
NBER WORKING PAPER SERIES

A SIMPLE BUT POWERFUL SIMULATED CERTAINTY EQUIVALENT APPROXIMATION
METHOD FOR DYNAMIC STOCHASTIC PROBLEMS

Yongyang Cai
Kenneth L. Judd

Working Paper 28502
http://www.nber.org/papers/w28502

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
February 2021

Cai and Judd appreciate the financial support from United States Department of Agriculture
NIFA-AFRI grant 2015-67023-22905; Cai acknowledges the financial support from the National
Science Foundation (SES-1463644 and SES-1739909) and USDA-NIFA-AFRI grant
2018-68002-27932. This paper originates from Cai et al. (2020), which has been separated into
this methodological paper and another paper focusing on applications to large natural resource
allocation problems. The views expressed herein are those of the authors and do not necessarily
reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies
official NBER publications.

© 2021 by Yongyang Cai and Kenneth L. Judd. All rights reserved. Short sections of text, not to
exceed two paragraphs, may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.

A Simple but Powerful Simulated Certainty Equivalent Approximation Method for Dynamic
Stochastic Problems
Yongyang Cai and Kenneth L. Judd
NBER Working Paper No. 28502
February 2021
JEL No. C61,C63,C68,E31,E52,Q54,Q58

ABSTRACT

We introduce a novel simulated certainty equivalent approximation (SCEQ) method for solving
dynamic stochastic problems. Our examples show that this method only requires a desktop
computer to solve high-dimensional finite- or infinite-horizon, stationary or nonstationary
dynamic stochastic problems with hundreds of state variables, a wide state space, and
occasionally binding constraints. The SCEQ method is simple, stable, and efficient, which makes
it suitable for solving complex economic problems that cannot be solved by other algorithms.

Yongyang Cai
Agricultural, Environmental and
Development Economics
The Ohio State University
Columbus, OH 43210
US
cai.619@osu.edu

Kenneth L. Judd
Hoover Institution
Stanford University
Stanford, CA 94305-6010
and NBER
kennethjudd@mac.com

A data appendix is available at
http://www.nber.org/data-appendix/w28502
A Code is available at
https://drive.google.com/file/d/1SP-YyhKE6o1ZpHpdxo4HJ72lPYplWpej/view

1 Introduction

Dynamic stochastic general equilibrium (DSGE) problems are often studied using

stationary models, which are relatively easy to solve using local approximation meth-

ods.1 Stationary problems have time-invariant decision rules, so in low-dimensional

models, projection methods can be used to compute global solutions for value func-

tions and/or decision rules.2

However, neither stationarity nor low dimensionality are reasonable simplifications

for real-world problems. Life-cycle models often have time-varying endowments and

preferences, and the population, technology, resource stock, and climate all change

over time, making those problems nonstationary. Computing the full set of state-

contingent decisions and prices is often too computationally costly, and may also

produce more information than is needed for the question at hand. In addition, it

is challenging to compute global solutions for non-smooth value functions and/or

decision rules of DSGE problems with occasionally binding constraints. This pa-

per proposes a simple but powerful Simulated Certainty Equivalent (SCEQ) method

which only uses the standard tools available to economists to compute the properties

of interest of many high-dimensional, nonstationary models, and/or problems with

occasionally binding constraints.

The key reason for the advantages of SCEQ is its notion of “solution”. Most

methods for solving dynamic economic models solve for value functions, decision

rules, and/or price functions. Solving for unknown functions requires e�cient ways

to approximate functions, a di�cult challenge for complex high-dimensional prob-

lems. However, the solutions are often used only to compute stochastic properties of

the problem, such as means, variances, covariances, and trends, as well as optimal de-

cisions at the initial periods for policy makers. Moreover, a low-degree approximation

of value or policy functions, such as linear or log-linear approximation from pertur-

bation methods, may create large approximation errors and lead to large errors in

estimating the stochastic properties of the solution. Instead, SCEQ focused directly

on computing a set of simulations of the solution without approximating functions,

and use them to directly compute the statistical properties of the solution. The key

1See e.g.,Magill (1977); Blanchard and Kahn (1980); Kydland and Prescott (1982); Judd and
Guu (1993); Jin and Judd (2002).

2See e.g. Haan and Marcet (1990); Judd (1992, 1998); Marcet and Lorenzoni (1998); Miranda
and Fackler (2002)

2

reason of SCEQ’s desirable properties is that it’s concept of solution is more limited

than other methods but often su�cient to deliver the information a researcher wants

to have.

SCEQ is simple, for several reasons. First, SCEQ does not use complicated com-

putational methods like (adaptive) sparse grids, or require extensive resources like

a supercomputer. Second, SCEQ does not need to use the “trial and guess” tricks

that are often used in other methods. For example, projection methods often have to

guess an approximation domain and an approximation method, then check if these

can solve the problem, but this process may have to be repeated many times. Third,

SCEQ only requires a numerical optimization solver, as it does not use a value or

policy function approximation or numerical integration. Fourth, SCEQ is easy to

program in common languages like GAMS (General Algebraic Modeling System)3

and Matlab.4 Fifth, it is easy and quick for SCEQ to check if its solution has the

desired accuracy.

SCEQ is also powerful. First, SCEQ does not su↵er from the so-called “curse of

dimensionality”: its accuracy is independent of the state space’s dimensionality, and

its computational time is at worst a cubic function of the state space’s dimensionality.5

In fact, when we increase the number of countries in our real business cycle prob-

lems from N to 2N , the total computational time of the SCEQ algorithm increases at

only a nearly linear speed. Second, SCEQ e�ciently solves high-dimensional dynamic

stochastic problems with occasionally binding constraints: it only took hours on a

standard computer to provide 1,000 simulation paths of solutions for 400-dimensional

real business cycle problems with a lower bound on investments. Third, SCEQ ef-

ficiently solves nonstationary dynamic stochastic problems, even those with high di-

mensionality and occasionally binding constraints. Fourth, SCEQ can solve problems

with a wide state space domain, even if high dimensionality, occasionally binding

constraints, and nonstationarity are also present. Fifth, SCEQ’s e�ciency (computa-

3There are many reliable and e�cient professional solvers available using GAMS (McCarl et al.,
2016), such as CONOPT (Drud, 1994) and SNOPT (Gill, Murray, and Saunders, 2005) for solving
nonlinear programming problems. Moreover, these solvers are provided in the NEOS server (Czyzyk,
Mesnier, and More, 1998) (https://neos-server.org/neos/solvers/index.html) and are free to use with
GAMS.

4SCEQ can be implemented with Dynare (Adjemian et al., 2011), a Matlab toolbox for solving
DSGE models, particularly stationary problems in macroeconomics.

5The “curse of dimensionality” refers to the case where computational cost grows exponentially
with the dimensionality of state space.

3

tional time and accuracy) is independent of the number of exogenous state variables,

because there are no numerical approximation or integration over them in SCEQ.

Sixth, SCEQ can be very fast. In our applications, using a Mac Pro desktop com-

puter, SCEQ only took minutes to provide all possible simulation paths of solutions

for a 200-country real business cycle problem (Section 4.2.2), and only took hours to

provide 1,000 simulation paths of solutions for larger 200-country real business cycle

problems with 201 or 400 state variables (Sections 4.2.1 and 4.2.3). Seventh, SCEQ is

stable and can solve both stochastic dynamic programming problems and stochastic

dynamic competitive equilibrium problems. Lastly, SCEQ is highly accurate, provid-

ing solutions with an accuracy of 0.1-1% for all examples in this paper.

In this paper, we show that the SCEQ is highly accurate and achieves stable

numerical solutions for dynamic stochastic problems. Our first numerical example

is for illustration only. The second example is a multi-country real business cycle

model with occasionally binding constraints. We solve cases with 10, 20, 50, 100,

and 200 countries, each of which only takes minutes or hours on a Mac Pro desktop

computer. The computational time is nearly linear to the number of countries, and

increasing the dimensionality has little impact on the solution’s accuracy. The third

example is a nonstationary stochastic integrated assessment model of climate and

the economy with six continuous endogenous state variables and one discrete state

variable. Moreover, the model has occasionally binding constraints that make it

challenging to solve with standard methods, but SCEQ took less than two hours to

provide 1,000 simulation paths of solutions such as the optimal carbon taxes on a Mac

Pro desktop computer. The last example applies SCEQ to solve a New Keynesian

model with a zero lower bound, showing that SCEQ can solve stochastic competitive

equilibrium problems. All the examples demonstrate that SCEQ can solve dynamic

stochastic problems with a 0.1-1% degree of accuracy, which is within the acceptable

range of accuracy for most dynamic stochastic economic problems.

The paper is organized as follows. Section 2 compares SCEQ with existing meth-

ods. Section 3 introduces the SCEQ method. Section 4 provides numerical examples.

Section 5 discusses some properties of SCEQ. Section 6 concludes.

2 Comparison with Existing Methods

To solve stationary and smooth problems, perturbation or projection methods are

commonly used, which each have their limitations. Perturbation methods can only

4

provide locally accurate solutions around the non-stochastic steady state, which are

then treated as if they were globally valid. But it is often not su�cient for decision-

making purposes because the non-stochastic steady state may be far away from the

initial state. A practical dynamic optimization problem aims to provide initial-period

decisions that are based on those periods’ states, rather than states in the far fu-

ture (although future dynamics can a↵ect initial-period solutions; see Cai, Judd, and

Steinbuks 2017 for further discussion of this issue), which imply a wide approxima-

tion domain for approximating value or policy functions. But a wide approximation

domain requires a high-degree approximation of value or policy functions to obtain

accurate solutions around the initial periods’ states, implying that these problems will

also be di�cult for projection methods. Moreover, projection methods face challenges

when solving high-dimensional problems or problems with strong nonlinearity.

Value function iteration (VFI) and time iteration are two common methods to

solve dynamic stochastic problems. For nonstationary problems, time-varying approx-

imation domains can be used to obtain accurate solutions while keeping a low-degree

approximation for each period. For example, Cai, Judd, and Lontzek (2017) and Cai

and Lontzek (2019) apply the parallel VFI method to solve many large-scale dynamic

stochastic integrated models of climate and the economy (DSICE). However, VFI

and time iteration both face challenging issues such as high-dimensional state spaces,

shape-preservation of value functions, appropriate approximation domains, and oc-

casionally binding constraints. Brumm and Scheidegger (2017) introduce adaptive

sparse grids in time iteration to overcome the kink problem, but their method re-

quires complicated coding and still requires a large number of approximation points

around the kinks. Moreover, if the problem is nonstationary, then the adaptive sparse

grid method would be less e�cient as it cannot reuse the last iteration’s grids.6

Cai, Judd, and Steinbuks (2017) propose a stable and e�cient nonlinear certainty

equivalent approximation method (NLCEQ) for solving stationary dynamic stochas-

tic problems. NLCEQ applies the concept of certainty equivalent approximation to

transform an infinite-horizon stochastic problem into a finite-horizon deterministic

problem, solves it to obtain the optimal solution of decisions for each approximation

6See Rust (1996), Judd (1998), Ljungqvist and Sargent (2000), Miranda and Fackler (2002),
Bertsekas (2005, 2007), Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2006), Kollmann et al.
(2011), Juillard and Villemot (2011), Guerrieri and Iacoviello (2015), Fernandez-Villaverde, Rubio-
Ramirez, and Schorfheide (2016), Fernandez-Villaverde and Levintal (2018), Levintal (2018), and
Cai (2019) for more discussion on the conventional methods.

5

node in the state space at the initial time, then fits the solutions with a globally non-

linear approximation to the optimal policy function. Cai, Judd, and Steinbuks (2017)

demonstrate that NLCEQ can be used to achieve accurate solutions to a variety of

problems, including high-dimensional problems such as a real business cycle model

with many countries, and problems with kinks such as a New Keynesian model with a

zero lower bound. For high-dimensional problems, NLCEQ uses sparse grids approxi-

mation (see, e.g., Smolyak 1963; Malin, Krueger, and Kubler 2011; Judd et al. 2014),

which can work well for smooth policy functions. For problems with kinks, NLCEQ

can use high-degree approximations or adaptive sparse grids to reduce approximation

errors caused by kinks.

Similar to NLCEQ, the SCEQ method uses the certainty equivalent approximation

idea to transform infinite- or finite-horizon stochastic problems into deterministic

finite-horizon problems in order to solve them, so it inherits the stability and e�ciency

properties of NLCEQ. However, SCEQ uses a period-by-period approach to construct

one simulation path of solutions: first, it solves the transformed deterministic problem

starting with a given initial state at the initial time s = 0, and uses the solution at

s = 0 to simulate the shocks, generating a simulated state at time s = 1. It then

solves the new transformed deterministic problem starting with the simulated state at

time s = 1 to obtain the solution at s = 1, which is used together with new simulated

shocks to generate a new simulated state at time s = 2. This process is iterated for

each period until the time of interest to generate one simulation path. SCEQ obtains

a set of simulation paths by repeating the period-by-period approach with di↵erent

realization paths of the shocks, thus obtaining distributions of states and decisions

for economic analysis.

Compared to the NLCEQ method, SCEQ has the following advantages:

(i) SCEQ can solve problems that are challenging for NLCEQ. If a problem has

both a high-dimensional state space and kinks in the optimal policy function, then

NLCEQ will have to choose a large number of approximation nodes in the state space

to approximate this policy function with a su�cient level of accuracy. It will then take

too much time to solve the large-scale optimization problems corresponding to the

approximation nodes. In contrast, SCEQ is very suitable for solving such problems.

(ii) NLCEQ needs to specify an approximation domain in the state space a priori,

whereas SCEQ does not. NLCEQ requires this specification to choose approximation

nodes, but we often do not know how wide a domain we should choose. If it is too

6

wide, then it requires too many approximation nodes to obtain a good approximation

to the policy function, implying too many large-scale optimization problems. If it is

too narrow, then next period’s optimal state will often be beyond the approximation

domain, which limits the subsequent economic analysis. In contrast, if we want to

construct a policy function optimization using simulated solutions from SCEQ, we

can easily define an approximation domain with the minimum and maximum of the

simulated solutions, or we can use a small set of “representative” points to cover the

support of the simulated solutions and then use projection techniques (Maliar and

Maliar, 2015).7

(iii) To obtain the same solution accuracy as SCEQ, NLCEQ su↵ers from the

“curse of dimensionality” of the state space, both in endogenous and exogenous state

variables.

(iv) NLCEQ only solves infinite-horizon stationary problems,8 while SCEQ can

solve both stationary and nonstationary problems in an infinite or a finite horizon.

(v) SCEQ can quickly check if its solution is accurate: it can just obtain one or

several simulated paths at first and measure their accuracy. But NLCEQ has to wait

until all of its optimization problems are solved, which incurs a larger computational

cost.

In certain contexts, NLCEQ has its advantages. For example, NLCEQ could be

faster than SCEQ for low-dimensional stationary problems with smooth policy func-

tions, and NLCEQ can be applied to find optimal policy functions for deterministic

problems.

VFI and time iteration have similar disadvantages when compared with SCEQ.

They face even worse challenges than NLCEQ when solving problems with both a

high-dimensional state space and kinks in the optimal policy function: they have to

choose (time-varying) approximation domains in the state space a priori; they su↵er

7SCEQ’s solution could have a wide domain, particularly if its initial state is far away from the
non-stochastic steady state for a stationary problem. For example, in our real business cycle model,
the initial levels of capital range from 0.1 to 10 across countries, while the steady state level is 1.

8NLCEQ can be adapted to solve nonstationary problems by iterating the process. That is,
we apply NLCEQ for the first period with a given approximation domain and use its solution to
generate an approximation domain for the second period. We then apply NLCEQ for the second
period and use its solution to generate an approximation domain for the third period, and repeat
this process for each subsequent period until the end of the required time period. This iterative
method may incur a large computational cost, as NLCEQ has to solve a large number of large-scale
optimization problems for every period.

7

the “curse of dimensionality” for both endogenous and exogenous state variables;9

they are less flexible in checking whether they work or not, as they have to wait

until the iteration converges for a stationary problem before checking their solution;

and they require more complicated coding in low-level programming languages like

Fortran or C, sparse grids, or parallelism for high-dimensional problems. In addition,

VFI or time iteration are generally not stable.10

SCEQ has advantages over other proposed solution methods. Judd, Maliar,

and Maliar (2011) suggest a generalized stochastic simulation algorithm (GSSA),

and Judd, Maliar, and Maliar (2012) and Maliar and Maliar (2015) propose an ✏-

distinguishable set (EDS) method to merge projection approaches and simulation.

However, both methods only solve infinite-horizon stationary problems. Moreover,

their methods are less flexible in checking whether they work or not, as they have to

obtain a large number of simulated results before they can approximate policy func-

tions. Grune, Semmler, and Stieler (2015) apply a nonlinear model predictive control

method for solving dynamic problems, which only solves infinite-horizon stationary

dynamic programming problems and focuses on deterministic problems. It does not

provide a distribution of solutions or policy function approximation, nor accuracy

measures for stochastic problems.

3 The SCEQ Method

Let xt be a vector of state variables (e.g., capital), and at be a vector of decision

variables (e.g., consumption) at each time t. The transition law of the state vector x

is

xt+1 = gt(xt, at, ✏t)

where ✏t is a serially uncorrelated random vector process11 and gt is a vector of

functions which could be time-varying: its i-th element, gt,i, returns the i-th state

variable at time t+ 1: xt+1,i.

9There are methods to alleviate or even avoid the “curse of dimensionality” for some problems,
see e.g. Rust (1997, 2019), Judd et al. (2014), Brumm and Scheidegger (2017), Cai (2019), and
Scheidegger and Bilionis (2019).

10Note that VFI can be stable if it uses a shape-preserving approximation method (Cai and Judd,
2013).

11If a dynamic model has serially correlated random variables, they are exogenous state variables,
and we can use an uncorrelated vector ✏t in their transition laws.

8

Without loss of generality, we assume the mean or median of ✏t is 0. For notational

simplicity we keep the same mathematical representation of a transition function

even if some of its elements are redundant. For example, if gt,i is deterministic, i.e.,

xt+1,i = gt,i(xt, at), since it can be rewritten as xt+1,i = gt,i(xt, at) + 0 · ✏t, we will still
denote it as xt+1,i = gt,i(xt, at, ✏t). Similarly, if there are some unused elements of ✏t

or some redundant arguments in a function gt,j, we can multiply them by zero in gt,j

and thus still use xt+1,j = gt,j(xt, at, ✏t) .

We solve the following social planner’s problem:

max
at

E
(

T�1X

t=0

�tut (xt, at) + �TVT (xT)

)
(1)

s.t. xt+1 = gt(xt, at, ✏t), t = 0, 1, 2, ..., T � 1,

ft(xt, at) � 0, t = 0, 1, 2, ..., T � 1,

where ut is a utility function which could be time-varying, � 2 (0, 1) is the discount

factor, E is the expectation operator, T is the horizon (T = 1 if it is an infinite-

horizon problem), VT (xT) is a given terminal value function depending on the terminal

state xT (it is zero everywhere for an infinite-horizon problem), and ft(xt, at) � 0

represents the feasibility constraints for actions at (e.g., nonnegativity constraints

at � 0).12 We assume that the initial state x0 is given, as it can usually be observed

or estimated.

We assume that the social planner is interested in solutions for the first T ⇤ periods.

Macroeconomists are often interested in obtaining solutions around the non-stochastic

steady state. However in reality, the initial state could be far away from the steady

state, and a policymaker may be more interested in the solutions for the initial periods

in the forward-looking model (1) than the far future states that could be around the

steady state. For example, in environmental and climate change economics, we are

often interested in solutions for the coming century rather than longer time periods.

The following SCEQ algorithm obtains solutions for the first T ⇤ periods.

12An equality constraint f(x, a) = 0 can be written as a combination of f(x, a) � 0 and �f(x, a) �
0.

9

Algorithm 1 SCEQ for Stochastic Dynamic Programming Problems

Step 1. Initialization step. Given the initial state x0 and a time of interest T ⇤,
choose a time-varying number of periods �s and a time-varying “terminal” value
function Vs+�s(xs+�s) for each time s. Simulate a sequence of ✏t to get m paths,
denoted ✏it for path i, from t = 0 to T ⇤ � 1. Let xi

0
= x0 and iterate forward

through steps 2 and 3 for s = 0, 1, 2, ..., T ⇤ � 1.

Step 2. Optimization step. Solve the following deterministic model starting at
time s and simulated node xi

s:

max
at

s+�s�1X

t=s

�t�sut (xt, at) + ��sVs+�s(xs+�s) (2)

s.t. xt+1 = gt(xt, at, 0), t = s, s+ 1, ..., s+�s � 1,

ft(xt, at) � 0, t = s, s+ 1, ..., s+�s � 1,

where xs is given by xi
s, for each i = 1, ...,m.

Step 3. Simulation step. Set xi
s+1

= gt(xi
s, a

i
s, ✏

i
s), where a

i
s is the optimal decision

at time s of the problem (2), for each i = 1, ...,m.

Algorithm 1 obtains simulated pathways of optimal decisions and states. It con-

tains three steps: (i) the initialization step, which chooses an appropriate �s and

“terminal” value function Vs+�s(xs+�s) and simulates the shocks; (ii) the optimiza-

tion step, which solves the finite-horizon deterministic optimization problems (2);

(iii) the simulation step, which uses the optimal decision of (2) at time s to generate

simulated states at time s+ 1.

Note that the inside loop across i can be switched with the outside loop across

time, that is, for each i, we can obtain one simulation path by iteratively solving (2)

and simulating xi
s+1

= gt(xi
s, a

i
s, ✏

i
s) for s = 0, 1, 2, ..., T ⇤�1. In addition, with a fixed

initial state, the solutions at s = 0 are independent of simulation, so the optimization

step just needs to solve the case with i = 1 and assign its solutions to the other

cases with i = 2, ...,m. Algorithm 1 can also be applied to problems without a fixed

initial state, as sometimes the initial state might be uncertain or hard to evaluate

accurately. In this paper, we always assume that the initial state is fixed, without

loss of generality.

10

3.1 Initialization

In the initialization step of Algorithm 1, for a finite T -horizon problem, we can set

�s = T � s so that Vs+�s(xs+�s) is always the true terminal value function VT (xT).

For an infinite horizon problem,�s and Vs+�s(xs+�s) are chosen such that the solution

of (2) at its starting time s is almost identical to a solution with a larger �s for every

state at s. Vs+�s(xs+�s) is chosen to be an approximation of the cumulative optimal

welfare from time s+�s to time T � 1, i.e.,

Vs+�s(xs+�s) ⇡ max
at

E
(

T�1X

t=s+�s

�tut (xt, at) + �TVT (xT)

)
(3)

s.t. xt+1 = gt(xt, at, ✏t), t = s+�s, ..., T � 1,

ft(xt, at) � 0, t = s+�s, ..., T � 1,

One example of such an approximation is Vs+�s(xs+�s) =
PT�1

t=s+�s
�tut (xt, a⇤

t (xt))+

�TVT (xT), where a⇤
t (xt) is a guess of the optimal policy function at t. For an infinite

horizon stationary problem, we can use Vs+�s(xs+�s) = u (xs+�s , a
⇤(xs+�s)) /(1��).

The di↵erence between Vs+�s(xs+�s) and the true optimal welfare since time s+�s

(the “truncation error”) may impact the solution at time s. If �s is large, then the

“terminal” value function Vs+�s(xs+�s) often has little impact on the solution of (2)

at its starting time s so the truncation error is small,13 but it also implies that (2) is

a larger optimization problem and takes more computational time to solve.

Thus, for an infinite-horizon problem, in the initialization step of Algorithm 1 we

first choose a large �s and a reasonable Vs+�s(xs+�s). For a few test nodes in the

state space at time s (e.g., some reasonable extreme points), we let xs be given by a

test node and then solve (2), to make sure that a much larger �s will not change the

solutions. We use these solutions as the “true” solutions. We then choose a smaller�s

and a di↵erent Vs+�s(xs+�s), re-solve (2) at the same test nodes, and compare these

solutions with the “true” solutions to estimate the truncation error. For a stationary

problem, we suggest choosing a constant �s and a time-invariant “terminal” value

13Most infinite-horizon dynamic economic models assume that the system asymptotically evolves
towards its stationary state, so the discount factor � < 1 makes the terms �t�sut (xt,at) small in
magnitude for t � s + �s with a large �s, and a smaller � implies that we can choose a smaller
�s in SCEQ. Such a truncation is often used in the literature, see e.g. Nordhaus (2008); Grune,
Semmler, and Stieler (2015); Cai, Judd, and Steinbuks (2017); Cai, Judd, and Lontzek (2017); Cai
and Lontzek (2019); Maliar et al. (2020).

11

function. In the end, we choose the best pair of �s and Vs+�s(xs+�s) in terms of

computational speed and size of the truncation error.

3.2 Optimization

The optimization step of Algorithm 1 applies the original certainty equivalent approx-

imation idea of the NLCEQ method: for a given state at time s, xi
s, we replace all

future stochastic variables by their corresponding certainty equivalent approximation

(e.g. expectations or medians) conditional on the current state xi
s, and convert the

dynamic stochastic problem (1) into the deterministic finite-horizon dynamic problem

(2).

Since ✏t is a serially uncorrelated stochastic process, if all transition laws are con-

tinuous we can replace ✏t in (2) by its (zero) mean or median for simplicity. Generally

we can replace ✏t by a deterministic function of its standard deviation, so SCEQ may

provide a more accurate solution or even solve problems such as stochastic volatility

(see, e.g., Caldara et al. (2012)).

For problems with a discrete Markov chain in transition laws, to obtain the cor-

responding deterministic model (1) we can use the same technique as described in

Cai, Judd, and Steinbuks (2017) for NLCEQ with a discrete stochastic state. That

is, given the Markov chain realization at time s, we can compute expectations of the

Markov chain at all times after s conditional on the value at time s, then replace

the stochastic process by the path of the conditional expectations in the optimization

step of Algorithm 1.

We implement the optimal control method (see, e.g., Cai 2019) to solve (2) nu-

merically: we view (2) as a large-scale nonlinear constrained optimization problem

with {ai
t : t � s} and {xi

t : t � s} as its variables, and the transition equations and

feasibility restrictions as its constraints. The problem can be directly solved with an

appropriate nonlinear optimization solver such as CONOPT (Drud, 1994).

3.3 Simulation

In the simulation step of Algorithm 1 we use the optimal decision ai
s to generate

the next-period state, xi
s+1

= gt(xi
s, a

i
s, ✏

i
s), given the realization of shocks, ✏is. Once

we reach the state xi
s+1

at time s + 1, we come back to implement the optimization

step and then the simulation step. In other words, Algorithm 1 uses an adaptive

12

management strategy: decisions are made for the current period in the face of future

uncertain shocks; once the next-period shock is observed, decisions for the next period

are made by re-optimizing given the observed shock and new state. Observe that the

serial correlation of random variables has been captured in their associated transition

laws. By repeating this process iteratively T ⇤ times, we compute one simulated path

of optimal decisions, {ai
s}T

⇤�1

s=0
, and states, {xi

s}T
⇤�1

s=0
, which corresponds to the realized

path of shocks, {✏is}T
⇤�1

s=0
. Repeating over i, we compute m simulated paths of optimal

states and decisions, and then obtain their distributions.

3.4 Parallelism

Relative to other methods, SCEQ could take longer to run low-dimensional problems,

as it requires solving m ⇥ T ⇤ optimization problems (2). But for high-dimensional

problems, SCEQ can take much less time to run. Moreover, since simulation paths are

independent of each other, Algorithm 1 can be naturally parallelized across simulation

paths: e.g., one simulation path per compute core, so the wall clock time could be

around the time spent to solve T ⇤ optimization problems (2), which could be fast

with modern hardware and optimization solvers. For example, it took seconds or at

most several minutes in all of our examples, including the real business cycle problem

with 200 countries (201 or 400 state variables) and �s = 50, to solve T ⇤ optimization

problems (2) on a standard computer. Therefore, we solve the large scale dynamic

stochastic problems in minutes or hours, using parallelism on six compute cores of a

Mac Pro desktop. Moreover, the running time can be reduced to seconds or minutes

if we use many compute cores in a supercomputer.

3.5 SCEQ for Competitive Equilibrium

Like NLCEQ, the SCEQ method can also be adapted to solve competitive equilib-

rium problems with transition laws of states xt+1 = gt(xt, at, ✏t), where xt is the state

vector, at is the action vector, and ✏t is a serially uncorrelated random vector pro-

cess. We first use the certainty equivalent approximation idea to make the stochastic

problem deterministic. A deterministic model’s equilibrium solution should satisfy a

set of equations and inequalities (including transition laws of states, feasibility con-

straints for actions, Euler equations, market clearing conditions, and other first-order

13

conditions): 8
>>><

>>>:

xt+1 = gt(xt, at, 0), t = 0, 1, 2, ..., T � 1,

ft(xt, at) � 0, t = 0, 1, 2, ..., T � 1,

Ht(xt, at,xt+1, at+1) = 0, t = 0, 1, 2, ..., T � 1,

(4)

where ft(xt, at) � 0 represents the feasibility constraints for actions at period t, and

Ht(xt, at,xt+1, at+1) = 0 represents the Euler equations, market clearing conditions,

and other first-order conditions for the transformed deterministic model. If there

are occasionally binding constraints, then the arguments of Ht should also contain

corresponding Lagrange multipliers, which we omit here without loss of generality. We

can truncate infinite-horizon problems into finite-horizon problems with a terminal

condition, such as (xT , aT) = (xss, ass) where the pair (xss, ass) is the steady or

asymptotic state and its associated action. For a finite-horizon problem, we also

need a terminal condition for (xT , aT). Without loss of generality, we assume that

the terminal condition is that the terminal policy function is given (i.e., as+�s =

a⇤
s+�s

(xs+�s) with a given a⇤
s+�s

). Algorithm 2 summarizes the SCEQ method for

solving stochastic competitive equilibrium problems.

14

Algorithm 2 SCEQ for Stochastic Competitive Equilibrium Problems

Step 1. Initialization step. Given the initial state x0 and a time of interest T ⇤,
choose a time-varying number of periods �s and a time-varying “terminal”
policy function a⇤

s+�s
(xs+�s) for each time s. Simulate a sequence of ✏t to get

m paths, denoted ✏it for path i, from t = 0 to T ⇤ � 1. Let xi
0
= x0 and iterate

forward through steps 2 and 3 for s = 0, 1, 2, ..., T ⇤ � 1.

Step 2. Optimization step. Solve the following deterministic model starting at
time s and simulated node xi

s:

max
at

1 (5)

s.t. xt+1 = gt(xt, at, 0), t = s, s+ 1, ..., s+�s � 1,

ft(xt, at) � 0, t = s, s+ 1, ..., s+�s � 1,

Ht(xt, at,xt+1, at+1) = 0, t = s, s+ 1, ..., s+�s � 1,

as+�s = a⇤
s+�s

(xs+�s),

where xs is given by xi
s, for each i = 1, ...,m.

Step 3. Simulation step. Set xi
s+1

= gt(xi
s, a

i
s, ✏

i
s), where a

i
s is the optimal decision

at time s of the problem (5), for each i = 1, ...,m.

The objective of the maximization problem (5) is a constant, as we are finding a

feasible solution for competitive equilibrium and a nonlinear constraint optimization

solver (e.g., CONOPT in GAMS, or fmincon in Matlab) can solve such problems. If

(5) do not have inequality conditions or they are not binding at the solution, then it

can also be solved by an equation solver (e.g., fsolve in Matlab). Like Algorithm 1,

Algorithm 2 can also be naturally parallelized.

3.6 Policy Function Approximation

Note that the SCEQ method does not need to approximate a value or policy function.

After we obtain the simulated paths, we can use them to conduct economic analysis

directly. For example, we can compute the expectation, distribution, and moments

from the simulated solutions. Section 4.3 shows that we can use the SCEQ method

to estimate the social cost of carbon in the first 100 years in the presence of economic

risk. However, if necessary, we can employ a projection approach like the least-squares

method to construct a policy function approximation from simulated solutions if

15

there are a large number of simulated results. This method is particularly e�cient

for stationary problems, because all simulated decisions ai
s follow the same policy

function for all s and i. Moreover, the simulated results often locate inside a narrow

domain, so a low-degree approximation often has enough approximation accuracy

over the domain if the policy function is smooth. Furthermore, we can follow the

method of Maliar and Maliar (2015) to construct a fixed grid covering the support

of the simulated solution, then use a projection approach to obtain a policy function

approximation.

3.7 Accuracy Measures

It is important to check the accuracy of solutions obtained with SCEQ, because

we cannot a priori determine how the certainty equivalence assumption a↵ects the

solution’s accuracy.

A standard accuracy measure method computes errors in equilibrium conditions

(see e.g., Jin and Judd (2002) and Kollmann et al. (2011)), with the major errors for

dynamic problems often being Euler or Bellman equation errors. For example, Cai,

Judd, and Lontzek (2017) and Cai and Lontzek (2019) apply value function itera-

tion to obtain value/policy function approximations in each period. They randomly

choose a set of points in the state space at period t, compute new solutions at the

points from the Bellman equation using the value function approximation at t + 1,

then compare those true values with the values of the period-t value/policy function

approximation at these points. This procedure produces Bellman equation errors for

accuracy measures.

Cai, Judd, and Steinbuks (2017) apply NLCEQ to obtain policy function approx-

imations. As in Cai, Judd, and Lontzek (2017) and Cai and Lontzek (2019), they

randomly choose a set of points, ⇥, in the current-period state space, use the ap-

proximate policy function to compute the next-period states and decisions for each

point in ⇥, then compute Euler equation errors at those points. The same proce-

dure was employed in Jin and Judd (2002) and Kollmann et al. (2011) to investigate

the solution accuracy of the approximate global decision rule along a simulated path

for stationary problems. Those error estimation procedures require a global value

or policy function approximation, which could be challenging for high-dimensional

problems, particularly if there are kinks in the value or policy functions. The key

16

challenge is to adapt those error accuracy measures, developed to evaluate global

solutions of dynamic problems, to the SCEQ method, which produces only simulated

paths.

In SCEQ, we follow the idea of Jin and Judd (2002) and Kollmann et al. (2011)

to measure the Euler equation errors at the simulated states without constructing a

global function approximation. Instead, we develop an error formula that implicitly

constructs a local policy function approximation for each simulated state we use in

error checking.

For each simulated state at period t, we choose a set of quadrature nodes and then

use the state transition laws to obtain a set of states at period t+1, denoted St+1. For

each state in St+1, we use it as the starting state and t+1 as the starting period, then

solve the optimization problem (2) in Algorithm 1 for dynamic programming prob-

lems, or (5) in Algorithm 2 for competitive equilibrium problems. Thus, we obtain

decisions in t + 1 for all states in St+1, then use the corresponding quadrature rules

to estimate the Euler equation error at the time-t simulated state. The quadrature

formulas are called “interpolatory rules” because they implicitly use local information

to construct a local approximation adequate for the purpose of integration. That is,

we can compute the Euler equation errors at the simulated states without explicitly

constructing a policy function approximation.14

Note that for an infinite horizon problem, if we choose �s = bT�s then the infinite

horizon problem is viewed as a finite bT -horizon problem in SCEQ, so the truncation

error is not reflected in the Euler errors. However, for an infinite-horizon stationary

problem, if we choose a constant �s and a time-invariant “terminal” value function,

then the truncation error is reflected in the Euler errors (see Appendix A.1 for more

details). For some special cases like the example in Section 4.2.2, we can compute all

possible paths within a time of interest T ⇤, and use them to compute Euler equation

errors, with little computational cost.

If there are many shocks, a large number of quadrature nodes are required to

compute Euler equation errors, running the above accuracy measure method could

be computationally expensive. Here we also provide a weaker but no-cost indicator

14For low-dimensional problems with smooth policy functions, we can also compute Euler equation
errors by explicitly constructing policy function approximations as discussed in Section 3.6. This
method’s computational cost is low, but it requires extra coding for approximating policy functions.
More importantly, it would be challenging for problems with high dimensionality or non-smooth
policy functions.

17

for checking accuracy: we use the Monte Carlo simulation idea to estimate the Euler

equation error at the initial state only. Note that the initial state is given and fixed,

so Algorithm 1 or 2 has already applied the Monte Carlo simulation to generate m

simulated states in the second period and their corresponding decisions. That is, if

we use the Monte Carlo quadrature rule, then we have already had the next-period

states and decisions, so we can evaluate the Euler equation error at the initial state

by simply taking the average across the simulated solutions for the second period.

Following the Law of Large Numbers, the accuracy of the Euler equation error is

proportional to 1/
p
m. Our real business cycle examples show that the Euler error

at the initial state is close to the Euler errors across other periods.15

4 Numerical Examples

We apply SCEQ to solve four dynamic stochastic problems. The first is a simple op-

timal growth problem for illustration purposes only. The second example shows that

SCEQ can solve high-dimensional multi-country real business cycle problems with

occasionally binding constraints. The third example solves nonstationary stochastic

integrated assessment models with seven state variables (six of them are continuous)

and occasionally binding constraints. The last example shows that SCEQ can solve

stochastic competitive equilibrium problems like New Keynesian models with a zero

lower bound. All the examples show that SCEQ can obtain an accuracy of 0.1-1%. For

all examples, we use the GAMS programming language (McCarl et al., 2016) with the

CONOPT optimization solver (Drud, 1994), and run the SCEQ code in parallel on a

Mac Pro desktop computer with six cores.16 It took minutes or at most hours to solv-

ing each example. To further illustrate the implementation of SCEQ, we also provide

Matlab code with the fmincon optimization solver for the first simple example. The

code files are available on https://sites.google.com/site/yycai01/research.

15In some rare cases, the Euler error in the first period may not be enough. See Appendix A.3 for
an example.

16We run one GAMS procedure per core, while each procedure uses a di↵erent seed for generating
di↵erent pseudo random number sequences used in SCEQ and its accuracy measures.

18

4.1 Application to Optimal Growth Model

To illustrate the SCEQ method, our first example is a simple optimal growth problem

with stochastic discrete total factor productivity (TFP), eAt. We assume eAt = ✓tAt,

where At is the deterministic trend, and ✓t evolves according to the following stochas-

tic process

ln(✓t+1) = ⇢ ln(✓t) + �"t+1 (6)

where "t is a standard normal random variable, ⇢ = 0.95, and � = 0.02. We solve the

following optimal growth problem:

max
ct

E
(1X

t=0

�tu(ct)

)
(7)

s.t. Kt+1 = (1� �)Kt + ✓tAtK
↵
t � ct, t = 0, 1, 2, ...

where Kt is capital and ct is consumption at time t, � = 0.96 is the discount factor,

� = 0.1 is the depreciation rate, ↵ = 0.3, and u(c) = �c�1 is the utility function.

The initial states are K0 = 1 and ✓0 = 1. For simplicity, we assume At ⌘ A :=

(1� (1� �)�)/(↵�), so the non-stochastic steady state of capital is Kss = 1.

Assume that we are interested in the solutions for the first 20 periods (T ⇤ = 20).

Using the notation from Section 3, x := (K, ✓) is the vector of state variables, a := c

is the decision variable, and the transition laws are

Kt+1 = gKt (xt, at, ✏t) = (1� �)Kt + ✓tAK
↵
t � ct

✓t+1 = g✓t (xt, at, ✏t)

which can be written as xt+1 = gt(xt, at, ✏t), where ✏t is standard normal and gt =

(gKt , g✓t) is a vector of two functions. Here we use ✓t+1 = g✓(xt, at, ✏t) to represent the

transition law of ✓t, (6).

4.1.1 Implementation of SCEQ

In the initialization step of SCEQ, we choose �s = 30 and the “terminal” value

function Vs+�s(xs+�s) = u(AK↵
s+�s

��Ks+�s)/(1��). We assume that consumption

after time s+�s is always AK↵
s+�s

��Ks+�s so that capital after the “terminal” time

19

s+�s is always the “terminal” capital Ks+�s , as long as ✓t = 1.0 for all t � s+�s.17

In the optimization step of Algorithm 1 for solving problems at time s, the transition

equation xt+1 = gt(xt, at, 0) has ✓t replaced by its median conditional on the realized

value ✓is, denoted (✓is)
⇢t�s

, for simulation path i. That is, the optimization step of

Algorithm 1 solves the following problem:

max
ct

s+29X

t=s

�t�su(ct) + �30u(AK↵
s+30

� �Ks+30)/(1� �) (8)

s.t. Kt+1 = (1� �)Kt +
�
✓is
�⇢t�s

AK↵
t � ct, t = s, s+ 1, ..., s+ 29,

and the dynamic system starts with the simulated values (Ki
s, ✓

i
s) at time s for the

ith simulation path. We solve the deterministic finite-horizon problem (8) using the

CONOPT optimization solver to obtain the optimal consumption cis.

The simulation step of Algorithm 1 uses (Ki
s, ✓

i
s, c

i
s) to simulate the state values

at time s + 1: Ki
s+1

= (1 � �)Ki
s + ✓isA (Ki

s)
↵ � cis and ✓is+1

= (✓is)
⇢
exp (�✏is), where

✏is is a realized value of ✏s for the simulation path i. We generated 1,000 simulated

paths for the periods of interest (the first 20 periods),18 and the GAMS code took 4.2

minutes to run on a Mac Pro desktop computer.19

4.1.2 Accuracy Measures

The normalized Euler error for this problem is

����1� �E

u0 (ct+1)

u0 (ct)

�
1� � + ✓t+1A↵K

↵�1

t+1

�
| (Kt, ✓t)

����� (9)

17We tried �s = 50 and found that it has little impact on the solutions obtained with �s = 30.
18Since the problem is stationary, the solutions {(Ki

s, ✓
i
s, c

i
s) : 0  s < 20, 1  i  1000} follow the

same consumption policy function across time, so we can use them to construct our policy function
approximation. Since the domain of simulated states is narrow, we can use a degree-3 complete
Chebyshev polynomial of ln(K) and ln(✓) to have a good approximation of the policy function, in
which we use the least-squares fitting method to estimate the Chebyshev coe�cients.

19If we do not implement parallelism on the six compute cores, then the runtime is 18 minutes,
so the parallel e�ciency is 71%. We also tried a parallel Matlab code, which was much slower than
the GAMS code, taking 11 minutes to run on the same computer.

20

We can estimate it at the initial state by replacing the expectation with the average

across 1,000 simulated solutions in the second period:

�����1�
�

1000

1000X

i=1


u0 (ci

1
)

u0 (ci
0
)

⇣
1� � + ✓i

1
A↵

�
Ki

1

�↵�1
⌘
| (K0 = 1, ✓0 = 1)

������ (10)

The estimated normalized Euler error at the initial state is 1.9⇥10�4. We also employ

the accuracy measure method in Appendix A.1 and find that the L1 Euler error over

the 1,000 simulated paths is 5.7 ⇥ 10�4, only slightly larger than the Euler error at

the initial state.

4.1.3 Comparison with Value Function Iteration

We also solve this simple problem via value function iteration (VFI) to obtain the

optimal policy function for consumption, using the 7-node Gauss-Hermite quadrature

rule to compute the conditional expectation of the value function in the Bellman

equation (Bellman, 1957):

V (xt) = max
ct

u(ct) + �Et {V (xt+1)} (11)

subject to the transition laws of the state variable vector xt = (Kt, ✓t).

To make sure that next period’s ✓ is inside the approximation domain of ✓ for the

value function for all Gauss-Hermite quadrature nodes, we have to choose it from the

interval [0.223, 4.482].20 With this wide range for ✓, we have to choose a wide range for

K ([0.04, 29.1]) so that next period’s capital will be inside the approximation domain

ofK for all possible values of ✓.21 That is, the two-dimensional approximation domain

for the state variable vector (K, ✓) is [0.04, 29.1]⇥ [0.223, 4.482], much wider than the

ranges of the simulated states ([0.76, 1.3]⇥ [0.81, 1.25]).

This wide approximation domain requires a very high-degree approximation. For

this specific example we can do a nonlinear change of variables so that the value

function can be approximated with a lower degree approximation. Using ln(K) and

20The range is proportional to �/(1 � ⇢), so if ⇢ or � is larger, then the range has to be wider.
Moreover, if we use more Gauss-Hermite quadrature nodes, then the range will also be wider.

21If we use a narrower range forK, then next period’s capital could be binding at its bounds, which
creates kinks when approximating the value function, so the solution may be inaccurate (particularly
for those states near the bounds). Moreover, the kinks might prevent the value function iteration
process from converging.

21

ln(✓) as the state variables, we approximate the value function as a degree-30 complete

Chebyshev polynomial of ln(K) and ln(✓) (see, e.g., Cai and Judd (2014)). We also

approximate the corresponding consumption policy functions by a degree-30 complete

Chebyshev polynomial of ln(K) and ln(✓), denoted CVFI(K, ✓). The normalized L1

Euler error of the solution CVFI(K, ✓), defined as

max
K,✓

�����1� �E
"
u0 �CVFI(K+, ✓+)

�

u0 (CVFI(K, ✓))

�
1� � + ✓+A↵K

↵�1

+

�
| (K, ✓)

#�����

is 1.2⇥ 10�4, where ✓+ is next period’s productivity shock conditional on the current

period’s ✓, and K+ is next period’s capital: K+ = (1 � �)K + ✓AK↵ � CVFI(K, ✓).

Thus, we see the VFI solution is accurate enough for checking the accuracy of our

SCEQ solution.

For comparison with the VFI solution, we use the superscript “SCEQ” to denote

the SCEQ solution. We then compare ci,SCEQ

t and CVFI(Ki,SCEQ

t , Ai,SCEQ

t) for all 1 
i  1000 and t < 20. We find the L1 relative error of the SCEQ solution, defined as

max
0t<20,1i1000

���ci,SCEQ

t � CVFI(Ki,SCEQ

t , Ai,SCEQ

t)
���

CVFI(Ki,SCEQ

t , Ai,SCEQ

t)

is 0.0016, and the L1 relative error, defined as

1

20000

X

0t<20,1i1000

���ci,SCEQ

t � CVFI(Ki,SCEQ

t , Ai,SCEQ

t)
���

CVFI(Ki,SCEQ

t , Ai,SCEQ

t)

is 8.0 ⇥ 10�4.22 The relative errors are close to the Euler errors in Section 4.1.2, so

SCEQ’s own accuracy measures are also good for checking solution accuracy.

4.2 Application to Multi-Country Real Business Cycle Mod-

els

Den Haan, Judd, and Juillard (2011) introduce a multi-country real business cycle

model. Here we apply SCEQ to solve its modified version. We assume that there are

22We view the VFI optimal consumption policy to be the “true” solution as there is no analytical
solution for the optimal growth problem.

22

N countries with a capital stock state vector Kt = (Kt,1, ..., Kt,N), and the production

function for the jth country at time t is

Yt,j = ⇣t,jAt,j(Kt,j)
↵(`t,j)

1�↵, (12)

where `t,j is labor supply, ↵ is the expenditure share of capital in production, At,j is

the deterministic productivity trend, and ⇣t,j is a country-specific productivity shock.

The law of motion of capital is:

Kt+1,j = (1� �)Kt,j + It,j (13)

where It,j is investment and � is the depreciation rate of capital.

The utility function for the jth country is

uj(ct,j, `t,j) =
(ct,j)

1� 1
�j

1� 1

�j

� Bt,j
(`t,j)

1+
1
⌘j

1 + 1

⌘j

(14)

where ct,j is consumption, �j is the inter-temporal elasticity of substitution, ⌘j is the

Frisch elasticity of labor supply, and Bt,j is the relative weight of consumption and

leisure in the welfare function.

We solve the social planner’s problem, where aggregate utility is defined as

U(ct, `t) =
NX

j=1

⌧juj(ct,j, `t,j)

with ct = (ct,1, ..., ct,N) and `t = (`t,1, ..., `t,N), where ⌧j are country-specific weights.

The social planner has the following aggregate world resource constraint:

NX

j=1

(ct,j + It,j + �t,j) =
NX

j=1

Yt,j. (15)

where

�t,j ⌘
�

2
Kt,j

✓
It,j
Kt,j

� �

◆2

(16)

is an adjustment cost with � as the intensity of the friction. There is also a lower

bound for investment:

It,j � Imin, 8t, j (17)

23

That is, the social planner solves

max
c,`,I

E
 1X

t=0

�tU(ct, `t)

!
(18)

subject to the transition law (13) and feasibility constraints (15) and (17), for each t

and j, where � is the discount factor.

We set � = 0.99, ↵ = 0.33, � = 0.025, and � = 0.5. While SCEQ can also

solve real business cycle problem with heterogeneous preferences, for convenience, we

also let �j ⌘ � = 0.5, ⌘j = ⌘ = 0.5, ⌧j ⌘ 1, At,j ⌘ A = (1 � (1 � �)�)/(↵�), and

Bt,j ⌘ (1�↵)A(A��)�1/� so that the problem has a symmetric and stationary model

specification and the non-stochastic steady state for each country is Kss = 1, with

associated decisions `ss = 1, css = A� �, and Iss = �.

The initial state for the jth country is set as

K0,j = Kmin + (Kmax �Kmin)
j � 1

N � 1

with Kmin = 0.1 and Kmax = 10 for j = 1, ..., N . Note that we choose a wide range for

the initial capital levels across countries, to more closely replicate real-world cross-

country di↵erences. In contrast, most other methods for high-dimensional problems

solve around the steady state, assuming that all countries have similar levels of capital.

We choose Imin = 0.9Iss so the inequality (17) will bind frequently.

Since our policy functions in this example have kinks, it will be challenging to

apply other methods to solve our problem, as they will require a high-degree approx-

imation or an adaptive sparse grids approximation. Here we apply SCEQ to solve

three cases of our high-dimensional model with occasionally binding constraints and

a wide-ranging state space.

4.2.1 Case 1: Systematic Shock

Our first case assumes ⇣t,j ⌘ ⇣t is independent of country j and instead is a systematic

shock a↵ecting all countries. We assume that ⇣t is a Markov chain with three possible

24

values: 0.9, 1.0, and 1.1, and its transition probability matrix is

P =

2

64
0.8 0.2

0.2 0.6 0.2

0.2 0.8

3

75 . (19)

For SCEQ, we choose �s = 50 and the “terminal” value function Vs+�s(xs+�s) =

U(0.75AK↵
s+�s

, 1)/(1 � �), where K↵
s+�s

=
�
K↵

s+�s,1, ..., K
↵
s+�s,N

�
. We assume that

the labor supply after time s+�s is always 1, and that consumption after time s+�s

is always 75% of the deterministic output at time s + �s, with ⇣s+�s = 1.0. In the

optimization step of Algorithm 1, we replace ⇣t by its mean conditional on the realized

values of ⇣s for all t � s:

E (⇣t | ⇣s) = &⇡t,s,

where & = (0.9, 1.0, 1.1) is the vector of all possible values of ⇣t, and ⇡t,s is a column

vector representing the probability distribution conditional on the realized values of

⇣s. If the realized value of ⇣s is the kth element of &, we have ⇡t,s = P t�s⇡s,s, where

⇡s,s is a length-3 column vector with 1 for the kth element and 0 everywhere else.

The optimization problem (2) thus becomes

max
c,`,I

s+49X

t=s

�tU(ct, `t) + �50U(0.75AK↵
s+50

, 1)/(1� �) (20)

s.t. Kt+1,j = (1� �)Kt,j + It,j,
NX

j=1

(ct,j + It,j + �t,j) =
NX

j=1

�
E
�
⇣t | ⇣ is

�
A(Kt,j)

↵(`t,j)
1�↵

�
,

t = s, s+ 1, ..., s+ 49,

with the starting state Ks = Ki
s and ⇣s = ⇣ is at time s for the ith simulation path.

We first solve the problem with N = 10 countries and generate 1,000 simulated

paths of the first 20 periods, which are assumed to be the periods of interest. It took

11 minutes on a Mac Pro desktop computer. Figure 1 displays the distributions of

country 1’s optimal investments, I is,1. From period 18 onwards, more than 10% of

investments are binding at the lower bound Imin = 0.09.23 The L1 Euler error on the

23The other countries have a greater percentage of binding investments because they have higher
initial levels of capital. These countries have less incentive to invest as their capital levels are close
to the non-stochastic steady state in the long run, especially if their initial capital levels are higher

25

Figure 1: Distribution of Investment for Country 1
Country 1

0 2 4 6 8 10 12 14 16 18

Time

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

In
ve

st
m

e
n
t

Range of sample paths
Average
10% quantile
25% quantile
50% quantile
75% quantile
The lower bound

simulated paths is 0.0069 and the L1 Euler error is 0.0037, demonstrating that SCEQ

works well for high-dimensional problems with kinks in the policy function. We can

improve accuracy further by increasing �s, which reduces the truncation error. With

�s = 100, the L1 Euler error is 0.0024 and the L1 Euler error is 0.0011, but running

time increases to 19 minutes.

We also use SCEQ to solve problems with N = 20, 50, 100, and 200 countries,

for �s = 50. Solutions are similar to the ones derived for N = 10 countries. Table 1

reports the running times (in hours) of Algorithm 1 on a Mac Pro desktop computer,

i.e., the time taken to generate 1,000 simulation paths of the first 20 periods and the

Euler errors in L1 and L1 with �s = 50. The errors are almost identical to those for

N = 10, demonstrating that SCEQ’s accuracy is independent of dimensionality, as

SCEQ does not need to approximate value or policy functions. Even with N = 200

countries, SCEQ just needs 16.1 hours to run on a Mac Pro desktop computer. More-

over, an increase from N countries to 2N countries did not increase computational

time exponentially, showing that the SCEQ’s computational time is nearly linear to

the problem’s dimensionality.24

The last column of Table 1 also reports the Euler error at the initial state, which is

computed with the average across the 1,000 simulated solutions for the second period.

than the steady state level. For example, the initial capital of country 10 is Kmax = 10, much larger
than the steady state Kss = 1, so its level of investment is always binding at Imin in the initial
periods, until its capital is close to the steady state level.

24As with N = 10, the solutions’ accuracy for larger N can also be improved by setting �s = 100
to reduce truncation error, though it increases the computational time.

26

Table 1: Running Times and Errors for Case 1
N Time (in hours) Euler Error

for SCEQ L1 L1 Initial State
10 0.18 6.9(�3) 3.7(�3) 6.7(�3)
20 0.37 7.1(�3) 3.7(�3) 6.9(�3)
50 1.1 7.1(�3) 3.7(�3) 7.1(�3)
100 3.4 7.1(�3) 3.7(�3) 7.1(�3)
200 16.1 7.1(�3) 3.7(�3) 6.8(�3)
Note: a(�n) means a⇥ 10�n.

The Euler errors at the initial state are close to those in L1 across all simulated states,

because the largest error usually happens at the most extreme states and the first

period has the widest range of initial capital levels across countries.25 Thus we can

also use the Euler errors at the initial state to measure accuracy, as computing them

has almost no additional cost.

4.2.2 Case 2: Irreversible Risk

Sometimes a risk is irreversible, meaning that a shock leads to a permanent change to

the system. Irreversible risks often have a significant impact on decisions, so it might

seem like SCEQ would not be a suitable method, but here we show that SCEQ can

solve these problems with a high level of accuracy and only take several minutes of

computational time on a standard computer, much faster than Case 1 where the risk

was reversible.26

Our second case assumes that ⇣t,j ⌘ ⇣t is a systematic shock independent of

country j, described as a Markov chain with two possible values: &1 = 1.0 and

&2 = 0.95 and the following transition probability matrix:

P =

"
0.99 0

0.01 1

#
. (21)

The initial state is ⇣0 = 1.0. This shock represents a global risk that results in a

25The Euler errors at the initial state could be slightly larger than those in L1 across all simulated
states, because they use di↵erent methods of estimation: Euler errors at the initial state have
a standard error when using the average across the simulated solutions at the second period to
estimate the expectation.

26Appendix A.3 shows that SCEQ can also solve problems with an irreversible risk and endogenous
probabilities.

27

permanent 5% damage to economic output, with a 1% probability of occurrence in

each period (the shock can only occur once). This problem is nonstationary as ⇣t will

converge to 0.95. For this specific example, there are only T ⇤ di↵erent paths within

the time interval of interest T ⇤: the first path has ⇣t = 1.0 for all 0  t < T ⇤, the

second path assumes that the shock happens in the second period, i.e., ⇣0 = 1.0 and

⇣1 = ... = ⇣T ⇤�1 = 0.95, and so on, with the last path having ⇣0 = ... = ⇣T ⇤�2 = 1.0

and ⇣T ⇤�1 = 0.95. Thus, we can solve all di↵erent paths using SCEQ. Since the

stochastic problem becomes deterministic once the shock happens, we just need to

solve 2T ⇤�1 optimization problems characterized by (2), i.e., solve problem (20) with

E
�
⇣t | ⇣ is

�
=

8
<

:
P t�s
11

&1 + (1� P t�s
11

)&2, if ⇣ is = &1

&2, otherwise

where P11 = 0.99 is element (1, 1) of the transition probability matrix P .

With T ⇤ = 20 and �s = 50, SCEQ took only seconds for N  50, 3 minutes for

N = 100, and 17 minutes for N = 200 on a Mac Pro desktop computer without using

parallelism. The solutions show that investments bind frequently, and the Euler error

in L1 is around 0.0068 for each N , close to those from Case 1.

4.2.3 Case 3: Country-Specific Shocks

The last case assumes that every country has a country-specific shock ⇣t,j, which is

also correlated with a systematic shock a↵ecting all countries ("t+1). We assume ⇣t,j

is a continuous exogenous state variable, following the stochastic process

ln(⇣t+1,j) = ⇢ ln(⇣t,j) + �1✏t+1,j + �2"t+1

for each j = 1, ..., N , where ✏t+1,j, "t+1 ⇠ i.i.d. N (0, 1) (i.e., ✏t+1,j and "t+1 are in-

dependent and identical standard normal distributions across time and countries),

⇢ = 0.95, and �1 = �2 = 0.01. Thus, an N -country real business cycle model has 2N

state variables, of which N are exogenous, while Cases 1 and 2 have N endogenous

state variables and only one exogenous discrete state variable.

In the optimization step of Algorithm 1, we still solve (20) but replace E (⇣t | ⇣ is)
with (⇣ is,j)

⇢t�s
, the median of ⇣t,j at time t conditional on the realized value ⇣ is,j at

time s, with the starting state Ks = Ki
s and ⇣s,j = ⇣ is,j at time s for the ith simulation

28

Table 2: Running Times and Errors for Case 3
N Time (in hours) Euler Error at

for SCEQ the Initial State
10 0.18 6.7(�3)
20 0.33 6.8(�3)
50 0.97 7.1(�3)
100 3.3 7.3(�3)
200 16.4 7.2(�3)
Note: a(�n) means a⇥ 10�n.

path. We generate 1,000 simulated paths of the first 20 periods. The solutions show

that investments bind frequently an the lower bound Imin for each country.

Table 2 reports the running times (in hours) and Euler errors at the initial state,

for the number of countries N = 10, 20, 50, 100, and 200 with �s = 50. We see that

SCEQ solves the problems within minutes or hours, close to the computational times

in Case 1, although their dimensions are nearly double those in Case 1. Moreover, the

Euler errors at the initial state are close to those in Case 1. This example shows that

SCEQ’s e�ciency is independent of the number of exogenous state variables, because

exogenous state variables are replaced by their certainty equivalent approximation

(e.g. mean or median) in SCEQ so have almost no impact on SCEQ’s computational

time or accuracy.

4.3 Application to DSICE

Cai, Judd, and Lontzek (2017) and Cai and Lontzek (2019) solve a dynamic stochastic

integrated model of climate and economy (DSICE) that has economic and climate

risks. DSICE is a DSGE extension of DICE (Nordhaus, 2008, 2017), which has

exogenous paths for the population, TFP, land emissions, abatement cost, carbon

intensity, and exogenous radiative forcing. Cai, Judd, and Lontzek (2017) and Cai

and Lontzek (2019) employ Epstein-Zin preferences (Epstein and Zin, 1989), long-run

economic risk (Bansal and Yaron, 2004), and climate tipping risks (Lenton et al., 2008)

with endogenous tipping probabilities, uncertain duration, and uncertain damage.

Here we apply SCEQ to solve a simpler version of DSICE, in which we follow the

same deterministic economic and climate systems, but we assume a simple economic

risk and do not use Epstein-Zin preferences.27 All exogenous paths and parameter

27Appendix A.3 shows that SCEQ can solve another simpler version of DSICE with climate tipping

29

values follow Cai, Judd, and Lontzek (2017) and Cai and Lontzek (2019), except

those specified below.

4.3.1 Model Overview

We briefly describe the deterministic version of DSICE. LetMt = (MAT,t,MUO,t,MLO,t)>

be the carbon concentrations in the atmosphere, and upper and lower levels of the

ocean respectively. These concentrations evolve over time according to:

Mt+1 = �MMt + (Et, 0, 0)
> , (22)

where �M is a linear transition matrix, and Et = EInd,t + ELand,t is the annual total

carbon emissions, where EInd,t is industrial emissions and ELand,t is exogenous land

emissions. Let Tt = (TAT,t, TOC,t)> be temperature anomalies of the atmosphere and

ocean, following the law of motion

Tt+1 = �TTt + (⇠1Ft, 0)
> , (23)

where�T is a linear transition matrix and ⇠1 is a parameter. Ft = ⌘ log
2
(MAT,t/M⇤

AT
)+

FEX,t is global radiative forcing, where ⌘ is a parameter, M⇤
AT

is the pre-industrial

atmospheric carbon concentration, and FEX,t is the exogenous radiative forcing.

The economic system has a state variable, capital (Kt), which is used to define

gross economic output Yt = AtK↵
t L

1�↵
t , where ↵ is a parameter, At is exogenous TFP,

and Lt is the exogenous global population size at time t. Output is reduced by the

temperature anomaly according to the damage factor

⌦ (TAT,t) =
1

1 + ⇡1TAT,t + ⇡2(TAT,t)2
,

where ⇡1 and ⇡2 are parameters. Economic production has industrial emissions

EInd,t = �t(1 � µt)Yt, which is proportional to gross output but can be reduced

by mitigation, measured by the emission control rate µt 2 [0, 1], and �t is exogenous

carbon intensity. The mitigation cost is t = ✓1,tµ
✓2
t Yt, where ✓1,t is the exogenous

risks and endogenous tipping probabilities. It took only two minutes on a single compute core and
gave an acceptable solution accuracy.

30

abatement cost and ✓2 is a parameter. Thus the transition law of capital is

Kt+1 = (1� �)Kt + ⌦ (TAT,t)Yt � Ct � t, (24)

where � is the depreciation rate and Ct is consumption. Note that the emission control

rate µt may be binding at its upper bound, so this problem has an occasionally binding

constraint.

The deterministic model solves the following social planner’s problem

max
Ct,µt

1X

t=0

�tu(Ct/Lt)Lt (25)

subject to the transition laws (22)-(24) of six state variables: Mt, Tt, and Kt, where

Ct and µt are decision variables, � is the discount factor, and u is a power utility

function u(c) = c1��/(1� �) with � = 1.45 denoting the elasticity of marginal utility

of per capita consumption c as in DICE-2016 (Nordhaus, 2017). The initial states

are observed and given.

Now we add a simple economic risk. We assume that TFP, eAt, is stochastic:
eAt = ⇣tAt, where At is the deterministic trend and ⇣t is a Markov chain representing

a productivity shock. For simplicity, we assume that ⇣t follows the same distribution

and transition probabilities as in Section 4.2, that is, ⇣t has three possible values: 0.9,

1.0, and 1.1, and its transition probability matrix is given by (19). Gross economic

output is Yt = eAtK↵
t L

1�↵
t , and we solve the social planner’s problem

max
Ct,µt

E
(1X

t=0

�tu(Ct/Lt)Lt

)
(26)

subject to the transition laws (22)-(24) and the Markov chain of ⇣t.

4.3.2 Implementation of SCEQ

Because DSICE is a nonstationary stochastic problem with six endogenous continu-

ous state variables, one exogenous discrete state variable, and occasionally binding

constraints, it is challenging to solve it using standard methods like VFI unless we

can choose the appropriate approximation methods and time-varying approximation

domains as in Cai, Judd, and Lontzek (2017) and Cai and Lontzek (2019). Here we

31

Figure 2: Carbon Tax for DSICE with Economic Risk
Carbon Tax

2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Year

50

100

150

200

250

300

$
/t
C

Range of sample paths
Average
10% quantile
25% quantile
50% quantile
75% quantile
90% quantile
Deterministic solution

can apply SCEQ to overcome these challenges.28 As in Section 4.1, in the optimiza-

tion step of Algorithm 1we replace ⇣t by its mean conditional on the realized value of

⇣s for all t � s.

Figure 2 displays distributions of the optimal carbon taxes in the first T ⇤ = 100

years from 1,000 simulation paths obtained by SCEQ, which took 1.8 hours to run

on a Mac Pro desktop computer. The economic risk has little impact on the initial

carbon tax, and the average or median path is almost identical to the deterministic

solution. These results are di↵erent from those in the stochastic growth benchmark

example of Cai, Judd, and Lontzek (2017) and Cai and Lontzek (2019), but Figure

2 still shows that the optimal carbon tax is stochastic and has a wide range in 2100:

$185 to $282 per ton of carbon, although the range in Cai, Judd, and Lontzek (2017)

and Cai and Lontzek (2019) is much wider. The di↵erences from the results of Cai,

Judd, and Lontzek (2017) and Cai and Lontzek (2019) arise because here we do not

use long-run economic risk or Epstein-Zin preferences.

28We follow DICE by truncating the infinite-horizon problem to a 600-year problem with the
terminal value function being zero everywhere, as reasonable terminal conditions at the 600th year
have little impact on the solution in the first 100 years — the time of interest — due to the small
compound discount factor and a small magnitude of utility in the long run (as consumption will be
large and the elasticity of marginal utility � > 1). In SCEQ, we let �s = 600� s and the terminal
value function is V600(x600) ⌘ 0.

32

4.3.3 Accuracy Measures

We compute the Euler errors, specified in Appendix A.2, at the simulated states using

the accuracy measure method in Appendix A.1. We find that the L1 Euler error is

0.0011 and the L1 Euler error is 1.1⇥10�4. We also compare the SCEQ solution with

the solution obtained from VFI for the first 100 years, as in Cai, Judd, and Lontzek

(2017) and Cai and Lontzek (2019). We use time-varying approximation domains

and degree-6 complete Chebyshev polynomials for approximating value functions in

VFI. As in Section 4.1, we use the policy functions from VFI to compute the decisions

at the realized SCEQ simulated states, then compare them with the corresponding

SCEQ simulated decisions. For the optimal carbon taxes in the first 100 years, the

relative L1 error is 0.023 and the relative L1 error is 0.0031, if we treat the VFI

solution as the “true” solution.29 In addition, the relative L1 error is 0.0028 and

0.013 for Ct and µt respectively, and the relative L1 error is 0.0024 and 0.0017 for Ct

and µt respectively.30

4.4 Application to a New Keynesian Model with Zero Lower

Bound

We have shown that with Algorithm 1, SCEQ can solve stationary or nonstationary

stochastic dynamic programming problems with high dimensionality and occasionally

binding constraints. Here we show that using Algorithm 2, SCEQ can also solve

stochastic competitive equilibrium problems with occasionally binding constraints.

Our example uses the New Keynesian model with a zero lower bound (ZLB), from

Guerrieri and Iacoviello (2015) and Cai, Judd, and Steinbuks (2017).31

29The VFI solutions only have an accuracy of 0.1-1% because we use degree-6 complete Cheby-
shev polynomial approximations, so the relative errors are biased. Obtaining an additional digit of
accuracy from VFI will require a much higher degree approximation, making it too time consuming
to run it on a desktop computer. For instance, we use a degree-30 complete Chebyshev polynomial
approximation to obtain the L1 Euler error 1.2⇥10�4 for the VFI solution of the example in Section
4.1, while it only requires a degree-10 complete Chebyshev polynomial approximation to obtain the
L1 Euler error 6.4⇥ 10�4, or a degree-20 complete Chebyshev polynomial approximation to obtain
the L1 Euler error 3.9⇥ 10�4.

30Note that the carbon tax is 1000✓1,t✓2µ
✓2�1
t /�t, so the relative error of µt is amplified when

computing the relative error of carbon taxes.
31New Keynesian DSGE models have been studied frequently in the literature, see e.g., Woodford

(2003); Negro et al. (2007); Smets and Wouters (2007); Gali (2008); Fernandez-Villaverde et al.
(2015); Maliar and Maliar (2015).

33

4.4.1 Model Overview

Since we use the exact same New Keynesian model as in Cai, Judd, and Steinbuks

(2017), we only give a brief description here. The model consists of a representative

household, a government, a final-good firm, and intermediate firms. The government

consumes a fraction sg of the final good and issues bonds every period with a nom-

inal interest rate rt which has a zero lower bound. The final-good firm purchases

intermediate goods from intermediate firms to produce the final good yt and sell it

at the price pt. The intermediate firms are assumed to have Calvo-type prices for

the intermediate goods: in each period a fraction 1 � ✓ of the firms have optimal

prices and the remaining fraction keep the same price as the previous period. At

each period t, the representative household consumes the remaining fraction 1 � sg

of the final good, buys newly issued bonds, sells the expired bonds, earns wages from

labor supply, receives a lump-sum transfer from the government, and receives profits

from all firms. The representative household wants to maximize the present value

of expected utilities subject to a budget constraint. The discount factor �t is the

stochastic process

ln(�t+1) = (1� ⇢) ln(�⇤) + ⇢ ln(�t) + �✏t+1 (27)

where ✏t ⇠ i.i.d. N (0, 1), and �⇤ is the non-stochastic steady state discount factor.

The New Keynesian model has one endogenous state variable (vt) that represents

price dispersion:

vt+1 = (1� ✓)q�↵
t + ✓⇡↵

t vt (28)

where ⇡t ⌘ pt/pt�1 is the gross inflation rate, and

qt =

✓
1� ✓⇡↵�1

t

1� ✓

◆ 1
1�↵

(29)

where ↵ is a parameter in the production function of the final-good firm. Appendix

A.5 derives the following equilibrium equations:

34

1 =
1

�t,1

�
y1+⌘
t vt+1 + ✓Et

�
�t+1⇡

↵
t+1

�t+1,1

 �
(30)

1 =
1

�t,2

✓
1

1� sg
+ ✓Et

�
�t+1⇡

↵�1

t+1
�t+1,2

 ◆
(31)

qt =
↵�t,1

(↵� 1)�t,2
(32)

1 = Et

⇢
�t+1

1 + rt
⇡t+1

yt
yt+1

�
(33)

zt = (1 + r⇤)
⇣ ⇡t

⇡⇤

⌘�⇡
✓
yt
y⇤

◆�y

� 1 (34)

rt = max(zt, 0) (35)

where �t,1 and �t,2 are defined in Appendix A.5, and ⇡⇤, r⇤, and y⇤ are the steady-state

gross level of inflation, nominal interest rate, and output, respectively.

We apply Algorithm 2 to solve this stochastic competitive equilibrium problem.

The state vector is xt = (�t, vt), with the transition laws (27) and (28). The variables

�t,1, �t,2, and yt are viewed as action variables at, while the other variables qt, ⇡t,

zt and rt can be substituted by expressions of �t,1, �t,2, and yt, according to (29),

(32), (34), and (35). Except the transition laws, the equilibrium conditions are (29)-

(35). The initial states are �0 = �⇤ and v0 = v⇤, where v⇤ is the steady state price

dispersion. We choose �s = 200 and let the “terminal” decision rule a⇤
s+�s

(xs+�s)

be given as �s+�s,1 ⌘ �⇤
1
, �s+�s,2 ⌘ �⇤

2
, and ys+�s = y⇤, where �⇤

1
, �⇤

2
, and y⇤ are

the steady state values of �t,1, �t,2, and yt respectively. In the optimization step

of Algorithm 2, we replace the expectations in (30), (31), and (33) by their median

conditional on the realized values of �s. That is, (30), (31), and (33) are defined as

1 =
1

�t,1

⇣
y1+⌘
t vt+1 + ✓e�t+1⇡

↵
t+1

�t+1,1

⌘
(36)

1 =
1

�t,2

✓
1

1� sg
+ ✓e�t+1⇡

↵�1

t+1
�t+1,2

◆
(37)

1 = e�t+1

1 + max(zt, 0)

⇡t+1

yt
yt+1

(38)

where
e�t+1 = exp

⇣
(1� ⇢) ln(�⇤) + ⇢ ln(e�t)

⌘

35

Figure 3: Simulated Interest Rates and the Policy Function for Interest Rate

0 2 4 6 8 10 12 14 16 18

Time

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

in
te

re
s
t
ra

te

Range of sample paths
Average
2% quantile
10% quantile
25% quantile
50% quantile
75% quantile
The lower bound

for t = s, s + 1, ..., s + �s � 1, and e�s = �i
s is the realized value of �s in the ith

simulation path.

We assume that the time of interest, T ⇤, is 20 periods. We generated 1,000 sim-

ulation paths using Algorithm 2, which only took 4 minutes on a Mac Pro desktop

computer. Using the simulated solutions, we also construct a policy function approx-

imation for zt using a degree-4 complete Chebyshev polynomial Z(�, v), and then

determine the interest rate as r = max(Z(�, v), 0). Figure 3 displays the distribu-

tion of interest rates (the left panel) and the policy function approximation for the

interest rate (the right panel), showing that some interest rates are binding at zero.

The Euler error over the simulated solutions is 0.0032 in L1. This example shows

that SCEQ can solve a stochastic competitive equilibrium problem with occasionally

binding constraints.

5 Discussion

If utility ut is a common power function with a relative risk aversion parameter �,

then � plays two roles: risk aversion and the inverse of the intertemporal elasticity

of substitution (IES) for time-separable power utilities. The role of the risk aversion

parameter disappears in the certainty equivalent approximation model (2), but the

inverse of IES, 1/�, still a↵ects the solution to the deterministic model (2). For this

reason, the SCEQ method cannot work for dynamic portfolio problems, where the

36

degree of risk aversion is important for risky portfolio choices, dynamic stochastic

problems with Epstein–Zin preferences in which the risk aversion and the IES are

separated (e.g., Cai, Judd, and Lontzek (2017); Cai and Lontzek (2019)), or static

problems, where � only represents risk aversion. However, for many dynamic stochas-

tic problems with time-separable power utilities, the role of the inverse of IES often

dominates the role of risk aversion in a↵ecting the solutions, so the SCEQ method

can solve them accurately.

When we solve a dynamic stochastic problem, the first step is to choose the com-

putational method. Unfortunately we cannot know which method can work or is

more e�cient a priori. It will be frustrating to spend an enormous amount of time

and resources to try one method but finally discover it does not work well. For exam-

ple, before checking Euler errors, NLCEQ has to first solve all optimization problems

corresponding to the approximation nodes, VFI or time iteration has to wait until

it converges before obtaining optimal value or policy functions, and GSSA and the

EDS method have to run a large number of simulated paths to approximate policy

functions.

With SCEQ, we can apply the accuracy measure method to do an early and fast

check with only a small amount of computational time and resources. For example, we

can just assume the time of interest to be T ⇤ = 2 and obtain m simulated paths with

only two periods using Algorithm 1 or 2, then compute the Euler equation error at

the initial state. If it is not small (with a large �s), then we switch to other solution

methods. That is, a small Euler equation error at the initial state is a necessary

condition for choosing SCEQ. Alternatively, we can just solve only one or several

simulated paths (i.e., choosing a small m), and compute the Euler equations errors

along the small number of simulated paths. If they are not small (with a large �s),

then we switch to other solution methods. These two methods can also be applied to

check if the SCEQ code has bugs or �s is large enough: we suggest using the same

code but changing the variances of the random variables ✏t to be nearly zero.32 Since

SCEQ solves deterministic models very accurately, if the computed Euler equation

errors for the nearly-zero-variance case are not nearly zero, it implies that there are

bugs in the code or that �s is not large enough (i.e., the truncation error is large).

32If the problem is stationary and the initial state is equal or close to the non-stochastic steady
state, then we suggest changing the initial state for debugging. Otherwise, with the nearly zero
variances and some terminal conditions, the simulated states could be always close to the non-
stochastic steady state so then the Euler equation errors would be small.

37

Thus, we can know almost a priori if SCEQ works for a specific problem.

For some special cases, such as problems with an irreversible risk (Section 4.2.2),

the number of all di↵erent possible paths within a timeframe of interest T ⇤ may

be smaller than m, the number of (di↵erent) simulated paths. In such cases, we

can compute the solutions along all di↵erent paths in the time of interest and use

them to generate m simulation paths with little computational cost. For example,

in Section 4.2.2, the number of all di↵erent possible paths in the first 20 periods is

just 19, so we solve them all and use these 19 paths to simulate 10,000 paths with

little additional cost. Thus, for that example, SCEQ took only minutes on a Mac

Pro desktop computer to solve a DSGE with 201 state variables and occasionally

binding constraints, much faster than NLCEQ or other methods like VFI, even if

they use sparse grid methods. But for general problems, the number of all di↵erent

possible paths within a timeframe of interest is often much larger than m, which is

often chosen to be 1,000 or 10,000. For example, if there is a binary stochastic state

variable and none of its transition probabilities are zero, then there are 220 ⇡ 106

di↵erent paths in the first 20 periods.

Some rare cases may require high-accuracy solutions that SCEQ cannot provide,

but we can still use SCEQ to provide (time-varying) approximation domains and

initial guesses for other methods that may have higher accuracy (and much higher

computational costs). For example, in the simulation step of SCEQ, we can always

choose the worst scenario or the best scenario to obtain a lower or upper bound

of states for constructing (time-varying) approximation domains, which can then be

used for other methods.

6 Conclusions

This paper introduces a novel computational method, SCEQ, for solving dynamic

stochastic problems. We have shown that SCEQ can be much more e�cient and stable

than other common computational methods such as NLCEQ and VFI, while retaining

a solution accuracy of 0.1-1%. We have also shown that SCEQ can solve problems

that other existing methods cannot, such as problems with both high dimensionality

and occasionally binding constraints.

SCEQ is simple but powerful. It avoids complicated computational techniques for

approximation and integration to make it as simple as perturbation methods, but it

38

still provides globally valid solutions while perturbation methods provide only locally

valid solutions. Using a standard computer and an e�cient optimization solver, SCEQ

is stable and can provide accurate solutions for many dynamic stochastic problems

with high dimensionality, occasionally binding constraints, nonstationarity, and/or a

wide range of state space, without using an extensive amount of resources. Moreover,

SCEQ does not su↵er from the curse of dimensionality. SCEQ provides distributions

of solutions which can be used to compute stochastic properties, such as means,

variances, covariances, and trends, so it can have extensive use in economic analysis.

For example, structural estimation such as the GMM method can apply SCEQ to

estimate structural parameters.

References

Adjemian, Stéphane, Houtan Bastani, Michel Juillard, Fréderic Karamé, Junior Maih,

Ferhat Mihoubi, George Perendia, Johannes Pfeifer, Marco Ratto, and Sébastien

Villemot. 2011. “Dynare: Reference Manual Version 4.” Dynare Working Papers 1,

CEPREMAP. URL https://www.dynare.org.

Aruoba, S. Boragan, Jesus Fernandez-Villaverde, and Juan F. Rubio-Ramirez. 2006.

“Comparing solution methods for dynamic equilibrium economies.” Journal of

Economic Dynamics and Control 30 (12):2477–2508.

Bansal, Ravi and Amir Yaron. 2004. “Risks for the Long Run: A Potential Resolution

of Asset Pricing Puzzles.” The Journal of Finance 59 (4):1481–1509.

Bellman, Richard. 1957. Dynamic Programming. Princeton University Press.

Bertsekas, D. 2005. Dynamic Programming and Optimal Control, vol. I. Athena

Scientific, Nashua.

———. 2007. Dynamic Programming and Optimal Control, vol. II. Nashua: Athena

Scientific.

Blanchard, Olivier Jean and Charles M. Kahn. 1980. “The Solution of Linear Di↵er-

ence Models under Rational Expectations.” Econometrica 48 (5):1305–1311.

Brumm, Johannes and Simon Scheidegger. 2017. “Using Adaptive Sparse Grids to

Solve High-Dimensional Dynamic Models.” Econometrica 85 (5):1575–1612.

39

Cai, Yongyang. 2019. “Computational methods in environmental and resource eco-

nomics.” Annual Review of Resource Economics 11:59–82.

Cai, Yongyang and Kenneth L. Judd. 2013. “Shape-preserving Dynamic Program-

ming.” Mathematical Methods of Operations Research 77 (3):407–421.

———. 2014. “Advances in Numerical Dynamic Programming and New Applica-

tions.” In Handbook of Computational Economics, vol. 3, edited by Kenneth L.

Judd and Karl Schmedders. Amsterdam: Elsevier, 479–516.

Cai, Yongyang, Kenneth L. Judd, and Thomas S. Lontzek. 2017. “The

social cost of carbon with economic and climate risks.” Hoover eco-

nomics working paper 18113. URL https://www.hoover.org/research/

social-cost-carbon-economic-and-climate-risk.

Cai, Yongyang, Kenneth L. Judd, and Jevgenijs. Steinbuks. 2017. “A Nonlinear

Certainty Equivalent Approximation Method for Dynamic Stochastic Problems.”

Quantitative Economics 8 (1):117–147.

Cai, Yongyang and Thomas S. Lontzek. 2019. “The social cost of carbon with eco-

nomic and climate risks.” Journal of Political Economy 127 (6):2684–2734.

Cai, Yongyang, Jevgenijs Steinbuks, Kenneth L. Judd, Jonas Jaegermeyr, and

Thomas W. Hertel. 2020. “Modeling Uncertainty in Large Natural Resource Allo-

cation Problems.” World Bank Policy Research Working Paper 9159.

Caldara, Dario, Jesus Fernandez-Villaverde, Juan F. Rubio-Ramirez, and Wen Yao.

2012. “Computing DSGE models with recursive preferences and stochastic volatil-

ity.” Review of Economic Dynamics 15 (2):188–206.

Czyzyk, J., M. P. Mesnier, and J. J. More. 1998. “The NEOS server.” IEEE Com-

putational Science & Engineering 5:68–75.

Den Haan, Wouter J., Kenneth L. Judd, and Michel Juillard. 2011. “Computational

suite of models with heterogeneous agents II: Multi-country real business cycle

models.” Journal of Economic Dynamics and Control 35 (2):175–177.

Drud, A. S. 1994. “CONOPT – A Large Scale GRG Code.” ORSA Journal on

Computing 6:207–216.

40

Epstein, Larry G. and Stanley E. Zin. 1989. “Substitution, Risk Aversion, and the

Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework.”

Econometrica 57 (4):937–969.

Fernandez-Villaverde, Jesus, Grey Gordon, Pablo Guerron-Quintana, and Juan F.

Rubio-Ramirez. 2015. “Nonlinear adventures at the zero lower bound.” Journal of

Economic Dynamics and Control 57:182–204.

Fernandez-Villaverde, Jesus and Oren Levintal. 2018. “Solution Methods for Models

with Rare Disasters.” Quantitative Economics 9:903–944.

Fernandez-Villaverde, Jesus, Juan Rubio-Ramirez, and Frank Schorfheide. 2016. “So-

lution and Estimation Methods for DSGE Models.” In Handbook of Macroeco-

nomics, vol. 2, edited by John B. Taylor and Harald Uhlig, chap. 9. Elsevier,

527–724.

Gali, Jordi. 2008. Monetary Policy, Inflation, and the Business Cycle: An Intro-

duction to the New Keynesian Framework. Princeton, N.J: Princeton University

Press.

Gill, Philip E., Walter Murray, and Michael A. Saunders. 2005. “SNOPT: An SQP

Algorithm for Large-Scale Constrained Optimization.” SIAM Review 47 (1):99–

131.

Grune, Lars, Willi Semmler, and Marleen Stieler. 2015. “Using nonlinear model pre-

dictive control for dynamic decision problems in economics.” Journal of Economic

Dynamics and Control 60:112–133.

Guerrieri, Luca and Matteo Iacoviello. 2015. “OccBin: A toolkit for solving dy-

namic models with occasionally binding constraints easily.” Journal of Monetary

Economics 70:22–38.

Haan, Wouter J. den and Albert Marcet. 1990. “Solving the Stochastic Growth

Model by Parameterizing Expectations.” Journal of Business & Economic Statis-

tics 8 (1):31–34.

Jin, H.-H. and K.L. Judd. 2002. “Perturbation methods for general dynamic stochas-

tic models.” Working paper, Stanford University.

41

Judd, Kenneth L. 1992. “Projection methods for solving aggregate growth models.”

Journal of Economic Theory 58 (2):410–452.

———. 1998. Numerical Methods in Economics. The MIT press.

Judd, Kenneth L. and Sy-Ming Guu. 1993. “Perturbation Solution Methods for Eco-

nomic Growth Models.” In Economic and Financial Modeling with Mathematica,

edited by Hal R. Varian. New York, NY: Springer, 80–103.

Judd, Kenneth L., Lilia Maliar, and Serguei Maliar. 2011. “Numerically stable and

accurate stochastic simulation approaches for solving dynamic economic models.”

Quantitative Economics 2 (2):173–210.

———. 2012. “Merging Simulation and Projection Approaches to Solve High-

Dimensional Problems.” Tech. Rep. w18501, National Bureau of Economic Re-

search. URL https://www.nber.org/papers/w18501.

Judd, Kenneth L., Lilia Maliar, Serguei Maliar, and Rafael Valero. 2014. “Smolyak

method for solving dynamic economic models: Lagrange interpolation, anisotropic

grid and adaptive domain.” Journal of Economic Dynamics and Control 44:92–123.

Juillard, Michel and Sebastien Villemot. 2011. “Multi-country real business cycle

models: Accuracy tests and test bench.” Journal of Economic Dynamics and

Control 35 (2):178–185.

Kollmann, Robert, Serguei Maliar, Benjamin A. Malin, and Paul Pichler. 2011. “Com-

parison of solutions to the multi-country Real Business Cycle model.” Journal of

Economic Dynamics and Control 35 (2):186–202.

Kydland, Finn E. and Edward C. Prescott. 1982. “Time to Build and Aggregate

Fluctuations.” Econometrica 50 (6):1345–1370.

Lenton, T. M., H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, and H. J.

Schellnhuber. 2008. “Tipping elements in the Earth’s climate system.” Proceedings

of the National Academy of Sciences 105 (6):1786–1793.

Levintal, Oren. 2018. “Taylor Projection: A New Solution Method for Dynamic

General Equilibrium Models.” International Economic Review 59:1345–1373.

42

Ljungqvist, L. and T.J. Sargent. 2000. Recursive Macroeconomic Theory. Cambridge:

MIT Press.

Magill, Michael J. P. 1977. “A local analysis of N-sector capital accumulation under

uncertainty.” Journal of Economic Theory 15 (1):211–219.

Maliar, Lilia and Serguei Maliar. 2015. “Merging simulation and projection ap-

proaches to solve high-dimensional problems with an application to a new Key-

nesian model.” Quantitative Economics 6 (1):1–47.

Maliar, Lilia, Serguei Maliar, John B. Taylor, and Inna Tsener. 2020. “A tractable

framework for analyzing a class of nonstationary Markov models.” Quantitative

Economics 11 (4):1289–1323.

Malin, Benjamin A., Dirk Krueger, and Felix Kubler. 2011. “Solving the multi-

country real business cycle model using a Smolyak-collocation method.” Journal

of Economic Dynamics and Control 35 (2):229–239.

Marcet, Albert and Guido Lorenzoni. 1998. “Parameterized Expectations Ap-

proach: Some practical issues.” In Computational Methods for Study of Dynamic

Economies, edited by R. Marimon and A. Scott. New York: Oxford University

Press, 143–171.

McCarl, B., A. Meeraus, P. van der Eijk, M. Bussieck, S. Dirkse, and F. Nelissen.

2016. McCarl Expanded GAMS User Guide Version 24.6. URL https://www.

gams.com/mccarlGuide. Accessed on December 19, 2020.

Miranda, Mario J. and Paul L. Fackler. 2002. Applied Computational Economics and

Finance. The MIT Press.

Negro, Marco Del, Frank Schorfheide, Frank Smets, and Rafael Wouters. 2007. “On

the Fit of New Keynesian Models.” Journal of Business & Economic Statistics

25 (2):123–143.

Nordhaus, William D. 2008. A Question of Balance: Weighing the Options on Global

Warming Policies. Yale University Press.

———. 2017. “Revisiting the social cost of carbon.” Proceedings of the National

Academy of Sciences of the United States of America 114 (7):1518–1523.

43

Rust, John. 1996. “Numerical Dynamic Programming in Economics.” In Handbook

of Computational Economics, vol. 1, edited by H. M. Amman, D. A. Kendrick, and

J. Rust. Elsevier, 619–729.

———. 1997. “Using Randomization to Break the Curse of Dimensionality.” Econo-

metrica 65 (3):487–516.

———. 2019. “Has Dynamic Programming Improved Decision Making?” Annual

Review of Economics 11 (1):833–858.

Scheidegger, Simon and Ilias Bilionis. 2019. “Machine learning for high-dimensional

dynamic stochastic economies.” Journal of Computational Science 33:68–82.

Smets, Frank and Rafael Wouters. 2007. “Shocks and Frictions in US Business Cycles:

A Bayesian DSGE Approach.” American Economic Review 97 (3):586–606.

Smolyak, S.A. 1963. “Quadrature and interpolation formulas for tensor products of

certain classes of functions.” Soviet Mathematics Doklady 4:240–243.

Woodford, Michael. 2003. Interest and Prices: Foundations of a Theory of Monetary

Policy. Princeton, N.J. ; Woodstock, Oxfordshire England: Princeton University

Press.

44

