the equilibrium with zero

shorting, if it exists. By contrast, the line “high shorting” assumes that investors always co-

ordinate on the equilibrium with the highest possible shorting. Note that both lines extend

only until the levels ω̄1 and ω̄2, respectively, which are the levels of ωt at which R investors

exit in the two equilibria.

There are several noteworthy features of Figure 11. First, the price-dividend ratio for

the low shorting equilibrium is higher than the price-dividend ratio for the high shorting

equilibrium. This may seem counterintuitive in light of the fact that the high shorting

equilibrium implies a lower Sharpe ratio for a fixed ωt. The reason is that in the low

shorting equilibrium many R investors do not maintain a presence in the market for stock

1. In that equilibrium shorting occurs only for low values of ωt (below 0.3 in this numerical

example), which realize infrequently. Consequently, a significant fraction of R investors leave

the market, meaning that the typical steady-state values of ωt are low. The few remaining

R investors maintain a presence in the hope that, over the course of their stay in market 1,
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the process for ωt may drift even lower, thus activating shorting — a low probability event

in this equilibrium. Since the (stochastic) steady-state wealth share of rational investors, ωt,

is quite low, so is the Sharpe ratio, and thus the price-dividend ratio is high.

By contrast, the high shorting equilibrium attracts more R investors, who rationally

anticipate that they will be actively shorting (with high probability) over the course of their

stay in the market for stock 1. Therefore, the typical values of ωt are higher, the Sharpe

ratio is higher, and the price-dividend ratio is lower than in the low-shorting equilibrium.

We also note that our assumption of a high χ (“short-termism”) is reflected in the fact

that the curves for the price-dividend ratio are essentially flat lines, since the process ωt

mean-reverts quickly to its stochastic steady state under either equilibrium. Because of this

feature, the price-dividend ratio in either equilibrium is roughly equal to its steady-state

value irrespective of the current value of ωt.

In terms of quantities, Figure 11 implies that an unanticipated shift in equilibrium (from

the “high shorting” to the “low shorting”) will make the price-dividend ratio jump upward

by about 10%.

6 Conclusion

In this paper we propose a theory for why shorting can be fickle and subject to sudden

reversals, not attributable to a change in the fundamentals or the stock lending technology.

To illustrate the notion of sudden reversals, we use a time-honored device in economic theory,

namely the existence of multiple equilibria — a modeling device to illustrate the feedback

effects between the spot market and the lending market.

In the model, shorting can exhibit “run-type” patterns. An event that prompts some

short sellers to abandon their short positions can ignite a self-propagating cycle: Less short-

ing also implies less lending income for investors with long positions, who now need to be

compensated with a higher Sharpe ratio, which in turn further prompts short sellers to

abandon their strategies. (Going in the opposite direction, a high level of shorting activity

further subsidizes long positions, thus lowering the equilibrium Sharpe ratio and attracting

further short selling). Thus, for the same fundamentals, there can be multiple equilibria —
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a manifestation of the self-reinforcing nature of shorting decisions.

The paper can consequently provide an explanation of how a mutually-shared shift in

perception about the market environment can spiral quickly across many shorting strategies.

The model can also help explain a simultaneous decline in short selling and rise in the price

of a stock (such as the one that we document in our empirical analysis) even when neither

lending fees, nor fundamentals, nor the supply curve for lendable shares change. At first

sight, it would appear that a rise in the stock price (absent a change in fundamentals or

lending fees) should attract, rather than repel short sellers. We show, though, that the

likelihood of a switch to a no-shorting equilibrium can drive the incentive of participating

in the market low enough to prompt would-be short sellers to “abandon” the asset to the

optimists.

While motivated by recent events, the analysis of the paper has broader implications

for the empirical relationship between shorting and stock returns. One aspect we wish to

highlight is that this model helps explain why shifts in the supply of lendable shares do not

have a clear impact on the Sharpe ratio.
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For Online Publication – Appendix

A The Determination of the Lending Fee

In the text we assume a “flat” supply curve for lending shares. That is, we assume ft =
l(yt) = ϕ. We provide here the simplest model that supports this assumption. We also
discuss how to extend the model to allow for an increasing l(·).

All interactions considered in this section happen anew every period, where the length of
the period is idealized to be “dt,” that is, infinitesimal. (We could formalize this assumption
by considering a discrete-time model where the length ∆ of a period is taken to go to zero,
and focusing on the limit of resultant equilibria.)

We start by considering the long investors, who wish to lend their shares. Each investor
lends all her shares to any one of a competitive fringe of risk-neutral “lender’s dealers” in
exchange for an income stream that is proportional to the dollar value of shares the investor
lends. This income stream is determined as follows. In equilibrium, each broker receives a
fee fl per dollar of shares it lends out, which constitute only a proportion yt of the shares
it borrows from investors. (We omit time subscripts from now on.) Therefore, competition
between the brokers drives the income stream of investors to yfl per dollar of shares they
lend.

At the other end of the lending transaction, desirous short sellers interact with a com-
petitive set of “borrower’s brokers.” Specifically, for every borrowing fee fb the would-be
short sellers provide the dollar amount that they would like to short, and the brokers take
the value fb as a given when they attempt to fill the investor’s borrowing orders.

All of the frictions in this model pertain to the interaction between lender’s dealers and
borrower’s brokers. Specifically, to initiate a stock loan the representative broker must pay
a cost ξ per dollar value of share “located” with a dealer, per unit of time. This cost is
construed as labor cost that compensates brokers for their disutility of labor.

The interaction between the broker and the dealer takes the form of bilateral Nash
bargaining in which the broker has bargaining power 1/(1 + z) for a parameter z ∈ (0,∞).
Given our assumption that all interactions (between investors and brokers or dealers and
between brokers and dealers) happen anew every period, the outside option for both brokers
and dealers is the failure to transact during the period. This means that the gains from
trade to the dealer equal the lending fee fl, while to the broker the borrowing fee net of the
lending one fb − fl — the searching and matching cost ξ has been sunk at this point. The
total gains from trade equal fb, the foregone revenue from the would-be short seller. Given
the bargaining protocol, it follows that

fl =
z

1 + z
(fl + fb − fl) =

z

1 + z
fb. (A.1)

Since brokers are competitive, they break even on net, meaning that

fb = fl + ξ, (A.2)
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so that

fl = zξ, (A.3)

fb = (1 + z)ξ. (A.4)

To keep the model transparent and tractable, assume that all brokers are members of
the representative household, and therefore the fees that compensate them for their effort
are rebated to each households as an income stream proportional to the household’s wealth
and independent of the composition of the household’s portfolio.

Setting β = (1 + z)ξ and τ = z/(1 + z), this extended model is equivalent to the model
we assumed in the text. To generalize to upward-sloping supply curves, one would simply
assume an increasing cost ξ(y).

B Multiple Agent Types

We illustrate here that the multiplicity of equilibria may expand with the number of agent
types. In particular, adding a third group of agents can result in a third equilibrium featuring
non-zero shorting; such a model may admit, in fact, up to five equilibria.

Specifically, let us assume a third group of investors characterized by beliefs that are
summarized by the quantity ηP . We think of these investors as pessimists, which implies
ηP < 0. The intuition we wish to capture is that, in addition to the “high-shorting” and
“medium-shorting” equilibria in the base-line model, low-shorting equilibria may exist in
which investor R is inactive, while investor P shorts actively.

To make the point theoretically, one may argue by continuity. Specifically, consider the
zero-shorting equilibrium in the baseline model, and perturb the setting by adding a small
mass of sufficiently pessimistic investors (|ηP | large enough). These investors will want to
short, but will not be sufficiently numerous to move the Sharpe ratio or lending income to a
point where investors R and I are no longer in equilibrium.

It is helpful to write down the equilibrium conditions in the augmented model — both
to allow for a formal argument and in the interest of a numerical illustration. We repeat
the analysis in the text — letting ωP denote the wealth share of agents P — to obtain the
market clearing condition

1 =
1

σD

[
ωP
(
κ+ ηP +

ϕ

σD

)
1{

κ+ηP+ ϕ
σD

<0
} + ωR

(
κ+

ϕ

σD

)
1{

κ+ ϕ
σD

<0
}+ (B.1)

ωI
(
κ+ ηI +

ϕ

σD
τy

)]
,

where the left-hand side is the proportion of aggregate wealth represented by the supply of
the stock, while the right-hand side equals the proportion of aggregate wealth invested in
the stock. We restricted attention to cases in which R agents do not take a long position in
the stock.
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We solve for the Sharpe ratio κ:

κ = σD −
(
ωPηP + ωIηI

)
− ϕ

σD

(
ωP + ωR + ωIτy

)
(B.2)

if κ+ ϕ/σD < 0, respectively

κ =
σD

ωP + ωI
− ωPηP + ωIηI

ωP + ωI
− ϕ

σD

ωP + ωIτy

ωP + ωI
(B.3)

if κ+ ϕ/σD ≥ 0 > κ+ ηP + ϕ/σD.
The other equilibrium condition concerns the determination of the value of y:

y = −
ωP
(
κ+ ηP + ϕ

σD

)
1{

κ+ηP+ ϕ
σD

<0
} + ωR

(
κ+ ϕ

σD

)
1{

κ+ ϕ
σD

<0
}

ωI
(
κ+ ηI + ϕ

σD
τy
) . (B.4)

Depending on whether κ is determined according to (B.2) or (B.3) we obtain a different
quadratic equation. For appropriate parameter choices all but one combinations are possible
in terms of how many solutions in the interval (0, 1) each of them admits. We are particularly
interested in situations in which (B.2) applies and results in two admissible solutions, in
addition to which at least one solution obtains when (B.3) applies.

We illustrate such outcomes in Figure 12. The two panels differ in terms of parameters,
but depict the same objects. Specifically, the x-axis records candidate values of short interest
y that agents anticipate. Agents form demands taking such a value y and a Sharpe ratio κ as
given, and clearing in the asset market determines the Sharpe ratio. With the Sharpe ratio
now specified for each candidate y, we can compute the actual resulting short interest — the
value of the right-hand side of equation (B.4). This quantity is recorded on the y-axis. An
equilibrium requires that the x and y coordinates are equal.

The line “R and P short” plots y as if both R and P shorted, that is, their portfolio
weights are calculated by adding the return ϕ to their perceived intrinsic expected return
from the asset; in that case, the Sharpe ratio is given by (B.2). The line “Only P shorts” is
produced similarly, except that the demand of agent R is set to zero; equation (B.3) applies.
The actual resulting short interest is depicted by the thick continuous line, labeled “Actual
response.” Finally, the line “Diagonal” depicts the equilibrium condition. Equilibria are
therefore represented by points of intersection between the two continuous lines. The left
panel presents a situation in which four equilibria with positive amounts of shorting and one
with zero shorting obtain. The right panel presents a situation with three equilibria, all of
which feature positive short interest.

We also flesh out the theoretical argument for the existence of a third equilibrium when
ωP is close to zero and two equilibria with y > 0 exist with ωP = 0 — i.e., the baseline
model. By assumption, with ωP = 0 and y = 0 equation (B.3) applies and κ + ϕ

σD
> 0.
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Figure 12: The figure plots, in each panel, four lines pertaining to the model extension
developed in this section. Equilibria are characterized by the satisfaction of equation (B.4),
whose right-hand side is represented here by the line “Actual response” and the left-hand
side by the line “Diagonal.” Further details are provided in the text.

Choosing ηP so that κ+ ηP + ϕ
σD

< 0, we wish to conclude that equations

y = −
ωP
(
κ+ ηP + ϕ

σD

)
ωI
(
κ+ ηI + ϕ

σD
τy
) (B.5)

and (B.3) admit a solution that satisfies κ + ϕ
σD

> 0 even for ωP > 0, at least when it is

small enough. For simplicity, we keep ωI constant as we increase ωP from zero. Plugging
(B.3) in (B.5) we obtain a quadratic that can be written as

y =
ωP

ωI

(
ηI − ηP

)
ωI − ϕ

σD
ωIτ (1− y)− σD

(ηI − ηP )ωP − ϕ
σD
ωP τ (1− y) + σD

≡ H(ωP , y). (B.6)

Our choice of ηP is such that the numerator of the second fraction on the right-hand side is
positive at y = 0, which implies ∂H

∂ωP
> 0 evaluated at ωP = 0, as well as ∂H

∂y
= 0 at ωP = 0.

We therefore have

dy

dωP
=

(
1− ∂H

∂y

)−1
∂H

∂ωP
> 0, (B.7)

confirming that an equilibrium with positive short interest exists for small ωP . (The condition
κ+ ϕ

σD
> 0 is satisfied by continuity.)
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C The Price-Dividend Ratio of a Small Stock

This section provides the details of the entry-and-exit process for the model of Section 5.2
and proves Proposition 6.

The entry and exit into market 1 happens either for endogenous or exogenous reasons.
By “endogenous” we mean that investors conduct a cost-benefit analysis before deciding
whether to keep paying attention to the market for stock 1. In addition to this optimizing
choice, we assume that investors enter and exit the market for exogenous reasons. This
exogenous flux of investors is modeled with the sole purpose of making the model solution
more tractable and transparent.

Specifically, recalling that W i
t denotes the (aggregate) wealth of type-i investors that

participate in market 1, we assume

dW i
t = dW i,part

t +χ
(
νi(W I

t +WR
t )−W i

t

)
dt−1i=R×

W I
t +WR

t

1− ωt
dFt+ω

i
t (dLt − dNt) , (C.1)

where dW i,part
t is the wealth growth of an investor of type i ∈ {I, R) who is already partic-

ipating in the market for stock 1.30 The term χ
(
νi(W

I
t +WR

t )−W i
t

)
dt reflects entirely

exogenous, non-optimizing entry, which happens at some rate χ.
As in the baseline model, we assume that this exogenous entry-and-exit process affects

the composition, but not the sum, of W I
t +WR

t , since∑
i∈{I,R}

χ
(
νi
(
W I
t +WR

t

)
−W i

t

)
= 0.

The term −1i=R × W I
t +WR

t

1−ωt dFt captures the endogenous exit of R investors. As in the
text, the (singular) process dFt is constructed so that ωt stays below the critical value of ωt,
which ensures that (44) holds.

Mostly for technical tractability reasons, we assume another source of exogenous entry
and exit, which is reflected in the term ωit (dLt − dNt) on the right-hand side of (C.1). This
entry and exit process leaves the composition of wealth in the market (between R and I
investors) unaffected, but ensures that the wealth of the investors who pay attention to the
market “1” stays proportional to the “size” of market 1. Specifically, we define dLt and
dNt as the two singular, increasing processes that “control” W I

t + WR
t so that the ratio

of stock market capitalization of asset 1 to the total wealth of investors participating in
market 1, m̃t = M1,t

W I
t +WR

t
, stays constant across time (m̃t = m̃).31 Because (dLt − dNt) is

multiplied by ωit, this exogenous entry-and-exit process does not impact the composition
of wealth between R and I investors. The purpose of this exogenous entry-and-exit term

30For completeness, dW i,part
t = W i,part

t µiW dt+W i,part
t

−→σ iW dWt, where

µiW = rt + π + nt +−→w i
t,s

(
−→µ t − rt1{2×1) + λit,s

[
1
0

])
−

cit,s
W i
t,s

for any s ≤ t and −→σ iW = −→w i′σt.
31These processes can be uniquely constructed from the running maximum and minimum of the difference

between (WR
t +W I

t )−M1,t. For details see Karatzas and Shreve (2012, p. 210) on the Skorohod equation.
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is transparency and tractability: By ensuring a constant m̃t, if there were no differences
of opinion (η = 0), the excess return, the price-dividend ratio, and the volatility of stock 1
would all be constant. Thus, we can eliminate a state variable from the problem, namely the
ratio of market capitalization to the total wealth of investors in market 1). Economically,
this means that we can abstract from the economic effects of limited participation (that have
been studied extensively in the literature) and isolate the impact of shorting frictions. It is
also worth highlighting that the term ωit (dLt − dNt) would endogenously approach zero as
δ1 and χ approach infinity.32 Thus, our computations would be approximately valid, if we
eliminated the term ωit (dLt − dNt), as long as the analysis focuses on cases where investors
are short-termist (χ is large) and the ratio of the dividends of a typical tree 1 to tree 2 mean
reverts fast.

Having described the entry and exit of investors into the market for stock 1, we now
proceed to derive the differential equation in Proposition 6. Using the market clearing

condition
∑

i∈{I,R} ω
i
tw

i,1
t = m̃ , and applying Ito’s Lemma to ωit =

W i
t

W I
t +WR

t
leads to

dωit = µitdt+ σitdB1,t, (C.2)

where

µit = ωit
[(
wi1,t − m̃

)
σ1,t (κt − σ1,tm̃) + wi1,tft + ñt

]
+ χ

(
νit − ωit

)
,

σit = ωit
(
wi1,t − m̃

)
σ1,t,

and33

ñt ≡ −
∑

i∈{I,R}

wi1,tωt
iλit =

ytm̃

1− yt
ft (1− τ) .

Since φ1
φ2
≈ 0, the aggregate endowment follows a geometric Brownian motion in the limit,

and the interest rate is constant rt = r. Accordingly, the price of a stock of type 1 follows
the dynamics

dP1,t,s +D1,t,sdt

P1,t,s

= (r + κ1,tσ1,t)dt+ σtdB1,t. (C.3)

Applying Ito’s Lemma to the product P1,t,s = p (ωt)D1,t,s also implies that

dP1,t,s

P1,t,s

=
dpt
pt

+
dD1,t,s

D1,t,s

+
p′ (ωt)

p (ωt)
σRt σ1,Ddt. (C.4)

32The reason is that the price-dividend ratio and the ratio of the dividend processes for the two trees
(given in (43)) approach constants, thus implying that m̃t = m̃ approaches a constant.

33Using
∑
i∈{I,R} w

i
1,tω

i
t = m̃t, the definition yt = −

wR1,tωt1{wR1,t<0}

wI1,tω
I
t

and the definition of λit leads to

−
∑

i∈{I,R}
wi1,tω

i
tλ
i
t =

ytm̃

1− yt
ft (1− τ) .
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Combining (C.3) with (C.4) and using σ1,t = p′(ωt)
p(ωt)

σRt +σ1,D and Ito’s Lemma to compute

the drift of dpt
pt

leads to

1

2

∂2p

∂ω2
t

(
σRt
)2

+
∂p

∂ωt

(
µRt + σRt σ1,D

)
− p× (r + δ1 + κ1,tσ1,t) + 1 = 0, (C.5)

which in turn leads to (48) after substituting σ1,t = p′(ωt)
p(ωt)

σRt + σ1,D.

We solve (48) with iterated Monte Carlo. We start with the initial guess σ1,t = σ1,D and
some guess for the cutoff ω̄. With that guess we use a Monte carlo simulation to evaluate
V R
t (ωt) on a grid of ωt values. We find the value that implies V R

t (ωt) = 0 and update our guess
for ω̄ until V R

t (ω̄) = 0. With this guess for ω̄ we draw paths of ωt for different initial values
and solve for the price-dividend ratio by using the Feynman-Kac theorem to express (48) as
an expectation, which we evaluate with Monte Carlo simulation. After obtaining the price-
dividend ratio on a fine grid of values, we evaluate p′(ωt)

p(ωt)
, and compute σ1,t = p′(ωt)

p(ωt)
σRt +σ1,D.

Using this new guess for σ1,t we repeat the above procedure until convergence.

D Generalized supply curve for shorting

The baseline version of the model assumes an elastic supply of lendable shares, so that the
lending fee is constant. The results generalize readily to the case in which the supply of
lendable shares is increasing in yt so that ft = l (yt), where l′ (yt) > 0.

We obtain the following proposition.

Proposition 7 Consider the model of Section 2, but without Assumption 1. Define

z (yt) ≡ ft (1− τyt) = l (yt) (1− τyt) . (D.1)

Assume that σD
1−ωt − η < 0 and that there exists y∗t ∈ (0, 1) such that

y∗t =
η − σD

1−ωt −
1
σD
z (y∗t )

η + σD
ωt
− 1

σD
z (y∗t )

, (D.2)

and η − σD
1−ωt −

1
σD
z (y∗) > 0. Moreover, if η − σD

1−ωt −
1
σD
z (0) < 0, then there exist at least

two values of y
(j)
t , j = {1, 2} satisfying both (D.2) and η − σD

1−ωt −
1
σD
z
(
y(j)
)
> 0 and three

equilibria co-exist. In the first equilibrium, the R investor holds a zero portfolio, and the
Sharpe ratio is κt = σD

1−ωt − η. There also exist two other equilibria, with R investors holding
negative portfolios and the Sharpe ratio given by

κt = σD − (1− ωt) η −
ωt
σD

l
(
y

(j)
t

)[
1 + τy

(j)
t

1− ωt
ωt

]
. (D.3)

In all equilibria the interest rate is given by (26), and the lending fee is given by l
(
y

(j)
t

)
.

Remark 3 In the special case l (yt) = ϕ, equations (D.2) and (D.3) become identical to (24)
and (25), respectively.
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Figure 13: An illustration of Proposition 7.

Figure 13 illustrates Proposition 7. For this particular numerical example we choose
l (yt) = ϕ (1 + 2y3

t ), η = 0.9, σD = 7%, τ = 0.8, ω = 0.5, and ϕ = 0.055. The figure plots the
left hand side (dotted line) of equation (D.2) and the right hand side (solid line). Points B
and C correspond to the two fixed points. Point A in the figure illustrates the assumption
η − σD

1−ωt −
1
σD
z (0) < 0. This inequality implies that there is a third equilibrium in which

R investors choose to not go short. The fees in the three equilibria differ, with the lending
fee being lowest (l (0) = ϕ) in equilibrium A, in which the shorting market is inactive, and
highest in equilibrium C, in which y is highest.

E Proofs

Proof of Proposition 1. Fix parameters η > 0 and ψ > 1 and define ϕ according to

ϕ = σD (η − ψσD) (E.1)

for any value of σD. Note that when σD is sufficiently small, ϕ is guaranteed to be positive.
We show next that, as σD gets close to zero, Assumption 2 is satisfied. Rearranging (E.1)

gives

η
ϕ
σD

=
1

1− ψ σD
η

. (E.2)

For sufficiently small σD we obtain

1 + τ >
1

1− ψ σD
η

> 1. (E.3)
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Combining (E.2) and (E.3) yields (21).
Turning to (22), we note that the definition of ω∗1 along with (E.1) implies

ω∗1 = 1− σD
ψσD

=
ψ − 1

ψ
> 0,

while also

lim
σD→0

σD
(1 + τ) ϕ

σD
− η

= lim
σD→0

σD
(1 + τ) (η − ψσD)− η

= 0.

Therefore, for sufficiently small σD, the left-hand side of (22) converges to ψ−1
ψ

> 0, while
the right-hand side converges to zero, and therefore the inequality holds.

We conclude the proof by showing that F (ω) has a unique root in the interval (ω∗1, 1).
To this end, it is useful to introduce the definitions

A(ω) ≡ τ
ω

σD
ϕ, (E.4)

B(ω) ≡ σD − ω
(

(1 + τ)
ϕ

σD
− η
)
, (E.5)

C(ω) ≡ ω

1− ω

(
σD + (1− ω)

(
ϕ

σD
− η
))

. (E.6)

With these definitions, F (ω) can be written as F (ω) = B2(ω)− 4A(ω)C(ω). We start by
observing that C (ω∗1) = 0 for any parametric choice (since the definition of ω∗1 in equation

(19) implies σD + (1− ω∗1)
(

ϕ
σD
− η
)

= 0). Also, inequality (22) implies that B (ω∗1) 6= 0,

and thus B2 (ω∗1) > 0. Accordingly, F (ω∗1) > 0. Also B (1) < ∞, while C (1) = ∞. By
continuity, there exists at least one value ω∗2 ∈ (ω∗1, 1) such that F (ω∗2) = 0.

To show that this value is unique, consider any value ω∗2 ∈ (ω∗1, 1) such that F (ω∗2) = 0.
We next show that F ′(ω∗2) < 0.

To this end, note that

F ′(ω) = 2B(ω)B′(ω)− 4 [A′(ω)C (ω) + A(ω)C ′(ω)]

= 2B2(ω)
B′(ω)

B(ω)
− 4A(ω)C(ω)

(
A′(ω)

A(ω)
+
C ′(ω)

C(ω)

)
.

Since ω∗2 is a root of F (ω) it follows that B2 (ω∗2) = 4A
(
ω(2)

)
C (ω∗2) . Therefore,

F ′ (ω∗2) = B2 (ω∗2)

(
2
B′ (ω∗2)

B (ω∗2)
− A′ (ω∗2)

A (ω∗2)
− C ′ (ω∗2)

C (ω∗2)

)
. (E.7)
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We have

A′ (ω∗2)

A (ω∗2)
=

1

ω∗2

B′ (ω∗2)

B (ω∗2)
= −

(1 + τ) ϕ
σD
− η

σD − ω∗2
(

(1 + τ) ϕ
σD
− η
)

and

C ′ (ω∗2)

C (ω∗2)
=

1

ω∗2 (1− ω∗2)
+

η − ϕ
σD

σD + (1− ω∗2)
(

ϕ
σD
− η
) .

Combining terms gives

2
B′ (ω∗2)

B (ω∗2)
− A′ (ω∗2)

A (ω∗2)
− C ′ (ω∗2)

C (ω∗2)
(E.8)

= −
2
(

(1 + τ) ϕ
σD
− η
)

σD − ω∗2
(

(1 + τ) ϕ
σD
− η
) − 1

ω∗2
− 1

ω∗2 (1− ω∗2)
−

η − ϕ
σD

σD + (1− ω∗2)
(

ϕ
σD
− η
) .

For future reference, we note that using ω∗2 > ω∗1 along with (21) and the definition of ω∗1
implies that

σD + (1− ω∗2)

(
ϕ

σD
− η
)
> σD + (1− ω∗1)

(
ϕ

σD
− η
)

= 0. (E.9)

Using (E.1) we can write the right-hand side of (E.8) as

− 2 ((1 + τ) (η − ψσD)− η)

σD − ω∗2 ((1 + τ) (η − ψσD)− η)
− 1

ω∗2
− 1

ω∗2 (1− ω∗2)
− ψ

1− ψ (1− ω∗2)
. (E.10)

Taking the limit as σD approaches zero, the expression (E.10) converges to

− 1

1− ω∗2
− ψ

1− ψ (1− ω∗2)
< 0,

where the inequality follows from (E.9) along with (E.1).34

The fact that the derivative F ′ (ω∗2) < 0 for any root of the equation F (ω∗2) = 0 in the
interval (ω∗1, 1) implies that the root ω∗2 must be unique.

Proof of Proposition 2. In preparation for the proof, we state and prove an auxiliary
result.

34Equation (E.1) implies ϕ
σD
−η = −ψσD, and therefore 0 < σD+(1− ω∗2)

(
ϕ
σD
− η
)

= σD (1− (1− ω∗2)ψ),

where the inequality follows from (E.9).
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Lemma 2 The following statements hold for the quadratic equation (24).

1. ω∗1 < ω∗2 and the discriminant of (24) is non-negative for all ωt ≤ ω∗2.

2. When ω∗1 ≤ ωt ≤ ω∗2, the two roots of the equation are both in the interval [0, 1).

3. For ωt ∈ [0, ω∗1), only the larger root of (24) is in the interval (0, 1) .

4. If y is a root of (24), then (1− ωt) η − σD − 1−ωt
σD

ϕ (1− τy) > 0.

Proof of Lemma 2. We start with part 1. Using the definitions (E.4)–(E.6), equation
(24) can be written in the familiar form

A (ωt) y
2 +B (ωt) y + C (ωt) = 0,

and the discriminant of this quadratic equation is given by F (ωt) as defined in equation
(20).

For ωt ≤ ω∗1, C (ωt) < 0 and the discriminant, B2 (ωt) − 4A (ωt)C (ωt), is positive. The
assumption that ω∗2 is the unique root of F (ω) along with the facts that F (ω∗1) = B2 (ω∗1) > 0
and F (1) = −∞ imply that ω∗1 < ω∗2.

35 The uniqueness of the root ω∗2 also implies that
F (ωt) = B2 (ωt)− 4A (ωt)C (ωt) ≥ 0 for all ωt ≤ ω∗2.

We now turn to part 2. To economize on notation we write A rather A (ωt) and similarly
for B and C. Fix a given ωt and let g (y) = Ay2 + By + C. We have g (1) = A + B + C =
σD

1−ωt > 0 and g′ (1) = 2A+ B = σD + ωt

(
η − (1− τ) ϕ

σD

)
> 0, where the inequality follows

from (21). Since A > 0, it follows that all roots of g (y) must be smaller than one. Also, the
fact that ωt ≥ ω∗1 implies that g (0) = C > 0, while assumptions (21) and (22) together with
the fact that ωt ≥ ω∗1 imply that g′ (0) = B < 0.

The facts that i) g(y) is a convex, quadratic function of y, ii) g (1) > 0, g(0) > 0,
g′ (1) > 0, and g′ (0) < 0 and iii) B2 − 4AC > 0 for ωt ∈ [ω∗1, ω

∗
2) imply that there are two

roots in (0, 1) .
For part 3, we note that, when ωt < ω∗1, g (0) = C < 0, while g (1) = A+B+C = σD

1−ωt > 0.
Therefore there exists one and only one root in (0, 1) .

Finally, let y ∈ (0, 1) denote a root of the quadratic equation (24). Accordingly,

(1− ωt) η − σD − (1− ωt)
ϕ

σD
(1− τy) =

1− ωt
ωt

y

(
σD + ωtη − ωt

ϕ

σD
(1− τy)

)
=

1− ωt
ωt

y

[
σD + ωt

(
η − ϕ

σD

)
+ ωt

ϕ

σD
τy

]
> 0

where the last inequality follows from (21). This proves property 4.
We now continue with the proof of the proposition. We provide expressions for rt and κt

that apply in any equilibrium in which wRt 6= 0. Since
∑
i

ωit = 1, it follows that
∑

i σ
i
t = 0

35Assumption (22) implies that B (ω∗1) 6= 0 and therefore B2 (ω∗1) > 0.
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and
∑

i µ
i
t = 0. Using (17) and

∑
i σ

i
t = 0 implies that

∑
i ω

i
tw

i
t = 1. Combining

∑
i ω

i
tw

i
t = 1

with (14) along with the definition yt =
W−t
W+
t

gives

κt + (1− ωt) η +

(
ωt

1

σD
ϕ+ (1− ωt) τyt

1

σD
ϕ

)
1{wRt <0} = σD. (E.11)

Similarly, using (18) along with
∑

i µ
i
t = 0 and

∑
i ω

i
t (nt + wits

i
t) = 0 gives (26).

We next describe the equilibria for the three intervals of ωt described in the statement of
the proposition.

i) In this case, ωt > ω∗2. The equilibrium prescribes non-negative portfolios for both
investors. If ωt > 1 − σD

η
, equation (E.11) implies that κt > 0 and (14) implies

that both investors hold positive portfolios and the shorting market is inactive. If
ωt ∈ [ω∗1, 1 − σD

η
), then there exists an equilibrium that involves no shorting and a

zero portfolio for investor R. We check this assertion by osberving that the associated
market clearing requirement becomes (1− ωt)wIt = 1, which together with yt = 0 leads
to (23). We then note that

κt +
ϕ

σD
=

σD
1− ωt

− η +
ϕ

σD
(E.12)

>
σD

1− ω∗1
− η +

ϕ

σD
= 0.

The first line follows from (23), the second line follows from ωt > ω∗1 and the third
line follows from the definition of ω∗1. Since κt + ϕ

σD
> 0, investor R does not choose a

negative portfolio. And since κt < 0 for ωt ∈ [ω∗1, 1− σD
η

), the investor chooses a zero
portfolio.

ii) In this case, ω∗1 < ωt < ω∗2. Since ωt > ω∗1, equation (E.12) implies that the no-shorting
equilibrium continues to be an equilibrium. There exist, however, two more equilibria.
To compute them, we guess (and verify shortly) that wRt < 0. Using (14) and (E.11)
gives

yt =
W−
t

W+
t

=
−ωtwRt,s

(1− ωt)wIt,s
=

ωt
1− ωt

−
(
κt + 1

σD
ϕ
)

κt + ηt + 1
σD
ϕτyt

=
ωt

1− ωt
(1− ωt) η − σD − 1−ωt

σD
ϕ (1− τyt)

σD + ωtη − ωt
σD
ϕ (1− τyt)

.

Rearranging leads to (24). Statement 1 of Lemma 2 implies that, when ωt ∈ (ω∗1, ω
∗
2),

equation (24) has two roots in (0, 1). Under the supposition that wRt < 0, Equation
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(E.11) leads to (25). In turn

κ±t +
ϕ

σD
= σD − (1− ωt) η −

ωt
σD

ϕ

(
1 + τy±

1− ωt
ωt

)
+

ϕ

σD

= σD − (1− ωt)
(
η +

ϕ

σD

(
1− τy±t

))
< 0, (E.13)

where the last inequality follows from statement 4 of Lemma 2. Combining this obser-
vation with (14) confirms that wRt < 0. Note that in the second and third equilibria
we have that

κ±t + ηt +
1

σD
ϕτy±t = σD + ωtη −

ϕωt
σD

(
1− τy±t

)
> 0,

where the last inequality follows from (E.13) along with the fact that y± satisfy the
equation (24). This implies that wIt > 0.

iii) In this case, ωt < ω∗1. Statement 3 of Lemma 2 implies that the quadratic equation (24)
has only one solution in (0, 1) . This shows that there can only be one equilibrium with
shorting. Moreover, this is the unique equilibrium. If wRt were zero and the Sharpe
ratio were σD

1−ωt − η, then the inequality in (E.12) reverses, i.e., σD
1−ωt − η + ϕ

σD
< 0

and investor R would want to deviate from the equilibrium prescription and choose a
negative portfolio.

Proof of Proposition 3. We distinguish two cases according to whether investor R
holds an interior positions in both equilbria.

Case i: Suppose that wR,At = 0 in equilibrium A and wR,Bt < 0 in equilibrium B. We
have

gR,Bt − gR,At = −
(
κB − κA

)
σD + max

wt≤0

{
wt
(
κBσD + ϕ

)
− 1

2
w2
t σ

2
t

}
>
(
κA − κB

)
σD ≥ 0,

where the first inequality follows from the fact that wt = 0 is suboptimal for investor R in
equilibrium B (by assumption). Similarly, using (18) gives

µR,Bt − µR,At = ωt

((
κA − κB

)
σD + wR,Bt σD

(
κB +

ϕ

σD
− σD

))
= ωt

[(
κA − κB

)
σD + (1− ωt)wR,Bt σD

(
ϕ

σD
(1− y)− η

)]
= ωt

[(
κA − κB

)
σD + (1− ωt)

∣∣∣wR,Bt

∣∣∣σD (η − ϕ

σD
(1− y)

)]
> 0,

where the first equality follows from (25), the second equality from wR,Bt < 0 and the
inequality from assumption (21) along with y < 1.
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Case ii: In this case the portfolio choice of investor R is interior in both equilibria. Using
the fact that in any interior equilibrium the optimal value of wt satisfies

wt
(
κBσD + ϕ

)
− 1

2
w2
t σ

2
D =

1

2
w2
t σ

2
D,

we obtain

gR,Bt − gR,At = −
(
κB − κA

)
σD +

σ2
D

2

[(
wR,Bt

)2

−
(
wR,At

)2
]

=
(
κA − κB

)
σD +

σ2
D

2

(
wR,Bt + wR,At

)(
wR,Bt − wR,At

)
=
(
κA − κB

)
σD +

σD
2

(
wR,Bt + wR,At

) (
κB − κA

)
=
(
κA − κB

)
σD

(
1 +

∣∣∣wR,Bt + wR,At

∣∣∣)
> 0.

Using (18) gives

µR,Bt − µR,At = ωt

((
κA − κB

)
σD + wR,Bt σD

(
κB +

ϕ

σD
− σD

)
− wR,At σD

(
κA +

ϕ

σD
− σD

))
= ωt

((
κA − κB

)
σD + σ2

D

[
wR,Bt

(
wR,Bt − 1

)
− wR,At

(
wR,At − 1

)])
= ωt

((
κA − κB

)
σD + σ2

D

[(
wR,Bt − 1

2

)2

−
(
wR,At − 1

2

)2
])

= ωt

((
κA − κB

)
σD + σ2

D

[(∣∣∣wR,Bt

∣∣∣+
1

2

)2

−
(∣∣∣wR,At

∣∣∣+
1

2

)2
])

> 0,

where the last inequality follows from wR,Bt < wR,At < 0 (since κB < κA < 0) and therefore∣∣∣wR,Bt

∣∣∣ > ∣∣∣wR,At

∣∣∣ .
Proof of Lemma 1. By the implicit function theorem,

dω∗2
dϕ

= −Fϕ
Fω
.

Since limω→∞ F (ω) = −∞ and the root F (ω∗2) = 0 is unique (by assumption), it follows
that Fω(ω∗2) < 0. So it suffices to prove that Fϕ(ω∗2) < 0.

Differentiating F with respect to ϕ, multiplying the resulting expression by ϕ and eval-
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uating at ω∗2 (recall F (ω∗2) = 0) gives

ϕFϕ = −2ω∗2
ϕ

σD
(1 + τ)

(
σD − ω∗2

(
(1 + τ)

ϕ

σD
− η
))

(E.14)

−
(
σD − ω∗2

(
(1 + τ)

ϕ

σD
− η
))2

− 4τ (ω∗2)2 ϕ
2

σ2
D

.

Completing the square gives

ϕFϕ = −
(
σD − ω∗2

(
(1 + τ)

ϕ

σD
− η
)

+ ω∗2
ϕ

σD
(1 + τ)

)2

+ (ω∗2)2 ϕ
2

σ2
D

(1− τ)2

= − (σD + ω∗2η)2 + (ω∗2)2 ϕ
2

σ2
D

(1− τ)2

= −
(
σD + ω∗2η + ω∗2

ϕ

σD
(1− τ)

)(
σD + ω∗2η − ω∗2

ϕ

σD
(1− τ)

)
< 0,

where the last inequality follows from the assumption η ≥ ϕ
σD
.

Proof of Proposition 4. Differentiating κt with respect to ϕ (in an equilibrium where
y > 0), we obtain

dκt
dϕ

= − ωt
σD

(
1 +

1− ωt
ωt

τyt

(
1 +

ϕ

yt

dyt
dϕ

))
. (E.15)

In turn, the implicit function theorem applied to (24) gives

dyt
dϕ

= −
ωt
σD

(1− τy) (1− y)

σD + ωtη − ωt
σD
ϕ (1 + τ − 2τy)

= −
ωt
σD

(1− τy) (1− y)

g′ (y)
,

where g (y) is defined in Proposition 1. Since g′ (y−) < 0 and g′ (y+) > 0, we have dy−

dϕ
> 0

and dy+

dϕ
< 0. Combining dy−

dϕ
> 0 with (E.15) implies dκt

dϕ
< 0 in the equilibrium associated

with y−. For the equilibrium associated with y+ we have

1 +
ϕ

y+

dy+

dϕ
=

(
σD + ωtη − ωt

σD
ϕ (1 + τ − 2τy+)

)
y+ − ϕωt

σD
(1− τy+) (1− y+)(

σD + ωtη − ωt
σD
ϕ (1 + τ − 2τy+)

)
y+

. (E.16)

We are interested in the behavior of (E.16) as ωt approaches zero. Letting x ≡ y+

ωt
, dividing

both sides of (24) by ωt and re-arranging terms yields

x (σD + ωtη) +
ϕ

σD
(1− ωtx) (1− τωtx) =

1

1− ωt
(
(1− ωt) ηI − σD

)
.
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Taking limits as ωt approaches zero, implies

lim
ωt→0

x =
η − σD − ϕ

σD

σD
. (E.17)

Using (E.17), as ωt approaches zero we obtain

lim
ωt→0

(
1 +

1− ωt
ωt

τyt

(
1 +

ϕ

yt

dyt
dϕ

))
= 1 + τ lim

ωt→0
x× lim

ωt→0

(
1 +

ϕ

yt

dyt
dϕ

)
= τ lim

ωt→0
x ×

(
1−

ϕ
σD

σD limωt→0 xt

)
= τ

(
η − σD − 2 ϕ

σD

σD

)
< 0, (E.18)

where we used (21) to derive the last inequality. Combining (E.18) with (E.15) implies that,

for small ωt,
dκ(y+)
dϕ

> 0.
Proof of Proposition 5. The proof essentially repeats the steps from the one-risky

asset case, so we provide only a sketch, focusing on the elements that differ. We define

−→ϕ =

[
ϕ
0

]
,−→η =

[
η
0

]
.

We consider first an equilibrium with yt > 0. Investor R’s and I’s optimal portfolios are
given by

−→w R
t = (σtσ

′
t)
−1

(−→µ t − rt12×1 +−→ϕ ) , (E.19)
−→w I

t = (σtσ
′
t)
−1

(−→µ t − rt12×1 + σ1,t
−→η + τyt

−→ϕ ) . (E.20)

Using (E.19) inside (38) yields

(σtσ
′
t)
−→mt = ω̂t [ωt (−→µ t − r1N +−→ϕ ) + (1− ωt) (−→µ t − r1N + σ1

−→η + τyt
−→ϕ )]

+ (1− ω̂t) (σtσ
′
t)

[
0

µ2,t−r
σ2
2,t

]
. (E.21)

Next we use the row selection vector [0, 1] to pre-multiply both sides of (E.21). Noting
that [0, 1]−→ϕ = [0, 1]−→η = 0, and also

(σtσ
′
t)

[
0

µ2,t−r
σ2
2,t

]
=

[
bt (µ2,t − r)
µ2,t − r

]
, (E.22)
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leads to (41). We next note that

[1,−bt]σtσ′t
[
m1,t

m2,t

]
= [σ1,t, 0]

[
σ1,t 0
btσ2,t σ2,t

] [
m1,t

m2,t

]
(E.23)

= σ2
1,tm1,t.

Pre-multiplying both sides of (E.21) with the row vector [1,−bt], using (E.22), (E.23),
and the definition of κ1,t, and re-arranging yields

κ1,t = m̃1,tσ1,t − (1− ωt) η −
ϕ

σ1,t

(ωt + (1− ωt)τyt) . (E.24)

Using the definition of κ1,t inside (E.19) gives

wR1,t =
κ1,t

σ1,t

+
ϕ

σ2
1,t

(E.25)

wI1,t =
κ1,t + η

σ1,t

+
τytϕ

σ2
1,t

, (E.26)

where we used the notation w1,i
t , i ∈ {R, I}, to denote the first element of wit.

Using the market clearing condition yt = −ωRt w
R
1,t

ωItw
I
1,t

= − ωtwR1,t
(1−ωt)wI1,t

leads to (39).

If agent R chooses not to short then the market clearing condition becomes

ω̂t(1− ωt)wIt + (1− ω̂t)
[

0
ŵ2,t

]
= −→mt. (E.27)

Substituting (E.20), pre-mutiplying by (σtσ
′
t) gives

(σtσ
′
t)
−→mt = ω̂t(1− ωt) (−→µ t − r1N + σ1

−→η ) + (1− ω̂t) (σtσ
′
t)

[
0

µ2,t−r
σ2
2,t

]
. (E.28)

Premultiplying (E.28) by the row [1,−bt] and using (E.22) and (E.23) gives

σ2
1,tm̃1,t = (1− ωt)σ1,t (κ1,t + η) ,

and therefore

κ1,t = σ1,t
m̃1,t

1− ωt
− η. (E.29)

Finally, when both agents hold positive portfolios, the optimal portfolios are−→w R
t = (σtσ

′
t)
−1 (−→µ t − rt12×1),

−→w I
t = (σtσ

′
t)
−1 (−→µ t − rt12×1 + σ1,t

−→η ). Repeating the arguments in equations (E.19)–(E.24),
we obtain κ1,t = m̃1,tσ1,t − (1− ωt) η.

Proof of Proposition 6. The proof of this Proposition is contained in Appendix C.
Proof of Proposition 7. Since this proof is essentially identical to the proof of

Proposition 2, we only provide a sketch. Combining (14) with
∑

i ω
i
tw

i
t = 1 implies that in
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any equilibrium with wRt < 0 and wIt > 0 the Sharpe ratio is

κt + (1− ωt) η + ωt
1

σD
ft + (1− ωt) τyt

1

σD
ft = σD. (E.30)

Re-arranging (E.30) and using ft = l (yt) gives (D.3). Substituting (D.3) back into the

investors’ optimal portfolios (14) and the fact that yt = − ωtwRt
(1−ωt)wIt

leads to (D.2).

We next study the roots of (D.2). Let Z (y) ≡
η− σD

1−ωt
− 1
σD

z(y)

η+
σD
ωt
− 1
σD

z(y)
, so that equation (D.2) can

be expressed as y = Z (y) . The assumption of the proposition is that there exists at least one
y such that y = Z (y) . Let ȳ∗ be the largest root of (D.2) that satisfies η− σD

1−ωt−
1
σD
z (y) > 0.

We consider two cases: i) η− σD
1−ωt−

1
σD
z (y) > 0 for all y ∈ [ȳ∗, 1] and ii) η− σD

1−ωt−
1
σD
z (y) = 0

for some y ∈ [ȳ∗, 1]. In case i) it must be that Z ′ (ȳ∗) ≤ 1, since ȳ∗ = Z (ȳ∗) and 1 > Z (1) .
In case ii) it must also be that Z ′ (ȳ∗) ≤ 1 since y > Z (y) = 0.

Furthermore, by continuity values of y lower than ȳ∗ exist such that η− σD
1−ωt−

1
σD
z (y) = 0;

let y be the highest such value and note 0 < y < ȳ∗. Since the numerator of Z is positive
on (y, ȳ∗), so is the denominator. Moreover, we have Z(y) = 0 < y. A solution Z(y) = y
therefore exists in (y, ȳ∗), and it defines a second equilibrium with strictly positive short
interest.

Finally, to confirm that a no-shorting equilibrium is also an equilibrium, η − σD
1−ωt −

1
σD
z (0) < 0 is equivalent to η − σD

1−ωt −
1
σD
l (0) < 0. If the Sharpe ratio is given by κt =

σD
1−ωt − η < 0, the assumption η − σD

1−ωt −
1
σD
l (0) < 0 implies κt + 1

σD
l (0) > 0. Accordingly,

investor R does not wish to short when the fee is ft = l (0) and the lending market clears with
y = 0 at the lending fee l (0) .Moreover, wIt = κt+η

σD
= 1

1−ωt . Therefore ωt×0+(1− ωt)×wIt = 1
and the stock market clears.
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F Additional Data Discussion

F.1 Methodology

F.1.1 Measuring ticker discussion on WallstreetBets

Our measure of ticker mentions on WallstreetBets is constructed as follows. We use the
PushshiftAPI to collect all submissions posted on WallstreetBets subreddit from January 1,
2020 through February 7, 2021 (Baumgartner et al., 2020). For each submission, we observe
the title text, the body of the submission, the author of the submission, and the time of the
submission.

In order to identify which tickers are discussed in the submission, we take advantage of
the fact that users often tag tickers with a leading $ (i.e. $TSLA or $AAPL). This practice
is entirely voluntary and is therefore insufficient for identifying all mentions of a ticker. We
use regular expressions to identify all words tagged in this way and match those words to
CRSP tickers that were traded on the NYSE, AMEX, and NASDAQ exchanges in 2020.
This gives us a set S of roughly 4,000 tickers that are mentioned on WSB between January
2020 and February 2021.

We then identify all cases in which these tickers are mentioned in submissions, irrespective
of whether they are prefixed with a dollar sign. To address the possibility of falsely identifying
tickers, we require that, if the ticker is a common word in the written English language, it
must be prefaced by a dollar sign. For example, AT&T’s ticker T is also a common word in
written English, and thus we require that the text “$T” appear in a submission for it to be
considered as mentioned AT&T. We consider a ticker as being mentioned in a submission if
it appears in either the title or the body of the submission. We identify common word-stems
based on the Google Trillion Word Corpus (Michel et al., 2011). In a robustness check, we
account for the downward bias this restriction introduces by scaling common-word tickers
by an in-sample estimated adjustment factor. This adjustment leaves the relative ranking
of ticker mentions largely unchanged. We estimate the adjustment factor by comparing the
frequency of tagged ticker mentions versus untagged ticker mentions for the set of tickers
which do not commonly appear in written English.

Revised submissions and comments. Authors of Reddit comments have the ability to
edit their comments even after the comment has been posted. The PushshiftAPI records the
comment text as of a certain day, and does not update to reflect potential revised comments.
The same constraint applies to the content body of submissions. Titles of submissions cannot
be revised and thus do not have this measurement problem.

Missed tickers Tickers that, for whatever reason, are never tagged with a leading dollar
sign will be omitted from our dataset. Similarly, we under-count the occurrences of tickers
that are common words, owing to requiring they appear with a leading “$” We attempt to
correct for this by scaling the observed counts for common word tickers. For AAPL and
GME, which are not common word tickers, the ticker appears with the leading “$” roughly
20% of the time. We can thus simply multiply our observed frequencies by a factor of five
to adjust for the more stringent matching procedure. As can be seen in Figures 14a and
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Figure 14: Popular Tickers on WallstreetBets (January 1, 2020 – February 7, 2021).

14b, the adjustment does not have a significant impact on the relative popularity of the top
tickers.

In some cases, users may choose to refer to the company by its name, rather than by its
ticker. We do not attempt to identify mentions of companies by name.
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F.2 Measuring retail trading

We adopt the methodology of Boehmer et al. (2020) to identify retail trades in the TAQ
data. We briefly summarize the methodology here and refer readers to the paper for details.

The intuition behind the methodology is the knowledge that retail trades are often ex-
ecuted by wholesalers or via broker internalization, rather than on the major trading ex-
changes. These trades appear in the TAQ consolidated tape data under the exchange code
“D.” These trades are given a small price improvement on the order of tenths of a penny
as a means to induce brokers to route orders to the wholesaler. Similarly, brokers which
internalize retail trades offer a subpenny price improvement in order to comply with Regu-
lation 606T. Importantly, institutional trades are rarely, if ever, internalized or directed to
wholesalers and their trades are usually in round penny prices, with the notable exception
of midpoint trades.

The methodology of Boehmer et al. (2020) uses these institutional details to identify
retail trades in the TAQ consolidated tape data. Trades flagged with exchange code “D”
and with a subpenny amount in the set (0, 0.40)∪ (0.60, 1.00) are identified as retail trades.
Splitting these trades further, retail trades with subpenny amounts between zero- and forty-
hundredths of a penny are labeled as “sell orders,” whereas subpenny amounts between
sixty- and one hundred-hundredths are considered “buy orders.” The midpoint trades are
excluded to avoid mis-classifying institutional trades executed at midpoints as retail trades.

F.2.1 Challenges

Derivatives The TAQ data only contains trades of equities. Options offer another way to
benefit for investors to benefit from increases in the price of stock. As an added advantage
for retail investors, options offer embedded leverage greater than what might otherwise be
available through their broker. The Boehmer et al. (2020) methodology relies on institutional
details to identify off-exchange retail trades, and thus cannot reliably identify replication
trades by market makers.

F.3 Betting against the shorts portfolio

As is standard in the literature, we restrict attention to common shares of COMPUSTAT
firms which trade on the NYSE, AMEX, and NASDAQ exchanges. We further exclude
companies for whom no share class has a price exceeding $1. The strategy equally weights
each firm in the top decile, shorts the market index, and reconstitutes 8 trading days following
the disclosure date, which is the first opportunity following the public dissemination of the
short interest data.
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G Additional Table and Figures
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Figure 15: Cumulative fraction of discussion (December 1, 2020 – January 31, 2021). Relative

shares for ticker s are computed as mst = Mentionsst∑
s′∈S Mentionss′t

. “Other” consists of all other

tickers mentioned on WSB.
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Highly Shorted Stocks Excl. Popular Reddit Stocks Excl. Small Stocks

Panel A: November 2020

rEW 0.163 0.160 0.227
(4.127) (4.050) (5.194)

rVW 0.094 0.092 0.133
(3.062) (3.029) (3.455)

rEWFF3 0.084 0.081 0.160
(3.452) (3.327) (4.371)

rVWFF3 0.045 0.043 0.083
(1.769) (1.706) (2.431)

Panel B: December 2020

rEW 0.055 0.058 0.019
(1.385) (1.477) (0.437)

rVW 0.033 0.036 0.021
(1.088) (1.191) (0.540)

rEWFF3 0.012 0.016 -0.002
(0.515) (0.665) (-0.056)

rVWFF3 0.012 0.014 0.008
(0.466) (0.576) (0.244)

Panel C: January 2021

rEW 0.271 0.232 0.156
(6.835) (5.865) (3.576)

rVW 0.194 0.161 0.183
(6.341) (5.293) (4.764)

rEWFF3 0.208 0.169 0.121
(8.560) (6.978) (3.296)

rVWFF3 0.171 0.136 0.165
(6.709) (5.452) (4.816)

Table 1: Portfolio returns (November 2020–January 2021). Test of whether the monthly
return to the strategy of betting against the shorts is “abnormal” in November 2020 (Panel
A), December 2020 (Panel B), and January 2021 (Panel C). The table reports the coefficient
and the t-statistic of the month dummy variable that takes the value of one for the month
listed in the title of the panel and zero otherwise from the regression:

rBetting against the shorts = const. + month dummy + β′Ft + εt.

The first two rows of each panel do not control for any factor exposures and refer to equal-
weighted (EW ) and value-weighted (VW ) returns, respectively. The last two rows of each
panel control for Fama-French 3-factor exposures.
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Figure 16: Monthly returns (1973–2021). Histograms show monthly returns to a trading
strategy long stocks in the top decile of short interest and short the market index. The top-
left plot depicts equal-weighted returns, excluding the six most-popular stocks discussed on
Reddit (AMC, BBBY, GME, SPCE, TLRY, and TSLA). The top-right plot depicts equal-
weighted returns, further excluding small market capitalization stocks. The bottom-left
plot depicts value-weighted returns. The bottom-right plot depicts value-weighted returns,
excluding popular stocks discussed on Reddit. The arrows indicate the portfolio returns in
the months of November and December 2020 and January 2021.
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Figure 17: Binned scatterplots of changes in short interest by decile of short interest (July
2020–January 2021). The figure repeats the exercise of Figure 5 for the second half of 2020.
Each panel is a binned scatterplot of short interest as of an SEC disclosure date against
changes in short interest as of the subsequent disclosure date. The average percentage point
change for each bin is plotted on the y-axis. The average percentage point short interest for
each bin is plotted on the x-axis. The dashed line indicates the predicted change in short
interest based on AR(1) models for each decile of short interest, fitted on historical shorting
data.
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Figure 18: Aggregate short interest (July 2020–June 2021). The figure plots value-weighted
short interest for highly shorted stocks as of October 31, 2020. Highly shorted stocks are
defined as the stocks in the top decile of the Russell 3000, ranked by short interest. The
identities of these stocks is fixed and their short interest is plotted over the preceding four
and subsequent eight months.
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