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1 Introduction and Epistemological Background

The structural econometric approach has a long tradition in applied microeconomics. In this

approach, the underlying economic model is made explicit and the econometric analysis is

inextricably intertwined with this model. While there are various definitions of “structure”,

all of which have their merits, in this chapter we take “structure” to mean, in the spirit of

Marschak (1953) and Hurwicz (1962), invariance to environmental changes. That is, in the

structural approach, the goal of estimation is to recover model features that are structural

in the sense of stability under environmental manipulation. The value of the approach

is predicated on the idea that once these policy invariant or “deep” features that govern

decision-making under alternative environments are uncovered, one can more confidently

use the structural model to evaluate how the decision-makers’ behaviors change when facing

alternative environments, including new ones not encompassed by historical variation.

Despite its undeniable promise, the structural approach remains relatively underused in

various fields in applied microeconomics due to both, its complexity and its apparent reliance

on a large number of assumptions relative to other approaches that impose less structure on

the inference problem. As argued by Angrist and Pischke (2010), in recent years a credi-

bility revolution has had a large influence in the practice of empirical microeconomics, with

an emphasis on transparent sources of identification and less reliance on fully specified eco-

nomic models. Indeed, the last four decades witnessed two diverging approaches to empirical

work in the applied microeconomics fields: the so-called “structural” and “reduced-form”

approaches. These classifications are not perfect and there have been attempts to relabel

these approaches as “model-based” and “design-based”, a taxonomy that is more suitable.

For simplicity however, we continue the custom of referring to “structural” models as those

in which the object of estimation are the primitive parameters of a fully specified model of

behavior.

This chapter focuses on the use of structural models in empirical microeconomics, with

particular emphasis in labor economics, including models of human capital accumulation,

and related fields such as population and family economics. The chapter complements the

views of Wolpin (1996), Meghir (2006), Keane (2010a), Keane (2010b), Rust (2010), Wolpin

(2013), Low and Meghir (2017) and Blundell (2017) on the general value and usefulness of

the structural approach in empirical microeconomics, while also being candid about some

of its limitations, as emphasized in Angrist and Pischke (2010) and Imbens (2010). For the

most part we focus on the “traditional” structural approach, where the optimizing unit, be

it an individual, a couple or a firm, is assumed to make decisions as if they had successfully

solved the optimization problem that the econometrician assumes them to solve. The two
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key assumptions are then a) that the goal that the decision-making unit is trying to reach is

correctly assumed and b) that, whatever that goal is, the unit is able to successfully come up

with the best choice in pursuit of that goal. It is fair to say that these assumptions have come

under increased scrutiny, even by early pioneers of the structural approach.1 Our review is

centered on the traditional paradigm because we feel it is still a very valuable approach in

many contexts and that its credibility can be improved. Further, we feel it is important to

understand how to overcome the limitations the structural approach may have even when

those powerful identifying assumptions being maintained are true, before venturing into even

less restricted models of human behavior. Despite this traditional focus, we briefly touch on

and provide pointers to more recent work that calls for a relaxation of these assumptions

and proposals for more integration with insights from behavioral economics into the models

estimated using the structural approach.

Our review hopes to provide a less technical and perhaps more balanced introduction

to the structural approach for the novice practitioner that wants to become familiar with

the approach. While there are several opinion statements on its value, we are not aware

of comprehensive textbooks or reference work that covers all the technical material that is

relevant for a thorough understanding of the structural approach.2 Rather, the relevant body

of knowledge seems to be scattered through a dizzying array of specialized surveys. We hope

to fill this gap by providing as broad an overview as possible and a methodological road-map

for this approach. We also provide key references to structural work specifically applied to

the themes of this Handbook.

The rest of the chapter is organized as follows: in Section 2 we provide key references to

the literature that uses estimable structural models in labor economics and closely related

areas such as human capital and population economics. Section 3 describes the structural

approach in detail, discussing formulation, identification, estimation and validation of struc-

tural models. Next, Section 4 highlights advantages and disadvantages of structural models.

In Section 5 we layout how, in our view, the credibility of the structural approach can be

further enhanced. In this section we highlight a recent trend towards a systematic integra-

tion with the type of clear sources of exogenous variation that are the hallmark of modern

non-structural approaches. We go on to argue that this integration should be pursued for

both identification and validation of these models, if one is to maximize the credibility of the

1Contrast for example, the increasingly nuanced tone of Rust (2014, 2019) with his more enthusiastic
stance, just a few years earlier, on the value of the traditional structural approach in his Rust (2010) review
of Keane (2010b).

2Some of the material in the textbooks by Adda and Cooper (2003) and Christensen and Kiefer (2009)
do cover some of the fundamentals concepts relevant for dynamic structural estimation as applied to the
themes of this chapter, but their scope is somewhat different as they also devote much of their content to
macroeconomics and finance perspectives
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structural approach. We provide some concluding remarks in Section 6 with some thoughts

about the future of structural models.

2 Structural Models in Labor, Human Resources and

Population Economics

This chapter is primarily concerned with a methodological description of the structural

approach as applied in the fields which are the substantive focus of this Handbook. Due

to space limitations, it is not meant to provide a comprehensive, exhaustive catalog of

the literature that has used structural methods in labor, human resources and population

economics. In this section and throughout the chapter we provide references to seminal

contributions and/or to work representing the current frontier in these fields. Whenever

possible we also provide pointers to specialized surveys that help in tracking the evolution

of the structural approach in these areas. While we limit ourselves to structural work most

relevant to the themes in this Handbook, it is important to recognize that some important

methodological insights, relevant for the structural approach that we do not cover here, have

been developed in other fields.3

The origins of the structural approach in labor economics can be traced back to Heckman

(1974) who modeled female labor supply at the intensive and extensive margins as a result

of an explicit, internally consistent utility maximization problem.4 In the last 45 years this

literature has developed in multiple dimensions, integrating savings, uncertainty, on-the-job

training, occupational choice, job search, matching, turnover and joint spousal decisions

about labor supply. Several specialized surveys exists that describe these developments (e.g.

3In particular, we do not focus on Industrial Organization (IO), a field where the structural approach has
been particularly fruitful and we refer the reader to Reiss and Wolak (2007) and Ackerberg et al. (2007) for
general surveys of the structural approach in that field and Athey and Haile (2007) and Gentry et al. (2018)
who review the structural estimation of auction models, an area whose insights are being exported into more
general models of asymmetric information. Einav and Levin (2010) and Nevo and Whinston (2010) discuss
the success of the structural approach in the field of IO, and attempt explanations as to why it gained
more widespread adoption in IO relative to the fields we focus on. The economics of education and health
economics have also begun to rely increasingly on structural models. For example Einav and Finkelstein
(2018) discuss how a structural model allows to go beyond the exogenous experimental or quasi-experimental
variation in the data when analyzing ex-post moral hazard in the demand for health care. However, they
caution that different structural models might be consistent with this variation. This is related to the
question of structural model identification, which we discuss below. Similarly, Ferreyra (2007) shows the
value of the structural approach to analyze the effect of voucher policies, a classic question in the economics
of education.

4Some argue that Heckman (1974) is not strictly a fully structural approach, and classify it instead as
semi-structural because he doesn’t work with the marginal rate of substitution (MRS) between consumption
and labor as derived from a specific utility function, but rather takes a linear approximation to log(MRS).
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Eckstein and Wolpin (1990), Wolpin (1995), Blundell and Macurdy (1999), Blundell et al.

(2007), and Keane et al. (2011) and provide detailed summaries of these richer models of

labor supply and a history of the evolution of the structural approach in labor economics.

Structural models of labor supply have also been extensively used to understand the con-

sequences of different tax (see e.g. Keane (2011, 2015)) welfare (see e.g. Chan and Moffitt

(2018)) and retirement (see e.g. French and Jones (2017)) policies.

The structural approach is also used in population economics and in models of human

capital formation. Wolpin (2003), Heckman et al. (2006) and Belzil (2007) provide surveys

of the structural literature that aims to understand schooling decisions and the returns to

schooling. Building on the early work of Willis and Rosen (1979), Keane and Wolpin (1997)

provided an important extension where schooling decisions are the result of a dynamic,

sequential process by forward-looking individuals that is integrated with labor supply and

occupational choices.5 In the same vein, Eckstein and Wolpin (1999) provide a structural

analysis of high school dropout decisions. In addition to the methodological contributions,

a key substantive message of this literature was that there is a large degree of heterogeneity

in skills accumulated by the the mid- to late teenage years when this important, life defining

schooling decisions (e.g. high school dropout or college attendance) must be made. This has

spurred interest in estimating the structural parameters of the technology of skill formation

for cognitive and non-cognitive skills (Cunha and Heckman (2008), Cunha et al. (2010),

Agostinelli and Wiswall (2020)), particularly for developmental stages earlier in life, ranging

from birth until the teenage years. A more recent literature integrates these technologies

into fully structural models of household decision-making which explicitly consider parental

preferences and derive the household choice of optimal inputs allocated for children’s skill

formation, as in the work of Del Boca et al. (2014).

Turning to structural work in population economics, beginning with Wolpin (1984), a

growing literature uses estimable dynamic structural models to investigate fertility deci-

sions. Wolpin (1997) and Hotz et al. (1997) provide early surveys of this literature and Adda

et al. (2017) provides one of the most recent applications, integrating fertility with occu-

pational choice to investigate the career cost of children. Following Choo and Siow (2006),

increasingly rich models of the marriage market have been estimated to understand patterns

of marriage formation in a friction-less framework. Building on the collective framework of

Chiappori (1988) a growing literature estimates structural models of intra-household alloca-

5The methods developed by Keane and Wolpin (1994, 1997) for estimating more realistic dynamic struc-
tural models with larger state spaces and choice sets led to a surge of applications. Keane and Wolpin (2009),
Todd and Wolpin (2010) and Keane et al. (2011) provide surveys of applications that use dynamic structural
models (particularly, dynamic programming models of discrete choice) in labor economics and other applied
microeconomic fields.
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tion under the assumption that allocations among household members are Pareto efficient.

An alternative approach (e.g. Del Boca and Flinn (2012)) allows for the possibility of ineffi-

cient allocations in a non-cooperative framework. Chiappori and Mazzoco (2017) provide a

comprehensive summary of this line of research. A synthesis of the structural literature on

marriage market equilibrium and intrahousehold allocation is emerging (see Chiappori et al.

(2019), Gousse et al. (2019) and Shephard (2019)).

Finally, another literature uses estimable structural models to understand human re-

sources questions, such as optimal compensation of workers and managers within firms.

When effort is unobserved and cannot easily be inferred from output, a principal-agent

problem arises. A large body of work in personnel economics summarized in Prendergast

(1999) provides key theoretical insights into this problem and in particular, the form of the

optimal compensation contracts in those settings. Examples of structural approaches that

build on these models include Ferrall and Shearer (1999) and Paarsch and Shearer (2000)

for worker compensation and Margiotta and Miller (2000) and Gayle et al. (2015) for man-

agerial compensation. In Section 5 we discuss recent work by Misra and Nair (2011) and

d’Haultfoeuille and Février (2020) where exogenous variation in compensation contracts is

used to either validate or estimate the structural model.

3 The Structural Approach

There is no general recipe on how these models can be formulated and estimated. We

describe some generalities but the model and the estimation strategy is something that is

chosen on a case-by-case basis depending on the question of interest and the available data.

In this section we review what is a structural model, discuss how to assess the need for one,

and review how such a model is formulated, identified, estimated, validated.

3.1 Structural Models Defined

What is a structural model? At a very abstract level we follow Matzkin (2007) and define a

a structural model as given by

M(Y,X, ε;F,G) = 0 (1)

Where Y denotes an observed vector of endogenous variables (e.g. choices, outcomes) and

(X, ε) are vectors of observable and unobservable variables that are neither choices nor

outcomes, but allow for heterogeneity that is relevant for decision-making. F denotes a vector
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of (possibly non-parametric) functions and G denotes the vector of (possibly non-parametric)

model distributions for random variables. M() = 0 denotes a vector of structural relations

between the primitive objects in the model.6

While the above definition is quite general it might be too abstract to keep the discussion

concise, so we follow Wolpin (2013) in using a simple model of labor supply to focus on the

essential issues that generally come up in the structural approach and to illustrate the basic

ideas throughout the chapter. The model is extremely simple and in no way intends to be

portrayed as frontier structural work in labor supply. We again point to the surveys of the

literature referenced in Section 2 for those interested in the richer models. The basic labor

supply model is an ideal pillar to describe the structural approach as some other topics like,

fertility, human capital accumulation, investment in children or choice of compensation with

unobserved work effort all can be seen as extensions of this basic model.

Consider the simplest, prototypical labor supply model. Suppose individual i has stan-

dard preferences for consumption ci and leisure li. She has some non-labor income I. She

can use this income to purchase a consumption good. She can also choose to supplement

this income by working a number of hours hi, and thus sacrificing some leisure to enhance

her consumption opportunities. To decide how much to work she solves:

max
{ci,li,hi}

U(ci, li, Xi, ε
u
i )

s.t. ci = wihi + Ii

Ti = hi + li

wi = exp(αwXXi + εwi )

(2)

where ci denotes consumption, li denotes leisure, Ti is the total time available to individual

i (e.g. 24 hours per day, 365 days per year), wi represent an hourly wage, Xi denote a

vector of exogenous individual characteristics (e.g. education etc) that in general enters

both, the utility function and the wage equation. {εUi } and {εWi } represent unobserved (to

the econometrician) distaste for work and productivity that affects wages, respectively. In

general, {εUi } and {εWi } might be correlated in the population under study. Their joint

distribution is given by g(εUi , ε
W
i )

This model can be rewritten in terms of the optimal choice of h only. Once an optimal

choice of h is found, consumption and leisure can be directly obtained from the budget

6An even more general formulation would include Υ, the unobserved vector of endogenous choices. These
unobserved choices are often ignored in applied structural work relying on separability assumptions about
how these choices enter the structural relations in the model.
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constraint:

max
{hi}

U(wihi + Ii, Ti − hi, Xi, ε
u
i )

s.t. wi = exp(αwXXi + εwi )
(3)

We denote h∗ = h(w, I,X, εu) the labor supply function that is the solution to this

problem and assume for the moment that everyone chooses to work some amount, perhaps

because their non-labor incomes is too low to support their desired consumption. If wages

and non-labor income are exogenous, the function h(w, I,X, εu) is called a reduced form

because it describes an endogenous variable as a function of the exogenous variables in the

model. Note that this simple structural model of labor supply fits the general framework

described in (1). Table 1 provides a crosswalk between the general formulation and our

simple labor supply example.

Table 1: The Structure of a Simple Labor Supply Model

General Labor Supply
Structure Model

X: {X, I}
ε: {εui , εwi }
Y: choices:{h, l, c}, outcomes:{w}
F: U( , , , )
G: g(εui , ε

w
i , X, I)

M() = 0:

hi − arg maxh{U(wih+ Ii, Ti − h,Xi, ε
u
i )} = 0

wi − exp(αwxXi + εwi ) = 0
Ti − [li + hi] = 0
wihi + Ii − ci = 0

It is important in any particular application to understand how the specific model at

hand fits this general structure.

3.2 Assessing the Need for a Fully Structural Approach

Our focus in this review is on the full specification of a structural model, on the premise

that identification of all its primitive features is necessary to answer the research question of

interest. In many cases, however, estimation of a fully specified structural model is far from

necessary to answer the research question of interest.

So it is important then to first ask ourselves, whether we need to recover the full structural

model and identify early on when we can do just fine with approaches that rely on less
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structure. As emphasized by Matzkin (2007), if the question of interest resides in the labor

supply function one does not need to uncover the full structure. For example, if we are

interested in the effect of wages on hours of work we can rely on observed exogenous variation

in wages to identify their effects on hours of work, without need of recovering first primitives

like U(, , , ). Estimating ∂h()
∂w

will suffice in that case. However, as noted early on by Burtless

and Hausman (1978), if we would like to understand how labor supply would react to the

introduction of a labor income tax τ(w,H) with complex brackets, marginal rates and notches

it might be necessary to work with a fully structural model. This is particularly true in the

hypothetical case that the tax is to be introduced for the first time.7.

We endorse the idea that simpler approaches that directly rely on experimental or quasi-

experimental variation and do not impose the additional structure might be preferable in

those cases. There is also a middle ground in which only some structural features or combina-

tions of them are sufficient to answer the research question. In that case, only the structure

that is actually necessary to identify those features should be maintained and imposed on the

data. Similarly, Heckman (2010) focuses on the value of maintaining only the assumptions

that are necessary to answer a class of research questions, where this partial knowledge of

the structure is all that is needed. He uses a generalized Roy model as an example. He notes

that under this minimalist approach one may not need to recover all of the deep structural

parameters of the Roy model. Rather, combinations of them such as the marginal treatment

effect (MTE) profile may suffice. The MTE is the average treatment effect for individuals at

a given quantile of the distribution of unobserved resistance to treatment. The MTE pro-

file, often reported graphically, traces out this effect across the full range of of unobserved

resistance to treatment. Policy-relevant treatment effects (PRTEs) can then be computed

by integrating the MTE profile with appropriate MTE weights that the individuals induced

to take treatment, not by the available instrument but by the policy of interest.8 This is an

example of the so-called Marschak’s Maxim after Marschak (1953). The summary statistic

approach of Chetty (2009) builds on similar ideas, focusing on the minimal structure needed.

It should be noted, though, that this so-called semi-structural approach can only be used to

analyze the effects of a class of policies as long as the variation induced by these policies is

encompassed by the existing variation used to estimate the model. While many policies fit

this class, not all of them do.

Another type of “middle ground” approach sometimes referred to as “semi-structural”.

It involves fully specifying the dynamic economic model as in the fully structural approach.

7Wolpin (2013) discusses how one might do without a fully structural approach if there is such historical
variation in taxation that can be leveraged. See also Ichimura and Taber (2002) for related ideas.

8For a less technical introduction to Roy models and the MTE concept see Cornelissen et al. (2016) and
the chapter by Navarro (2022) in this Handbook.
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However, when it comes to estimation in this “semi-structural” approach one can, in a dis-

crete choice model, replace the value functions associated with a given choice with a linear

or polynomial function of the relevant state variables. This avoids the need to computation-

ally solve the dynamic problem to obtain the exact form of that continuation value. While

this is not a fully structural approach in the sense that one can no longer separate current

utility from the expected future value, some research questions can still be answered in this

“semi-structural” way, as shown in, for example, in Blau and Gilleskie (2001).

Our focus here is then on recovering the full set of structural parameters, with the

understanding that interest resides in questions which are only possible to answer with

such a deeper knowledge. As emphasized by Wolpin (1996) the need for a fully structural

approach becomes apparent when the question of interest, represented in the structural

model as change in the exogenous variables or a known modification of the structure, is not

encompassed by existing variation in the data. In those cases, a model is needed to go beyond

the variation in the data and analyze, ex-ante, the causal effects of new policies that have

never been experienced. One view is that in principle then, structural inference would seem to

escape the dictum of “no causation without manipulation” associated with the Rubin causal

model as defined in Holland (1986). The structural approach uses auxiliary manipulations to

learn the deep invariant principles that govern behavior. It then leverages those to conduct

causal inference about hypothetical manipulations that were never experienced. We do not

weigh in on these semantic debates but, more constructively, focus on providing a review of

the structural approach for those who are willing to pay the price of maintaining structural

assumptions in exchange for additional knowledge. A more novel focus of our review is to

emphasize ways in which the credibility of this additional knowledge can be improved.

3.3 Formulating Structural Models

While the above representation attempts to be general enough to encompass every type of

structural model, we feel it might be worth working through our specific labor supply example

to discuss the idiosyncrasies of the different types of structural models. In other words, how

is a structural model formulated? What decisions must be taken? In this subsection we

provide a step-by-step guide through many of the decisions that must be taken when fully

specifying a structural model.

1. Agents. A first decision is whether to have a single-agent or a multiple-agent model.

We focus on single-agent models where it suffices to characterize the behavior of an

isolated individual. However, there are settings in which the decisions of more than

one individual are linked and each individual has its own utility function. For example,
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in the context of the labor supply model above one may want to consider the case in

which two spouses must decide how much each one works. In that setting, it might be

necessary to consider the distinct utilities functions of each of the spouses, the distinct

wages they face and whether the goods they consume and provide utility are private

(each spouse consumes its own) or public (there is joint consumption). In addition, one

must make an assumption about how spouses interact to reach a decision. One possi-

bility, as discussed below, is to impose the assumption of Pareto efficiency and work out

the restrictions that it implies for household members’ consumption and leisure alloca-

tions. In special cases, efficiency may be the solution to some bargaining game between

the spouses, but this is not necessary. Alternatively one can rely on non-cooperative

game-theoretic models which may or may not deliver Pareto efficient outcomes. The

structure that needs to be identified now include the two distinct utility functions of

the household members and the sharing rule used to decentralize a planner’s solution

to the household problem. Some restrictions on how the utility functions of the spouses

depend on the other spouse’s allocations are generally necessary to identify the model.

2. Equilibrium. Another important modeling choice is regarding equilibrium considera-

tions. Is the setting best described by a model where a single side (demand or supply)

of a single market is modeled? Or is it more appropriate to use an equilibrium model

(where demand and supply in a single market are modeled) or even a general equilib-

rium model where demand and supply in all inter-related markets are modeled. Most

structural work in empirical microeconomics abstracts away from equilibrium consid-

erations and focuses instead on more detailed microeconomic modeling that captures

institutional detail and heterogeneity with more granularity. Most work in structural

microeconometrics features the added value of zooming in and better capture first order

effects that come from a more realistic, less stylized modeling of decision-making, at

the price of ignoring aggregate consistency, especially when general equilibrium effects

are thought to be of second order in magnitude. However, beginning with Heckman

et al. (1998) a handful of papers have developed strategies to estimate empirically

grounded, micro-econometric structural models of labor supply that account for equi-

librium considerations.9 The job search literature, described below has also embraced

the equilibrium approach. The marriage literature referenced in Section 2 also esti-

mates equilibrium models of the marriage market. In the context of the simple labor

supply model above one would need to specify the distribution of agents in the economy

9See, among others, Lee (2005), Lee and Wolpin (2006), Meghir (2006), Lee and Wolpin (2009), Johnson
and Keane (2013) and Lise et al. (2015).
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and construct an aggregate labor supply function by summing all the individual labor

supplies H(w) =
∑

i hi(wi) and an aggregate labor demand D(w) function that spec-

ifies how much labor the production side of the economy demands at various wages.

One can then note that observed wages must be those that equate aggregate demand

and supply.

H(w) = D(w)

The advantage of an equilibrium framework is most apparent when large environmental

changes are analyzed. For example, if a significant tax or transfer reduces incentives

to work, and aggregate labor supply no longer meets demand at original wages, then

the equilibrium restriction will ensure that wages increase, and the partial equilibrium

reduction in hours of work will be mitigated to some extent. The equilibrium approach

does not necessarily require estimating additional structural parameters other than the

technology parameters that underlie the aggregate labor demand function.

3. Planning Horizon and Forward Looking Behavior. Are agents myopic? or are

they forward-looking? Do agents take into account the future consequences of current

actions? Is the time horizon that agents entertain in the model finite or infinite? Once

the model is forward looking a new structural parameter, the discount factor becomes

part of the structure. This parameter controls how the individual values future utility

in terms of current utility. Once the agents are forward looking and take into account

future consequences of current actions many extensions to the basic model are possible.

As discussed in Rust (1994), the solution methods for forward-looking models are quite

different depending on whether the horizon is finite or infinite. In the finite case, models

are solved through backwards recursion. Infinite horizon models are typically solved

using fixed point methods that recover the value functions. We discuss some extensions

to the basic model in (2) that open up once individuals are forward-looking.

(a) Savings: once the model has more than one period and the individual is forward-

looking, he might be interested in saving or borrowing as in MaCurdy (1981) to

transfer income from a period in which the wage is high to a period in which it

is low. We consider a simple 2-period extension of the model in (2) where now

the individual must choose labor supply in both periods and how much to save

or borrow, si, in the first period. The same ideas apply in a multi-period model

with 45 or 50 periods where a period is a year. For simplicity we assume he no
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longer has exogenous non-labor income Ii,t in any period.

max
{hi,1,hi,2,si}

U(ci,1, li,1, Xi, ε
u
i ) + δU(ci,2, li,2, Xi, ε

u
i,2)

s.t. ci,1 = wi,1hi,1 + si

ci,2 = wi,2hi,2 + si(1 + r)

Ti,t = hi,t + li,t for t = 1, 2

wi,t = exp(αwxXi + εwi,t) for t = 1, 2

(4)

Notice that if the utility function in both periods is the same (the function itself

is not indexed by period, only its input arguments are) no additional structure

is added. The relevant interest rate, r, must be added to the set of exogenous

observable variables Xi, but a common value is typically assumed. Then the only

new structural parameter that is added to the structure is δ, the intertemporal

discount factor. One also needs to decide whether the distribution of exogenous

unobservable variables (εui,2, ε
w
i,2) is the same in both periods. In general, one

could let this distribution and/or the utility function for the second period to be

different, for example, if the anticipated shocks to tastes for leisure or the wage

shocks are expected to have different variance in the population or the person

anticipates to enjoy each hour of leisure more in the second period than in the

first.

(b) Uncertainty: Once dynamics are allowed, the individual might be uncertain about

the value that some of the variables may adopt in the future. A crucial distinction

opens up in the dynamic model on whether the heterogeneity that realizes in

period 2 (εui,2, ε
w
i,2) reflects something that was known and anticipated by the

individuals in period 1 or, instead, reflects unanticipated shocks. In the latter

case, for example, one could extend the model in (4) by letting the individual

be uncertain about the values of (εui,2, ε
w
i,2). In that case, the second term in the

objective function would be

δE
[
U(ci,2, li,2, Xi, ε

u
i,2)
]

(5)

Where E[·] is the mathematical expectation operator and the expectation is taken

with respect to the joint distribution of (εui,2, ε
w
i,2). In models with uncertainty then

a new feature added to the structure is the belief that individuals have about
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the joint density (εui,2, ε
w
i,2). A common approach in the traditional structural

approach is assume that these beliefs coincide with the actual joint density that

is already part of the stochastic structure G in the 2-period model. More recent

work uses data on beliefs, relaxing the assumption that they coincide with realized

distributions. Finally if the asset in which the person saves is risky, an additional

source of uncertainty would be with respect to the asset returns r. Again, one

would need to add to the structure some beliefs about the distribution of this

risky asset and provide assumptions and/or data to identify them.

(c) Learning by Doing: individuals may recognize that working today not only pro-

vides labor income today but increases the wage in the future as they become

more productive at the job the more they work, as in Imai and Keane (2004). In

that case we only need to specify how hours of work in period 1, hi,1 increase the

wage in period 2, wi,2. For example, we may assume that each additional hour of

work in period 1 increases the wage by αwh percent in period 2.

wi,2 = exp(αwXXi + αwhhi,1 + εwi,2) (6)

A new structural parameter αw, capturing returns to experience or learning by

doing is added to the model structure that needs to be identified. These models are

particularly useful to understand wage growth and the costs of career interruption.

As argued by Keane (2011), they are also important to recover the right labor

supply elasticities. In models where different types of jobs are available, it is

also important to understand mobility across jobs, depending on whether the

experience accumulated in one job can be transferred to another occupation in

period 2 or if it is instead specific to the occupation chosen in period 1.

(d) Learning about oneself: Even if there is no learning by doing, the individual may

not know how productive in the job she is and this might be important if her

wage depends on her productivity. She learns about this by observing signals and

using these signals for updating her priors. A key for learning is that there is no

deterministic relationship between her effort and her output, otherwise she would

learn immediately. This may give her incentives to experiment so as to accelerate

learning about parameters she is uncertain about. Miller (1984) pioneered the

structural estimation of this type of learning models in the context of occupational

14



choice.10 To see the essential point in the context of the simple dynamic model in

(5), let us assume first that X is just a constant and the worker is paid according to

her productivity. The individual is uncertain about the value of αw and whenever

she works one hour her output is variable for random reasons ηw that she cannot

track down. For each hour h she works during the first period she is paid wi,1,h =

αw + ηi,1,h + εwi,t and there are no savings. So we must now include an expectation

operator in the first period, not because she does not know (εui,1, ε
w
i,1), but because

she is uncertain about αw. Since she is differentially productive each hour, she

is paid a different hourly wage each hour, wi,1,h. We characterize her beliefs

about αw with a density g1(α
w) and note that the corresponding density for the

updated belief in period 2, g2(g1, hi,1, {wi,1,h}
h=hi,1
h=1 , gη(η)), depends on the initial

belief g1, the number of hours of work hi,1, the value of productivity signals she

obtained {wi,1,h}h=h−i,1h=1 and the distribution of the noise gη. These signals are

used to update her initial beliefs. Therefore, while the constraints are the same,

the objective function becomes:

max
{hi,1,hi,2}

Eαw [U(ci,1, li,1, Xi, ε
u
i )] + δEε,αw

[
U(ci,2, li,2, Xi, ε

u
i,2)
]

s.t. ci,t = wi,thi,t for t = 1, 2

Ti,t = hi,t + li,t for t = 1, 2

wi,t = exp(
∑
h

[αw + ηi,t,h] + εwi,t) for t = 1, 2

(7)

where the expectation in the first period is only over αw and the expectation

in the second period includes, in addition, the expectation over (εui,2, ε
w
i,2). Note

that in terms of added structure, we must now consider the following features: a)

the initial period’s belief g1, b) the distribution of the unobservable productivity

shocks gη and c) the updating procedure that she uses to update her initial beliefs

upon observation of signals from her first period. It is common to impose strong

distributional assumptions for a) and b) and directly postulate a particular belief

updating procedure (e.g. Bayesian). These models are particularly useful to

understand firm tenure as it is often the case that employers and employees are

uncertain about how productive the employee will be in the new job.

10Structural estimation of learning models has also been used in population economics and models of
human capital accumulation. For example, Brien et al. (2006) model learning about match quality among
cohabiting partners and spouses whereas Mira (2007) models learning about child mortality risk in a dynamic
model of fertility decisions. Arcidiacono (2004) models student learning about their own ability to succeed
in college in a model of college decision-making.
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(e) Job Search: consider a multi-period (T > 2) extension of the model in (4). Sup-

pose there are different opportunities to work at different wages, but the indi-

vidual may not receive a job opportunity in every period. In some periods then,

she cannot work and needs to rely on some exogenous non-labor income (or on

her savings). Furthermore, once she receives an opportunity, if she accepts it, she

might not be able to search for alternative, better opportunities. Therefore, as

long as there are better potential opportunities, she may not accept offers when

they are received and instead wait for a better one. The model is now then given

by:

max
{hi,t}

E

[
T∑
t=1

δtU(ci,t, li,t, Xi, ε
u
i,t)

]
s.t. ci,t = wi,thi,t + Ii,t for t = 1...T ≤ ∞

Ti,t = hi,t + li,t for t = 1...T ≤ ∞

wi,t = exp(αwxXi + εwi,t) for t = 1...T ≤ ∞

πt = Pr(offer at t) where 0 < πt < 1

(8)

where the expectation is now not only over the (εui,t, ε
w
i,t) that may realize in

any period, but also over the probability that a job offer is actually available in

each period, πt. Note that πt could in general be a function of features of the

individual’s history up to time t. Note that the job offer probabilities πt are the

new structural feature that must be considered.

Structural models of job search are particularly useful to analyze alternative un-

employment benefit policies by letting the non-labor income Ii,t to be augmented

by unemployment benefits in periods when the individual does not receive a job

offer or chooses not to accept one.

Job search models have been extended in many dimensions and have been used to

address many other questions beyond the issue of unemployment benefits. They

can be broadly categorized by whether they are set up in discrete or continu-

ous time and by whether the environment is stationary (infinite horizon and all

relevant parameters of the job search environment do not vary over time or non-

stationary (where there is a finite horizon and/or at least one of the parameters

varies over time). Flinn and Heckman (1982) were the first to structurally esti-

mate the infinite horizon stationary job search model in continuous time. Wolpin

(1987) was the first to estimate a finite horizon model in discrete time where the
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non-stationarity arises from the finite horizon and by allowing of duration depen-

dence in job offers. van den Berg (1990) first estimated the general non-stationary

job search model in continuous time. The job search literature has been perhaps

one of the most successful at implementing the structural approach in labor eco-

nomics. Several specialized surveys by Eckstein and Wolpin (1990), Devine and

Kiefer (1991), Wolpin (1995), Canals and Stern (2002), Postel Vinay and Robin

(2006), Eckstein and van den Berg (2007), Christensen and Kiefer (2009) and

Flinn (2010) provide guidance to this voluminous literature. Recent work by

Taber and Vejlin (2020) integrates the structural job search and self-selection

literatures.

As it may have become apparent, in any dynamic model, regardless of its details, we

will have to consider the discount factor δ. The identification of the discount factor

δ is often challenging so it is common in applications to fix it to a conventional value

depending on the time unit of the model. In some cases, however, this parameter

is estimated, and even allowed to be heterogeneous in the population (e.g. Sauer

(2004), Arcidiacono et al. (2007), French and Jones (2011)). Frederick et al. (2002)

provide an early summary of papers estimating discount factors. Recent work allows

for time-inconsistency in dynamic optimization and goes beyond the time-consistent,

exponential discounting paradigm (e.g. Fang and Silverman (2009), Fang and Wang

(2015), Chan (2017), Mahajan et al. (2020))

4. Time Unit. When the model is dynamic, another key modeling choice is whether to

set up the model in continuous time or in discrete time. In case the time is chosen

to be discrete, the proper frequency in calendar time must be specified. Are periods

equivalent to a year? a month? a week? Similarly, when setting up the model in

continuous time one must specify if the choices can be taken at each instant in real

time or, despite the continuous time formulation, opportunities to make choices arise

only at certain times. With the exception of the job search literature described above,

most structural work uses a discrete time framework. Arcidiacono et al. (2016) and

Abbring (2012) discuss estimation of structural models in continuous time.

5. Choice Set. Another important decision is whether to model the choices that are

available to the agents in the model as discrete or continuous. As pointed out by

Miller (1999), there are tradeoffs involved in the modelling of continuous versus dis-

crete choices. In some cases the choice variable is naturally discrete. When the variable

is continuous, though, one must trade-off measurement error problems that are more
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common among measures of a continuous choice and the more stringent assumptions

often needed to identify discrete choice models. While continuous choices are more

common in macroeconomics, dynamic structural work in empirical microeconomics of-

ten emphasize discrete choices, following the seminal contributions by Gotz and McCall

(1984), Wolpin (1984), Miller (1984), Pakes (1986) and Rust (1987) and subsequent

innovations proposed by Hotz and Miller (1993), Hotz et al. (1994), Keane and Wolpin

(1994), Aguirregabiria and Mira (2002), Su and Judd (2012) and Arcidiacono and

Miller (2011).11 Recent methods have been adapted to account for a mixture of dis-

crete and continuous choices. See Iskhakov et al. (2017) and Blundell et al. (2016).

To emphasize the key difference in a discrete choice model, we can return to the static

model with continuous choice of work hours in (3) and restrict it to be just a model of

binary choice, where the individual decides on a simple choice d regarding whether to

work di = 1 (that is hi > 0) or not work di = 0 ( that is hi = 0). That is:

max
di∈{0,1}

U(widi + Ii, di, Xi, ε
u
i )

where wi = exp(αXXi + εwi )
(9)

The individual observes εwi and therefore knows her hourly wage. She also knows her

non-labor income I and observes her taste for leisure (εui ). Given its discrete nature,

the model is now characterized by the particular value εu∗i that solves:

U(wi + Ii, 1, Xi, ε
u
i ) = U(Ii, 0, Xi, ε

u
i ) (10)

There exists εui = εu∗i such that the individual is indifferent between working and not

working. Those with εui > εu∗i choose not to work and those with εui < εu∗i choose to

work. This model can be easily extended to a dynamic setting where the individual

makes discrete choices over 2 or more periods in the same way that we discussed above

for the model with continuous choice of hours.

While we emphasize the opportunities to formulate structural models with either con-

tinuous and discrete choices, it is important to mention that the discrete choice ap-

proach is often preferred. Many choices that are the object of interest in empirical

microeconomics are discrete and, for those that are inherently continuous, researchers

11We refer to the surveys of structural microeconometric methods for estimation of dynamic programming
models of discrete choice provided in Eckstein and Wolpin (1989b), Rust (1994) Aguirregabiria and Mira
(2010), Keane et al. (2011) and Arcidiacono and Ellickson (2011).
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often choose to discretize them anyway. A reason for this is that continuous choices

generally lead to continuous variables in the state space. This makes the model solu-

tion more costly in the context of dynamic models, as interpolations become necessary.

Similarly, to derive policy functions in the context of continuous choice models with

closed form solution it might be necessary to interpolate. Models where both choices

and states are discrete are typically simpler to code and discrete choice models can

also leverage a convenient distributional assumption on the structural error terms.

As shown by Rust (1987), if the error terms associated with the discrete choices are

distributed Type 1 Extreme Value, then the expected maximum of the alternative

specific value functions has closed form and the choice probabilities have the familiar

multinomial logit form.

6. State Space. In all models, whether static or dynamic, it is particularly important to

be explicit about what is known to the decision maker at the time she makes choices

because uncertainty about things that will realize after a choice needs to be taken

into account. When the model is dynamic, the sequence representation of the problem

is often reformulated using a dynamic programming representation, using a Bellman

Equation. For example, the model in (8) can be re-written as follows:

Vt(Ωi,t) = max
hi,t

E
[
U(ci,t, li,t, Xi, ε

u
i,t) + δtVt+1(Ωi,t+1)

]
s.t. ci,t = wi,thi,t + Ii,t

Ti,t = hi,t + li,t

wi,t = exp(αwxXi + εwi,t)

πt = Pr(offer at t|Ωi,t) where 0 < πt < 1

(11)

where Ωi,t denotes the state space, which includes everything that is known and relevant

for the decision-maker to make her choices. The value function at time t is given

by Vt(Ωi,t). It is a function of the state variables and captures the expected present

discounted value of the remaining utility under the restriction that not only the current

choice is optimal but also future behavior in periods other that t will also be selected

optimally. It is very important to keep track of the state space. These are variables

that are important for decision-making in the sense that either directly affect utility

in the current period or they affect the distribution of the state variables in the next

period. Two key distinctions on how the state variables evolve are : a) deterministic

versus stochastic evolution and b) exogenous versus endogenous evolution. Some state
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variables like age evolve over time deterministically and exogenously. Previous work

experience is a common state variable in dynamic models of labor supply, and also

evolves deterministically, but in an endogenous way, as it reflects past work decisions.

The number of children would be an endogenous and stochastic state variable in a

dynamic model of labor supply and fertility choice that features imperfect fertility

control. One could also have state variables like weather, that evolve exogenously and

stochastically and may affect choices.

In dynamic models then, an additional feature of the structure are the laws of motion

for the stochastic state variables:

Pr(Ωi,t+1|Ωi,t, di,t) (12)

7. Objective Function. What is the utility function that agents maximize? We have

been using a standard expected utility formulation where the utility in the various pe-

riods is additively separable. This is certainly the most commonly adopted approach.

However, one could in principle make other choices here, with regards to how individ-

uals in the model deal with uncertainty by using non-expected utility theories. One

could also argue that individuals do not aim to maximize the discounted sum of future

utilities. Most of the structural work in empirical microeconomics is firmly grounded

on use of expected utility and time-consistent dynamic optimization with exponential

discounting. As we discuss below, however, new paradigms are emerging, drawing on

insights from behavioral economics, promoting the use of non-expected utility theories

to deal with uncertainty and time-inconsistent approaches to deal with forward-looking

dynamics.

8. Observability from Decision Maker’s and Econometrician’s perspectives.

What, choices, states and outcomes are observable to the agent in the model and what

choices, states and outcomes are observable to the econometrician? In most cases,

although not always, the agent in the model observes more than the econometrician.

For example, the individual deciding whether to work or not in model (9) observes

everything but the econometrician does not observe εui .
12

9. Observed Heterogeneity. In principle any structural features of the model can be

allowed to vary based on observable variables. Are the primitive structural objects in

the model the same across decision-makers with different observable characteristics?

12Note that while the econometrician does not observe εwi directly, he can back it out given the observation
of wages, the parameters of the wage equation and the fact that εwi = wi − αw

XXi.
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The answer is most certainly no. In the models above we already let U and w vary with

X. One could similarly let gε,δ,π and Pr(Ωi,t+1|Ωi,t, di,t) to vary with X. In the case

of dynamic models this could be particularly costly as different dynamic programming

problem must be solved for individuals with different structure. In general one must be

judicious in what type of observable variables to allow so as to keep the computational

cost under control. However, particular care must be chosen when allowing some

features of the model and not others to vary by X. Restricting some of the features to

not vary by X often amounts to imposing exclusion restrictions that may turn out to

be critical for identification, and so they need to be carefully justified.

10. Unobserved Heterogeneity. It is often the case that even after allowing for some

observed heterogeneity one may suspect that there is still some residual heterogeneity

in structural features that is unobserved by the econometrician. For example, in the

context of labor supply model above one could argue that the utility function is different

across people in the sense that different individuals are willing to trade-off consumption

and leisure at different rates. By allowing for unobserved tastes for leisure (εui ) the

static model already allowed for this. However, in a dynamic context one may want

to distinguish between a permanent component of (εui ), call it µu that is fixed, time-

invariant and known to the individual and a separate component νt that captures

unanticipated shocks to the taste for leisure. That is, one may want to have εui,t = µui +

νi,t. This separation between uncertainty and heterogeneity has important implications

for estimation. One then needs to specify the stochastic structure for µui and νi,t. While

νi,t is often specified similarly to εui,t, using a continuous density g(νi,t), µ
u
i is most

often specified using a discrete distribution of so-called “types”. Each individual has

multinomial probability Pr(k) of belonging to each of these types k = 1, ..., K. This

multinomial probability (the values that µk adopts in its domain and the probability

mass at each of those values) then becomes part of the additional structure that must

be identified and estimated in the fully structural approach.

11. Functional Form. While ideally one would proceed without imposing any functional

form assumptions on the structural functions of the model (e.g. U()) this is almost

never done. First, most often the available data is not sizable enough to allow for a

fully non-parametric treatment of every feature. Moreover, even with infinite data, the

structural model is often used to extrapolate outside the support of the data, requiring

anyways functional form assumptions for such extrapolation. For example, in the labor

supply model above one could, following Imai and Keane (2004), choose the following

21



functional form for the utility function

U(ci, li, Xi, ε
u
i ) =

c1+ηi,t

1 + η
− exp(ψXi + εui )

[Ti,t − li,t]1+γ

1 + γ

where η < 0, γ > 0

(13)

where εu represent unobserved distaste for work.

12. Distributional Assumptions. Ideally one would not need to specify any assumption

on the stochastic structure G, allowing it to be non-parametric. In practice, however,

structural econometricians proceed by specifying distributional assumptions for the

stochastic structure of the model. For example one could assume that (εu, εw) is

distributed bivariate normal

(
εu

εw

)
∼ N

[(
0

0

)
,

(
σ2
u ρσuσw

ρσuσw σ2
w

)]

Note that, importantly, when ρ 6= 0 , wages will be endogenous in the labor supply

function in the sense that E[εu|wi] 6= 0

3.4 Investigating the Identification of Structural Models

The question of model identification is whether, in the context of modelM(·) = 0, there is a

unique structure (F,G) that generates the joint distribution of observable variables Pr(Y,X).

A model is not identified if one can find two structures (F ′, G′) and (F ′′, G′′) that generate

the same Pr(Y,X). Ideally, researchers should provide a formal proof of identification in

the sense of Matzkin (2007, 2013) by mathematically proving that the structural parameters

or features of interest (G,F ) are uniquely recovered from the joint distribution of available

data Pr(Y,X), the structure of the model and any auxiliary identifying assumptions. The

question of identification asks whether there is a unique structure such that starting from

the distribution of exogenous variables (X, ε) one can recover the observed distribution of

endogenous variables given the exogenous variables Pr(Y |X). It is beyond the scope of this

review to provide a detailed discussion of identification for all types of structural models. We

direct the reader to French and Taber (2011) who provide identification results using Roy

models of self-selection as an organizing principle and to Chiappori and Mazzoco (2017) who

discuss identification of models of intra-household allocation. Early work by Keane (1992)
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notes the fragility of identification in simple static multinomial probit models, an important

result for structural models with multiple discrete choices. Much progress has been made

in the last 25 years on the identification of dynamic structural models. Important results

were established in Rust (1994), Taber (2000), Magnac and Thesmar (2002), Kasahara and

Shimotsu (2009) and Hu and Shum (2012) for dynamic discrete choice models. Abbring

(2010) provides a survey of these early results but this remains an active area of research.13

A recent literature (see, for example, Norets and Tang (2014)) has pointed out that not

all counterfactuals of interest might be identified under some of the normalizations typically

adopted for identification in these models. On the other hand, as argued by Kalouptsidi et al.

(2021), even if a model is not non-parametrically identified, the counterfactual of interest

might be.

While Matzkin (2007) provides an elegant formalization of the identification problem, in

practice it is often difficult to prove identification formally given the complex, highly nonlin-

ear structure of these models. Therefore, heuristic/intuitive arguments are often provided.

Eckstein et al. (2019) provide an example of such arguments.

Sometimes it is argued that small standard errors are indicative of local identification. In-

deed, when estimation proceeds via maximum likelihood, standard errors are often computed

using the inverse of the information matrix. If the standard errors are small, that means that

the likelihood function declines quickly when moving away from its maximum. Therefore,

there are in the vicinity of the maximum, no alternative sets of parameters that could deliver

the same likelihood. Similarly, when used a moment-based strategy, local identification fails

if the Jacobian of the moment vector is not invertible (See Adda and Dustmann (2021)).

Another informal strategy to provide evidence of local identification is available for those

who structure their estimation strategy using moments. In that case, one can show whether

and how all the moments change in response to small changes (one-at-a-time) in the struc-

tural parameters. If a parameter change results in no changes whatsoever in any moment,

then that parameter is not identified. See for example, Adda and Dustmann (2021). This

is useful and provides some reassurance in many contexts, but in general all the moments

jointly identify all the parameters so exploring one parameter at a time does not provide a

proof of global identification. Related ideas on this informal “sensitivity analysis” approach

to investigating the empirical identification of structural models are discussed in Andrews

et al. (2017, 2020a,b), Honoré et al. (2020), Jørgensen (2021) An alternative approach to

identification is to show, via Monte Carlo exercises designed to replicate the empirical set-

ting, that the proposed estimation strategy recovers the true parameters, starting from very

13See Blevins (2014), Bajari et al. (2016), Arcidiacono and Miller (2020), Abbring and Daljord (2020))
and Levy and Schiraldi (2020) for more recent developments.
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different initial guesses.

3.5 Estimating Structural Models

Structural models are estimated in many different ways depending on details of the model

and the data at hand. Moreover, the same structural model can be estimated in different

ways. A comprehensive treatment of estimation details is beyond the scope of this chapter.

In this section we provide some general points about estimation that come up often when

taking structural models to the data. We limit ourselves to parametric structural models

where the structural features in F have been specified using parametric functional forms

and particular distributional assumptions have been made about the stochastic structure

in G. Estimation therefore is limited to recovering the values of a vector of parameters

θ = {θF , θG}. where θF denotes the vector of parameters in the structural functions of the

model and θG refers to the parameters of the distributions of random variables in the model,

including the assumed distribution of unobserved heterogeneity, if any.

Like other models, structural models of microeconomic behavior make predictions about

what the value of the endogenous variables Yi is expected to be given observed values of

the exogenous variables Xi. There are, broadly speaking, two approaches a researcher can

pursue when taking the model to the microdata for estimation. Both approaches attempt to

rationalize why individuals with the same observed Xi end up being observed with different

choices and outcomes Yi. One option is to assume that the model is correct and the reason

why individuals have different values of Yi is because the data was measured incorrectly. This

is the measurement error approach, which essentially assumes that the model is right and the

data is wrong. Any discrepancies between model predictions and what is observed reflects

measurement error. A second approach that tends to be more popular is to assume that there

is structural unobserved heterogeneity in the model. For example, in the model above the

term εu represent heterogeneity in distaste for work that the econometrician cannot observe,

but the individual is fully aware of. Individuals with the same Xi make different choices Yi

because of the different εu they have. We focus our review on the unobserved heterogeneity

approach to estimation of structural models but mention briefly the measurement error

approach as well.
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3.5.1 Classical Approaches to Estimation

These models are often estimated by Maximum Likelihood or Generalized Method of Mo-

ments (GMM).14 Since these methods are thoroughly discussed in standard econometrics

textbooks, we provide a minimal discussion here to highlight how structural models are em-

bedded within these estimation methods. Given the highly nonlinear nature of structural

models, these estimation methods rarely have a closed form for the vector of structural

parameters and therefore the estimation procedure must iteratively search for these pa-

rameters until the estimation criteria is optimized.15 Most structural models that allow

for some form of forward-looking behavior require solving dynamic programming models.

When game-theoretic models are involved, some form of equilibrium must be considered and

solved. These optimizing and/or equilibrium solutions that must be found at each trial of the

structural parameter vector often require heavy computations, slowing down the estimation

routine.

Maximum Likelihood. Maximum Likelihood estimation proceeds by constructing the

likelihood function and then maximizing it with respect to the structural parameters θ.

The likelihood function is nothing more than the joint density (or probability, in the case

of discrete variables) of the observed data, Pr(Y,X, θ). The likelihood function takes the

realized data as fixed, and only the parameters in the vector θ are the arguments over which

it is maximized, so we write it L(θ;Y,X). The logarithm of the likelihood function (i.e. the

log-likelihood) is often maximized, as it is numerically more convenient.

In most cases the cross-sectional data is independent across individuals so the likelihood

function is just the product across observations of the individual likelihood contributions,

Li(θ;Yi, Xi)

L(θ;Y,X) =
N∏
i=1

Li(θ;Yi, Xi) (14)

Note that, f(yi, xi; θ) = f(yi|xi; θ)f(xi) and the distribution of the observable exogenous

variables f(xi) does not depend on θ because that is not a feature that is explained by the

model. Therefore one can focus solely on the density of y given x.

In the context of the labor supply model in (2) we have yi = {hi, log(wi)} and Xi =

{Ii, edui}. To estimate the model using cross-sectional data {hi, log(wi), Ii, edui}Ni=1 one

would proceed by constructing the likelihood contribution for each observation. This is

really just the joint density f(hi, log(wi)|Ii, edui; θ). Note also that this is a simple model

14We limit our review to frequentist approaches. For Bayesian approaches to estimation of dynamic
structural models of discrete choice see Geweke and Keane (2001), Norets (2009) and Imai et al. (2009)

15In very special cases, some of the structural parameters might be estimated in closed form using simple
IV or two-way fixed effects methods. See for example MaCurdy (1981) and Blundell et al. (1998)
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where we assume everyone works a positive number of hours and therefore we observe the

wage offers for everyone. The likelihood contribution for observation i is then given by

Li(θ;Yi, Xi) = f(hi, log(wi)|Ii, edui) (15)

An important step in the construction of the likelihood contribution is then to connect

the primitive stochastic structure G with the densities of the endogenous variables. In our

labor supply example this means linking the assumed density for (εw, εu) with the densities

of (h, log(w)). For log wages, this is f(log(wi)|edui) and given log(wi) = αwxXi + εwi,t, then

one can simply use a change-of-variable technique to recast f(log(wi)|edui) as the density of

the implied wage heterogeneity term εw.16

The contribution from observed work hours is derived similarly. Taking first order con-

dition with respect to h in model (2) and using a particular utility function would lead to

an optimality condition for hours of work. One can then recast the density of the observed

data of hours of work in terms of the density for the structural unobserved heterogeneity in

unobserved distaste for work.17

Maximum likelihood estimation of the discrete choice model in (9) proceeds similarly.

In the discrete case, when building a likelihood contribution one must integrate over the

distribution of possible values of the unobserved heterogeneity and come up with model-

based probability for d rather than a density for h.

Consider, for simplicity, the utility linear function

U(Ci, di, Xi, ε
u
i ) = Ci − ψidi − ψ1Cidi

where ψi = ψ0 + ψxXi + εui
(16)

Using the same budget constraint as in (9), then the utility when working (di = 1)

is just U(Ci, 1, Xi, ε
u
i ) = (1 − ψ1)(wi + Ii) − ψ0 − ψxXi − εui . When not working it is

just U(Ci, 0, Xi, ε
u
i ) = Ii. Armed with the utilities from the two choices, in structural

models of discrete choice it is common to then search for the value of the unobservable

εu∗i that renders the person indifferent between taking any of discrete choices. In this case

εu∗i = wi − ψ0 − ψ1wiIi − ψxXi. For values of εui ≤ εu∗i , the unobserved distaste for work is

low enough and the individual works, whereas for εui > εu∗i , she chooses not to work. The

finding of εu∗i and considering the inequalities around it are the analogous step to taking

16Note that the Jacobian for this simple change of variables is just |1| because log(wi) is additively
separable in εw.

17It is often necessary to use change of variable techniques with complex Jacobians to accomplish this
when the hours of work is not additively separable in the unobserved distaste for work.

26



first order conditions in a model with continuous choice. Note that for estimation purposes

and to focus on the essence, we continue to assume that we observe w for all individuals,

including those who choose not to work.18 Further, assume that not only non-labor income

Ii, but also wages, wi are exogenous. Then, the likelihood contribution for observation i is

given by

Li(θ;Yi, Xi) = Pr(di|wi, Ii, edui)

= Pr(εui ≤ εu∗i |wi, Ii, edui)di Pr(εui > εu∗i |wi, Ii, edui)1−di (17)

= Φ

(
εu∗i
σu

)di [
1− Φ

(
εu∗i
σu

)]1−di
where Φ(·) is the CDF of the standard normal distribution. The above likelihood contri-

bution can be easily generalized to more realistic cases in which wages are endogenous (e.g.

there is correlation between εu and εw) and accepted wage offers are only observed for those

working. In that case one would again need to add the density of wages for those who work

and consider how the conditioning on a given value of εw affects the density of εu.
19

In dynamic models, ignoring permanent unobserved heterogeneity and assuming that

the errors are independent over time, the likelihood contribution would simply involve the

product over time of period-specific choice probabilities like the one in Equation 17. In a

dynamic model one would need to find the cutoff values εu∗it by solving out the choice-specific

value functions and considering their difference. In a finite horizon model one obtains the

value functions by backwards recursion, starting from the last period and recursively solving

period-specific values until the first period of the model. For infinite horizon models one

typically finds the value function as the solution to the fixed point implicit in a Bellman

equation like the one in Equation 11. For more details on the mechanical implementation

of these general solution algorithms for dynamic programming problems in both, finite and

infinite horizon models, see Rust (1996). Keane et al. (2011) provide details more focused on

the backwards recursion procedure for finite horizon models common in Labor Economics.

Moment-Based Estimation An alternative to Maximum Likelihood estimation are

18Most work in labor economics, relaxes this assumption and takes into account the econometric problem
of only observing wages for those who work.

19We refer the reader to the more specialized discussion of Maximum Likelihood available in several
econometrics textbooks for details on the mechanics of how to maximize the function and how to compute
standard errors. Note however that while computation for standard errors for structural parameters is
standard, the computation of standard errors for counterfactual objects might not be. In many cases the
delta method is not appropriate. Ham and Woutersen (2011) and Eisenhauer et al. (2021) investigate this
in detail and propose solutions.
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moment-based estimation strategies such as the Method of Moments (MOM) or the Gen-

eralized Method of Moments (GMM). This approach tends to use less information than

Maximum Likelihood, but it is often computationally simpler and, in some models may of-

fer the opportunity to avoid the need for making certain distributional assumptions. The

moment approach considers the moment condition

E[m(h,w, I,X; θ∗)] = 0 (18)

where θ∗ is the true vector of structural parameters. If only one moment condition is available

from the model and there is more than one parameter to estimate, it is possible to expand the

set of moment conditions by using a vector of exogenous instruments Z such that E[m(·)|Z] =

0 and E[Zm(h,w, I,X; θ∗)] = 0 by the law of iterated expectations. For example if in the

model above (w,X, I) are assumed to be exogenous then Z = [w,X, I]′.20

If Dim(Zm(·)) = Dim(θ) the model is just identified and estimation proceeds by methods

of moments, numerically finding the vector θ that satisfies

1

N

N∑
i=1

m(h,w, I,X; θ) = 0 (19)

If Dim(Zm(·)) > Dim(θ) one can use GMM, where

θ̂ = arg max
{θ}

([
1

N

N∑
i=1

m(h,w, I,X; θ)

]
W

[
1

N

N∑
i=1

m(h,w, I,X; θ)

])
(20)

where W is a matrix that weights the different moments.21

In the labor supply model of continuous choice it is natural to build moment conditions

using the first order condition for the optimal choice of hours. With the utility function in

(13), the optimality condition cannot be used to solve out analytically for h, but one can

still use GMM to estimate θ by using E[εu] = 0 with εu = log(wi)−ψ0−ψxXi+η log(wihi+

Ii) − γ(log(hi). If in addition to X, wages and non-labor income are exogenous, a vector

of instruments Zi = [1, wi, Ii, Xi] can be used to magnify the moment conditions and just

identify the parameters (ψ0, ψx, η, γ).22

In the case of the discrete choice model in 9 one can follow Avery et al. (1983) and

20it is also possible to use functions of the instruments q(Z) to increase the number of moment conditions.
21The choice of of moments m(·) and moment-weight matrix W obviously affects the numerical estimates

obtained in finite samples but do not affect the consistency of the estimator. We refer the reader to the more
specialized discussion of GMM available in several econometrics textbooks, specially for details on how to
best choose the matrix W and how to compute standard errors.

22To identify σ2
u one can also use the moment given by the variance E[(εu)2 − σ2

u] = 0.
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represent discrete choice problem in a moment framework where E[di−E[di|Zi, θ]] = 0. Note

that because di is binary, the moment condition is equivalent to E[di−Pr(di = 1|Zi, θ)] = 0

3.5.2 Simulation-Based Estimation

As described in Stern (1997), simulation-based estimation methods are an increasingly pop-

ular alternative for estimation of structural models. In many cases, the classic methods

described in the previous section become intractable and a simulation approach is often

more convenient. For example, the choice probabilities in models with many choices are dif-

ficult to evaluate and simulators for them are instead very simple to implement. Similarly,

whenever some choices or states are missing one might need to integrate over them. These

integrals are often more easily handled via simulation. In this simulation-based approach,

at each trial of the structural parameters, the model is solved and simulated. The simu-

lated data or its moments are compared to the empirical data. The structural estimates

are obtained when the data simulated from the model matches the empirical data. Lerman

and Manski (1981), McFadden (1989) describe the simulation-based counterparts to classic

approaches such as maximum likelihood and method of moments. An alternative approach

is indirect inference as described in Gourieroux et al. (1993). Another driving force behind

the trend towards the use of simulation-based estimation methods (e.g. Simulated Meth-

ods of Moments, Indirect Inference) is that they easily allow for combining multiple data

sources as noted by Low and Meghir (2017). Re-weighting might be necessary to ensure that

the different data sources represent the same population. As noted early on by McFadden

(1989) and Stern (1992) smoothing the simulators used in simulation-based estimation might

be important to exploit gradient-based optimization algorithms. Bruins et al. (2018) and

Sauer and Taber (2021) provide alternative smoothing approaches in the context of indirect

inference. A novel, promising approach to simulation-based estimation has been recently

advanced by Kaji et al. (2020), integrating classic model-based simulation with techniques

from machine learning that are used to discriminate whether an observation is real empirical

data or simulated from the model. The structural parameter estimates in this approach are

those that render the machine learning discriminator unable to distinguish simulated from

empirical data. Eisenhauer et al. (2015) caution against the use of simulated methods of

moments and emphasize the need for dynamic moments for estimation of dynamic models

Berkovec and Stern (1991), French (2005), Dey and Flinn (2008) provide applications

of simulated methods of moments, whereas Keane and Wolpin (1997) and Dey and Flinn

(2005) include applications of simulated maximum likelihood. Examples of applications

using Indirect Inference include van der Klaauw and Wolpin (2008), Tartari (2015), Adda
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and Dustmann (2021).

In the context of the labor supply model in (16) one can simply obtain simulated versions

of moment-based or likelihood-based estimators by simply replacing the model-based prob-

ability that individual i chooses to work, Pr(di = 1|wi, Ii, Xi; θ) with a simulated version of

it, P̂r(di = 1|wi, Ii, Xi; θ). Suppose we take, for each individual i, R draws of εu from its

distribution. Then a crude frequency simulator P̂r(di = 1|wi, Ii, Xi; θ) is given by

P̂r(di = 1|wi, Ii, Xi; θ) =
1

R

R∑
r=1

1
[
U(wi + Ii, 1, Xi, ε

u
i(r); θ) > U(Ii, 0, Xi, ε

u
i(r); θ)

]
(21)

where 1 [·] is an indicator function that equals one when the statement or event in brackets

is true and zero otherwise. Intuitively, the probability of working is replaced by the simulated

fraction of times the individual would choose to work under a large, representative sample

of the εu she might actually face. Stern (1997) provides additional detail on more efficient

simulators and how to compute standard errors for simulation-based estimators.

Indirect Inference A a more recent practice is to rely on indirect inference estimators.

In this approach one estimates a set of auxiliary models using the empirical data. These are

just linear or non-linear statistical relationships between the observable variables and they

are not attached any causal or structural interpretation.These auxiliary models typically use

the model’s endogenous variables as outcome variables and the model’s state variables as

explanatory variables. One can also here include among the auxiliary model, some difference-

in-difference specifications or IV regressions that might provide a key source variation that

one may want the model to match. Let the set of parameters from these auxiliary models

estimated in the empirical data be denoted by πdata. An indirect inference estimator then

proceeds as follows:

1. Guess θ.

2. Solve the structural model at that θ ( i.e. find cutoffs like εu∗ in a discrete choice model

or evaluate the first order conditions using θ in continuous choice models.) This tells

us how the individual would behave for each εu she might face.

3. Take R simulated draws from the distribution of εu for each individual.23

4. Use the optimal behavior prescribed by (2) above to simulate endogenous choices that

each individual would make given the different εu∗(r).

23Ideally the underlying draws for each individual remain the same but their distribution gets updated
when the distributional parameters get updated. For example, one can draw uniforms once and then convert
them to normal draws with the mean and variance that are being proposed as the estimation unfolds.
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5. Collect the simulated data for all individuals into a simulated dataset with R-by-N

simulated observations.

6. Estimate the same set of statistical descriptive models on the simulated data and obtain

π(θ).

7. Compare the vector πdata with π(θ) and if the difference is not very small go back to

step (1) and guess a new θ.

In sum, the indirect inference estimator then solves:

θ̂II = arg min
{θ}

([
πdata − π(θ)

]′
W
[
πdata − π(θ)

])
(22)

where W is a weight matrix.24

3.5.3 Unobserved Heterogeneity

These models often are estimated by allowing for unobserved heterogeneity. There are differ-

ent approaches to allowing for unobserved heterogeneity. One popular approach is to allow

for a discrete distribution of unobserved types and letting some of the structural parameters

to vary by type. Heckman and Singer (1984) first proposed this method in the context of

duration models but it has since been applied to structural models more generally. One

then jointly estimates the probability of these types along with the type-specific structural

parameters in the same estimation routine. Consider a dynamic extension of the discrete

choice model in (9). To focus on the central issue, let’s ignore the modeling of wages, but

allow instead for K types of individuals sharing a permanent component µuk in the distaste

for work εui,t = µuk(i) + νi,t as discussed in Subsection (3.3). Observing panel data of length

T from individuals one needs to take into account the dependence of choices over time intro-

duced by the permanent unobserved types. Given that νi,t are independent not only across

individuals, but also for a given individual over time, the joint probability of the observed

history of choices for given individual, assuming that she is of a given type k, simplifies to

the product over time of the type-k-specific individual choice probabilities. The type-specific

individual likelihood function then becomes

Li(θ; k, Yi, Xi) =

Ti∏
t=1

Pr(dit|k, wit, Iit, edui) (23)

24For additional technical detail on indirect inference and associated standard errors, see Gourieroux et al.
(1993).
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and the likelihood contribution for a given individual just integrates out the type-specific

likelihood contributions

Li(θ;Yi, Xi) =
∑
k

Pr(k)Li(θ; k, Yi, Xi) (24)

The likelihood function for the whole sample is then given

L(θ;Yi, Xi) =
N∏
i=1

∑
k

Pr(k)Li(θ; k, Yi, Xi) (25)

In the context of dynamic programming models, one might also let the transition prob-

ability for the state variables like the one in Equation 12 to depend on the same permanent

unobserved types that preferences are allowed to vary by. This becomes quite computa-

tionally costly as one needs to re-solve dynamic programming models during the estimation

routine also for each change in the parameters of Equation 12 even when the parameters of

preferences remain the same. If Equation 12 does not depend on the same unobserved types,

one can estimate its parameters in a first step and “plug them in” into the second step, sim-

plifying the estimation procedure substantially. To deal with this problem Arcidiacono and

Jones (2003) obtain computational savings by adapting the EM-algorithm and converting

the estimation procedure into an iterative process in which simpler and faster estimation

steps can be conducted in each iteration by breaking down the estimation in each iteration

into separate steps for transition and preference parameters with an extra step that updates

the probability that a person is of each type. A common procedure to select the number of

types is to start with 2 or 3 and increase the number of types until the estimation criteria

(e.g. the likelihood function) does not substantially improve. Kasahara and Shimotsu (2009)

consider the non-parametric identification of these models.

An alternative approach is to let the structural parameters to be continuously distributed

in the population. One then has a continuous joint distribution for the parameters that are

allowed to be heterogeneous. A parametric form such as a multivariate normal is often used.

One would then rely on simulation-based integration, to integrate out this “continuous”

unobserved heterogeneity in the estimation routine. This typically requires many more

solutions to ensure that those simulators provide good approximations and this is why the

discrete type approach is more popular.

An alternative approach to allow for unobserved heterogeneity uses unobserved factors to

connect various parts of the model and flexibly accommodate additional sources of correlation

in behavior by allowing, for example, for the same unobserved factors to enter choice and

outcome equations with different factor loadings thus providing a model-based approach
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to dealing with a typical form of endogeneity. Carneiro et al. (2003) and Aakvik et al.

(2005) discuss identification of these models when the unobserved factors are continuously

distributed.25 Cameron and Heckman (1987) and Mroz (1999) consider the discrete factor

case.

The discrete “unobserved factor” and discrete “types” approaches are also useful devices

to deal with the initial conditions problem. This issue is often encountered when there is

unobserved heterogeneity and behavior preceded the time window available in the sample. As

pointed out early on by Heckman (1981a), in such situations the initial state is not exogenous

in that, by the very logic of the model’s dynamics, certain types will more likely to have

certain initial conditions. A common solution is to let the unobserved type probabilities be

a function of the observable initial conditions.

With the advent of parallel processing techniques, recent approaches that allow for even

richer forms of unobserved heterogeneity have been proposed by Ackerberg (2009) and Fox

et al. (2011). In these approaches, many solutions to dynamic programming problems are

first computed under different values for the structural parameters (exploiting parallel pro-

cessing, if available). One then simply re-weights the contributions of these solutions when

integrating out the unobserved heterogeneity during the estimation routine avoiding new

computationally costly solutions to the dynamic programming problem. Estimation pro-

ceeds much faster than with traditional algorithms because those algorithms need to resolve

multiple dynamic programming problems each time new parameters for the distribution of

unobserved heterogeneity are proposed in estimation. While these methods have been more

often used in the context of empirical industrial organization applications, we see no reason

why they couldn’t be applied to research on the themes of this Handbook.

3.5.4 CCP Estimation

Dynamic structural models of discrete choice quickly become computationally intractable,

when one allows for several state variables in the model. Building on the work of Hotz and

Miller (1993) there has been a recent trend towards the use of structural estimation methods

for dynamic models of discrete choice that avoid the solution to the dynamic programming

problem by exploiting a representation of the value functions that only depend on conditional

choice probabilities (CCPs). These CCPs can be estimated directly from the data and

are kept fixed during the estimation routine. Hotz et al. (1994), Aguirregabiria and Mira

(2002) and Bajari et al. (2007) provide extensions of this approach that improve its practical

applicability. Altug and Miller (1998) extend the CCP approach to allow for aggregate

25See also Heckman (1981b) and Aakvik et al. (1999)
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shocks and Gayle et al. (2018) extend the CCP approach to dynastic settings. While an

early concern with the approach of Hotz and Miller was that it could not handle unobserved

types as in Subsection 3.5.3, Arcidiacono and Miller (2011), Pantano and Zheng (2013) and

Bonhomme et al. (2021) propose estimation methods that can be used to extend the Hotz and

Miller (1993) approach to models with unobserved heterogeneity in structural parameters.

Gayle (2018) extends the ideas in Arcidiacono and Miller (2011) to models with both discrete

and continuous choices. Most of this line of work uses models where the unobservables are

additively separable. Kristensen et al. (2015) extend the CCP approach to models with

non-separable unobservables. While the CCP approach can provide computational savings

of several orders of magnitude during the estimation, it remains the case that one must,

once estimation concludes, actually solve the model at the estimated parameters in order

to use it for, say, evaluating counterfactual policies. A thorough discussion of the CCP

approach is beyond the scope of this review. We refer the reader to comprehensive surveys

by Aguirregabiria and Mira (2010) and Arcidiacono and Ellickson (2011) for more details.

3.5.5 Measurement Error

As mentioned at the beginning of this section, an alternative approach to structural esti-

mation is based on the premise that the observable variables in the model are sufficient to

capture all that’s relevant for the decision-maker to make choices. From this standpoint, the

model is correct and any discrepancy between model predictions at the individual level and

actual microdata must be due to measurement error in the microdata. In this approach, an

alternative way is proposed to rationalize why individuals with the same observables have

different wages and even those with the same observables and wages end up making different

work hours choices. Instead of relying on structural unobserved heterogeneity (εu, εw) one

argues that, say, hours and wages are measured with error. The measurement errors can

rationalize some departures between the data and the model without the need to augment

the stochastic structure of the model that the individual is assumed to observe. One must

however be rather disciplined when allowing for measurement error and in contrast to struc-

tural features, not let the measurement error be too flexibly specified because no matter how

bad a model could be, it could always be reconciled with the data if allowing for sufficiently

flexible measurement errors. The typical approach is to assume that the observed values of

y are the true values y∗ contaminated with measurement error, εy as follows

y = y∗ + εy (26)
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One can then postulate a distribution for the measurement error εy and estimate its pa-

rameters along with the other model parameters, using for example, a maximum likelihood

approach. In this approach, the maximum likelihood estimator tries to jointly choose struc-

tural parameters that capture the main patterns of behavior and parameters for the distri-

bution of the measurement error that could reconcile the observed deviations between model

predictions and the data at the individual level. Early examples of the use of measurement

error in estimation include Wolpin (1987), Eckstein and Wolpin (1989a) and Stern (1989),

all of which allow for measurement error in wages. Less common is to allow for measurement

error in discrete variables. For example Keane and Wolpin (2001) allows for classification

errors in the measurement of the model’s discrete choices as well as measurement error in

continuous states such as wages and assets.26

3.6 Validating Structural Models

Once the structural model has been estimated, it is customary to asses how well it fits the

data that was used to estimate it. It is common to report tables and figures showcasing how

well the predictions of the model match choices and outcomes under the baseline or status-

quo environment. This contrasts to models typically used in macroeconomics that rely more

heavily on aggregate data. A feature of the structural micro-econometric approach is that

this model fit evaluation process can be more thorough and demanding. One can examine

not only whether the model fits means and standard deviations for choice variables but also

examine covariances. Any moment or statistic that one can construct from the microdata can

be in principle compared to a similar statistic computed from the model, either analytically

or by simulation. A more exacting way of validating the model is to see how it matches

behavior out of sample. This is what is called out-of-sample validation. To conduct this

type of model validation one must have access to data that is “held-out” and is not used

for estimation. Unlike the validation approach used in machine learning that sets aside a

hold out representative sample for validation purposes, here the idea is to reserve a sample

that was exposed to different incentives. For example, one could use a sample that faced a

complex set of tax and transfers and see if the simple model above estimated on a sample of

individuals, that came from the same population, but that were not taxed and did not have

access to any transfers, matches the behaviors of individuals subject to taxes and transfers

when these are simulated within that model. The idea is that finding that the model does

indeed match the behavior under a different environment would convey a high degree of

credibility to the estimated model. We defer further discussion on the issue of external or

26See also Imai and Keane (2004).
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“out-of-sample” validation to Subsections 5.2 and 5.3 where we take it up again, in the

context of discussing the integration of structural and experimental and quasi-experimental

approaches.

4 Advantages and Disadvantages of Structural Models

In this section we discuss advantages and disadvantages of structural models. We also discuss,

separately, the more debatable issue of external validity, which under some circumstances,

can be seen as another advantage of the structural approach.

4.1 Advantages of Structural Models

Structural models are often difficult to estimate so it is important to have a clear understand-

ing of their advantages over simpler empirical approaches that may offer more transparent

solutions at lower programming and estimation time costs. The three clear advantages of

structural models are a) the ability to simulate behavior under new environments or policies

that have never been experienced by the population under study, b) assess the importance of

various mechanisms and c) evaluate the welfare implications of alternative policies or changes

in the environment that individuals face. We discuss each in turn.

1. Ex-Ante Evaluation of New Environments In some cases, the answer to the re-

search question of interest is the set of structural parameters themselves. For example,

one might be interested in certain feature of the utility function or in the productivity

of certain input in a production function. In those cases, the estimated parameter di-

rectly provides the answer to the research question. Most often, however, the question

of interest is how the decision makers would behave under alternative environments,

including, as special case, policy changes. These policy or environmental changes can

be easily evaluated using the structural model once the primitives have been estimated.

In many cases the evaluation of this policy changes involves simulation of unobserv-

ables that enter the agent’s decision-making process but that are not observed by the

econometrician. The focus in this counterfactual experiments is often on how choices

and outcomes Y differ in this alternative environment relative to the baseline or status-

quo. The baseline environment is the environment that decision-makers faced when the

data used to estimate the model was generated. The model we have been discussing

applies to a hypothetical population that did not have taxes nor transfers. Once we

have recovered the structure we can use that model to evaluate how the labor supply

of this population would change if exposed to a complex labor income tax and transfer
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system. All we need is to set up a new budget constraint that incorporates the taxes

τ and transfers of interest B:

C = (1− τ(wi, hi))wihi +B(wi, hi) + Ii (27)

2. Mechanisms Structural models have the ability to evaluate the importance of various

channels or mechanisms. For example, one can augment the labor supply model above

with child development where the individual cares about the level of development of

her child, Q. One can adjoin a technology of development where Q depends on how

much time tQ the mother spends with the child and how many development enhancing

goods cQ she purchases in the market. The model is then modified as follows: the new

utility function depends on child development U(ci, li, Xi, Qi, ε
u
i ) so a new preference

parameter must be considered, capturing how the mother trades off her consumption

and leisure and the development of her child. The time constraint is modified so that

T = hi + li + tQi . A production function for Q is added to the structure of model,

Qi = q(tQi , c
Q
i ). A researcher can estimate this model with access to additional data

on {Qi, t
Q
i , c

Q
i }. Then one cannot only simulate the effects of a welfare benefit on child

development, but one can also distinguish how much of the total effect comes from the

additional developmentally enhancing goods cQi that the mother chooses to purchase,

and how much comes from the increase in time that the transfer allows her to spend

with her child, reducing her labor supply.

3. Quantifying Welfare Effects Structural models often have the ability to provide

a monetary measure of the value that individuals attach to certain changes in the

environment. Let V (w, I,X, εu) be the indirect utility function associated with the

simple labor supply model in (2). V (w, I,X, εu) can be obtained by using the optimal

hours of work to recover optimal leisure, l∗ and consumption c∗ and plugging them into

the utility function U(·). Once the structural model is estimated, it is easy to compute

V using the estimated direct utility function U . Let’s further index the “status quo” or

baseline environment that generated the data used in estimation by e0. One can derive

the monetary (positive or negative) willingness to pay (WTPi) that each individual has

for a new environment enew by simply finding the value WTPi that solves

V (wi, Ii, Xi, ε
u
i ; e

0) = V (w, I − WTPi, X, ε
u; enew) (28)
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4.2 External validity

We devote a separate section to the issue of external validity because there is some debate

on whether it can be considered an advantage of the structural approach. We discuss why

the claims of external validity often credited to structural models must be qualified.

Structural Choice Models. While it was at some point conventional wisdom to argue

that structural models have the additional advantage of providing external validity, this

is no longer so clear in a world that allows for unobserved heterogeneity in preferences.

Consider for example, the labor supply model above with K = 2. The are two types. For

example, there could be a lazy type (k = 1) with a high value of µk and an industrious

type (k = 2) with a low value of µk. The type of each individual is unobserved to the

econometrician. From the econometrician’s perspective each individual is of the lazy type

with Pr(k = 1) and of the industrious type with probability Pr(k = 2) = 1 − Pr(k =

1). Once preferences are heterogeneous, the structural model recovers the distribution of

preferences for the population from which the sample was drawn. Suppose for the sake of

the argument that we estimate the lazy and industrious types to be evenly distributed in

the population from where the sample to estimate the structural model was drawn. There

is no guarantee that that is the right distribution of preferences in another population.

In fact, there is mounting evidence on how different preferences are across populations.

Recent evidence by Falk et al. (2018) document striking patterns of heterogeneity across,

and especially within, countries in measures closely associated to structural parameters such

discount factors and levels of risk aversion, altruism and social preferences. Our estimated

model, even if well-identified in the estimating population may do a poor job at forecasting

the response to policy in another population that has an unknown, different distribution of

lazy/industrious types. One possible way around this is to assume that differences across

populations in their unobserved heterogeneity distributions can be captured by observable

variables. In that case one can parameterize the distribution of unobserved types in terms of

exogenous observables Pr(k|X). Then with access to data on X in the new location, one can

derive what the prevalence of unobserved types is there, and thus construct external validity

for the estimated structural model. In our view, then, structural models do provide some

external validity but in a more restricted sense than traditionally claimed. When unobserved

heterogeneity in structural parameters is very important, external validity might be difficult

to claim as an advantage of structural models. These models can predict behavior under

a new counterfactual environment in the same population but might be unable to predict

behavior under the same environment (let alone a different one) in alternative populations

whose unobserved heterogeneity distributions are unknown. Note that this is a problem
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that becomes more visible by estimating a more realistic model that allows for unobserved

heterogeneity in the population in which the model is estimated. If one assumes instead

that every person in the estimating population has the same structural parameter (or that

all differences in those parameters can be accounted by observable variables) then one might

incorrectly assume that individuals in other populations might also have the same parameter

and the model is externally valid. Not allowing for unobserved heterogeneity in structural

features essentially assumes away the problem. It does not fix it.

Similarly, it is not so clear whether one can extrapolate to other time periods, out of the

sample window, even for the same population used in the estimation of the structural model.

The traditional view is that structural models could in principle do that as well. However,

any out of sample time effects cannot be identified by any method, whether structural or not.

For example, suppose the unobservable distaste for work may be subject to aggregate shocks

at different points in time, capturing underlying aggregate changes in the opportunities to

enjoy leisure εuit = µt+νuit. Then, the estimated structural model estimated at time t will not

be able to correctly predict behavior at time t′ whenever µt 6= µ′t. In fact, this is why ex-post

evaluation methods that control for time effects such as difference-in-differences approaches

are so popular, even when they do not enjoy the advantages discussed in the previous section.

Our view is that even when the identified structural model is still right, it may not predict

behavior appropriately when taken to another point in time (in the future or in the past)

that features an unknown and distinct time effect.

Structural Models of Treatment Effects An important set of structural models ad-

joins an outcome equation to the structure that characterizes how an individual decides to

participate in a treatment that has heterogeneous effects on an outcome. These structural

models of treatment choice which model the potential outcomes under each possible treat-

ment can be used to construct the full marginal treatment effect (MTE) profile. As described

in Heckman and Vytlacil (1999, 2001, 2005), once one recovers the MTE, one can then esti-

mate any treatment effect in the population under study. It is often argued that the LATE

parameter of Imbens and Angrist (1994), which is identified by reference to a given binary

instrument might not be externally valid. A common concern is that this parameter may

not provide a relevant estimate for the average treatment effect in the whole population,

the average treatment effect on the treated or the average treatment effect among those

who might be induced to take treatment by a policy of interest. We share this concern.

An argument is then often made that, since a structural model of treatment effects can in

principle recover the whole MTE profile even when relying on a binary instrument, such a

model can, as the argument goes, obtain any treatment effect in the same population at

the same point in time, not just a LATE for the Z-compliers. One might then be tempted
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to argue that the structural approach has more external validity relative to a clean Wald

estimate of LATE that imposes the minimal structure. Yet, it is important to recognize that,

as emphasized by Kline and Walters (2019), this ability to generalize beyond the complier

sub-population often relies on extrapolations that might be heavily dependent on functional

forms assumptions whose validity might be questionable. So even this more limited sense

of external validity that captures ability to generalize to other sub-populations (but within

the population under study and at the same time and in the same place) other than the

Z-compliers comes at the price of having to maintain functional form assumptions. So while

it might be true that a non-structural estimate of LATE might not carry external validity, it

is also true that the more structural models of treatment choice and treatment effects attain

that wider reach beyond the complier sub-population by relying on potentially questionable

functional form or distributional assumptions.

In sum, in our view, a structural model is best at predicting what would had happened at

the same time, in the same place, had the same population faced an alternative environment.

Furthermore, accomplishing this goal may often come at the price of having to maintain

functional form assumptions that are necessary for extrapolation. This is an issue that we

return to when discussing out-of-sample validation in Section 5.2.27

4.3 Disadvantages of Structural Models

Discussions about the relative value of structural models are often lopsided with advocates

championing its use and detractors emphasizing their disadvantages. Our goal here is to

provide a balanced, level-headed review of its pros and cons. Having described the unique

advantages of the structural approach it is now time to be explicit about its disadvantages.

This not only serves to provide a more neutral review but also dovetails nicely into our next

section where we describe a recent trend that aims to address some of these disadvantages.

Some of the ideas in this section draw from Angrist and Pischke (2010), who provide a blunt

criticism of the structural approach.

Identification It is argued that in these models it is difficult to prove formal econometric

identification in the sense of Matzkin (2007, 2013). As argued in Section 3.4, structural

studies rarely offer a formal proof of identification. Even putting that aside, another concern

is that empirical identification might be achieved by exclusion restrictions that are not as

rigorously vetted. Papers that are built around estimation of a LATE with a convincing

instrument or fixed-effects models often devote quite a bit of time and space to justify the

27See Banerjee and Duflo (2009), Imbens (2010), Bo and Galiani (2020) and List (2020) who tackle the
issue of external validity from complementary perspectives.
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validity of the identification adopted. In stark contrast to this focus, the exclusion restrictions

in some of the early structural literature do not appear to have been as well though-out, and

were often relegated to footnotes or data appendixes when explicitly reported at all. Coming

up with an exclusion restriction that was key for identification was more of a formality than

a substantive, critical empirical problem that defined the whole empirical strategy. For

example, it is possible to show that in the simple binary choice model of labor supply, it is

necessary to have a variable affecting wages that does not affect taste for leisure. Arguing

that education could play such a role, affecting wages but not distaste for work is something

that perhaps the early structural literature may not have had issues with, but those coming

from a more recent non-structural perspective are now less prepared to accept. As we argue

below though, this is not a fundamental problem with the structural approach. It is just

that, nowadays, the bar is set much higher for what is considered a valid exclusion restriction.

Indeed, we discuss in the next section how the modern structural approach can adopt this

higher standard by integrating sources of experimental or quasi-experimental variation for

identification.

Functional Form. Structural models are correctly seen as heavily-reliant on parametric

functional forms. While there is some theoretical work on non-parametric structural models,

most of the applied work is heavily parametric. Indeed, even in the very few cases in which

full non-parametric identification of the structural model is provided, researchers often go on

to estimate the model under much more tightly parameterized functional forms for utility

functions, production functions, and the stochastic structure, without necessarily testing the

validity of the parametric restrictions against the more flexible non-parametric structure that

can be in principle identified under ideal data conditions. Even if one had access to ideal data

conditions and could estimate the model non-parametrically, a parameterization will often

have to be made anyways whenever the counterfactual of interest is somewhat outside the

support of the data. A non-parametric approach is silent about what the structure looks like

beyond the support of the data and is thus unable to help in extrapolation exercises. While

the need to impose functional form to extrapolate seems an inherent feature of the structural

approach, we discuss in the next section how one can use experimental or quasi-experimental

sources of variation to externally validate the model and help select appropriate functional

forms in some cases.

Computational Complexity Finally, while this is starting to change somewhat, it is

well-known that the necessary programming for estimating structural models must often be

coded from scratch, without the possibility of relying on canned software packages. This

is often very time consuming because: a) programming b) debugging c) running the code

and d) making changes to the model to try new specifications all may take a long time. All
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of this time-consuming activities take away from the researchers’ available time to focus on

the economics of the problem and to search for more exogenous sources of variation. It also

prevents extensive sensitivity analysis and skeptics are often left to wonder, and rightly so,

how robust the results might be to even small changes in many of the model’s details. This

is something that seems quite inherent to the approach, although there have been attempts

to code general purpose packages that can be used for different applications. However, these

have not been adopted widely as the details of these models often mean that a generic code

will not be sufficient to capture the idiosyncrasies of a particular application. Nevertheless,

similar in spirit to the CCP estimation approach discussed in Section 3.5.4 there is continued

methodological work to develop methods that allow the researcher easier ways to estimate

structural models. Eberwein and Ham (2008) illustrate the substantial computational sav-

ings that can be achieved by using analytic instead of numerical derivatives when estimating

dynamic structural models of discrete choice via maximum likelihood. They also show how

analytic derivatives can help in debugging code and easily spotting programming errors.

5 The Integration of Design-based and Structural Ap-

proaches

The last few years of the twentieth century and the first decade of the twentieth-first century

witnessed increased specialization of empirical research in applied microeconomics. Most re-

searchers seemed to take two quite different routes to conduct empirical work. A popular

approach, following the credibility revolution described in Angrist and Pischke (2010), fo-

cused on finding a convincing identification strategy and building the research around it.

It was increasingly common to see instrumental variables, regression discontinuity designs

and difference-in-differences approaches, as alternative tools within this broad movement

that did not emphasize the need for specification, let alone estimation, of a fully structural

model, but rather, placed the research design front and center. Other sharing this focus

on “clean identifiaction” went on to design experiment themselves to generate the needed

variation, particularly in the field of development economics.28 An alternative, and certainly

less common strategy, was to follow the approach we describe in this chapter, opting for

spending most of the research effort formulating and estimating fully specified structural

models where the source of exogenous variation was, in relative terms, a less central concern.

Against this backdrop of increasing methodological specialization and polarization, the

28Perhaps due to larger costs of conducting field experiments in developed countries, this has been some-
what less common in labor economics and other applied microeconomic fields. But see List and Rasul (2011)
for a survey of experiments (including laboratory ones) in labor economics.
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last 10 years have shown some signs that this trend might be reversing, with increasing

attempts to integrate the two paradigms both in research and teaching. In this section we

provide a brief review of this ongoing trend that seeks to integrate structural models with

experimental or quasi-experimental sources of exogenous variation, which are the hallmark

feature of non-structural or “design-based” empirical strategies. Rather than cataloguing

every paper that has integrated these approaches in one way or another, we believe it is more

useful to try to provide a road-map to the distinct ways in which this integration is taking

place. We believe this integration can be fruitful in addressing some of the disadvantages

associated with structural models discussed in the previous section and reinvigorate the

structural approach. In assessing this recent literature, there seem to be currently two

schools of thought developing on how this integration can best be implemented.

On one end some argue that these clean sources of variation should be used in the

estimation of structural models. One possibility here is to use the experimental variation

to identify a “stigma” parameter that can only be identified with the treatment-control

contrast given by the experimental variation. These are parameters that are not relevant

in the control group because they are only part of the structure when the individual is

exposed to the treatment. NOte that these parameters are not necessarily negative. The

“stigma” label follows from Moffitt (1983), who introduced the idea of individuals suffering a

utility cost from participating in a welfare program. An alternative use of the experimental

variation, when these types of “stigma” effects are thought not to be important, is to use

the experimental variation as an instrument to relax a debatable exclusion restriction. For

example, as discussed in Section 4.3, assuming that wage is affected by education but distaste

for work is not would be a debatable exclusion restriction nowadays. If one has access

to a Randomized Control Trial (RCT) that assign wage subsidies, one can rely on it for

identification and let education affect both wages and distaste for work.

An alternative line of thought argues instead that it might be best to hold out such

variation from estimation, reserving it instead for external, out-of-sample validation of the

structural model. In this section we complement a recent review by Todd and Wolpin (2020)

that focuses on this “out-of-sample” validation perspective by emphasizing why, whenever

possible, it might be best to do both: use some of the available variation to estimate the

model and some to validate it, as in Galiani et al. (2015). Further, we discuss a third

way in which this combination is fruitful: facilitating the unpacking of bundled features of

treatment.
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5.1 Using Experimental and Quasi-Experimental Sources of Vari-

ation to Estimate Structural Models

In this subsection we discuss how design-based approaches are being leveraged for iden-

tification of structural models. There is a hope that by using this type of variation the

identification of θ might be more convincing or credible, in the same sense that an ATE esti-

mated using an RCT with perfect compliance or a LATE with valid instruments are thought

to be convincing.

Imbens (2010) provides a compelling call for the use of experimental variation in es-

timation of structural models. He argues that even though structural models have many

parameters and one cannot hope that a simple two-arm RCT will provide distinct variation

to identify them, it might at least help identify a combination of them imposing some dis-

cipline in the identification of the structure. Similarly, Heckman (2010) welcomes the use

of experimental variation for identification of the marginal treatment effect (MTE) profile.

While not a fully structural approach, in the sense of this chapter, estimating the MTE may

in many cases allow for the analysis of the impact of alternative policies as long as the policy

variation in the experiment or any additional instruments used to estimate the MTE is not

too different from the policy question of interest. In other words, one can re-weight the MTE

to obtain a policy-relevant treatment effect when the policy of interest can be re-casted in

terms of alternative configurations within the existing instrument-induced variation.

One early example of work that uses randomized experimental variation to estimate a

structural model include Burtless and Hausman (1978) who exploit data from the Negative

Income Tax experiments to estimate a structural model of labor supply.29 More recently,

Imbens et al. (2001) use data from lottery winners to estimate a dynamic model of labor sup-

ply whereas Ferrall (2012) use experimental variation from Canada’s Self-Sufficiency Project

to estimate a model of welfare participation, Attanasio et al. (2012) use RCT data from

Mexico’s PROGRESA conditional cash transfer program to estimate a model of child school

attendance and Galiani et al. (2015) use data from the control group and the restricted

experimental group in the Moving to Opportunity experiment to estimate a model of neigh-

borhood choice. Chaparro et al. (2020) uses randomized variation from the IHDP program

to estimate a structural preference parameter characterizing maternal parenting exhaustion

in a model of early childhood cognitive development.

29However, Burtless and Hausman (1978) do not proceed by specifying and then estimating a direct utility
function but rather start with a conventional labor supply function for hours of work and back out the implied
indirect utility function using Roy’s identity. Unfortunately, the associated direct utility function cannot be
recovered from the indirect utility they obtain and this places some limitations on the type of analyses that
one can pursue. Moffitt (1979) provide further analyses of the Negative Income Tax experiments.
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Others have estimated structural models by exploiting difference-in-differences type of

variation in estimation to help identify the structural parameters in population economics,

labor economics and human resources. For example, Voena (2015) uses cross-state variation

over time in changes to laws regulating grounds for divorce and property division upon

divorce to estimate a dynamic model of married couples decisions about the wife’s labor

supply and the couple’s savings. Similarly, Blundell et al. (2016) exploit policy variation

across cohorts in the taxes and welfare benefits they faced to estimate a rich model of the

behavior of women in the U.K. They use the model to analyze welfare policy. Also, in the

same spirit, d’Haultfoeuille and Février (2020) exploit an exogenous compensation contract

change in the French government’s statistical agency to estimate a model of asymmetric

information and derive the optimal compensation contract.

There have been calls too for the integration of the the LATE framework into structural

models. IV and in particular the LATE framework developed in Imbens and Angrist (1994)

has been widely popular among empirical researches due to its simplicity and the small

number of stated assumptions.30 In this regard, and following an earlier desideratum by

Angrist and Pischke (2010) on the need for estimates derived from structural models to “line

up” with those obtained under weaker assumptions, Kline and Walters (2019) argue for using

instrument variation in the estimation of structural models. They go on to suggest that

“model-based” or structural LATEs could and should be routinely derived from a structural

model and compared to “unrestricted” LATEs to give more confidence to the structural

model when the estimates match. It is important to bear in mind that for this “quality

control” to make sense, one must first verify that the proposed structural model does satisfy

the monotonicity condition that is necessary in the LATE framework.31 In a handful of

cases, estimating a structural parameter might be quite simple. For example, Blundell et al.

(1998) use the so-called “instrumented difference-in-differences (DDIV)” approach which

uses difference in difference variation as an instrument and show that the key structural

parameter that governs the labor supply elasticity can be estimated directly by DDIV.

30However many have pointed out disadvantages of IV such as failure of monotonicity, violation of ex-
clusion restrictions, relevancy of complier sub-population Heckman (1997), Rosenzweig and Wolpin (2000),
Keane (2010a), Heckman (2010),Heckman and Urzua (2010), Wolpin (2013). For a more optimistic assess-
ment of this framework see Imbens (2010) and Angrist and Pischke (2010).

31Recent work by Mogstad et al. (2020) brings attention to some problems that arise with the monotonicity
condition in multi-instrument settings.
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5.2 Use of Experimental or Quasi-Experimental variation for Val-

idation of Structural Models

An alternative approach to pursue the integration of structural and designed-based ap-

proaches is to use the clean variation for validation rather than estimation of the structural

model. The idea of using RCTs as benchmarks for the evaluation of non-experimental esti-

mators goes back to Lalonde (1986), who evaluated the performance of different estimators

of treatment effects. Even earlier, work by McFadden (1977) and Wise (1985) used RCTs to

evaluate non-experimental models of transportation mode and housing demand, respectively.

This approach is perhaps best illustrated in the modern structural literature by the work of

Todd and Wolpin (2006), and further formalized in Schorfheide and Wolpin (2012, 2016).

In this approach the experimental variation is not used in estimation. Instead, it is reserved

or “held out” to perform an out-of-sample validation of the model. The model is estimated

only on the control group or, sometimes, on the treatment group and validated with the

other group. The idea is that if the model can match the behavior of a sample that was set

aside and that was exposed to different incentives, one gains more confidence in the ability

of the structural model to predict behavior under other counterfactual environments. Todd

and Wolpin (2020) provide a thorough review of recent research that adopts this approach.

In the same way that, as discussed in Section 5.1, different types of exogenous variation

featured in design-based research can be embedded into structural model for identification

purposes, they can also be used for validation. We focus here on the use of RCT for val-

idation. Keane and Wolpin (2007) and Galiani et al. (2015) argue that RCTs provide the

first best validation strategy because the unobserved heterogeneity distribution might be

different in the validation group if that group has not been randomized.32 Similarly, even

when validating within the same “population”, but at a different point in time that features

different incentives, it is difficult for the structural model to account in an unrestricted way

for time effects (e.g. anything that changes in the environment) that could be present. Keane

and Moffitt (1998) estimate a model of labor supply and welfare program participation in

the mid-1990s and validate it with an earlier cohort’s behavior in the mid-1980s that faced

different incentives. Again, they are relatively successful in that endeavor but nothing would

prevent unaccounted cohort effects to hamper the predictions of their model. So failure to

accurately predict behavior cannot be taken as evidence against the model’s validity. In

sum, only in an RCT one can ensure that the validation group that is held-out has the same

32For example, Choi (2018) estimates a simple labor supply model in one location and attempts and fails
to validate it in another location. While Choi (2018) presents this as evidence of shortcomings of that simple
structural model, it is also possible that failure to fit behavior in the validation group could just reflect a
different distribution of unobserved heterogeneity in that group, rather than a mis-specified or invalid model.

46



distribution of preferences and is exposed to the same time effects as the group that is used

for estimation.

In addition to the influential work of Todd and Wolpin (2006), subsequent applications

include Misra and Nair (2011) who modeled salesmen effort and sales within a firm. Us-

ing their estimated model Misra and Nair (2011) provided recommendations to the firm

about how to best structure their compensation contracts. Interestingly, the firm went on to

implement their suggestion so they were able to validate their model by comparing model-

predicted responses to the recommended contract with the actual responses observed when

that contract was actually implemented by the firm. Duflo et al. (2012) used data from and

RCT in India that introduced attendance incentives and monitoring to reduce teacher absen-

teeism. In most specifications they only use data from the treatment group for estimation,

reserving the control group for model validation. More recently, Galiani et al. (2015) used

data from the unrestricted (Section 8) treatment group in the MTO experiment to validate

their model of neighborhood choice and Lise et al. (2015) calibrate a search and matching

model to data from the control group in Canada’s Self-Sufficiency Project and show that the

model is able to match the treatment behavior of the treatment group when the same set of

incentives that this group was exposed to are simulated within the model.

A more epistemological open question in this out-of-sample validation approach remains

whether researchers should or should not have access to the validation group data while

conducting research. A more stringent out-of-sample validity test is indeed given by one in

which the researchers can never see the validation data so they are unable to go back and

adjust the model specification in the hopes of improving the fit out of sample. Being able

to access the data set aside for validation and modify the model upon iteratively until it fits

amounts to actually using the validation data in the estimation in some sense. Arcidiacono

et al. (2021) deal with this problem by splitting their research in two parts. They first

estimate the model without seeing the validation data and pre-commit to this model. After

this, they plan on accessing the validation data and write a second paper which will explore

how well the model fits in the holdout sample.

Putting aside for the moment the question of whether this embargo of validation data

should or should not be enforced, it is important to wonder whether it would be actually

feasible. While in policy or industry contexts it is in principle possible to enforce such an

embargo, it is more difficult to think about its feasibility in academic or scientific settings
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where the data should be available for replication.33 Otherwise if a paper that does not fit

out of sample is published, it would need to provide documentation of that failure, which

others can then use to learn and improve subsequent models, again undermining the original

pure out-of-sample validation intent for that data.

While this stringent “embargo” approach to external validation is a clever idea whose

rationale has been formalized in Schorfheide and Wolpin (2012, 2016) as a device to prevent

researcher data mining, we believe that the necessary institutions that would enforce the

embargo of validation data might be difficult to implement in practice. There is also the

question of how much information such institutions holding the validation data would disclose

even if they are successfully established. If they only disclose that a model fails to fit but do

not provide further details, scientific progress will be slower. The same researchers or other

teams would only know that the proposed model was inadequate, but nothing else. They

will not know in which dimension(s) the model fails to match, let alone whether it under- or

overestimates- the validation sample’s behavior in those dimensions.

So there is a tradeoff between the pace at which scientific progress will be allowed to

unfold and the preservation of the validation data to maximize the purity of an out of sam-

ple test of a model’s validity. It can evolve slowly if completely unaided by disclosure of

validation data in a fully enforced embargo regime. But it will evolve nonetheless, because

even the announcement that a proposed model failed to match out of sample would provide

some minimal information about the validation data that can provide leads for how to for-

mulate better models. But if many models with different predictions are rejected eventually

researchers can trace out what the validation data looks like. So given that this scientific

evolution will take place eventually and converge to a model that fits out of sample, one can

in the other extreme do without the embargo and grant the initial research team immediate

access to the validation data. They can then find the right model that fits out-of-sample

themselves, subject to also fit in-sample.

We agree on the basic premise that there is much value in holding out a sample for blind

validation. But there are institutional implementation issues to consider and the fact that

even when those might be overcome, the embargo regime only slows down but cannot prevent

the eventual discovery of the validation data. So we feel that it might be best for researchers

to have access to these validation data and see how well the estimated model fits the holdout

33To implement a truly blind out-of-sample validation approach one might envision the creation of insti-
tutions within academia or within journals that would have exclusive access to these embargoed validation
samples. These third parties would construct summary statistics with code provided by researchers, who
would not be allowed to further modify the model at that stage. If the third party determines that the
model fails to match out of sample, the paper would be rejected. Further, to prevent knowledge about the
validation data to leak out, the authors of the paper would not be shown the validation sample statistics
that document the failure of their model.
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sample during the course of their research. If the initial model specification does not fit the

out-of-sample data, they should be allowed to go back and refine the model. Model building

in this context is thus an iterative process by which the researcher goes back and forth

between model specification, estimation, model fit assessment both in-sample and out-of-

sample, and then circle back to model specification, toggling between models with different

functional forms or alternative non-nested models that may fit equally well in-sample but

differ in their performance out of sample. One would then repeat these steps until the

whole process converges to a model that fits well both, in sample and out-of sample.34. This

approach thus alleviates some of the concerns about functional form discussed in Section

4.3. The confidence in the chosen functional form increases when, using this out-of-sample

validation approach, one can show that it extrapolates correctly out of the support of the

data.

In this out-of-sample validation approach without embargo, the holdout sample is actually

used in an iterative process to select the right functional forms for competing non-nested

models and which of these competing models is the most appropriate. But, conditional on

the selected model, the experimental variation that this validation sample would offer is not

necessary to identify the structural parameters. An important area for future methodological

research is then the formalization of this iterative process and the understanding of its

statistical properties, including the effects of data snooping on computation of standard

errors, etc.

5.3 Use of Experimental or Quasi-Experimental variation for both

Estimation and Validation of Structural Models

The last two subsections emphasized how structural models can benefit from integration

with design-based experimental or quasi-experimental approaches for either identification

or validation. Even when faced with the same RCT some researchers have opted for using

the variation for identification whereas others opted instead to use it for validation. Take

for example Canada’s Self-Sufficiency Project. While Ferrall (2012) used the data for iden-

tification, Lise et al. (2015) opted to reserve it for validation.35 Similarly, when using the

Progresa RCT in Mexico, Attanasio et al. (2012) decided to use the experimental variation

34This is mechanically similar to the way that machine learning algorithms iterate between training and
validation during the cross-validation process to fine-tune hyper-parameters or select learning algorithms. It
is fundamentally different though, because the sample used for validation in a structural model faces different
incentives.

35Card and Hyslop (2005) also anlayze the SSP experiment with a rich dynamic econometric model that
allows for state-dependence and unobserved heterogeneity, but that differs from the more fully structural
approach adopted in Ferrall (2012).
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for identification whereas Todd and Wolpin (2006) opted instead to use it for validation.36

It is difficult to provide a one-size-fits all answer to the question of whether experimental

variation from an RCT should be used for identification or validation of a structural model.

This should be judged on a case-by-case by comparing the marginal return in each of these

two alternative uses.

Whenever possible though, it might be best to do both as in Galiani et al. (2015), where

we take advantage of a 3-arm experiment with one control group and two treatment groups.

The availability of more than one treatment group afforded us the opportunity to use some

of the experimental variation for identification, as in Section 5.1, and some for validation,

as in Section 5.2. In Galiani et al. (2015) we use data from the Moving to Opportunity

experiment to estimate a model of neighborhood choice, and use the estimated model for

ex-ante evaluation of alternative housing assistance policies. In the MTO experiments pub-

lic housing residents were randomized into either a control group (C), and two treatment

groups (T1,T2). The first treatment group (T1), was given vouchers to rent apartments in

the private rental market, subject to the constraint that the voucher could only be used in

neighborhoods where the poverty rate was less than 10%. They were also given housing mo-

bility counseling. A second treatment group (T2) was just given unrestricted vouchers that

could be used anywhere. We estimated the model of neighborhood choice using data from

the control group (C) and the first treatment group (T1) and reserved the other treatment

group (T2) for out-of-sample validation.

Suppose one has access to a 3-arm experiment with a control group (C) and two treatment

groups (T1,T2). Following our discussion so far, there are in principle three strategies:

1. Validation-Only: Here, like in Section 5.2, the researcher would use only group C

for estimation and reserve both T1 and T2 for validation.

2. Identification-Only: Here the researcher would use all data (C,T1,T2) for identifi-

cation and estimation, holding out none for validation

3. Identification+Validation Here the researcher would use two of the three groups

(e.g. C+T1, C+T2 or even T1+T2) for identification and estimation and reserve the

third group for validation as in Galiani et al. (2015).

We believe that the third approach should be the preferred one in most cases. The

hold out sample can be used to guide model selection and choices about functional form and

distributional assumptions whereas the experimental variation that is dedicated to estimation

36Wolpin (2013) and Todd and Wolpin (2020) discuss in some detail the differences between Attanasio
et al. (2012)’s approach and their own approach in Todd and Wolpin (2006).
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can be used to better identify the model, by either relaxing a debatable exclusion restriction

or using the variation to identify a richer model that incorporates parameters that can only

be identified by contrasting the control group with one of the treatment groups. We believe

this approach more thoroughly addresses some of the concerns laid out in Section 4.3.

Note also that while our focus here has been on the use of multi-armed RCTs for both

identification and validation of structural models, other forms of exogenous variation can be

used in the same way. For example, one could set aside some of the available geographic

policy variation to estimate a model while reserving the rest to validate it, as in Keane and

Wolpin (2007), who estimate their model with data from different states and then validate

it with data from Texas, an outlier in terms of limited welfare benefit generosity. They

succeeded in this endeavor, but had they not been able to fit the behavior in Texas, one

would not be able to tell whether the model is invalid or there is just something different

about Texas. Taking this idea across time, one can also use policy variation from some years

to estimate the model while reserving the remaining temporal policy variation for validation

as in Agostinelli et al. (2020) and Bobba et al. (2021). Again, they succeed in their out-

of-sample validation exercise but, had they not been able to, one would not be able to tell

whether the model was not valid or there is something different happening during the time

period selected for validation. This is why, especially when the researcher has access to the

validation sample, the RCT approach provides a more conservative setting to engage in an

iterative process of model formulation and assessment.

5.4 Disentangling Bundled Features of Treatment

In the last few sections we have emphasized how structural models can benefit from an

integration with experimental and quasi-experimental sources of variation to enhance their

credibility. But how can experiments benefit from integration with structural models? In a

series of papers, James Heckman has long emphasized limitations of RCTs (see, e.g., Heck-

man (1992), Heckman and Smith (1995), Heckman (2020)). Structural models can help

address some of those limitations as well even when the goal is simply to learn about the

treatment effect. That is even when no new policy or welfare question is the goal of the

analysis. Another way in which a structural model can help in interpreting experimental

results is by disentangling the separate effects of bundled features of treatment. It is common

to argue that when a given treatment in an RCT has several “bundled” features, each of

which is expected to have its own effect on outcomes, one can only obtain their combined

net effect. It is not possible, the argument goes, to unpack the separate contributions of

each of the features and their interactions (if any). It is often argued that the only way to
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identify these separate effects is by having multiple arms in the experiment with each fea-

ture separately randomized. This type of argument was common in, for example, the welfare

policy experiments in the U.S. before the welfare reform of 1996. Many of these experiments

that were conducted leading up to the reform had bundled features of treatment in the sense

that the treatment group was simultaneously exposed to changes in the tax rate of welfare

benefits and the disregard amounts or mandated work-related requirements.37 The conven-

tional wisdom was that only the bundled effect could be estimated when a single treatment

group is simultaneously exposed to multiple bundled treatments. However, because of its

ability to identify separate mechanisms, a structural model can often be used to tease out

the separate impacts of each bundled feature of treatment, even when the experiment has a

single treatment and control group. In other words, consider an experiment with only two

arms: control and treatment. Suppose the treatment was a combination of two features that

are expected to affect outcomes, say A and B. In that case one can use the structural model

to disentangle the separate contributions of A and B to the treatment effects.

As described in Section 5.3, Galiani et al. (2015) estimated the model with the control

group and a single treatment group (T1) that was given: A) a voucher with location restric-

tions for its use and B) mobility counseling. A traditional experimental analysis would only

permit to analyze the combined impact of these two features of treatment on the rate at

which public housing residents moved out of the public housing projects using the voucher.

However our estimated structural model can be used to unpack the quantitative importance

of each mechanism and investigate how each separate feature affected take up, and answer

how take up would have responded if treatment had consisted of only the location-restricted

voucher, without any mobility counseling. Similarly, the second treatment group (T2) that

we held out for validation, received an unrestricted voucher but no mobility counseling and

ended up taking up the voucher at a much higher rate. While a traditional experimental

analysis could only identify the combined (opposite direction) impacts of the location restric-

tions and mobility counseling on the differential take up rate between T1 and T2, we were

able to use our structural model to tease out how important each feature was. We found

both features where quantitatively important, although in the end the location restriction

on the voucher ended up dominating in magnitude and explaining why, on net, the T1 group

took up the voucher offer at a much lower rate than the T2 group.38

It might be puzzling that a two-arm experiment might be able to identify two effects.

This is certainly not possible when the two features of treatment have distinct stigma or

37See Grogger and Karoly (2005) for a comprehensive description of these experiments.
38The finding on the importance of counseling in Galiani et al. (2015) has been validated in a subsequent

experiment by Bergman et al. (2020).
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similar effects that expand the structure. However, in many cases, when at most one of the

features is new and cannot be predicted by any model but the other feature of treatment

could in principle be simulated within a model estimated only with the control group, then

it is possible to tease out the two effects. For example, in Galiani et al. (2015) one feature

of treatment was channeled through the budget constraint by reducing the effective rents

that households faced in low poverty neighborhoods, whereas the other feature, mobility

counseling, operated as a reduction in the utility cost from moving.

6 The Future of Structural Models

What does the future look like for structural models in empirical microeconomic fields? We

envision a bright future for the structural approach. But structural methods could gain a lot

from adapting to the new times and absorbing insights from other areas. We briefly discuss

a few areas where we feel that more integration could be useful.

• Exogenous Variation. As emphasized in Section 5, first and foremost, we believe

that the most important next step in the development of the structural approach is

the more comprehensive integration of experimental and quasi-experimental variation

for both the estimation and validation of structural models within the same research

project. This practice is certainly underway and is something that’s becoming more

noticeable, particularly when comparing research articles from the last 10 years with

the early, seminal structural literature from the 1980s and 1990s that initially broke

ground without putting as much emphasis neither on validation strategies nor on the

credibility of the exogenous variation or the maintained exclusion restrictions.

• Expectations Data. We feel that there might be high returns to more integration

with the literature on subjective expectations pioneered by Charles Manski.39 Even

when assuming rational expectations, having access to subjective expectation data

amounts to having a larger sample and can help improve the precision of structural

estimates as in the work of van der Klaauw and Wolpin (2008) and van der Klaauw

(2012) or help identify unobserved heterogeneity as in Pantano and Zheng (2013).40

Most importantly, it could help relax the assumption of rational expectations as in

Wiswall and Zafar (2015).

39See for example Manski (2008) for an early summary of this literature.
40See also Pistaferri (2003) on the creative use of subjective expectations to estimate the Frisch elasticity

of labor supply.
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• Behavioral Economics. Most of the early structural literature was firmly grounded

in the mainstream economics of the time which postulated stable, time-consistent pref-

erences, rational expectations and no barriers to dynamic optimization. These assump-

tions, which were relatively uncontroversial at the time, provided powerful identifying

restrictions. In the several decades since the dawn of the structural micro-econometric

approach, some insights from behavioral economics and lab experiments have been

gaining more acceptance within mainstream economics, and it would seem as if it

would be to the structural approach’s advantage to judiciously adopt them. It is nec-

essary to proceed with caution in this transition, though, as behavioral models impose

fewer restrictions on possible observed behavior and therefore, create additional iden-

tification challenges. See Rust (2019) for ideas along these lines and DellaVigna (2018)

for a survey of this new “structural behavioral economics” approach.

• Machine Learning. We also believe that there is much scope for structural models

in many applied microeconomic fields to integrate with newly popular machine learn-

ing techniques in the same way consumer choice models in marketing and industrial

organization and causal inference approaches are already integrating. Iskhakov et al.

(2020) provide a survey of this new literature that explores possible synergies between

structural econometrics and machine learning.

• Bounds. In some settings it might be useful for structural approaches absorb insights

from the literature on bounds and partial identification as in the work of Manski (2014)

and Kline and Tartari (2016). While this approach has the advantage of being rather

agnostic and aims to impose only the minimal assumptions necessary, it might often

lead to inconclusive findings.41

• Non-Parametrics. while most structural work uses tightly parameterized models,

much credibility can be gained by being more non-parametric in functional form or

distributional assumptions. Non-parametric analysis is worth doing at least to show

that identification of the structure does not rely on those assumptions, even though

in the end, due to data limitations, actual estimation might proceed using parametric

restrictions. If feasible, non-parametric estimation might be particularly useful when

the counterfactuals or environmental changes of interest are within the support of

the data. Matzkin (1994, 2007, 2013) provide general treatments on non-parametric

identification of structural models.

41For a pessimistic view on this partial identification approach to structural models or what he terms
“nothing in, nothing out”, see Rust (2016).
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In conclusion, we view structural models as enjoying a resurgence in recent years with

many avenues for gaining popularity moving forward. By tightly connecting theory and

measurement, the structural approach remains a powerful empirical tool with the unique

and sometimes exclusive capability to answer certain scientific and policy questions in mi-

croeconomics. We have provided what we hope to be a balanced introduction and overview

to the structural approach, that highlights its advantages but also acknowledges some of its

weaker fronts. We believe that many of the concerns some have with the approach can be

ameliorated or eliminated by making the approach more receptive to new trends in empirical

work in microeconomics, which emphasize the transparency of the research design and the

sources of exogenous variation. We have then provided a road-map to understand how this

powerful integration of model-based and design-based approaches has already begun to take

place.
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