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Abstract

Proponents of school choice argue that it improves educational outcomes by allowing parents
to self-select into schools that are most effective for their children. Contrary to these arguments,
empirical evidence suggests that parents may not incorporate school effectiveness or match qual-
ity when choosing schools. The findings potentially impugn proponents’ effectiveness arguments
of choice-based assignment. We develop novel solutions that restore effectiveness by maximizing
match quality subject to stability constraints. Maximization algorithms are provided for both
small and large school districts. Simulations reveal substantial match quality gains from our so-
lutions compared to the celebrated Deferred Acceptance mechanism with a random tie-breaker.
Our methodology can be used to optimize for other policy objectives in school choice or other
priority-based matching problems.

1 Introduction

Parental choice over public schools has become an integral education reform tool around the world.
Market Design for school choice (Abdulkadiroglu and Sénmez, 2003)! has led to creation and
implementation of efficient and transparent admissions processes in school choice programs. It is
argued that parental choice may boost educational outcomes for students by creating competitive
pressure on schools (Friedman, 1962; Tweedie et al., 1990; Hoxby, 2003), by allowing students to
sort into schools with better match quality (Hoxby, 2000), and by allowing parents to act on local
information, in turn providing better incentives for schools to invest in educational effectiveness than
a centralized accountability system would do (Peterson and Campbell, 2001). These mechanisms
would be at work only if parents choose schools partly based on school effectiveness and match
quality. Contrary to these claims, parents do not seem to incorporate school effectiveness when
forming preferences. For example, Abdulkadiroglu et al. (2020) find that parents do not prefer
schools that are especially effective for their own children and do not enroll their children in schools
that are a better-than-average match for them. These findings raise a new challenge for the Market

*Abdulkadiroglu: Department of Economics, Duke University and National Bureau of Economic Research (NBER),
aa88@duke.edu; Dur: Department of Economics, North Carolina State University, udur@ncsu.edu, Grigoryan: De-
partment of Economics, Duke University, agd04@duke.edu.

1School choice problem is closely related to college admission problem (Gale and Shapley, 1962; Roth, 1985) and
student placement problem (Balinski and Sonmez, 1999). It differs from college admission problem as schools are
considered as objects, and it differs from student placement problem as respecting school priorities is not forced by
the central authority.



Design agenda: Can school admissions process be designed to attain higher educational outcomes
even in the absence of parental preferences for effectiveness and match quality?

Given some measure of match quality of students at schools, finding an assignment of students to
schools that maximizes sum of match qualities (hereafter, aggregate match quality) is a trivial linear
programming problem. However, admissions to schools are constrained by parental preferences and
by admissions priorities granted to students at schools. Preferences and priorities introduce to this
otherwise standard linear programming problem the so-called stability constraint. Namely, an
applicant can only be assigned to a school listed in her application form, and if an applicant prefers
a school to her assignment, the school must be fully assigned to applicants with better or equal
admissions priorities. Stability, also more aptly called justified-envy-freeness in the context of school
assignment, has become critical in the design of school admissions processes (Abdulkadiroglu et al.,
2009). Finding a stable assignment that maximizes aggregate match quality, which we will refer to
as match quality optimal assignment, is an NP-hard problem when priorities are weak. Hence, in
general, this problem has no computationally tractable solution. We introduce an algorithm that
is polynomial time in the number of students, but potentially exponential in the number of schools.
Since the number of schools in a school districts is typically small, the algorithm is applicable for
the majority of US school districts. Building on that solution, we also introduce a random search
algorithm for large school districts. Our simulations show that even a single search produces an
aggregate match quality that is close to that of the match quality optimal assignment.

When preferences and priorities are strict, a match quality optimal assignment can be computed in
polynomial time by formulating it as a linear programming problem (Roth et al., 1993). However,
real life choice programs typically feature weak priorities. In most applications, schools sort students
into thick priority classes based on residential address, status of sibling enrollment etc. Our strategy
builds on bounding the set of stable assignments and then solving the optimization problem within
subsets of stable assignments. Admissions cutoff, or simply cutoff, at a school is the worst priority
admitted by the school.? Our first building blocks are two new algorithms to compute lower and
upper bounds for school cutoffs at stable assignments when priorities are weak.

The first algorithm, which we refer to as Deferred Rejection (DR), works like the student proposing
deferred acceptance algorithm (DA) (Gale and Shapley, 1962) with the caveat that, when there
are more students applying to a school than available seats, the school finds the worst priority that
would fill up its seats, rejects all students with strictly worse priorities and provisionally holds the
remaining students. The algorithm then identifies students that would be rejected by schools for
any possible tie breaking among equal priority students. Unlike the student proposing DA, under
DR a school may hold more students than available seats. Therefore, DR produces bounds for
cutoffs: schools attain weakly better priority cutoffs in every stable assignment.

The second algorithm, which we refer to as Deferred Proposal (DP), works like the school proposing
DA. Each school finds the worst priority that would fill up its seats, proposes to students with
strictly better priority. Then, the algorithm identifies students that would reject schools for any
possible tie breaking. Under DP schools do not necessarily fill up all of their seats. Therefore,
DP too produces bounds for cutoffs: schools attain weakly worse priority cutoffs in every stable
assignment.

2For example, consider a school that grants priorities A, B and C such that A is better than B and B is better
than C. Suppose that the worst priority students assigned to the school have priority B. Then the cutoff at the school
is B.



Finally, using the bounds identified by DR and DP, we find a match quality optimal assignment
using our Match Quality Optimal Algorithm (MQO). For a fixed vector of admission cutoffs, or a
cutoff profile, MQO finds a stable assignment that has weakly higher match quality than any stable
assignment with the given cutoff profile. This step involves a novel formulation of the problem as
a minimum-cost flow problem. Then, by exhaustively searching within the set of cutoff profiles
identified by DR and DP, MQO yields a match quality optimal assignment. Such exhaustive search
is infeasible without DR and DP procedures for many realistic instances.

MQO becomes computationally intractable as the number of schools increases. Therefore, we
develop a random search algorithm for large districts, which we call Locally Match Quality Optimal
Algorithm (L-MQO). Instead of searching within bounds, L-MQO first runs the student proposing
DA with some random tie-breakers to identify cutoffs of some stable assignment. Then, using the
minimum-cost flow formulation, it finds a stable assignment with a weakly higher match quality
than any stable assignment with the given cutoffs. L-MQO finds a globally match quality optimal
assignment if it uses the cutoffs of a globally match quality optimal assignment. Therefore, repeating
L-MQO with distinct random tie-breakers yields a random search algorithm. Remarkably, even a
single run of L-MQO yields locally optimal solutions that are very close to the global optimum.

We run simulations with 1,000 students and 20 schools, with 50 seats each for 75 environments with
different parameter values. The match quality gains are substantial. MQO on average results in
around 40% higher aggregate match quality compared to the student proposing DA with random
tie-breaker. Match quality gains under L-MQO is only slightly smaller than that of the MQO,
i.e., less than 1%. Additionally, we consider a version of student proposing DA, where schools
break ties among equal priority students based on the match quality, instead of applying a random
tie-breaker. Such quality-based tie-breaking in DA significantly improves on random tie-breaking,
however the match quality gains are less than two thirds of those under MQO or L-MQO.

Data-driven effectiveness or match quality-based assignment is widely applied for many market
design problems. Refugee resettlement is a major example. Hebrew Immigrant Aid Society (HIAS)
uses a machine-learning based algorithm called Annie MOORE (Matching and Outcome Optimiza-
tion for Refugee Empowerment), named after Annie Moore, the first immigrant on record at Ellis
Island, New York in 1892, which, according to developers Trapp et al. (2018), is ”... the first
software designed for resettlement agency pre-arrival staff to recommend data-driven, optimized
matches between refugees and local affiliates while respecting refugee needs and affiliate capacities.”
Organ transplantation is another example of an match quality-based assignment. The algorithm
of United Network for Organ Sharing (UNOS) prioritizes those patients who are in most urgent
need of the transplant, and/or who are “.. most likely to have the best chance of survival if trans-
planted”.? For school choice, on the other hand, assignment is typically determined only based on
students preferences and priorities: match quality and effectiveness are completely ignored. To the
best of our knowledge, ours is the first work to introduce a match quality-based algorithm for school
choice. The practical value of such an algorithm is particularly enhanced by the recent advances
in econometric techniques for assessing match quality or effectiveness in the school choice setting
(Abdulkadiroglu et al., 2017, 2020).

Although our emphasis in this work is on finding match quality optimal assignment, our optimiza-
tion solution under stability constraints can be used to address other important policy objectives
such as improving diversity (Abdulkadiroglu and Sénmez, 2003; Abdulkadiroglu, 2005; Hafalir et al.,

3https://unos.org/about /national-organ-transplant-system/



2013; Dur et al., 2018) or maximizing student welfare (Erdil and Ergin, 2008, 2017; Abdulkadiroglu
et al., 2009). These extensions are briefly discussed in the Discussion section.

The remainder of this work is organized as follows. Section 2 reviews the related literature. Section 3
describes the school choice problem and discusses the NP-hardness of finding match quality optimal
assignment. Section 4 introduces a solution based on a minimum-cost flow formulation. Section
5 develops DA-based algorithms that bound the set of stable assignments, which is an important
prerequisite for the tractability of the solution in Section 4. Section 6 introduces a partial solution
for large school districts. Section 7 reviews simulations results and Section 8 concludes. Proofs are
in Appendix A.

2 Related Literature

As mentioned above, our work contributes to the literature that advocates match quality- or
effectiveness-based assignment. Slaugh et al. (2016) develop a data-driven algorithm to match
children to families for adoption. The algorithm evaluates the probability of a successful adop-
tion based on child’s traits and family’s preferences and incorporates this information to match
them more effectively. Bansak et al. (2018) and Trapp et al. (2018) introduce similar data-driven
solutions for refugee resettlement to maximize employment outcomes. Grigoryan (2020) provides
match quality maximization algorithm for pandemic rationing problems. Our environment is dif-
ferent from all the works above, and therefore, match quality maximization in our problem requires
an original solution. We provide new algorithms for bounding cutoffs and a minimum-cost flow
formulation for maximization under stability constraints.

Our work is related to the widely studied problem of finding a stable assignment of largest size,
i.e., one that assigns the most number of students. This is a special case of our match quality
maximization problem where match quality is binary and equals zero if and only if a student is
unassigned. In general, this problem is NP-hard (Manlove et al., 2002). Several heuristic and
approximation algorithms have been discussed in the computer science literature. For example,
Kwanashie and Manlove (2014) show that in practice the problem may be solved through integer
programming. However, there are no theoretical guarantees that this approach is successful. Other
papers provide a-approximation algorithms (McDermid, 2009; Kirdly, 2011; Iwama et al., 2014),
which guarantee that the value of the optimal solution is no more than « times larger than that of
the approximating algorithm. These approximation bounds are typically not tight and the solutions
may be far from the global optimum.

Another strand of papers provide approximate solutions to NP-hard optimization and matching
problems by utilizing the ‘sparsity’ of the relevant constraint matrix. For example, Nguyen and
Vohra (2013) study a multi-unit allocation problem and maximize social-welfare under fairness and
incentive constraints. They assume that the number of objects each agent can receive is small rel-
ative to the market size. Therefore, the number of fractional solutions in the linear programming
relaxation is guaranteed to be small. After applying a rounding algorithm, the resultant solution
is ‘approximately feasible’, in a sense that constraints are violated only ‘slightly’ violated. Similar
approximately feasible solutions are obtain stable allocations in environments with complementari-
ties (Nguyen and Vohra, 2018) and complex distributional constraints (Nguyen et al., 2020; Nguyen
and Vohra, 2019). These last papers use versions of the Scarf’s lemma and rounding algorithms to
obtain approximate solutions. Unlike the works above, our main solution offers exact optimization.



Methodologically, our work is related to matching theory papers that use network flows, such Katta
and Sethuraman (2006); Kim and Mierendorff (2013); Chandramouli and Sethuraman (2020) and
Grigoryan (2020). The network flow approach allows to solve various optimization problem with
integer solutions. This makes the method highly useful for matching problems with indivisible
goods. Our setting, and therefore, the corresponding network flow formulation is different from all
the works above.

Our work is potentially closest to papers that solve optimization problems in the context of school
choice. Despite the NP-hardness result, Bodoh-Creed (2020) (hereafter, BC) provides a computa-
tionally feasible optimization algorithm under stability constraints using the fact that the number
of schools and priority classes are typically small. Our solution is different from that of BC in
several important ways. First, BC studies a continuum model and his method finds fractional
solutions. In finite markets his fractional solutions may be interpreted as ex-ante stable stochas-
tic assignments (Kesten and Unver, 2015). We, on the other hand, study a finite market setting
and use the standard definition of stability. Thus, our optimization problem requires an integral
solution. We use a novel method based on minimum-cost flow formulation to solve the problem
with integrality constraints. Second, BC’s algorithm relies on the assumption that if a school has
empty seats under student proposing DA with some tie-breaker, it also has empty seats in all stable
assignments. Our solution does not require such an assumption. Instead, we develop procedures,
namely DR and DP, that reduce the computational burden of our algorithm so that it can handle
realistic problems without additional assumptions. Moreover, the reduction procedures allow us to
work with larger problems, with potentially more priority classes at each school. Finally, we also
introduce a partial solution for large school districts, which makes our contribution applicable to
any school choice problem. Two other papers that study optimization problems in the school choice
setting are Ashlagi and Shi (2016) and Shi (2019). These papers however ignore exogenously given
priority rankings, which allows them to relax stability constraints.

3 The Problem

A typical school choice problem with weak priorities consists of a nonempty set of students S, a
nonempty set of schools C, a profile of strict preferences of students P = (P)s¢cg, a vector of school
capacities K = (k.)ccc and a profile of priorities granted to students at schools p = (psc)ses,cec. Let
¢ P, ¢ denote that s prefers c to ¢, and let Ry denote the weak preference relation, i.e., ¢ R, ¢’ if and
only if ¢ Ps ¢ or ¢ = ¢. Capacity k. € N denotes the maximum number of students that can be
assigned to c. We assume that ) .~ k. > [S], i.e., the total number of school seats exceed the total
number of students.* We model priorities via integer numbers: ps. € {1,2,..., K} denotes student
s’s priority at school c¢. Without loss of generality, we assume that a smaller number indicates
better priority. That is, if ps. < pge, then s has better priority than s" at ¢, and if pse = pyre,
then s and s’ have equal priority at c. Note that we allow for weak priorities by allowing students
to have the same priority number at schools. For any k£ € N, we say student s has the k-th best
priority at school ¢ among students in S C S, if the number of students in S with strictly better
priorities at c¢ is strictly k — 1, i.e., Hs’ €S Psle < psc}‘ =k — 1. We add match quality to
this standard model: ¢(s,c) € R denotes the quality of match between s and c¢. A higher value of

4 Assuming that students rank all school as acceptable, and that there are enough seats for all students is without
loss of generality as we can add a school that represents being ‘unassigned’ and that has enough capacity for every
student.



q(s,c) indicates a better match quality. Let ¢ = (q(s, c)) be the match quality profile. We

s€S,ceC
represent a school choice problem, or simply a problem, with tuple (S, C, , P, p,q). We will fix the

problem and omit references to it in the rest of the text.

An assignment is a mapping p: S UC — C U 2%, such that for all s € S and ¢ € C,

e u(s) e,
o u(e) €25, |u(0)] < ke,

o c=p(s) & s e ulc).

An assignment p is stable if there is no blocking pair (s,c¢) € S x C such that ¢ Ps u(s) and
either |u(c)| < ke or pse < pge for some s' € u(c). Let &7 denote the set of all stable assignments.
It is well-known that &7 is not empty for any problem (Gale and Shapley (1962), Irving (1994)).

Our objective is to find a stable assignment that maximizes the aggregate match quality among all
stable assignments. Namely, a match quality optimal assignment p* is a stable assignment such

that
> (s, 1 (s) = > als, u(s)),

ses seS
for any stable p € o7

Since the set of stable assignments is non-empty and finite, there always exists at least one match
quality optimal assignment. When preferences and priorities are strict, which is a special case of
our setting, a match quality optimal assignment can be found in polynomial time by formulating
the set of stable assignments as linear programming constraints via Roth et al. (1993). In general,
finding a match quality optimal assignment is an NP-hard problem. Therefore, it is unlikely to be
polynomial time solvable.

Proposition 1. When priorities are weak, finding a match quality optimal assignment is an NP-
hard problem.

Proposition 1 has been proved by Manlove et al. (2002) for the special case of our problem of finding
the stable matching of maximum size.

4 QOur Solution

The NP-hardness of finding match quality optimal assignment prohibits a general computationally
tractable solution for all problems. In this section, we develop a solution that finds a match quality
optimal assignment for problems with 30 and less schools in reasonable time. Thus, the solution
is applicable for most school districts in the US (National Center for Education Statistics 2002). 5
We discuss our solution for large districts in Section 6.

50Only 323 of around 13,000 school districts in the US had more than 30 schools in the school year 2000-2001
(National Center for Education Statistics 2002). Moreover, even if the school district is large, the number of schools
serving the same grade may be below 30, in which case the district can be handled by our algorithm. For example,
Boston Public Schools has around 130 schools, but only around 30 of those are high schools. So our solution will be
tractable for assigning high school students in Boston. Moreover, not all schools in a school district admits students



In a nutshell, stable assignments can be characterized by admissions cutoffs at schools (Abdulka-
diroglu et al., 2015; Azevedo and Leshno, 2016). Given a cutoff profile, we provide a linear program-
ming formulation that finds a stable assignment with an aggregate match quality that is weakly
higher than that at every stable assignment with the given cutoff profile, whenever one exists. This
allows us to find a locally optimal assignment in polynomial time. Equipped with this solution, we
search for a global optimum by tracing all cutoff profiles. However, this strategy may not generally
be computationally tractable. We introduce two new algorithms to bound the set of cutoff profiles
supporting a stable assignment (see Section 5). This allows us to restrict the search of a match
quality optimal assignment only within these bounds. Simulations in Section 7 show that the global
optimum, i.e., match quality optimal stable assignment, can be computed in reasonable time for
realistic parameter values for problems with 30 schools and smaller.

4.1 Locally Match Quality Optimal Assignment

We first define (admissions) cutoffs at schools. Given a stable assignment p € <7, let cutoff at
school ¢, p.(u) € {1,2,..., K + 1}, be

p (,U) I maXsE,U,(C) pSC lf ‘M(C)’ = RC?
‘ K+1 otherwise.

In words, under assignment u, if school c fills its capacity, then its cutoff is equal to the priority
of the assignee with the worst priority at the school, otherwise the cutoff is set to K 4+ 1. Let
p(1) = (pe(p))eec denote the cutoff profile. Then, the following result is immediate.

Proposition 2. An assignment p is stable if and only if there is no pair (s,c) € S x C such that

c P :U'(S) and psc < P(H)

For a vector r € {1,2,..., K + 1}|C|, let 7. C of be the set of stable assignments with cutoff profile
equal to 7, i.e., u € 7 if and only if p is stable and p(u) = . We say that r € {1,2,..., K + 1}I¢|
supports a stable assignment if o7, # ().

For a given r € {1,2,...., K + 1}'0‘, we construct a set of stable assignments that is a superset of
<, as follows. First, we define two disjoint subsets of schools: C*(r) :={c€ C:r, < K 4+ 1} and
C~(r) := C\ C*(r). Next, for every student s € S, define Cs(r) C C as

Cs(r) ={c € C: psc <reand pse > 1y for all ¢ € C such that ¢ P c}.

Here, C; ET) can be interpreted as the set of schools that s can potentially be assigned given cutoffs
r. Let o7 denote the the set of assignments satisfying, for all y € 7.,

1. pu(s) € Cs(r) for all s € S,

2. |u(e)] = k. for all c € CT(r).

via school choice. For instance, in Wake County public school system, which is the 15th largest school system in US,
there are more than 170 schools (only magnet schools are admitting students via choice-based assignment). There
and there 36 magnet schools, 23 elementary schools, 9 middle schools and 4 high schools.



That is, under any assignment in .2 each student s is assigned a school in C(r) and each school
c € C*(r) fills its capacity. It is immediate from the definition of . that p(u) < r for all
re{l,2. K+ 1}|C|. The following lemma justifies our search for match quality maximizing
assignments within 7.

Lemma 1. Fach assignment in <7, is a member of <, and each assignment in <, is stable. That
18,

o, C dp C .

Thus, maximizing match quality in 7. yields a stable assignment that has a weakly higher match
quality than any assignment in «7.. We refer to this solution as a locally match quality optimal
assignment for the vector r.

Our final step formulates this optimization problem as a minimum-cost flow problem, which
finds a locally match quality optimal assignment, whenever one exists, i.e., whenever .« # 0,0 in
polynomial time. The minimum-cost flow problem has numerous practical applications, including
the design of optimal electrical network, transportation system or house allocation (Ahuja et al.,
1993). To the best of our knowledge, ours is the first application of minimum-cost flow method for
optimization under stability constraints.

To formulate the minimum-cost flow problem, consider the following components:

a set of vertices V =SUC U {t}, for some t ¢ SUC,

— a set of edges
E={(c,t):ceC(nN}u{(s,c):ceCs(r)} SV xV,

— a capacity u(e) for each edge e € F, given by

u(e) =

1 ifeeSxC
ke ife=(c,t)eC(r)x{t}’

— a cost [(e) for each edge e € E, given by

(o) = —q(e) ifeeSxC
“ o iteeC(r)x {1}

— a value b(v) for each vertex v € V, given by

1 ifveS
b(v) 0 ifveC (r)
v) = .
— Ky ifveCt(r)

_|S|+ZC€C+(T) Ke ifo=t

Figure 1 illustrates the constructed minimum-cost flow graph using for an example with three
students S = {s1, s2, 83} and two schools C* = {¢;} and C~ = {¢2}.

50therwise, our minimum-cost flow algorithm /solver outputs that 7. = 0.



(@)
() ®

Figure 1: Minimum-cost flow graph

A positive value of b(v) indicates that v is a supply vertex and a negative value of b(v) indicates
that v is a demand vertex. A vertex with b(v) = 0 is a transshipment vertex. We represent a flow
function with a mapping f : F — R. Our goal is to find a least costly way of transferring values
from supply vertices to demand vertices without exceeding the capacity of edges. Formally, we
solve the following linear program:

€E
subject to
Z flv,v") — Z f(',v) =b(v),Yv eV, (1)
v'eV:i(vv')EE v eV:(v' w)EE
0 < f(e) <ule),Ve € E. (2)

A flow function f is feasible if it satisfies constraints 1 and 2. A flow function is integral if f(e) € Z
for all e € E. By condition 2, for any feasible and integral flow function f, f(e) takes values 0 or 1
for each edge e € S x C'. We establish a connection between the set of feasible and integral solutions
of the minimum-cost flow problem and that set of locally match quality optimal assignments for
vector r. Formally, with each feasible and integral flow function f we associate an assignment s
such that for each edge (s,c) € SUC,

pr(s) = c if and only if f(s,c) = 1.7
Conversely, with each assignment p we associate a flow function f,, where

1 ife=(s,c) e SxC,u(s)=c
fule) =<0 ife=(s,¢) € SxC,u(s)#c.
lu(e)] ife=(ct) € C(r) x {t}
Then,

Lemma 2. If f is feasible and integral, then py € ay.. Conversely, if i € <y, then Ju s feasible
and integral.

"Note that for s to be an assignment we need that for each s € S, f(s,c) = 1 for exactly one ¢ € C. As we verify
in Lemma 2, this is indeed the case.



We briefly discuss the intuition behind Lemma 2. A non-zero flow from a student to a school is
interpreted as the student being assigned to the school. Constraint 1 requires that each supply
vertex has an outgoing flow that equals its value, and each demand vertex has an incoming flow
that equals its value. Each student s € S has a value b(s) = 1, therefore, she is assigned to exactly
one school in C,(s) in any integral solution of the minimum-cost flow problem. By definition, this is
required for every assignment in /.. Each school ¢ € C*(r) has a value b(c) = —k,, meaning that
K¢ students are assigned to ¢ in any integral solution of the minimum-cost flow problem. Again, by
definition, this is required for every assignment in .. There are no such requirements for schools
in C~(r). However, these schools are connected to vertex ¢, and b(t) = —[S| + > .cc+ () . This
means that schools in C~(r) cumulatively accommodate all students who are not assigned to a
school in CT(r) in any integral solution of the minimum-cost flow problem. Finally, constraint 2
guarantees that no school ¢ € C~(r) is assigned more than k. students.

Given the equivalence established in Lemma 2, we conclude that there is a feasible and integral flow
function if and only if <7 # (). Moreover, if f* is an optimal integral solution to the minimum-cost
flow problem, then s € o/, maximizes match quality in 7. There are known polynomial time
algorithms that find an optimal integral solution to the minimum-cost flow problem, whenever one
exists. For example, the problem can be solved by a cycle-canceling algorithm (Ahuja et al., 1993,;
Sokkalingam et al., 2000). Hence, the following result is an immediate consequence of Lemma 2
and polynomial time solvability of the minimum-cost flow problem.

Proposition 3. There are polynomial time algorithms that find a locally match quality optimal
assignment for a vector r, whenever one exists.

In Example 1 in Appendix B we illustrate how a locally match quality optimal assignment is found
using the minimum-cost flow formulation.

4.2 Match Quality Optimal Assignment

Equipped with these results, we are ready to introduce an algorithm for match quality optimal
assignment.

Match Quality Optimal Algorithm (MQO)
Step 0: Set Q* = —cc.

Step t > 1: Select anr € {1,2,.... K + 1}'0‘ which has not been selected in previous steps. If such
an r does not exist, the algorithm terminates. Otherwise, using the minimum-cost flow formulation
described in Section 4.1 we find a locally match quality optimal assignment u, for vector r, if one

exists. If Y cqq(s, pr(s)) > QF, we set Q° = > qq(s,pr(s)) and p* = p.. We continue with
Step t + 1.

The outcome of MQO algorithm is assignment p*. In other words, the above algorithm find a
locally match quality optimal assignment for every r € {1,2,..., K + 1}'0‘, whenever they exist,
and picks the one that gives the largest aggregate match quality. The fact that MQO algorithm
considers all possible vectors that can support a stable assignment implies the following result.

Proposition 4. MQO algorithm gives a match quality optimal assignment.
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The time complexity of MQO algorithm is
P(IS|+|C|) x (K + 1),

where P(|S| + |C]) is some polynomial function of |S| + |C|. Without further reductions in com-
putation, the algorithm becomes intractable for moderately large problems, as its time complexity
grows exponentially in the number of schools. Therefore, in Section 5 we provide algorithms that
reduce the computational burden of MQO, by eliminating many cutoff profiles that do not support
a stable assignment. With these reductions, the solution becomes applicable for most of the real-life
student assignment systems.

5 Upper and Lower Bounds for Stable Assignment Cutoffs

The method developed in the previous section is not computationally tractable for problems with
moderately large number of schools and priority classes. To lower the computational burden, in this
section we introduce two algorithms, Deferred Rejection and Deferred Proposal, that identify upper
and lower bounds for cutoff profiles that support a stable assignment. This helps us eliminate a
significant number of cutoff profiles that do not support a stable assignment. Then, match quality
optimal assignment is found by computing the minimum-cost flow solution only for cutoff profiles
within the identified bounds.

The new algorithms are based on student proposing and school proposing versions of DA. Apply-
ing DA with an arbitrary tie-breaker results in a cutoff profile that supports a stable assignment.
Identifying all cutoff profiles that support a stable assignment by applying different tie-breakers is
computationally intractable. In contrast, our algorithms utilize no tie-breaker and operate in poly-
nomial time. Although they do not eliminate all cutoff profiles not supporting a stable assignment,
simulations in Section 7 show that the amount of eliminations is substantial.

We first describe the conventional DA algorithms. At every step of the student proposing DA,
each student applies to her most preferred school that has not rejected her yet. Each school ¢
provisionally accepts from all of its applicants up to k. in the order of priorities and tie-breakers, and
rejects the rest. The algorithm terminates when there is no rejection, the provisional acceptances
at that point are finalized. At every step of the school proposing DA, each school proposes to up to
K¢ students who have not rejected the school in the order of priorities and tie-breakers. Students
provisionally accept the proposal of their most preferred school and reject the rest. The algorithm
terminates when there is no rejection, the provisional acceptances at that point are finalized.

Unlike the student proposing DA, our Deferred Rejection algorithm only rejects students who
cannot be assigned to the school at any stable assignment. Consequently, the number of students
tentatively held by each school may exceed the school’s capacity. The resulting assignment provides
upper bounds for cutoff profiles that support a stable assignment.

DR runs through multiple rounds until it cannot reject any more students. In each round, it
goes through two stages. The first stage identifies “immediate unstable demand” at every school
by students who cannot be assigned to the school at any stable assignment.® The second stage

8Kwanashie and Manlove (2014) introduce algorithms analogous to the first stages of our algorithms. The authors
use the algorithms to reduce the problem’s size by shortening students’ preference lists. Our goal is to bound the
stable assignment cutoffs.
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identifies “future unstable demand” at each school by students who have not been considered at
the school yet but will apply to the school under DA with any tie-breaker.

Deferred Rejection Algorithm (DR):
The following two stages are run in each round until the algorithm terminates.
Stage 1: I'mmediate Unstable Demand

Step t > 1: Each student s applies to her most preferred school which has not rejected her yet. Let
A, be the set of students applying to school c in this step. For every student s € A, her demand
for c is stable among Ac if |{s' € Ac : psre < pse}| < Ke; otherwise her demand is unstable. Each
school ¢ rejects students in A, with unstable demand and provisionally holds the remaining students
mn A..

Stage 1 proceeds to the next step and terminates when no student is rejected.

By the end of Stage 1, the number of students a school holds may exceed its capacity. Some of
these students with the worst priority need to be rejected, who then will try to apply to their next
best choice. Stage 2 identifies such students and their unstable demand at their next best choice.

Stage 2: Future Unstable Demand
Let n: SUC — CU2% denote the outcome of Stage 1.2

Step 0: Let D. denote the students who prefer ¢ to their tentative assignment at u, i.e., D, =
{s € §:¢c Ps u(s)}. For each school ¢, we define the school’s threshold priority T.(u) at p as
follows:

1. Zf |:u(c)‘ > Ke, then fc(ll') = MaXsey(c) Pscs
2. if |u(e)] < ke and De =0, then 7o(p) = K + 1,

3. if ‘:U’(C)‘ < ke and D, # 0, then 'FC(:U’) = minsesg psc'lo

Find students who will be rejected by ¢ and whose next best alternative is c. To this end, let My be
the set of students in u(c’) who have priorities equal to To(u). Refer to them as marginal students
at ¢. Let DS, C My be the subset of marginal students whose next best alternative is c, i.e., each
s € DS weakly prefers ¢ to any school ¢" € C'\ {c'} which has not rejected her yet. Also define gi,
as the number of students in p(c") who have priorities strictly better than 7w (p).

Step t > 1: The best priority gi, students in pu(c") are guaranteed to be held by ¢ at this step. This
leaves Ko — gé, seats available for marginal students. Recall that D¢, is the set of marginal students
at p(c') and whose neat best alternative is c. If |DS| > ko — gL, then some of these students must
be rejected by . Let Dg, C DS be such that \D§,| = max {0, |D%| — (ke — g)} and no student in
]jg, has strictly better priority than the ones in D¢, \f)g, for school ¢.  Let D¢ = Uczecf)g,. For
each school ¢, let p. be the priority of kc-th best priority student in u(c) U D¢ if |u(c) U D| > k.
If |M(C) U Dc| < Ke, let pe = 'FC(:LL)'

9Note that 4 is not an assignment as the number of students at schools may exceed its capacity.
10T his last case is not relevant in the initial round.
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We consider each school ¢ € C one by one. If [u(c) U D¢| > k., we set git! to the number of
students in p1(c) U D¢ who have a strictly better priority than the k.-th priority student in u(c)UD®.
Otherwise, we set gi™t to |u(c)UDC|. If pe < 7e(p), then school c rejects all students with priorities

strictly greater than p. and continue with Stage 1 of the next round. If p. > 7e(u) for all c € C and
gffl > gt, for some ¢ € C, then we continue with Step t + 1 of Stage 2. Otherwise, the procedure

terminates and the final outcome is p.

Given the final outcome p of DR, we calculate 7(;) as described in Stage 2 (see Step 0) of DR.
As stated in our next result, 7(u) gives an upper bound on cutoff profiles that support a stable
assignment.

Proposition 5. If i is a stable assignment, then p(f) < 7(u).

Here is a brief intuition behind the algorithm and the result. In Stage 1 of the DR algorithm,
we run student proposing DA algorithm by only rejecting students who cannot be assigned to the
schools they are applying to for any tie-breaker. Among the set of students who are tentatively
held by school ¢ in the outcome of Stage 1, we can determine the number of students who cannot be
assigned to ¢ for any tie-breaker and whose next achievable choice is ¢’. By using this information,
we further update the set of schools that cannot be achieved by each students in any stable matching
in Stage 2 of DR algorithm. This information allows us to rerun Stage 1 and repeat the procedure.

Next, we define the Deferred Proposal Algorithm (DP), which is the schools proposing analog of the
of DR. Unlike the school proposing DA, our Deferred Proposal algorithm only proposes to students
who clear the school’s (admissions) cutoff at any stable assignment. Consequently, the number
students tentatively held by each school may be less than the school’s capacity. The resulting
assignment provides lower bounds for cutoff profiles that support a stable assignment.

DP runs through multiple rounds until no more school is rejected by students. In each round, it
goes through two stages. Again, first stage identifies “immediate unstable demand” of every school
for students who cannot be assigned to the school at any stable assignment. The second stage
identifies “future unstable demand” at each school by students who have not been proposed by the
school yet but will have a guaranteed proposal under DA with any tie-breaker.

Deferred Proposal Algorithm (DP)
The following two stages are run in each round until the algorithm terminates.
Stage 1: I'mmediate Unstable Demand

In the first stage, we run a modified version of school proposing DA. For each school ¢ € C, let A,
denote the set of students who have not rejected school ¢ yet.

Step t > 1: Fach school ¢ considers students in A. one by one. Each school ¢ proposes to student
s € A. if the number of students in A. with weakly better priority than s is less than or equal to
ey B-€., {8 € A¢: psre < psc}|. A school’s demand for a student is unstable, if the student receives
a proposal from a more preferred school. FEach student s provisionally accepts her most preferred
proposing school. All schools with unstable demand are rejected by corresponding students. If there

are no more rejection, Stage 1 terminates.

Stage 2: Future Unstable Demand
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Let i : SUC — CU2% denote the outcome of Stage 1. In this stage, given the outcome of Stage 1,
we identify schools that each student is guaranteed under any tie-breaker.  For each s € S define

Ds as the set of schools preferred to u(s), i.e., Dg = {c € C : ¢ Ps u(s)}. Each student s rejects
any school ¢ ¢ DU pu(s) and s is removed from A.. We proceed with the following steps:

(i) Select a student s € S such that |Ds| > 2 and who has not been considered before. Define
Es = (Ds x Dg) \ Ueep,{(c,c)}.

(ii) We consider each pair in Es one by one. Let (c1,c2) be the pair under consideration. Let

S be the set of students such that for all 8 € S we have s’ € A, and pg. < psc for some
c€{cy, 2}

(iii) If |S| < K¢y + Key, then move s from A. for any school ¢ less preferred than c1 and ca. If
|S| > k1 + ke and there is a school pair in Dg not considered, then go back to bullet (ii).
Otherwise, go back to bullet (i).*!

If A, is updated during the Stage 2, we continue with Stage 1 of the next round. Otherwise, the
algorithm terminates. Let p denote the outcome of DP.

Due to finiteness of the sets of S and C, the algorithm terminates in finite number of rounds. For
each ¢ € C, we define threshold priority 7.(u) as follows:

L if |p(c)| = ke, then Te(p) = maxge,(c) Pse,
2. if p(c) = 0, then 7.(u) =0,

3. if p(c) # 0 and |u(c)| < ke, then 7e(u) = maxe (e pse + 1.

As stated in the next result, 7(u) gives a lower bound on cutoff profiles that support a stable
assignment.

Proposition 6. If i is a stable matching, then p(f) > 7(p).

Here is a brief intuition behind the algorithm and the result. In Stage 1 of the DP algorithm,
each school ¢ proposes to the set of highest ranked students in its priority order up to its capacity
(possibly fewer than its capacity) without using a tie-breaker. As a result, when Stage 1 terminates,
some school ¢’s proposals might be accepted by strictly less than k. students. Some students who
have not been proposed during Stage 1 might prefer ¢ to their match. Such students can be
considered as the students in wait lists of the schools. In Stage 2, we determine the worst school
that a student can guarantee by considering the overlaps in schools’ wait lists. Hence, we can
eliminate some schools from students consideration and repeat the procedure by using this updated
information.

We illustrate DR and DP through an example in Appendix B.

11YWe can do this stage for any subset of schools, instead of pairs only, to determine the guaranteed schools for the
students. The cost of increasing the number of schools is increasing the computational burden.
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6 Random Search Algorithm for Large School Districts

Our solution in Section 4 traces all possible cutoff vectors to find a match quality optimal as-
signment. Doing so is a computationally demanding task. Although the algorithms introduced
in Section 5 diminish the set of cutoff vectors to be considered, for large schools districts we may
still face problems due to computational tractability. In this section, we introduce a polynomial
time algorithm that maximizes aggregate match quality in a subclass of stable assignments. We
start with a cutoff profile resulting from student proposing DA with a random tie-breaker. Then,
we find a locally match quality optimal assignment for cutoff profile using the minimum-cost flow
algorithm of Section 4.1. The cutoff profile of the resulted stable assignment may be different from
the original one. In that case, we repeat the local optimization, and check the new cutoff profile.
When the cutoff profile does not change at some step, we terminate the procedure. Here is the
formal description of the algorithm.

Locally Match Quality Optimal Algorithm (L-MQO)

Step 0: Let u* be the outcome of student proposing DA with a random tie-breaker. Let ro be the
cutoff profile of u*, i.e., ro = p(u*).

Step t > 1: Let py, , be the locally match quality optimal assignment for ri_1, found by the
minimum-cost flow algorithm described in Section 4.1.12 and let ry = p(ur,_,) be its cutoff profile.

If 3 ecs (s, pry 1 (8)) > D scqa(s,u*(s)), we set p* = ppr,_,. If ry = ri_1, then the algorithm
terminates and its outcome is assignment u*. Otherwise, continue with Step t + 1.

By construction of @, 7, = p(ul) < ry_1 for each t > 1, i.e., the cutoff profile increases throughout
the algorithm. Therefore, the number of steps it takes the algorithm to terminate is bounded by
| K| x |C|, which means that L-MQO terminates in polynomial time.

Let R denote the set of vectors that have been considered during the implementation of L-MQO, i.e.,
R = {r}_|, where T is the last step of L-MQO. The outcome p* of the L-MQO is not necessarily
match quality optimal. However, it is immediate from its description that the algorithm creates
weakly higher aggregate match quality than any assignment in U, . Therefore, we can state
the following result.

Proposition 7. Suppose there is a match quality optimal assignment p such that p(u) € R. Then,
L-MQO gives a match quality optimal assignment.

In simulations of Section 7 we report the results for a simpler version of the procedure that only
includes Steps 0 and 1, i.e., locally match quality optimal assignment is only found in the cutoffs
identified by the DA. Even for this simple version, the aggregate match quality is remarkably close
to the (globally) match quality optimal assignment.

127 locally match quality optimal assignment exists since Ay, # 0 for any t > 1. In fact, u* € <, and
Wry o € Gy, for t > 2.
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7 Simulations

7.1 Setting

The algorithm described in Section 4.2 finds a match quality optimal assignment by searching in
the set of all cutoff profiles. Without bounding the set of cutoff profiles to be searched within, we
may need to consider (K + 1)‘C| cutoff profiles. Section 5 introduces two algorithms that decrease
the number of cutoff profiles supporting stable matchings. In this section, by using computer
simulations we first measure the possible reduction in the number of cutoff profiles supporting
a stable assignment can be done by DR and DP. Then, we find a match quality optimal stable
assignment and compare it with the student proposing DA outcome with a random tie-breaker.

In our simulations, we consider an environment that mimics a standard school choice setting.
In particular, we consider environments with 20 and 30 schools each with 50 available seats. As
explained in Introduction, these numbers are representative for a moderately large school district.!3
The number of students is equal to the total capacities of the schools.

In the construction of school priorities we use two criteria: sibling status and distance between
students and schools. We set the fraction of students with sibling status to 0.4 and determine the
students with sibling priority and at which school they have the sibling priority randomly. Let
sib: S x C' — {0,1} be an indicator function such that sib(s,c) = 1 means student s has sibling
priority at ¢ and ) . sib(s,c) < 1for all s € S.

In order to determine the neighborhood (walk-zone) priority, we randomly distribute schools and
students on an 1 x 1 unit map. In particular, we represent the location of agent i € C' U S with
0; = (£}, 02) and both ¢} and ¢} are i.i.d. standard uniformly distributed random variables. Given
the locations of each student s and school ¢, we calculate the euclidean distance and denote it with

d(s,c), i.e., d(s,c) = /(€L — £1)2 + (€2 — £2)2. We set the neighborhood radius of each school to
0.2. If d(s,c) < 0.2, then student s has neighborhood priority at school s.

Given the sibling and neighborhood status, we group students into four groups for each school.
For each school ¢ € C, students having sibling priority at school ¢ are ranked higher than students
without sibling priority at ¢. Then, we subgroup students based on the neighborhood priority.
That is, first priority group is composed of students with sibling and neighborhood priority. Second
priority group is composed of students with sibling priority but not neighborhood priority. Third
priority group is composed of students with neighborhood priority but not sibling priority. The
remaining students constitute the fourth priority group.

Preferences of students are constructed by taking various criteria into account including: students’
common and individual taste over schools, having siblings, and distance. To construct the preference
of each student s we calculate her utility from being assigned to each school ¢, denoted by Uk, as
follows:

Use = aXe+ (1 — )Y, + Bsib(s, ¢) — ydist(s, c),

where X, € (0,1) and Ys. € (0,1) represents all students common taste and student s’s in-

13For example, Boston Public Schools has around 30 high schools.
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dividual taste over school ¢, respectively. Both X, and Ys. are i.i.d. standard uniformly dis-
tributed random variables. The level of correlation in the preferences of students is captured by
a €{0,0.25,0.5,0.75,1}, i.e., as « increases preferences become more correlated. Variable sib(s, c)
takes value 0 or 1 and coefficient 8 € {0,0.25,0.5,0.75,1} is the additional utility received from
attending the same school with sibling. Finally, travel time is usually considered as disutility for
the students and we capture this by multiplying distance between students and schools with coeffi-
cient —v.'* The utility values of students are used to construct the ordinal preferences of students
over the schools. Match quality of each student-school pair is drawn i.i.d. uniformly from the
(0,1) interval. Thus, in our simulations preferences are uncorrelated with the idiosyncratic match
quality, which is consistent with the empirical evidence in Abdulkadiroglu et al. (2020).

7.2 Reductions in Cutoff Profiles by DR and DP

In simulations, under each scenario we calculate the outcomes of the DR and DP algorithms 100
times by using different draws for X, Y, and locations. Table 1 presents the average number of
schools having a unique cutoff at every stable assignment when the number of schools is 20. In
Appendix C we report results for 30 schools.

In our setting there are enough seats to accommodate all students, therefore all schools fill up
their seats in any stable assignment. This means that there are at most 42° cutoff profiles that our
optimization algorithm need to consider to find a match quality optimal assignment. However, in
our setup, for each school ¢, the number of students having sibling priority does not exceed the
capacity of the school. Therefore, it is immediate that for any problem DR and DP eliminate all
cutoff profiles where a school has an admission cutoff equal to 1 or 2. This reduces the number of
cutoff profiles to consider to 22°. Moreover, whenever a school is guaranteed to have a unique cutoff
under any stable assignment, that school does not cause any additional computational burden. Our
simulations show that for parameter values a > 0.5,8 > 0.5, > 0.25, DR and DP eliminate at
least around 97% of the remaining cutoff profiles. Comparing columns (1)-(3) in Table 1, we can
see that as ~ increases, the reduction algorithms give tighter bounds in most of the cases.

In our simulations, all students rank all schools acceptable and the total number of seats at schools
have enough seats to accommodate all students. This fact allows us not to consider cutoffs equal to
five, and potentially reduces the computational burden. Although, assuming more school seats than
applicants is a realistic assumption in the public school choice setting, school districts commonly
restrict the number of choices in the students’ preference lists, therefore cutoffs at some schools
can equal to five at some stable assignments. However, in the environment with restricted lists
computational burden is not necessarily heavier than with unrestricted ones. The reason behind
this is that when preference lists are restricted many schools do not fill their seats at any stable
assignment, and DR and DP algorithms partially identify some of those schools. As a result, the
number of cutoff profiles that can support stable assignments in a setting with restricted lists may
decrease compared to our environment.

“When ~ = 0, travel distance does not have affect on preferences.
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a B Yy =0.00 Y =0.25 Yy = 0.50

(1) (2) (3)
0.00 0 0 0
0.25 0 0.01 0
0.00 0.50 0 0.52 0
0.75 0 1.49 0.02
1.00 0 2.93 0.03
0.00 0 0 0.14
0.25 0 0.22 0.28
0.25 0.50 0 1.91 0.67
0.75 0 3.06 0.77
1.00 0 3.33 0.39
0.00 0.15 1.31 5.30
0.25 0.59 2.77 6.57
0.50 0.50 0.44 5.18 6.41
0.75 0.20 5.42 5.56
1.00 0.21 5.31 4.69
0.00 2.63 4.63 7.54
0.25 4.42 5.88 7.85
0.75 0.50 2.96 7.05 8.03
0.75 2.26 8.28 7.87
1.00 2.21 8.68 7.80
0.00 7.11 5.65 7.81
0.25 7.42 6.35 8.09
1.00 0.50 7 6.98 8.28
0.75 6.55 8.06 8.12
1.00 6.66 9.31 8.02

Table 1: Average number of schools with a unique stable assignment cutoff, 20 schools
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7.3 Comparing Match Quality

We compare aggregate match quality across stable algorithms when the number of schools is 20.
In Table 2 we report the results for v = 0.25, and all combinations of & and 3. Results for v =0
and v = 0.5 are reported in Appendix C.

Numbers in Table 2 denote percentage gains in match quality compared to student proposing DA
algorithm with a random tie-breaking. Columns (1) and (2) report the results for MQO and L-MQO
algorithms, respectively. The last row denotes the average percentage gains in match quality across
all possible values of a and 8 parameters. The match quality gains from our optimization algorithms
are remarkable: both MQO and L-MQO create around 40% higher match quality compared to DA
with random tie-breaking. Moreover, the performance of L-MQO is almost indistinguishable from
that of MQO. Additionally, in Column (3) we report the result for DA algorithm when ties are
broken according to the school specific match quality. We call this algorithm DA with quality-based
tie-breaking. Such a heuristic solution significantly improves on DA with a random tie-breaking.
However, the match quality gains are less than two thirds of those of MQO and L-MQO.
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DA with quality-based

« B MQO L-MQO tie-breaking
€Y) (2) (3)

0.00 50.044 50.044 22.746

0.25 44.816 44.816 20.134

0.00 0.50 39.682 39.682 14.414
0.75 35.708 35.708 16.040

1.00 32.496 32.426 16.046

0.00 44.224 44.224 24.498

0.25 38.978 38.978 21.406

0.25 0.50 34.510 33.860 18.134
0.75 30.194 29.868 16.754

1.00 29.906 29.540 16.024

0.00 49.878 49.728 28.766

0.25 43.326 43.326 24.994

0.50 0.50 36.890 36.890 21.486
0.75 34.570 34.570 20.824

1.00 34.154 34.154 19.738

0.00 50.252 50.066 31.142

0.25 44.682 44.682 29.690

0.75 0.50 41.390 40.948 26.892
0.75 37.620 36.070 23.922

1.00 37.154 37.154 24.398

0.00 50.236 46.780 31.112

0.25 46.632 46.632 29.480

1.00 0.50 43.698 43.698 29.984
0.75 40.018 39.612 26.390

1.00 38.070 36.806 25.124

Average gain 40.365 40.010 23.206

Table 2: Percentage gains compared to student proposing DA with a random tie-breaking, v = 0.25
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8 Discussion

Student proposing DA with a random tie-breaker assigns students to schools solely based on pref-
erence reports and priorities. Given the empirical evidence that parents’ preferences may not
reflect match quality (Abdulkadiroglu et al., 2020), those solutions are likely to lead to ineffec-
tive assignments. We provide a novel match quality-based solution to the school choice problem
that maximizes aggregate match quality among all stable assignments. Simulations show that our
algorithms substantially improve match quality compared to the widely used DA algorithm.

Our solution partially addresses another potential challenge in school choice. There is an ongo-
ing academic debate on whether parents form their preferences based on peer composition and
achievement, or whether they align with effectiveness (Hanushek, 1981; Jacob and Lefgren, 2007;
Abdulkadiroglu et al., 2020). Moreover, even when parents value effectiveness, informational and
cognitive barriers may preclude separation of a school’s effectiveness from achievement of its stu-
dent body (Kane and Staiger, 2002). Then, higher demand for schools that recruit higher-achieving
students may create incentives for school principals to devote resources to screening and selection
rather than better instruction (Ladd, 2002; MacLeod and Urquiola, 2015). Our solution does not
fully address this issue, as preferences still play a role in determining the final assignment. However,
the issue is likely to be alleviated: match quality- or effectiveness-based assignment gives schools
incentives to improve and become more effective.

Although our primary motivation is finding a match quality optimal assignment, the methodology
can be easily applied to optimize other policy objectives. For instance, student welfare has been
an important consideration in school choice. Typically, there are multiple stable assignments to
choose from, and there is no obvious selection rule for a policy maker who cares for both stability
and student welfare. Erdil and Ergin (2008) provide an algorithm that finds a stable assignment
that is not Pareto dominated by other stable assignment. Our method allows to find stronger
results. For example, with an appropriate choice of match quality matrix, our method can be used
to find stable assignment that maximizes the number of students that are assigned to their first
choices. Another common policy objective is achieving desirable distributional outcomes, such as
a more diverse student body or more students assigned to neighborhood schools. Such goals, too,
can be achieved using our optimization method with the appropriate choice of the match quality
matching. Finally, it is worth mentioning that the applicability of our solution is broader than the
school choice problem. Our optimization algorithms under stability constraints may be applied to
an arbitrary two-sided or priority-based matching problem.
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A Proofs of Main results

A.1 Proof of Lemma 1

First we prove <7 C <,. Suppose p € o/,.. We show that ju satisfies conditions in the definition of
4, one by one.

We start with the first condition. On the contrary, suppose the first condition does not hold. That
is, there exists a student s such that ¢ = u(s) ¢ Cs(r). By definition of p(u), pse < pe(pt) = re.
Therefore, ¢ ¢ Cs(r) implies that there is a school ¢ € C such that ¢ Ps ¢ and pse < re = pe(p).
By Proposition 2, this contradicts the stability of pu.

We continue with the second condition. If C*(r) = 0, then second condition holds trivially. Suppose
C*(r) # 0 and ¢ € C*(r). By definition of C*(r), pe(n) = 7. < K + 1. Hence, by definition of
cutoffs, |u(c)| = ke. This completes the proof of the first part, i.e., o7 C 47,..

Next we prove o7, C /. Suppose u € <. We first show that p(u) < r. By definition of C~(r),
re = K + 1 for any ¢ € C~(r). Hence, p.(p) < K +1=r. for any c € C ().

Now consider a school ¢ € CT(r). Recall that, |u(c)| = k.. Therefore, by definition of p.(u),

pe(p) = max pse. (3)
s€p(c)
By definition of .47,
pse < Te,Vs € p(c). (4)

Equations 3 and 4 imply that p.(u) < 7.

We now show that u is stable. Consider an arbitrary s € S and ¢ = u(s). By definition of .7,
there is no ¢ € C such that ¢’ Ps ¢ and pse < 7. Since py(p) < 7o, there is no ¢ € C such that
¢ Ps c and pse < pe (). Hence, by Proposition 2, u is stable, i.e., u € .

A.2 Proof of Lemma 2

First, suppose f is feasible and integral. By constraint 1,
Z f(s,¢) =b(s) =1 for any student s € S.
ceCr(s)

Thus, py is indeed an assignment, and py(s) € Cs(r) for any s € S. This establishes the first
condition in the definition of .. Also, for any ¢ € C*(r),

i (Ol == fls.e) = ble) = —e,
ses
where the second equality follows from constraint 1. This establishes the second condition in the
definition of ..

Now suppose p € . Integrality of fu, as well as equation 2 are immediate from the construction
of f,. We now verify feasibility constraint 1. We check feasibility for each vertex type one by one.
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Let v € S. By definition, each student is assigned to exactly one school. Therefore,

Zf#(vvc) =1=>5(v).

ceC

Let v € C~(r). Then,

D fuls,0) = fulv,t) = [p(v)] = |u(v)] = 0 = b(v).

seS

Let v € CT(r). Then,
=Y fuls,0) = —|u(v)| = —ke = b(v),

seS

where second equality follows from v € C*(r).

Finally, let v = t. Then,

= > flevy== Y u@l==Y @+ Y |ue)

ceC—(r) ceC—(r) ceC ceC+(r)

=—|S| + Z Ke = b(v).

ceCt(r)

This completes the proof of Lemma 2.

A.3 Proof of Proposition 5

We first show that if a student s is rejected from school ¢ during DR, then there is no stable
assignment fi such that fi(s) = ¢. By contradiction, suppose our claim does not hold. That is,
there exists a stable assignment i, a student s and a school ¢ such that ¢ rejects s during DR and
f(s) = c. Without loss of generality, we assume s is the first such student who is rejected from her
assignment under i during DR, i.e., if s’ is rejected by ¢ before s is rejected by ¢ during DR, then
a(s') # . Let ¢ rejects s in some Round m. We consider the following possible cases.

Case 1: ¢ rejects s in Stage 1 of Round m. Suppose that s is rejected by ¢ in Step ¢t. Then, s € A,
and by our supposition ¢ Ry fi(s") for all ' € A.. Since s is rejected by ¢ in Step t of Stage 1, we
have |{s' € A, : psre < psc}| = Ke. Stability of i implies that any student s” € {s’ € A, : psye < psc}
is assigned to ¢ under ji. Then, |i~!(c)| > k. + 1, which contradicts the feasibility of ji.

Case 2: c rejects s in Step 0 of Stage 2 of Round m. Let u be the outcome achieved at the end
of Stage 1 in Round m. Since ¢ reject s in Step 0, then pg. > 7¢(p). Then, either |u(c)| > k.
and 7¢(p) = maxge, () psie Or De # 0 and 7e(pu) = mingep, pye. If the former case holds, our
supposition and stability of i imply that all students in p(c) and s are assigned to c. This requires
at least k. students to be assigned to ¢, violation of feasibility. Suppose the latter case holds.
Our supposition implies that any student in D, who has been rejected by ¢ before s cannot be
assigned to a school weakly better than c. Since 7.(p) = mingep, ps'e < psc, f cannot be stable, a
contradiction.

26



Case 3: c rejects s in some Step t > 1 of Stage 2 of Round m. Then, there exists at least x.
students in pu(c) U D¢ who have strictly better priority than s. By our supposition at least k.
students having better priority than ps. cannot be assigned to schools weakly better than ¢ under
i. Stability of fi requires more than k. students to be assigned to ¢, a contraction.

Hence, if a school ¢ has rejected student s during DR, student s cannot be assigned to school ¢
in any stable matching. Thus, no student s with py. > 7.(u) can be assigned to ¢ in any stable
assignment. This concludes the proof.

A.4 Proof of Proposition 6

In order to prove this statement, we show that if a student s rejects a school ¢ during DP, then
there does not exist a stable matching i such that ¢ R, fi(s).

By contradiction, suppose a student s who rejects school ¢ during this procedure is assigned to a
school weakly worse than ¢ under . Without loss of generality, let s be the first such a student who
has rejected some school ¢ and is assigned to a worse school under i when we apply DP algorithm.
We consider the following possible cases.

Case 1: s rejects ¢ in Stage 1 of Round m. Suppose s rejects ¢ in Step t. Then, by definition
s € A, and she has received an offer from ¢’ such that ¢’ Ps ¢ in Step t and the number of students
with better priority than s for ¢’ and who has not rejected ¢’ yet is strictly less than xk». By our
supposition, any student who has rejected ¢’ earlier cannot be assigned to ¢’ under ji. Therefore,
stability implies that s cannot be assigned to a school worse than ¢’ under z. This is a contradiction.

Case 2: s rejects ¢ in Stage 2 of Round m. By definition of the procedure, there exists at least
two schools ¢; and ¢o such that the number of students with better priority than s either for ¢;
or co who has not rejected them yet is strictly less than the total capacity of ¢; and cs. By our
supposition, any student who has rejected either school before cannot be assigned to these schools.
Therefore, by our supposition, s and either ¢; or ¢ would form a blocking pair at assignment [
which contradicts stability of n.

Then, our claim implies that if a student s € p(c), then at most k. — 1 students with weakly better
priority than s can be assigned to ¢ in stable matching ji. Therefore, fi(s)Rsu(s). This completes
the proof.

B Omitted Examples

Example 1. Let C = {c1,c2}, S = {s1, 52,53} and k = (2,2). Preferences of students are:

S1 S22 83
¢l €1 C2
C2 C2 (1

There are 2 priority classes and school priorities are:
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Priority Points ‘ 1 Co

1 S1 81,83
2 S9, 83 S9

Match qualities are:

q(s1,c1) =3 q(s2,c1) =5 q(s3,c1) =2
q(s1,c2) =4 q(s2,c2) =2 q(s3,c2) =5
Consider the vector r = (2,3). Then,
Cs. (r) =11

Cs,(r) = {c1, 2}
Csy(r) = {c2}

The corresponding minimum-cost flow graph is depicted in Figure 1.

C™(r) = {c}

Figure 2: Minimum-cost flow graph

In Figure 2, numbers above the vertices denote their values (supply/demand), numbers above the
edges denote their costs.
In this example, there is a unique feasible flow function f, given by

fle) = {0 if e = (s2,¢1) ‘

1  otherwise

Therefore, f is the desired solution.

Example 2. Let C = {c1,ca,c3,c4,¢5}, S = {81, 82,83, 84, 85,86} and k = (1,1,1,1,2). Preferences
of students are:

S1 82 83 5S4 S5 Sg

¢t €1 C2 C2 (€1 C2
Co Co C3 C1 C3 C3
€4 C3 C5 €3 C2 C1
C3 Cy C1 Cq Cy Cq4
Cs C4 C4 C5 C5 Cs
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There are 4 priority classes and school priorities are:

Priority Points 1 co c3 Cy4 cs
1 S4 S1 S5,8¢  S1,S5,S6 S9
2 81, 82 S92 84,81 59,83 S3, 84, S5
3 S3,85,86 S3,S54 S3 S4 S1, S6
4 S5,86 82

We first apply DR to this problem.
Round 1.
Stage 1.

We illustrate the steps of the first stage below. In each step, tentatively held students are given in
bold.

C1 C2 C3 C4 Cs
Step 1: s1,82,85 83,84, 56
Step 2: 81, 82 83,84 S5, S6

When Stage 1 terminates school c1 holds s1 and so, co holds s3 and s4, and c3 holds s5 and sg. We
denote this outcome with L.

Stage 2.

Step 0: We first determine pc(u) for all ¢ € C: pe, (1) = 2, pey(pt) = 3, pes(p) = 1, pey(p) =
Pes () = 5. Then, in addition to the students rejected in Stage 1, ¢1 rejects sz and sg, ca rejects ss
and c3 rejects sy, s1, 83 and s3. For each school ¢ we construct M., gt as follows:

C1 C2 C3 C4 Cp
M s1,s2 s3,84 ss5,86 0 0
gt 0 0 0 0 0

Step 1: Given M and g', we have Dgf = {59} = D and l~?§§ = {s5} = D. Forall c ¢ {co,c4}
we have D¢ = (). Then, we calculate pe, = 2 and pe, = 1. Since pey, < pe, (1), co rejects s and sy.
Since e, < pe, (1), ca rejects s, s3 and s4. We go Round 2.

Round 2.

Stage 1. We illustrate the steps of the first stage below. In each step, tentatively held students
are given in bold.

C1 (&) C3 C4 Cs
Step 1:  s1,S89,84 S5, Sg S3
Step 2: Sa 81,82 S5, Sg S3
Step 3: S4 S1 S5, Sg S2, S3
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When Stage 1 terminates school c1 holds sy, co holds s1, c3 holds s5 and sg, and c5 holds sy and
s3. We denote this outcome with p.

Stage 2.

Step 0: We determine po() for all ¢ € Cs pe,() = 1, pea(t) = 1, peg() = 1, pey(i) = 1, and
Pes () = 2. Then, cs rejects s1 and s¢. For each school ¢ we construct M., gé as follows:

1 C2 Cc3 Cc4 Cs
M sy s1 s5,56 0 s3
gt 0 0 0 0 1

Step 1: Given M and g*, we have ﬁgg ={s5} = D¢, For all ¢ % ¢4 we have D¢ = (. Then, we
caleulate pe, = 1. Since pe, = pe, (1) and 924 = 924, the algorithm terminates here.

Final outcome of DR is

1 C2 C3 C4 Cs
S4 S1 S5, 56 @ 52,53

Next, we apply DP to the problem.
Round 1.

Stage 1. We illustrate the steps of the first stage below. In each step, tentatively held colleges are
given in bold.

S1 82 83 S84 S5 Sp
Step 1: C2 Cp (&5]

Stage 1 terminates and the outcome is j(s1) = c2, p(s2) = cs5, u(sa) = c1, and p(sg) = pu(ss) =

1u(se) = 0.
Stage 2.

We first construct Ds for each s € S: Ds, = {e1}, Ds, = {c1,¢2,¢3}, Ds, = {ca}, and Ds; = D, =
Dy, = C. We update A, for each ¢ € C: Ay, = Aey = S, Acy, = {59, 53, 55,56}, Aey, = {53, 55,56}
and Ay = {52, 53, 55,56}

Once we follow the steps of Stage 2, we can see that both s5 and s¢ are guaranteed to be assigned
to a school not worse than both c3 and cs. Then, we remove them from A., and set it to be
A, = {s2,s3}. We continue with Round 2 with updated A, for all c € C.

Round 2.

Stage 1. We illustrate the steps of the first stage below. In each step, tentatively held colleges
are given in bold.

81 82 83 S84 S5 S
Step 1: C2 C; Cy C1
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Stage 1 terminates and the outcome is ju(s1) = ca, p(s2) = u(s3) = cs, p(sa) = c1, and p(ss) =

p(se) = 0.
Stage 2.

We first construct Dy for each s € S: Ds, = {c1}, Ds, = {c1,c2,¢3}, Dsy = {ca,c3}, Ds, = {c2},
and Ds, = Dg, = C. We update A. for each ¢ € C: Ay = {s1,52,54,55,56}, Acy = 5, Acy =
{s2, 3,585,856}, Acy = {55,586} and A., = {s2,53}.

Once we follow the steps of Stage 2, we can see that both ss and sg are guaranteed to be assigned to
a school not worse than both cs and cy. We continue with Round 8 with updated A, for all c € C.

Round 3.
Stage 1.

We illustrate the steps of the first stage below. In each step, tentatively held colleges are given in
bold.

§1 S22 S3 S4 S5 S6
Step 1: c2 e¢5 c¢c5 ¢

Stage 1 terminates and the outcome is pu(s1) = ca, p(s2) = u(s3s) = cs, p(sa) = c1, and p(ss) =

1(s6) = 0.
Stage 2.

We first construct Ds for each s € S: Dg, = {c1}, Ds, = {c1,¢2,¢3}, Dsy, = {c2,c3}, D5, = {c2},
and Ds, = Dy = C. We do not update A. for any c € C.

Once we follow the steps of Stage 2, we can see that both s5 and sg are guaranteed to be assigned

to a school not worse than both c3 and c4. Algorithm terminates since A. stays the same for all
ceC.
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C Omitted Simulation Results

a B Yy =0.00 Yy =0.25 Yy =0.50
(1) (2) (3)
0.00 0 0 0
0.25 0 0 0
0.00 0.50 0 0 0
0.75 0 0 0.03
1.00 0 0 0.06
0.00 0 0.24 2.15
0.25 0 0.53 2.69
0.25 0.50 0.02 0.85 3.21
0.75 0.01 0.81 3.13
1.00 0 0.5 2.36
0.00 0.82 6.23 9.23
0.25 1.71 8.61 10.42
0.50 0.50 1.57 8.37 10.60
0.75 0.68 5.87 9.55
1.00 0.61 5.32 8.81
0.00 5.41 9.04 9.89
0.25 6.89 9.63 10.49
0.75 0.50 5.46 9.51 10.62
0.75 4.26 8.85 10.17
1.00 4.03 8.65 9.90
0.00 8.76 9.41 10.41
0.25 8.86 9.92 10.44
1.00 0.50 8.40 9.91 10.67
0.75 7.86 9.38 10.34
1.00 7.68 9.15 10.07

Table 3: Average number of schools with a unique stable assignment cutoff, 30 schools
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DA with quality-based

a B MQO L-MQO tie-breaking
€Y) (2) (3)
0.00 57.926 57.926 12.410
0.25 51.122 51.122 11.860
0.00 0.50 45.384 45.384 11.736
0.75 39.984 39.984 14.370
1.00 36.878 36.878 15.042
0.00 52.692 52.692 29796
0.25 45.276 45.276 25.504
0.25 0.50 36.202 36.202 18.918
0.75 33.404 33.404 16.960
1.00 33.194 33.148 18.240
0.00 45.538 45.188 24.816
0.25 38.786 38.518 23.152
0.50 0.50 32.826 32.546 19.608
0.75 31.070 31.012 19.102
1.00 30.936 30.890 19.066
0.00 45.318 45.256 27.758
0.25 39.732 39.732 23.736
0.75 0.50 34.844 34.782 22.592
0.75 31.734 30.904 20.946
1.00 31.634 30.734 20.860
0.00 44.856 44.328 32.248
0.25 40.710 40.096 28.804
1.00 0.50 36.002 35.412 25.664
0.75 33.062 32.490 23.984
1.00 30.900 30.014 22.410
Average gains 39.200 38.956 21.183

Table 4: Percentage gains compared to DA with random tie-breaking, v = 0.00
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DA with quality-based

a B MQO L-MQO tie-breaking
ey (2) (3)

0.00 35.238 33.976 16.880

0.25 32.504 31.060 14.956

0.00 0.50 28.522 27.598 17.588
0.75 24.882 23.722 14.750

1.00 24.696 21.486 13.616

0.00 32.108 30.370 15.544

0.25 29.002 26.422 14.390

0.25 0.50 26.744 25.194 14.062
0.75 23.928 20.978 11.300

1.00 23.606 21.776 11.488

0.00 37.644 36.980 22916

0.25 33.362 33.144 21.376

0.50 0.50 29.482 29.482 18.628
0.75 25.174 25.174 15.724

1.00 24.350 24.344 14.944

0.00 41.004 41.004 25.688

0.25 37.382 36.956 23.976

0.75 0.50 32.752 32.350 21.202
0.75 28.030 28.030 18.088

1.00 26.096 25.666 17.134

0.00 43.196 42.678 29.000

0.25 39.286 39.286 27.132

1.00 0.50 35.948 35.932 25.262
0.75 31.874 31.874 22.236

1.00 28.224 27.442 19.248

Average gain 31.001 30.117 18.685

Table 5: Percentage gains compared to DA with random tie-breaking, v = 0.50
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