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Abstract

We study priority-based assignment problems with distributional and diversity ob-

jectives. Our work provides an axiomatic characterization of a general class of choice

rules which are based on type-specific reserves and quotas. The choice rules in the class

differ by the order in which applicants are considered for units reserved for different

types. We show that a particular reserves- and quotas-based choice rule, where all ap-

plicants are first considered for units reserved for their own types, uniquely minimizes

priority violations in this class.

1 Introduction

Allocation of scarce resources commonly involves priority-based rationing. Priorities are

decided on the basis of merit, needs, property rights or some other legal or ethical consid-

eration. For example, schools prioritize pupils based on neighborhood or sibling enrollment

status, colleges prioritize students based on academic performance and health official priori-

tize patients based on urgency or medical condition. An assignment violates an individual’s

priority, if she prefers another object to her assignment and the object is assigned to a lower

priority individual. Avoiding priority violations is a major policy goal in all applications

above as such violations are perceived unfair, illegal or unethical.

∗Abdulkadiroğlu: Department of Economics, Duke University and National Bureau of Economic Research

(NBER), aa88@duke.edu; Grigoryan: Department of Economics, Duke University, ag404@duke.edu. We

thank Jay Sethuraman, Tayfun Sönmez and Microeconomic Theory Seminar participants at Duke for helpful

comments and discussions. We gratefully acknowledge funding from the Laura and John Arnold Foundation.

1



A purely priority-based assignment completely eliminates priority violations. However, such

a solution may result in undesirable distributional outcomes. For example, when a school

district grants a high priority to neighborhood children, priority-based assignment may re-

sult in high-income families attending best-performing schools, which are potentially located

in affluent neighborhoods, while low-income families may end up in worst-performing ones

(Ryan and Heise, 2002). Additionally, school districts are typically restricted by court-

ordered desegregation guidelines and seek to achieve a diverse student body (Armor and

Rossell, 2002). Therefore, in a school district with racially segregated neighborhoods, a

neighborhood priority-based rationing would produce racially segregated schools, violating

districts’ policies and court orders. Likewise, schools may require to maintain student bal-

ance across ability range, with sufficient representation of students with low, middle or high

reading scores (Abdulkadiroğlu et al., 2005). Diversity is also a major consideration for

college admissions. A purely merit-based admission is opposed by advocates of affirmative

action policies, who argue that racial minorities and other marginalized groups face dis-

crimination and are historically shut out of education opportunities (Maxwell and Garcia,

2019). Finally, in pandemic rationing a priority-based assignment may fail to guarantee

vaccines to individuals representing multiple and conflicting ethical considerations, such in-

dividuals with disabilities, highest survival probabilities, health workers or representatives

of disproportionately affected groups (Pathak et al., 2020a; Persad et al., 2020).

To address distributional concerns, priority-based assignment problems are commonly con-

trolled by reserves and quotas for different groups. Reserves guarantee a certain number

of objects for the members of a group. Quotas bound the number of objects allocated to

the members of a group by a certain number. Reserves and quotas are commonly applied

for race-neutral or race-based affirmative action policies in public school assignment (Ab-

dulkadiroğlu and Sönmez, 2003; Hafalir et al., 2013; Dur et al., 2018) or college admissions

(Abdulkadiroğlu, 2005; Aygun and Bó, 2020). For example, exam schools in Chicago reserve

a certain proportion of seats for representatives of different income groups (Dur et al., 2020;

Ellison and Pathak, 2021). COVID-19 vaccine allocation is another application of a reserves

system. Vaccine allocation guideline of the National Academy of Sciences, Engineering and

Medicine (NASEM, 2020) recommends reserving 10 percent of vaccines for people from hard-

hit areas, defined by a socioeconomic vulnerability index. Many US states that have adopted

reserves for vaccine allocation.1

Reserves and quotas do not uniquely pin down the assignment: there are many assignments

1Details on reserves systems for COVID-19 vaccine allocation can be found here:

https://www.covid19reservesystem.org/policy-impact.
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that respect given reserves and quotas. Consider the following example. There is a single

school with two seats and three applicants. The school’s objective is to guarantee at least

one seat for an applicant from a low-income group. To achieve this goal, the school reserves a

seat for low-income applicants and the remaining seat goes to the general pool. We will refer

to them as reserved seat and open seat, respectively. Otherwise, the school assigns seats in a

priority order which may reflect the applicants’ exam scores or neighborhood/sibling status.

Suppose that the first and third highest priority applicants are from a low-income group,

whereas the second highest priority applicant is not. If applicants are considered for the

open seat first, then the open seat goes to the highest priority applicant, who is a low-income

applicant. The remaining seat is reserved, so it goes to the remaining low-income applicant.

The resulting assignment violates the priority of the second highest priority applicant. Now

suppose that applicants are first considered for the reserved seat. In that case the highest

priority applicant will be assigned to the reserved seat, and the second highest priority

applicant will be assigned to the open seat. No applicant’s priority is violated in that case.

As the example demonstrates the amount of priority violations depends on the order in

which the applicants are considered for different seats. Our work aims at providing axiomatic

foundation for pinning down the ‘right’ order and the corresponding reserves- and quotas-

based rule. We first study a single school’s decision of choosing the set of applicants to be

admitted to the school. This problem is particularly relevant when allocation of different

units are administered in a decentralized manner. Examples include public school admissions

systems where each school admits from its applicant independently of other schools (e.g. New

York City High School Admissions prior to 2003, Abdulkadiroğlu et al. (2009)), decentralized

college admissions (Che and Koh, 2016) and administration of COVID-19 vaccine during

the pandemic where US jurisdictions/states receive there vaccines in proportion to their

populations and allocate vaccines based on their own guidelines (Galston and Kamarck,

2021).

Formally, a choice rule of a school selects a subset of from each set of applicants. We char-

acterize a class of choice rules which we call generalized reserves-and-quotas rules. These

rules differ by the order in which applicants are considered for seats reserved for different

types. Most of the rules that have been studied in the literature (e.g., Abdulkadiroğlu (2005),

Hafalir et al. (2013), Sönmez and Switzer (2013), Echenique and Yenmez (2015), Dur et al.

(2018), Kominers and Sönmez (2016) and Pathak et al. (2020a)) are in this class. As the class

is large, many of the generalized reserves-and-quotas rules potentially result in unnecessary

priority violations. As a solution, we show that the choice rule where applicants are first

considered for seats reserved for their types, which we call regular reserves-and-quotas rule,
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uniquely minimizes priority violations among all generalized reserves-and-quotas rules. Our

characterization result counterpoints the advocacy for implementing alternative rules which

may result in distributional outcomes that favor certain types, such as benefiting low-income

public school applicants (Dur et al., 2020), assigning more students to neighborhood schools

(Dur et al., 2018) or allocating more vaccines or scarce medical supplies to reserves bene-

ficiaries (Pathak et al., 2020a). We show that the improved distributional outcomes only

happen at the expense of creating more priority violations. Such violations are not justified

or explained in any sense. Our result potentially suggests that improved distributional out-

comes should be achieved not through alternative implementations, but through the regular

reserves-and-quotas rule with potentially larger reserves or smaller quotas. In addition to its

axiomatic foundation, the benefit of the latter approach is transparency in meeting policy

goals. The regular reserves-and-quotas rule directly addresses the policy maker’s fairness

and distributional objectives: namely, it minimizes priority violations among non-wasteful

assignments that respect the reserves and quotas. Therefore, unlike the alternatives, any

remaining priority violation is fully explained by reserves and quotas policy.

Many priority-based assignment problems such as public school assignment or college ad-

missions feature multiple alternatives and the final assignment is determined in centralized

clearinghouses. In the second part of our paper we analyze assignment problems in this cen-

tralized environment. Assignments are a commonly achieved through a sequential algorithm,

such as Deferred Acceptance (DA) (Gale and Shapley, 1962), where at each step applicants

apply to their most preferred schools among those that have not rejected them, each school

accepts a subset of applicants using some choice rule and rejects the rest. Our characteri-

zation results for the decentralized setting do not necessarily extend to the centralized one.

Due to the dynamic nature of the application process, creating more priority violations in

some earlier step may prevent creating more priority violations in later steps. Thus, the

final assignment may not necessarily minimize priority violations when all schools apply the

regular reserves-and-quotas rule at each step. We extend our axiomatic framework to the

setting with multiple alternatives and study the possibility of minimizing priority violations

in certain classes of assignments. We show that these problems are NP-hard, and therefore

computationally intractable.

We supplement our theoretical results with simulations analysis to quantify the amount of

priority violations under different choice rules. We consider a school choice setup with an

affirmative action policy where each school reserves a proportion of its seats for applicants

from low- and high-income groups. We obtain considerably less priority violations under the

regular reserves-and-quotas rule compared to the alternative choice rule studied in the liter-
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ature (Dur et al., 2018, 2020). The results therefore suggest that the theoretical predictions

for the single school problem are robust to the environment with multiple schools.

The remainder of this work is organized as follows. Section 2 reviews the related literature.

Section 3 introduces the model. Section 4 provides an axiomatic characterization of general-

ized reserves-and-quotas rules. Section 5 characterizes the regular reserves-and-quotas rule

as priority violations minimizer and priority rank maximizer. Section 6 discusses the impli-

cations for centralized assignment with multiple alternatives. Section 7 reports simulation

results. Proofs are in Appendix A.

2 Related Literature

Affirmative action in school choice has been studied by Abdulkadiroğlu and Sönmez (2003).

Their model uses type-specific quotas for promoting diversity. Kojima (2012) gives an ex-

ample where imposing quotas on majority students may have a perverse effect of hurting

minority students. This happens when a rejected majority student at one school applies

and displaces a minority student at another school. Hafalir et al. (2013) show by computer

simulations that the adverse effects of the quotas rule is a likely phenomenon, rather than an

exception. As an alternative solution, the authors propose a reserves-based rule. Kominers

and Sönmez (2016) study a class of reserves-based rules that generalize the one in Hafalir

et al. (2013). Under those rules, certain number of units are reserved for each type and

applicants receive higher priority at their corresponding units. Applicants are considered

for different units and are accepted based on unit-specific priority order. Axiomatic char-

acterizations of these generalized reserves rules have been given by Pathak et al. (2020a)

and Delacrétaz (2020). The authors use an axiom which requires the assignment to respect

unit-specific priorities. However, in many priority-based assignment problems respecting

unit-specific priority rankings is not a direct policy objective but a means to achieve desir-

able distributional outcomes. Instead, these problems typically feature a baseline priority

ranking which is common across all units (Abdulkadiroğlu, 2005; Hafalir et al., 2013; Ehlers

et al., 2014; Echenique and Yenmez, 2015). Our characterization result uses axioms which

directly incorporate policy objectives such as bounding the number of baseline priority vio-

lations and meeting the distributional constraints.

The question of which generalized reserves-and-quotas rule should be used has received

wide attention in academia and practice (Dur et al., 2018; Pathak et al., 2020b,a). The
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regular reserves-and-quotas corresponds to the generalized reserves-and-quotas rule where

applicants are first considered for units reserved for their types. Papers like Dur et al.

(2018) and Pathak et al. (2020b) argue that the beneficiaries may be better-off under an

alternative implementation where reserves beneficiaries are first considered for non-reserved

units instead. Our characterization result counterpoint the objections for the regular reserves

rule and the advocacy for other rules in the literature. In particular, it implies that the

improved distributional outcomes of the alternative rules in papers like Dur et al. (2018) and

Pathak et al. (2020b) can only happen at the expense of creating more priority violations.

Our work is related papers that provide axiomatic foundation for the regular reserves-and-

quotas rule. In a setting without quotas, such results have been provided by Echenique and

Yenmez (2015), Sönmez and Yenmez (2019a), Sönmez and Yenmez (2019b) and Grigoryan

(2020). The first paper uses an axiom called saturated priority compatibility, which says that

an individual can cause a priority violation only if the number of individuals of her type who

receive a unit is weakly smaller than the reserves.2 Imamura (2020) generalizes the charac-

terization by Echenique and Yenmez (2015) to an environment with quotas. Sönmez and

Yenmez (2019a) and Sönmez and Yenmez (2019b) study a setting with complex types and

without quotas, and characterize a version of the regular reserves-and-quotas rule with an

axiom of priority rank maximality, i.e., choosing the set of individuals with highest priorities.

In a setting with quotas, we give two characterizations of the regular reserves-and-quotas

rule with axioms of priority violations minimality and a stronger version of priority rank

maximality than the ones in Sönmez and Yenmez (2019a) and Sönmez and Yenmez (2019b).

Our axioms directly incorporate the policy objectives of reducing priority violations and

choosing highest priority individual whenever possible. Like our paper, Grigoryan (2020)

characterizes the regular reserves-and-quotas rule with an axiom of priority violations mini-

mality. However, the author studies a setting with weak priorities and without quotas. None

of the papers above discusses the implication of their characterization results for centralized

assignment problems with multiple schools.

Finally, our work is related to papers that study computational complexity of assignment

problems with distributional constraints, such as Biró et al. (2010) and Hamada et al. (2016).

Both papers show that minimizing priority violations in the class of reserves-respecting

assignments is NP-hard. However, their models and NP-hardness results differ from ours.

First and most importantly, we model reserves as soft lower bounds, i.e., we allow that

the number of applicants of a certain types is smaller than the corresponding type-specific

2Doğan (2017) corrects the characterization result of Echenique and Yenmez (2015).
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reserves, as long as no applicant of that type prefers that school to her assignment. In

contrast, Biró et al. (2010) and Hamada et al. (2016) model reserves as hard lower bounds.3

Second, we also prove NP-hardness of minimizing priority violations for a proper subclass

of reserves-respecting assignments, namely, those eliminate priority violations among same

type applicants.

3 The Model

There is a finite set of applicants A and a single school S with capacity q. For a given

subset of applicants A ⊆ A, the school is facing a decision of choosing some of the applicants

in A, without exceeding its capacity. Formally, a choice rule of the school is a mapping

C : 2A → 2A such that for any A ⊆ A, C(A) ⊆ A and |C(A)| ≤ q.

The school orders applicants according to a priority ranking � which is a complete, transitive

and anti-symmetric binary relation on A. Applicants are categorized into different types

according to mapping τ : A → T , where T is a finite set. For a subset A ⊆ A, let

At =
{
a ∈ A : τ(a) = t

}
be the set of type-t applicants in A.

For a subset A ⊆ A, we say that a’s priority is violated at C(A), if a ∈ A \ C(A) and there

is a′ ∈ C(A) with a � a′. In that case, we say that a′ causes a priority violation for a.

4 Generalized Reserves-and-Quotas Rules

In this section, we provide an axiomatic foundation for a general class of reserves- and

quotas-based choice rules. The axioms reflect the policy objectives of promoting diversity

and restricting priority violations.

Let vectors (rt)t∈T and (qt)t∈T denote the reserves and quotas, respectively. Assume
∑

t∈T rt ≤
q ≤

∑
t∈T qt.

To define the class of generalized reserves-and-quotas rules, we first divide school S into T+1

3Biró et al. (2010) allow some schools not to meet the lower bounds if and only if the school is closed and

accepts no applicant.
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different slots {st}t∈T∪{0}, where each st has a capacity rt and s0 has a capacity q−
∑

t∈T rt.

We abuse notation to define S = {st}t∈T∪{0}. Priority ranking �t of slot st is such that all

type-t applicants have higher priorities than non-type-t applicants, and otherwise it agrees

with �.

For each A ⊆ A, an application order .a,A of a ∈ A is a complete, transitive and anti-

symmetric binary relation on S. For any s, s′ ∈ S, s .a,A s
′ denotes that s has a higher

position in application order of a than s′.4

For given applicant orders (.a,A)a∈A,A⊆A, we describe the corresponding generalized reserves-

and-quotas rule Cg. For any A ⊆ A, Cg(A) is determined as follows.

Step k = 0. Meeting Quotas.

For each t ∈ T , all slots reject any type−t applicant that does not have one of the qt highest

priorities among type−t applicants.

Step k ≥ 1. Application Steps.

Each applicant a ∈ A applies to the highest rank slot according to .a,A among those that

have not rejected her yet. For each t ∈ T , slot st considers all its applicants, tentatively

accepts the highest �t priority ones up to its capacity rt and rejects the rest. If there is a

rejection, proceed to Step k + 1. Otherwise, the procedure terminates and its output Cg(A)

equals to the union over t ∈ T of applicants tentatively assigned to st at the end of Step k.

Before providing axiomatic foundation for the generalized reserves-and-quotas rules, we pro-

vide an example demonstrating that different application orders may result in different sets

of chosen applicants with different degrees of priority violations.

Example 1. Suppose A = {a1, a2, a3}, τ(a1) = τ(a3) = t 6= t′ = τ(a2), a1 � a2 � a3,

q = qt = qt′ = 2, rt = 1 and rt′ = 0.

In other words, there are three applicants considered for admission at a school with two seats.

Applicants a1 and a3 are of the same type t, which may be thought of as the low-income status.

Applicants a2 is of high-income type t′. Lower indexed applicants have higher priorities. The

school has an affirmative action policy in the form a unit reserves for low-income type t.

By the description of generalized reserves-and-quotas rules, the school is divided into three

slots st, st′ and s0. Since st′ has a capacity of rt′ = 0, we may ignore that slot. Let us call st

4Kominers and Sönmez (2016) only consider cases when .a,A is constant for all a ∈ A. This restriction

eliminates certain desirable reserves-and-quotas rules, such as the regular one which we introduce in the next

section.
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and s0 the reserved slot and the open slot, respectively.

Consider two application orders:

1. applicants first apply to the open seat, then to the reserved seat,

2. applicants first apply to the reserved seat, then to the open seat.

Under the first application orders, all applicants are first considered for the open slot. The

open accepts a1 and rejects the remaining two applicants. The rejected applicants apply to

the reserved slot and a3 is accepted since she is the only remaining low-income applicant.

Thus, the chosen applicants under the first application orders are a1 and a3.

Now consider the second application orders. All applicants are first considered for the reserved

slot, who accepts a1 and rejected the remaining applicants. The rejected applicants apply to

the open slot and a2 is accepted as the highest priority remaining applicant. The chosen

applicants under the second application orders are a1 and a2.

We now characterize the class of generalized reserves-and-quotas rule with four axioms. The

first axiom guarantees that at least rt and no more than qt seats for representatives of each

type t ∈ T .

Axiom 1 (Reserves- and quotas-respecting). A choice rule is reserves- and quotas-

respecting if for any A ⊆ A and t ∈ T ,

min{|At|, rt} ≤
∣∣C(A) ∩ At

∣∣ ≤ qt.

The second axiom says that the school accepts applicants unless there are no empty seats

or type-specific quotas are binding. In the literature, this property is also called acceptant

(Echenique and Yenmez, 2015) or capacity-filling (Doğan et al., 2020).

Axiom 2 (Non-wasteful). A choice rule C is non-wasteful if for any A ⊆ A,

a ∈ A \ C(A) and |C(A)| < q imply
∣∣C(A)τ(a)

∣∣ = qτ(a).

The third axiom says that priority violations occur only between students of different types.

Axiom 3 (Within-type priority compatibility). A choice rule C is within-type priority

compatible if for any A ⊆ A, whenever a causes priority violation for a′ at C(A), then

τ(a) 6= τ(a′).
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Our next axiom limits the number of priority violations that each type can cause.

Axiom 4 (Beyond-reserves priority compatibility). A choice rule C is beyond-reserves

priority compatible if for any A ⊆ A and t ∈ T ,∣∣∣{a ∈ At : a causes priority violation at C(A)
}∣∣∣ ≤ rt.

In other words, Axiom 4 guarantees that the number of type-t applicants that cause priority

violations is bounded by the corresponding reserves rt for type-t. Our first result characterizes

the entire class of generalized reserves-and-quotas rules with Axioms 1-4.

Theorem 1. A choice rule satisfies Axioms 1-4 if and only if it is a generalized reserves-

and-quotas rule.

Axioms 1-4 may not be strong enough to preclude some potentially undesirable choice rules.

For example, the generalized reserves-and-quotas rule corresponding to the first applica-

tion orders in Example 1 chooses a1 and a3, violating the priority of a2. In contrast, the

generalized reserves-and-quotas rule corresponding to the second application orders chooses

applicants a1 and a2 and no applicant’s priority is violated. This motivates our next sec-

tion’s analysis of choosing the ‘right’ application orders and the corresponding generalized

reserves-and-quotas rule. We show that particular application orders induce a choice rule

that minimizes priority violations among all reserves- and quotas-respecting and non-wasteful

choice rules.

5 Regular Reserves-and-Quotas Rules

A choice rule C is the regular reserves-and-quotas rule for reserves and quotas vectors

r and q, if for any A ⊆ A, C(A) is determined as follows:

1. Select up to rt of highest priority applicants of each type t. Let A′ ⊆ A denote the set

of all selected applicants.

2. From the remaining applicants A \ A′, accept highest priority applicants up to the

capacity without violating type-specific quotas.

We say an application order .a,A is regular if

sτ(a) .a,A s, ∀s ∈ S \ {sτ(a)}, ∀a ∈ A ⊆ A.
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Proposition 1. A choice rules is the regular reserves-and-quotas rule if and only if it is a

generalized reserves-and-quotas rule for some regular application orders.

The only restriction regularity puts on application orders is that each type-t applicant first

applies to the slot reserved for her type. The order in which applicants apply to the open slot

and the slots reserved for other types does not affect the outcome. As a corollary of Theorem

1 and Proposition 1, we conclude that regular reserves-and-quotas rule satisfies Axioms 1-4.

We provide two characterizations of regular reserves-and-quotas rules that single them out

among all choice rules satisfying the axioms above.

A choice rule C creates less priority violations than choice rule C ′ if at any A ⊆ A, the

number of applicants whose priority is violated at C(A) is weakly smaller than the number

of applicants whose priority is violated at C ′(A). A choice rule C is priority violations

minimal in the class Γ of choice rules, if C ∈ Γ and it creates less priority violations than

any choice rule in Γ.

Theorem 2. Regular reserves-and-quotas rule is priority violations minimal in the class of

choice rules satisfying Axioms 1 and 2.

We say a choice rule C priority dominates choice rule C ′ if for any a, a′A ⊆ A,

a ∈ C(A) \ C ′(A) and a′ ∈ C ′(A) \ C(A) implies a � a′.

In other words, priority domination says that if from each of the chosen sets we remove

applicants that appear in both of them, any applicant in the first set has a higher priority

than any applicant in the second one. A choice rule C is priority rank maximal in the

class Γ of choice rules, if C ∈ Γ and it priority dominates any choice rule in Γ.

Theorem 3. Regular reserves-and-quotas rule is the unique priority rank maximal choice

rule in the class of choice rules satisfying Axioms 1-3.

In the class of non-wasteful choice rules, priority rank maximality implies priority violations

minimality. Therefore, the regular reserves-and-quotas rule is the unique priority violations

minimal rule in the class of choice rules satisfying Axioms 1-3, and consequently, in the class

of generalized reserves-and-quotas rules.

The results above provide an axiomatic foundation for using the regular reserves-and-quotas

rule. A potential argument for applying an alternative generalized reserves-and-quotas rule
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instead of the regular one is that the former may potentially achieve better distributional

outcomes for certain groups. Consider Example 1. The second application order in the

example corresponds to the regular reserves-and-quotas rule. Let us refer to the generalized

reserves-and-quotas rule corresponding to the first application order as alternative rule. The

alternative rule assigns more low-income applicants compared to the regular reserves-and-

quotas rule. However, this potentially ‘improved’ distribution outcome comes at the expense

of violating a2’s priority under the alternative rule. This violation cannot be explained and

can easily be avoided by changing the application order. Instead, the same distributional

outcome can be achieved by increasing low-income reserves from one to two and applying

the regular reserves-and-quotas rule. In contrast to the alternative rule, the violation of a2’s

priority is fully explained. a3 is chosen over a2, because the reserves would not be respected

otherwise.

That the outcome of some generalized reserves-and-quotas rule can also be achieved by the

regular reserves-and-quotas rule is not peculiar to the example above, but rather a general

phenomenon.

Proposition 2. For any set of reserves and quotas, consider an arbitrary reserves- and

quotas-respecting, non-wasteful and within-type priority compatible choice rule C and a subset

A ⊆ A. Let Cr be the regular reserves-and-quotas rule corresponding to the reserves vector

rt =
∣∣C(A) ∩ At

∣∣. Then, Cr(A) = C(A).

Since generalized reserves-and-quotas rules are reserves- and quotas-respecting, non-wasteful

and within-type priority, this result holds for generalized reserves-and-quotas rules as well.

Proposition 2 follows from that within-type priority compatibility of C implies that the choice

rule selects rt highest priority type-t applicants for each t ∈ T . Also, non-wastefulness of C
implies that it selects applicants up to the school’s capacity, unless type specific quotas are

binding. When reserves are (rt)t∈T , Cr also selects rt highest priority type-t applicants for

each t ∈ T . Thus, the set of selected applicants coincide under both choice rules.

The example and Proposition 2 potentially suggest that the regular reserves-and-quotas rule

resolves the conflict between distributional objectives and respecting priorities in the most

transparent way. Alternative generalized reserves-and-quotas rules may create ‘unexplained’

priority violations, while the regular reserves-and-quotas rule can achieve the same distribu-

tional outcomes, and any remaining priority violation is explained by the choice of reserves

and quotas.
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6 Multiple Schools

In this section we assume |S| > 1. A choice rule Cs : 2A → 2A for each s ∈ S is defined as

before, i.e., it satisfies Cs(A) ⊆ A and Cs(A) ≤ qs for all A ⊆ A, where qs is the capacity of

school s. A preference ranking Pa of applicant a is a complete, transitive and anti-symmetric

binary relation on S. We assume that
∑

s∈S qs ≥ |A|. This is without loss of generality as

we can add a school that no applicant prefers and that has unlimited capacity.

An assignment is a mapping µ : A → S, such that
∣∣µ−1(s)∣∣ ≤ qs for all s ∈ S. Each

school has type-specific reserves rs = (rst)t∈T satisfying
∑

t∈T rst ≤ qs. Let r = (rs)s∈S. For

simplicity, assume there are no type-specific quotas, i.e., qst = qs for all t ∈ T . We extend

the following axioms to assignments.

Axiom 5. An assignment µ is reserves-respecting if for any a ∈ A and s ∈ S, sPaµ(a)

implies that
∣∣µ−1(s) ∩ Aτ(a)∣∣ ≥ rsτ(a).

Axiom 6. An assignment µ is non-wasteful if for any a ∈ A and s ∈ S, sPaµ(a) implies∣∣µ−1(s)∣∣ = qs.

Axiom 7. An assignment µ is within-type priority compatible if for any a ∈ A and

s ∈ S, sPaµ(a) implies that a′ �s a for all a′ ∈ µ−1(s) ∩ Iτ(a).

The classes of assignments satisfying Axioms 5-7 is large. In particular, it includes the set of

stable assignments in a setting with distributional constraints (e.g., Abdulkadiroğlu (2005),

Hafalir et al. (2013)). Within those assignments, we are interested in ones that minimize or

reduce priority violations. We say that the priority of applicant a is violated at µ, if there

is an s ∈ S such that sPaµ(a) and a �s a′ for some a′ ∈ µ−1(s). We say an assignment

µ is priority violations minimal in the class of assignments M if µ ∈ M and for every

µ′ ∈ M the number of applicants whose priority is violated at µ is weakly smaller than the

number of applicants whose priority is violated under µ′. Multiple schools complicate the

problem of finding priority violations minimal assignments.

Theorem 4. Finding a priority violations minimal assignment in the class of assignments

satisfying Axioms 5 and 6 is an NP-hard problem, even when there are only two types.

Theorem 5. Finding a priority violations minimal assignment in the class of assignments

satisfying Axioms 5-7 is an NP-hard problem.

In practice, an assignment is typically found by applying the following Deferred Acceptance

(DA) algorithm.
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Deferred Acceptance (DA)

Step k ≥ 1. Each applicant applies to her most preferred school that has not rejected her

yet. Let As denote the applicants who apply to school s. Each s ∈ S tentatively accepts

applicants in Cs(As) and rejects the rest. If there is a rejection, proceed to Step k + 1.

Otherwise, the procedure terminates and tentative acceptances are finalized.

Notice that the outcome of the DA is reserves-respecting, non-wasteful and within-type

priority compatible when all schools use a reserves-respecting, non-wasteful and within-type

priority compatible choice rules, respectively. In particular, all these properties are satisfied

when all schools apply the regular reserves-and-quotas rule.

As our NP-hardness results suggest, the outcome of DA where all schools apply the regular

reserves-and-quotas rule is not priority violations minimal in the class of assignments satisfy-

ing Axioms 5 and 6 (and 7). This is true even when all applicants share common preferences

and all schools share common priorities.5 We discuss these complications in Appendix C.

We provide simulations results for evaluating the performance of the regular reserves-and-

quotas rule in terms of reducing priority violations compared to an alternative alternative

generalized reserves-and-quotas rule. Simulations show that the superior performance of

the regular reserves-and-quotas rule established in Section 5 generalizes to the setting with

multiple schools.

7 Simulations

The previous section highlights the complications related to analytical comparisons of the

DA outcome under different choice rules. Therefore, we implement these comparisons in

a simulated public school assignment environment. Our simulations feature 17,000 appli-

cants and 200 schools (programs). Preferences and priorities are generated to resemble a

real public school assignment data from a US school district. Each school grants highest

priority to applicants who have a sibling attending the school, the second highest priority to

applicants residing in the school’s neighborhood, and the lowest priority to remaining appli-

cants. Schools use a common random tie-breaker to obtain strict ranking over applicants.

Recall that our notion of priority violation considers only original priorities, not the random

tie-breakers. Each school reserves proportion α of seats for low-income applicants and equal

5We show in the Appendix that a positive result can be obtained in this rather restrictive environment

only of we change the way we count priority violations.
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proportion α of seats for high-income ones. The remaining seats are not reserved for anyone

and we refer to those as open seats. We report results for α ∈ {0.2, 0.3, 0.4}.

Applicants’ income groups are determined as follows. First, we run DA without reserves

and quotas to determine overdemanded schools, i.e., those that reject an applicant during

the algorithms’ implementation.6 For each applicant we draw a number η uniform randomly

from the unit interval. The applicants’ income level is η + β if the applicant lives in a

neighborhood of an overdemanded school and η if she does not. Thus, the average income

of applicants in neighborhoods of overdemanded schools is β and the average income of

applicants not in neighborhoods of overdemanded schools is normalized to zero. We report

results for β ∈ {0.1, 0.2, 0.5}.

School assignment is determined by the DA algorithm. We consider two choice rules: the

regular reserves-and-quotas rule and an alternative rule. As described in Section 5, under

the regular reserves-and-quotas applicants are considered for seats reserved for their types

first. Under the alternative rule, applicants are considered for seats reserved for their types

last. We run 100 simulations for each parameter value. Table 1 reports average number of

priority violation instances. Standard errors are in the parentheses.

Most importantly, simulations reveal that the regular reserves-and-quotas rule creates sub-

stantially less priority violations compared to the alternative one.

For example, when only 20% of seats are reserved for low- and high-income applicants each,

i.e. α = 0.2, and neighborhoods with over-demanded schools have an average income that

is 0.1 higher than the average of the remaining neighborhoods, i.e. β = 0.1, the average

number of applicants whose priority is violated under the regular reserves-and-quotas is

0.05. In comparison, this number under the alternative rule is 30.36. The number of priority

violations instances are increasing in the reserves’ size α. This direction is intuitive as

under larger reserves, or equivalently, stricter distributional constraints, schools accept more

applicants based on their types, as opposed to priorities.

Second, these numbers are higher for larger income parameter β. This is because with

larger β, more of the low-income applicants are residing outside of neighborhoods with over-

demanded schools. Therefore, reserves play a larger role in determining the assignment

to over-demanded schools, and consequently, there more applicants’ priorities are violated.

6In our simulations, the number of applicants living at a neighborhood of an overdemanded school is

7,240.
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𝛼 𝛽 
Regular Reserves-
and-Quotas Rule 

 

Alternative Rule 
 

    
    
    
    

0.2 0.1 0.05 30.36 
  (0.30) (11.00) 
    
 0.2 0.31 57.00 
  (1.31) (15.62) 
    
 0.5 26.00 225.31 
  (16.76) (39.20) 
    

0.3 0.1 0.50 51.43 
  (1.12) (14.78) 
    
 0.2 3.25 100.35 
  (4.23) (18.94) 
    
 0.5 174.11 452.08 
  (40.47) (56.91) 
    

0.4 0.1 10.37 76.50 
  (8.00) (20.12) 
    
 0.2 40.18 165.15 
  (17.07) (25.67) 
    
 0.5 546.32 703.87 
  (55.58) (50.31) 
    

    
 

Table: (DA) Average Number of Applicants Whose Priority is Violated 
 
 
 
 
 
 
 

Table 1: Average Number of Applicants Whose Priority is Violated
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However, the conclusion that the regular reserves-and-quotas rule creates substantially less

priority violations persists across the parameter space.

8 Conclusion

We study priority-based assignment with reserves and quotas. There are three main contri-

butions. First, we characterize generalized reserves-and-quotas rules with four axioms that

reflect the policy maker’s objectives of respecting priorities and achieving diversity. Sec-

ond, we show that there is a unique choice rule that selects highest priority applicants and

minimizes priority violations among all generalized reserves-and-quotas rules. Our findings

provide axiomatic foundation for the regular reserves-and-quotas rule. Third, we study pri-

ority violations minimization in two-sided markets with multiple schools and quantify the

performance of the regular reserves-and-quotas rule compared to an alternative rule through

simulations.

References
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Aygun, Orhan, and Bó, Inácio. 2020. College admission with multidimensional privileges:

The Brazilian affirmative action case. Working Paper.

Becker, Gary S. 1973. A theory of marriage: Part I. Journal of Political Economy, 81(4),

813–846.
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A Proofs of Main Results

A.1 Proof of Theorem 1

The proof has two parts. Part 1 shows that any choice rule satisfying Axioms 1-4 is a

generalized reserves-and-quotas rule for some application orders. Part 2 shows that any

generalized reserves-and-quotas rule satisfies Axioms 1-4.

Part 1. Suppose C satisfies Axioms 1-4. Consider an arbitrary A ⊆ A. Since the choice rule

is (reserves- and) quotas- respecting and within-type priority compatible, for each t ∈ T , it

never selects any type−t who does not have one of the qt highest priorities among type−t
applicants. Thus, without loss of generality, we may restrict attention to the case where

|At| ≤ qt for all t ∈ T . Also, since C is non-wasteful, we may assume |A| ≥ q.

For each t ∈ T , let A′t ⊆ At be the set of type-t applicants who cause priority violations at

C(A). Since C is beyond-reserves priority compatible, |A′t| ≤ rt for any t ∈ T . If |At| ≤ rt,

let Āt = C(A) ∩ At. Otherwise, let Āt ⊆ C(A) ∩ At be such that |Āt| = rt and A′t ⊆ Āt. For

an applicant a ∈ A, we construct the application order .a,A as follows:

• If a ∈ Āτ(a) or a ∈ A \ C(A), then sτ(a) .a,A s for any s ∈ S.

• If a ∈ C(A) \ Āτ(a), then s .a,A sτ(a) for any s ∈ S.

• The order between any two slots in S \ {sτ(a)} is arbitrary.

Let Cg denote the generalized reserves-and-quotas rule corresponding to the constructed

application orders. In what follows we show that Cg = C.

Since the DA outcome is independent of the order of applications, suppose applicants in

C(A) apply before applicants in A \ C(A). Note that since |C(A)| ≤ q, all applicants in C(A)

will be accepted by some slot in S. Consider an arbitrary a ∈ A \ C(A). It is sufficient to

show that a is rejected by all slots. By construction of application orders, a first applies to

sτ(a). Since C is reserves-respecting and a ∈ A \ C(A), there are at at least rτ(a) type τ(a)

applicants in C(A). Moreover, since C is within-type priority compatible, all these applicants

have a higher priority than a. In particular, applicants in Āτ(a) have higher priority than a.

By construction of application orders, these applicants apply to sτ(a) before any other slot.

Therefore, at least rτ(a) applicants with higher priorities than a are tentatively assigned to

sτ(a) at the time when she applies there. Hence, a is rejected by sτ(a).
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We now show that a is rejected from all slots s ∈ S \ {sτ(a)}. By definition, no applicant in

C(A)\∪t∈T Āt causes a priority violation. Thus, all those applicants have higher priorities than

a. Since a ∈ A \ C(A) and C is non-wasteful, |C(A)| = q. Therefore, all slots s ∈ S \ {sτ(a)}
are tentatively filled with higher priority applicants than a, and a is rejected by all of them.

Part 2. Consider an arbitrary A ⊆ A and application orders (.a,A)a∈A. Let Cg be the

generalized reserves-and-quotas rule corresponding to these application orders. We verify

that Cg satisfies Axioms 1-4.

Respecting reserves: Consider an arbitrary A ⊆ A. That
∣∣Cg(A) ∩ At

∣∣ ≤ qt for all t ∈ T is

immediate from the description of Cg. Moreover, since type-t applicants have the highest �t
priority at st, at least rt of them are guaranteed to be accepted by st. Thus, |Cg(A) ∩At| ≥
min

{
|At|, rt

}
.

Non-wastefulness: Non-wastefulness is immediate from the description of the generalized

reserves-and-quotas rule.

Within-type priority compatibility: Suppose a′ causes priority violation for a at A. By

contradiction, suppose τ(a) = τ(a′). Then, a �t a′ for all t ∈ T . This contradicts that Cg(A)

chooses a′, but not a.

Beyond-reserves priority compatibility: By contradiction, suppose there is a set of type-t

applicants A′t causing priority violations at A such that |A′t| > rt. Let a be the highest

priority applicant in A \ C(A). Then, each a′ ∈ A′t causes priority violation for a. Let

A′′t ⊆ A′t be the set of applicants who are assigned to st. Since |A′′t | ≤ rt, there exists an

a′′ ∈ A′t \ A′′t . This contradicts that a′′ is selected over a at Cg(A).

A.2 Proof of Proposition 1

Let Cg be a generalized reserves-and-quotas rule corresponding to some regular application

order. We show that Cg equals the regular reserves-and-quotas rule Cr.

Consider an arbitrary A ⊆ A with |At| ≤ qt for all t ∈ T and |A| ≥ q. It is immediate that

both Cg and Cr are non-wasteful. Therefore,

|Cg(A)| = q = |Cr(A)|. (1)

Let A′ be the set of applicants selected at the first stage of the implementation of Cr. First,

we show that A′ ⊆ Cg(A). Consider an arbitrary a ∈ A′. By description of Cr, a is one
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of the rτ(a) highest priority type applicants in Aτ(a), and therefore, she is one of the rτ(a)

highest �τ(a) priority applicants at sτ(a). Thus, in Step 1 of Cg, a applies to sτ(a) and is never

rejected by the school. This establishes that a ∈ Cg(A).

Now, by contradiction, suppose Cg(A) 6= Cr(A). By equation 1, there is an applicant a ∈
Cr(A) \ Cg(A). Since A′ ⊆ Cg(A), it should be that a /∈ A′. Therefore, a is selected at the

second stage of Cr’s implementation. By description of Cr, a is one of the min
{
|A|, q

}
−∑

t∈T min
{
|At|, rt

}
highest priority applicants in A \ A′. This contradicts that a is not

selected at Cg(A).

A.3 Proof of Theorem 2

Let Cr be the regular reserves-and-quotas rule. We show that Cr is priority violations minimal

in the class of reserves- and quotas-respecting and non-wasteful choice rules.

That Cr is reserves- and quotas-respecting and non-wasteful is immediate from its description.

Let C be an arbitrary reserves- and quotas-respecting and non-wasteful choice rule. Consider

an arbitrary A ⊆ A with |A| ≥ q. Since both Cr and C are non-wasteful,∣∣Cr(A)
∣∣ = min

{
q,
∑
t∈T

min
{
|At|, qt

}}
=
∣∣C(A)

∣∣. (2)

Let a � a′ denote that a � a′ or a = a′. Also, let ā and ā′ be the lowest priority applicants in

Cr(A) and C(A), respectively. Then, by equation 2, the number of applicants whose priority

is violated at Cr(A) and C(A) is
∣∣{a ∈ A : a � ā

}∣∣ − ∣∣Cr(A)
∣∣ + 1 and

∣∣{a ∈ A : a �
ā′
}∣∣− ∣∣C(A)

∣∣+ 1, respectively. Thus, by equation 2, it is sufficient to show that ā � ā′.

By contradiction, suppose a � ā for all a ∈ C(A). Since C is reserves-respecting, there are at

least min
{
|At|, rt

}
type-t applicants in A for each t ∈ T . Thus, ā cannot be selected at the

first stage of Cr’s implementation, since then she would have a weakly higher priority than at

least one individual in C(A). Thus, ā is selected at the second stage of Cr’s implementation.

For any a ∈ C(A) \ Cr(A), it should be that
∣∣Cr(A)τ(a)

∣∣ = qτ(a), since otherwise ā would not

have been selected over a at the second stage of Cr’s implementation. Let T ′ :=
{
τ(a) : a ∈

C(A) \ Cr(A)
}

. Then,

min
{
q,
∑
t∈T

min
{
|At|, qt

}}
=
∣∣C(A)

∣∣ ≤∑
t∈T ′

qt +
∣∣∣{C(A) : τ(a) ∈ T \ T ′

}∣∣∣
=
∑
t∈T ′

qt +
∣∣∣{a ∈ Cr(A) ∩ C(A) : τ(a) ∈ T \ T ′

}∣∣∣
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=
∑
t∈T ′

∣∣Cr(A)t
∣∣+
∣∣∣{a ∈ Cr(A) ∩ C(A) : τ(a) ∈ T \ T ′

}∣∣∣
≤
∣∣Cr(A)

∣∣ = min
{
q,
∑
t∈T

min
{
|At|, qt

}}
,

where the second equality follows from that
{
a ∈ C(A) : τ(a) ∈ T \T ′

}
=
{
a ∈ Cr(A)∩C(A) :

τ(a) ∈ T \ T ′
}

by definition of T ′. Thus,∣∣C(A)
∣∣ =

∑
t∈T

qt +
∣∣{a ∈ C(A) : τ(a) ∈ T \ T ′

}∣∣,
and consequently, ∣∣C(A) ∩ At

∣∣ = qt =
∣∣Cr(A) ∩ At

∣∣ for all t ∈ T ′. (3)

Moreover, by definition of T ′,∣∣C(A) ∩ At
∣∣ ≤ ∣∣Cr(A) ∩ At

∣∣ for all t ∈ T \ T ′. (4)

Equations 2-4 imply that ∣∣Cr(A) ∩ At
∣∣ =

∣∣C(A) ∩ At
∣∣ for all t ∈ T.

Since Cr selects the highest priority applicants of each type, this contradicts that a � ā for

all a ∈ C(A).

A.4 Proof of Theorem 3

We shows that Cr is the unique priority rank maximal rule in the class of reserves- and

quotas-respecting, non-wasteful and within-type priority compatible choice rules.

That Cr is within-type priority compatible is immediate from its description. Let C be

an arbitrary reserves-respecting, quotas respecting, non-wasteful and within-type priority

compatible choice rule. To establish Part 2, it is sufficient to show that Cr priority dominates

C. Uniqueness would follow from the definition of priority rank maximality.

Consider an arbitrary A ⊆ A with |At| ≤ qt for all t ∈ T and |A| ≥ q. Without loss of

generality, suppose Cr(A) 6= C(A). Since both Cr and C are non-wasteful,∣∣Cr(A)
∣∣ = q =

∣∣C(A)
∣∣.

Thus, Cr(A) 6= C(A) implies that there are a, a′ ∈ A such that

a ∈ Cr(A) \ C(A) and a′ ∈ C(A) \ Cr(A).
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Since C is reserves-respecting and a /∈ C(A), there are at least rτ(a) applicants in C(A)τ(a).

Moreover, since C is within-type priority compatible, all rτ(a) highest priority applicants in

Aτ(a) are in C(A). Therefore, a is not one of the rτ(a) highest priority type applicants in Aτ(a).

Similarly, since Cr is reserves-respecting, a′ is not one of the rτ(a′) highest priority applicants

in Aτ(a′). Hence, neither a nor a′ is selected at the first stage of Cr’ implementation. Since

a is selected over a′ at the second stage of Cr’s implementation and
∣∣Cr(A)τ(a′)

∣∣ < qτ(a′), we

conclude that a � a′.

A.5 Proof of Theorem 4

Complexity theory categorizes problems into classes based on the amount of computational

resources needed to solve them. NP-hard problems are commonly considered as the class of

computationally intractable problems. This is because there are no known polynomial time

algorithms for solving NP-hard problems, and it is widely conjectured and believed that none

exists. A typical way of proving NP-hardness of a problem is constructing a polynomial time

reduction from a well-known NP-hard problem. A reduction transforms one problem to

another in a way that solving the second problem solves the first problem.

We prove the NP-hardness of finding a priority violations minimal reserves-respecting and

non-wasteful assignment by constructing a polynomial time reduction from the Complete

Bipartite Subgraph (CBS ) problem. For a given bipartite graph (V1, V2, E) and an integer

k ≤ min
{
|V1|, |V2|

}
, the CBS problem asks whether there are subsets U1 ⊆ V1 and U2 ∈ V2

such that |U1| = k, |U2| ≥ k and (u1, u2) ∈ E for all u1 ∈ U1 and u2 ∈ U2. This problem is

NP-hard (Garey and Johnson, 1979).

Consider an arbitrary CBS instance (V1, V2, E) and k. We construct the corresponding tuple(
A, S, T, τ, r, (�s)s∈S, (Pa)a∈A

)
as follows:

• A = A∪A∪Ā, where A = {avn}v∈V2,n=1,2,...,N , N > |V1| is some large number,7 |A| = k,

|Ā| = |V1| − k, and A, A and Ā are pairwise disjoint.

For each v ∈ V2, we may think of applicants in {avn}n=1,2,...,N as N copies of each

other. For any m,n = 1, 2, . . . , N , we say applicants avn ∈ A and aum ∈ A are distinct

if v 6= u.

• S = {sv}v∈V1 ∪ {s̄},
7E.g., N = |V1|+ 1 would work.
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• Capacities are

qs =

|A| if s = s̄,

1 otherwise.

• T = {t, t′} and for all a ∈ A,

τ(a) =

t if a ∈ A,

t′ otherwise.

• rst = 0 and rst′ = 1 for all s ∈ S \ {s̄}.

• Schools have common priorities � satisfying

ā � a � a

for all ā ∈ Ā, a ∈ A and a ∈ A.

• Preferences satisfy

– for each sv ∈ S \ {s̄} and aun ∈ A,

s̄Pausv if and only if (v, u) ∈ E,

– for each sv ∈ S \ {s̄} and a ∈ Ā ∪ A,

svPas̄.

All unspecified aspects of the tuple
(
A, S, T, τ, r, (�s)s∈S, (Pa)a∈A

)
are arbitrary.

We first prove the following claim.

Claim 1. An assignment is priority violations minimal (in some class of assignments) only

if it minimizes the number of distinct applicants in A whose priority is violated.

The proof of the Claim 1 is straightforward. Notice that for each v ∈ V2, applicants in

{avn}n=1,2,...,N are identical, i.e., the priority of one of them is violated if and only if all their

priorities are violated. Thus, priority violations for applicants in A ∪ Ā are of secondary

importance since their number is bounded by N . Therefore, any priority violations mini-

mizing assignment should minimize the number of distinct applicants in A whose priority is

violated.

Thus, to establish NP-hardness of finding priority violations minimal reserves-respecting and

non-wasteful assignment it is sufficient to prove the following claim.
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Claim 2. There are subsets U1 ⊆ V1, U2 ⊆ V2 such that |U1| = k, |U2| ≥ k and (u1, u2) ∈
E for all u1 ∈ U1, u2 ∈ U2 if and only if there is a reserves-respecting and non-wasteful

assignment such that the number of distinct applicants in A whose priority is violated is

weakly smaller than |V2| − k.

We now prove Claim 2. Fix and arbitrary reserves-respecting and non-wasteful assignment

µ. Note that all schools in S \ {s̄} have a single seat reserved for type-t′ applicants, and

there are exactly |V2| =
∣∣S \ {s̄}∣∣ type-t′ applicants (namely those in A ∪ Ā). Moreover, all

these applicants prefer schools in S \{s̄} to s̄. Therefore, all schools in S \{s̄} are filled with

applicants in A ∪ Ā. Consequently, all applicants in A are assigned to s̄.

Applicants in A have higher priorities than applicants in A, and lower priorities than ap-

plicants Ā. Therefore, only applicants in A can cause priority violations for applicants in

A. More precisely, the priority of a ∈ A is violated at µ if and only if µ(a)Pas̄ for some

a ∈ A. Equivalently, the priority of a ∈ A is not violated at µ if and only if s̄Paµ(a) for all

a ∈ A. By construction of preferences, the last condition holds if and only if (v, u) ∈ E for

all u ∈ U1 ⊆ V1, where v is the index corresponding to applicant a and U1 is the set of indices

corresponding to schools
{
µ(a) : a ∈ A

}
. Thus, |U1| = |A| = k. Denoting by U2 ⊆ V2 the

set of indices of applicants in A whose priority is not violated, we have that (u1, u2) ∈ E for

all u1 ∈ U1 and u2 ∈ U2. Hence, |U2| ≥ k if and only if the number of distinct applicants in

A whose priority is violated is weakly smaller than |V2| − k. This completes the proof of the

claim, and therefore, of Theorem 4.

A.6 Proof of Theorem 5

Like with Theorem 4, we prove Theorem 5 by constructing a polynomial time reduction from

the CBS problem.

Consider an arbitrary CBS instance (V1, V2, E) and k. We construct the corresponding tuple(
A, S, T, τ, r, (�s)s∈S, (Pa)a∈A

)
as follows:

• A = A ∪ A, where A = {avn}v∈V2,n=1,2,...,N , N > |V1| is some large number, A =

{av}v∈V1 , and A and A are disjoint.

For any m,n = 1, 2, . . . , N , we say applicants avn ∈ A and aum ∈ A are distinct if

v 6= u.
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• S = {sv}v∈V1 ∪ {s} ∪ {s̄}.

• Capacities are

qs =


|A| − k = |V1| − k if s = s,

|A| if s = s̄,

1 otherwise.

• T = {t} ∪ {tv}v∈V1 and for all a ∈ A,

τ(a) =

t if a ∈ A,

tv if a = av, v ∈ V1.

• rsvt = rsvtu = 0 for all v, u ∈ V1, v 6= u and rsvtv = 1.

• Schools have common priorities � satisfying

a � a

for all a ∈ A and a ∈ A.

• Preferences satisfy

– for each sv ∈ S \ {s, s̄}, and aun ∈ A, s̄Paus, and

s̄Pausv if and only if (v, u) ∈ E,

– for sv, su ∈ S \ {s, s̄}, v 6= u, and av ∈ A,

sPavsvPav s̄Pavsu..

All unspecified aspects of the tuple
(
A, S, T, τ, r, (�s)s∈S, (Pa)a∈A

)
are arbitrary.

The proof of the following claim is analogous to that of Claim 1.

Claim 3. An assignment is priority violations minimal (in some class of assignments) only

if it minimizes the number of distinct applicants in A whose priority is violated.

Thus, to establish NP-hardness of finding priority violations minimal reserves-respecting,

non-wasteful and within-type priority compatible assignment it is sufficient to prove the

following claim.
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Claim 4. There are subsets U1 ⊆ V1, U2 ⊆ V2 such that |U1| = k, |U2| ≥ k and (u1, u2) ∈ E
for all u1 ∈ U1, u2 ∈ U2 if and only if there is a reserves-respecting, non-wasteful and within-

type priority compatible assignment µ such that the number of distinct applicants in A whose

priority is violated is weakly smaller than |V2| − k.

We now prove Claim 4. Fix and arbitrary reserves-respecting, non-wasteful and within-type

priority compatible assignment µ. Since all applicants in A prefer s̄ to s and s̄ has enough

seats to accommodate all applicants, no applicant in A will be assigned to s at the non-

wasteful assignment µ. Moreover, applicants in A rank school s as a first choice. Therefore,

s is entirely filled with applicants in A at the non-wasteful assignment µ. However, the

school has only |A| − k seats. Thus, exactly k of the applicants in A are not assigned to s

at any non-wasteful assignment. Moreover, each applicant av ∈ A ranks sv ∈ S \ {a, ā} as

most preferred choice after s, and the school has a single seat reserved for that applicant.

Thus, any applicant in A that is not assigned to s is assigned to the single reserved seat

of the corresponding school at any reserves-respecting allocation. The remaining schools in

S \ {s, s̄} are filled by applicants in A.

Consider an applicant a ∈ A whose priority is violated at µ. Since µ is within-type priority

compatible, it should be that the priority violation is respect to in S \ {s, s̄} where some

applicant Ā is assigned. That is, the priority of a ∈ A is violated if and only if µ(a)Pas̄ for

some a ∈ A. Equivalently, the priority of a ∈ A is not violated at µ if and only if s̄Paµ(a) for

all a ∈ A. By construction of preferences, the last condition holds if and only if (v, u) ∈ E
for all u ∈ U1 ⊆ V1, where v is the index corresponding to applicant a and U1 is the set of

indices corresponding to schools
{
µ(a) : a ∈ A

}
. Thus, |U1| = |A| = k. Denoting by U2 ⊆ V2

the set of indices of applicants in A whose priority is not violated, we have that (u1, u2) ∈ E
for all u1 ∈ U1 and u2 ∈ U2. Hence, |U2| ≥ k if and only if the number of distinct applicants

in A whose priority is violated is weakly smaller than |V2| − k. This completes the proof of

the claim, and therefore, of Theorem 5.

B Independence of Axioms in Theorem 1

When any of the Axioms 1-4 is relaxed, we provide examples of choice rules that are not

generalized reserves-and-quotas rules and satisfy the remaining three axioms.

• Consider the choice rule C that only accepts up to rt highest priority applicants of each
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type t ∈ T . Then, C satisfies Axioms 1,3 and 4, but not 2.

• Consider the choice rule C that accepts up to q of highest priority applicants. Then, C
satisfies Axioms 2,3 and 4, but not 1.

• Suppose A = {a1, a2}, a1 � a2, τ(a1) = τ(a2) = t and rt = qt = q = 1. Consider the

choice rule C that chooses a2 whenever she is available and chooses a1 whenever a2 is

not available, but a1 is. Then, the rule satisfies Axioms 1,2 and 4, but not 3.

• Suppose A = {a1, a2}, a1 � a2, τ(a1) = t 6= t′ = τ(a2) and rt = rt′ = 0 and

qt = qt′ = q = 1. Consider the choice rule C that chooses a2 whenever she is available

and chooses a1 whenever a2 is not available, but a1 is Then, the rule satisfies Axioms

1,2 and 3, but not 4.

C Additional Results for Multiple Schools

Suppose all applicants have a common preference ranking P and all schools have a common

priority ranking �. We show that the outcome of DA where all schools apply the regular

reserves-and-quotas rule may not be priority violations minimal in the class of reserves-

respecting and non-wasteful (and within-type priority compatible) assignments even for this

simple case with common preferences and priorities.

Example 2. Suppose A = {a1, a2, a3, a4}, S = {s1, s2}, qs1 = 1, qs2 = 2, τ(a1) = t1 6=
τ(a2) = τ(a4) = t2 6= τ(a3) = t3, s1Ps2, a1 � a2 � a3, rs1t2 = rs2t2 = 1 and rs2t1 = rs2t3 =

rs1t3 = 0. The last two conditions say that the single seat at school s1 and one of the seats

in s2 are reserved for type-t2 applicants. If all schools apply the regular reserves-and-quotas

rule, DA will proceed as follows:

Step 1. All applicants apply to s1. The school accepts a2 as she is the highest priority

type-t2 applicant.

Step 2. All rejected applicants apply to s2. The school accepts a1 and a4 as they are the

highest priority and the remaining highest priority type-t2 applicants, respectively.

Now consider an alternative reserves-respecting and non-wasteful (and within-type priority

compatible) assignment where a2 is assigned to s1, and a3 and a4 are assigned to s2. Then,

the only applicant whose priority is violated is a1. Thus, the outcome of DA where all schools

apply the regular reserves-and-quotas rule is not priority violations minimal in the class of

reserves-respecting and non-wasteful (and within-type priority compatible) assignments.
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The example above is peculiar: it relies on the fact that we define priority violations mini-

mality by the number of individuals whose priority is violated. However, at the alternative

assignment in Example 2 the priority of a1 is violated with respect to both schools s1 and

s2. This motivates our analysis of alternative priority violations minimality notions. We

say that an applicant-school pair (a, s) is a priority violations instance is s ∈ S such

that sPaµ(a) and a �s a′ for some s ∈ S and a′ ∈ µ−1(s). We say an assignment µ is

priority violation instances minimal in the class of assignments M if µ ∈ M and for

every µ′ ∈ M the number of priority violation instances is weakly under µ than under µ′.

In that case we can state the following positive result.

Proposition 3. In the setting with common preferences and priorities, the outcome of the

DA where all schools apply the regular reserves-and-quotas rule is priority violation instances

minimal in the class of assignments satisfying Axioms 5 and 6 (and 7).

Proof. Suppose schools are indexed by preferability, i.e. s1Ps2Ps3..., etc. Let K be such

that
K−1∑
k=1

qsk <
∣∣A∣∣ ≤ K∑

k=1

qsk .

The condition implies that sK is the least preferred school that fills a seat at a reserves-

respecting and non-wasteful (and within-type priority compatible) assignment.

Let µ be the outcome of the DA algorithm where all schools apply the regular reserves-

and-quotas rule. The feasibility of µ is immediate from the description of regular reserves-

and-quotas rule and the DA algorithm.For an integer an k, let aµk denote the lowest priority

applicant that is assigned to sk or a more preferred school at µ. Then, the number of priority

violation instances at µ is

K∑
k=1

(∣∣{a ∈ A : a � aµk−1
}∣∣− k∑

j=1

qsj + 1.

Also let µ′ be an arbitrary feasible allocation and let aµ
′

k the lowest priority applicant that

is assigned to sk or a more preferred school at µ′. Then, the number of priority violation

instances at µ′
K∑
k=1

(∣∣{a ∈ A : a � aµ
′

k−1
}∣∣− k∑

j=1

qsj + 1.

Thus, to show that there are weakly less priority violations instances at feasible assignment µ

than at feasible assignment µ′, it is sufficient to show that aµk � aµ
′

k for all k ∈ {1, 2, ..., K−1}.
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By contradiction, suppose aµ
′

k � aµk . Denote sl := µ(aµk). Also, let Ã :=
{
a ∈ A : µ(a)Psl+1

}
and Ã′ :=

{
a ∈ A : µ′(a)Psl+1

}
. By feasibility of µ and µ′,

|Ã| =
l∑

j=1

qsl = |Ã′|. (5)

By equation 5 and by that aµk /∈ Ã′, we have Ã′ \ Ã 6= ∅. Then, a � aµ
′

k � aµk . Note that aµk is

not one of the
∑l

j=1 rτ(aµk ) highest priority applicants in Aτ(aµk ). This is true, since otherwise,

by feasibility of µ′, aµk would be assigned to a school weakly more preferred to sl at µ′. Thus,

aµk is selected by school sl over a at the second stage of the regular reserves-and-quotas rule’s

implementation. This contradicts a � aµk .

Although restrictive, the assumption of common preferences and priorities is a standard

simple case. The assumption is heavily used for tractability in various contexts, such as

college admissions, school choice and labor market (e.g., Becker (1973), Bulow and Levin

(2006), Abdulkadiroğlu et al. (2011), Bodoh-Creed and Hickman (2018)). The following

examples demonstrate that Proposition 3 no longer holds once we relax the assumptions of

common preferences or common priorities.

Example 3 (Relaxing Common Preferences). Suppose A = {a1, a2, a3, a4}, S = {s1, s2, s3},
qs1 = qs2 = 1, qs3 = 4, T = {t1, t2, t3}, τ(a1) = t1 6= τ(a2) = t2 6= τ(a3) = τ(a4) = t3,

rt2s2 = 1 and reserves are zero otherwise. Applicant a1 prefers s1 to s3 to s2, a2 prefers s1

to s2 to a3, and a3 and a4 prefer s2 to s3 to s1. Schools have a common priority ranking

a3 � a4 � a1 � a2.

If all schools apply the regular reserves-and-quotas rule, DA will proceed as follows:

Step 1. Applicants a1 and a2 apply to s1. The school accepts a1 and rejects a2. Applicants

a3 and a4 apply to s2. The school admits a3 and rejects a4.

Step 2. Applicant a2 applies to s2. The school’s single seat is reserved for a2, therefore the

school accepts a2 and rejects a3. Applicant a4 applies to s3 and is accepted by the school.

Step 3. Applicant a3 applies to s3 and is accepted by the school.

The assignment is finalized at µ(a1) = s1, µ(a2) = s2 and µ(a3) = µ(a4) = s3. There are

four priority violations instances at µ: (a3, s1), (a4, s1), (a3, s2) and (a4, s2).

Now suppose s1 accepts a2 instead of a1 in Step 1 of DA. Then, in Step 2, a1 would apply

to s3 and a3 and a4 would apply to s2. The latter would reject a4, who would apply and get

assigned to s3 at Step 3. The resulting assignment would be µ′(a1) = µ′(a4) = s3, µ
′(a2) = s1

32



and µ′(a3) = s2, which is reserves-respecting and non-wasteful (and within-type priority

compatible). There are only three priority violation instances at µ′: (a1, s1), (a3, s1) and

(a4, s1).

Example 4 (Relaxing Common Priorities). Suppose A = {a1, a2, a3, a4}, S = {s1, s2, s3},
qs1 = qs2 = 1, qs3 = 4,T = {t1, t2, t3}, τ(a1) = t1 6= τ(a2) = t2 6= τ(a3) = τ(a4) = t3, rt2s2 = 1

and reserves are zero otherwise. All applicants prefer s1 to s2 to s3. School s1’s priority

ranking is a1 �s1 a2 �s1 a3 �s1 a4, s2’s priority ranking is a1 �s2 a3 �s2 a4 �s2 a2, and s3’s

priority ranking is arbitrary.

If all schools apply the regular reserves-and-quotas rule, DA will proceed as follows:

Step 1. All applicants apply to s1. The school accepts a1 and rejects the rest.

Step 2. All rejected applicants apply to s2. The schools’ single seat is reserved for a2.

Therefore, the school admits a2 and rejected the rest.

Step 3. a3 and a4 apply to s3, and both are accepted.

The assignment is finalized at µ(a1) = s1, µ(a2) = s2 and µ(a3) = µ(a4) = s3. There are two

priority violations instances at µ: (a3, s2) and (a4, s2).

Now suppose s1 accepts a2 instead of a1 in Step 1 of DA. Then, in Step 2, a1 would apply

to s2 and get accepted by the school. In Step 3 a3 and a4 would apply to s3. The resulting

assignment would be µ′(a1) = s2, µ
′(a2) = s1 and µ′(a3) = µ′(a4) = s2, which is reserves-

respecting and non-wasteful (and within-type priority compatible). There is a unique priority

violations instance at µ′: (a1, s1).
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