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ABSTRACT
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adjusting methods and Heckman-type selection models, the proposed approach requires neither 
modeling selection mechanisms nor imposing parametric distributional assumptions on the 
response variables, eliminating both sources of mis-specification bias. Using this approach, one 
can quantify and test for the relationships among variables as if samples had been collected via 
random sampling, simplifying bias correction of endogenously selected samples. We evaluate and 
illustrate the method using extensive simulation studies and two real data examples: 
endogenously stratified sampling for linear/nonlinear regressions to identify drivers of the share-
of-wallet outcome for cigarettes smokers, and using truncated and on-site samples for count data 
models of store shopping demand. The evaluation shows that selective sampling followed by 
applying the SOR approach reduces required sample size by more than 70% compared with 
random sampling, and that in a wide range of selective sampling scenarios SOR offers novel 
solutions outperforming extant methods for selective samples with opportunities to make better 
managerial decisions.
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1. Introduction

Nonrandom samples resulting from selective sampling are prevalent in marketing research, given

the nature of much of the primary and secondary data produced in the field. Unlike random

sampling in which each unit in the population has equal probability of being sampled, selective

sampling has a unit sampling probability that differs from its frequency in the population. When

the sampling scheme involves the dependent variable Y (a.k.a. response-dependent sampling), the

resulting sample forms an “endogenously selected sample”, the analysis of which requires special

handling of selection bias associated with such samples and is the focus of this paper. For exposition

simplicity, henceforth we use the term “selective sampling” to refer to a sampling scheme involving

Y and producing endogenously selected samples.

In many situations, marketing researchers purposefully conduct such selective sampling in data

collection to garner its high cost-effectiveness. The idea is to obtain a sample over-represented by

more informative units. In practice, it is often necessary to adopt selective sampling and account

for it in the analysis to more effectively infer the population density/mass function of interest

fθ(Y |X) in marketing research, where X contains a set of independent variables and θ is a vector

of parameters. Examples of response-dependent sampling abound in marketing research and below

are four running examples considered and dealt with in this work.

Example 1: Selective Sampling for Binary Choice Models. In database marketing, when a choice

outcome (e.g., consumer churn, web ad click) is rare (Donkers et al., 2003, Kamakura et al., 2005),

random sampling can be inefficient or even impossible as it can require a very large sample or a

very long time to achieve enough events of interest for meaningful analysis. Even if large consumer

databases may already have enough events, relevant explanatory variables may be lacking (Qian

and Xie, 2014, 2015). Separate efforts (e.g., surveys or measurements) are often required to collect

data on these variables, which are feasible only in a sample of consumers. Donkers et al. (2003)

showed that, for binary logit choice models studying the determinants of the rare churn outcome,

oversampling defecting customers can reduce required survey sample size by more than 50%.

Example 2: Selective Sampling for Continuous Outcome Models. Selective sampling can also

be applied to continuous outcomes (Feldt, 1961, Hausman and Wise, 1981, Cosslett, 1993, 2013).
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One can enrich the sample by oversampling extreme or infrequently occurring values of a continuous

behavioral outcome. For implementation convenience, sampling is often based on intervals of Y . We

illustrate such an endogenous stratified sampling of linear/nonlinear mean regressions to identify

factors affecting a smoker’s consumption share of the main cigarette brand. Over-sampling extreme

values of the consumption share outcome combined with a stratification of the highly skewed

regressor (price) reduces the required sample size by ≈ 70% as compared with random sampling.

Example 3: Selective (truncated and on-site) Sampling for Count Models. Besides used for in-

creasing sample information, selective sampling could be a byproduct of database construction. This

case study uses a firm’s shopper database to construct a count model for the number of shopping

visits (Y ) made by store shoppers for consumer profiling and targeting purpose. To be included in

the database, a consumer must made at least one shopping visit. Thus, the sample is truncated

with no zero count. This is an extreme case of selective sampling, whereby the subpopulation of

store non-users with Y = 0 is not sampled at all. An alternative way to estimate such a count model

is to analyze mall intercept surveys that interview shoppers about the number of shopping visits

(Clow and James, 2014). With such on-site sampling, besides the truncation of those non-users,

among those who visit the store, consumers who visit the store frequently are more likely to be

sampled than consumers who visit the site only occasionally. By oversampling these more active

consumers, such on-site samples can contain a lot more information than random samples.

Example 4: Selection on (Y,X, θ). Endogenously selected samples can also occur out of the con-

trol of researchers when data owners selecting observations (e.g., to preserve privacy) are different

from researchers, or as a result of the behaviors of the units being sampled (i.e., self-selection). An

example for the latter one is nonresponse to surveys. Selection mechanisms can depend on (Y,X)

or (Y,X, θ) and frequently be unobserved to researchers.

Methods to Adjust for Selective Sampling

Despite the substantial benefits of selective sampling noted above, care must be taken when analyz-

ing resulting nonrandom samples to avoid selection bias (e.g., Breslow and Day (1980), Hausman

and Wise (1981), Donkers et al. (2003), Feinberg et al. (2012)). To understand the bias, let G be

the indicator variable for a population unit to be in the selected sample and pψ(G|Y,X, θ) denote
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the selection mechanism where ψ collects parameters distinct from θ. When pψ(G|Y,X, θ) depends

on Y , the selection mechanism corresponds to nonignorable missingness in Rubin’s missing data

framework (Little and Rubin, 2020)1 in that pψ(G|Y,X, θ) generally cannot be ignored when esti-

mating θ with the selected sample. 2 Naive methods that analyze endogenously selective samples

as random samples without accounting for selective sampling can yield significant selection bias.

Existing sampling-adjustment methods require specification/restriction of the selection mecha-

nism Pψ(G|Y,X, θ) and/or imposing outcome distributional assumptions on fθ(Y |X) (see Tables 1

and 2 (excl. the last columns) for typical modeling assumptions and restrictions). When sampling is

under the control of researchers with known sampling weights or known forms of sampling schemes

(Table 1 and Examples 1-3 above), the main concern is that mis-specifying the outcome error distri-

butions can yield biased results and erroneous conclusions. To address the concern, Cosslett (2013)

developed an adjustment method with unspecified error distributions for endogenously stratified

regressions. However, the method is applicable only to the case of two strata defined by whether Y

exceeds a known cutoff value. When units not in the selected sample are excluded because some of

their Xs are unobserved (e.g., Example 1 above), missing-covariate methods (Qian and Xie, 2011)

can be applied to model and impute these missing X values. However, in order to include these

data into analysis to increase efficiency, an additional covariate model is required (Table 2) which

may not be desirable or even feasible in many selective sampling applications.

Heckman-type selection models (Heckman (1979), a.k.a. Heckit) are the classical approach to

adjusting for self-selection bias when selective sampling mechanisms are not under the control of

and unobserved to researchers (Example 4 above and see also Ying et al. (2006), Wachtel and Otter

1See Little and Rubin (2020) Chpt.15 for models that handle non-ignorable missingness with ar-

bitrary patterns of missingness. Little and Rubin (2020) note that these models require modeling

missing-data mechanism if the mechanism is not completely known, and model non-identifiability

and sensitivity to model specifications are serious challenges in these models. As shown later, by

exploiting special structures of selective sampling problems, one can robustly identify key model

parameters without modeling missing-data mechanisms and outcome error distributions.
2In contrast, sampling based only on X yields exogenously selected samples, for which valid analysis

can ignore selection rules.
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(2013), Feinberg et al. (2016), Tian and Feinberg (2020)). The Heckit procedures have restricted

forms for outcome distributions and selection rules (Table 2). When these forms are specified

correctly the procedures can work well to correct for self-selection bias. The key concern with

Heckit is its brittleness in that Heckit depends exquisitely on untestable modeling assumptions

(e.g., normal error distribution, exclusion restriction) and is sensitive to mis-specification bias (e.g.,

Puhani (2000)). For the reason, alternative approaches propose using these selection models as a

device for sensitivity analysis (Little and Rubin, 2020, Xie and Qian, 2012, Yuan et al., 2020). A

particular relevant issue is the rigidity of the linear probit selection assumed in Heckit to handle

the wide variety of selection rules in selective sampling problems (see Section 3.2).

Overall, despite considerable progress made in addressing selection bias, the existing methods

are specific to particular sampling schemes, or imposing strong assumptions on outcome error dis-

tributions and/or selection mechanisms. As compared with handling random samples, they often

require extra modeling efforts and different (sometimes very complex) estimation algorithms to

correct for selection bias, hindering the use of endogenously selected samples. There is a consider-

able need for simple and broadly applicable sampling-adjustment methods with reduced modeling

assumptions/efforts and optimal statistical properties.

To overcome these challenges in analyzing endogenous selected samples, we introduce a unified

bias-correction approach that requires neither specifying the outcome error distributions nor the

selection mechanisms, thereby eliminating these sources of mis-specification bias altogether for a

wide variety of selective sampling schemes. The proposed approach corrects selection bias as if

the samples had been collected via random sampling and requires a minimum amount of addi-

tional modeling and estimation efforts (Tables 1 and 2). It provides efficient maximum likelihood

estimation of selective samples based on a semiparametric odds ratio (SOR) modeling framework

(Chen, 2007, Chen et al., 2015). In general, all estimates of regression model parameters, such as

those in the commonly-used generalized linear models (GLM) (McCullagh and Nelder, 1989), are

biased without correcting for the response-dependent sampling. An exception is the logit model

for binary outcomes (Donkers et al., 2003), in which the regression coefficients are unaffected by

response-dependent sampling. The SOR sampling-adjustment method provides a unified frame-
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work that covers as a special case this practically important result of Donkers et al. (2003) and

extends it to polytomous, continuous and count outcomes with a wide variety of selective sampling

schemes. An important merit of SOR is that the population association parameters as captured

by regression coefficients in SOR for polytomous, continuous and count outcomes continue to be

unaffected by response-dependent sampling, and consistent estimation of these population associ-

ation parameters using these nonrandom samples requires neither modeling selection mechanisms

nor specifying the outcome error distributions. While nesting GLMs as special cases, the regression

coefficients in SOR are closely linked to familiar association measures in GLMs: they are the regres-

sion coefficients (e.g., in logit and Poisson regressions) themselves or standardized by the dispersion

parameter when present (e.g., in a normal linear regression) in a population GLM model.

We further extend the SOR approach in a number of important ways relevant to marketing

and other fields alike. First, we derive new SOR models with regression coefficients mapped to

parameters in the (nested) parametric models with unobserved consumer heterogeneity and outside

GLMs. When the population follows no parametric distribution, the regression coefficients in SOR

can be interpreted as OR association parameters, or alternatively we show how to map SOR models

to nonlinear regression models that relax not only the outcome distributional assumptions, but also

the linearity assumption in the mean structure of linear regression models for continuous outcomes.

In this general case, we derive simple relationships mapping the OR parameters to other parameters

of interest, such as marginal mean effects, to aid the interpretation of the SOR results.

Second, we extend the SOR to handle endogenous samples selected on (Y,X) with and without

the knowledge of sampling weights as well as selection on (Y,X, θ). These extensions render SOR

applicable for a wider range of selective sampling, including sampling and self-selection depending on

(Y,X, θ). As compared with Heckit, the SOR approach requires specification of neither the outcome

distribution nor the functional form of response-dependent selection. These semiparametric features

make the SOR approach attractive to bias correction in a broad range of selective sampling problems

(Sections 2.4 and 3.2). Our extension also shows that, in stark contrast to selection on the outcome

considered in the Chen (2007) and Chen et al. (2015), when sampling weights depend on both Y
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and X, knowledge of sampling weights3 can lead to a substantial gain in the estimation precision

and power to select important explanatory variables and a significant reduction in the sample size

required, compared to cases in which the weights are unknown. A further benefit of knowing

sampling weights is that, by incorporating them into estimation as offsets to correct for selective

sampling, one can recover the entire distribution to examine various aspects of the distribution,

such as regression means, percentiles and marginal mean effects. To facilitate inference about these

quantities for marketing research, we develop a novel bootstrap procedure that, unlike regular

bootstrap procedures for random samples, can properly account for selective sampling schemes

when computing the exact standard errors of complex functions of model parameter estimates.

Finally, we investigate the use of the unified framework in a broad range of marketing appli-

cations, including endogenous stratified sampling, truncated samples, on-site sampling and sample

selection problems, which yields a novel set of principled, robust, and amenable solutions to the

selective sampling problems. To our knowledge, this is the first time in the literature to treat such

a broad set of selective sampling problems under one unified modeling framework.

Next, Section 2 describes the SOR models that extend the logit model for binary choice out-

comes to more general outcome types, and develops estimation methods for selective samples.

Section 3 evaluates the performance of these methods using synthetic data in the context of Ex-

amples 2 and 4, and studies factors affecting the efficiency of selective sampling. Section 4 applies

SOR to Examples 3. These analyses show a large reduction (up to 90%) in required sample size

with selective sampling for continuous and count outcomes compared with random sampling as

well as the flexibility and robustness of the SOR. The analysis of the two real-life data sets also

reveals that, because of the mis-specifications of the underlying distributions for the continuous and

count outcomes, the existing sampling-adjustment methods yield biased estimates and erroneous

identification of outcome determinants that misinform managerial decisions. In contrast, SOR can

adapt itself to the underlying distributions and protect the analysis of selective samples from such

3In practice, access to large consumer information databases, census data and study screening

data permits obtaining sampling weights (Donkers et al., 2003). Thus, the extension is especially

relevant to marketing researchers given the pervasiveness of stratifying on explanatory variables.
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bias. We end with a discussion in Section 5.

2. Methodology

2.1 Odds ratio models

The aim is to learn about the population distribution, fθ(Y |X), where X = (X1, · · · , XK)

contains K explanatory variables, fθ(Y |X) denotes either a probability density function (PDF)

when Y is continuous, or a probability mass function (PMF) when Y is categorical or count. For a

categorical outcome Y , the odds ratio (OR) is frequently used to measure the association between

Y and X (Breslow and Day, 1980). The well-known Chi-squared tests for contingency table analysis

and multivariable logistic regressions are frequently used to estimate OR and test for the presence,

direction, and strength of associations via ORs. Below we describe the SOR model (Chen, 2007)

for use with endogenously selected samples. The model nests as a special case the logit model

for categorical outcomes and extends to continuous and count outcomes. The SOR model has

been adapted for handling missing data and data combinations in marketing and business analytics

(Qian and Xie, 2011, 2014, 2015) and been discussed by Feit and Bradlow (2018). Let (y0, x0) be

a fixed point in the sample space of (Y,X). We define the OR for the two variables as

η(y, y0;x, x0) =
f(y|x)f(y0|x0)

f(y|x0)f(y0|x)
. (1)

The OR parameter η(y, y0;x, x0) is the ratio of the odds of observing y relative to observing y0

when X varies from x0 to x. For notational simplicity, we write η(y, y0;x, x0) as η(y;x) henceforth.

The OR can be used to measure the strength of the associations among general types of variables.

In particular, η(y;x) ≡ 1 for all values of Y and X means no association between Y and X. To

better understand the OR for continuous variables, consider a simple linear regression model where

X consists of a single variable and

y = β0 + β1x+ ε, ε ∼ N(0, σ2).

Plugging the conditional normal density functions f(y|x), f(y0|x0), f(y|x0), f(y0|x) into Eqn (1), it

can be readily verified that the OR takes the following log-bilinear form:

ln η(y;x) = ln η(y, y0;x, x0) =
β1

σ2
(x− x0)(y − y0).
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Thus for this normal linear model, the OR η(y;x) is closely related to the familiar regression

coefficient parameters β1. In particular, η(y;x) ≡ 1 is equivalent to β1 = 0.

For modeling and estimation in general settings, consider the following SOR modeling approach,

which will be used to handle endogenously selected samples. Multiplying both sides of Eqn (1) by

the denominator of the right-hand side and then integrating both sides with respect to y, we obtain

f(y|x) =
η(y;x)f(y|x0)∫
η(y;x)f(y|x0)dy

. (2)

The right-hand side of the above equation re-expresses f(y|x) as a function of two components.

The first component is the OR, η(y;x), which describes the association between Y and X, and the

second component f(y|x0) is a marginal-like density function for Y at a fixed point X = x0, which

we call a baseline function. As illustrated above for the simple linear regression model, the OR

parameter η(y;x) is closely related to other familiar ways of describing associations, such as the

regression coefficients in a linear model. Motivated by the above simple linear regression model,

we consider the following log-bilinear model for the OR function for x = (x1, · · · , xK):

ln η(y;x) =

K∑
k=1

γk(xk − xk0)(y − y0), (3)

where γ = (γ1, · · · , γK) is a set of parameters in the log-odds-ratio function, and γk captures the

association between Y and Xk when holding other variables in X constant. The selection of the

reference point (x0, y0) can be arbitrary, but a value of (x0, y0) remote from the observed data

points may lead to computational instability in model estimation. The log-bilinear form of OR

function is closely related to the GLMs (McCullagh and Nelder, 1989), commonly used to analyze

marketing responses. To see this, consider the GLM with the following density function:

fβ,τ (y|x) = exp

{
yΨ(β, x)− b(Ψ(β, x))

a(τ)
+ c(y, τ)

}
,

where Ψ is the canonical parameter; functions b(·) and c(·, ·) determine a distribution in the ex-

ponential family; and a(τ) = τ/w, with dispersion parameter τ and known weight w. The GLMs

include Gaussian, logistic, Poisson, and Gamma regressions as special cases. For GLMs with canon-

ical link functions and g(E(Y |x)) = β0 +
∑K

k=1 βkxk, the OR function is

ln η(y;x) =

K∑
k=1

βk
a(τ)

(xk − xk0)(y − y0).

9



Therefore, the parameters in this log-bilinear OR function are a re-parametrization of parameters

in GLMs with γk = βk
a(τ) . In the log-bilinear form, γk = 0 is equivalent to βk = 0. The simple

linear regression model described earlier is a special case of GLM with a(τ) = σ2. Higher-order

terms of the explanatory variables and the interaction terms between them can be added in the

above log-bilinear form of OR function (Eqn (3)) and tested using likelihood-based test statistics.

Alternative forms of OR functions can be motivated by parametric models outside of classical

GLMs. See Section 4 for an example motivated by the negative binomial distribution. With

sufficiently flexible functional forms the OR function can approximate any arbitrary and complex

forms of associations among variables. Using model selection measures such as the likelihood-ratio,

AIC or BIC statistics, the flexible OR function specification permits selection of models within and

outside of the family of GLMs under one unified modeling framework.

The second component f(y|x0) is the baseline density or mass function for Y at the fixed

reference point X = x0 and behaves like a marginal distribution. For modeling robustness, one can

employ a nonparametric empirical modeling approach. Specifically, let (u1, ..., uL) be the uniquely

observed values in the dataset for this variable. A nonparametric model assigns probability mass

p = (p1, ..., pL) to f(u1|x0), · · · , f(uL|x0) with a constraint
∑L

l=1 pl = 1. To relax the constraint,

we re-parameterize p as λ = (λ1, ..., λL), such that λl = ln(pl/pL) and pl = exp(λl)/
∑L

l′=1 exp(λl′),

for l = 1, ..., L. The resulting SOR model nests the parametric GLMs as special cases by eschewing

the parametric assumptions in the baseline distribution in GLMs. Given a sample of n independent

units, (xi, yi), i = 1, · · · , n, the likelihood for the SOR model is

L(γ, λ) ∝
n∏
i=1

fγ,λ(yi|xi1, · · · , xiK) =

n∏
i=1

ηγ{yi;xi1, · · · , xiK}fλ(yi|x10, · · · , xK0)∑L
l=1 ηγ{ul;xi1, · · · , xiK}fλ(ul|x10, · · · , xK0)

. (4)

The maximum likelihood estimates of the model parameters, (γ̂, λ̂), can be obtained using an

algorithm for function optimization, such as the quasi-Newton algorithm, with details and an il-

lustrating example given in Online Appendix I.1. In Online Appendix I.2, we describe a Bayesian

estimation of the SOR model, which can be useful in marketing applications. After model estima-

tion, the predictive distribution for the outcome conditional on X can be obtained as a multinomial

distribution on the set of observed unique values (u1, ..., uL) with

Pr(Y = ul|x) ∝ exp(λ̂l + ln(ηγ̂{ul;xi1, · · · , xiK})), l = 1, · · · , L, (5)
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where the right-hand side is a product of the OR function ηγ{ul;xi1, · · · , xiK} and the exponentiated

parameter λl, the lth intercept parameter in (λ1, · · · , λL−1) with no constraint among them in this

multiplicative model. Furthermore, the OR function and the intercept parameters in SOR are

variational independent, and thus can be modeled separately (Chen, 2007). The SOR model thus

has the unique features of the multiplicative intercept (MI) model for categorical data (Scott and

Wild, 1997), such as logistic models, and extends them to other outcome types, which simplifies

the analysis of endogenously selected samples as shown next.4

2.2 Selection on outcome

One advantage of the above SOR model is that the OR parameter remains invariant to response-

dependent sampling. To demonstrate this, we first consider a selection mechanism, in which the

sampling probability depends on the outcome only with pψ(G = 1|y) denoting the conditional

probability of being sampled, given that Y = y. Let f(Y = y|x,G = 1) denote the PDF/PMF of

Y given x in the selected sample, and the purpose is to learn about the conditional distribution of

Y given x in the population, i.e., fθ(Y = y|x). Using Bayes’ theorem,

f(Y = y|x,G = 1) =
f(Y = y, x,G = 1)

f(x,G = 1)
=
pψ(G = 1|y)fθ(Y = y|x)∫
pψ(G = 1|u)fθ(u|x)du

. (6)

We note two important points regarding the above distribution of Y |X in the selected samples.

First, the marginal distribution of X does not appear in f(Y = y|x,G = 1) because it cancels out

in both the numerator and denominator of the rightmost side of the equation. This means that we

do not need to model the covariate distribution, and inference is valid for arbitrary distributions

of X. This can be an important modeling and computational advantage. Second, using the OR

model expression in Eqn (2) for fθ(y|x), we have

f(Y = y|x,G = 1) =
ηγ(y;x)f ′(y|x0)∫
ηγ(u;x)f ′(u|x0)du

, where f ′(y|x0) =
[
pψ(G = 1|y)fλ(y|x0)

]
. (7)

As seen above, f(Y = y|x,G = 1), which can be directly learned from the selective sample, has

an OR expression in the form of Eqn (2). In this expression, the OR function is ηγ(y;x), which

4The MI model does not require that ηγ{ul;xi1, · · · , xiK} in (5) take certain log-bilinear forms.

Furthermore, not all GLMs are multiplicative intercept models. For example, normal regression

models are not MI models.
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is exactly the same as the OR function in the population conditional distribution of Y given x,

demonstrating that the OR is invariant to the sampling scheme and not subject to selection bias.5

This implies that the population OR parameters can be consistently estimated using the selective

sample as if it was a random sample. One can identify and evaluate the association of explanatory

variables with the outcome via OR parameters without the need to model selection mechanism.

On the other hand, the baseline distribution f ′(y|x0) for the selective sample is pψ(G =

1|y)fγ(y|x0), i.e., the population baseline distribution fγ(y|x0) modified multiplicatively by the

sampling weight function pψ(G = 1|y). Thus, without correcting for endogenous selectivity, the

estimates of the baseline distribution using the selective sample will be biased for the population

baseline distribution. Below, we describe two estimation procedures based on maximization of the

conditional likelihood in Eqn (7), depending on whether one has supplemental data on sampling

weights. For the MI models such as ours, they yield fully-efficient MLEs of the population OR

parameters, regardless of whether or not sampling weights are known as well as of the baseline

distribution function when known sampling weights are included as offsets to correct for selective

sampling (Scott and Wild, 1997, Chen et al., 2015).

2.2.1 Estimation without data on sampling weights (SOR)

Estimation proceeds as if the sample was a random sample, without the need to correct for

selective sampling. The MLEs of the OR parameters γ can be obtained jointly with λ′, the param-

eters in the baseline distribution f ′λ′(y|x0) = pψ(G = 1|y)fλ(y|x0) using the algorithm described

in Online Appendix I. The baseline distribution f ′λ′(y|x0) for the selective sample depends on the

unknown sampling weights and may behave differently from any standard theoretical distributions,

even if the population baseline distribution fλ(y|x0) can be assumed to follow a simple parametric

model. As shown later in simulation studies, an incorrect specification of f ′λ′(y|x0) via a parametric

model can lead to significant bias in the estimation of OR parameter γ. By contrast, the SOR

model employs a nonparametric model for f ′λ′(y|x0). Thus, the SOR estimation requires no prior

5Theoretically, this invariance property is a natural result of the SOR model having the multiplica-

tive intercept model form in Eqn (5), from which it is readily seen that sampling weights modify

the intercept terms multiplicatively but do not affect OR functions.
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knowledge about the potential complex form of the baseline distribution function in the selective

sample and can automatically generate suitable distributions that match data.

2.2.2 Estimation using supplemental data on sampling weights (SOR-FI)

When supplemental data on sampling weights are available as described in the Introduction,

one can make use of the supplemental information to recover fλ(y|x0), the population baseline

distribution function. One can fit the model to obtain the MLEs of (γ, λ) using a program written

for fitting the SOR model, provided that the program allows for including sampling weights as

offsets in the estimation of the baseline distribution. For illustration purposes, below we provide

three examples of selection on outcomes with known sampling weights.

Case I. Stratified sampling on a categorical outcome For a categorical outcome with

L−levels, i.e., Y ∈ (y1, · · · , yL), a selective sampling first selects a category with probabilities nl/n,

where nl is the sample size allocated to category l and n is the total number of units in the selective

sample. Then, the observation is drawn randomly from the subpopulation with yi in the selected

category. With SOR models, Equations (6) and (7) for this example now become

Pr(Y = yl|x,G = 1) =
wlfθ(yl|x)∑L

l′=1wl′fθ(yl′ |x)
=

ηγ(yl;x)eλl+ln (wl/wL)∑L
l′=1 ηγ(yl′ ;x)eλl′+ln (wl′/wL)

, (8)

where wl = pψ(G = 1|Y = yl) = nl/n
Nl/N

denotes sampling weights, andN andNl are the supplemental

information on the entire population size and the population total for the response category yl,

respectively. That is, the sampling weight is the ratio of the probability that a sampling unit

belongs to category l in the sample to the probability that it is in category l in the population.

An example for Case I: Choice-based sampling on a binary response (Example 1 con-

tinued) For a binary outcome Y ∈ (y1 = 1, y2 = 0), consider the population OR model:

Pr(Y = yl|x) =
exp(λl + ln ηγ(yl, y0;x, x0))

1 + exp(λ1 + ln ηγ(y1, y0;x, x0))
,

where l ∈ (1, 2), y0 = y2 = 0 and the intercept parameters in the baseline distribution λ = (λ1, λ2)

have λ1 = ln(Pr(Y = 1|x0)/Pr(Y = 0|x0)) and λ2 = 0. When the OR function ηγ(yl, y0;x, x0)

takes a log-bilinear form, i.e., ln ηγ(yl, y0;x, x0) = γ(x − x0)yl, the population OR model is a

logistic model in which γ is the regression coefficient in the logistic model. With selection on Y ,
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the conditional likelihood in Eqn (8) for the selected sample becomes

Pr(Y = yl|x,G = 1) =
exp(λ′l + ln ηγ(yl, y0;x, x0))

1 + exp(λ′1 + ln ηγ(y1, y0;x, x0))
,

where λ′l = (λl + ln(wl/w2)), wl(l = 1, 2) denotes the sampling weight for each level of the binary

choice outcome yl. It is clear that the above conditional likelihood in the selected sample is a

likelihood from an SOR model with the same OR function but a different intercept parameter

λ′1 = λ1 + ln(w1/w2). Consequently, the population OR function remains invariant to selective

sampling and can be identified in the endogenously selected sample as if it were a random sample.

It is worth noting that, for a log-bilinear OR function, the above conditional likelihood reduces

to that considered in Donkers et al. (2003), with a logit model for binary choices and offsets

{ln (wl/wL)} , l = 1, 2. A more general OR function takes the following form:

ηγ(yl, y0;x, x0)) =
Γ(yl + exp(α+ γx))Γ(y0 + exp(α+ γx0))

Γ(y0 + exp(α+ γx))Γ(yl + exp(α+ γx0))
, (9)

where Γ()̇ is the gamma function. Using the property of gamma function, Γ(1+u) = uΓ(u), one can

show for a binary outcome Y the above OR function reduces to ln ηγ(yl, y0;x, x0) = γ(x−x0)yl, the

OR in the binary logistic model. The OR function in Eqn (9) can be used for a binomial outcome

(n, pi) with over-dispersion, such as the number of months visiting a store in a year. In this case a

common modeling option is the beta-binomial distribution assuming pi follows a beta-distribution

with parameters (a, b), a = exp(β0 + β1 + γx) and b = exp(β0). Using Eqn (1), one can show that

the beta-binomial distribution has the OR function in Eqn (9) with α = β0 + β1. Thus, the SOR

nests the beta-binomial distribution as a special case because SOR replaces the parametric baseline

function in the beta-binomial distribution by a nonparametric baseline function. An illustration of

this point in the similar setting of negative binomial for count outcomes is provided in Section 4.

Case II. Stratified sampling on a continuous outcome. This sampling scheme first divides

the sample space of Y into M mutually exclusive intervals: ∆1, · · · ,∆M , and selects an interval

with probabilities nm/n and then an observation is selected randomly with equal probabilities from

the subpopulation with yi in the selected interval. Equations (6) and (7) in this case now become:

f(Y = y|x,G = 1) =

∑
m:y∈∆m

wmfθ(y|x)

L∑
l=1

∑
m:ul∈∆m

wmfθ(ul|x)

=

∑
m:y∈∆m

L∑
l=1

1y=ulηγ(y;x)eλl+ln (wm/wM )

L∑
l=1

∑
m:ul∈∆m

ηγ(ul;x)eλl+ln (wm/wM )

, (10)
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where the sampling weight is wm = pψ(G = 1|y ∈ ∆m) = nm/n
Nm/N

, and nm and Nm are the sample

size allocated to the interval ∆m in the selective sample and the population total in the interval

∆m in the population, respectively.

An example for Case II: Stratified sampling on a normal outcome (Example 2 contin-

ued) Hausman and Wise (1981) considered the above stratified sampling and assumed a normal

error distribution for Y as yi = xiβ + εi, εi ∼ N(0, σ2). In the simple case of stratified sampling

with two strata (y ≤ α and y > α) and a known strata cutoff value α, they showed that

E(Y |x,G = 1) = xβ − σ
(1− P )φ(α−Xβσ )

(1− P )Φ(α−Xβσ ) + P
, P = w2/w1,

where w1 and w2 are the sampling weights for strata 1 and 2, respectively, and φ(·) and Φ(·) are the

density and distribution function of standard normal, respectively. Thus, the OLS estimates are

biased when P 6= 1 (i.e., endogenous selective sampling) with bias being a nonlinear and complex

function of departure from random sampling, as captured by P , cutoff point α, and unknown model

parameters. To correct for the bias, Hausman and Wise (1981) developed an MLE procedure using

a normal regression model for fθ(y|x) in the conditional likelihood given in Eqn (6). The bias-

correction approach of Hausman and Wise (1981) requires the strata cut-off points be known to

data analysts and sampling weights depend on the outcome Y only. As shown in Section 2.2.1, the

SOR approach does not require known strata cut-off points (e.g., the value α above).

In certain situations, some strata may have a sampling weight of zero, which creates truncated

data. Examples are the demand for a college class or a concert, when the class/concert opening

requires a minimum number of students/audience. When the demand falls below this lower limit,

the event gets canceled and will not appear in the sample, resulting in a truncated sample. Since

truncation is a special case of endogenously stratified sampling, it follows that OLS can also create

bias in the truncated samples. In practice, researchers may not know the sample truncation point

or even are unaware of the existence of sample truncation problems. The SOR has an advantage of

not requiring these knowledge to correct selection bias associated with truncated samples. In the

following sections, we will compare SOR with the sampling adjustment methods assuming normal

error distributions in handling endogenously stratified samples and truncated samples.
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Case III. Selective sampling directly on a continuous/count outcome. Both the above

selective sampling schemes constitute stratified sampling, whereby selection probabilities depend

on Y via a finite number of strata. Case III considers a more flexible case of selection directly on

Y . One example is on-site sampling mentioned in the Introduction and described further below.

An example for Case III: On-site sampling with a normal and count outcome (Example

3 continued) In on-site sampling, the sampling weight pψ(G = 1|y) ∝ y. Shaw (1988) derived

the MLE based on the conditional likelihood, assuming Y follows either a normal or a Poisson

regression. For a normal outcome, the conditional likelihood is

f(y|x,G = 1) =
yf(y|x)∫∞

0 uf(u|x)du
, y > 0. (11)

Shaw (1988) showed that OLS estimates of the demand function using on-site samples are biased

and proposed an MLE procedure to correct for the bias. For Y following a Poisson regression, the

conditional likelihood for the on-site samples becomes

f(y|x,G = 1) =
yf(y|x)∑∞

u=1 uf(u|x)du
= exp(λi)λ

yi−1
i /(yi − 1)!, y ≥ 1. (12)

This implies a simple solution to on-site samples with Poisson distribution: one can simply subtract

1 from observed counts in an on-site sample and analyze the resulting data as a random sample using

Poisson regression. These correction procedures critically depend on the outcome distributional

assumptions. We compare these approaches with SOR for handling on-site samples in Section 4.2.

2.3 Selection on both y and x

We show above that the OR association parameters in SOR are invariant and unaffected by

arbitrary (and possibly unknown) forms of selection on Y only (Selection Type A). We next consider

the more general case of selection on both Y and X, for which using Bayes’ theorem, we have

f(Y = y|x,G = 1) =
pψ(G = 1|y, x)fθ(Y = y|x)∫
pψ(G = 1|u, x)fθ(u|x)du

=
ηγ(y;x)

[
pψ(G = 1|y, x)fλ(y|x0)

]
∫
ηγ(u;x)

[
pψ(G = 1|u, x)fλ(u|x0)

]
du
.(13)

When sampling weight pψ(G = 1|y, x) is known (Selection Type B), it can be added as an offset

term when fitting the SOR to the endogenous selected sample to recover both the OR function and
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baseline function. 6 When sampling weight is of an arbitrary and unknown form, then in general

neither the population baseline function nor the OR function is identifiable. An exception is when

selection depends on a combination of Y with the strata of the independent variables X (Selection

Type C); for this important class of sampling schemes, the OR association parameters in SOR are

invariant and can be identified even if the sampling weight is unknown, as shown below.

Specifically, we extend the SOR approach to response-dependent sampling with selection fol-

lowing pψ(G = 1|y, x, s) = pψ(G = 1|y, s) and s being the strata variable defined by the ex-

planatory variables. Marketing researchers often stratify their samples on independent variables so

the response-dependent sampling schemes including such stratification is highly relevant. Because

samples from different strata are drawn independently, we consider the conditional likelihood below:

f(Y = y|x, S = s,G = 1) =
f(Y = y, x, s,G = 1)

f(x, s,G = 1)
=
pψ(G = 1|y, s)f(Y = y|x, s)∫
pψ(G = 1|u, s)f(u|x, s)du

.

Since Y is independent of s, given X = x, we thus have f(Y = y|x, s) = fθ(y|x). When we apply

the OR model for fθ(y|x), we obtain

f(Y = y|x, S = s,G = 1) =
ηγ(y;x)

[
pψ(G = 1|y, s)fλ(y|x0)

]
∫
ηγ(u;x)

[
pψ(G = 1|u, s)fλ(u|x0)

]
du
. (14)

Thus f(Y = y|x, S = s,G = 1) has an SOR model expression with the same OR function ηγ(y;x)

as fθ(Y |x), and a strata-specific baseline function f ′λ′s(y|x0, s) =
[
pψ(G = 1|y, s)fλ(y|x0)

]
. We may

consider a more general model that permits not only heterogeneous baseline functions but also

heterogeneous OR functions across strata, as follows

f(Y = y|x, S = s,G = 1) =
ηγ(y;x|S = s)

[
pψ(G = 1|y, s)fλ(y|x0)

]
∫
ηγ(u;x|S = s)

[
pψ(G = 1|u, s)fλ(u|x0)

]
du
, (15)

where the OR function ηγ(y;x|S = s) varies by strata s. For instance, when a log-bilinear form of

OR function in Eqn (3) is used, we can have strata-specific log-odds-ratio parameter γk(s), which

can be used to incorporate functional and preference heterogeneity across stratum in the framework.6An example is Example 1 in which known sampling weights depend on the churn outcome and a

covariate (duration of consumers with the company) (Donkers et al., 2003). Even when sampling

weight is known, SOR has the advantage of not relying on outcome distributional assumptions.
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2.3.1 Estimation without data on sampling weights (SOR)

When the sampling weight function pψ(G = 1|y, s) is unknown, the baseline function f ′λ′s(y|x0, s) =[
pψ(G = 1|y, s)fλ(y|x0)

]
varies across the strata in S. Therefore, when estimating the model with

unknown sampling weights, we need to assume a different baseline distribution function for each

stratum separately. One can fit the SOR model with stratum-specific nonparametric baseline dis-

tribution functions on the stratified selective samples as if this were a (stratified) random sample

and obtain the estimates of common OR parameters γ̂ as well as strata-specific λ̂′s. When the OR

function is also allowed to vary freely across strata (i.e., Eqn (15)), this is equivalent to performing

SOR estimation of γ̂s as well as λ̂′s for each stratum s separately. It is unnecessary to correct the

OR estimates γ̂ or γ̂s for selective sampling in either case.

2.3.2 Estimation with supplemental data on sampling weights (SOR-FI)

When the sampling weights are known, we can use this supplemental information to obtain a

more efficient full-information (FI) estimation of model parameters. For MI model such as ours,

maximization of the conditional likelihood in Eqn (14) yields consistent but not necessarily fully

efficient estimates when sampling weights are known. Fully efficient estimates are obtained when a

full set of dummies for the strata S are included in the model, or via an iterative procedure in the

absence of the full set of dummy variables for strata S (Scott and Wild, 1997). As shown in Eqn

(14), when the sampling weight pψ(G = 1|y, s) is known, the logarithm of these sampling weights

can be taken as the offsets when estimating the parameters λ in the baseline distribution function.

Thus, when selection is on both Y and X and sampling weights are known, information can be

pooled across strata to estimate the common baseline distribution function fλ(y|x0). As a result,

unlike selection on outcome Y only, where knowledge of sampling weights does not affect the OR

parameter estimation, selection on both Y and X can have substantial gain in the efficiency of OR

estimates γ̂ when sampling weights are known compared to when sampling weights are unknown.

This point will be further elaborated in the simulation study and real-life data below.

2.4 Selection on Y,X, θ

In this case, sampling weight pψ(G = 1|Y,X, θ) is unknown because of unknown θ (Example 4).

When pψ(G = 1|Y,X, θ) is of arbitrary form, neither the population OR nor the baseline distribution
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is identifiable. An exception is when selection depends on (Y,X, θ) as follows (Selection Type D):

pψ(G = 1|y, x, θ, s) = h1,ψ(y, s, θ)h2,ψ(x, s, θ), (16)

where s is the strata variable defined by the explanatory variables X; both h1,ψ(·) and h2,ψ(·) are

unspecified functions so long as their product gives a probability. Following similar derivation for

Eqn (14), we obtain the following conditional likelihood

f(Y = y|x, s,G = 1) =
ηγ(y;x)

[
h1,ψ(y, s, θ)fλ(y|x0)

]
∫
ηγ(u;x)

[
h1,ψ(u, s, θ)fλ(u|x0)

]
du
, (17)

where h2,ψ(x, s, θ) appears in both numerator and denominator and cancels out. It is clear that

f(Y = y|x, s,G = 1) has the same OR, ηγ(y;x), as fθ(Y |X) does and a strata-specific baseline

function, meaning that the population OR ηγ(y;x) is invariant to selective sampling and can be

identified using the algorithm in Section 2.3.1.

Selection Type D in Eqn (16) is known to hold in many selective sampling schemes for which re-

searchers have at least some control or partial knowledge, including endogenous stratified sampling,

truncation and on-site sampling. The SOR nests as special cases the existing parametric sampling-

adjustment methods (Table 1) designed specifically for these situations by eschewing outcome error

distributional assumptions. Selection Types A and C described in the previous subsection are spe-

cial cases of Type D by setting h2,ψ(x, s, θ) = 1 and additionally h1,ψ(y, s, θ) = h1,ψ(y) for Type A

and h1,ψ(y, s, θ) = h1,ψ(y, s) for Type C. By further permitting selection to depend on unknown θ

and leaving unspecified the functional forms of h1,ψ(·) and h2,ψ(·), Type D can permit a much wider

range of sampling schemes unobserved to researchers, as compared with selection on (Y,X). For

example, h2,ψ(x, s, θ) permits selection on the conditional mean of Y , Eθ(Y |x), which is a function

of (x, s, θ). This captures a form of conformation biases leading to certain types of people more

likely to be sampled due to their anticipated responses. Similarly, h1,ψ(y, s, θ) permits selection on

Y , S and θ, such as trimming samples spaces of Y and X based on θ. Note that Type D in Eqn

(16) means that given s, the impacts of Y and X on selection are functionally multiplicative but in

the entire population, selection can depend on Y and X in a functionally non-multiplicative way.
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2.5 Estimation of Standard Errors

The literature has shown that, for MI models such as ours, the regular standard errors of the

OR estimates computed from the inverse information matrix of the above conditional likelihood

functions are correct (Scott and Wild, 1997). One exception is that for selection on both Y and

X with supplemental data on sampling weights, and when the model does not include a complete

set of separate constant terms for each stratum in S, these regular standard errors can be used as

conservative estimates, but the true standard errors will be smaller.7 Furthermore, the standard

errors for the parameters λ in the baseline distribution need to be corrected. Scott and Wild (1997)

derived a formula to obtain corrected standard errors in these situations for case-control data. An

alternative means of obtaining the estimates of standard errors that can be applied to our setting

is based on bootstrap samples. For this purpose, we develop a bootstrap procedure that properly

accounts for selective sampling schemes with details described in Online Appendix II. One benefit

of the bootstrap method is that it is straightforward to obtain the standard errors of complex

functions of these model parameters, such as means, percentiles, and correlations coefficients, etc.

2.6 Practical Usage of SOR

Regression coefficients (i.e., the γ OR parameter) in SOR regression can be used to quantify and

test for the conditional association between each independent variable and Y , given all the other

independent variables. These coefficients in SOR remain unaffected by the response-dependent

sampling schemes (Selection Types A, B, C and D) described in Sections 2.3 and 2.4. Thus, one

practical usage of SOR is a tool to identify/select important explanatory variables with selective

samples. Furthermore, these SOR regression coefficients produce results identical or closely related

to standard analysis results when population distribution follows the GLMs (Section 2.1). To give

some examples, these SOR regression coefficients are the logistic (Poisson) regression coefficients

when Y given X follows a logistic (Poisson) regression; they are the linear regression coefficients

divided by the error variance when Y given X follows a normal regression model. The SOR model

reveals which parameters in these standard models are invariant to response-dependent sampling

and identifiable without knowing or modeling functional forms of these selection schemes. Notably,

7The regular ones can be up to three times of the true ones (see notes of Tables 1 and 2).
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the intercept parameters in these standard models are not invariant to selective sampling.

When population does not follow any parametric distribution, one can still use SOR for variable

identification/selection. In this case it becomes a moot point to situate the OR association param-

eters within the parametric modeling framework as above. To aid the interpretation and use of the

SOR, we connect these OR parameters with other quantifies of interest as follows. When sampling

weight is known and the entire distribution is recovered, summary statistics of the predictive dis-

tribution (Eqn (5)) useful for continuous and count outcomes, such as mean and tail probabilities,

can be obtained for consumer profiling and targeting. In particular, the regression mean is

E(Y |x) =

∑L
l=1 ul exp(λl + ln(ηγ{ul;xi1, · · · , xiK}))∑L
l=1 exp(λl + ln(ηγ{ul;xi1, · · · , xiK}))

. (18)

Estimation and testing of covariate effects on the outcome mean can be done as follows. With the

log-bilinear OR function in Eqn (3), the marginal effect of a continuous covariate xk, which informs

the average change in Y for one-unit change in Xk holding other covariates constant, is

∂E(Y |x)

∂xk
= γkσ

2
Y |x, (19)

where σ2
Y |x = E(Y 2|x) − E2(Y |x), and the expectation is taken with respect to the multinomial

distribution in Eqn (5). The equation above connects the OR parameter γk with the marginal mean

effect of xk, and is known to hold for the special case of GLMs. This connection has several desirable

properties enhancing the interpretation and use of OR parameters: (1) testing the marginal effect

of Xk on the mean of Y is zero is equivalent to testing γk = 0; (2) the effect of a covariate on OR

is in the same direction as its marginal effect on mean; (3) the ratio of the marginal effects for two

covariates (Xk and Xj) is the same as the ratio of two OR parameters (γkγj ); (4) the marginal effect of

Xk is not restricted to be constant when Xk varies, permitting a flexible data-driven nonlinear mean

function. An important implication of the last point is that SOR relaxes not only the distributional

assumptions, but also the linearity-in-mean assumption imposed in linear regression models. More

flexible relationships between OR parameters and marginal mean effects can be obtained using

higher-order and interaction terms or alternative forms of OR functions.
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3. Simulation Studies

3.1 Study I: Endogenously Stratified Sampling

In this section, we use synthetic data to demonstrate the benefits of selective sampling and eval-

uate the proposed method’s performance for analyzing selective samples. The simulation emulates

a setting in which the aim is to assess the relationship between the dependent variable Y (total pur-

chase expenditure or the count of shopping visits) and two independent variables X1 and X2, where

variables (Y , X1 and X2) can have either symmetric or skewed distributions. Data were simulated

from the following four regression models: (1) Normal regression: Y |x ∼ N(µY |x, σ
2), (2) Truncated

normal regression: Y |x ∼ TN(µY |x, σ
2, lb = 0), (3) Poisson regression: Y |x ∼ Poisson(µY |x), and

(4) Zero-truncated Poisson regression: Y |x ∼ TPoisson(µY |x, lb=1), where µY |x = β0 +β1x1 +β2x2

in (1) and (2) and lnµY |x = β0 + β1x1 + β2x2 in (3) and (4), and Y ≥ lb in (2) and (4). The

independent variable X1 is a binary variable with an uneven distribution: Pr(X1 = 1)=0.15 and

X2 follows a standard normal. We set β0 = 0, β1 = β2 = 0.1, σ = 1.

All four population regression models for fθ(Y |x) can be re-expressed as SOR models with

ln ηγ(y;x) = γ1(y − y0)(x1 − x10) + γ2(y − y0)(x2 − x20), where the log-odds-ratio parameter γj =

βj/σ
2 = 0.1, j = 1, 2 for models (1) and (2) and γj = βj = 0.1, j = 1, 2 for models (3) and

(4), respectively, and the baseline distribution f(y|x0) is normal, half-normal, Poisson, and zero-

truncated Poisson for models (1) to (4), respectively. Both γj and βj can be used equivalently

for testing the relationship between Xj and Y . The purpose here is to uses these models to

demonstrate that the SOR approach performs as well as extant sampling adjustment methods when

their assumed familiar distributions (i.e., normal and Poisson) are correct, and performs better than

them when there are departures (i.e., boundedness/truncation) from these standard distributions.

In fact, the baseline distribution in SOR is unspecified and can permit arbitrary forms of departures

from familiar normal and Poisson distributions. The use of truncated distributions here should be

viewed as one particular instance of departures from normal and Poisson distributions.

We generate a population of 1,000,000 consumers from each of the four models, mimicking large

consumer databases owned by firms. We consider the following schemes of sampling 500 consumers.

Sampling Schemes

• RS: The benchmark sampling approach is the simple random sampling of 500 consumers.
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• ES-Y: We conducted an endogenously selective (ES) sampling that over-samples consumers

with extreme purchase outcome values. We allocated p = 25% of sample size to be a random sample

of the population and the remaining sample size as an augmented sample that drew randomly from

consumers with Y values above the α=90th percentile or below the (100− α)=10th percentile.

• ES-YX: Sample selection depends on a combination of both Y and a stratification of X values.

We divided sample size equally between X1 = 0 and X1 = 1. This will distribute X1 more evenly

in the selected sample, which, as shown below, can further significantly increase its estimation

efficiency. Then, within each stratum, a selection based on Y only as described in ES-Y is conducted.

Estimation Method For each generated sample, we applied the following estimation methods.

• Regressions without adjusting for endogenous selection. These are OLS (truncated nor-

mal regression (TNREG)) for the (truncated) continuous outcome and Poisson (truncated Poisson

(TPREG)) regression for the (truncated) count outcome without adjusting for endogenous selection.

We expect that they perform well in random sampling but yield bias with endogenous sampling.

• Parametric sampling adjustment methods. These extant sampling adjustment methods as-

sume parametric outcome distributions and are denoted as HW and HW-FI (Hausman and Wise,

1981) for ES-Y and COSS-FI (Cosslett, 1993) for ES-YX, where “FI” means that data on sampling

weights are available and used.8 These are benchmark adjustment methods for comparison.

• POR. This estimation fits an odds ratio model with a parametric baseline distribution. This

is the same method as described in Sections 2.2.1 and 2.3.1, except that it uses parametric baseline

distribution functions: a normal (Poisson) distribution for the continuous (count) outcome. Thus,

the parametric model for baseline distribution is correctly specified for random samples in mod-

els (1) and (3) but mis-specified for other models and for endogenous samples where the baseline

distribution in the sample depends on sampling weights. We use this model to demonstrate the

potential estimation bias associated with the mis-specification in the baseline distribution.

• SOR. This estimation fits an odds ratio model with the nonparametric baseline distribution

8Hausman and Wise (1981) considered only a normal error distribution, so we extend their approach

to Poisson regression here. Cosslett (1993) only described the method requiring sampling weights,

which is the COSS-FI.
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described in Sections 2.2.1 and 2.3.1. No data on sampling weights are required or used.

• SOR-FI: This is the same as the SOR above but uses supplemental data on sampling weights.

This is the full-information estimation approach described in Sections 2.2.2 and 2.3.2.

Result Conclusions for Y being continuous and count are broadly similar. For brevity, we

summarize the main findings for modes (1) and (2) below. Appendix III provides a more detailed

description of findings, results for count data (Models (3) and (4)) and further results on models

with more complex functional forms and small sample sizes.

Robustness of SOR for correcting selection bias. Fig 1 plots the means ± SD of the estimates of

β1 and γ1 over repeated samples. In random sampling (RS), all estimation methods (except HW

for truncated normal data) perform equally well and can recover the true parameter value with

no bias and the same estimation variability (Fig 1). They also have the coverage rate of 95%

confidence interval equal to nominal rate and the same power to reject the null hypothesis of no

association between X and Y (Tables 1 and 2 in Appendix III). Although SOR has substantially

more parameters than the parametric methods and POR, no estimation efficiency is lost.

As expected, methods without sampling adjustment (OLS/TNREG) yield significant bias in es-

timating β1 with ES-Y and ES-YX (Fig 1), demonstrating selection bias associated with endogenously

selected samples. The parametric sampling adjustment methods (HW, HW-FI and COSS-FI), the

benchmark adjustment methods, can correct for selection bias when the outcome distributional

assumptions are met (Normal in Fig 1). However, the parameter estimates have significant bias

when the outcome follows truncated normal (red lines in Fig 1): the red dots for means of their es-

timates under selective sampling (ES-Y and ES-YX) differ significantly from the true value and also

from the means of estimates under random sampling. This indicates that the performance of these

parametric sampling adjustment methods depends critically on the distributional assumptions, and

when these assumptions are violated, these methods cannot recover either the true parameter val-

ues or the estimates from random samples. By contrast, the SOR can estimate the true regression

coefficient value without bias across sampling schemes and outcome distributions.

To further demonstrate the importance of properly modeling outcome distributions in handling

endogenously selected samples, consider POR, which is the same as SOR except that the base-

24



line function f(y|x0) is specified parametrically. POR appears to perform reasonably well when

Y follows a conditional normal, even though its normal baseline distribution is mis-specified for

endogenous samples (ES-Y and ES-YX). This may mean that the log-odds-ratio parameter γ is more

robust to sampling schemes than the regression coefficient β as an association measure. However,

the estimates of association parameters from POR suffer from significant bias in endogenously se-

lected samples (ES-Y and ES-YX) when Y follows a skewed Poisson distribution (Fig 1 in Appendix

III), indicating the significant advantage of SOR over POR for handling selective samples.

Estimation efficiency of SOR. SOR-FI has the same variability of estimates (i.e., the same length

of blue lines in Fig 1) as HW-FI and COSS-FI do under the normal error distribution. This means

the SOR method performs as efficient as these parametric sampling adjustment methods.

Efficiency gain in selective sampling schemes. SOR estimates have substantially smaller SDs in

ES-Y and ES-YX as compared to RS (Fig 1), indicating substantial efficiency gain from selective

sampling. For ES-Y sampling, the reduction in sample size to achieve the same level of estimation

precision, compared with RS, is 60—70% (Appendix III Tables 1 and 2 column “Eff.”). Furthermore,

knowledge of sampling weights does not improve the estimation of association parameters.

By contrast, for ES-YX sampling, knowledge of sampling weights and their use in estimation as

the SOR-FI does can significantly improve the efficiency of the association parameter estimation:

SDs of SOR-FI estimates are substantially smaller than those of SOR estimates (Fig 1 ES-YX). The

power to detect the effect of X1 on Y is increased from almost no power (6%—14%) with random

sampling to almost full power (90%—100%) with ES-YX (Appendix III Tables 1 and 2), a striking

difference indicating great gain with selective sampling. The increase in power to detect relevant

independent variables increases the percentages of correct models selected across all simulated

datasets from below 10% in RS to 90% in most cases in ES-YX (Column “CMS” in Appendix III

Tables 1 and 2). ES-YX also increases the reduction in required sample size, compared with RS, to

90—94%, a significant improvement on the ES-Y (Appendix III Tables 1 and 2 column “Eff.”).

Factors to consider in practice. In selective sampling, one can vary the following factors as noted

in the “Sampling Schemes”: (1) the value of α (used to define strata of extreme Y values based on

above αth and below (100 − α)th percentiles of Y ); (2) the value of p (the proportion of sample
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size allocated to a random sample), and (3) whether to stratify on unevenly distributed covariates

(i.e. ES-YX .vs. ES-Y ). Fig 2 investigates the effects of these factors on sampling efficiency and

magnitude of selection bias by varying these factors in the above simulation set-up. The left panel

of Fig 2 plots the sample information averaged over 500 simulated data, where sample information

is defined as the ratio of sampling size required for RS divided by that required by ES-YX and ES-Y,

separately, to have the same estimation precision.9 The right panel of Fig 2 plots the percentage

bias of the estimates, where percentage bias is defined as 1
2

∑2
k=1

|E(β̂k)−βk|
βk

, k = 1, 2.

Below are some major findings: (1) Sample information increases with more extreme strata

cutoff point α, and the larger proportion (1− p) of sample size allocated to nonrandom samples in

selective sampling; efficiency gain is smallest when α = 50th percentile of Y or 1−p = 0; (2) ES-YX

can obtain substantially more sample information than both ES-Y and RS; (4) By increasing (1−p),

the proportion of sample sizes oversampling extreme values of Y , ES-YX can obtain more than 12

times of sample information than RS, and ∼6 times more information than exogenously stratified

sampling (i.e., ES-YX with p = 1); this indicates the substantially additional gain associated with

oversampling extreme Y values, even after stratifying on the unevenly distributed covariate X1;

(5) Efficiency gain is largest when samples are limited to have only extreme Y values (p = 0);10

(6) Factors increasing the sampling efficiency also increase the selection bias of OLS11whereas SOR

realizes the efficiency gain of selective sampling without incurring selection bias.

3.2 Simulation Study II: Selective Sampling Resulting in Missing Outcomes

The above simulation considered endogenously stratified sampling that over-sampled extreme

outcome values for cost-effectiveness purposes, and showed that when sampling weights are known,

9Estimation precision is quantified using the D-error measure |Σ|1/K(Arora and Huber, 2001),

where Σ is the covariance matrix of the parameter estimates, and K is the number of covariates.
10One strength of the SOR approach is that the OR in a local region is unaffected by trimming data

in other regions. Thus there is a less need of complete data coverage for consistently estimating

OR than for estimating conventional mean regression parameters which are affected by trimming

sample space of Y. To ensure data to cover the region of interest, however, we do recommend setting

p and the sampling ranges of X and Y properly.
11An exception is the stratification on unevenly distributed covariates. As shown in Fig 1, the

selection biases for OLS in ES-Y and ES-YX are in opposite direction and may not be comparable.
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SOR-FI analyzes selective samples as if it were a random sample except incorporating sampling

weights as offsets.12In this section, we consider more flexible sampling rules with unknown sampling

weights (e.g., Example 4). A useful result is that the SOR can identify and consistently estimate

OR association parameters without modeling the functional form of response-dependent selection.

In this study, the Y value in a random sample is selected for observation according to selection

mechanisms depicted in Fig. 3. Thus, the selection indicator G is the non-missingness indicator

for Y . One example of these selection rules is data confidentiality, whereby extreme Y values (too

high or two low) have reduced or no chance to be shared with others and are designated missing

by data owners. Another example is nonresponse to sensitive questions in surveys. For example,

nonresponse to a question on expense is more likely when the expense is too high or too low. In

these settings, selection may depend directly on Y taking infinite possible values, rather than on a

finite number of known strata defined by Y . We assume that data analysts do not know the forms

of these response-selection rules. Thus, the extant methods for stratified sampling considered in the

above section are not applicable here, because these methods require selection depend on a finite

number of strata with known cutoff points of Y values for determining strata. It is unclear how

they may be generalized to the sampling schemes considered here with unknown sampling rules

and unknown outcome distributions. By contrast, the SOR method is more general and can be

applied to these selection rules. As described in Section 2.2.1, there is no need to specify a priori

the form of selection rules in SOR, which means that selection on Y can be of arbitrary form. An

alternative and classical approach for handling missingness in Y is the Heckit procedure (Heckman,

1979), which takes the following form for a normal linear outcome:

Yi = Xiβ + ε1i, G∗i = Ziδ + ε2i, (ε1i, ε2i) ∼ BVN(0,Σ),

where BVN stands for bivariate normal and the selection indicator G is determined by the latent

variable G∗ as G=1 if G∗ > 0 and G=0 if otherwise. The model estimation can be performed

through maximum likelihood, denoted as FIML, or a simpler two-step procedure. As seen above,

one important limitation of the Heckit selection model for use with selective sampling is that the

12Appendix IV demonstrates the use of SOR for endogenously stratified sampling with the real-life

data from Example 2. The conclusions are broadly similar to those reached in simulation study I.
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BVN error model imposes a linear probit selection rule on the outcome Y , and the estimation

results depend sensitively on the assumed selection form. As demonstrated below, departures from

the linear probit selection rules can lead to significant estimation bias.

In this simulation study, we generate a random sample of 10,000 observations from the normal

linear model, as specified in model (1) in Section 3.1 above. For each sample, we apply each of the

four selection rules (Selection on Y or (Y, θ)) in the top row of Fig. 3 to create endogenously selected

samples. We then apply three methods to analyze each sample: the OLS, Heckit, and SOR. We

include variables X1 and X2 in both stages of Heckit. Unlike OLS, both Heckit and SOR adjust for

nonignorable missingness in the sample selection problem; unlike Heckit, however, SOR analyzes

the endogenously selected samples as if they were random samples without the need to model the

selection mechanism. Results over 500 simulated datasets are shown in Table 3. As expected, the

OLS has large bias that can go in either direction (the ratio of bias to true value goes from -86% to

300%). Heckit can correct for bias for the linear probit selection rule (Selection Rule 1 in Table 3)

and reduce the bias to less than 10%. However, there is a considerable variation in estimates. When

the selection rules differ from linear probit, the estimates from Heckit have significant bias and can

be even worse than the OLS. This demonstrates the exquisite sensitivity of the Heckit procedure

to the assumed selection rules. By contrast, SOR does not require modeling selection mechanisms

and performs very well across all selection rules with no bias and substantially smaller variability in

estimates. We then further considered the ES-YX selection (Selection Type C described in Section

2.3) that depends on a combination of Y and the strata on X2 as well as ES-YXθ selection (Selection

Type D described in Section 2.4) depending additionally on θ as depicted on the bottom row of

Fig. 3. Again, we assume that data analysts do not know the exact functional form of selection on

Y within each strata, although they know selection stratified on X2. The findings under the ES-YX

are broadly similar to those under the ES-Y (Table 3), except that Heckit also shows significant

bias in Selection Rule 5. This is due to selection’s dependence on the interaction of Y and X in

Selection Rule 5, whereas in Selection Rule 1, selection depends on Y only. Note that the selection

rules 2 and 5 permit selection to depend on Y , X and β (population parameters). The dependence

on β can occur when people performing selection have the population data and know β. Table 7 in
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Online Appendix III reports results with sparse data (sample size=100 with about 50% missingness

in Y ). The main conclusions remain the same.

Besides imposing the restrictive assumption of linear probit selection, another limitation of using

Heckit for selective sampling is that it requires knowing the X values for all observations in the

random sample to estimate the selection rules and thus cannot be applied to selective sampling with

X and Y simultaneously observed or missing. In the next section, we compare different methods

for handling truncated and on-site samples, for which Heckit is not applicable.

4. Application: Truncated and On-site Samples of Shoppers’ Store Visits

Count data are ubiquitous in marketing, economics, social and health research. Examples are

prescription counts, website visits and store visits. Our sample comes from a retail store’s shoppers

database and contains 3092 customers who made at least one shopping visit to the store during

the first year of store opening. The purpose is to construct a count model of the store shopping

visits made by the shoppers to identify relevant demographic, social-economic, geographic profiles

(as listed in Table 4), and to conduct consumer profiling and targeting to boost sales13. Such studies

often use either administrative databases generated during routine operations in firms, hospitals,

organizations and government, or surveys of consumers. These surveys or administrative databases

frequently include only individuals engaging in the activity of interest. A sample truncation issue

arises if the interest is in the general population rather than the individuals participating in the

activity exclusively. Even if one is interested in the latter individuals only, modeling has to account

for the bounded distributional feature of no zero counts in the data (Shonkwiler and Englin, 2009).

Besides truncation, the sampling probabilities in on-site samples further depend on the intensity

of the activity of interest —the number of store visits. Similar examples abound in marketing and

management, for instance, the demand for a recreational site (Shaw, 1988, Englin and Shonkwiler,

1995), household demand studies sampled in supermarkets, the number of physician visits sampled

in doctors’ offices, and transportation uses sampled on transportation modes. Below we revisit

Example 3 and demonstrate the use of the SOR for truncated and on-site samples.

13See Wachtel and Otter (2013) for an example of consumer targeting using demographic variables.
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4.1 Truncated Samples

Similar to the truncation in continuous outcomes (Case II in Section 2.2), fitting truncated count

data with regular count data models ignoring truncation can yield significant bias in parameter

estimation. To account for truncation, truncated count data models (Shaw, 1988, Englin and

Shonkwiler, 1995) can be used to provide consistent model estimation with the following PMF:

fc(Yi|xi) = fθ(Yi|Yi > c, xi) =
fθ(Yi|xi)
1− F (c)

, y = c+ 1, · · · , where F (c) =
c∑

k=0

fθ(Yi = k|xi), (20)

where fθ(Yi|xi) is the PMF for the un-truncated count distribution. When fθ(Yi|xi) = e−λiλ
yi
i

yi!
and

c = 0, we obtain the PMF for the zero-truncated Poisson regression as

fc(Yi|xi) = fθ(Yi|Yi > 0, xi) =
λyii

(eλi − 1)yi!
, (21)

where λi = exp(β0 +
∑K

k=1 βkxi,k). One can generalize the truncated Poisson regression to permit

over-dispersion using the truncated negative binomial (NB) regression, in which

fθ(Yi = y|xi) =
Γ(y + 1

α)

Γ(y + 1)Γ( 1
α)

(αλi)
y [1 + αλi]

−(y+1/α) , (22)

where α ≥ 0 is a nuisance parameter to be estimated along with β with α = 0 giving Poisson

regression. The NB regression can be derived as a random-intercept Poisson regression with its

mean as exp(β0 +
∑K

k=1 βkxi,k + b0i), where exp(b0i) follows a Gamma distribution with mean 1

and a dispersion parameter of α. Thus the NB extends a Poisson regression with only observed

heterogeneity to include both observed and unobserved heterogeneity in count means.

As shown in Eqn (20), the mean structure in truncated samples involves F (c). Thus correct

identification of mean structure using truncated samples depends more critically on the correct spec-

ification of distributional forms that yield correct F (c). Indeed, parametric truncated count models

are more sensitive to departures from the imposed distributional forms, and when mis-specified can

yield inconsistent estimates even for mean parameters (Englin and Shonkwiler, 1995), not to men-

tion count probabilities and other distributional aspects. Thus, the importance of not relying

on distributional assumptions becomes more salient for truncated data. We demonstrate below

that the SOR provides a framework to generate distribution-free models nesting these parametric

truncated count models as special cases and avoiding the reliance on distributional assumptions.

30



It is readily seen the zero-truncated Poisson in Eqn (21) with a log-linear function for λi has

an log-bilinear OR function and a parametric zero-truncated Poisson baseline PMF, and thus is a

special case of SOR. The NB and truncated NB regression have the following OR function

ln η(y;x) =

K∑
k=1

βk(y − y0)(xk − x0k)−

(y − y0)

{
ln

[
1 + exp

(
lnα+ β0 +

K∑
k=1

βkxk

)]
− ln

[
1 + exp

(
lnα+ β0 +

K∑
k=1

βkx0k

)]}
.(23)

Inside the bracket of Eqn (23) is the difference of two functions of the form, ln(1 + exp(u)), that is

called the softplus function in the machine learning literature. We thus name this OR function as

log-linear-softplus (LLS). The NB has a parametric baseline PMF as

f(y|x0) =
Γ(y + 1

α)

Γ(y + 1)Γ( 1
α)

[
exp

(
lnα+ β0 +

K∑
k=1

βkx0k

)]y [
1 + exp

(
lnα+ β0 +

K∑
k=1

βkx0k

)]−(y+1/α)

,(24)

which is an NB distribution with mean exp
(
β0 +

∑K
k=1 βkx0k

)
and the dispersion parameter α.

The baseline PM for truncated NB is the truncated version of the above PMF. These decompositions

suggest a way to nest these parametric count models within SOR by replacing the parametric

baseline PMFs with nonparametric PMFs. One can test the distributional assumptions of the

parametric count regressions by model selection statistics, such as likelihood ratio test or AIC,

to compare the parametric count models and the SOR with the same OR functions. Should the

parametric count model be rejected, SOR provides an alternative regression model to use.14

Table 4 summarizes the model fitting results from six store visit demand models: Poisson

and zero-truncated Poisson (TP) regression, NB and zero-truncated NB (TNB), SOR with log-

bilinear (SORLLL) and SOR with log-linear-softplus (SORLLS) OR function. Fig. 4 presents

the observed and predicted counts from the six models with the two SOR models generating the

same fitted values. It shows that the sample contained no consumers with zero store visits (i.e.,

14Model selection is needed for NB because unlike the GLMs whose parameters in the OR and

baseline functions are variation independent (Chen, 2007), and thus the baseline function provides

no additional information about OR parameters, the form of the baseline function in the NB model

can provide additional information about OR parameters. Consequently unlike for GLMs, it is

possible to gain estimation efficiency of the OR parameters for NB compared with SOR.
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sample truncation), indicating the need to use truncated regressions. Furthermore, there are large

discrepancies between the observed and predicted counts for both Poisson and TP regressions, an

indication of over-dispersion of count outcome. The use of NB and TNB reduces the discrepancies

(Fig. 4) and improves model fitting with greater likelihood and smaller AIC (Table 4). Among all

four parametric models, TNB performs best, indicating the importance of accounting for both over-

dispersion and truncation. However, there are still significant and systematic mismatches between

observed and predicted frequencies for TNB. In contrast, Fig. 4 shows that SOR provides excellent

fit to the marginal counts of store visits. Table 4 also shows that the two SOR models have the

same likelihood that are substantially greater than all the other four parametric count data models.

According to AIC, SOR with the log-bilinear OR function is the best model.

Besides incorrectly estimating the count probabilities (Fig. 4), these parametric (truncated)

count models can lead to incorrect identification of relevant consumer profiling variables. For the

latter issue, one simple approach to correcting for over-dispersion/incorrect random-effect distri-

bution is to use empirical sandwich standard errors of parameter estimates (Cameron and Trivedi,

2009). The robust standard errors are reported as SER with the default model-based standard

errors as SED in the parenthesis in Table 4, which shows large differences between them. The tD

statistics using model-based SED for Poisson and TP indicate that all variables except Age are

significant at the 0.05 level, whereas t statistics using robust SER show significance only for DTS,

DTS2 and Married. The model-based SED for NB and TNB also have substantially downward

bias compared with the robust SER, in some cases by more than 50%, although the downward

bias is smaller than Poisson and TP. The downward bias in model-based SED also causes TNB to

incorrectly identify Kids as a significant predictor. The estimation results from SOR show broad

similarity in t statistics with those using the robust standard errors from the four parametric count

regression models, and find statistical significance only for DTS, DTS2 and Married. This indicates

that the SOR’s performance is on-par with existing robust procedures for truncated data, yet SOR

has the advantages of correctly estimating the count probabilities (Fig. 4) and providing a full data

distribution needed for other marketing decision problems and for being used in Bayes’ theorem

to handle general selective sampling schemes. Overall, the analysis suggests that SOR provides
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inference of truncated samples that is robust to distributional assumptions.

4.2 On-site Sampling

To demonstrate the merits of SOR for on-site sampling problems, we consider the following

scenario. Suppose that we need to conduct an intercept interview of consumers in the store to obtain

data on those independent variables. In such on-site sampling situations, the probability of being

sampled is proportional to the outcome, the number of store visits, which creates an endogenously

selected sample. One main reason to use on-site sampling is that a random sampling of the general

population is unlikely to contain enough people who have made shopping visits to the store. We

conduct three experiments. In the first experiment, we generate an on-site sample of 3092 customers

from the population TP model estimated in Table 4 with sampling probability proportional to the

number of store visits. We then apply five estimation methods: TP, TP adjusting for on-site

sampling (TP-A) (Eqn (12)), TNB, TNB adjusting for on-site sampling (TNB-A), and the SOR.

The TNB-A uses the following PMF for on-site samples (Englin and Shonkwiler, 1995)15

fθ(Y = y|x,G = 1) =
yiΓ(y + 1

α)

Γ(y + 1)Γ( 1
α)
αyλy−1

i [1 + αλi]
−(y+1/α) . (25)

Note that the parametric PMFs in Eqns (12) and (25) are also special cases of SOR in that their

baseline distributions take parametric forms. We repeated the sampling and estimation 500 times,

with results over all samples reported in the top panel of Table 5. In the second experiment, we

follow the same procedure, except that the on-site samples were generated from the population

TNB model estimated in Table 4 and the SOR with the log-linear-softplus OR function was used

in SOR estimation. In the third experiment, on-site samples were generated from the population

SOR model with log-bilinear form estimated in Table 4, with results reported in the bottom panel

of Table 5. As a comparison, random samples of the same sample size were also drawn from the

population models and estimated in the three experiments.

As shown in the top panel of Table 5, TP and TNB (TP-A and TNB-A) can recover the popula-

tion parameters with random sampling (on-site sampling) when the population follows a truncated

Poisson distribution. TP and TNB (TP-A and TNB-A) produce, however, biased estimates for

15Englin and Shonkwiler (1995) used a slightly different parameterization replacing α with α0/λi,

which fitted their data better but fitted our data worse than the parameterization used here.
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on-site sampling (random sampling). This indicates these parametric procedures depend on the

correctness of sampling weights. When the population departs from the assumed distributional

forms, the estimates assuming incorrect parametric distributional forms (TP and TP-A in the mid-

dle panel of Table 5, as well as TP, TP-A, TNB and TNB-A in the bottom panel of Table 5) are

subject to bias regardless of sampling schemes. Furthermore, when distributional forms are mis-

specified, parametric sample adjustment methods (TP-A and TNB-A) in on-site samples do not

recover the estimates of their counterparts (TP and TNB) in random samples either. These results

indicate that the parametric methods depend critically on the outcome distributional assumptions.

Only SOR performs well in all scenarios as shown in Table 5, indicating its robustness to both

outcome distributional assumptions and sampling weights. Although TNB-A performs better than

TP-A, its performance depends on the assumed forms of random effects and other distributional

assumptions imposed in NB; also the estimation algorithm of TNB-A loses the simplicity of that

of TP-A. By contrast, SOR does not need to impose these distributional assumptions and excels

in simplicity, in that the algorithm used to analyze random samples can be straightforwardly used

for on-site samples. Finally, the D-error measure in Table 5 shows that on-site sampling can sub-

stantially increase the estimation efficiency. In the bottom panel of Table 5, D-error is reduced

from 0.663 for random sampling to 0.082 for on-site sampling, a reduction of 90% in sample size

required for the same estimation precision. This is due to over-sampling of rare and informative

large counts in the on-site samples. For the reason stated in Footnote 14, we do find that unlike

when the population follows GLMs (Poisson here) for which the estimation efficiency is about the

same for correct parametric models and SOR models (row “D × 1000” in top panel of Table 5),

estimation efficiency is higher (D-errors are smaller) in correct parametric models than SOR when

the population follows truncated NB (row “D × 1000” in the middle panel of Table 5), although

they all provide consistent results in this case. In all cases, AIC is capable of choosing the correct

and most efficient (smallest D-errors) method for use with on-site samples (Table 5).

4.3 Managerial Implications

The estimated demand functions can be used for profiling and targeting store shoppers. Unlike

Shonkwiler and Englin (2009) whose method can be used for inferring behavior of the (uncondi-
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tional) average shopper, our approach is more flexible and permits conditioning on drivers of shop-

ping trips. To illustrate, we examine the effects of DTS (distance to store) on the expected shopping

frequency and proportion of returning shoppers in the population of store shoppers, holding other

covariates constant at their population mean values. This analysis contributes to understand the

impact of shopping distance on demand from the shoppers of the focal store or to take the finding

to a similar store. Table 6 compares the results using the demand functions estimated from differ-

ent sample adjustment methods. For the truncated sample, we use the estimated PMFs for TP,

TNB and SORLLL in Table 4, among which SORLLL fits data best with the smallest AIC value.

The expected shopping visits for shoppers at the 95th, 50th and 5th percentiles of DTS (denoted

as E(YDTS95), E(YDTS50), E(YDTS5)) are all close across the three models (Table 6 under “Truncated

Sample”), indicating that incorrect distributional assumptions in TP and TNB have less effect on

these quantities estimated using this truncated sample. Significant differences, however, exist in the

estimated proportions of returning shoppers (Pr(Y > 1)) across these models (Table 6), indicating

bias associated with TP and TNB. This finding is consistent with the pattern observed in Fig. 4.

For on-site samples, we use the demand functions estimated using TP, TP-A, TNB, TNB-A

and SOR in the bottom panel of Table 5 (i.e., with population distribution following SOR that

fits observed data best). Both TP and TNB do not adjust for on-site sampling, and they estimate

the quantify of shopping trips for the sample of shoppers interviewed at the store, instead of the

population of shoppers. As expected, the predicted average shopping visits from TP and TNB

have large upward bias, indicating strong selection bias associated with on-site samples. TP-A

and TNB-A attempt to correct for the selection bias. TNB-A performs better than TP-A but

still has significant upward bias, e.g., E(YDTS5) estimated as 4.08 versus a true value of 2.58 and

Pr(YDTS5 > 1) estimated as 0.62 versus a true value of 0.38 with both estimates having about 60%

bias (Table 6). We note the bias may be in another direction for a different application. These

biases are due to incorrect distributional assumptions imposed in these parametric approaches,

and can lead store managers to mistakenly overemphasize the importance of shoppers closer to

the store and over-weight them in managerial decisions. Overall this analysis demonstrates how

ignoring selective sampling and mis-specifying population distributions can cause significant bias
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and sub-optimal managerial decisions, and the usefulness of SOR for guarding against these biases.

5. Discussion

In this paper, we introduced a unified framework based on SOR that extends the efficient approach

of Donkers et al. (2003) for endogenous stratified sampling of binary choice outcomes to broader

types of outcomes (polytomous, continuous and count) and selective sampling schemes, including

endogenously stratified sampling, on-site sampling, truncated samples, and sample selection prob-

lems. Our study using synthetic and real-life examples shows endogenous selective sampling can

substantially improve sampling efficiency and reduce the cost associated with marketing research,

and sometimes is the only feasible means of addressing the question of interest given the nature of

available datasets and resources. The results also show that selection on both the outcome and a

strata on unevenly distributed explanatory variables can further substantially increase estimation

efficiency when the sampling weights are known and included as offsets to a program written for

fitting the SOR to random samples. Other design factors (α and p determining the extremeness

and amount of informative data points) in endogenously stratified sampling are shown to have

systematic and substantial effects on the sampling efficiency (Fig 2). Depending on choices made

on factors affecting sampling efficiency, the gain using selective sampling can be more than 10 times

of that using random sampling, which can translate into large savings in financial and time costs.

Despite these substantial benefits, our evaluation shows that the selection bias associated with

selective sampling also increases simultaneously, demanding bias correction to realize the benefits

of selective sampling. Two thorny issues in correcting for the selection bias are the specifications

of outcome distributions and selection mechanisms. In practice, researchers rarely have complete

knowledge to specify them confidently. Selective sampling can hide or artificially create complex

distributional features of the outcomes. There may only be partial and limited knowledge on selec-

tion rules. Unfortunately, as shown in the analysis of synthetic and real-life data, mis-specifications

of these functional forms can yield large bias, sometimes even larger than not correcting for selec-

tivity, as well as sub-optimal marketing decisions. Notably, the marginal effect of the price variable

is substantially underestimated and not selected as a significant variable in Example 2, and the

importance of consumers closer to the store is mistakenly over-estimated in Example 3 because of
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mis-specifications of outcome distributions in the parametric sample adjustment methods.

Thus, the proposed SOR approach’s capability of “Killing Two Birds with One Stone” is very

desirable, in that it requires neither modeling selection mechanisms nor relying on parametric

distributional assumptions about marketing response variables, thereby guarding against the mis-

specification bias associated with these parametric sample adjustment methods. Specifically, when

the population distribution follows GLMs, nonparametric modeling of the baseline distribution

in SOR leads to no or little efficiency loss and performs almost as well as existing parametric

sampling adjustment methods in estimating the population association parameters of interests.

When the distributional assumptions are violated in the parametric sample adjustment methods,

using them to adjust for selective sampling can yield significant bias, whereas the SOR approach

remains valid. Thus SOR should be preferred to sampling adjustment methods assuming GLMs

for the population distribution. When the population follows a parametric distribution outside

GLMs (e.g., a consumer demand model using a truncated negative binomial regression including

both observed and unobserved consumer heterogeneity), it is possible to use a correctly-specified

parametric sample adjustment method to gain higher efficiency than SOR. In this case, SOR can

be useful for testing the adequacy of distributional assumptions imposed in the parametric method,

by nesting the parametric approach as a special case. Should the parametric approach be rejected,

SOR provides a better alternative for analyzing selected samples. As shown in Example 3, model

selection statistics such as AIC can be used to select best-performing sample adjustment method(s).

Requiring no modeling of selection mechanisms is another advantage of SOR. When sampling

probabilities are unknown, the outcome error distributional form in the selective sample depends

on the unknown sampling weights and may depart from standard distributions in any unknown and

arbitrary way. Unlike random sampling, these distributional departures can be difficult to check in

endogenously selected samples, as selection can artificially create or hide the departures. The fact

that a priori knowledge of sampling weights or error distributional forms is not required and the

ability to automatically generate a suitable outcome distribution, an important feature of the SOR

approach, can thus significantly increase the robustness and applicability of selective sampling.

The property of the OR association parameters in SOR being invariant to and free of bias from
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response-dependent sampling holds much more broadly than the logit models for binary outcomes

considered in Donkers et al. (2003) and has substantially wider applicability. These OR parameters

are regression coefficients or standardized ones in the presence of the dispersion parameter in the

popular GLMs. When population follows these standard distributions, SOR directly estimates

these familiar population parameters even if response-dependent sampling alters the distributions

in selected samples away from these standard distributions in an unknown fashion. When the

population does not follow GLMs or any parametric models and no standard model describes

the population adequately, the OR parameters in SOR can still be used as population association

parameters for identifying drivers of the outcomes. Simple connections between OR parameters and

marginal mean effects and other quantifies of interest are derived and can aid the interpretation of

SOR results in this more general case. Our empirical analysis of real-life data demonstrates that in

the population or a random sample the inferences based on SOR are identical or correspond closely

to the inference using other distribution-free procedures, such as OLS or parametric regressions with

robust standard errors. In comparison with these other distribution-free procedures, advantages

of the SOR approach include its ability to properly recover the entire distribution of interest, to

provide a full data distribution to use in Bayes’ theorem for handling selective sampling, and to relax

the assumption of linearity in the mean function of the OLS regression. In addition to the unique

property of the OR parameters being invariant to response-dependent sampling, these desirable

features make SOR well suited to handle selective sampling.

This study points toward some avenues for future research. It would be useful to extend the

approach to selective sampling with panel data to reduce the significantly more costs associated with

conducting panel studies. In this work we assume all the regressors in X are exogenous. Future

work can extend the method to account for both selective sampling and regressor endogeneity.

Throughout the paper we assume that all the data in the endogenously selected sample are fully

observed. In practice, there could be missing values in Y or X (i.e., item missingness), given the

units are already included in the selected sample. Oftentimes it can be plausible to assume the

mechanism of such item missingness to be ignorable (Little and Rubin, 2020). Future research

can develop methods that combine missing data methods assuming ignorability with the sampling-
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adjustment method proposed here for efficient use of such data.
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Table 1
Comparison of Estimation Methods for Endogenously Selective Sampling.

DFV (2003) HW (1981) Cosslett (1993) Cosslet (2013) Shaw (1988), ES (1995) SOR

Outcome
Type Binary Continuous Discrete & Continuous Continuous Discrete & Continuous Discrete & Continuous

Model Binary Regression Normal Parametric Regression Distribution-free Normal, Poisson, Distribution-free
Regression Linear Regression Negative Binomial SOR regression

Regression

Sampling Stratified Sampling Stratified Stratified Sampling Stratified Sampling On-site Sampling Stratified Sampling,
Scheme (with known SW) Sampling (with known SW) with two strata (with known SW) On-site sampling,

general selective sampling

Factors Affecting Y,X Y Y,X Y Y Y,X, θ
Selection (Y > c .vs. Y < c)
Estimation Analyzed as random Separate estimation algorithms from those for random samples Analyzed as random

samples with known are needed and sometimes can be difficult to implement/generalize samples (SWs, if known,
SWs as offsets are used as offsets)

Stratified Sampling: selection depends on Y and X via a finite number of known strata defined on Y and X; On-site sampling: sampling weights
proportional to Y values; General selective sampling: sampling weights depend directly on Y or a combination of Y,X and θ with known or
unknown sampling weights. SW: Sampling Weights. GLMs: Generalized Linear Models, including normal regression, binomial regression, Poisson
regression and Gamma regression as special cases. SOR: Semiparametric Odds-Ratio model, including GLMs as special cases. DFV (2003):
Donkers, Franses, and Verhoef (2003); HW (1981): Hausman and Wise (1981); ES (1995): Englin and Shonkwiler (1995).
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Table 2
Comparison with Missing Data Methods for Endogenously Selective Sampling.

Qian and Xie (2011) Heckit SOR

Outcome Model Parametric Parametric Distribution-Free SOR

Covariate Modeling Required Yes No No

Selection Modeling Required Noa Yes (linear probit model) No

Factors Affecting Selection Y,X Y,X, θ Y,X, θ

a: The method of Qian and Xie (2011) was designed for addressing missing-covariate issues in a random sample and considered the case of ignorable
missingness for which no selection modeling is needed. The method can be extended to permit nonignorable missingness which will require modeling
missing data selection mechanisms.

Table 3: Comparison of Methods for Dealing with Missing Y Values Due to Selective Sampling.

X1 (true coefficient value=0.1) X2(true coefficient value=0.1)
Selection Rules OLS Heckit-FIML SOR OLS Heckit-FIML SOR

ES-Y or ES-Yθ
1. Linear Probit Selection 0.067 (0.029) 0.092 (0.743) 0.101 (0.043) 0.069 (0.012) 0.090 (0.151) 0.101 (0.019)
2. Quadratic Probit Selection 0.150 (0.053) -2.104 (16.603) 0.101 (0.037) 0.152 (0.019) -0.110 (1.229) 0.099 (0.013)
3. Extreme Values Selected 0.304 (0.103) 66.325 (487.235) 0.099 (0.033) 0.320 (0.041) -1.017 (26.40) 0.100 (0.014)
4. Middle Value Selected 0.014 (0.015) -17.80 (295.87) 0.097 (0.101) 0.014 (0.006) -0.65 (3.254) 0.100 (0.040)

ES-YX or ES-YXθ
5. Linear Probit Selection 0.079 (0.036) -7.02 (115.91) 0.099 (0.048) -0.039 (0.013) -0.307 (1.100) 0.101 (0.030)
6. Quadratic Probit Selection 0.095 (0.040) 0.090 (0.042) 0.100 (0.044) -0.197(0.017) -0.150 (0.165) 0.099 (0.024)
7. Extreme Values Selected 0.252 (0.081) 0.230 (0.232) 0.100 (0.032) 0.160 (0.035) -0.034 (0.620) 0.101 (0.016)
8. Middle Value Selected 0.016 (0.016) 0.011 (0.030) 0.098 (0.094) 0.069 (0.013) 0.034 (0.079) 0.100 (0.057)

1. Φ(y); 2. Φ(−1 + 10β1y + 10β2y
2); 3. and 4.: 0/1 function of percentiles of Y . 5. Φ(10β1y − 20β2y ∗ I(x2 > 0)); 6: Φ(−1 + y + y2

+2 ∗ I(x2 > 0)− 2 ∗ y ∗ I(x2 > 0)− 2 ∗ y2 ∗ I(x2 > 0)); 7. and 8.: 0/1 functions of Y percentiles and I(X2 > 0). Also see Fig 3.
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Table 4
Demand Function Estimation Using the Truncated Retail Store Shopper Visits Data.

Poisson Truncated Poisson Negative Binomial Truncated Negative Binomial SORLLL SORLLS

(TP) (TNB)

Est. SER (SED) Est. SER (SED) Est. SER (SED) Est. SER (SED) Est. S.E. Est. S.E.
t (tD) t (tD) t (tD) t (tD) t t

Income 0.028 0.045 (0.013) 0.043 0.070 (0.017) 0.026 0.040 (0.018) 0.049 0.075 (0.040) 0.013 0.017 0.015 0.022
0.63 (2.12) 0.62 (2.57) 0.64 (1.44) 0.65 (1.21) 0.74 0.70

DTS -0.283 0.057 (0.020) -0.515 0.101 (0.028) -0.270 0.048 (0.026) -0.609 0.096 (0.055) -0.318 0.047 -0.368 0.156
-4.96 (-14.13) -5.09 (-18.36) -5.59 (-10.56) -6.36 (-11.12) -6.77 -2.36

DTS2 0.078 0.021 (0.009) 0.138 0.036 (0.012) 0.073 0.018 (0.011) 0.152 0.035 (0.025) 0.073 0.021 0.086 0.042
3.75 (9.14) 3.87 (11.94) 4.07 (6.49) 4.30 (6.19) 3.50 2.05

Age -0.003 0.028 (0.014) -0.006 0.048 (0.019) -0.003 0.026 (0.019) -0.002 0.058 (0.043) -0.002 0.023 -0.003 0.028
-0.11 (-0.21) -0.13 (-0.34) -0.10 (-0.14) -0.04 (-0.05) -0.10 -0.10

Married 0.057 0.021 (0.014) 0.107 0.040 (0.020) 0.055 0.021 (0.018) 0.133 0.055 (0.040) 0.070 0.033 0.084 0.042
2.74 (4.05) 2.69 (5.43) 2.67 (3.04) 2.40 (3.35) 2.15 2.01

Kids -0.033 0.029 (0.014) -0.057 0.049 (0.019) -0.034 0.028 (0.018) -0.095 0.064 (0.040) -0.023 0.024 -0.029 0.034
-1.15 (-2.36) -1.15 (-3.06) -1.24 (-1.86) -1.47 (-2.34) -0.98 -0.85

Const. 0.583 0.026 (0.016) 0.224 0.060 (0.024) 0.590 0.026 (0.021) -21.313 0.045 (41.66) 0.557 0.025 0.557 0.035
22.30 (35.54) 3.72 (9.27) 22.82 (28.15) -475.69 (-0.51) 22.28 15.91

lnα -1.021 0.144 (0.048) 21.968 0.035 (41.66) -2.071 3.085
-7.09 (-21.27) 627.7 (0.53) -0.67

-logLik 6328.9 5659.8 5546.3 3819.9 3667.5 3667.5
AIC 12672 11334 11109 7656 7399 7401

Note: Income: Household income; DTS: Distance to Store; DTS2= DTS∗DTS; Age: Age of the customer; Married: Marriage status of the customer;
Kids: Number of kids less than ≤ 18 years old at home. SER: Robust (empirical) sandwich standard error estimate; SED: Default model-based
standard error estimate. t: Wald t statistics using robust standard error or using distribution-free SOR; tD: Wald t statistics using default standard
error based on parametric distributions. SORLLL: SOR model using log-bilinear OR function; SORLLS : SOR model using log-linear-softplus OR
function. Bolded t values means statistical significance at the 0.05 level. Greatest likelihood and smallest AIC are bolded.
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Table 5: Demand Function Estimation Using Random Samples and On-site Samples of the Shopper Visit Data.

Population Random Sampling On-site Sampling
Trunc. Pois TP TP-A TNB TNB-A SORLLL TP TP-A TNB TNB-A SORLLL

Income 0.043 0.044 0.053 0.043 0.053 0.044 0.035 0.043 0.036 0.044 0.043
(0.018) (0.022) (0.018) (0.022) (0.018) (0.012) (0.015) (0.012) (0.038) (0.015)

DTS -0.515 -0.515 -0.606 -0.516 -0.610 -0.516 -0.425 -0.516 -0.426 -0.516 -0.517
(0.028) (0.033) (0.028) (0.033) (0.030) (0.020) (0.024) (0.020) (0.025) (0.026)

DTS2 0.138 0.138 0.163 0.137 0.163 0.138 0.113 0.138 0.113 0.137 0.138
(0.011) (0.013) (0.011) (0.013) (0.012) (0.009) (0.010) (0.009) (0.010) (0.011)

Age -0.006 -0.006 -0.007 -0.006 -0.007 -0.006 -0.005 -0.006 -0.006 -0.007 -0.006
(0.018) (0.021) (0.019) (0.022) (0.019) (0.013) (0.016) (0.014) (0.016) (0.016)

Married 0.107 0.106 0.127 0.107 0.126 0.107 0.089 0.108 0.089 0.107 0.108
(0.019) (0.022) (0.019) (0.022) (0.019) (0.014) (0.017) (0.014) (0.017) (0.017)

Kids -0.057 -0.057 -0.068 -0.058 -0.068 -0.057 -0.047 -0.057 -0.047 -0.057 -0.057
(0.018) (0.021) (0.018) (0.021) (0.019) (0.013) (0.016) (0.013) (0.016) (0.016)

Const. 0.224 0.222 -0.281 0.222 -0.281 0.222 0.650 0.223 0.650 0.224 0.224
(0.024) (0.028) (0.024) (0.028) (0.024) (0.017) (0.020) (0.017) (0.020) (0.020)

-logLik 3960.1 3983.2 3960.1 3983.5 3955.9 4710.2 4677.1 4710.2 4677.1 4672.4
AIC 7934 7980 7936 7983 7939 9432 9366 9434 9368 9374
D × 1000 0.285 −−− 0.287 −−− 0.297 −−− 0.214 −−− 0.214 0.223

Trunc. NB TP TP-A TNB TNB-A SORLLS TP TP-A TNB TNB-A SORLLS

Income 0.049 0.033 0.040 0.049 0.040 0.049 0.040 0.049 0.060 0.049 0.049
(0.030) (0.036) (0.040) (0.035) (0.048) (0.020) (0.025) (0.029) (0.024) (0.028)

DTS -0.609 -0.446 -0.526 -0.603 -0.510 -0.605 -0.500 -0.607 -0.731 -0.606 -0.605
(0.045) (0.052) (0.056) (0.049) (0.223) (0.029) (0.035) (0.040) (0.034) (0.134)

DTS2 0.152 0.108 0.128 0.155 0.122 0.150 0.120 0.150 0.182 0.150 0.150
(0.019) (0.023) (0.027) (0.022) (0.067) (0.013) (0.016) (0.019) (0.016) (0.037)

Age -0.002 -0.005 -0.005 -0.002 -0.001 -0.002 -0.001 -0.001 -0.003 -0.002 -0.002
(0.031) (0.037) (0.044) (0.033) (0.042) (0.020) (0.025) (0.029) (0.024) (0.024)

Married 0.133 0095 0.113 0.130 0.114 0.136 0.107 0.134 0.160 0.133 0.132
(0.030) (0.036) (0.041) (0.033) (0.058) (0.020) (0.024) (0.028) (0.023) (0.036)
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Kids -0.095 -0.066 -0.079 -0.098 -0.078 -0.093 -0.075 -0.092 -0.112 -0.093 -0.092
(0.030) (0.036) (0.043) (0.035) (0.056) (0.020) (0.025) (0.029) (0.024) (0.033)

Const. -21.313 0.261 -0.237 -21.312 -21.756 -21.312 1.004 0.654 -20.790 -21.313 -21.538
(0.032) (0.037) (0.021) (0.018) (0.024) (0.024) (0.029) (0.019) (0.014) (0.015)

lnα 21.968 −−− −−− 21.971 21.524 21.733 −−− −−− 22.490 21.967 22.008
−−− −−− (0.023) (0.018) (0.781) −−− −−− (0.019) (0.014) (0.373)

-logLik 4675.1 4976.3 4053.2 4119.0 4041.1 7322.4 7821.5 6414.1 6234.0 6215.8
AIC 9364 9967 8122 8254 8130 14659 15657 12844 12484 12497
D × 1000 −−− −−− 1.266 −−− 2.231 −−− −−− −−− 0.460 0.757

SOR TP TP-A TNB TNB-A SORLLL TP TP-A TNB TNB-A SORLLL

Income 0.013 0.046 0.055 0.052 0.048 0.015 0.102 0.115 0.098 0.089 0.013
(0.058) (0.070) (0.066) (0.060) (0.022) (0.038) (0.043) (0.040) (0.033) (0.005)

DTS -0.318 -0.519 -0.612 -0.611 -0.554 -0.322 -1.091 -1.270 -1.041 -0.920 -0.319
(0.100) (0.118) (0.093) (0.088) (0.049) (0.079) (0.086) (0.059) (0.052) (0.022)

DTS2 0.073 0.136 0.161 0.159 0.144 0.070 0.305 0.353 0.293 0.260 0.072
(0.036) (0.043) (0.039) (0.035) (0.022) (0.024) (0.026) (0.030) (0.022) (0.007)

Age -0.002 -0.006 -0.007 -0.006 -0.007 -0.003 -0.012 -0.015 -0.005 -0.005 -0.003
(0.053) (0.063) (0.057) (0.052) (0.025) (0.038) (0.043) (0.040) (0.033) (0.006)

Married 0.070 0.109 0.129 0.127 0.117 0.074 0.217 0.253 0.198 0.184 0.072
(0.043) (0.050) (0.055) (0.050) (0.033) (0.028) (0.032) (0.040) (0.032) (0.015)

Kids -0.023 -0.057 -0.068 -0.060 -0.057 -0.025 -0.137 -0.157 -0.110 -0.104 -0.023
(0.051) (0.061) (0.060) (0.054) (0.026) (0.036) (0.042) (0.039) (0.032) (0.007)

Const. 0.557 0.218 -0.286 -21.323 -21.771 0.556 1.129 0.823 -20.539 -21.122 0.557
(0.054) (0.062) (0.030) (0.026) (0.024) (0.044) (0.051) (0.025) (0.018) (0.014)

-logLik 5635.9 6167.2 3810.1 4103.8 3647.1 16425.7 17641.6 7264.0 7585.4 7195.3
AIC 11286 12348 7636 8224 7353 32865 32597 14544 15187 14457
D ∗ 1000 −−− −−− −−− −−− 0.663 −−− −−− −−− −−− 0.082

Note: the table reports the averages of estimates and standard errors in the parenthesis over all 500 samples drawn under random

sampling and on-site sampling. TP (TNB): truncated Poisson (negative binomial) regression; TP-A (TNB-A): truncated Poisson (negative

binomial) regression adjusting for on-site sampling; SORLLL and SORLLS : see note under Table 4; D*1000: D-error measure multiplied

by 1000. Greatest likelihood and smallest AIC are bolded.
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Table 6
Expected Shopping Frequencies of Shoppers and Proportions of Returning Shoppers by Shopping

Distance.

Truncated Sample On-site Sample

TP TNB SOR TP TP-A TNB TNB-A SOR
E(Ydist95) 1.43 1.46 1.52 1.70 1.41 2.36 1.57 1.52
E(Ydist50) 1.95 1.98 1.89 4.83 3.88 5.10 2.56 1.89
E(Ydist5) 2.65 2.53 2.58 12.68 11.74 9.71 4.08 2.58
Pr(Ydist95 > 1) 0.33 0.29 0.26 0.48 0.32 0.49 0.32 0.26
Pr(Ydist50 > 1) 0.58 0.43 0.32 0.96 0.91 0.65 0.51 0.32
Pr(Ydist5 > 1) 0.76 0.51 0.38 1.00 1.00 0.73 0.62 0.38

Note: For shoppers Y takes integer values of larger than or equal to 1.
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Figure 1. Mean ± SD of regression coefficient estimates of X1 over 500 repeated samples. Arrows
indicate intervals beyond the limits of x-axis. The mean of estimates for TNREG in ES-Y is 1.136.
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Figure 2. Factors affecting efficiency and selection bias of endogenous sampling schemes.
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Figure 3. Selection Rules for Y Being Missing.
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Figure 4. Comparison of Model Fittings. The bars represents the observed numbers of customers.
The five curves represent the predicted numbers of customers.
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