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1 Introduction

Modern macroeconomics is stochastic and is built on recursive methods. The actions in these models

are history dependent but the past is represented by a small number of finite-dimensional state

variables. For example, Ljungqvist and Sargent (2018) write that “finding a recursive way to handle

history dependence is a major achievement of the past 35 years and an important methodological

theme”. They call these developments an “imperialistic response of dynamic programming” to

Prescott’s (1977) critique of the impossibility of using dynamic programming in government policy

design. In this paper, we aim to study environments in which it may in general be difficult or

impossible to write a recursive representation. We use the term hysteresis to describe settings in

which the trajectory of policies or actions may generally affect the structure of the environment.

That is, the effects of policies are path-dependent.

Our main economic application is а generalization of the macroeconomy-climate model of

Golosov, Hassler, Krusell, and Tsyvinski (2014) to the path-dependent climate externalities. There

are two main reasons to consider hysteresis in such models. First, there is important recent evi-

dence from climate sciences that a number of climate variables show significant hysteresis behavior.

Intergovernmental Panel on Climate Change (IPCC) lists, for example, hysteresis that is present

in (1) vegetation change; (2) changes in the ice sheets; (3) ocean acidification, deep ocean warming

and associated sea level rise; (4) models of the feedback between the ocean and the ice sheets; and

(5) models of the Atlantic meridional overturning circulation (Collins, et al. 2013 in IPCC Fifth

Assessment Report – AR5). While cumulative carbon emission is an important benchmark used in

macro-climate models, recent research in climate sciences (further discussed in Section 3.2) points to

importance of hysteresis in a number of climate variables that constitute a natural science founda-

tion of these models. Moreover, the path-dependency in these models is often rather sophisticated

as the exact sequence of the events may matter. The IPCC Special Report further concludes that

path dependence of carbon budgets “remains an important knowledge gap” (Rogelj et al. 2018).

Second, one of the central themes in the recent developments in the economics literature on climate

change is incorporating path-dependency. A recent survey by Aghion, et al. (2019) summarizes

these developments and argues that path-dependency in which both history and expectations mat-

ter is one of the core insights in this literature (see, for example, Acemoglu, Aghion, Bursztyn,

and Hemous (2012), Acemoglu, Akcigit, Hanley, and Kerr (2016), Acemoglu, Aghion, Barrage and

Hemous (2019), and Aghion, Dechezlepretre, Hemous, Martin, and Van Reenen (2016)). Finally,
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careful consideration of uncertainty has been another important theme of recent research on eco-

nomics of climate change. Our application thus puts at the forefront the analysis of an economy

where а forward looking social planner makes emission decisions under uncertainty and faces a

path-dependent emissions externality. In contrast to the literature and, specifically to Golosov,

Hassler, Krusell, and Tsyvinski (2014), we significantly relax the assumption of how the previous

emission choices enter the climate damages. In our setting, the whole path of the emission (hystere-

sis) matters as opposed to a depreciated stock of the previous emissions. Specifically, we analyze

a particular climate hysteresis functional that captures the most important elements of the setting

with general hysteresis.

Our main result in this macro-climate application is a closed form characterization of the dy-

namics of the marginal externality damage which is also the Pigouvian tax that implements the

optimal allocation. We start by deriving the first-order conditions for the optimum and showing

that the marginal externality damage from emissions is comprised of the marginal contempora-

neous damages and the conditional expectation of the cumulative future damages. Both of these

terms are path-dependent and their dynamics cannot be derived using the usual Itô formula which

applies only to functions of the current state and not the functionals of the trajectories. We use two

different sets of tools to provide the dynamics of the present and the expected cumulative damages.

The present marginal damages are already represented as an explicit path-dependent functional

and we use recently developed functional Itô calculus for the non-anticipative functionals (Dupire

2009, 2019, Cont and Fournie 2013) to represent this term. The functional Itô formula uses two new

concepts of derivatives introduced by Dupire (2009, 2019). The vertical derivative is an analogue

of the space derivative and the horizontal derivative is an analogue of the time derivative for the

functionals. These derivatives evaluate, respectively, the effects of a discontinuous bump in the

underlying trajectory and the effects of a time extension of the trajectory while fixing the terminal

position. The Dupire’s functional Itô formula then gives the dynamics of the present damages

with the drift determined by the horizontal and the second vertical derivative, and the diffusion

coefficient given by the vertical derivative of the marginal present damages. Using the notion of

the horizontal and vertical derivatives the functional Itô formula allows us to convey the similar

intuition as in the case of no hysteresis for which the usual Itô formula is applicable. However,

in contrast with the case of no hysteresis path-dependency may lead to significant effects on the

dynamics even in the case of absent contemporaneous damages.

The most challenging part of the paper is to characterize the dynamics of the expected future
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marginal damages represented by the conditional expectation process. The difficulty comes from

the fact that with passage of time both the damages themselves and the information set (filtration)

are changing. The main new theoretical tool that we develop – the total derivative formula for

conditional expectation processes – allows us to characterize the dynamics of such processes. More-

over, this formula is broadly applicable to a variety of macroeconomic settings where the conditional

expectations processes are central. There are two terms in the semimartingale decomposition of

the conditional expectations process that the total derivative formula delivers. The first term can

be intuitively thought of as а time derivative and represents how the conditional expectation of the

future marginal damages evolves with respect to time. The second term, given as a conditional

expectation of the Malliavin derivative of the cumulative future marginal damages, can be thought

of as a stochastic derivative with respect to the underlying process and represents how the condi-

tional expectation changes with the changes in the stochastic process. It is useful to compare the

results to the case with no hysteresis. The main difference is that in the case of no hysteresis, the

policy does not have future effects. With hysteresis, the contemporaneous effects of the policy may

be very small but the expected future effects of the policy may be very large – small actions today

my have significant future consequences. Moreover, these effects change with both time and the

stochastic shocks.

Combining the dynamics of the present and the conditional expectation of the future marginal

damages, we obtain in closed form the drift and diffusion of the optimal Pigouvian tax correcting

the path-dependent externality. The dynamics are given by the semimartingale decomposition of

the marginal externality damages which can be though of in terms of the planner changing the

tax with the passage of time and with the realization of uncertainty. Alternatively, this can be

thought of as determination of what features of the model matter to the first order for the drift

and diffusion of the optimal tax. Specifically, those are given by the functional Itô formula and

by our total derivative formula for the conditional expectation processes. Even if there are no

direct contemporaneous effects, the dynamics of the optimal policy may be significantly impacted

by either the past choices or by the future effects. In other words, both the past and the future

non-trivially matter.

We then show that one can significantly generalize the application of the climate hysteresis.

First, we propose a very general class of hysteresis functionals that allow significant tractability

of the analysis of optimal policies. The Fréchet derivatives of these functionals have two sources

of variation: an instantaneous influence in the given (current) period and an integral influence of
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perturbations in previous periods. The assumption is mild and only requires that the derivative of

a functional at a given time is absolutely continuous up to that period and may have an atom at

the present time. We show that every Fréchet differentiable functional is a pointwise limit of func-

tionals from this class. Importantly, these functionals have an attractive property of conveniently

separating the effects of the past and the present. As we are considering a very general environment

with path-dependence, it may be difficult or impossible to use dynamic programming to write a

recursive representation of the problem. Instead, we directly find the first order conditions for the

optimal problem by considering all local variations of the policies. The assumption on the deriva-

tive of the hysteresis functional allows us to conveniently separate the first order condition in two

parts: the marginal effects of the policy on current period and the conditional expectation of the

cumulative future marginal effects of policy paths in the future periods.

Our next goal is to explicitly find the evolution equation for the stochastic hysteresis elasticity.

This concept of stochastic hysteresis elasticity is similar to the usual concept of elasticity as it

captures the change in the variables following a small change in policy. The difference is that the

stochastic elasticity is the change in the whole optimal process. Alternatively, one can think of the

stochastic elasticity as the asymptotics of the optimal policy when there is an infinitesimal additional

hysteresis. Specifically, we show that the stochastic elasticity is an Itô process and write its explicit

semimartingale decomposition. A fundamental property of the solution is that both of the terms –

the present and the expected future marginal effects of policy paths – in the first order condition

for optimality and in the formula for the stochastic elasticity are path-dependent. Similarly to our

climate hysteresis application we use the functional Itô formula and the total derivative formula

to represent the dynamics of the stochastic elasticity. The semimartingale decomposition of the

present and the cumulative marginal effects of policies show that the stochastic elasticity, that is,

the change in the optimal policy process following introduction of hysteresis, is an Itô process. The

difference with the no-hysteresis case is that now the drift and diffusion coefficients are themselves

functionals of the trajectory of the policy. That is, hysteresis leads to the path-dependent stochastic

process of the elasticity for which we calculate the drift and diffusion coefficients in the explicit form.

Finally, we return to the analysis of the optimal policies with general hysteresis. The evolution of

the optimal policy can be analyzed using exactly the same tools as the stochastic elasticity. The

explicit form we obtained for the stochastic elasticity thus can be thought of as a characterization

of the optimal policy process for small hysteresis, or small hysteresis asymptotics. We use the

functional Itô formula to represent the current marginal effects and the total derivative formula to
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represent the conditional expectation process of the future marginal effects of policies. The drift

and diffusion coefficients of the optimal policy are then determined implicitly by the equations

having a similar form as the explicit solution for the stochastic elasticity but also depending on the

process of the optimal policy itself.

We finally provide several examples of how to calculate the stochastic hysteresis elasticity. All of

these examples are straightforward applications of the main semimartingale decomposition formula

that we developed.

Literature

The closest to our work is a sequence of papers by Borovička, Hansen, and Scheinkman (2014),

Borovička, Hansen, Hendricks, and Scheinkman (2011), and Borovička and Hansen (2016). They

define the concept of the shock elasticity, relate it to impulse responses familiar to macroeconomists,

and, importantly, formalize it using Malliavin derivatives. The shock elasticity is an impulse re-

sponse of the pricing kernel to the marginal perturbation of the underlying stochastic cash flow

process. Our work goes beyond their results and delivers the explicit semimartingale decomposi-

tion of the evolution of the stochastic elasticity for the path-dependent functionals. In Section 7.3

we also provide a connection to the Clark-Ocone formula that features prominently in Borovička,

Hansen, and Scheinkman (2014).

The only paper that we are aware of that uses functional Itô formula in economic settings is

an insightful work of Cvitanić, Possamäı, and Touzi (2017). In the dynamic moral hazard setting

where the agent controls the volatility of the process, they show how that without loss of generality

the set of admissible contracts can be represented as the path-dependent processes arising from the

functional Itô formula. In our environment, both the functional Itô formula and the total derivative

formula are applied. We discuss this in more details in Section 7.1.

The concept of stochastic elasticity is similar to the analysis of the models of investment under

uncertainty for the case of small sunk costs or for models with small menu costs. In those models,

there is a form of hysteresis where due to the region of inaction, a temporary change may have a

permanent effect. The analysis of such models have important implications for the large amounts

of inertia that arise in the models of small menu costs such as in Akerlof and Yellen (1985) and

Mankiw (1985). Dixit (1991) develops a method of analytical approximation for such hysteresis

models. Reis (2006) and Alvarez, Lippi, and Paciello (2011, 2016) derive a similar analytical

characterization in the models with inattentive producers. These are essentially the same as our
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calculation of stochastic elasticity for the environments that can be characterized by Itô formula.

A series of papers by Alvarez and Lippi (2019), Alvarez, Le Bihan, and Lippi (2016) and Alvarez,

Lippi, and Oskolkov (2020) focus on the cumulative output effects of shock in environments with

the menu and adjustment costs frictions. These cumulative output effects are the output impulse

response functions1 that are similar to the future expected marginal effects of policy in our paper.

Our analysis can be thought of as generalizing the results to the environments in which there is

path-dependence.

An important early paper by Detemple and Zapatero (1991) studies an asset pricing model

with habit formation using Malliavin calculus.2 Huang and Sockin (2018) study optimal dynamic

taxation in continuous time and calculate impulse response to misreporting using Malliavin deriva-

tives. As Sannikov (2014) for the model of moral hazard they connect their analysis to the finance

literature on the sensitivity of the “Greeks” of the options (see, e.g., Fournié, Lasry, Lebuchoux,

Lions, and Touzi 1999). Their analysis relates to our calculation of Malliavin derivatives of the

policy process in the last part of Section 6.4.

Hysteresis or path-dependence is important in a variety of macroeconomic and other settings.

The natural rate of unemployment may directly depend on the previous path of unemployment and,

hence, on the path of monetary policy (Blanchard and Summers 1986). Examples of recent explicit

focus on path dependency and monetary policy is Berger, Milbradt, Tourre, and Vavra (2018), Gali

(2020), and Jorda, Singh, and Taylor (2020). Hysteresis is also central in the models of secular

stagnation as in Summers (2014) and Eggertsson, Mehrotra, and Robbins (2019). Adjustment costs

in investment generate hysteresis (for example, see a survey in Dixit 1992). Acemoglu, Egorov, and

Sonin (2020) exposit a wide variety of political economy models with path-dependence of policies or

institutions. Egorov and Sonin (2020) additionally discuss models in which there is non-Markovian

dependence on the sequence of policy events. Page (2006) classifies types of history dependence and

distinguishes between the path-dependent policies (where the exact sequence of events matters) and

the “phat” dependent strategies (where the events but not their sequence matters). The models of

increasing returns such as Arthur (1989) and David (1985), and a review in Arrow (2000) feature

potentially very complicated dependence on the paths.

1Similarly, the impulse responses play an important role in Pavan, Segal, and Toikka (2014), Garrett and Pavan
(2012), and Bergemann and Strack (2015) in dynamic mechanism design, Makris and Pavan (2017) in the dynamic
taxation, and Makris and Pavan (2018) who connect these two literatures. See also a review in Pavan (2017). In
general, the recursive formulation of a number of these problems may be challenging and the tools we develop may
prove to be useful in those contexts.

2See also Serrat (2001), Bhamra and Uppal (2009) and Cvitanic and Malamud (2009).
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We now briefly discuss the relationship of the economic environment we consider with mathe-

matical literature. The analysis of deterministic dynamic systems with hysteresis is well established

(e.g., Krasnosel’skii and Pokrovskii 2013). In our model, path dependency arises from the opti-

mization of the forward looking agents under uncertainty rather than being directly posed as a

property of a dynamic system. The problem that we study also does not fit easily into the standard

framework of the infinite-dimensional stochastic optimal control such as Fabbri, Gozzi, and Swiech

(2017), see discussion in Section 7.4. The reason is that the hysteresis functional depends on the

whole path of the policy. If we treat the policy as a control process we are obliged to take the space

of paths (of variable length) as a control space which leads to the analysis of path-dependent HJB

equations the understanding of which is in its nascency.

2 Environment

We describe an environment of a stochastic problem with forward looking agents and path-dependency.

2.1 Baseline setting

Let w = (wt)0≤t≤T be a Brownian motion.3 Let the objective of the planner be described by the

quadratic loss function:

max
c

E
∫ T

0
−1

2
(ct − wt)2 dt. (1)

Here maximization is taken over all (progressively measurable) policy processes c : [0, T ]×C([0, T ])→

R. That is, policy ct depends on information about w up to moment t.

The basic problem is easily solved by interchanging integral and expectation and yields the

optimal process c∗t :

c∗t = wt. (2)

The optimal policy simply tracks the Brownian motion wt.

2.2 General environment

Consider a problem where there is an additional path-dependent effect of policy ht:

max
c

E
∫ T

0
(−1

2
(ct − wt)2 − εht(c))dt, (3)

3All of the results can be straightforwardly extended to more general diffusion processes.
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where h : [0, T ] × C[0, T ] → R is an adapted functional on the space of trajectories (i.e. ht(c) is

defined only by the restriction of c on [0, t] ), and ε is a parameter. One can think of the functional

h as an additional effect (a cost or a benefit) that depends on the history of policy up to time t.

The solution of this problem is denoted cε. We define hysteresis as dependence of the effects of

policy ht(c) on the path of the previous policies c[0,t] = ct .

3 Climate externality

This section generalizes the macro-climate model of Golosov, et al. (2014) to the case where

climate externality is path-dependent. Section 3.1 shows how to map some of the key features

of that paper to the framework described in the previous section. Section 3.2 discusses evidence

on hysteresis in the climate externality. Section 3.3 proposes a specific path-dependent climate

hysteresis functional that captures most of the insights of the general framework that we develop

later in Section 4. Sections 3.4-3.7 solve in closed form the dynamics of the marginal climate

externality or the Pigouvian tax implementing the optimum, that is, determine its drift and diffusion

coefficients.

3.1 Planner’s problem with a climate externality

We first note that the structure of the problem (3) captures some of the main features of the

macroeconomic model with a climate externality of Golosov, et al. (2014). In its essence, a macro-

climate model consists of two primary blocks. The first is the specification of the economy which

is a standard dynamic stochastic general equilibrium model. The planner maximizes the expected

utility of consumption (we assume no discounting)

E
∫ T

0
U (ccons

t ) dt,

subject to the standard feasibility constraint with capital accumulation, where ccons
t is a consump-

tion good. The production function is given by

Yt = F (Kt, Et, St) ,

where Kt is capital, Et is energy consumption (measured in carbon emission units), and St is a

climate variable at time t. The climate variable is in general a functional St = S̃t
(
Et
)

of the
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path of emissions Et = E[0,t] (equation (4) in Golosov, et al. (2014) is, in fact, exactly this general

formulation). The climate variable St affects the economy via a damage function Dt (St) so that the

output is reduced multiplicatively (1−Dt (St))× F̃ (Kt, Et) . Moreover, the damages are assumed

to be exponential 1−Dt (St) = exp (−γtSt) for some parameter γt and the utility U (x) = log (x).

The essence of the model is how the path of emissions Et translates to damages to the economy.

Let us now reduce the model further to focus on this key dimension. Assume that production does

not require capital and the feasibility constraint for the economy is then static:

cconst = Yt = e−γtStF (Et) .

The planner then maximizes

max
Et

E
∫ T

0

(
Ũ (Et)− γtSt

)
dt,

which is essentially equivalent to the general problem (3). We further assume that Ũ (Et) =

−1
2 (Et − wt)2 but this is again done purely for leanness of the model and can be immediately

extended.

The key simplification, however, that the literature makes is in simple dependence of the climate

variable St on the path of the emissions. For example, Golosov, et al. (2014)) assume that

St =

∫ t

0
dsEsds,

where ds ∈ [0, 1] is a carbon depreciation rate and then also further structure is placed on ds. In

other words, the climate variable is equal to the stock of the depreciated emissions.

The climate-economy model in its essence reduces to how the previous energy consumption

choices and the associated carbon emissions impact today’s and future economy. In contrast to

the literature, we significantly relax the assumption of how the previous emission choices enter the

damages. In our setting, the whole path of the emissions (hysteresis) matters through the functional

ht
(
ct
)

as opposed to a depreciated stock of the previous emissions. We, on purpose, stripped down

the climate model to focus only on the general path-dependent effects of the emissions and their

interaction with the uncertainty.

10



3.2 Evidence on climate hysteresis

There are two primary sets of evidence which imply that hysteresis is important in the economic

models of climate change.

The first is a large set of recent evidence on importance of hysteresis in climate sciences. The

most comprehensive and authoritative source for such research is the Intergovernmental Panel

on Climate Change (IPCC). The working group for the physical science basis of the long-term

climate change in the Fifth Assessment Report – AR5 (Collins, et al. 2013), while arguing for

the attractiveness of the use of the cumulative carbon emission, notes that a number of climate

variables and models show significant hysteresis behavior. These are the models of (1) vegetation

change; (2) changes in the ice sheets; (3) ocean acidification, deep ocean warming and associated

sea level rise; (4) models of the feedback between the ocean and the ice sheets; and (5) models of the

Atlantic meridional overturning circulation. The report also argues that “the concepts of climate

stabilization and targets is that stabilization of global temperature does not imply stabilization for

all aspects of the climate system. For example, some models show significant hysteresis behaviour

in the global water cycle, because global precipitation depends on both atmospheric CO2 and

temperature”. This is also consistent with the study of Zickfield et al. (2012) who argue that,

while total cumulative emissions may be an important approximation for many models, there are

a number of exceptions where path-dependency is important: among the variables with timescales

of several centuries, such as deep ocean temperature and sea level rise, and for the peak responses

of atmospheric CO2 or for the surface ocean acidity. We now briefly discuss some other recent

evidence of the hysteresis behavior in individual components of the climate system. Eliseev et

al. (2014) is a comprehensive study of the permafrost behavior that finds significant evidence of

hysteresis especially for the higher concentration of greenhouse gases in the atmosphere. Another

important aspect of ice thawing is the release of permafrost carbon which is found to be both very

significant and highly path-dependent (Gasser et al. 2018). Garbe, et al. (2020) analysis “reveals

a strong, multi-step hysteresis behaviour of the Antarctic Ice Sheet” which is potentially reinforced

by a number of additional feedback mechanisms. Nordhaus (2019) augments the DICE model with

the effects of Greenland ice sheet disintegration and finds that the baseline or the no-policy effects

are significantly different when even a simple formulation of the hysteresis is incorporated while

the optimal policy results are similar. Boucher et al. (2012) analyzes the response of a number of

models to a significant increase in the CO2 concentration and finds that hysteresis is particularly
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pronounced for the terrestrial (such as long lived soil carbon sinks and vegetation) and marine

variables (such as the sea-level rise) as well as in global mean precipitation. Nohara et al. (2013)

finds that the hysteresis effects are important for the regional climate change which is notable given,

for example, the recent focus on the significant differences in optimal climate policy at the regional

level by Hassler, et al. (2020). Wu et al. (2012) describe significant hysteresis in the hydrological

cycle that leads to one of the most direct impacts of global warming affecting droughts, floods

and water supplies. This is important for the recent economic literature that studies the impact

of the floods and the sea level (for example, Bakkensen and Barrage 2017, Barrage and Furst

2019; Hong, Wang, and Young, 2020 where hysteresis may be also compounded with the path-

dependency in beliefs). Summarizing, while the cumulative emission and its variants are certainly

a central benchmark for the development of the climate-economy models, recent research in climate

sciences points to importance of hysteresis with sophisticated trajectory dependence in a number

of important climate variables.

The second reason for why hysteresis is important lies in the economics part of the climate-

economy models. One of the central themes in the recent advances in this literature has been

incorporating path-dependency. A recent survey by Aghion, et al. (2019) summarize these devel-

opments: “The core insight is that technological innovation is a path-dependent process in which

history and expectations matter greatly in determining eventual outcome” leading to “important

implications for climate policy design” and “research and knowledge production are path-dependent,

deployment of innovations is path-dependent and the incentives for technology adoption create path

dependence”. Several papers in the literature develop various parts of these insights. In Acemoglu,

Aghion, Bursztyn, and Hemous (2012), dirty technologies have an advantage in the market size and

in the initial productivity and, hence, there is path-dependency in the direction of innovation and

production. One of the most important findings of Acemoglu, Akcigit, Hanley, and Kerr (2016)

is that the nature of innovations in clean or dirty technologies is path dependent. Similarly, there

is path-dependence in innovation in the model of the consequences of the shale gas revolution by

Acemoglu, Aghion, Barrage and Hemous (2019). Grubb, et al. (2020) and Baldwin, Cai, and Ku-

ralbayeva (2020) develop models of path-dependency due to the costs of switching from the dirty

technologies. Aghion, Dechezleprêtre, Hemous, Martin, and Van Reenen (2016) provide extensive

empirical evidence of path dependence in innovation in auto industry from aggregate spillovers and

from the firm’s own innovation history. Meng (2016) finds significant evidence for strong path de-

pendence in energy transition for the U.S. electricity sector over the 20th century, focusing on coal.
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Fouquet (2016) is a summary of evidence that energy systems are subject to strong and long-lived

path dependence due to technological, infrastructural, institutional and behavioral lock-ins. A re-

cent strand of the climate economics literature (Lemoine and Traeger 2014; Lontzek, Cai, Judd,

and Lenton 2015; van der Ploeg and de Zeeuw 2018, and Cai and Lontzek 2019) has attempted

to incorporate hysteretic effects through the tipping point modeling. Dietz, Rising, Stoerk, and

Wagner (2020) synthesize a number of different approaches in this literature into a meta-model and

argue for the need to develop sophisticated models of hysteretic behavior.4

Finally, careful consideration of uncertainty such as in Temzelides (2016), Li, Narajabad, and

Temzelides (2016), Traeger (2017), Cai and Lontzek (2019), Brock and Hansen (2018), Van den

Bremer and van der Ploeg (2018), Barnett, Brock, and Hansen (2020), Giglio, Kelly, and Stroebel

(2020), Kotlikoff, Kubler, Polbin, and Scheidegger (2020) and Lemoine (2021) has been another

important theme of recent research on economics of climate change.

3.3 Climate hysteresis functional

In this section, we analyze a particular hysteresis functional that captures the most important

elements of the abstract setting that we develop in Section 4 and allows to transparently show how

the solution in the general environment works.

Specifically, let

ht
(
ct
)

= gt
(
wt
)
ct +

∫ t

0
ks,t

(
wt
)
csds, (4)

where ct denotes the amount of emissions at time t.5 Here, there are two sources of the effects

of emissions. The first source is contemporaneous. The amount of emission ct yields climate

externality equal to gt
(
wt
)
, where gt is a functional of the path of uncertainty wt. The second

source is the effect of the past emissions cs. Each of the emissions in the previous period cs

contributes ks,t
(
wt
)

to the climate externality ht at time t, where ks,t is a functional of the path

of uncertainty wt. It is important to note that both of these terms are path-dependent.6

We observe that with the functional (4) the optimization problem (3) becomes intractable for

the stochastic control approach. Indeed, two possibilities for such approach would be either to

introduce a control ct or to introduce an additional control xt = ht(ct). Both approaches lead to

4Section 6.6 further elaborates on an example of the use of our methodology with tipping points.
5Strictly speaking, the functional in this section depends on both the path ct and wt while we consider in Section

4 the functional ht
(
ct
)
. The extension to allow for the dependence on the path wt is immediate. Further, for the

analysis of the stochastic elasticity in Section 5.1, the underlying optimal process c∗t = wt and, hence, this is without
loss of generality.

6Remark 2 in Section 4.1 further discusses motivation for this example as a representation of stochastic integrals.
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complicated infinite-dimensional HJB equations. The first is due to the complicated structure of

the control space. The second is due to the path dependent first order condition for the process x.7

3.4 First-order conditions

We derive the first order conditions of the problem (3) with the climate hysteresis functional (4)

by perturbing the process c by a an adapted process z and computing the derivative in ν at ν = 0 :

∂νE

∫ T

0

(
−1

2
(ct + νzt − wt)2 − ε

(
gt
(
wt
)

(ct + νzt) +

∫ t

0
ks,t

(
wt
)

(cs + νzs) ds

))
dt

∣∣∣∣
ν=0

=

= E

∫ T

0

(
ztwt − ctzt − ε

(
gt
(
wt
)
zt +

∫ t

0
ks,t

(
wt
)
zsds

))
dt =

= E

∫ T

0
zt

(
wt − ct − ε

(
gt
(
wt
)

+

∫ T

t
kt,s (ws) ds

))
dt = 0,

where the last line is obtained by changing the order of integration. Since z is an arbitrary adapted

process we get the first order conditions

ct = wt − ε
(
gt
(
wt
)

+ E

[∫ T

t
kt,s(w

s)ds

∣∣∣∣Ft]) . (5)

The term

Λt = gt
(
wt
)

+ E

[∫ T

t
kt,s(w

s)ds

∣∣∣∣Ft] (6)

plays the central role in Golosov, et al. (2014) and is the marginal externality damage from

emissions, it also is equal to the optimal Pigouvian tax that corrects this externality. Specifically,

in our setting there are two effects of the marginal change in the emission ct. First, there is the

immediate damage gt
(
wt
)
. Second, there are marginal damages in each future period s, given by

kt,s (ws) . These damages are then integrated and evaluated as the expectation conditional on the

information up to time t.

It is important to note the difference with the case with no hysteresis, where the externality is

a function gt (wt) and not a functional of the trajectory wt. First, the future expected marginal

damage E

[∫ T
t kt,s(w

s)ds

∣∣∣∣Ft] is absent in that case as the change in emissions today does not have

effects on the future. Second, the contemporaneous effects gt
(
wt
)

also may be significantly different

7Of course, for some special cases there is no need to use the theory we develop. In Section 6 we show, whenever
possible, how to derive the results using known tools. One interesting class of examples can be solved by extracting
a martingale and then using the Clark-Ocone formula. In Section 6.3 and Remark 3 we show how to do this for the
case of cumulative hysteresis ht (ct) = ct

∫ t
0
csds; in Section 6.4 and Remark 4 we show how to do this for when the

kernel ks,t is mutliplicative. We further expand on this class of examples in Boulatov, Riabov, and Tsyvinski (2020).
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from gt (wt) as it depends now on the path wt. Even if emissions have no immediate effects, the

past effects and the expected cumulative effects may be very significant. In other words, both the

past and the future non-trivially matter.

Our primary interest is in providing the evolution of the marginal externality damage, that is,

in the semimartingale decomposition dΛt = αt
(
wt
)
dt + βt

(
wt
)
dwt. This decomposition can be

thought of as the evolution of the marginal externality damage (or the optimal Pigouvian tax) with

respect to time dt, the drift, and with respect to the realizations of uncertainty dwt, the diffusion

coefficient. Since both the terms gt
(
wt
)

and E

[∫ T
t kt,s(w

s)ds

∣∣∣∣Ft] are path-dependent, we cannot

use the standard Itô formula as it applies only to the functions and not to the functionals of the

path. We proceed by analyzing the present and the future effects separately as the analysis requires

the use of different methods.

3.5 Present effects of the emissions path

The present damage gt
(
wt
)

of the current emissions is already a well-defined functional of the path

wt. We use a recently developed Dupire’s functional Itô formula for the non-anticipative functional

(Dupire 2009, 2019; Cont and Fournie 2013) to represent this term.

We first introduce two derivatives due to Dupire (2009, 2019): the vertical and the horizontal

derivative. These are, respectively, the functional analogues of the space and of the time derivatives.

Definition 1. (Vertical Derivative) Let D[0, t] be the space of càdlàg paths. The vertical

derivative of a functional h : D[0, t]→ R is the limit

∂cth(c) = lim
ε→0

h(c+ εet)− h(c)

ε
,

where et(s) = 1s=t.

Intuitively, this derivative measures an influence on the functional of a (discontinuous) bump

to the path at time t (Figure 1). If the functional is just the function of current realization of the

path, this yields the usual derivative h′ (ct) .

Definition 2. (Horizontal derivative) Let z : [0, T ]×D[0, T ]→ R be an adapted functional on

the space of trajectories. The horizontal derivative ∆t is defined as a limit

∆tzt(c) = lim
ε→0

zt+ε(c·,ε)− zt(c)
ε

,
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Figure 1: Dupire’s vertical derivative: path perturbation

where c·,ε is an extension of the path c from [0, t] to [0, t+ ε] by cs,ε = ct for t ≤ s ≤ t+ ε.

Intuitively, this derivative freezes the path of the underlying process at time t, extends it for a

small time ε and evaluates the functional zt+ε on this extended path (Figure 2). If the functional

zt is just the function of the value of the path at time t, this yields the usual time derivative of

(∂tzt)(ct).

Figure 2: Dupire’s horizontal derivative: path perturbation

If the functional gt
(
wt
)

does not depend on the path of policies and is a function f (wt, t) of

only the current realization of uncertainty and of time, we can use the usual Itô formula. For its

application, we need to ensure that the first and the second order space derivative f ′1 (wt, t), f
′′
1 (wt, t)

and the time derivative f ′2 (wt, t) exist. When, as is the case in this section, there is hysteresis to

apply the functional Itô formula we need to make a similar assumption on the functional gt
(
wt
)

as in the case of it being a function but with different notions of derivatives.
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Lemma 1. (Functional Itô Formula: Dupire, 2009, 2019; Cont and Fournie, 2013) Let

xt be an Itô process, dxt = btdt+σtdwt, where the drift coefficient bt and the diffusion coefficient σt

are adapted functionals of w. Let gt be horizontally differentiable and twice vertically differentiable

functional on the space of cádlág paths. Then the process gt(x
t) is an Itô process with the stochastic

differential

dgt
(
xt
)

= ∆tgt(x
t)dt+ ∂ctgt(x

t)dxt +
1

2
∂2
ctgt(x

t)(σt)
2dt. (7)

The lemma gives a semimartingale decomposition of the functional gt
(
xt
)
. It is similar in form

to the usual Itô formula that applies to the functions of the state. However, the time derivative of

a function is replaced by the horizontal derivative of the functional ∆t; the first and second space

derivatives of the function are replaced by the first and second vertical derivatives ∂ct and ∂2
ct . Of

course, if there is no path-dependency and gt is a function rather than a functional, one recovers

the usual Itô formula.

Applying functional Itô formula to gt
(
wt
)

we obtain

dgt
(
wt
)

=

(
∆tgt(w

t) +
1

2
∂2
ctgt(w

t)

)
dt+ ∂ctgt(w

t)dwt.

Summarizing the results in this section: the drift of the dynamics of the present effects of

the emissions is determined by the horizontal and the second vertical derivative and the diffusion

coefficient is given by the vertical derivative of the present marginal effects of the policy functional.

This result both parallels and differs from the case of no hysteresis where, similarly, the first and

second order derivatives matter for the dynamics. However, the notion of the derivative is very

different as the horizontal and the vertical derivatives measure how hysteresis functionals change

with the whole past trajectory. Even if there are no direct contemporaneous effects of the policy,

its dependence on the past may lead to significant effects on the dynamics of optimal policy. At

the same time, using these different notions of the derivatives the functional Itô formula allows us

to convey the similar intuition as in the case of no hysteresis. In particular, uncertainty represents

itself in the second vertical derivative of the functional gt
(
wt
)

by affecting the drift and in the first

vertical derivative of the functional affecting the diffusion coefficient.
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3.6 Expected future effects of the emissions paths

The most challenging part of the paper is to characterize the dynamics of the expected future

marginal effects of current emission represented by the conditional expectation process E

[∫ T
t kt,s(w

s)ds

∣∣∣∣Ft] .
Let ξt =

∫ T
t kt,s(w

s)ds. Note that the conditional expectation process E
[
ξt|Ft

]
is in general not a

martingale. For example, if ks,t = 1, then ξt = T − t and we have E
[
ξt|Ft

]
= T − t. Also note that

ξt is not adapted in general. The difficulty more broadly comes from the fact that in the conditional

expectation both the process ξt and the filtration Ft are changing with time.

3.6.1 Total derivative formula for conditional expectations

In this section, we derive a new total derivative formula for conditional expectation processes – this

is the main new theoretical tool that we develop in this paper. A more general statement of the

result and a complete proof is given in the Appendix. Here, we state a simpler version of the result

and an outline of a heuristic proof.

Definition 3. The Malliavin derivative of the cylindrical functional f(w) = g(wt1 , . . . , wtk), where

t1 < . . . < tk and g is a smooth function, is defined by Dtf(w) =
∑k

i=1 ∂ig(wt1 , . . . , wtk)1t≤ti . This

defines a closable linear operator D : L2(Ω)→ L2(Ω× [0, T ]). Its closure is also denoted by D and

is called the Malliavin derivative operator.

Intuitively, a Malliavin derivative is a change in a functional due to a perturbation of the whole

path of the process (Figure 3).

Figure 3: Malliavin derivative: path perturbation
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The next proposition states the total derivative formula, the main technical tool that we develop

in this paper.

Proposition 1. (Total derivative formula) Let an adapted square integrable process (Xt)0≤t≤T

be represented as

Xt = E[ξt|Ft].

Let (ξt)0≤t≤T be a Malliavin differentiable square integrable absolutely continuous process, that is,

a process of the form ξt = ξ0 +
∫ t

0 ηsds, where ξ and η may be anticipative. Then,

dXt = E[∂tξt|Ft]dt+ E[Dtξt|Ft]dwt, (8)

where D is a Malliavin derivative.

Proof. The Clark-Ocone formula gives

ξt = E [ξt] +

∫ T

0
E[Drξt|Fr]dwr.

Taking the conditional expectation leads to

Xt = E [ξt] +

∫ t

0
E[Drξt|Fr]dwr.

The total derivative is then

dXt = E [∂tξt] dt+ E[Dtξt|Ft]dwt +

(∫ t

0
E[Dr∂tξt|Fr]dwr

)
dt =

= E[Dtξt|Ft]dwt +

(
E [∂tξt] +

∫ t

0
E[Dr∂tξt|Fr]dwr

)
dt.

Note now that by the Clark-Ocone formula applied to the derivative ∂tξt:

∂tξt = E [∂tξt] +

∫ T

0
E[Dr∂tξt|Fr]dwr,

and taking the conditional expectations:

E[∂tξt|Ft] = E [∂tξt] +

∫ t

0
E[Dr∂tξt|Fr]dwr.

The total derivative is then given by (8).
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The lemma provides a time-dependent extension of the Clark-Ocone formula for processes that

can be represented as a conditional expectation of an absolutely continuous process.8 The first

term, E[∂tξt|Ft], can be thought of as a time derivative of this variable and represents how the

conditional expectation evolves with respect to time. The second term, E[Dtξt|Ft], can be thought

of as a stochastic derivative with respect to the underlying process wt and represents how the

conditional expectation changes with the changes in wt.
9

3.6.2 Semimartingale decomposition of the expected future effects of policy paths

We now make mild assumptions on the kernel kt,s – absolute continuity of the kernel in variable t

and Malliavin differentiability as a functional from ws – and apply the total derivative formula to

the expected future marginal damages, E

[∫ T
t kt,s(w

s)ds

∣∣∣∣Ft]:
dE

[∫ T

t
kt,s(w

s)ds

∣∣∣∣Ft] = E
[
∂t

∫ T

t
kt,s(w

s)ds

∣∣∣∣Ft]︸ ︷︷ ︸
time derivative

dt+ E
[
Dt

∫ T

t
kt,s(w

s)ds

∣∣∣∣Ft]︸ ︷︷ ︸
stochastic derivative

dwt =

= E
[ ∫ T

t
∂tkt,s(w

s)ds

∣∣∣∣Ft]− kt,t (wt)︸ ︷︷ ︸
time derivative

dt+ E
[ ∫ T

t
Dtkt,s(w

s)ds

∣∣∣∣Ft]︸ ︷︷ ︸
stochastic derivative

dwt.

The meaning of this equation is straightforward. The conditional expectation dE

[∫ T
t kt,s(w

s)ds

∣∣∣∣Ft]
measures the effects of the change in the emissions in period t on the expected future marginal

externality kt,s(w
s) in all periods s (s ∈ [t, T ]). The time evolution of the conditional expectation is

given by the analogue of the time derivative. The stochastic evolution of the conditional expecta-

tion is given by a stochastic derivative of the cumulative change in all marginal effects of emission

in time t on all future periods s with respect to variation in the underlying process w.

8See Section 7.3 for the more detailed discussion of the relationship of our total derivative formula to the Clark-
Ocone formula.

9The process (ξt) in Proposition 1 need not be adapted, and we can understand the process Xt = E[ξt|Ft] as
the adapted projection of the process ξ. In Proposition 1 we thus prove that an adapted projection of an absolutely
continuous process is necessarily an Itô process. In the Appendix 9.6 we show the converse to this clam – any Itô
process can be represented as such projection.
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3.7 Dynamics of the marginal externality damage

We can now collect the results of the previous two sections. We obtain the dynamics of the marginal

externality damage

dΛt = −ε
(

∆tgt(w
t) +

1

2
∂2
ctgt(w

t) + E
[ ∫ T

t
∂tkt,s(w

s)ds

∣∣∣∣Ft]− kt,t (wt)) dt+
+

(
∂ctgt(w

t) + E
[ ∫ T

t
Dtkt,s(w

s)ds

∣∣∣∣Ft]) dwt.
This, we believe, is an important result as it solves in the closed form the dynamics of the evolution

of the marginal externality damage or the optimal Pigouvian tax. This formula shows how the

policymaker should change the tax with the passage of time and with the realizations of uncertainty

– that is, we determined the drift and the diffusion coefficients of the process of the optimal

Pigouvian tax.

A related way to think about this result is that it determines what features of the model matter

up to the first order. For the time updating, the functional Itô formula shows that the horizontal

and the second order vertical derivative are important and the total derivative formula shows that

the “time derivative” of the expected cumulative damages are important. For the updating with

the movement of uncertainty, the functional Itô formula shows that the vertical derivative and the

total derivative formula shows that the “stochastic derivative” of the expected cumulative marginal

damages are important.

We also immediately obtain the dynamics of the optimal emission policies from equation (5) in

closed form:

dct = −ε
(

∆tgt(w
t) +

1

2
∂2
ctgt(w

t) + E
[ ∫ T

t
∂tkt,s(w

s)ds

∣∣∣∣Ft]− kt,t (wt)) dt+
+

(
1− ε∂ctgt(wt)− εE

[ ∫ T

t
Dtkt,s(w

s)ds

∣∣∣∣Ft]) dwt.
We thus extended the result of the macro-climate model of Golosov, et al. (2014) to the case

with the path-dependent hysteresis given by (4). Note that all of the results here are given in

closed form. The next sections show that the main insights derived with this specifications apply

to general hysteresis functionals.
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4 General hysteresis functionals

We now return to the analysis of the problem (3) for a general hysteresis functional.

4.1 The class At of path-dependent functionals

In this section we describe a class of path-dependent functionals At which, in a sense, is parallel

to continuously differentiable functions of a real-valued argument. It will turn out that this class,

while very general, allows significant tractability in the analysis of path-dependent problems. The

introduction of this class of functionals is one contribution of our paper.

Remark 1. Adding a path-dependent functional ht can considerably change the structure of the

optimal policy. For example, consider the functional ht(c) = c t
2

that describes the effects of the

policies at the middle of the time period [0, t]. We show in the appendix that the optimal policy is

no longer continuous and has a jump at t = T
2 .

Let us recall that a Fréchet derivative of a functional ht : C[0, t]→ R at a point c ∈ C[0, t] is a

signed measure µ on [0, t] such that

ht (c+ z) = ht (c) +

∫ t

0
zsdµ (t, s) + o (‖z‖) , ‖z‖ → 0.

The primary difficulty with this formulation is that it features a very general dependence of the

measure µ on time t. The next assumption structures this dependence.

Assumption 1. (Class At) Suppose the (Fréchet) derivative of the functional ht has an absolutely

continuous part and an atom at point t:

ht(c+ z) = ht(c) + ∂ctht(c)zt +

∫ t

0
δsht(c)zsds+ o (‖z‖) , ‖z‖ → 0.

The family of such functionals is denoted by At.

This assumption on the derivative of functionals means that there are two sources of variation

for ht: an instantaneous influence of a perturbation at the moment t given by an atom and an

integral influence of perturbations at previous moments s ≤ t which is an absolutely continuous

process. Assumption 1 is mild – it only requires that the derivative of a functional (which is a

measure) is absolutely continuous and has an atom at the present time.
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The class At contains a variety of functionals:

ht(c) = f(ct),

which is state-dependent but not path-dependent;

ht(c) = ft(ct,

∫ t

0
gt(cs)ds),

which jointly depends on state ct and the integral influence of the path
∫ t

0 gt(cs)ds and, moreover,

both the joint dependence ft and the effects of the past policies gt depend on time t;

ht (c) = ft(

∫ t

0

∫ t

0
gt(cs, cr)dsdr, ...)

where now there is a joint dependence on the past values cs and cr via a repeated integral.

The proposition that follows shows that this assumption covers a very general class of function-

als.

Proposition 2. Every Fréchet differentiable functional g : C[0, T ] → R is a pointwise limit of

functionals from the class AT .

Proof. In the appendix.

We next explore the nature of the present marginal influence of policy ∂ctht which is itself a path-

dependent functional. The lemma that follows (proven for a more general case in the appendix)

connects Dupire’s vertical derivative to the derivatives of the functionals in the class At.

Lemma 2. Let the functional ht be in the class At , then ∂ctht(c) is the vertical derivative in the

Dupire sense.

Remark 2. We now discuss some additional motivation behind Assumption 1. Consider, for exam-

ple, hysteresis given by an Itô process:

ht(c) =

∫ t

0
bsdcs, (9)

where b is an absolutely continuous function. The functional ht(c) in equation (9) is well-defined

if and only if the process (cs)0≤s≤t is of bounded variation. This is not true for an arbitrary

progressively measurable process (cs)0≤s≤t, and we cannot expect that the optimal policy process
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will be of bounded variation. For example, in our baseline case of Section 2.1 c∗t = wt and then

almost all realizations of c∗ are of unbounded variation. However, if the coefficient b is absolutely

continuous, then we can integrate (9) by parts and rewrite ht(c) in the form:

ht(c) = −
∫ t

0
b′scsds+ btct.

Further, ht is just a linear functional from c :

ht(c+ z)− ht(c) = btzt −
∫ t

0
b′szsds.

So, ht ∈ At with ∂cth(c) = bt, δsht(c) = −b′s.

4.2 Optimal policy: the first order conditions

In this section, we derive the first order conditions for the optimal process cε. While in some

circumstances one can write a recursive formulation even for a path-dependent problem and then

find a Hamilton-Jacobi-Bellman equation, in general it is difficult or impossible to do it. Here, we

instead find the first order conditions for optimal policy using a variational method.

Proposition 3. (The first order conditions for the optimum) Let the optimal policy process

cε solve (3), then

cεt = wt − ε
(
∂ctht((c

ε)t) + E

[∫ T

t
δths((c

ε)s)ds

∣∣∣∣Ft]) . (10)

Proof. Perturb the process c by νz, where z is an adapted process, and compute the derivative in

ν at ν = 0 :

∂νE

∫ T

0

(
−1

2
(ct + νzt − wt)2 − εht(ct + νzt)

)
dt

∣∣∣∣
ν=0

=

= E

∫ T

0

(
ztwt − ctzt − ε

(
∂ctht(c

t)zt +

∫ t

0
δsht(c

t)zsds

))
dt =

= E

∫ T

0
zt

(
wt − ct − ε

(
∂ctht(c

t) +

∫ T

t
δths(c

s)ds

))
dt = 0.

Since z is an arbitrary adapted process, we get the first order conditions (10). The importance

of Assumption 1 is evident in particular in the third line of the proof. If we did not impose this

assumption, then instead of the integral
∫ T
t δths(c

s)ds we would have a general measure µt(c
s, [t, T ])

which can even be discontinuous in t. Assumption 1 imposes a smooth structure for this measure
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by requiring that the measure has an absolutely continuous part.

This equation (10) has a natural economic meaning. When hysteresis εht is present, the solution

to the optimal problem (c∗t = wt) is modified by the two terms. The first term,

It = ε∂ctht(c
ε),

is the instantaneous marginal effect of the change in the policy cεt on functional ht. The second

term gives the future marginal effects of policy cεt

Ft = εE

[∫ T

t
δths((c

ε)s)ds

∣∣∣∣Ft] .
on the values of all future hysteresis functionals hs ((cε)s). For each time s (where t ≤ s ≤ T ),

the marginal effect of changing policy in period t is represented by the derivative δths((c
ε)s) of the

functional hs with respect to change in policy at time t. These marginal effects are evaluated as

a conditional expectation at time t and hence represent the expected future marginal effects. It is

useful to think about the term Ft as the cumulative impulse response of the change of the policy

today on all future hysteresis functionals. This is similar to Alvarez and Lippi (2019), Alvarez, Le

Bihan, and Lippi (2016), Alvarez, Lippi, and Oskolkov (2020) and Borovička, Hansen, Scheinkman

(2014), Borovička, Hansen, Hendricks, and Scheinkman (2011), and Borovička and Hansen (2016).

Note that Ft is a conditional expectation process that may non-trivially change with time as both

the marginal effects δths and the filtration Ft changes.

Both terms depend on the path of policy cε[0,s] = (cε)s. As seen here, the assumption that the

functional ht is in the class At allows us to conveniently separate the first order condition in two

parts: the marginal effects of the policy on current period It and the conditional expectation of the

cumulative future marginal effects of policy paths in the future, Ft.

5 Characterizing the general problem

This section is divided into two main parts. Section 5.1 derives a closed-form characterization of

the change in the optimal policy when hysteresis is small. Section 5.2 provides a characterization

of the optimal policy.10

10It may be useful for a reader to also consider an example in the appendix that provides a parallel characterization
for the case with no path-dependency.
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5.1 Stochastic hysteresis elasticity and its dynamics

In this section we derive a closed-form characterization of the change in the optimal policy when

hysteresis is small. We call this first order process a stochastic hysteresis elasticity. We char-

acterize the dynamics of the stochastic elasticity in closed form by providing its semimartingale

decomposition which is the main contribution of this section.

5.1.1 Stochastic hysteresis elasticity

We first formally define the stochastic hysteresis elasticity. This is the first order process that

represents the change in optimal policy process c∗ in response to introduction of an infinitesimal

path-dependent hysteresis functional ht .

Definition 4. (Stochastic hysteresis elasticity) Let c∗t be a solution to the baseline problem

(1) and cεt be a solution to the problem (3), where hysteresis is given by the functional εht, ε→ 0.

The first-order process or the stochastic hysteresis elasticity Cht is such that

cεt = c∗t + εCht + o(ε).

The stochastic elasticity Cht is the change to the first order in the optimal policy process in

response to a small change in the hysteresis h. In this sense, it is similar to the usual concept of

elasticity but now determines how the whole process ct changes. From now on, to ease notation

we drop the dependence of Cht on h and denote it simply by Ct.

Differentiating (10) with respect to ε at ε = 0, and recalling that c0
t = c∗t = wt we find the

process Ct explicitly

Ct = −∂ctht(wt)− E
[∫ T

t
δths(w

s)ds

∣∣∣∣Ft] . (11)

This equation is already interesting by itself as it presents the change in the optimal policy plan

due to the introduction of the path-dependent effect. Moreover, it is given in closed form.

We now turn to presenting the main result of this section – showing that Ct is an Itô pro-

cess and, most importantly, writing its explicit semimartingale decomposition. We are seeking a

representation

dCt = β
(
wt
)
dt+ γ

(
wt
)
dwt,

where β and γ are potentially path-dependent. In other words, we want to determine the dynamics

of the stochastic elasticity Ct.
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5.1.2 Present effect of the policy path

This section provides a semimartingale decomposition of the term ∂ctht(c
∗) – the present effect of

the path of policies (c∗)t = wt. The principal tool that we use is Dupire’s functional Itô formula in

Lemma 1 that applies to the non-anticipative functionals of the path. We now make an assumption

that allows the use of this formula.

Assumption 2. There exists a non-anticipative functional q : [0, T ] × D[0, T ] → R which is

horizontally differentiable, twice vertically differentiable and is such that qt(c) = ∂ctht(c). In other

words, the derivative ∂ctht(c) can be extended to a C1,2
b -functional on the space of cádlág paths. We

denote this extension also by ∂ctht(c).

Applying the functional Itô formula, and noting that c∗t = wt we obtain a semimartingale

decomposition of the functional ∂ctht(c
∗) that depends on the whole history of policy (c∗)t = wt:

d(∂ctht(c
∗)) = ∆t

(
∂ctht(w

t)
)
dt+ ∂ct

(
∂ctht(w

t)
)
dwt +

1

2
∂ct
(
∂2
ctht(w

t)
)
dt,

and gathering the terms we obtain the following lemma.

Lemma 3. (Dynamics of the present effect, It) The semimartingale decomposition of the

present marginal effects, It, of the policy path is given by

d(∂ctht(c
∗)) =

(
∆t(∂ctht(w

t)) +
1

2
∂3
ctht(w

t)

)
dt+ ∂2

ctht(w
t)dwt. (12)

This part of the derivation is already interesting as a stand-alone result. The reason why one can

apply the Dupire and Cont-Fournie analysis is that ∂ctht(c
∗) is already represented as a functional

of the path. The decomposition (12) then has the same intuitive meaning as the standard Itô’s

formula but now applies to the functional of the past, not the function of the present realization.

Note that we are already applying the functional Itô’s formula to the marginal effects, that is, to

the vertical derivative of the functional ∂ctht(w
t). Hence, there are the second, ∂2

ct , and the third,

∂3
ct , vertical derivatives as well as the mixed derivative ∆t∂ct .

5.1.3 Expected future effects of policy paths

We now make an assumption on the derivative of the functional, δths(c
∗), that is needed to apply

the total derivative formula of Proposition 1.11

11In Section 7.2, we further discuss the smoothness assumptions for the functionals ht.
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Assumption 3. The derivative δths(c
∗) is an absolutely continuous in t and is a Malliavin differ-

entiable functional of the path ws.

It follows that the future marginal effect of a given policy path is given by

d

dt

∫ T

t
δths(c

∗)ds = −δtht(c∗) +

∫ T

t

∂

∂t
(δths)(c

∗)ds.

and its conditional expectation is given by the total derivative formula (8):

dE
[ ∫ T

t
δths(c

∗)ds

∣∣∣∣Ft] = E
[
∂t

∫ T

t
δths(c

∗)ds

∣∣∣∣Ft]︸ ︷︷ ︸
time derivative

dt+ E
[
Dt

∫ T

t
δths(c

∗)ds

∣∣∣∣Ft]︸ ︷︷ ︸
stochastic derivative

dwt.

The meaning of this equation is straightforward. The conditional expectation

Ft = E
[ ∫ T

t
δths(c

∗)ds

∣∣∣∣Ft]

describes how a change in policy in period t determines the expected future marginal effects of that

policy δths(c
∗) in all periods s (s ∈ [t, T ]). The time evolution of the conditional expectation is given

by the analogue of the time derivative. The stochastic evolution of the conditional expectation is

given by a stochastic derivative of the cumulative change in all marginal effects of policy t on all

future periods s with respect to variation in the underlying process w. Collecting the terms gives

us the dynamics of the future effects of policy and shows that it is an Itô process.

Lemma 4. (Dynamics of the future effects, Ft) The semimartingale representation of the

future marginal effects, Ft, of policy paths is given by:

dE
[ ∫ T

t
δths(c

∗)ds

∣∣∣∣Ft] =

=
(
−δtht(wt) +

∫ T

t
E
[
∂

∂t
(δths)(w

s)

∣∣∣∣Ft] ds)dt+ E
[
Dt

∫ T

t
δths(w

s)ds

∣∣∣∣Ft]dwt. (13)
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5.1.4 Dynamics of the stochastic elasticity

We now combine the results of the decompositions of the present effects (12) and the future effects

(13) of policy and recalling that c∗t = wt:

dCt =−
(

∆t∂ctht(w
t)dt+

1

2
∂3
ctht(w

t)dt+ ∂2
ctht(w

t)dwt︸ ︷︷ ︸
Present effects: functional Itô

)
−

−
(
−δtht(wt)dt+ E

[∫ T

t

∂

∂t
(δths)(w

s)ds

∣∣∣∣Ft] dt+ E

[∫ T

t
Dt (δths(w

s)) ds

∣∣∣∣Ft] dwt︸ ︷︷ ︸
Future effects: total derivative

)
,

where in the last term we interchanged the Malliavin derivative and the integral.

Collecting the terms gives the semimartingale decomposition of the first order process Ct in

closed form.

Theorem 1. (Dynamics of stochastic elasticity) The semimartingale decomposition of the

stochastic elasticity Ct is given by

dCt =−
(

∆t∂ctht(w
t) +

1

2
∂3
ctht(w

t)− δtht(wt) + E

[∫ T

t

∂

∂t
(δths)(w

s)ds

∣∣∣∣Ft])dt−
−
(
∂2
ctht(w

t) + E

[∫ T

t
Dt (δths(w

s)) ds

∣∣∣∣Ft])dwt. (14)

This theorem shows that the optimal process c∗t changes with the introduction of hysteresis,

that is, the additional infinitesimal path-dependent effect of policies. The equation (14) gives the

first order process in closed form as

dCht = βt
(
wt
)
dt+ γt

(
wt
)
dwt,

where β and γ are path-dependent coefficients.

5.2 Dynamics of optimal policy

We now characterize the dynamics of the optimal policy.

In this section, we assume that ε = 1, without loss of generality. The first order conditions (10)

become

wt = ct + ∂ctht(c
t) + E

[∫ T

t
δths(c

s)ds

∣∣∣∣Ft] .

29



Let us take the differential of this equation assuming that c is an Itô process, i.e.

dct = αtdt+ βtdwt.

The present marginal effects of the policy are differentiated using the functional Itô formula (7):

d
(
∂ctht(c

t)
)

= ∆t∂ctht(c
t)dt+ ∂2

ctht(c
t)dct +

1

2
∂3
ctht(c

t)β2
t dt.

The future expected marginal effects of the policy are differentiated using the total derivative

formula (8):

d

(
E

[∫ T

t
δths(c

s)ds

∣∣∣∣Ft]) = E

[
∂t

∫ T

t
δths(c

s)ds

∣∣∣∣Ft] dt+ E

[∫ T

t
Dt (δths(c

s)) ds

∣∣∣∣Ft] dwt =

= E

[∫ T

t
∂t (δths(c

s)) ds

∣∣∣∣Ft] dt− δtht(ct)dt+ E

[∫ T

t
Dt (δths(c

s)) ds

∣∣∣∣Ft] dwt.
The differential of the first order conditions is then given by

dwt = dct + ∆t∂ctht(c
t)dt+ ∂2

ctht(c
t)dct +

1

2
∂3
ctht(c

t)β2
t dt+

+ E

[∫ T

t
∂tδths(c

s)ds

∣∣∣∣Ft] dt− δtht(ct)dt+ E

[∫ T

t
Dt (δths(c

s)) ds

∣∣∣∣Ft] dwt.
Collecting the terms near dt and dwt we derive dynamics of the optimal policy:


0 = (1 + ∂2

ctht(c
t))αt + 1

2∂
3
ctht(c

t)β2
t + ∆t∂ctht(c

t) + E

[∫ T
t ∂tδths(c

s)ds

∣∣∣∣Ft]− δtht(ct),
1 = (1 + ∂2

ctht(c
t))βt + E

[∫ T
t Dt (δths(c

s)) ds

∣∣∣∣Ft] ,
and the next theorem characterizes the drift and diffusion coefficients of the optimal policy.

Theorem 2. (Optimal policy) The dynamics of optimal policy is given by:

αt = − 1

1 + ∂2
ctht(c

t)

(
1

2
∂3
ctht(c

t)β2
t + ∆t∂ctht(c

t) + E

[∫ T

t
∂tδths(c

s)ds

∣∣∣∣Ft]− δtht(ct)) ,
βt =

1− E
[∫ T
t Dtδths(c

s)ds

∣∣∣∣Ft]
(1 + ∂2

ctht(c
t))

.

We can compare this theorem to the results without hysteresis, where there are only contempo-
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raneous effects of the policy f (ct), the details of which are in the appendix. The diffusion coefficient

βt is determined by two terms. The first term, in the denominator, contains the vertical deriva-

tive of the present marginal effects of the policy ∂ct
(
∂ctht(c

t)
)

and measures the change in the

present marginal costs due to a “bump” in the trajectory of the costs. This is an analogue of the

term f ′′ (ct) for the case without hysteresis. The second term, in the numerator, is the stochastic

derivative E

[∫ T
t Dtδths(c

s)ds

∣∣∣∣Ft] which measures impact of the change in the trajectory of the

stochastic process on the expected future marginal effects in all periods. This term is not present

in the case without hysteresis.

The drift coefficient αt is determined by three terms. The first term, in the denominator, is the

same relative scaling as in the case of βt. The second set of terms is the time evolution of the present,

∆t∂ctht(c
t), and future, E

[
∂t
∫ T
t δths(c

s)ds

∣∣∣∣Ft], marginal costs. The analogue of the horizontal

derivative ∆t∂ctht(c
t) for the case without hysteresis would be the time derivative ∂tf (ct, t). The

time evolution of the future marginal costs are is in the case without hysteresis. The third term is

the quadratic variance of the present marginal costs, 1
2∂

3
ctht(c

t)β2
t . It is a path-dependent analogue

of 1
2f
′′′ (ct) (βt)

2 in the case without hysteresis.

The equations Theorem 2 characterize the drift and diffusion coefficients implicitly in contrast

to the explicit form we obtained in Theorem 1. The explicit form we obtained for the stochastic

elasticity thus can be thought of as a characterization of the optimal process for small hysteresis,

or small hysteresis asymptotics.

Remark. We now show that assuming that the marginal effect of policy δths are in the class As,

we can compute Malliavin derivatives Dtδths(c
s)ds in Theorem 2 in a more detailed way.

Corollary. Let δths be in the class As, then

Dtδtgs(c
s) = ∂ctδths(c

s)Dtcs +

∫ s

t
δrδths(c

s)Dtcrdr,

where the tangent process Dtcr is given by


d(Dtcs) = (Dtαs)ds+ (Dtβs)dws, s > t

Dtct = βt.

(15)

Proof. Let us perturb the underlying Brownian motion: S(w, εz)t = wt+ε
∫ t

0 zrdr, 0 ≤ t ≤ T. Then

31



by the definition of the Malliavin derivative

ct(S(w, εz)) = ct(w) + ε

∫ t

0
Drct(w)zrdr + o(ε),

where Drct is a tangent process. Hence,

δths(c
s(S(w, εz))) = δths(c

s(w)) + ε∂csδths(c
s)

∫ s

0
Drcs(w)zrdr+

+ ε

∫ s

0
δrδths(c

s)

∫ r

0
Ducr(w)zududr + o(ε) =

= δths(c
s(w)) + ε

∫ s

0
zr

(
∂csδths(c

s)Drcs(w) +

∫ s

r
δuδths(c

s)Drcu(w)du

)
dr + o(ε).

The result follows.

This characterization is useful as it uses the tangent process which has a particularly simple

form. When c is an Itô process, its tangent process is also an Itô process with the drift and diffusion

coefficients being the Malliavin derivatives of the drift and diffusion coefficients of the process c.

6 Examples

In this section, we present a number of examples of the hysteresis functionals ht to illustrate how

to use our theoretical results. We also provide, whenever possible, an alternative derivation using

other tools. Section 6.1 is the user’s guide that describes the steps needed to apply the theory we

developed. The first example, Section 6.2, revisits the case of no hysteresis. In this case, only the

present effects of the policy are present and the functional Itô formula reduces to the usual Itô

formula. There is no need to use the total derivative formula. The second example, Section 6.3,

considers cumulative hysteresis. The effects of the polices are a function of the current policy and

the integral of the past policies. For the case of the multiplicative dependence of the effects of the

current policies and the cumulative hysteresis, the stochastic elasticity takes a very simple form.

The present marginal effects of the policy path only have the horizontal derivative which measures

how the cumulant of the past policies changes with time and all of the vertical derivatives are equal

to zero. The total derivative formula for the conditional expectation of the future marginal effects

only has the stochastic derivative component which itself has a very simple form that measures how

lengthy the effects of the stochastic shock are. We expand on this class of examples in Boulatov,

Riabov, and Tsyvinski (2020) where we analyze such cases extracting a martingale and not using
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the main tools of this paper – the functional Itô formula and the total derivative formula. Our

third example, Section 6.4, studies hysteresis that depends both on time and the past policies. This

example captures three important parts of path-dependent policies. First, there is an effect of the

present policy. Second, there is an effect of the hysteresis. The hysteresis is represented by an

integral with a kernel that has joint dependence on current time and past policies. That is, path

dependency sophisticatedly changes with both the time and evolution of the past polices. Third,

there is a joint dependence between the present and the past. For this example, we need to utilize

all of the tools developed in the paper. The functional Itô formula gives the evolution of the present

marginal effects of the policies in terms of horizontal and vertical derivatives. The total derivative

formula straightforwardly gives the evolution of the conditional expectation process in terms of the

time and stochastic derivative. We also consider a deterministic setting with hysteresis in Section

6.5. As there is no stochasticity, there is only evolution with respect to time or, rather, the history

of policies. We decompose its effects into the effects of the present and the past history. The present

marginal effect of policy then evolves as the first-order horizontal and the vertical derivatives. The

future marginal effects of policies evolve as their time derivative. In Section 6.6 we consider an

example with a tipping point in which the time when the stochastic process reaches the maximum

becomes a reference point.

6.1 The user’s guide

In order to apply results from the previous section one needs to calculate a number of derivatives of

the functional (ht)0≤t≤T . In calculation of the first order conditions (10), we need to find a Fréchet

derivative of ht:

ht(c+ z)− ht(c) = ∂ctht(c)zt +

∫ t

0
δsht(c)zsds+ o(||z||).

For the application of Dupire’s functional Itô’s formula and finding the SDE for the present effects of

the path in Section 5.1.2 and equation (12) we need to calculate the horizontal derivative ∆t∂ctht(c)

and two vertical derivatives ∂2
ctht(c), ∂

3
ctht(c). For the application of the total derivative formula

(13) and finding the evolution equation for the future effects of the path we need to calculate

two types of derivatives of δths(c): (a) time derivative ∂
∂tδths(c), and (b) the Malliavin derivatives

Dtδths(c),

In other words, we first break the first order condition for the effects of policies of the present

and the effects of the past. The dependence of variables in the past implies that any change in a

33



variable affects all the future states. We then use the functional Itô formula to derive the evolution

equation for the effect on the present and the total derivative formula for the effects on the future.

The total derivative formula also requires calculations of the Malliavin derivatives.

6.2 No hysteresis: state-dependent perturbations

We start with the simplest case – the state-dependent perturbation where h is a function of the

current state rather than a functional. Consider the perturbation ht(c) = f(ct), where f : R → R

is a smooth function. The list of derivatives becomes the following.

The Fréchet derivative of the functional is just the derivative of f :

ht(c+ z)− ht(c) = f(ct + zt)− f(ct) = f ′(ct)zt + o(||z||).

Correspondingly, the present marginal effects of policy are given by the regular derivative

∂ctht(c) = f ′(ct),

and the effects of the past are

δsht = 0 for s < t.

In particular, we see that ht ∈ At and δsht ∈ At.

We now turn to the analysis of the present effect of the policy path. The horizontal derivative

∆t (∂ctht(c)) is equal to zero. Indeed, it is defined as a limit

∆t∂ctht(c) = lim
ε→0

∂ct+εht+ε(c·,ε)− ∂ctht(c)
ε

,

where c·,ε is an extension of the path c from [0, t] to [0, t+ ε] by cs,ε = ct for t ≤ s ≤ t+ ε. It follows

that12

∆t∂ctht(c) = lim
ε→0

f ′(ct+ε,ε)− f ′(ct)
ε

= lim
ε→0

f ′(ct)− f ′(ct)
ε

= 0.

Vertical differentiation of the present marginal effect of policy is the regular differentiation of f :

∂2
ctht(c) = f ′′(ct), ∂

3
ctht(c) = f ′′′(ct).

12If we had ht (c) = f (ct, t) the only difference would be that ∆t∂ctht(c) = ∂2
ct,tf (ct, t)
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We now turn to the analysis of the expected future marginal effects. The derivative in t of the

future marginal effects in period s : δths(c), i.e. ∂
∂tδths(c) is equal to zero, since δths(c) = 0 :

∂

∂t
δths(c) = 0.

The Malliavin derivative of δths(c) is also zero, since δths(c) = 0 :

Dtδths(c) = 0.

The formula for the dynamics of the stochastic elasticity (14) becomes:

dCt =−
(

∆t∂ctht(w
t)︸ ︷︷ ︸ dt

=0

+
1

2
∂3
ctht(w

t)︸ ︷︷ ︸
=f ′′′(wt)

dt+ ∂2
ctht(w

t)︸ ︷︷ ︸
=f ′′(wt)

dwt

)
−

−
(
−δtht(wt)dt+ E

[∫ T

t
∂tδths(w

s)ds

∣∣∣∣Ft] dt+ E

[∫ T

t
Dtδths(w

s)ds

∣∣∣∣Ft] dwt︸ ︷︷ ︸
=0

)
,

and

dCt = −1

2
f ′′′(wt)dt− f ′′(wt)dwt.

We summarize the result. First, the present effect of the path from the Section 5.1.2 are given

by the standard space derivatives. The functional Itô formula reduces to the usual Itô’s formula.

Second, all of the future effects of the path from are zero, hence, the conditional expectation is

zero.

One can, of course, immediately get the result of this section by applying the Itô formula to

f ′(c∗t ), see the Appendix.

6.3 Cumulative hysteresis

Consider the hysteresis functional ht(c) = ct
∫ t

0 csds. Here, the path-dependence enters cumulatively

as the integral of the past realization. The cumulative hysteresis is then multiplicative with the

current policy ct.

We start with the Fréchet derivative of ht that appears in the first order conditions of the

problem (10). It is given by varying the whole path c[0,t] by a variation z[0,t]:

ht(c+ z)− ht(c) = (ct + zt)

∫ t

0
(cs + zs) ds− ct

∫ t

0
csds =

∫ t

0
ctzsds+ zt

∫ t

0
csds+ o(||z||).
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Correspondingly, the present marginal effects of policy are given by the integral of the path of

previous policies

∂ctht(c) =

∫ t

0
csds.

As all previous cs enter identically in the integral, the effects of the past marginally contributes ct:

δsht = ct for s < t.

In particular, we see that ht ∈ At and δsht ∈ At.

The first order process is given by (11), recalling that c∗t = wt:

Ct = −∂ctht(c∗[0,t])− E
[∫ T

t
δths(c

∗
[0,s])ds

∣∣∣∣Ft] = −
∫ t

0
wsds︸ ︷︷ ︸

Present effect

− E
[∫ T

t
wsds

∣∣∣∣Ft]︸ ︷︷ ︸
Future effect

.

Note that in the future effects it is δths(c
t) = c∗s = ws that enters as it shows how policy in period

t (t ≤ s ≤ T ) affects future period s.

We now turn to calculation of the derivatives needed for the application of the Dupire’s func-

tional Itô formula (12). Recall that the horizontal and two vertical derivatives are needed. The

horizontal derivative of the present effects of the path ∂ctht(c) is simply the time derivative of the

integral:

∆t (∂ctht(c)) = ∆t

(∫ t

0
c∗sds

)
= c∗t = wt.

The vertical differentiation of the present effects of the path ∂ctht(c) is given by bumping the path

and is equal to zero:

∂ct (∂ctht(c)) = ∂ct

(∫ t

0
c∗sds

)
= 0,

∂3
ctht(c) = 0.

We now turn to characterizing the expected future effects of policy using the total derivative

formula (8). Since the marginal effect of the policy at time t on time s, δths (ws) = ws, does not

depend on time, we get

∂t (δths(w
s)) = 0.

36



The Malliavin derivative is also simple as it measures the sensitivity of ws to the shock wt :

Dt (δths (ws)) = Dtws = 1,

and the the stochastic derivative term of the future marginal costs becomes

E

[
Dt

∫ T

t
δths(w

s)ds

∣∣∣∣Ft] = T − t.

This has a natural interpretation. The stochastic derivative measures the impact of the stochastic

shock dwt on the future marginal effects of policies. Those are represented by the integrals
∫ T
t wsds.

A shock at time t affects the future marginal effect of policy in each period sas Dtws = 1. Since

there are (T − t) future periods, the shock dwt has the effect (T − t). In other words, the stochastic

shocks for early periods t have longer lasting impact than for the later periods.

We then gather the present and the future terms to determine the dynamics of the first order

process in (14):

dCt =−
(

∆t∂ctht(w
t)︸ ︷︷ ︸ dt

=wt

+
1

2
∂3
ctht(w

t)︸ ︷︷ ︸
=0

dt+ ∂2
ctht(w

t)︸ ︷︷ ︸
=0

dwt

)
−

−
(
−δtht(wt)︸ ︷︷ ︸ dt+

=wt

E

[∫ T

t
∂tδths(w

s)ds

∣∣∣∣Ft]︸ ︷︷ ︸ dt+
=0

E

[∫ T

t
Dtδths(w

s)ds

∣∣∣∣Ft]︸ ︷︷ ︸ dwt
=T−t

)
,

or

dCt = − (T − t) dwt.

Remark 3. There are two alternative ways, without using our methodology, to derive the result.

The first is to note that E

[∫ T
t wsds

∣∣∣∣Ft] = (T − t)wt and then

dCt = −wtdt− ((T − t) dwt − wtdt) = − (T − t) dwt.

The second approach that works in a variety of other circumstances is in extracting a martingale

and using the Clark-Ocone formula to provide its explicit characterization in terms of Malliavin

derivatives. We can rewrite

E

[∫ T

t
wsds

∣∣∣∣Ft] = E

[∫ T

0
wsds

∣∣∣∣Ft]− ∫ t

0
wsds,
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and

Ct = −
(∫ t

0
wsds+ E

[∫ T

0
wsds

∣∣∣∣Ft]− ∫ t

0
wsds

)
= −E

[∫ T

0
wsds

∣∣∣∣Ft] .
The Clark-Ocone formula gives the representations of the martingale where Mt = E

[∫ T
0 wsds

∣∣∣∣Ft]
as

dMt = E

[
Dt

∫ T

0
wsds

∣∣∣∣Ft] dwt = E

∫ T

t
Dtws︸ ︷︷ ︸

=1

ds

∣∣∣∣Ft
 dwt = (T − t) dwt.

We expand on this class of examples in Boulatov, Riabov, and Tsyvinski (2020) where we analyze

a more general class of environments which can be solved by extracting a martingale and not using

the main tools of this paper – the functional Itô formula and the total derivative formula.

6.4 Hysteresis with time and past dependency

Consider the functional ht(c
t) = h(ct,

∫ t
0 at,scsds), it describes the interaction of the policy at the

present moment of time, and average of past values. The averaging is defined by the smooth kernel

at,s which measures how policy in period s affects period t. For example, at,s = 1
t corresponds to

the usual averaging. Importantly, the kernel depends on current time t.

This example captures three important parts of history-dependent policies. First, there is an

effect of the present which is represented by the first argument, ct. Second, there is an effect of

the past which is represented by the second argument,
∫ t

0 at,scsds. Here, the past enters as the

integral of the path of the previous consumptions where the path enters through the kernel at,s

that depends both on the current policy t and the path of previous policies.13 Third, there is a

joint dependence h (., .) between the present and the past.

The Fréchet derivative of ht that appears in the first order conditions (10) is given by changing

the whole path ct by a variation zt:

ht(c+ z)− ht(c) = h

(
ct + zt,

∫ t

0
at,s (cs + zs) ds

)
− ht(c) =

= zth
′
1

(
ct,

∫ t

0
at,scsds

)
+

∫ t

0
at,sh

′
2

(
ct,

∫ t

0
at,rcrdr

)
zsds+ o(||z||).

Correspondingly, the present marginal effects of policy are given by the integral of the path of

13One can easily modify this part to be some more complicated path-dependent object – for example,
∫ t
0
α
(
c[0,s]

)
ds,

where α is a functional of the path or to have arbitrary interaction of the past effects; or allow for ht (c) =∫ t
0

∫ t
0
gt(cs, cr)dsdr), ... where now there is a joint dependence on the past values cs and cr via a repeated integral.
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previous policies

∂ctht(c) = h′1

(
ct,

∫ t

0
at,scsds

)
.

The marginal effect of policy in time t n the past period s (s ≤ t ≤ T ) is given by:

δsht(c
t) = at,sh

′
2

(
ct,

∫ t

0
at,rcrdr

)
.

In particular, we see that ht ∈ At and δsht ∈ At.

The first order condition (10) is

wt = c
(ε)
t + εh′1

(
ct,

∫ t

0
at,scsds

)
+ εE

[∫ T

t
as,th

′
2

(
cs,

∫ s

0
as,rcrdr

)
ds

∣∣∣∣Ft] ;

and the stochastic elasticity (11) is given by, recalling that c∗t = wt:

Ct = −h′1
(
wt,

∫ t

0
at,swsds

)
︸ ︷︷ ︸

Present effect

− E
[∫ T

t
as,th

′
2

(
ws,

∫ s

0
as,rwrdr

)
ds

∣∣∣∣Ft]︸ ︷︷ ︸
Future effect

.

Note that in the future effects it is δths(c
t) = as,th

′
2

(
ws,
∫ s

0 as,rwrdr
)

that enters as the kernel as,t

measures how policy in period t (t ≤ s ≤ T ) affects future period s.

The conditional expectation E

[∫ T
t as,th

′
2

(
ws,
∫ s

0 as,rwrdr
)
ds

∣∣∣∣Ft] is intractable for direct com-

putations, as it requires infinite-dimensional integration over the distribution of the process (w(r)−

w(t))t≤r≤s. However, the semimartingale decomposition is obtained immediately after an applica-

tion of the total derivative formula (8).

We now turn to calculation of the derivatives needed for the application of the Dupire’s func-

tional Itô formula (12). These derivatives are used in determining the decomposition of the present

effects of the path ∂ctht(c) in the first order conditions of the perturbed problem (10). Recall that

the horizontal and two vertical derivatives are needed.

The horizontal derivative of the present effects of the path ∂ctht(c) is given by freezing the path

at time t and extending it with time:

∆t∂ctht(c) = ∆th
′
1

(
wt,

∫ t

0
at,swsds

)
= h′′12

(
wt,

∫ t

0
at,swsds

)(
at,twt +

∫ t

0
(∂tat,s)wsds

)
.

Vertical differentiation of the present effects of the path ∂ctht(c) is given by bumping the path. It
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reduces to the differentiation in the first argument:

∂2
ctht(c) = ∂ct

(
h′1

(
wt,

∫ t

0
at,swsds

))
= h′′11

(
wt,

∫ t

0
at,swsds

)
,

∂3
ctht(c) = ∂2

ct

(
h′1

(
wt,

∫ t

0
at,swsds

))
= h′′′111

(
wt,

∫ t

0
at,swsds

)
.

Note that since we are already finding the derivatives of the marginal effect ∂ctht(c), the mixed

time-derivative and the second and third order space derivatives appear (rather than just the time

and first and second order derivatives).

We next calculate the derivatives needed for the application of the total derivative formula (13)

to characterize the conditional expectation of the marginal effects of policy. The time derivative is

given by

∂t (δths(w
s)) = ∂t

(
as,th

′
2

(
ws,

∫ s

0
as,rwrdr

))
= (∂tas,t)h

′
2

(
ws,

∫ s

0
as,rwrdr

)
.

The Malliavin derivative is given by

Dt (δths(w
s)) = Dt

(
as,th

′
2

(
ws,

∫ s

0
as,rwrdr

))
=

= as,th
′′
12

(
ws,

∫ s

0
as,rwrdr

)
Dtws︸ ︷︷ ︸

=1

+ as,th
′′
22

(
ws,

∫ s

0
as,rwrdr

)
Dt

(∫ s

0
as,rwrdr

)
︸ ︷︷ ︸

=
∫ s
t as,rDtwrdr=

∫ s
t as,rdr

.

Gathering the terms we find the differential of the first order process:

dCt = −h′′12

(
wt,

∫ t

0
at,swsds

)(
at,twt +

∫ t

0
(∂tat,s)wsds

)
dt−

−
(
h′′11

(
wt,

∫ t

0
at,swsds

)
dwt +

1

2
h′′′111

(
wt,

∫ t

0
at,swsds

)
dt

)
−

−
(
− at,th′2

(
wt,

∫ t

0
at,rwrdr

)
︸ ︷︷ ︸

δtht(wt)

dt+ E

[∫ T

t
(∂tas,t)h

′
2

(
ws,

∫ s

0
as,rwrdr

)
ds

∣∣∣∣Ft]︸ ︷︷ ︸
E

∫ T
t ∂tδths(ws)ds

∣∣∣∣Ft
dt+

+ E

[∫ T

t
(as,th

′′
12

(
ws,

∫ s

0
as,rwrdr

)
+ as,th

′′
22

(
ws,

∫ s

0
as,rwrdr

)∫ s

t
as,rdr)ds

∣∣∣∣Ft]︸ ︷︷ ︸
E

Dt ∫ Tt δths(ws)ds

∣∣∣∣Ft
dwt.
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Remark 4. The presented calculation can be done without the use of the total derivative formula

when the occurrence of t under the integral in the conditional expectation can be removed, e.g. when

as,t = g̃(t)g(s), and a martingale can be extracted. Indeed, then future effects can be represented

as

g̃(t)E

[∫ T

t
g(s)h′2

(
ws,

∫ s

0
as,rwrdr

)
ds

∣∣∣∣Ft] = −g̃(t)

∫ t

0
g(s)h′2

(
ws,

∫ s

0
as,rwrdr

)
ds+ g̃(t)Mt,

where

Mt = E

[∫ T

0
g(s)h′2

(
ws,

∫ s

0
as,rwrdr

)
ds

∣∣∣∣Ft] .
Now the semimartingale decomposition immediately follows from the Itô formula. This type of

examples (with exponential functions g, g̃) where studied by Detemple and Zapatero (1991) in the

context of asset prices under habit formation.

6.5 Deterministic hysteresis

In this section, we consider a deterministic case. Assume that the underlying process shock θ is

deterministic: dθt = b(θt)dt. Then optimal policies c∗ and cε are deterministic as well:

c∗t = θt.

Our assumption of ht belonging to the class At allows us to neatly decompose its effects into those

of the effects of the present and the past history

cεt = θt − ε
(
∂ctht(c

ε) + ε

∫ 1

t
δths(c

ε)ds

)
.

Differentiating the latter relation in ε at ε = 0 we get

Ct = −
(
∂ctht(c

∗) +

∫ 1

t
δths(c

∗)ds

)
.

Now, apply the functional Itô formula (7) to ∂ctht(c
∗) and note that there are no second order

vertical derivatives of ∂ctht(c
∗) due to the absence of stochasticity:

d (∂ctht(c
∗)) =

(
∆t∂ctht(c

∗) + ∂2
ctht(c

∗)b(c∗t )
)
dt.
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The future marginal effects of policy are also deterministic and we can simply differentiate
∫ 1
t δths(c

∗)ds

in time.

dCt = −
(

∆t∂ctht(c
∗) + ∂2

ctht(c
∗)b(c∗t )︸ ︷︷ ︸

d(∂ctht(c∗))

)
dt−

(
−δtht(c∗) +

∫ 1

t

∂

∂t
δths(c

∗)ds)︸ ︷︷ ︸
d(

∫ 1
t δths(c

∗)ds))

)
dt.

The present effects of the policy ∂ctht(c
∗) change with time as the horizontal derivative ∆t and

with the movement in the path of the policy as the vertical derivative ∂ct . The cumulative future

marginal effects of the policy
∫ 1
t δths(c

∗)ds change as the relative difference between the time change

in the cumulant of the future marginal effects ∂
∂tδths(c

∗)ds relative to today’s marginal effect of

the policy δtht(c
∗). This case is interesting as a stand alone result that allows to focus on history

dependence without stochasticity.

6.6 A “tipping point”

The main premise of the literature on tipping points discussed in 3.2 is that there is some level of

emissions the crossing of which leads to a different behavior of the climate system. For example,

upon reaching the threshold the damages become larger or become irreversible. We now show an

example where instead of considering a threshold we focus on the time when the climate variable

achieves its maximum upto any given period of time.

Let θt be the time when the Brownian motion w achieves its maximum over [0, t] :

θt = arg max
s∈[0,t]

ws

and it is known that θt is a.s. unique. Let f(x) be an absolutely continuous function such that

f(x) = 0 for x ≤ 0. Consider the objective function

E

[∫ T

0

(
−1

2
(ct − wt)2 −

∫ t

0
f(s− θt)csds

)
dt

]
.

One can think of this setting as follow. In each period t, we consider the time θt when the maximal

level of w has been achieved – say, the time of the temperature record. The damages then are

counted as the weighted by f (s− θt) emissions from the time of the record. When the new record

is achieved, the weighting restarts. This example can be significantly expanded by having the

weighting functions change with time or the weighting functions that weigh both the time prior
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to θt and the time after θt (a form of highlighting the “salience” of the record time) but we chose

to present the simple form here. That is, there is a salient “tipping” or reference point following

which the damages change their behavior.

The first-order conditions give us the optimal policy in a closed form is given by

ct = wt − E
[∫ T

t
f(t− θs)ds

∣∣∣∣Ft] .
The process ξt =

∫ T
t f(t− θs)ds is absolutely continuous and square integrable. Indeed,

ξt =

∫ T

t

∫ t

0
f ′(x− θs)dxds.

Let us represent ξt using the Clark-Ocone formula

ξt = Eξt +

∫ T

0
gt,sdws.

By the total derivative formula of Proposition 1, we immediately find that c is an Itô process and

dct =

(
1− gt,t

)
dwt − E[∂tξt|Ft]dt. (16)

Remark 5. Let us try to get this result using standard methods. We compute the process ct

explicitly as a functional of the Wiener process w. At first we find the conditional expectation

E[f(t− θs)|Ft] = E

[∫ ∞
0

f ′(x)1x<t−θsdx

∣∣∣∣Ft] =

=

∫ t

0
f ′(x)P (θs < t− x|Ft)dx =

∫ t

0
f ′(x)P

(
max

[0,t−x]
w > max

[t−x,s]
w

∣∣∣∣Ft) dx =

=

∫ t

0
f ′(x)1max[0,t−x] w>max[t−x,t] wP

(
max
[0,t−s]

w < z

) ∣∣∣∣
z=max[0,t−x] w−wt

dx =

=

∫ t

0
f ′(x)1max[0,t−x] w>max[t−x,t] w

(
2Φ

(
max[0,t−x]w − wt√

t− s

)
− 1

)
dx.
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Hence,

ct = wt −
∫ t

0
f ′(x)1max[0,t−x] w>max[t−x,t] w

∫ T

t

(
2Φ

(
max[0,t−x]w − wt√

t− s

)
− 1

)
dsdx =

= wt −
∫ t−θt

0
f ′(x)

∫ T

t

(
2Φ

(
max[0,t]w − wt√

t− s

)
− 1

)
dsdx =

= wt − f(t− θt)
∫ T

t

(
2Φ

(
max[0,t]w − wt√

t− s

)
− 1

)
ds.

We get the representation of the form

ct = wt − f(t− θt)g(max
[0,t]

w − wt).

Now one can try two standard approaches to get the semimartingale decompostion. The first is to

apply the Itô formula. In order to do this, we see that

ct = F (t, wt, θt,Mt),

where Mt = max[0,t]w, and F (t, x, y, z) = x − f(t − y)g(z − x). Hence the Itô formula will lead

to a semimartingale decomposition that contains terms dθt, dMt, and the sum over jumps of the

process θt. It is not obvious that the process ct is an Itô process.

The second approach is to apply the functional Itô formula. In order to do this the functional

ct must be extended to a C1,2
b -functional (in the sense of Cont and Fournie) on the space of cadlag

paths. However, if such extension is possible, vertical derivatives of ct must be equal to zero and

the functional Itô formula would lead to semimartingale decomposition dct = αtdt, which is not

the case.

Instead, the application of our methodology give a straightforward and compact answer of the

equation (16).

7 Discussion

In this section, we discuss some of the more technical issues behind the results.
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7.1 Why do we need both the functional Itô formula and the total derivative

formula?

The stochastic elasticity Cht is described in (11) via two terms: a vertical derivative ∂ctht(c) of the

perturbation functional ht and the conditional expectation E[
∫ 1
t δths(c

∗)ds|Ft]. Both are functionals

of the path (cs)0≤s≤t but we need to use different methods to study them.

We assume that the functional ∂ctht(c) satisfies conditions from Dupire (2019). This is a natural

assumption, since ∂ctht(c) is a well-defined time-dependent functional of the path (cs)0≤s≤t.

However, in the case of the functional E[
∫ 1
t δths(c

∗)ds|Ft] the same assumption is not generally

suitable. The application of the Dupire’s functional Itô formula requires that

E
[∫ 1

t
δths(c

∗)ds|Ft
]

= qt(m),

where m is a certain semimartingale and (qt)t∈[0,T ] is smooth in the sense of Dupire (2019) and

Cont and Fournie (2013) family of path-dependent functionals. It may be a difficult stand-alone

problem even to verify that such representation holds. Consider, for example, the case when

E
[∫ 1

t
δths(c

∗)ds|Ft
]

=

∫ t

0
ft(c

∗
s)dc

∗
s,

and ft is smooth in t. The stochastic integral is defined for almost all realizations of c∗ only and it

is unclear how we can extend it smoothly to all continuous paths.14

Instead we assume that the expression under the conditional expectation is smooth in t and

then apply the total derivative formula in Proposition 1 to prove directly that Ch is an Itô process

and to find its semimartingale decomposition as well.

In other words, the functional Itô formula is useful when the functional of the path is already

well-defined. When faced with a conditional expectation process such as the one we considered

here or that frequently occurs in a variety of other economic problems, the total derivative formula

allows to straightforwardly calculate its semimartingale decomposition.

7.2 Assumptions on smoothness of the functionals

Our results are valid for path-dependent functionals h = (ht)0≤t≤T such that: (1) ht ∈ At; (2)

t→ ∂ctht is horizontally and twice vertically differentiable; (3) t→ δths(c
s) is absolutely continuous;

14Recall that the functional It“o formula is applicable to functionals defined on a larger space of cádlág paths.
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(4) w → δths(c
s(w)) is Malliavin differentiable.

The first restriction that ht belongs to the class At allows to calculate the first order conditions

in a tractable form. The second restriction is a typical condition needed for the functional Itô

formula to be valid. Last two conditions are imposed for the ease of presentation and also they are

satisfied in all our examples. They are needed for the total derivative formula to be applicable for

the process

t→ E[

∫ T

t
δths(c

s)ds|Ft].

However, these conditions can be considerably relaxed. It is enough to find an absolutely continuous

square integrable process ξt, such that

E[

∫ T

t
δths(c

s)ds|Ft] = E[ξt|Ft].

As a simple example consider the process

δtgs(cs) = wt.

This process is not absolutely continuous, however, E[wt|Ft] = E[wT |Ft] and one can take ξt =

(T − t)wT .

7.3 Relationship to the Clark-Ocone formula

It is instructive to compare Proposition 1 to the well-known Clark-Ocone formula. Recall that

F = (Ft)t∈[0,T ] is a filtration generated by Wiener process (wt)t∈[0,T ]. Every F-martingale (Mt)t∈[0,T ]

can be represented as a conditional expectation process. Indeed, from the definition of a martingale

we get Mt = E[MT |Ft]. Conversely, every process of the form

Zt = E[ξ|Ft],

where ξ is an integrable random variable, is a martingale. This follows from the basic properties

of conditional expectations:

E [Zt+h|Ft] = E [E [ξ|Ft+h] |Ft] = E [ξ|Ft] = Zt.
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Moreover, every F-martingale Zt = E[ξ|Ft] is an Itô process and if ξ is Malliavin differentiable, the

Clark-Ocone formula gives

Zt = Z0 +

∫ t

0
E[Dsξ|Fs]dws,

and the differential of Z :

dZt = E[Dtξ|Ft]dwt.

The processes that we consider in the Proposition 1 are of the different type - they are of the

form

Xt = E[ξt|Ft]

with ξ = (ξt)t∈[0,T ] being an absolutely continuous process. Such process are not martingales in

general. The simplest example is provided with deterministic non-constant process ξ, e.g. if we

take ξt = t, then Xt = t and this is obviously not a martingale.

The Clark-Ocone formula is then a partial case of Proposition 1 corresponding to constant in t

process (ξt)t∈[0,T ]. For the proof and general versions of Proposition 1 we refer to the Appendix.

7.4 Discussion of the optimal control approach

A natural question is whether we can use optimal control and dynamic programming to simplify

the analysis.

One of the standard approaches for solving optimization problems is the dynamic programming

principle. It can be used for maximization of functionals of the type (see see Fabbri, Gozzi, and

Swiech 2017 for the exposition of infinitely dimensional problems):

V (a) = E

∫ T

0
l(t, xt, a(t))dt,

where a is the control process, the process x satisfies certain SDE whose coefficients depend on the

control a as well. This framework is not well suited for our problem, as in our case the dependence

of the expression under the integral is a path-dependent functional of the policy c:

V (c) = E

∫ T

0

(
−1

2
(ct − wt)2 − ht(ct)

)
dt.

Hence, to fit the framework of the optimal control we must consider the whole path ct as the value
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of the control a(t). That is, the control space becomes the set of paths ∪t∈[0,T ]C[0, t]. This leads to

the consideration of the cost functional

V (t, x, ct) = max
a∈C[t,T ]

Et,x

∫ T

t

(
−1

2
(as − ws−t − x)2 − hs(ct ⊗ as)

)
ds.

The HJB equation then becomes a path-dependent PDE that contains infinite-dimensional opti-

mization over trajectories of the control. Thus the analysis may be as complicated as our original

problem. For example, Cosso et. al (2018) use functional Itô calculus to write the path-dependent

HJB equation, prove that the value function is a viscosity solution and prove a partial comparison

principle.

8 Conclusion

Path-dependent policies are a feature of a number of economic models. Doing a lot of sports only

when young leads to a very different health outcome than exercising lightly throughout life, even

though the cumulative lifetime exercise may be the same. Moreover, the importance of the previous

pattern of exercise may change with time. For example, intensively training several times a week

is best when young while a steady pattern of light exercise during a week may be preferable when

older. Missing a credit card payment twice in a row in a ten year period leads to a very different

credit history than missing a payment once every five years. The consequence of the same sequence

of non-payments for the credit history may be quite different in a recession versus a boom. These

policies are not just a function of the current state or time but depend on the whole trajectory of

the past actions. Moreover, the dependency itself is changing with time.

We developed a methodology for analysis of general class of policy with path-dependent effects

in an uncertain environment with forward looking agents. The primary difficulty that arises in

such models is that the optimizing agents foresee such path dependency and the actions they take

incorporate the expectation of the future effects. We show that three ingredients are needed for the

analysis of such problems. First, we introduced a general class of path-dependent functionals that

allows to tractably write the first order conditions for the problem. Second, the recently developed

functional Itô calculus allows to describe the dynamics of the present effect of the past choices.

Third, the total derivative formula that we develop in this paper allows to derive the dynamics

of the conditional expectation processes of the future effects of today’s choices. Our analysis

shows that even when policy has very small contemporaneous effects, it may have large effects
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due to either interaction with the past choices or due to the expected future effects. The effects

of the past are represented by the magnitude of horizontal derivatives and higher order vertical

derivative. The future expected effects are determined by the magnitude of the time derivative and

by the stochastic derivatives. We believe that the methodology we develop in, on purpose, a stark

underlying environment will facilitate analysis of a wide class of other economic problems.
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9 Appendix

9.1 Remark 1 in Section 4.1

The objective function (3) can be written as follows:

E
∫ T

0
(−1

2
(ct − θt)2 − εc t

2
)dt = E

∫ T

0
(−1

2
(ct − θt)2)dt− E

∫ T

0
εc t

2
dt =

= E
∫ T

0
(−1

2
(ct − θt)2)dt− 2E

∫ T
2

0
εcsds =

= E
∫ T

2

0
(−1

2
(ct − θt)2 − 2εct)dt+ E

∫ T

T
2

(−1

2
(ct − θt)2)dt.

The first-order conditions become 
ct = θt − 2ε, t < T

2

ct = θt, t >
T
2 ,

which implies that the optimal policy has a jump at t = T
2 .

9.2 An example with contemporaneous policies

In this section, we develop a simple example of introducing additional effects of policies that can

be easily handled by the usual Itô formula. That is, there is no hysteresis and policy only has

contemporaneous effects.

Consider an additional effect of policies given by f(ct), where f : R→ R is a smooth function:

max
c

E
∫ T

0
(−1

2
(ct − wt)2 − εf(ct))dt,

and ε is a parameter. The first order conditions are given by

cεt = wt − εf ′ (cεt) , (17)

and equate the marginal benefit of the policy tracking the process wt with the additional marginal

effects εf ′ (cεt) .
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9.2.1 Stochastic elasticity and its dynamics

We are particularly interested in the case of ε→ 0. One can think about this as a small parameter

asymptotics for the problem. Let Cft be a first variation process:

cεt = c∗t + εCft + o(ε).

The process Cft represents how optimal policy process changes locally in response to the intro-

duction of a small effect of policyf . One can think of Cft as a notion of stochastic elasticity that

represents the change in the whole process when policy has additional effects f .

Differentiating the first order condition (17) with respect to ε and evaluating at ε = 0, we get

Cft = f ′(c∗t ).

Without any restrictions on f , the process Cft may be quite arbitrary, for example, discontinu-

ous. However, since we assumed smoothness of f , Itô’s lemma implies that the process Cft is a

semimartingale. Moreover, its decomposition is given as (using also that c∗t = wt) in closed form:

dCft = α(wt)dt+ β(wt)dwt,

where

α(wt) =
1

2
f ′′′(wt),

β(wt) = f ′′(wt). (18)

9.2.2 Dynamics of optimal policy

We now turn to characterizing the optimal policy cεt rather than the first variation process. Let the

process cεt have the form

dcεt = αε (cεt) dt+ βε (cεt) dwt.
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Applying Itô formula to (17), we can find the dynamics of the process cεt:

dcεt = dwt − ε
(
f ′′ (cεt) dc

ε
t +

1

2
f ′′′ (cεt) (βεt )

2 dt

)
,

αεtdt+ βεtdwt = dwt − ε
(
f ′′ (cεt)α

ε
t +

1

2
f ′′′ (cεt) (βεt )

2

)
dt− εf ′′ (cεt)βεtdwt.

The drift and diffusion coefficients are then given by collecting terms at dt and dwt:

αεt (cεt) = −ε
1
2f
′′′ (cεt) (βεt )

2

1 + εf ′′ (cεt)
,

βεt (cεt) =
1

1 + εf ′′ (cεt)
. (19)

The coefficients in (19) are given as a system of coupled equations and themselves depend on the

process cεt. This is in contrast to the coefficients of the stochastic elasticity given in (18) which are

given in closed form as they are evaluated at the process c∗t = cε=0
t = wt.

The key to tractability in the simple setting of this section is Itô lemma. However, Itô lemma

only applies to functions and not the functionals. That is, it does not apply to the path-dependent

effects of policies studying which is the main goal of the rest of this paper.

It is useful to summarize these results in terms of how the magnitude of the additional effects

influences policy. This parallels the discussion of Dixit (1991), Reis (2006) and Alvarez, Lippi, and

Paciello (2011, 2016) who show that in the environments with uncertainty and adjustment frictions

the costs up to the fourth order may have first order effects on the dynamics of optimal policies.

In our setting, since the additional effects f are smooth, we show that the effects up to the third

order, that is the second and the third derivative of f will have the first-order effects. The first

and second derivative of the marginal effects (that is, the second and third derivative of f) matter

for the drift of the optimal policy – this is the evolution of optimal policy with respect to time.

The first derivative of the marginal effects matters for the diffusion coefficients – this is response of

optimal policy to stochastic shocks. Importantly, the dynamics of the optimal policy is not directly

influenced by either the past or the future evolution of the policies.

9.3 Vertical derivatives and the class At of functionals

The functional h : C[0, t]→ R is said to be in the class At if for each path c ∈ C[0, t] there exists a

number ∂cth(c) and an integrable function (δsh(c))s∈[0,t], such that the following asymptotic relation
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holds for any c ∈ C[0, t] :

h(c+ z) = h(c) + ∂cth(c) · zt +

∫ t

0
δsh(c) · zsds+ o(||z||), z → 0.

The number ∂cth(c) is the derivative of h along the value of the path (cs)s∈[0,t] at time t (i.e. the

derivative along the present value). The function (δsh(c))s∈[0,t], represents the integrated influence

of the past on the variation of the functional.

Lemma 5. Assume that the functional h ∈ At admits a continuous extension to the space D[0, t] of

cadlag paths (equipped with the Skorokhod topology). Then the functional h is vertically differentiable

at every c ∈ C[0, t], and the vertical derivative coincides with ∂cth(c).

Proof. Fix α > 0. There exists δ > 0 such that for any z ∈ C[0, t] with ||z|| ≤ δ,

∣∣∣∣h(c+ z)− h(c)− ∂cth(c) · zt −
∫ t

0
δsh(c) · zsds

∣∣∣∣ ≤ α||z||.
The function et ∈ D[0, t] can be approximated in the Skorokhod topology by continuous functions

z(n), such that 0 ≤ z(n) ≤ 1, z
(n)
s = 0 for s ≤ t− 1

n , z
(n)
t = 1. We have for all ε ≤ δ

∣∣∣∣h(c+ εz(n))− h(c)− ∂cth(c) · ε− ε
∫ t

t− 1
n

δsh(c) · z(n)
s ds

∣∣∣∣ ≤ αε||z(n)|| = αε.

Dividing by ε we get

∣∣∣∣h(c+ εz(n))− h(c)

ε
− ∂cth(c)

∣∣∣∣ ≤ α+

∫ t

t− 1
n

|δsh(c)|ds

Taking n→∞, ∣∣∣∣h(c+ εet)− h(c)

ε
− ∂cth(c)

∣∣∣∣ ≤ α.
Since α > 0 is arbitrary, this proves that the vertical derivative of h exists and is equal to ∂cth(c).

9.4 Proof of Claim 2

We recall that the class AT consists of functionals g : C[0, T ]→ R such that for all c, z ∈ C[0, T ]

g(c+ εz) = g(c) + ε∂ctg(c)zt + ε

∫ T

0
δsg(c)zsds+ o(ε), ε→ 0.
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For any function c ∈ C[0, T ] introduce the transformation

(R(n)c)t = e−n(T−t)cT + n

∫ T

t
e−n(s−t)csds.

The function R(n)c solves the problem


dR(n)c
dt = −n(ct − (R(n)c)t)

(R(n)c)T = cT

Hence, R(n)c → c uniformly on [0, T ]. Given any Frechet differentiable functional g : C[0, T ] → R,

consider

g(n)(c) = g(R(n)c).

Fix c ∈ C[0, T ] and let the measure µ be the Frechet derivative of g at R(n)c.

g(n)(c+ εz) = g(R(n)c+ εR(n)z) = g(R(n))(c) + ε

∫ T

0
(R(n)z)sµ(ds) + o(ε) =

= g(n)(c) + ε

∫ T

0

(
e−n(T−s)zT + n

∫ T

s
e−n(r−s)zrdr

)
µ(ds) + o(ε) =

= g(n)(c) + ε

(∫ T

0
e−n(T−s)µ(ds)

)
zT + ε

∫ T

0

(∫ r

0
e−n(r−s)µ(ds)

)
zrdr + o(ε)

So, g(n) ∈ AT . Every differentiable functional is a pointwise limit of functionals from the class AT .

9.5 Total derivative formula: a general version of Proposition 1

Let ζ = (ζt)t∈[0,T ] be a measurable process. We will say that ζ is square integrable, if E
∫ T

0 ζ2
sds <∞.

We say that a measurable stochastic process ξ = (ξt)t∈[0,T ] is absolutely continuous, if ξ0 is

square integrable and there exists a square integrable process (ζt)t∈[0,T ], such that

ξt = ξ0 +

∫ t

0
ζsds, 0 ≤ t ≤ T. (20)

Observe that an absolutely continuous process ξ satisfies sup0≤t≤T Eξ2
t <∞ and is a.s. continuous.

It is important that an absolutely continuous process need not be adapted. Since the processes

under consideration are square integrable and measurable with respect to a Wiener process w, their
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values can be represented as stochastic integrals. Namely,

ξt = Eξt +

∫ T

0
gt,sdws, ζt = Eζt +

∫ T

0
ht,sdws, 0 ≤ t ≤ T, (21)

where gt = (gt,s)s∈[0,T ] and ht = (ht,s)s∈[0,T ] are progressively measurable (in s) square integrable

processes. We need one technical result on the regularity of the process gt.

Lemma. For each t ∈ [0, T ] and almost all s ∈ [0, T ]

gt,s = g0,s +

∫ t

0
hr,sdr a.s.

In particular, for almost all s ∈ [0, T ] the process t→ gt,s has a continuous modification.

Proof. Let u = (us)s∈[0,T ] be an arbitrary progressively measurable square integrable process. Using

Itô’s isometry we compute

E
∫ T

0
gt,susds = E

∫ T

0
gt,sdws

∫ T

0
usdws = Eξt

∫ T

0
usdws =

= Eξ0

∫ T

0
usdws +

∫ t

0

(
Eζr

∫ T

0
usdws

)
dr =

= E
∫ T

0
g0,susds+

∫ t

0

(
E
∫ T

0
hr,susds

)
dr = E

∫ T

0

(
g0,s +

∫ t

0
hr,sdr

)
usds.

Since the latter holds for arbitrary u we deduce that gt = g0 +
∫ t

0 hrdr as elements of L2(Ω ×

[0, T ]).

Further we will always deal with a continuous in t modifications of processes t→ gt,s.

Proposition. Let η = (ηt)t∈[0,T ] be a square integrable progressively measurable process. Then η is

an Itô process if and only if it can be represented in the form ηt = E[ξt|Ft] for some square integrable

absolutely continuous process ξ = (ξt)t∈[0,T ]. In this case the semimartingale representation of η is

given by

dηt = E[ζt|Ft]dt+ gt,tdwt,

where processes ζ and gt are determined from (20), (21).

Proof. Assume that η is an Itô process. Then it can be written in the form

ηt = η0 +

∫ t

0
αsds+

∫ t

0
βsdws, 0 ≤ t ≤ T.
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Introduce the process

ξt = η0 +

∫ T

0
βsdws +

∫ t

0
αsds.

Observe that the process ξ is an absolutely continuous process. Since stochastic integrals are

martingales, we deduce that

E [ξt|Ft] = η0 +

∫ t

0
αsds+ E

[∫ T

0
βsdws|Ft

]
= η0 +

∫ t

0
αsds+

∫ t

0
βsdws = ηt.

Conversely, assume that ηt = E[ξt|Ft] with some absolutely continuous process ξ. Related processes

ζ, gt are defined in (20), (21). Consider the process

Mt = ηt − η0 −
∫ t

0
E[ζr|Fr]dr, 0 ≤ t ≤ T.

We verify that the process M is a martingale. Indeed, for s < t we compute

E[Mt|Fs] = E
[
ηt − η0 −

∫ t

0
E[ζr|Fr]dr|Fs

]
=

= E
[
E[ξt|Ft]− η0 −

∫ t

0
E[ζr|Fr]dr|Fs

]
=

E[ξt|Fs]− η0 −
∫ t

s
E[ζr|Fs]dr −

∫ s

0
E[ζr|Fr]dr =

= E
[
ξs +

∫ t

s
ζrdr|Fs

]
− η0 −

∫ t

s
E[ζr|Fs]dr −

∫ s

0
E[ζr|Fr]dr =

= E [ξs|Fs]− η0 −
∫ s

0
E[ζr|Fr]dr = ηs − η0 −

∫ s

0
E[ζr|Fr]dr = Ms.

As a Wiener martingale, the process M has a representation as a stochastic integral. Since M0 = 0

the representation is of the form:

Mt =

∫ t

0
vsdws

for some progressively measurable square integrable process v = (vs)s∈[0,T ]. To find this process we

use Itô’s isometry. For arbitrary progressively measurable square integrable process u = (us)s∈[0,T ],
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we have

E
∫ T

0
vsusds = E

∫ T

0
vsdws

∫ T

0
usdws = EMT

∫ T

0
usdws =

= E
(
ξT − η0 −

∫ T

0
E[ζr|Fr]dr

)∫ T

0
usdws = E

(
ξT

∫ T

0
usdws

)
−
∫ T

0
E
(
ζr

∫ r

0
usdws

)
dr =

= E
∫ T

0
gT,susds−

∫ T

0
E
∫ r

0
hr,susdsdr = E

∫ T

0

(
gT,s −

∫ T

s
hr,sdr

)
usds.

From the previous Lemma we deduce

vs = gT,s −
∫ T

s
hr,sdr = g0,s +

∫ s

0
hr,sdr = gs,s.

Finally, equality

ηt = η0 +

∫ t

0
E[ζs|Fs]ds+Mt = η0 +

∫ t

0
E[ζs|Fs]ds+

∫ t

0
gs.sdws

implies the needed semimartingale representation of η.

Remark. For almost all t ∈ [0, T ] the process ζt is the time-derivative of the process ξt. If we assume

that ξt is Malliavin differentiable, then the Clark-Ocone formula implies

gt,t = E [Dtξt|Ft] .

In these terms the result of the theorem can be written as

dE [ξt|Ft] = E [∂tξt|Ft] dt+ E [Dtξt|Ft] dwt,

which is the motivation behind the term “total derivative formula”.

9.6 Characterization of Itô processes: converse of Proposition 1

The total derivative formula states that for any square integrable absolutely continuous process

(ηt)t∈[0,T ], the process ξt = E[ηt|Ft] is an Itô process. In this section we give the converse statement.

Claim. For any square integrable Itô process (ξt)t∈[0,T ] there exists an absolutely continuous process

(ηt)t∈[0,T ] such that

ξt = E[ηt|Ft].
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Proof. By the definition of the Itô process, there exist adapted square integrable processes (αt)t∈[0,T ]

and (βt)t∈[0,T ] such that

ξt = ξ0 +

∫ t

0
αsds+

∫ t

0
βsdws.

We simply define

ηt = ξ0 +

∫ t

0
αsds+

∫ T

0
βsdws.

The process η is absolutely continuous, and

E[ηt|Ft] = ξ0 +

∫ t

0
αsds+ E

[∫ T

0
βsdws

∣∣∣∣Ft] =

= ξ0 +

∫ t

0
αsds+

∫ t

0
βsdws = ξt.
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Kobayashi, E. Kriegler, L. Mundaca, R. Séférian, and M.V.Vilariño, 2018: Mitigation Pathways

Compatible with 1.5°C in the Context of Sustainable Development. In: Global Warming of 1.5°C.

An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels

and related global greenhouse gas emission pathways, in the context of strengthening the global

response to the threat of climate change, sustainable development, and efforts to eradicate poverty
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