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1 Introduction

When financing long-term capital investment, entrepreneurs typically borrow
against their future cash flow and put up their fixed assets as collateral.1 The
amount borrowed may be only a few years’worth of revenue.2 Entrepreneurs
appear to borrow largely against their near-term revenues, even when their
investment has a longer horizon.
In this paper, we develop a model of credit horizons. A question of par-

ticular concern to us is whether persistently low real interest rates can stifle
aggregate investment and growth. The question is motivated by Japan, where
the economy struggles to regain robust growth despite interest rates having
been close to zero for over two decades. Recently, this has become a concern
for other developed economies too. With this in mind, we model a small
open economy where the world interest rate, R, is taken to be exogenous.
To get a flavour of our model, think of an engineer-cum-entrepreneur,

Emma, raising funds to invest in plant within a building. For our purposes,
it does not matter whether the building is leased long-term or purchased
outright. The critical thing is that there will be an ongoing flow of fixed
costs that will have to be paid to maintain production in the long run —
either rent on the building or the opportunity cost of owning the building.
There is no obstacle to Emma raising funds against the plant: this can be
sold at the time of investment. What cannot be sold is Emma’s engineering
expertise, her human capital, which is acquired through learning by doing
associated with her gross investment. This inalienability constrains Emma’s
ability to borrow, so the scale of her investment is limited by her net worth.3

A saver, Sam, who buys the plant, together with an obligation to pay the
flow of fixed costs, will subsequently need engineers’expertise to maintain the
productivity. Without adequate maintenance by engineers, the productivity
of his plant would slowly deteriorate. We adopt a form of ‘roundabout’tech-

1Lian and Ma (2021) examine firm-level data of US non-financial corporations to doc-
ument that approximately 80% of corporate borrowing is backed by future cash flow and
only 20% by collateral assets —though this 4:1 ratio tends to be lower for smaller US firms
and lower in other countries like Japan. Drechsel (2020) also documents that much of US
corporate borrowing is constrained by firms’current earnings.

2Lian and Ma (2021) further examine debt covenants to find that, at the 25 percentile,
the cash-flow-based debt is restricted by 3 years’worth of EBITDA (earnings before inter-
est, taxes, depreciation and amortization) and, at the 75 percentile, by 4.5 years’worth.

3Hart and Moore (1994).

2



nology, inspired by Böhm-Bawerk (1889): we suppose that tomorrow’s plant
productivity is a function of both today’s productivity and today’s engineer-
ing input. Hence, although the present productivity is historically given, the
long-run future productivity will mostly depend upon the cumulative effort
of engineers.
We abstract from specificity of match between plant and engineers: we

allow for an ex post competitive market in which plant owners hire the
maintenance services of engineers. Thus Emma’s share of ex post surplus
is determined through competition —she may work for Sam or some other
plant owner. Each day, Sam employs Emma or another engineer, paying her
forward-looking marginal product, her contribution to future productivity.4

Crucially, because her human capital is inalienable, Emma cannot commit
to Sam ex ante to supply her maintenance services for less than the ex post
market rate. (If she could, Sam would be willing to pay her more for the
plant and she would in effect be able to borrow more and thus invest more.)
This form of constraint —our sole departure from the Arrow-Debreu model
—is sometimes called a non-exclusivity constraint.5

A primary concern for Emma is: How much funding can she raise from
savers like Sam at the time of investment? That is, her borrowing capacity is
the amount Sam is willing pay per unit of new plant, which in turn depends
on Sam’s assessment of his share of the future surplus from that plant, net
of the fixed costs. The scale of Emma’s investment will be given by a critical
ratio, familiar from many models of investment under financing constraints:
namely, her net worth divided by the required downpayment, where that
downpayment equals her unit investment cost minus her borrowing capacity.
The key insight is that the fraction of plant productivity attributable to

engineers’ cumulative maintenance rises with the age of plant, given that
engineers cannot precommit to work for less than their forward-looking mar-
ginal product. Concomitant with the engineers’share rising, Sam’s share of
gross return from the plant falls through time. Hence the price of new plant
—Emma’s borrowing capacity —is largely governed by revenues in the near
horizon.6

4If we assumed there were match specificity —if Sam were to need Emma’s particular
expertise to maintain the plant —then they might engage in bilateral bargaining ex post.
We believe our findings would be broadly similar under this alternative assumption.

5See, for example, Allen (1985), Townsend (1989), Cole and Kocherlakota (2001) and
Attar, Mariotti and Salanie (2011).

6De la O and Myers (2021) find that expectations of cash flow growth in the near future
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What happens if the real interest rate R falls permanently? For Sam,
there is a duration gap: his share of gross revenue is predominantly near
term, while his obligation to pay the fixed costs of the building is long term.
When R is lower, because the present value of his long-term obligations
increases proportionately more than that of his near-term revenue share,
Sam’s willingness to pay for new plant can be lower. This means that Emma’s
borrowing capacity is lower —overturning the usual notion that lower interest
rates benefit borrowers.
Notice the driver here: per unit of investment, the required downpayment

(investment cost minus borrowing capacity) —the denominator in the critical
ratio of net worth divided by downpayment —rises as R falls, owing to the
fall in borrowing capacity. In the macro-finance literature, the focus has been
on how the numerator —the net worth of credit-constrained agents —might
move in curious ways following shocks to an economy. In the present model,
the numerator behaves as might be expected —a fall in R raises net worth
—but this can be more than offset by the rise in the denominator. Overall,
domestic investment can fall with a fall in world interest rates, as can the
growth rate. We demonstrate numerically that these effects may reduce the
welfare of everyone in the domestic economy: a fall in R may lead to a Pareto
deterioration.
In terms of policy intervention, we show there can be scope for an invest-

ment subsidy, financed by a plant-level payroll tax on engineers’maintenance
services. This policy can improve welfare by implementing a form of addi-
tional group borrowing by the engineers, although the success of any such
policy depends on exactly what the government is able to monitor.
Measurement of total investment in the economy may include the cost of

buildings. Think of Emma, at the time of investment, outlaying not only the
cost of plant and human capital but also the cost of the building in which the
plant is located. She partly funds these costs by selling both the plant and
the building to Sam. Now a fall in R, that pushes up the cost of buildings,
may boost measured total investment and so appear in a positive light. But
this camouflages the fact that investment in the engine of growth, the plant
and human capital, has fallen, because Emma’s total borrowing capacity, the
amount Sam pays her for the plant plus building, hasn’t risen as much as her
total investment costs. We find that, following an unexpected persistent fall
in the interest rate, measured total investment (including buildings) initially

explain most movements in the S&P 500 price-dividend and price-earnings ratios.
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increases before tailing off to grow at a stagnated rate. We speculate that the
disparity between measured total investment (which rises) and investment in
plant and human capital (which falls) may have given too rosy a picture of
a number of property-fuelled booms sparked by lower interest rates, such
as the Japanese property boom in the late 1980s, or the property boom in
southern Europe following the introduction of the euro in the early 2000s.
Before laying out details of our model, we should highlight the subtle firm

dynamics —more specifically, plant dynamics —that can emerge. As the owner
of new plant, Sam has to decide on a maintenance plan. It turns out he has
a distinct choice. Either he curbs maintenance costs and allows productivity
to deteriorate slowly, to some point when he decides it is no longer worth
paying the fixed costs and exits —call this his “stopping strategy”. Or he pays
the costs needed to maintain, or even improve, productivity with a view to
staying in production over the long haul —call this his “continuing strategy”.
This dichotomous decision —either planning to stop within a finite hori-

zon, or planning to continue for the long haul —reveals an intriguing feature
of equilibrium. For an open set of parameters, even though all plant starts
off identical in productivity, their qualities diverge over time: some plant
improves in productivity and other plant deteriorates and eventually shuts
down.7 We think this may be a rich new vein for research into firm/plant dy-
namics, which should inform the study of how aggregate productivity evolves.

2 Model

We consider a small open economy with an exogenous world real interest
rate R. There is no aggregate uncertainty and, for the moment, we focus
on steady state equilibrium (later, we will examine the effects of an unan-
ticipated persistent drop in R). There is a homogeneous perishable con-
sumption/investment good at each date t = 0, 1, 2, . . . We use this good as
numeraire as we consider a non-monetary economy.
There is a continuum of domestic agents, each maximizing utility of con-

7Allowing for initial heterogeneity would purify (Aumann et al. (1983)) this mixed-
strategy equilibrium so that plant owners would, more realistically, follow pure strategies.
In the complementary part of the parameter space, all owners of new plant choose the

continuing strategy and their qualities do not diverge.
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sumption ct from the present to the infinite future:

E0

[ ∞∑
t=0

βt ln ct

]
, (1)

where β ∈ (0, 1) is the utility discount factor and ln c is the natural logarithm
of c. We assume that the exogenous world interest rate is nonnegative in net
terms and lower than the subjective interest rate:

1 ≤ R <
1

β
. (2)

Each agent sometimes has an investment opportunity (being an entre-
preneur or simply “engineer”), and sometimes not (“saver”). The transition
probabilities of being an engineer conditional on being an engineer or a saver
in the previous period are given by

Prob (engineer at t | engineer at t− 1) = πE,

Prob (engineer at t | saver at t− 1) = πS.

We assume the arrival of an investment opportunity is persistent to a limited
degree so that 0 ≤ πS ≤ πE < 1.
At each date t, an engineer can jointly produce plant and tools from

goods: within the period, per unit of plant,

x goods →
{
plant of productivity 1

E-tool
. (3)

The investment technology is constant returns to scale and scalable by any
positive number i. Plant and tools are ready for use from date t + 1. Here
we can think of tools as the engineer’s human capital acquired through her
learning by doing. As in Arrow (1962), the learning by doing is associated
with gross investment instead of regular production.
Each tool (or human capital) is specific to the engineer (“E-tool”) in that

only she knows how to use it —unless she sells it to another engineer and
teaches him. Because the engineer cannot usefully sell her tools to savers
and her human capital is inalienable, she raises funds by selling all that she
can, the plant.
The plant owner has a constant returns to scale production technology.

At each date, the owner of one unit of plant of productivity z can hire any
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number h ≥ 0 of tools (hiring each tool along with the engineer who knows
how to use it) at a competitive rental price w (“wage”) to produce goods and
maintain plant productivity: within the period, per unit of plant,

plant of productivity z
h tools
f goods

→


y = az goods
λ plant of productivity z′ = zθhη

λh tools
. (4)

a > 0 is the common productivity of all plant and z′ is plant productivity
after maintenance. f is a fixed cost per unit of plant, and λ < 1 reflects
depreciation, by which a fraction 1−λ of plant and tools are destroyed after
use. The fixed cost can be thought of as the rental price or the opportunity
cost of owning the building in which plant is located. The parameter θ is
the share of initial plant productivity and η is the share of engineers’tools
in maintaining plant productivity. We assume that θ, η > 0, and θ + η ≤ 1.
A brief word about interpretation is in order here. Although we call w

the engineer’s “wage”, it is important to distinguish it from the simple wage
of, say, an unskilled worker. The engineer’s remuneration is like payment to
a skilled core employee who influences the firm’s future productivity.8 Notice
that, unlike in a more fleshed-out macroeconomic framework, we assume a
simple reduced-form production of output: proportional to the productivity
of the plant. In Appendix A we show that this formulation is justified when
output is a general decreasing returns to scale function of plant productivity
and unskilled labor, where unskilled labor is hired by plant owners in a
competitive market.
The plant owner always has the option to stop, so his value of a unit of

plant of productivity z at the end of the period is given by

V (z;w,R) =
1

R

{
0,Max

h

[
az − wh− f + λV

(
zθhη;w,R

)]}
. (5)

The zero inside the braces is the value of stopping, while the second term is
the value of continuing —the sum of net cash flow (gross revenue minus wage
and fixed costs) and the capital value of the remaining λ units of plant with
productivity z′ = zθhη.
Knowing that the return from maintaining plant productivity depends

upon his future production and maintenance choices, the plant owner must
8Whether the remuneration is a spot payment or a claim to future revenue of the plant

does not matter, because, to finance downpayment, an investing engineer can equally use
a spot payment or the sale of a claim.
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devise a long-term plan: Either stop after a finite number of periods T ,
or continue forever (T = ∞)? For each T = 0, 1, 2, . . ., define recursively
the owner’s value of a unit of plant of current productivity z stopping in T
periods:

S0(z;w,R) = 0,

S1(z;w,R) =
1

R
(az − f),

S2(z;w,R) =
1

R
Max
h

[
az − wh− f +

λ

R
(azθhη − f)

]
,

. . .

ST (z;w,R) =
1

R
Max
h

[
az − wh− f + λST−1

(
zθhη;w,R

)]
. (6)

If the plant is shut down tonight, the value S0(z;w,R) is zero. If the plant
owner shuts down tomorrow night, he will not hire tools tomorrow and the
value S1(z;w,R) equals the present value of tomorrow’s revenue minus fixed
cost. If the plant owner shuts down in two nights’time, he hires tomorrow’s
tools to balance the cost and benefit of maintaining plant productivity for
production two days later. Generally, the owner’s value of a unit of plant of
current productivity z stopping in T periods, ST (z;w,R) , equals the present
value of the sum of tomorrow’s net cash flow and the value of λ units of plant
of productivity zθhη stopping in T − 1 periods.
Now, for all value of z, the plant owner chooses the optimal stopping time

so that
V (z;w,R) ≡ sup

T≥0
ST (z;w,R) . (7)

Because new plant that she sells to a saver at the time of investment has
productivity 1, the engineer raises, per unit of plant,

b = V (1;w,R). (8)

The value b can be thought of as the engineer’s borrowing capacity per unit
of investment.
The required own-funds (downpayment) per unit of investment equals the

gap between the investment cost and the borrowing capacity:

x− b.
We assume that a new saver —an engineer yesterday who switched to being
a saver today —can sell her tools (after use today) to an engineer, and teach
him how to use them, at a competitive price x− b.
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The budget constraint of an agent at date t who has ht tools and dt
financial assets is

ct + (x− b)it +
dt+1
R

= wht + dt,

where ht is positive only if the agent was an engineer yesterday. Here, fi-
nancial assets consist of the value of plant ownership as well as maturing
one-period discount bonds. The discount bond is traded internationally at
the interest rate R. Only if the agent is an engineer today, investment it can
be positive and her tools tomorrow will be

ht+1 = λht + it.

The budget constraint can be rewritten as

ct + (x− b)ht+1 +
dt+1
R

= [w + λ(x− b)]ht + dt = nt,

where nt is net worth — the sum of flow return (wage) and capital value
(replacement cost or resale value) of tools, plus financial assets.
The rate of return for an engineer investing with maximal borrowing is

given by

RE =
w + λ(x− b)

x− b , (9)

the ratio of total returns of one tool to the downpayment of investment.
(Remember she sells plant to a saver at the time of investment and so does
not receive the return on plant.) If the return on investment RE exceeds the
interest rateR, then, thanks to the logarithmic utility function, the engineer’s
consumption and investment are

ct = (1− β)nt, (10a)

(x− b)ht+1 = βnt. (10b)

And a saver’s consumption and asset holdings are

ct = (1− β)nt, (11a)
dt+1
R

= βnt. (11b)

Notice that individual consumption depends only on present net worth and
not on whether the agent has an investment opportunity today. Because
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marginal utility is independent of whether or not there is an investment
opportunity, there are no gains from insurance (such as the agent receives a
bonus if she has an investment opportunity while pays a premium if not).
A steady state equilibrium of our small open economy is characterized by

the wage w and the new plant price b, together with the quantity choices of
savers/plant owners (c, d, h, z, y), engineers (c, h, i), and foreigners (who have
net asset holdings D∗), such that the markets for goods, tools, plant, and
bonds all clear.

3 Pure Equilibrium with No Stopping

We use a guess and verify method to characterize equilibrium. Suppose that
in the steady state, no plant owner shuts down his plant until it depreciates
exogenously. Then the value function (5) is the present value of net cash flow
into the indefinite future:

V (z;w,R)

=
1

R
(yt − wht − f) +

λ

R2
(yt+1 − wht+1 − f) +

λ2

R3
(yt+2 − wht+2 − f)

+ . . .

An optimal sequence {ht, zt+1, ht+1, zt+2, ht+2, . . .} equates the discounted
sum of marginal product to the wage (see Appendix B for the derivation):

w =
λ

R
aη
zt+1
ht

+

(
λ

R

)2
aη
zt+1
ht

θ
zt+2
zt+1

+

(
λ

R

)3
aη
zt+1
ht

θ
zt+2
zt+1

θ
zt+3
zt+2

+ . . . (12)

The first term on the right hand side is the marginal impact of a date-t tool
on output yt+1 through its impact on plant productivity zt+1. The second
term is the marginal impact of the date-t tool on yt+2 through its impact on
zt+1 which impacts zt+2. The third term is the marginal impact of the date-t
tool on yt+3 through its impact on zt+1 which impacts zt+2 which in turn
impacts zt+3.
Multiplying through by ht and simplifying, we get

wht =
λ

R
ηyt+1 +

λ2

R2
ηθyt+2 +

λ3

R3
ηθ2yt+3 + . . . (13)
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The present wage bill for engineers equals the present discounted value of
a fraction η of tomorrow’s output, plus a fraction ηθ of output two periods
later, plus a fraction ηθ2 of output three periods later, etc.
An engineer raises funds by selling new plant at price

b = V (1;w,R)

=
1

R
(a− f) +

λ

R2
[yt+1(1− η)− f ] +

λ2

R3
[yt+2(1− η − ηθ)− f ]

+ . . . (14)

All plant starts with productivity z = 1. Moreover, investment generates
an equal number of plant and tools, which have the same technological de-
preciation rate 1− λ. If no plant is stopped, the ratio of tools to plant stays
one-to-one. Then because

z′ = zθhη = 1 when z = h = 1,

all plant is maintained at initial productivity z = 1 until the exogenous death
of plant through depreciation. Output per unit of plant is unchanged from
the initial level:

yt+1 = yt+2 = yt+3 = . . . = a.

The engineer’s borrowing capacity b becomes

b =
1

R
(a− f) +

λ

R2
[a(1− η)− f ] +

λ2

R3
[a(1− η − ηθ)− f ] + . . . (15)

Notice how the plant owner’s share of gross output declines over time: 1,
1− η, 1− η− ηθ, . . . By calculating the present value of the engineers’payoff
from new plant

1

R
w +

λ

R2
w +

λ2

R3
w + . . .

= 0 +
λ

R2
aη +

λ2

R3
a(η + ηθ) +

λ3

R4
a(η + ηθ + ηθ2) + . . . (16)

we see that, correspondingly, the engineers’share of gross output rises over
time: 0, η, η+ηθ, η+ηθ+ηθ2, . . . Intuitively, as the cumulative contribution
of engineers’human capital to plant productivity grows, the effects of the
plant’s initial productivity —essentially what an investor gets when he buys
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Figure 1: Horizons of owner’s contribution to firm’s revenues.

new plant —tails off. This gives us the clue to understand why an investing
engineer borrows largely against near-term revenues.
In Figure 1, the downward sloping curve is the plant owner’s share of the

gross revenues a. Think of this as his rightful reward for his "contribution"
to those revenues, stemming from the initial productivity z = 1 of the plant
that he paid to own. The grey and red heights are his shares net of the fixed
cost f . With the parameters and equilibrium wage rate w shown in the
figure, in the near horizon his net share is positive (the grey area), as might
be expected. But in the far horizon his net share has switched to become
negative (the red area). This switch in sign is the key to understanding how
low interest rates can harm investment and growth.
Take the case of constant returns to scale, θ + η = 1, so

1− η − ηθ − ηθ2 − . . .− ηθT → 0 as T →∞.

Thus, in this case, the downward sloping curve asymptotes to the horizontal
axis and the plant owner’s share of gross revenues, after subtracting the fixed
cost that he must pay to continue production, unambiguously turns negative
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at some finite point in time. This begs the question: Why doesn’t the plant
owner shut down at this point and stop paying the fixed cost?
The reason is that, while the present wage bill equals the present value of

engineers’current contribution to future revenues, past wage bills are sunk
costs for the plant owner. As long as the present value of his future net cash
flows, (a− w − f) per unit of plant, is positive, the owner wants to continue
with maintenance and production.
Because terms in the more distant future are more sensitive to a perma-

nent change of interest rate, a fall in R can reduce the engineer’s borrowing
capacity in (15) . In particular, when θ + η = 1, we can solve (15):

b =
a

R− λθ −
f

R− λ. (17)

Notice that the plant owner’s share of gross output decreases with the horizon
by factor λθ, because the owner in effect has to pay to engineers an increasing
fraction of future output for their maintenance services. In contrast, fixed
cost decreases with the horizon by factor λ. Since λ > λθ, the fixed cost has a
longer horizon than the owner’s share of gross output: a fall inR increases the
present value of the fixed cost proportionately more than the present value
of the plant owner’s share of gross revenues. This can reduce the initial value
of plant to its owner and thereby reduce the engineer’s borrowing capacity
per unit of investment.
It will help our later discussion (in Section 7 below) if we make a brief

side observation about the measurement of total investment. Suppose that
at the time of investment, the engineer pays for the cost of the building as
well as the plant, and raises funds by selling both to a saver. Then her total
borrowing capacity per unit is the “corporate value”

b+
f

R− λ =
a

R− λθ ,

where here we have added to the original borrowing capacity b the amount
the saver is willing to pay for the building —the discounted value of the fixed
costs f. Given that the engineer’s total investment cost per unit,

x+
f

R− λ,

is higher than the original investment cost x by the same amount, nothing
changes. In particular, when R falls, her total borrowing capacity might
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not increase as much as her total investment cost, which would increase
the downpayment needed for investment. The corporate value to the saver
would rise, but not by as much as the increase in the value of the building.
Although the empirical implications are somewhat different when building
value is included in borrowing capacity and investment cost (and perhaps
more consistent with the data on total investment), the economic mechanism
is the same.
Returning to the baseline model, we can aggregate across engineers and

savers to obtain aggregate tool holdingsHt+1, financial asset holdingsDt+1/R,
consumption Ct, and net worth of engineers and savers

(
NE
t and N

S
t

)
:

(x− b)Ht+1 = βNE
t , (18a)

Dt+1

R
= βNS

t , (18b)

Ct = (1− β) (NE
t +NS

t ), (18c)

NE
t = πE [w + λ(x− b)]Ht + πSDt, (18d)

NS
t = (1− πE) [w + λ(x− b)]Ht + (1− πS)Dt. (18e)

Equation (18a) says the aggregate capital value of tools equals the aggregate
net worth of engineers after subtracting their consumption, and equation
(18b) says the aggregate value of financial assets equals the aggregate net
worth of savers after consumption. In equation (18c), aggregate consumption
equals a fraction 1−β of the aggregate net worth of domestic residents. The
aggregate net worth of engineers is the sum of the net worth of continuing
and new engineers in equation (18d), and the aggregate net worth of savers
is sum of the net worth of new and continuing savers in equation (18e).
The economy exhibits endogenous growth G: along a steady state path,

such that
Ht+1

Ht

=
Dt+1

Dt

=
Ct+1
Ct

= G,

GNE
t = NE

t+1 = πEREβNE
t + πSRβNS

t ,

GNS
t = NS

t+1 = (1− πE)REβNE
t + (1− πS)RβNS

t .

Substituting out Ns
t

NE
t
, we find that G solves

G = πEREβ + πSRβ
(1− πE)REβ

G− (1− πS)Rβ
. (19)
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The growth rate depends on the rates of return for engineers and savers as
well as on the wealth distribution between them.
Now, under certain conditions, we can verify our initial guess that no

plant owner stops in the steady state:9

Proposition 1: If the fixed cost for operating a unit of plant is smaller
than some critical value f critical, then there is a steady state equilibrium in
which
(a) no plant owner stops;
(b) the aggregate ratio of tools to plant stays one-to-one: h = 1;
(c) all plant is maintained at the initial productivity level: z = z∗ = 1.

We call this a Pure Equilibrium with No Stopping, that exists when
the model’s parameters lie in the P-Region. Within this region:

Proposition 2 (Pure Equilibrium with No Stopping):
(a) For an open subset of the P-Region, in particular for R and λ not

too far from unity, there is a pure equilibrium with no stopping such that
an unexpected permanent drop in the interest rate R leads to a lower steady
state growth.
(b) Immediately following the drop in R, all agents (engineers and savers)

can be strictly worse off.

In Appendix B, we derive a suffi cient (but not necessary) condition for
the existence of a pure equilibrium with no stopping:

f < a
R(1− θ − η)

λ(1− θ)

[
1− R− λ

R

(
R− λθ
R

) η
1−θ−η

]
. (20)

In a pure equilibrium with no stopping, an unexpected permanent drop in
the interest rate R leads to a lower steady state growth rate G if πS = 0 and

f > a
R− λ(θ + η)

R− λθ − aG− βRπ
E

G− βλπE
λη(R− λ)

(R− λθ)2
. (21)

9All proofs and details of derivations are in Appendix B. Proposition 2(b) is demon-
strated numerically.
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These inequalities are mutually consistent if R and λ are not too far from
unity.10

To understand why a fall in R can stifle investment and growth, consider
the effect on the equation for gross investment:

gross investment (Ht+1) ↓ =

saving rate (β)×
net worth of engineers

(
NE
t

)
↑

investment cost (x) − borrowing capacity (b) ↓ .

Although engineers’net worth increases with a fall in R (primarily through a
rise their wage w), a decrease in their borrowing capacity may have a larger
negative effect on investment, and therefore on growth. Much of the macro
finance literature (including Bernanke and Gertler (1989) and Kiyotaki and
Moore (1997)) has emphasized effects on net worth in the numerator. Here
we are focussing on the effect on borrowing capacity in the denominator.
In terms of welfare, a fall in R can make all domestic agents (engineers

and savers) strictly worse off. It is not surprising that savers may be worse
off with a lower rate of return on financial assets. The reason why engineers
may be worse off is that their leveraged rate of return

RE =
w + λ(x− b)

x− b

can decrease through a drop in borrowing capacity b. Appendix B derives
the welfare of engineers and savers immediately after an unanticipated and
permanent fall in the interest rate, taking into account the stochastic arrival
of future investment opportunities.

10If πS > 0, then a suffi cient condition for the growth rate to fall with an unexpected
permanent drop in the interest rate is that

λ (1− θ) f > (R− λ)2x+ λ(1− θ − η)a.

This condition guarantees that the rate of return for an investing engineer is an increasing
function of the interest rate. See Appendix B. Because — unlike (21) — this condition
involves x, it cannot be readily juxtaposed with (20).
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0

Figure 2: Value functions and stopping horizons.

4 Mixed Equilibrium

What happens if the condition for the pure equilibrium with no stopping
is violated, i.e. the fixed cost is higher than the critical level f critical in
Proposition 1? It turns out there is a clear dichotomy for the plant owner
between continuing forever and stopping after a finite number of periods (for
a given wage and interest rate):

Lemma:
(a) If the current plant productivity z is below some cutoff value, z†, it is
optimal for the plant owner to stop after, say, Tmax(z) <∞ periods.
(b) If z is above z†, it is optimal to continue forever.
(c) The cutoff value z† increases with the fixed cost f . It is also a function
of the wage rate and the interest rate.
In Figure 2, we plot the per-unit plant value, as a function of the current

productivity z, for a given wage w and interest rate R, and for different
stopping horizons T . The function S∞ (z;w,R) is the value when the plant
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Figure 3: Value functions ST (z) near threshold z† where plant owner is
indifferent between stopping in a finite horizon or continuing forever.

owner chooses to maintain production forever. The upper envelope of all
these functions is the value function of plant V (z;w,R) with an optimal
choice of stopping (including non-stopping). If z is very low, then it is optimal
for the owner to shut down the plant immediately. If z is higher than f/a,
then it is optimal to continue at least for one period because, minimally, the
plant owner can earn profit by hiring no engineers. Thus, if z is higher than
f/a but lower than z†, the owner will shut down plant not immediately but
in a finite horizon, where the horizon is an increasing function of z. At z = z†,
the plant owner is indifferent between continuing forever and shutting down
in a finite time (for this numerical example, in 20 periods). If z is higher
than z†, the plant owner will continue forever —that is, until the plant dies
exogenously.
In Figure 3, we plot ST (z;w,R) as a function of horizon T for three differ-

ent levels of plant productivity, z = 0.9z†, z†, and 1.1z†. If plant productivity
is relatively low, at z = 0.9z†, then the value reaches a maximum with finite
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horizon: for our example, around T = 15 so that the owner will shut down in
15 periods. If plant productivity is exactly equal to z†, then the plant owner
is indifferent between shutting down in 20 periods (T = 20) and continuing
forever (T = ∞). If plant productivity is relatively high, at z = 1.1z†, then
the owner finds that S∞ (z;w,R) > ST (z;w,R) for any finite T so that he
will continue forever.
In general equilibrium, the wage rate w and the value of z† are endoge-

nous. The aggregate dynamics of net worth, tools, financial asset holdings
and consumption are still described by equations (18a)−(19) but, in contrast
to Proposition 1, there is now stopping:

Proposition 3: If the fixed cost for operating a unit of plant f is larger
than a critical value f critical from Proposition 1, then there is an equilibrium
in which:
(a) Plant owners are initially indifferent between stopping in finite time

T and continuing forever: z† = 1; in particular,
(i) if the initial output is larger than the fixed cost, a > f , then plant

owners are initially indifferent between stopping in finite time T ≥ 1 and
continuing forever, whereas

(ii) if the initial output is smaller than the fixed cost (a < f), then
plant owners are initially indifferent between stopping immediately (T = 0)
and continuing forever;
(b) The aggregate ratio of tools-to-plant is larger than one-to-one for

continuing plant: h > 1;
(c) With decreasing returns to scale, θ + η < 1, the productivity of con-

tinuing plant increases over time, converging to some z∗ ∈ (1,∞); whereas
with constant returns to scale, θ+η = 1, the productivity of continuing plant
grows at some constant rate g > 1;
(d) If f ∈ ( f critical, a), then the productivity of stopping plant decreases

over time;
(e) There is no equilibrium where all plant stops in finite time.

We call this aMixed Equilibrium, that exists when the model’s para-
meters lie in theM-Region (the complement of the P-Region). Within this
region, the initial productivity is exactly equal to the critical productivity z†

for shutting down, so that some plant is stopped and some continues forever
(modulo depreciation). Because the owners of stopping plant do not hire
many tools, the aggregate ratio of tools to plant is larger than one-to-one for
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continuing plant: h > 1. With an abundant supply of tools per plant, contin-
uing plant keeps improving in productivity. If the maintenance technology
has decreasing returns to scale, θ+η < 1, the productivity of continuing plant
converges to some finite steady state level z∗. If the maintenance technology
has constant returns to scale, θ+ η = 1, the productivity of continuing plant
grows at some rate g > 1. Therefore, even though all plant is homogeneous
when new, some plant improves in productivity while the rest fails to main-
tain productivity and eventually exits (or immediately exits if a < f). That
is, firms evolve heterogeneously in their productivity and output even though
they start off homogenous and face no idiosyncratic shocks.11

If all plant were to stop in finite time, the market for tools (engineers)
would be in excess supply: because of exit the quantity of active plant would
be smaller than tools, plus there would be little demand for tools by plant
owners who are planning to stop, so the equilibrium wage rate for tools
would fall to the point where at least some plant owners switch strategy and
continue forever.
For the Mixed Equilibrium we have limited analytical results, and derive

our findings by numerical simulations:

Proposition 4 (Mixed Equilibrium)

An unexpected permanent drop in the interest rate R can lead to a lower
steady state growth rate G.

In Figure 4, we illustrate how nine endogenous variables depend on the
interest rate R in the range between 1 and 1.03 (between 0 and 3% net) in
steady state equilibrium. We choose the parameters so that the economy is
in the pure no-stopping region (P-Region) for R ∈ [1.015, 1.03] and in the
mixed equilibrium region (M-Region) for R ∈ [1, 1.015).

11This is different from the standard approach taken by Jovanovic (1981) and Hopen-
hayn (1992) in which initial heterogeneity and/or subsequent heterogeneity (induced by
idiosyncratic shocks) are essential to firm dynamics. Even allowing for idiosyncratic shocks
(see Section 5), our approach may provide a different perspective on firm dynamics. Our
model is more closely related to, for example, Atkeson and Burnstein (2010), Clementi and
Palazzo (2016), Ericson and Pakes (1995), Klette and Kortum (2004), and Rossi-Hansberg
and Wright (2007), all of which stress the interaction between heterogeneity, idiosyncratic
shocks, and investment.
Griliches and Regev (1995) presents evidence that the productivity of many firms starts

deteriorating before exiting, calling it the "shadow of death.”
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Figure 4: Lower real rate, credit horizons and stagnation.

θ share of past productivity in maintenance 0.9
η share of engineer in maintenance 0.09
λ one minus depreciation rate 0.98
a productivity 1
f fixed cost 0.2091
x investment cost per plant 6.127
β utility discount factor 0.92
πE probability of staying to be engineer 0.7
πS probability of saver to become engineer 0.1

In the top-left panel of Figure 4, the wage rate is a decreasing function of
the interest rate because an engineer’s contribution to future output through
maintenance work has a long horizon. In the top-middle panel, the engineer’s
borrowing capacity increases with the interest rate because the plant owner’s
share of output has a shorter duration than fixed cost. Notice that this effect
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is smaller in the M-Region, with an endogenous adjustment of the fraction
of stopping plant (extensive margin) and of the stopping time (intensive
margin). In the top-right panel, the economy’s growth rate is an increasing
function of interest rate, albeit that the sensitivity is weaker in the M-Region.
In the middle-left panel, the asymptotic plant productivity z∗equals 1

in the P-Region and is a decreasing function of R in the M-Region. The
threshold plant productivity for continuing and stopping z† equals 1 (initial
productivity) in the M-Region (consistent with plant owners being indifferent
between stopping and continuing) and is a decreasing function of R in the P-
Region (consistent with plant owners gaining more indirectly from the lower
wage rate than hurting directly from the higher interest rate). In the middle-
middle panel, the number of periods before stopping (Tmax) is finite and is
an increasing function of R for those who choose to stop in the M-Region.
In the P-Region, no-one stops and Tmax =∞. In the middle-right panel, the
fraction of stopping plant is zero in the P-Region and is a decreasing function
of R in the M-Region.
In the bottom-left panel, we see that the net financial asset holdings of

foreigners is negative, i.e., domestic residents lend to foreigners in net terms.
Despite the foreign interest rate being lower than the subjective interest rate
(R < 1/β) , the domestic economy has a shortage of means of saving due to
the financial friction and needs to make use of foreign bonds. With a lower
interest rate, the financing constraint is tighter and domestic savers hold a
yet larger position in foreign bonds. In the bottom-middle panel, the welfare
of a representative engineer (who holds the average net worth of engineers)
is an increasing function of R in the P-Region, i.e., welfare is lower with
lower R. In our example, when R falls from 1.03 to 1.015 unexpectedly and
permanently, the welfare of a representative engineer falls by the equivalent
of a 0.12% permanent fall in consumption. We do not have comparable
results for the M-Region, because one cannot define simply what is meant by
a representative engineer. In the bottom-right panel, the welfare of savers is
an increasing function of R in the P-Region. The effect on savers is larger:
when R falls from 1.03 to 1.015 unexpectedly and permanently, their welfare
falls by the equivalent of a 1.2% permanent fall in consumption.
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5 Extension: idiosyncratic uncertainty

In the model thus far, even though plant produces output deterministically,
we find that equilibrium plant dynamics emerge in the mixed equilibrium
where some plant owners hire insuffi cient engineers to maintain plant pro-
ductivity and slowly exit. In this section, we further connect our theory to
the literature on plant dynamics by introducing idiosyncratic shocks to plant
productivity. We study how these shocks affect plant owners’decisions on
maintenance and exit.
Let us modify the production technology (4) to:

plant of productivity z
h tools
f goods

→


y = az goods
λ plant of productivity z′ = εzθhη

λh tools
,

where ε is an idiosyncratic productivity shock, i.i.d. across plant and over
time. It follows a lognormal distribution whose mean is normalized to one:

log ε ∼ N(−σ
2

2
, σ2).

The value of a unit of plant of productivity z at the end of a period is

V (z) =
1

R

{
0,max

h
[az − wh− f + λEV (εzθhη)]

}
. (22)

Compared with the plant value without productivity uncertainty, the only
difference is that the continuation value of the firm is subject to the idiosyn-
cratic shock, ε.
To illustrate the effect of the idiosyncratic shock, we continue with the

numerical example in the previous sections (θ = 0.9, η = 0.09, λ = 0.98,
a = 1, f = 0.2091, R = 1.015, and w = 0.6497).
When the productivity shock has a small variance, the owner’s produc-

tivity maintenance decision is similar to that in a deterministic environment.
Figure 5 illustrates the maintenance decision, h, and the expected produc-
tivity in the following period, z′, when idiosyncratic shocks have a small
dispersion, σ = 0.0001. In this case, there still exists a dichotomy between
those plants that the owners intend to exit and those that the owners intend
to continue. If current plant productivity z is below a critical value, z†, the
plant owner does not hire much maintenance service and most likely exits in
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Figure 5: Productivity maintenance with small idiosyncratic risk, σ = 0.0001.
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random finite number of periods but not immediately. If z is above z†, the
plant owner hires distinctively larger engineering service and continues oper-
ating until the plant dies exogenously, unless extremely unlucky idiosyncratic
shocks bring down the plant productivity below z†.
At z = z†, the plant owner has two distinct optimal levels of maintenance:

his expected value from maintenance has twin peaks. If he chooses the slow
exit strategy, he saves some maintenance costs but receives less profit from
future production. If he chooses to continue operating the plant for the long
haul, he pays more to maintain the plant and in return receives more profit
from future production. The maintenance input h and expected productivity
z′ increase discontinuously as current productivity z moves up across the
critical value z†, as the plant owner finds it optimal to operate the plant for
the long haul.
Figure 6 illustrates the plant owner’s maintenance decision, h, and pro-

ductivity distribution in the following period, z′, when the idiosyncratic
shocks are large, σ = 0.02. In the figure on realized productivity, z′, the
blue curve represents the expected productivity in the following period. The
red curves represent the realized productivity that are three standard devi-
ations above or below the expected value. With large productivity shocks,
the dichotomy between exiting and continuing is blurred: the plant owner’s
maintenance input is a continuous function of the current plant productiv-
ity z. This is because even when the plant owner would like to improve
productivity, a large negative idiosyncratic shock may still lead to a low pro-
ductivity. This smooths the plant owner’s expected payoff from maintenance
and makes it single-peaked.

6 Policy

When the competitive equilibrium is not effi cient, it is natural to ask whether
the government could improve welfare through taxes and subsidies. The
sole departure from the Arrow-Debreu model in our framework is the non-
exclusivity constraint: a saver who buys plant from an engineer (the creditor
who lends to the engineer against the plant) cannot prevent this engineer
from working for another plant in future. In effect, we are supposing it is
impossible to keep track of each engineer’s trading history.
However, because the plant is easy to locate, it may be possible for the
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Figure 6: Productivity maintenance with large idiosyncratic risk, σ = 0.02.
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government to keep track of how much the plant owner buys the maintenance
services of engineers —even though government does not know the identity of
engineers. Suppose government can tax the payroll for engineers of each plant
owner at rate τ , and use the tax revenue to subsidize engineers by s per unit
of investment. We ignore idiosyncratic shocks to the realized productivity
after maintenance and restrict our attention to the steady state of a Pure
Equilibrium with No Stopping (the parameters lie in Region P). We assume
the government’s budget is balanced:

τwH = sI = s(G− λ)H.

τwH is the payroll tax revenue and sI = s(G−λ)H is the investment subsidy.
Because plant owners equate the marginal contribution of engineers’ex-

pertise to the wage cost including the payroll tax, we have

(1 + τ)w = wo =
ηλ

R− λθa, (23)

where wo and w are wage rates for the plant owners and engineers. The last
equality comes from (12) with ht = zt = 1 in the steady state. Notice that
the payroll tax does not affect the wage cost to the plant owner, but reduces
the wage rate for engineers. Together, these equations imply that

s =
τ

1 + τ

wo

G− λ. (24)

The price of new plant is unchanged at

b = V (1) =
a− wo − f
R− λ .

The budget constraint of the agent becomes

ct + (x− b− s)it +
dt+1
R

= wht + dt.

Solving for the individuals’choices and aggregating across agents, we get

(x− b− s)Ht+1 = βπE [w + λ(x− b− s)]Ht + βπSDt,

Dt+1

R
= β(1− πE) [w + λ(x− b− s)]Ht + β(1− πS)Dt.
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As in (19), the steady state growth rate becomes

G = βRE

[
πE +

πS(1− πE)Rβ

G− (1− πS)Rβ

]
, (25)

where the rate of return for the engineer to invest with maximum leverage is

RE =
w + λ(x− b− s)

x− b− s
=

wo

(1 + τ)(x− b)− τ wo

G−λ
+ λ,

using (23, 24) . Then we learn that the rate of return from investment changes
with the tax and subsidy in the neighborhood of τ = 0 as

∂RE

∂τ
=

w

(x− b)2

[
w

G− λ − (x− b)
]

=
w

(x− b)(G− λ)

[(
w

x− b + λ

)
−G

]
=

w

(x− b)(G− λ)
(RE −G). (26)

Because the growth rate of the economy G is the weighted average of the
growth rate of engineers, βRE, and savers, βR, where RE > R in our econ-
omy, we learn G < βRE < RE and

∂RE

∂τ
> 0.

The equilibrium growth rate in (25) solves

βπERE =
G

πE + πS(1−πE)βR
G−(1−πS)βR

.

Since the RHS is an increasing function of G, we have

∂G

∂τ
> 0.

Thus the introduction of this tax and subsidy scheme increases steady state
investment, and therefore growth, relative to the laissez-faire.
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To get a handle on the overall effect of this policy intervention on the
welfare of the domestic economy, we define a measure of social welfare as the
population-weighted average of the expected discounted utilities of engineers
and savers. The point is that we need to account for any short-term losses
(as well as gains) at the time the policy is introduced, in addition to the
longer-term benefits of higher growth. We show in Appendix B that, by this
measure, social welfare goes up.
Why? In our framework, because of the non-exclusivity constraint (an

individual engineer can work for any plant owner without getting traced by
her creditors ex post), the engineers each face a borrowing constraint ex ante
at the time of investment. By taxing the payroll of the plant owners, the
government in effect acts as a collective creditor —the receipts from which,
when fed back to the engineers, subsidize investment. It is as if, through
the government intervention, the engineers as a group promise to pay back
a portion of each others’debt obligations.12 Crucial to the effectiveness of
this policy is the government’s ability to keep an eye on all the various units
of plant (presumed to be fixed in buildings), to tax the owners’payments
to engineers, in a context where the identities of the engineers themselves
cannot be traced.

7 Final Speculative Remark

It has been observed that during the credit and asset price booms in Japan in
the late 1980s and in southern Europe in the early 2000s, the aggregate values
of credit and assets grew faster than productive capacity. (See Hoshi and Ito
(2020) and Gopinath, Kalemi-Ozcan, Karabarbounis and Villegas-Sanchez
(2017)). In the macro-finance literature, many authors have observed that
credit booms associated with asset price booms are often followed by financial
crises. (See for example, Reinhart and Rogoff (2008), Schularick and Taylor
(2012) and Jorda, Schularick and Taylor (2018).) These authors consider
such booms as being associated with excessive expansion of credit and assets
values. Our model provides a different perspective.

12In our model, the burden of the payroll tax is entirely borne by the engineers, because
plant owners face unchanged wage costs and plant prices. In this sense, it is the most
favorite case for the tax-subsidy scheme to boost the growth rate. In more general model,
the tax burden would be split between the engineers and plant owners.

29



Consider again a Pure Equilibrium with No Stopping (the parameters lie
in Region P) and assume the real interest rate R is constant from date t
onward. Suppose, at the time of investment, engineers pay the cost of the
building as well as the cost of plant and human capital, and raise funds by
selling both building and plant to savers. As we pointed out in Section 3, the
economics are the same as when buildings are rented, but the measurement
of total investment is different.
We need to model the supply of buildings. For clarity, assume there

are foreign builders who have an alternative use of a building that yields f
every period and that a building depreciates at the same rate as plant. So
the building price at the end of each period is

q =
f

R
+
λf

R2
+
λ2f

R3
+ . . . =

f

R− λ.

Competitive foreign builders have enough capacity to satisfy the building
demand of the domestic economy at their marginal cost q.13

The unit cost of investment for an engineer is x+q.Her borrowing capacity
per unit of investment is

b+ q =
a− w − f
R− λ +

f

R− λ =
a− w
R− λ.

The measured value Imt of total investment now includes the value of build-
ings:

Imt = (x+ q)It = (x+ q)(Kt+1 − λKt). (27)

From the current account, the gap between domestic absorption (con-
sumption plus investment) and output equals the net accumulation of foreign
debt

Ct + (x+ q)It − Yt =
D∗t+1
R
−D∗t , (28)

13In the baseline model, f is a fixed cost (or rent paid to a foreign landlord) and is
subtracted from output to compute GDP. In this section, because the building is owned
by domestic agents, we do not subtract f from GDP and include the building purchase
price in total investment. Any difference between the building purchase price and the
construction cost is the profit of foreign builders.
We introduce foreign builders to make this alternative model as comparable to our

baseline model as possible. If builders were domestic agents, we would need to take into
account the impact of their income and wealth on the domestic economy —although we
do not expect this would qualitatively change our findings.
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where Yt = aKt is domestic output.
As in the baseline model, consumption is proportional to aggregate net

worth:

Ct = (1− β)Nt

= (1− β) {[a+ λ(x+ q)]Kt −D∗t } . (29)

Aggregate net worth in braces is domestic output plus the value of plant and
building after production, net of foreign debt.
Aggregate capital in the next period equals the ratio of net worth of

engineers (after consumption) and the downpayment for investment;

Kt+1 =
βNE

t

x− b

=
β

x− b{π
E [w + λ (x− b)]Kt + πS[(a− w + λ(b+ q))Kt −D∗t ]}. (30)

The first term in braces is the net worth of the continuing engineers; the
second term is the net worth of the new engineers who have plant and building
from the previous period, leveraged by foreign debt.
Suppose the economy was in steady state at date t − 1, for a presumed

constant interest rate. Unexpectedly at date t, the interest rate falls perma-
nently. If the parameters satisfy the condition of Proposition 2(a), then the
long-run growth rate falls. Figure 7 shows the movement of the aggregate
values of investment, consumption, output and foreign debt holdings, when
the real interest rate unexpectedly falls from 2.5% to 1.5% permanently at
date 5.
Initially, the measured value Imt of total investment value increases be-

cause buildings are more expensive and the new engineers have greater net
worth due to capital gains on the buildings they hold from the previous
period. Consumption increases too, with the greater net worth. Because
domestic absorption (investment and consumption) expands more than out-
put, foreign debt rises rapidly during the transition. Despite the boom, the
growth rate of plant and human capital eventually falls. As the boom fades,
the slower growth of productive capacity, exacerbated by a larger foreign
debt-to-income ratio, causes secular stagnation.14

14This sequence of events may correspond better to southern European countries in the
early 2000s than to Japan in late 1980s, insofar as the fall in their interest rate was fast
and considered to be permanent.
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Figure 7: Impluse Response to Permanent Fall in Interest Rate
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From this perspective, a persistently lower real interest rate leads to an
initial credit and asset value boom, but stagnation in the long run, not be-
cause the boom was excessive, but because the underlying growth rate of the
productive capacity declined.15

15Another, complementary, perspective to ours is that credit and asset price booms as-
sociated with lower interest rates tend to lead to greater misallocation of capital when the
domestic financial system is underdeveloped. See, for example, Aoki, Benigno and Kiy-
otaki (2007), Reis (2013), Gopinath, Kalemi-Ozcan, Karabarbounis and Villegas-Sanchez
(2017), and Asriyan, Martin, Vanasco and Van der Ghote (2020).
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9 Appendix

9.1 Appendix A

In the main text, we assume that output is proportional to plant productivity.
More generally, suppose that gross output ŷ depends upon plant productivity
ẑ and unskilled labor ĥ as

ŷ = âẑα1ĥα2 , where α1 + α2 ≤ 1.

Suppose there is a competitive labor market for unskilled workers at wage
rate ŵ. Then we can define the per-unit gross profit of a plant owner as

y = Max
ĥ

(
âẑα1ĥα2 − ŵĥ

)
= az, (31)

where

z = ẑ
α1

1−α2 ,

a = (1− α2)
(α2
ŵ

) α2
1−α2 â.

If the supply of unskilled labor is perfectly elastic, we can treat a as exogenous
—this is the case of our model. (Otherwise, we need to take into account the
general equilibrium effect on a through ŵ.)
If plant productivity depends upon initial plant productivity and human

capital of engineer h as

ẑ′ = ẑθhη̂, where θ + η̂ ≤ 1.

we can rewrite this as

z′ = zθhη, where η =
α1

1− α2
η̂. (32)

Thus we obtain the formulation in the text: (31, 32) .
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9.2 Appendix B

9.2.1 Individual Choice

An individual agent takes wage, plant price and interest rate {w, b,R} as
given. An engineer chooses consumption, gross investment on tools and finan-
cial assets (c, h′, d′) as a function of net worth n to maximize V E(n;w, b,R),

V E(n;w, b,R) = Max
c,h′,d′

{
ln c+ β

[
πEV E(n′;w, b,R) + (1− πE)V S(n′;w, b,R)

]}
,

(33)
subject to the budget constraint

c+ (x− b)h′ + d′

R
= n, and n′ = [w + λ (x− b)]h′ + d′.

Define the leveraged rate of return on investment as

RE =
w + λ (x− b)

x− b .

The first order conditions of the engineer’s optimization problem are

1

c
≥ RE β

c′
, where = holds if h′ > 0,

1

c
≥ R

β

c′
, where = holds if d′ > 0.

Thus if RE > R, we have d′ = 0, (10a, 10b) and

n′ = REβn. (34)

A saver chooses consumption and financial assets (c, d′) as a function of net
worth n to maximize

V S(n;w, b,R) = Max
c,d′

{
ln c+ β

[
πSV E(n′;w, b,R) + (1− πS)V S(n′;w, b,R)

]}
(35)

subject to the budget constraint

c+
d′

R
= n, and n′ = d′.

Using the first order condition

1

c
= R

β

c′
,
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we get (11a, 11b) and
n′ = Rβn. (36)

From these, we conjecture that the value functions of the engineer and
the saver are given by

V E(n;w, b,R) = νE (w, b,R) +
1

1− β lnn, (37a)

V S(n;w, b,R) = νS (w, b,R) +
1

1− β lnn. (37b)

From (10b, 34, 11b, 36) , the conjecture is verified if and only if

νE (w, b,R) = βπEνE (w, b,R) + β(1− πE)νS (w, b,R) +
β

1− β lnRE (w, b,R) + ln(1− β),

νS (w, b,R) = βπSνE (w, b,R) + β(1− πS)νS (w, b,R) +
β

1− β lnR + ln(1− β),

when there is no change of (w, b,R) in the future. Then we get

νE (w, b,R) = β
(1− β + βπS) ln

(
RE (w, b,R)

)
+ β(1− πE) lnR

(1− β)2(1 + βπS − βπE)
+

ln(1− β)

1− β ,

(38)

νS (w, b,R) = β
βπS ln

(
RE (w, b,R)

)
+ (1− βπE) lnR

(1− β)2(1 + βπS − βπE)
+

ln(1− β)

1− β . (39)

The plant owner/saver’s choice is given by the value function (5) in the main
text. The first order condition for those who choose to continue operating
the plant this period is

w ≥ η
z′

h
λV ′ (z′;w,R) , where = holds if h > 0, (40)

V ′(z;w,R) =
1

R
[a+ θ

z′

z
λV ′ (z′;w,R)]. (41)

From these, if ht, ht+1, . . . > 0, we have

w =
λ

R

[
η
zt+1
ht

a+ η
zt+1
ht

θ
zt+2
zt+1

λV ′ (zt+2;w,R)

]
=

λ

R
aη
zt+1
ht

+

(
λ

R

)2
aη
zt+1
ht

θ
zt+2
zt+1

+

(
λ

R

)3
aη
zt+1
ht

θ
zt+2
zt+1

θ
zt+3
zt+2

+ . . .
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This is (12) in the text. Multiplying through by ht, and simplifying, we get
(13) in the text. Then we get

V (z;w,R)

=
1

R
(yt − wht − f) +

λ

R2
(yt+1 − wht+1 − f) +

λ2

R3
(yt+2 − wht+2 − f) + . . .

=
1

R
(yt − f) +

λ

R2
[yt+1(1− η)− f ] +

λ2

R3
[yt+2(1− η − ηθ)− f ] + . . .

This implies (14) in the text.
If ht, ht+1 > 0, we can use (40, 41) to derive an alternative first order

condition as

w =
λ

R
η
zt+1
ht

a+
λ

R
wη

zt+1
ht

θ zt+2
zt+1

η zt+2
ht+1

=
λ

R
η
zt+1
ht

a+
λ

R
θ
ht+1
ht

w. (42)

Note that the second term on the right hand side equals the discounted wage
rate times the marginal rate of substitution between ht and ht+1 to keep zt+2
constant. Thus equation (42) says the marginal cost of increasing ht by one
unit equals the discounted value of marginal benefit —the sum of additional
output through zt+1 and saving of wage bill, keeping zt+2 constant.
In the case of constant-returns-to-scale maintenance technology, θ+η = 1,

we conjecture

S∞(z;w, r) = aA∞z − f

R− λ,

ST (z;w, r) = aAT z − ΛTf, where

ΛT =
1

R
+

λ

R2
+ . . .+

λT−1

RT
=

1− λT

RT

R− λ . (43)

For plant which continues forever, we conjecture and verify that

ht+1
ht

=
zt+1
zt

=

(
ht
zt

)1−θ
= g > 1.

Then from (42), we get

w =
λ
R
η zt+1

ht
a

1− λ
R
θg

=
λ (1− θ) a
R− λθg g−

θ
1−θ . (44)
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Then from (5) , we learn that the Bellman equation for continuing plant holds
if and only if

A∞ =
1

R− λθg . (45)

For stopping plant in finite time, (40) implies that

w = (1− θ)
(
zT

hT

)θ
λaAT−1, (46)

where zT and hT are the productivity and tools of plant when it stops in T
periods. Then from (5) , we learn that the Bellman equation for continuing
plant holds if and only if

AT =
1

R

[
1 + λθaAT−1

(
1− θ
w

λaAT−1
) 1−θ

θ

]
=

1

R

[
1 + λθg (R− λθg)

1−θ
θ (AT−1)

1
θ

]
, (47)

using (44) . Here A1 is given by A1 = 1
R
.

When the maintenance technology is decreasing returns to scale, θ+ η <
1, we conjecture that the productivity of plant that continues forever will
converge to a steady state productivity

z = z∗.

Thus the amount of tools employed converges to

h = h∗ = (z∗)
1−θ
η .

We also conjecture that

S∞(z;w,R) = az∗U∞
( z
z∗

;R
)
− f

R− λ,

ST (z;w,R) = az∗UT
( z
z∗

;R
)
− ΛTf.

Using (42) for plant to continue forever in steady state, we get

w =
ληa

R− λθ (z∗)−
1−η−θ
η . (48)
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Define z̃ = z
z∗ . Using the relationship h =

(
z′

zθ

) 1
η , we get

wh

az∗
=

λη

R− λθ

(
z̃′

z̃θ

) 1
η

.

Thus the guess is verified if U∞(z̃) and UT (z̃) solve

U∞(z̃;R) =
1

R
Max
z̃′

[
z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+ λU∞(z̃′;R)

]
, (49)

UT (z̃;R) =
1

R
Max
z̃′

[
z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+ λUT−1(z̃′;R)

]
, (50)

where U1(z̃;R) = 1
R
z̃.

9.2.2 Market Clearing

In order to describe the aggregate economy, let Kt (τ) be the aggregate num-
ber of age-τ plant which continues forever at date t. Suppose some owners
choose to operate new plant for T periods and then stop. Let LT−τt (τ) be
aggregate number of age-τ plant which stops in T −τ periods at date t. Then
we have the transition

Kt(τ) = λKt−1(τ − 1),

LT−τt (τ) = λLT−τ+1t−1 (τ − 1) , for τ = 1, 2, . . . , T − 1. (51)

We also have
It = Kt+1(0) + LTt+1 (0) , (52)

where It is aggregate investment at date t.
We also know that

b = S∞(1;w,R) = ST (1;w,R) in M-Region, (53)

b = S∞(1;w,R) and LTt (0) = 0 in P-Region.

Let zT−τt (τ) be the productivity of age-τ plant which stops in T−τ periods
at date t. Let hT−τt (τ) be the number of tools employed by one unit of age-τ
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plant to stop in T − τ periods. Then the aggregate output and demand for
tools (and engineers) are given by

Yt =
∞∑
τ=0

[az∞t (τ)− f ]Kt(τ) +

T−1∑
τ=0

[
azT−τt (τ)− f

]
LT−τt (τ) , (54)

Ht =

∞∑
τ=0

h∞t (τ)Kt(τ) +

T−1∑
τ=0

hT−τt (τ)LT−τt (τ) . (55)

Aggregate domestic asset holding at the beginning of period t equals the sum
of gross profit and the value of plant from the last period minus net foreign
debt:

Dt = Yt − wHt −D∗t

+
∞∑
τ=1

V (z (τ))Kt(τ) +
T∑
τ=1

ST−τ
(
zT−τt (τ)

)
LT−τt (τ) . (56)

The goods market clearing condition is given by

Ct + xIt +D∗t −
D∗t+1
R

= Yt. (57)

Output equals consumption, investment and net export (which equals net
debt repayment to foreigners). One of the market clearing conditions for
output, tools and financial asset is not independent by Walras’Law.

9.2.3 Pure Equilibrium with No Stopping

When no plant owner stops his plant, the total number of continuing plant
equals the total number of tools,

∞∑
τ=0

Kt(τ) = Ht,

and the ratio of tools to plant remains at the initial ratio

h∞t (τ) = 1, for all τ and t.

The plant productivity remains at the initial level as

z∞t (τ) =
[
z∞t−1 (τ − 1)

]θ [
h∞t−1 (τ − 1)

]η
= 1, for all τ and t.
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Thus the plant growth rate g = 1 with constant-returns-to-scale maintenance
technology, steady state productivity z∗ = 1 with decreasing-returns-to-scale
maintenance technology, and

w =
ληa

R− λθ = w(R), (58a)

b =
a− w − f
R− λ =

1

R− λ

[
a
R− λ (θ + η)

R− λθ − f
]

= b(R). (58b)

In order to show that non-stopping is an optimal strategy for the plant
owner, we need to check

b(R) > Max
T

ST (1;w(R), R) = Max
T

[aUT (1;w(R), R)− ΛTf ], (59)

for any finite T, where UT (1;R) is given by (50) with decreasing returns to
scale and equals AT with the constant returns to scale maintenance technol-
ogy.
Then from (54, 56), we have

Yt = (a− f)Ht,

Dt = (a− w − f)Ht + bλHt −D∗t . (60)

We also have
Ct = (1− β)[(w + λ(x− b))Ht +Dt]. (61)

From (18a, 57), we obtain the transitions:

(x− b)Ht+1 = β
{
πE(w + λb)Ht + πSDt

}
, (62a)

D∗t+1
R

= −(a− f)Ht + Ct + x(Ht+1 − λHt) +D∗t . (62b)

(w, b) is a function of R and the other parameters, and (Dt, Ct) is a function
of (Ht, D

∗
t ) and R (through w and b). Then, the perfect foresight equilib-

rium (aside from a unanticipated permanent shock on R) is characterized
recursively by

(
Ht+1, D

∗
t+1

)
as a function of (Ht, D

∗
t , R) .

In steady state, we can use (19) to find steady-state growth rate where

RE =
w (R) + λ [x− b (R)]

x− b (R)
.
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9.2.4 Mixed Equilibrium

For the mixed equilibrium, we only describe the steady state equilibrium.

Mixed equilibrium under constant returns to scale maintenance
technology From (44, 45) , we have

w =
λ (1− θ) a
R− λθg g−

θ
1−θ = w(g;R)

b =
a

R− λθg −
f

R− λ = b(g;R).

Find
{
A1, A2, A3, . . . , AT

}
to solve (47) with A1 = 1

R
as a function of (g;R).

Find g to solve the indifference condition:

b(g;R) = Max
finite T

[
aAT (g;R)− ΛTf

]
. (63)

Equilibrium stopping time is argMax
[
aAT (g;R)− ΛTf

]
for this equilibrium

g.
Then we can find the steady state growth rate from (19) by using

RE =
w(g;R) + λ[x− b(g;R)]

x− b(g;R)
.

For plant that continues forever, because z∞(0) = 1, we get z∞(τ) = gτ and

h∞(τ) =

[
z∞(τ + 1)

(z∞(τ))θ

] 1
1−θ

= g
1

1−θ+τ .

For those stopping in T periods, we get from the first order condition (46)

hT−τ (τ)

zT−τ (τ)
=

[
(1− θ)λ
w/a

AT−τ−1
] 1
θ

=

(
AT−τ−1

A∞

) 1
θ

g
1

1−θ , (64)

for τ = 0, 1, 2, . . . , T−2. Because zT (0) = 1, we obtain {hT−τ (τ), zT−τ−1 (τ + 1)}
which satisfies (64) and

zT−τ−1 (τ + 1) =

(
AT−τ−1

A∞

) 1−θ
θ

gzT−τ (τ) ,

for τ = 0, 1, 2, . . . , T − 2.
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Mixed equilibrium under decreasing returns to scale maintenance
technology With decreasing returns, from (48), we get

w =
ληa

R− λθ (z∗)−
1−θ−η
η = w(z∗;R).

For plant to continue for ever, we have from (49):

U∞(z̃) =
1

R
Max
z̃′

[
z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+ λU∞(z̃′)

]

z̃′ = argMax
z̃′

[
z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+ λU∞(z̃′)

]
≡ ϕ∞(z̃)

Let z̃∞(τ) and h̃∞(τ) be productivity and number of tools of age-τ plant
which continues forever relative to the steady state. The we have

z̃∞(τ) = (ϕ∞)τ (z̃∞(0)) = (ϕ∞)τ
(

1

z∗

)
h̃∞(τ) =

[
z̃∞(τ + 1)

(z̃∞(τ))θ

] 1
η

.

For plant to stop in T periods, we have from (50):

UT (z̃) =
1

R
Max
z̃′

[
z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+ λUT−1(z̃′)

]

z̃′ = argMax
z̃′

[
z̃ − λη

R− λθ

(
z̃′

z̃θ

) 1
η

+ λUT−1(z̃′)

]
≡ ϕT (z̃) ,

where U1(z̃) = 1
R
z̃. Let z̃T−τ (τ) and h̃T−τ (τ) be productivity and tools of

age-τ plant which stops in T − τ periods relative to the steady state. Then
we have

z̃T−τ (τ) = ϕT · ϕT−1 · . . . · ϕT−τ+1
(

1

z∗

)
h̃T−τ (τ) =

[
z̃T−τ−1(τ + 1)

(z̃T−τ (τ))θ

] 1
η

.
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We then find z∗ to satisfy the indifference condition

az∗U∞
(

1

z∗

)
− f

R− λ = Max
finite T

[
az∗UT

(
1

z∗

)
− ΛTf

]
(65a)

= b (z∗;R) (65b)

This common value under equilibrium z∗ is the engineer’s borrowing capacity.
Equilibrium stopping time equals argMax

[
az∗UT

(
1
z∗

)
− ΛTf

]
.

We can find the steady state growth rate from (19) with

RE =
w(z∗;R) + λ [x− b (z∗;R)]

x− b (z∗;R)
= RE (z∗;R) .

9.2.5 Tools and goods market clearing in mixed equilibrium

In the steady state, we observe

G =
Ht+1

Ht

=
Kt+1(τ)

Kt (τ)
=
LT−τt+1 (τ)

LT−τt (τ)
.

For both constant and decreasing returns-to-scale maintenance technology,
we have aggregate output under mixed equilibrium as (54) . Using (51) , we
obtain

Yt =
∞∑
τ=0

[az∞(τ)− f ]
λτ

Gτ
Kt (0) +

T−1∑
τ=0

[azT−τ (τ)− f ]
λτ

Gτ
LTt (0) .

Similarly, aggregate demand for tools (55) becomes

Ht =
∞∑
τ=0

h∞(τ)
λτ

Gτ
Kt (0) +

T−1∑
τ=0

hT−τ (τ)
λτ

Gτ
LTt (0) . (66)

Because It = (G− λ)Ht = Kt+1 (0) + LTt+1 (0) , dividing (66) by Ht, we find
in the steady state:

1 =
∞∑
τ=0

h∞(τ)
λτ

Gτ+1
(G− λ)ik +

T−1∑
τ=0

hT−τ (τ)
λτ

Gτ+1
(G− λ)(1− ik), (67)

47



where ik ≡ Kt+1(0)
It

∈ (0, 1) . We can solve for ik ∈ (0, 1) to satisfy (67) .
Similarly, output per tool is

Yt
Ht

=
∞∑
τ=0

[az∞(τ)−f ]
λτ

Gτ+1
(G−λ)ik+

T−1∑
τ=0

[azT−τ (τ)−f ]
λτ

Gτ+1
(G−λ)(1− ik).

(68)
Aggregate domestic financial asset holding (56) under constant-returns-

to-scale maintenance technology is given by

Dt = Yt − wHt −D∗t

+
∞∑
τ=1

(
a

R− λθg −
f

R− λ

)
λτ

Gτ
Kt (0)+

T−1∑
τ=1

(
aAT−τzT−τ (τ)− ΛTf

) λτ
Gτ

LTt (0) ,

or
Dt

Ht

=
Yt
Ht

− w − d∗t

+
∞∑
τ=1

(
a

R− λθg −
f

R− λ

)
λτ

Gτ+1
(G−λ)ik+

T−1∑
τ=1

(
aAT−τzT−τ (τ)− ΛTf

) λτ

Gτ+1
(G−λ)(1−ik),

where d∗t = D∗t /Ht.
Similarly, domestic financial asset holding per tool under decreasing re-

turns to scale is
Dt

Ht

=
Yt
Ht

− w − d∗t

+
∞∑
τ=1

(
az∗U (z̃∞(τ))− f

R− λ

)
λτ

Gτ+1
(G−λ)ik+

T∑
τ=1

(
az∗U

(
z̃T−τ (τ)

)
− ΛTf

) λτ

Gτ+1
(G−λ)(1−ik).

We also find

Ct
Ht

= (1− β)

[
w + λ(x− b) +

Dt

Ht

]
.

From (57) ,in steady state,

Yt
Ht

=
Ct
Ht

+G− λ+ d∗ − G

R
d∗

or (
1− G

R

)
d∗ =

Yt
Ht

− Ct
Ht

− (G− λ). (69)

From this, we find the ratio of net foreign debt to tools in steady state.
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9.3 Proof of Proposition 2

We first derive a suffi cient condition for the existence of a pure non-stopping
equilibrium in P-region:

V (1) =
1

R− λ

(
a
R− (θ + η)λ

R− θλ − f
)

≥ a

R

(
1− θλ

R

) η
1−θ−η 1− θ − η

1− θ +
aη

(1− θ) (R− θλ)
− f

R
. (70)

We consider a suffi cient condition of (59)

b(R) > Max
T

ST (1;w(R), R),

for the case of decreasing-returns-to-scale maintenance technology. Consider
an optimal stopping strategy in the RHS as{

zT (0) > zT−1 (1) > . . . > z0 (T )
}

= {z0 > z1 > . . . > zT}

such that z0 = 1 and zT ≥ z = f/a. Associated with {zt}, there is ht =(
zt+1
zθt

)1/η
. Let v(h|z) denote the flow payoff of the owner of a unit of plant

with productivity z who hires h units of tools.

v(h|z) = az − wh− f.

Because optimal stopping strategy zt > zt+1 is better than staying at zt with

h = z
1−θ
η

t , we get

v(ht|zt) + λV (zt+1) ≥ v

(
z
1−θ
η

t |zt
)

+ λV (zt), or

V (zt)− V (zt+1) ≤
1

λ

[
v(ht|zt)− v

(
z
1−θ
η

t |zt
)]

. (71)

Let φ(z|zt) ≡ v
((
z/zθt

) 1
η

∣∣∣ zt) = azt − w
(
z/zθt

) 1
η − f .

v(ht|zt)− v(z
1−θ
η

t |zt) =

∫ zt

zt+1

−φ′(z|zt)dz,
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where

−φ′(z|zt) =
w

η

z
1
η
−1

z
θ
η

t

.

Notice that because
∂

∂zt
[−φ′(z|zt)] < 0,

we have

−φ′(z|zt) =
w

η

z
1
η
−1

z
θ
η

t

≤ w

η
z
1−θ
η
−1 = −φ′(z|z), for zt+1 ≤ z ≤ zt.

Then,

v(ht|zt)− v(z
1−θ
η

t |zt) =

∫ zt

zt+1

−φ′(z|zt)dz ≤
∫ zt

zt+1

−φ′(z|z)dz.

Combining this inequality with inequality (71), we have

V (zt)− V (zt+1) ≤
1

λ

[
v(ht|zt)− v

(
z
1−θ
η

t |zt
)]
≤ 1

λ

∫ zt

zt+1

w

η
z
1−θ
η
−1dz,

V (1)− V (zT ) =
T−1∑
t=0

[V (zt)− V (zt+1)] ≤
1

λ

∫ 1

zT

w

η
z
1−θ
η
−1dz,

where we use z1 = 1 in the last inequality. Because

V (zT ) =
1

R
(azT − f)

and
1

λ

∫ 1

zT

w

η
z
1−θ
η
−1dz =

w

λ(1− θ)

(
1− z

1−θ
η

T

)
,

we have

V (1) ≤ 1

R
(azT − f) +

w

λ(1− θ)

(
1− z

1−θ
η

T

)
≡ RHS (zT ) , (72)

if we are not in region P , i.e., some plant owners stop their plant.
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To derive a suffi cient condition for Region P , we use the fact that equi-
librium wage in this region satisfies

w

a
=

λη

R− θλ.

Then RHS of (72) reaches the maximum when

zT =

(
1− θλ

R

) η
1−θ−η

RHS =
a

R

(
1− θλ

R

) η
1−θ−η 1− θ − η

1− θ +
aη

(1− θ) (R− θλ)
− f

R
.

A suffi cient condition for the economy to be in Region P is

V (1) =
1

R− λ

(
a
R− (θ + η)λ

R− θλ − f
)

≥ a

R

(
1− θλ

R

) η
1−θ−η 1− θ − η

1− θ +
aη

(1− θ) (R− θλ)
− f

R
.

This yields an upper bound on f/a:

f

a
≤ R (1− θ − η)

λ(1− θ)

[
1− R− λ

R

(
1− θλ

R

) η
1−θ−η

]
≡ z(f/a).

z(f/a) denotes an upper bound for f/a as a suffi cient condition for the
existence of a pure equilibrium with no stopping.
Now we proceed to derive a lower bound on f/a such that the growth

rate is an increasing function of real interest rate in state equilibrium. From
(19) , we learn

0 = (G− πEβRE)[G− (1− πS)βR]− πS(1− πE)β2RRE

=

[
G− πEβ

(
λ+

w

x− b

)]
[G− (1− πS)βR]− πS(1− πE)β2R

(
λ+

w

x− b

)
≡ Ψ

(
G;R,

w

x− b

)
. (73)

Because we assume βR < 1, we restrict our attention the case

G > (1− πS)βR.
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Then we learn

G ≥ πEβ

(
λ+

w

x− b

)
.

Then we learn
∂

∂G
Ψ

(
G;R,

w

x− b

)
> 0,

in the neighborhood of the equilibrium G. We can easily check

∂

∂R
Ψ

(
G;R,

w

x− b

)
< 0,

∂

∂
(
w
x−b
)Ψ

(
G;R,

w

x− b

)
< 0.

Thus a suffi cient condition for

dG

dR
= −

∂
∂G

Ψ
(
G;R, w

x−b
)

∂
∂R

Ψ
(
G;R, w

x−b
)

+ ∂

∂( w
x−b)

Ψ
(
G;R, w

x−b
)

d
dR

(
w
x−b
) > 0

is

0 <
d

dR

(
w

x− b

)
=

w

(x− b)2(R− λ)2(R− λθ)
[
λ (1− θ) f − (R− λ)2x− λ (1− θ − η) a

]
,

or
λ (1− θ) f > (R− λ)2x+ λ (1− θ − η) a. (74)

If πS = 0, then from (19), we have G = πEβ
(
λ+ w

x−b
)
, or

x = F (R,G) =
a− f − w
R− λ +

βπE

G− βλπEw

=
a− f
R− λ −

G− βRπE
(R− λ) (G− βλπE)

w.

Because FG < 0, dG/dR > 0 if and only if FR > 0. And because

(R− λ)FR = −a− f − w
R− λ +

G− βRπE
G− βλπE

aηλ

(R− θλ)2
,
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dG/dR > 0 iff

f/a >
R− (θ + η)λ

R− θλ − G− βRπE
G− βλπE

ηλ (R− λ)

(R− θλ)2
≡ z(f/a)

when πS = 0. For the growth-enhancing effect of interest rate in Region P ,
we need

z(f/a)−z(f/a) > 0

or

z(f/a)−z(f/a)

R− λ =
R (1− θ − η)− λ(1− θ)(θ + η)

λ(1− θ) (R− θλ)

− 1− θ − η
λ(1− θ)

(
1− θλ

R

) η
1−θ−η

+
G− βRπE
G− βλπE

ηλ

(R− θλ)2
> 0.

Suppose both R and λ are close to 1,

z(f/a)−z(f/a)

R− λ ≈ 1− θ − η − (1− θ)(θ + η)

(1− θ)2 − 1− θ − η
(1− θ) (1− θ)

η
1−θ−η +

η

(1− θ)2

=
1− θ − η

1− θ

[
1− (1− θ)

η
1−θ−η

]
> 0.

This proves that for any f/a, there exists an open set of interest rates and
depreciation rates, both of which are close to 1, where we have the property
that the growth rate is an increasing function of the interest rate in Region
P .
To examine the effect of an unanticipated fall in real interest rate on

welfare in the pure non-stopping region, we use (37a, 37b, 38, 39) . Continue
to assume πS = 0. Then we have

dV E

dR
=

1

1− β
d

dR
(lnnE)

+
β

(1− β)(1− βπE)

d

dR

[
ln

(
w + λ(x− b)

x− b

)]
+

β2(1− πE)

(1− β)2(1− βπE)

d

dR
lnR. (75)
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From (58a, 58b) , we have

dw

dR
= − w

R− λθ ,

db

dR
=

1

R− λ

(
w

R− λθ − b
)
.

Then we get

d

dR
ln [w + λ(x− b)] =

1

w + λ(x− b)
1

(R− λ)2

(
a− f − R2 − λ2θ

(R− λθ)2ηa
)
,

d

dR
ln

(
λ+

w

x− b

)
=

w

[w + λ(x− b)](x− b)(R− λ)2(R− λθ)2
·
[
ληa− λ(1− θ)(a− f)− (R− λ)2x

]
.

When πS = 0, nE = [w + λ(x− b)]h. Then from (75) , we have

(1− β)(1− βπE)(R− λ)2(R− λθ)2 [w + λ(x− b)] dV
E

dR
/λ

= (1− βπE)
[
(R− λθ)2(a− f)− (R2 − λ2θ)ηa

]
+
βaη

x− b
[
ληa− λ(1− θ)(a− f)− (R− λ)2x

]
+
β2(1− πE)

1− β
(R− λ)(R− λθ)

R
{(R− λθ) [(R− λ)x− (a− f)] +Rηa}.

9.4 Welfare effect of policy

From (37a, 37b, 38, 39) , we learn that the welfare of a continuing engineer,
retiring engineer, new engineer, and continuing saver are

V EE = β
(1− β + βπS) lnRE + β(1− πE) lnR

(1− β)2(1 + βπS − βπE)
+

ln[w + λ (x− b− s)]
1− β h+ constant,

V ES = β
βπS lnRE + (1− βπE) lnR

(1− β)2(1 + βπS − βπE)
+

ln[w + λ (x− b− s)]
1− β h+ constant,

V SE = β
(1− β + βπS) lnRE + β(1− πE) lnR

(1− β)2(1 + βπS − βπE)
+

ln d

1− β + constant,

V SS = β
βπS lnRE + (1− βπE) lnR

(1− β)2(1 + βπS − βπE)
+

ln d

1− β + constant,
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where h is the number of tools and d is financial asset held from the last
period. Notice that government tax-subsidy does not affect the value of
plant b and thus it does not affect d. From (23, 24, 26) , we see that in the
neighborhood of τ = 0,

∂

∂τ
lnRE =

w

[w + λ(x− b)](G− λ)
(RE −G),

∂

∂τ
ln [w + λ (x− b− s)] = − w

[w + λ(x− b)](G− λ)
G.

In steady state, we learn that the fractions of population of engineers and
savers, (mE,mS), satisfy

πSmS = (1− πE)mE,

where the LHS is the flow of savers to become engineers and the RHS is the
flow of retiring engineers. Thus

mE =
πS

πS + 1− πE , and mS =
1− πE

πS + 1− πE .

We consider a welfare measure as the population-weighted average of the
welfare of each type of agents:

V = mE

[
πEV EE + (1− πE)V ES

]
+mS

[
πSV EE + (1− πS)V SS

]
.

Using the above expressions, we learn

V =
πSνE + (1− πE)νE

πS + 1− πE +
πS ln[w + λ(x− b)]

πS + 1− πE + constant

=
πS

(πS + 1− πE)(1− β)2
{
β lnRE + (1− β) ln[w + λ(x− b)]

}
+ constant.

Therefore the effect of a tax and subsidy on the social welfare is

∂V

∂τ
=

πS

(πS + 1− πE)(1− β)2
w

[w + λ(x− b)](G− λ)

[
β(RE −G)− (1− β)G

]
=

πS

(πS + 1− πE)(1− β)2
w

[w + λ(x− b)](G− λ)
(βRE −G)

> 0.
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The last inequality is obtained because the growth rate of economy is the
weighted average of growth rate of engineers βRE and savers βR and RE > R
in our economy.
Individually, if πS is close to zero, we learn

∂V EE

∂τ
> 0,

∂V ES

∂τ
< 0,

∂V SE

∂τ
> 0,

∂V SS

∂τ
> 0.

For the continuing engineer, because the welfare gain from the higher rates of
return dominates the loss from the lower new worth, welfare increases,∂V

EE

∂τ
>

0. For the retiring engineer, the loss from lower net worth dominates the gain
from the higher rates of return when she becomes an engineer in the future,
and thus welfare decreases, ∂V

ES

∂τ
< 0. For those who were the savers in the

previous period, there is no capital loss and only gains from the higher rates
of return, and welfare increases, ∂V

SE

∂τ
, ∂V

SS

∂τ
> 0.

9.5 Alternative Measures of Investment, Asset Value
and Foreign Debt

In the baseline model, we assume that plant owners pay a fixed cost, or, we
might instead suppose, rent buildings from foreign landlords for production.
While this assumption simplifies the presentation, the resulting measures of
investment, asset value, and foreign debt, may look counterintuitive. For
example, when a decline in interest rate leads to lower growth, it decreases
aggregate investment and asset value. And foreign debt are typically nega-
tive.
In Section 7, we assume instead that engineers and plant owners buy

buildings from foreign builders. This appendix explains the alternative mea-
surement in more detail.
When an agent has ht units of tools, kt units of plant and building, and

d∗t units of foreign debt at the beginning of period, her budget constraint is

ct + (x+ qt − bt − qt)it +
dt+1
Rt

= wtht + [a− wt + λ(bt + qt)] kt − d∗t .

a− wt is a plant owner’s flow return; λ(bt + qt) is the capital value of plant
and building after use. Using ht+1 = λht + it for an engineer, the budget
constraint is

ct + (x− bt)ht+1 +
dt+1
Rt

= [wt + λ(x− bt)]ht + [a− wt + λ(bt + qt)] kt − d∗t .
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In the pure equilibrium with no stopping, the aggregate number of tools and
plant are equal:

Ht = Kt.

Thus the aggregate net worth of engineers and savers are

NE
t = πE [wt + λ(x− bt)]Kt + πS {[a− wt + λ(bt + qt)]Kt −D∗t } ,

NS
t = (1−πE) [wt + λ(x− bt)]Kt+(1−πS) {[a− wt + λ(bt + qt)]Kt −D∗t } .

Total net worth is

Nt = NE
t +NS

t = [a+ λ (x+ qt)]Kt −D∗t . (76)

Aggregate consumption is

Ct = (1− β)Nt

= (1− β){[a+ λ (x+ qt)]Kt −D∗t }.

The downpayment for aggregate plant and building is financed by the net
worth of engineers (after consumption):

(x+ qt − bt − qt)Kt+1 = βNE
t ,

or

(x−bt)Kt+1 = βπE [wt + λ(x− bt)]Kt+βπ
S {[a− wt + λ(bt + qt)]Kt −D∗t } .

(77)
Foreign debt evolves with current account as

D∗t+1
Rt

= D∗t + Ct + (x+ qt)(Kt+1 − λKt)− aKt (78)

= βD∗t − β[a+ λ(x+ qt)]Kt + (x+ qt)Kt+1.

The dynamics of aggregate plant and building and foreign debt are described
by (77, 78) .
Note that foreign debt in this setting is a lot greater than that in the main

setting where engineers rent land. Denote the foreign debt in the baseline
setting as Do∗

t . The net worth of the baseline setting is

Nt = NE
t +NS

t = (a+ λx− f)Kt −Do∗
t . (79)
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Net foreign debt in the alternative setting is given by (76) .Without any
unexpected shock to the interest rate, net worth is the same in the two
settings. This implies that

D∗t = (f + λqt)Kt +Do∗
t .

Although buying or renting buildings does not affect investment given the
initial net worth of the economy, NE

t and NS
t , it may affect how net worth

responds to an unexpected shock to the interest rate. When engineers buy
buildings, their current building holdings were purchased at past prices which
depended on past interest rates. If foreign debt is not indexed to interest rate
changes, an unexpected decrease in interest rate increases the net worth of
the economy much more when plant owners buy buildings, as we see from
equations (79, 76).

9.6 Calibration strategy

We choose the following parameter values, θ, η, λ, β, πE and πS. We nor-
malize the productivity of plant productivity a to be 1.
We solve for f such that the economy is at the boundary between Region

P and Region M at R = 1.015. We design an algorithm to solve for the
infinum of the set of f for which a plant owner stops in a finite number of
periods.
Suppose the plant owner stops in T period at a particular value of f . Then

St(1; f, w,R) as a function of t reaches its peak at T . Define a sequence of
ft such that at f = ft, for z∗ = 1:

St+1(1; ft, w,R) = St(1; ft, w,R).

Intuitively, ft tracks the movement in the peak as we vary f . If f = ft, the
peak is either t or t + 1. As t goes to infinity, the peak shifts to infinity.
Because

St+1(1; a, w, r) = U t+1 (1;R)−
(

1

R
+

λ

R2
+ . . .+

λt

Rt+1

)
f

and

St(1; a, w, r) = U t (1;R)−
(

1

R
+

λ

R2
+ . . .+

λt−1

Rt

)
f,
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we have

ft =
Rt+1

λt
[
U t+1 (1;R)− U t (1;R)

]
.

The calibrated value of f is equal to inft=1,2,...ft, which we approximate
by mint=1,2,...,T ft with T large enough. For any value of f strictly above
inft=1,2,...ft, there must exist a finite optimal stopping time. For any value of
f strictly below inft=1,2,...ft, there cannot exist a finite stopping time.
After we calibrate the value of f , we solve for x to target a growth rate

of 0.5% at gross interest rate R = 1.015.

x =
a− f − w
R− λ +

βΠ

G− βλΠ
w,

where w = λη
R−θλa and

Π = πE + πS
βR(1− πE)

G− βR(1− πS)
.
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