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1 Introduction

Understanding the spatial concentration of economic activity is one of the most central chal-
lenges in economics. Traditional theories of cities emphasize production decisions and the
costs of workers commuting between their workplace and residence. However, much of the
travel that occurs within urban areas is related not to commuting but rather to the consump-
tion of nontraded services, such as trips to restaurants, coffee shops and bars, shopping centers,
cultural venues, and other services. Although several scholars have emphasized the “consumer
city,” two major challenges in this area are a limited ability to measure non-commuting trips
and the absence of a widely-accepted theoretical model of travel for consumption. In this paper,
we provide new theory and evidence on the role of consumption and workplace access in under-
standing the spatial distribution of economic activity. We combine smartphone data including
high-frequency location information with spatially-disaggregated census data to measure com-
muting and non-commuting trips within the Greater Tokyo metropolitan area. Guided by our
empirical findings, we develop a quantitative urban model that incorporates both workplace and
consumption access. We use the model to evaluate the role of consumption access in explaining
the observed spatial variation in economic activity. We show that incorporating consumption
access is quantitatively relevant for evaluating the observed impact of a new subway line.

We first use our smartphone data to provide fine resolution evidence on travel within the
Greater Tokyo metropolitan area. Our data come from a major smartphone mapping applica-
tion in Japan (Docomo Chizu NAVI), which records the Geographical Positioning System (GPS)
location of each device every 5 minutes. In July of 2019, the data covers about 545,000 users,
with 1.4 billion data points. We measure each location visited by a user using a “stay,” which
corresponds to no movement within 100 meters for 15 minutes. We designate each anonymized
user’s home location as her most frequent location (defined by groups of geographically con-
tiguous stays) and her work location as her second most frequent location. We allocate non-
commuting trips to other locations into different types using spatially-disaggregated census data
on employment by sector. We validate our smartphone commuting measures by showing that
they are highly correlated with the measures from the official census data.

Having validated our smartphone data, we show that focusing solely on these commuting
trips provides a misleading picture of travel patterns. First, we show that non-commuting trips
are more frequent than commuting trips, so that concentrating solely on commuting trips sub-
stantially underestimates the amount of travel within urban areas. Second, we show that these
non-commuting trips are closely related to the availability of nontraded services, which is con-
sistent with our modelling of them as travel to consume non-traded services. Third, we find
that non-commuting trips have destinations closer to home than commuting trips, with semi-
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elasticities of travel flows to travel times that are larger in absolute value than those for com-
muting trips. Therefore, the spatial patterns of non-commuting trips are not well approximated
by those for commuting trips. Fourth, we show that trip chains are a relevant feature of the data,
in which non-commuting trips occur along the journey between home and work, highlighting
the relevance of jointly modelling commuting and non-commuting trips.

We next develop quantitative theory of internal city structure that incorporates both com-
muting and consumption trips. We consider a city that consists of a discrete set of blocks that
differ in productivity, amenities, supply of floor space and transport connections. Consumer
preferences are defined over consumption of a traded good, a number of different types of
nontraded services, and residential floor space. The traded good and nontraded services are
produced using labor and commercial floor space. We assume that workers’ location decisions
are nested. First, workers observe idiosyncratic preferences for amenities in each location and
choose where to live. Second, workers observe idiosyncratic productivities in each workplace
and sector, and choose where to work. Third, workers observe idiosyncratic qualities for the
non-traded services supplied by each location, and choose where to consume these non-traded
services. Fourth, workers observe idiosyncratic taste shocks for each route to consume these
non-traded services, and choose which of these routes to take (e.g. home-work-consume-home
versus home-consume-home). When making each of these choices, workers take into account
their expected access to surrounding locations. Population mobility implies that workers must
obtain the same expected utility from all populated locations.

We show that the model implies extended gravity equations for commuting and non-commuting
trips, which provide good approximations to the observed data. We use these extended gravity
equations to estimate a theoretically-consistent measure of travel access. Intuitively, we use the
observed trips in the data and the structure of the model to reveal the relative attractiveness of
locations for employment and consumption. From the model’s population mobility condition,
we derive a sufficient statistic for the relative attractiveness of locations, which incorporates
both the residential population share and the price of floor space. We show that this sufficient
statistic for the relative attractiveness of locations can be decomposed into our measure of travel
access and a residual for residential amenities. Comparing our model incorporating both con-
sumption and workplace access to a special case capturing only workplace access, we find a
substantially larger contribution of travel access once we take into account consumption access
(56 percent compared to 37 percent), and a correspondingly smaller contribution from the resid-
ual of residential amenities (44 percent compared to 63 percent). Taken together, this pattern
of results is consistent with the idea that much economic activity in urban areas is concentrated
in the service sector, and that access to surrounding locations to consume these services is an
important determinant of workers’ choice of residence and workplace.
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We show how the model can be used to undertake a counterfactual for a transport infras-
tructure improvement, such as the construction of a new subway line. In addition to the initial
shares of commuting trips, the predictions of these counterfactuals now also depend on the ini-
tial shares of non-commuting trips. As a result, frameworks that focus solely on commuting
trips generally underestimate the welfare gains from transport infrastructure improvements, be-
cause they undercount the number of passenger journeys that benefit from the reduction in travel
costs. Furthermore, these frameworks generate different predictions for the impact of the new
transport infrastructure on the spatial distribution of economic activity, because of the different
bilateral patterns of commuting and non-commuting trips. We compare the model’s counterfac-
tual predictions for the opening of a new subway line to the estimated impact in the observed
data. We show that the model has predictive power for the observed data. We show that under-
counting of travel from focusing on commuting trips leads to a substantial underestimate of the
welfare gains from the new subway line.

Our paper is related to a number of different strands of research. First, our findings re-
late to recent research on endogenous amenities and social and spatial frictions within urban
areas. Evidence of endogenous amenities has been provided in the context of spatial sort-
ing (Diamond 2016, Almagro and Domı́nguez-Iino 2019 and Samuels, Hausman, Cohen, and
Sasson 2016), gentrification and neighborhood change within cities (Glaeser, Kolko, and Saiz
2001, Couture, Dingel, Green, and Handbury 2019, Hoelzlein 2020 and Allen, Fuchs, Gana-
pati, Graziano, Madera, and Montoriol-Garriga 2020), and industry clustering (Leonardi and
Moretti 2019). Evidence that both spatial and social frictions matter for agents’ location deci-
sions has been provided using restaurant choice data (Couture 2016, Davis, Dingel, Monras, and
Morales 2019), credit card data (Agarwal, Jensen, and Monte 2020 and Dolfen, Einav, Klenow,
Klopack, Levin, Levin, and Best 2019), travel surveys and ride sharing data (Gorback 2020 and
Zárate 2020) and cellphone data (Couture, Dingel, Green, and Handbury 2019, Athey, Fergu-
son, Gentzkow, and Schmidt 2018, Kreindler and Miyauchi 2019, Gupta, Kontokosta, and Van
Nieuwerburgh 2020, Büchel, Ehrlich, Puga, and Viladecans 2020 and Atkin, Chen, and Popov
2021). Relative to these existing studies, we provide high-frequency and spatially-disaggregated
data on non-commuting trips, and develop a quantitative urban model for estimating workplace
and consumption access.

Second, our work contributes to research on transport infrastructure and the location of
economic activity. One strand of empirical research has used quasi-experimental variation on
the impact of transport infrastructure improvements, including Baum-Snow (2007), Michaels
(2008), Duranton and Turner (2012), Faber (2014), and Storeygard (2016). A second line of
work has used quantitative spatial models to evaluate general equilibrium impacts of transport
infrastructure investments, including Anas and Liu (2007), Donaldson (2018), Donaldson and
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Hornbeck (2016), Heblich, Redding, and Sturm (2020), Tsivanidis (2018), Severen (2019),
Balboni (2019), and Zárate (2020). While existing research emphasizes the costs of transporting
goods and commuting costs, a key feature of our work is to highlight the role of the transport
network in providing access to consume nontraded services.

Third, our research is related to recent research on the internal structure of cities, including
including Ahlfeldt, Redding, Sturm, and Wolf (2015), Allen, Arkolakis, and Li (2017), Monte,
Redding, and Rossi-Hansberg (2018), Tsivanidis (2018), and Dingel and Tintelnot (2020). All
of these studies emphasize commuting and the separation of workplace and residence. In con-
trast, one of our main contributions is to highlight the importance of travel to consume nontraded
services in shaping agents’ location decisions.

The remainder of the paper is structured as follows. Section 2 introduces our data. Section 3
presents reduced-form evidence on travel patterns. Section 4 introduces our theoretical frame-
work that we use to rationalize these findings. Section 5 uses the model to the quantify the rel-
ative importance of consumption and workplace access for explaining the spatial concentration
of economic activity. Section 6 shows that incorporating consumption access is quantitatively
relevant for evaluating the counterfactual impact of transport infrastructure improvements, such
as the construction of a new subway line. Section 7 concludes.

2 Data Description

In this section, we introduce our smartphone data and the other data used in the quantitative
analysis of the model. In Subsection 2.1, we explain how we use our smartphone data to identify
home location, work location, commuting trips and non-commuting trips. In Subsection 2.2,
we discuss the spatially-disaggregated economic census data by sector and location that we use
to distinguish between different types of non-commuting trips, and discuss our data on land
values and other location characteristics. In Subsection 2.3, we report validation checks of the
commuting measures from our smartphone data using official census data on employment by
residence, employment by workplace and bilateral commuting flows.

2.1 Smartphone GPS Data

Our main data source is one of the leading smartphone mapping applications in Japan: Do-

como Chizu NAVI. Upon installing this application, individuals are asked to give permission
to share location information in an anonymized form. Conditional on this permission being
given, the application collects the Geographical Positioning System (GPS) coordinates of each
smartphone device every 5 minutes whenever the device is turned on (regardless of whether the
application is being used). These “big data” provide an immense volume of high-frequency and
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spatially-disaggregated information on the geographical movements of users throughout each
day. For example for the month of July 2019 alone, the data include 1.4 billion data points on
545,000 users (about 0.5 percent of the Japanese population).1

The raw unstructured geo-coordinates are pre-processed by the cell phone operator: NTT
Docomo Inc. to construct measures of “stays,” which correspond to distinct geographical loca-
tions visited by a user during a day. In particular, a stay corresponds to the set of geo-coordinates
of a given user that are contiguous in time, whose first and last data points are more than 15
minutes apart, and whose geo-coordinates are all within 100 meters from the centroid of these
points.2 We have data on the sequence of stays of anonymized users with the necessary level of
spatial aggregation to deidentify individuals. Our data comprise a randomly selected sample of
80 percent of users in Japan, where the randomization is again to deidentify individuals.

This pre-processing also categorizes all stays in each month into three categories of home,
work and other locations for each anonymized user. “Home” location and “work” locations
are defined as the centroid of the first and second most frequent locations of geographically
contiguous stays, respectively. To ensure that these two locations do not correspond to different
parts of a single property, we also require that the “work” location is more than 600 meters
away from the “home” location. In particular, if the second most frequent location is within
600 meters of the “home” locations, we define the “work” location as the third most frequent
location. To abstract from noise in geo-coordinate assignment, all stays within 500 meters of the
home location are aggregated with the home location. Similarly, all stays within 500 meters of
the work location are aggregated with the work location. We assign “Work” location as missing
if the user appears in that location for less than 5 days per month, which applies for about 30
percent of users in our baseline sample during April 2019. These users primarily include those
with limited number of data observations due to infrequent smartphone use, and also include
irregular workers with unstable job locations and those who work at home.3 In Subsection
2.3 below, we report validation checks on our classification of home and work locations using
commuting data from the population census. Stays which are neither assigned as home or work
are classified as “other.” We distinguish between different types of these “other” stays, such
as visits to restaurants and stores, using spatially-disaggregated data on economic activity by
sector and location from the economic census, as discussed further in Section 2.2 below.

1The mapping application does not send location data points if the smartphone does not sense movement, in
which case it is likely that the user has not moved from the last reported location. For this reason, the data points
are less frequent than 5 minutes intervals in practice.

2See Patent Number “JP 2013-89173 A” and “JP 2013-210969 A 2013.10.10” for the detailed proprietary
algorithm. This algorithm involves processes to offset the potential noise in measuring GPS coordinates.

3In Section A.4 of our online appendix, we show that the devices with missing “work” locations have signifi-
cantly fewer number of active days (even at home locations), and that the probability of assigning missing “work”
locations is uncorrelated with the observable characteristics of the municipality of residence.
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For most of our subsequent analysis, we focus on the sample of users in the month of April
2019 who have home and work locations in the Tokyo Metropolitan Area (which includes the
four prefectures of Tokyo, Chiba, Kanagawa, and Saitama). To abstract from overnight trips,
we focus on the sample of user-day observations for which the first and last stay of the day is
the user’s home location.

2.2 Other Data Sources

We combine our smartphone data with a number of complementary data sources.
Spatial units: Data are available for the Tokyo metropolitan area at three main levels of spatial
aggregation: (i) The four prefectures of Tokyo, Chiba, Kanagawa and Saitama; (ii) The 242
municipalities (excluding islands); (iii) The 9,956 Oaza. Each Oaza has an area of around 1.30
squared kilometers and an average 2011 population of around 3,600.
Population Census: We measure residential population, employment by workplace and bilat-
eral commuting flows using the 2015 population census, which is conducted by the Statistics
Bureau, Ministry of Internal Affairs and Communications every five years. Residential popula-
tion and total employment are available at the finest level of spatial disaggregation of 250-meter
grid cells. Bilateral commuting flows are reported between pairs of municipalities.
Economic Census: We use data from the 2016 Economic Census on total employment and
the number of establishments by one-digit industry for each 500-meter grid cell in the Tokyo
metropolitan area, the finest level of disaggregation from publicly available data. We also use
data on total revenue and factor inputs that are available at the municipality level.
Building Data: We measure floor space in each city block using the Zmap-TOWN II Digital
Building Map Data for 2008. This data set contains polygons for all buildings in Japan, with
their precise geo-coordinates and information on building use and characteristics. We measure
floor space using the number of stories and land area for each building.
Land Price Data: We measure the residential land price for each city block using the evaluated
land price that is used for the calculation of property tax. We take a simple average of these
values to construct the average land prices per unit of land at the Oaza or Municipality level.
Travel Time Data: We measure travel time by public transportation using the web-based route
choice service, Eki-spert API.4 Eki-spert API provides the minimum travel times between any
pairs of coordinates using public transport, including suburban rail, subway, and bus, and walk-
ing. We use the extracted travel time data from October 2, 2020 (weekday timetable). We also
construct car travel time using the Open Source Routing Machine (OSRM).
Municipality Income Tax Base Data: We measure the average income of the residents in each

4See https://roote.ekispert.net/en for details.
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municipality using official data on the tax base for that municipality.

2.3 Validation of Smartphone Data Using Census Commuting Data

We now report an external validation exercise, in which we compare our measures of “home”
location, “work location” and “commuting trips” from the smartphone data to official census
data that are available at the municipality level. In the left panel of Figure 1, we display the log
density of residents in each municipality in our smartphone data against log population density
in the census data. As our smartphone data cover only a fraction of the total population, the
levels of the two variables necessarily differ from one another. Nevertheless, we find a tight and
approximately log linear relationship between them, with a slope coefficient of 0.923 (standard
error 0.011) and a R-squared of 0.968. The coefficient is slightly less than one, indicating that
the smartphone data has higher coverage in less dense areas. In the right panel of Figure 1, we
show the log density of workers in each Tokyo municipality in our smartphone data against log
employment density by workplace in the census data. Again, we find a close and approximately
log linear relationship between them, with a slope coefficient of 0.996 (standard error 0.008)
and a R-squared of 0.985.

In Section A.1 of the online appendix, we provide further evidence on the representativeness
of our smartphone data by comparing the coverage by residence characteristics (income, age and
distance to city center) and workplace characteristics (employment by industry and distance to
city center). In Section A.2, we show that we find the same pattern of decline of bilateral
commuting with distance in smartphone data and official census commuting data. In Section
A.3, we show that home stays tend to occur during nighttime (outside 6am-9pm) and both work
and other stays rise during the daytime (from 6am-9pm), providing additional internal validation
of our home and work classification from smartphone data.

3 Reduced-Form Evidence

In this section, we provide reduced-form evidence on commuting and non-commuting trips
that guides our theoretical model below. First, we show that non-commuting trips are more
frequent than commuting trips, so that concentrating solely on commuting trips underestimates
the amount of travel within urban areas. Second, we demonstrate that non-commuting trips
are closely-related to the availability of non-traded services, which is consistent with these
trips playing an important role in determining consumption access. Third, we show that non-
commuting trips exhibit different spatial patterns from commuting trips, so that abstracting from
non-commuting trips yields a misleading picture of bilateral travel patterns. Fourth, we provide
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Figure 1: Representativeness of Smartphone Users

(A) Residential Location (B) Employment Location

Note: Each dot is a municipality in the Tokyo metropolitan area. In the left panel, the vertical axis is the log of
the number of smartphone users with a home location in the municipality divided by its geographic area, and the
horizontal axis is the log of the number of residents in that municipality from the Population Census in 2011 divided
by its geographic area. In the right panel, the vertical axis is the log of the number of smartphone users with a work
location in the municipality divided by its geographic area, and the horizontal axis is the log of employment by
workplace in that municipality from the Population Census in 2011 divided by its geographic area. The definitions
of home and work in the smartphone data are discussed in the text of Subsection 2.1 above.

evidence of trip chains, in which non-commuting trips occur along the journey between home
and work, highlighting the relevance of jointly modelling commuting and non-commuting trips.

Fact 1. Non-commuting trips are pervasive. In Figure 2, we display the average number
of stays per day for work and non-work locations (excluding home locations) for our baseline
sample of users with home and work locations in the Tokyo Metropolitan Area during April
2019. Note that the average number of work stays can be greater than one during weekdays,
because workers can leave their workplace during the day and return there later the same day
(e.g. after attending a lunch meeting outside their workplace). Similarly, the average number
of work stays can be greater than zero at the weekend, because some workers can be employed
during the weekend (e.g. in restaurants and stores). As apparent from the figure, even during
weekdays, we find that non-commuting trips are more frequent than commuting trips, with
an average of 1.6 non-work stays per day compared to 1.14 work stays per day. This pattern
is magnified at weekends, with an average of 1.93 non-work stays per day compared to 0.47
work stays per day. These results are consistent with evidence from travel surveys, in which
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commuting is only one of many reasons for travel.5 A key advantage of our smartphone data
is that they reveal bilateral patterns of travel at a fine level of spatial disaggregation within the
urban area, and capture the sequence in which users travel between between their home, work
and consumption locations, as used to measure trip chains in our quantitative analysis of the
model.

Figure 2: Frequency of Stays at Work and Other Locations (Excluding Home Locations)

Note: Average number of work and other stays per day for weekdays and weekends (excluding home stays) for
our baseline sample users in the metropolitan area of Tokyo in April 2019. See Section 2 above for the definitions
of home, work and other stays.

Fact 2. Non-commuting trips are closely related to consumption. We now show that non-
commuting trips are closely related to consumption by combining our GPS smartphone data
with spatially-disaggregated census data on employment by sector. In particular, we stochasti-
cally assign other stays (stays at neither home nor work locations) to different types based on
the local economic activity undertaken at each geographical location, as captured by the share
of service sectors in employment. For each 500× 500 meter grid cell in the Tokyo metropolitan
area, we compute the employment share of each service sector in total service sector employ-
ment. We disaggregate service-sector employment into the following five categories: “Finance,
Real Estate, Communication, and Professional”, “Wholesale and Retail”, “Accommodations,
Eating, Drinking”, “Medical and Health Care”, and “Other Services”.6 For each other stay in a
given grid cell, we allocate that stay to these five categories probabilistically using their shares
of service-sector employment. If no service-sector employment is observed in the grid cell, we
allocate that other stay to the category ”Z Others.”

5In Section A.5 of the online appendix, we show that this pattern of more frequent non-commuting stays than
commuting stays holds in separate Japanese travel survey data, which are available for weekdays only.

6These sectors correspond to the one-digit classification of the Japan Standard Industrial Classification (JSIC),
for which we have data available by 500×500 meter grid cells. “Finance, Real Estate, Communication, and Profes-
sional” corresponds to sectors of G, J, K, L; “Wholesale and Retail” corresponds to I, “Accommodations, Eating,
Drinking” corresponds to M, “Medical and Health Care” corresponds to P, and “Other Services” corresponds to Q.
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Table 1: Frequency of Non-Commuting Trips and Service-Sector Employment Shares

Industry Weekdays Weekends Employment Share in Service (%)
Stays / Day Share (%) Stays / Day Share (%) Total Average (500m Grids)

GJKL finance realestate communication professional 0.23 14.3 0.21 10.7 11.9 23.2
I wholesale retail 0.69 43.4 0.91 46.1 32.0 28.7
M accomodations eating drinking 0.15 9.4 0.21 10.8 13.2 13.2
P medical welfare healthcare 0.23 14.2 0.27 13.7 18.7 15.2
Q other services 0.25 15.8 0.29 14.8 24.3 19.8
Z others 0.05 2.9 0.08 3.9

Note: Average number of each type of other stay per day for weekdays and weekends (excluding home stays) for
our baseline sample for the metropolitan area of Tokyo in April 2019. Other stays are allocated probabilistically to
each category using the shares of these service sectors in total service-sector employment. The table also reports the
share of each type of stay in the total number of other stays, the share of each service sector in total service-sector
employment for the Tokyo metropolitan area, and the average share of each service sector in total service-sector
employment across the 500×500 meter grid cells. See Section 2 for the definitions of home, work and other stays.

In Table 1, we report the average number of these different types of other stays per day
during the working week and at weekends. We find that “Wholesale and Retail” stays are by far
the most frequent, with an average of 0.69 per day on weekdays and 0.91 per day on weekends.
To provide a point of comparison, we also report the share of each individual service sector
in overall service-sector employment for the Tokyo metropolitan area as a whole (penultimate
column) and the average share of each individual service sector in overall service-sector em-
ployment across the 500 × 500 meter grid cells (final column). We find that “Wholesale and
Retail” stays are substantially more frequent than would be implied by their shares of overall
service-sector employment, accounting for 43.4 percent of weekday stays and 46.1 percent of
weekend stays, compared to an aggregate employment share of 32.0 percent and an average
employment share of 28.7 percent. This pattern of results implies that other stays are targeted
towards locations with relatively high shares of the “Wholesale and Retail” sector in employ-
ment, which is consistent with these other stays capturing access to consumption opportunities.
Although “Wholesale and Retail” stays are the most frequent, there is considerable variation in
the composition of service-sector employment across the locations visited by users, with most
sectors accounting for 10 percent or more of the total number of stays.7

As a check on our probabilistic assignment of other stays, Figure A.6.1 in Section A.6 of the
online appendix displays the density of each type of other stay by hour and day, as a share of all
stays for our baseline sample for the Tokyo metropolitan area in April 2019. We find that our
probabilistic assignment captures the expected pattern of these different service-sector activities
over the course of the week. First, we typically find a higher density of other stays during the
middle of the day at weekends than during weekdays, which is in line with the fact that many of
these services are consumed more intensively during leisure time. Second, we find that the peak

7Some non-commuting trips could be business-related (e.g., meetings). In Figure A.5.2 of the online appendix,
we show that business-related trips are a minor fraction (20 percent) of all non-commuting weekday trips using
separate travel survey data, where some of these business trips could involve consumption (e.g. lunches).
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Figure 3: Distances of Commuting and Non-Commuting Trips

(A) Distribution of Distances of Work and Other Stays from Home Locations

(B) Average Distances of Different Types of Other Stays from Home Locations

(0.75) (Note: Panel (A): Distributions of distance in kilometers of work locations from home location and of
other stays from home locations during weekdays and weekends. Panel (B): Distributions of distance in kilometers
for each type of other stay from home locations during weekdays and weekends. Results for our baseline sample
of users in the Tokyo metropolitan area in April 2019.

densities of stays for “Wholesale and Retail” and “Accommodations, Eating, Drinking” occur at
around 6pm on weekdays, corroborating the fact that these activities are typically concentrated
after work during the week. Additionally, for “Accommodations, Eating, Drinking,” we find a
smaller peak around noon on weekdays, capturing lunch time.

Fact 3. Non-commuting trips are closer to home. We now show that non-commuting trips
exhibit different spatial patterns from commuting trips, such that observed bilateral commuting
flows provide an incomplete picture of patterns of travel within urban areas. In Panel (A) of
Figure 3, we display the distribution of distances from home locations to work locations and
from home locations to other stays for our baseline sample of users in the Tokyo metropolitan
area in the month of April 2019. We find that other stays are concentrated closer to home than
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work stays, with average distances travelled of 7.34 and 9.04 kilometers respectively during
weekdays, with an even larger difference in distances travelled at the weekend. In Panel (B) of
Figure 3, we display the distribution of distances travelled for each type of other stay separately.
We find that “Wholesale and Retail” and “Accommodations, Eating, Drinking” stays are con-
centrated closer to home than “Finance, Real Estate, Communication, and Professional” and
“Other Services stays.” This clustering of other stays closer to home highlights the relevance
of these non-commuting trips for residential location decisions. More generally, these differ-
ences in the geographical pattern of stays suggests that focusing on commuting trips yields an
incomplete picture of bilateral patterns of travel.

Fact 4. Trip chains. We now provide evidence of trip chains, in which non-commuting trips
occur on the way from home and work. In Figure 4, we use the fact that in the smartphone data
we observe the sequence of stays originating from a user’s home location and ending at a user’s
home location (without going back home in between each stay), which we term “round trips.”
Using this information, we divide all other stays that occur along such round trips into four
mutually-exclusive categories: (i) HH stays, in which the other stay is part of a round trip that
does not include the work location; (ii) HW stays, in which the other stay happens on the way
from the home location to the work location; (iii) WH stays, in which the other stay happens on
the way back from the work location to the home location; (iv) WW stays, in which the other
stay happens in between two stays at the work location (e.g. a visit to a restaurant in the middle
of the working day). Panel A shows the frequency of these four different types of other stays
aggregating across weekdays and weekends, while Panel B shows their frequency for weekdays
and weekends separately. We find that the majority of non-commuting trips occur separately
from commuting trips (53 percent), which is driven primarily by weekends (79 percent) when
users are significantly less likely to visit workplaces (Figure 2). Nevertheless, a substantial
fraction of non-commuting trips (47 percent) occur as part of commuting trips (47 percent),
highlighting the relevance of jointly modelling these two types of trips.

Taking the findings of this section as a whole, we have shown that non-commuting trips are
frequent, are closely related to consumption, exhibit different spatial patterns from commuting
trips, and can occur as part of trip chains. Each of these four features of our smartphone data
guides our theoretical modelling of commuting and non-commuting trips in the next section.

4 Theoretical Framework

In this section, we develop our quantitative urban model of internal city structure that incorpo-
rates both commuting and non-commuting trips, where the derivations for all theoretical results
in this section are reported in Section B of the online appendix.
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Figure 4: Fractions of Different Types of Other Stays on Round Trips from Home

(A) Aggregating across Weekdays and Weekends (B) Separately for Weekdays and Weekends

Note: Fractions of different types of other stays that occur as part of a round trip originating from a user’s home
location and ending at a user’s home location (without going back home in between each stay); (i) on a round trip
that does not include the work location (HH); (ii) on the way from home to work (HW); (iii) on the way back
from work to home (WH); (iv) in between two stays at the work location (WW), such as a visit to restaurant in
the middle of the working day; Panel A shows frequencies aggregating weekdays and weekends; Panel B shows
frequencies separately for weekdays and weekends.

We consider a city (Tokyo) that is embedded in a larger economy (Japan). We consider
both a closed-city specification (in which total city population is exogenous) and an open-city
specification (in which total city population is endogenously determined by population mobility
with the wider economy that offers a reservation level of utility Ū ). The city consists of a
discrete set of locations i, j, n ∈ N that differ in productivity, amenities, supply of floor space
and transport connections. Utility is defined over consumption of a single traded good, a number
of different types of non-traded services (e.g. restaurants, coffee shops, stores), and residential
floor space use. Both the traded good and the non-traded services are produced with labor
and commercial floor space according to constant returns to scale under conditions of perfect
competition. Floor space is supplied by a competitive construction sector using land and capital
according to a constant returns to scale construction technology.

A continuous measure of workers (L̄) choose a residence, a workplace and a set of loca-
tions to consume non-traded services in the city.8 We assume the following timing or nesting
structure for workers’ location decisions. First, each worker observes her idiosyncratic pref-
erences or amenities (b) for each location within the city, and chooses her residence n. Sec-
ond, given a choice of residence, each worker observes her idiosyncratic productivities (a) for
each workplace i and sector g, and chooses her sector and location of employment. Third,
given a choice of residence and workplace, she observes idiosyncratic qualities (q) for each
type of non-traded service k available in each location j, and chooses her consumption loca-

8In the model, we assume a continuous measure of workers, which ensures that the expected values of variables
equal their realized values. In our empirical analysis, we allow for granularity and a finite number of workers in
our estimation (using the PPML estimator) and counterfactuals (using predicted shares from this estimation).
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tion for each type of non-traded service. Fourth, given a choice of residence, workplace, and
the set of consumption locations, she observes idiosyncratic shocks (ν) over different possi-
ble travel routes: home-consume-home, work-consume-work, home-consume-work-home, or
home-work-consume-home. We choose this nesting structure because it permits a transpar-
ent decomposition of residents and land prices into the contribution of travel access and the
residual of amenities, but the importance of consumption access is robust across other nesting
structures. We also compare the predictions of our model with the special case abstracting from
consumption trips, which corresponds to a conventional urban model, in which workers choose
workplace and residence and consume only traded goods.

4.1 Preferences

The indirect utility for worker ω who chooses residence n, works in location i and sector g ∈ K,
and consumes non-traded service k ∈ KS (where KS ⊂ K) in location j(k) using route r(k)

is assumed to take the following Cobb-Douglas form:

Unig{j(k)r(k)} (ω) =
{
Bnbn (ω)

(
P T
n

)−αT
Q−α

H

n

}
{ai,g (ω)wi,g} (1)

×

{ ∏
k∈KS

[
P S
j(k)/

(
qj(k) (ω)

)]−αSk}{dni{j(k)r(k)}
∏
k∈KS

νr(k)(ω)

}

0 < αT , αH , αSk < 1, αT + αH +
∑
k∈KS

αSk = 1,

where we use the notation j(k) to indicate that that non-traded service k is consumed in a
single location j that is an implicit function of the type of non-traded service k; r(k) ∈ R ≡
{HH,WW,HW,WH} indicates the “route” choice of whether to visit consumption locations
from home (HH), from work (WW ), on the way from home to work (HW ), or on the way
from work to home (WH) for each non-traded service k; KS ⊂ K is the subset of sectors that
are non-traded; the first term in brackets captures a residence component of utility; the second
term in brackets corresponds to a workplace component; the third term in brackets reflects a
non-traded services component; the fourth term in brackets reflects a travel cost component.

The first, residence component includes amenities (Bn) that are common for all workers
in residence n; the idiosyncratic amenity draw for residence n for worker ω (bn(ω)); the price
of the traded good (P T

n ); and the price of residential floor space (Qn). We allow the common
amenities (Bn) to be either exogenous or endogenous to the surrounding concentration of eco-
nomic activity in the presence of agglomeration forces, as discussed further below. The second,
workplace component comprises the wage per efficiency unit in sector g in workplace i (wi,g)
and the idiosyncratic draw for productivity or efficiency units of labor for worker ω in sector
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g in workplace i (ai,g(ω)).9 The third, non-traded services component depends on the price of
the non-traded service k in the location j(k) where it is supplied (P S

j(k) for k ∈ KS) and the
idiosyncratic draw for quality for that service in that location (qj(k)(ω) for k ∈ KS). The fourth
component captures the iceberg travel cost for each combination of residence, workplace, con-
sumption locations and routes (dni{j(k)r(k)}) and the idiosyncratic draw for route preference for
each non-traded sector (νr(k)(ω) for k ∈ KS).

To capture trip chains, we model the iceberg travel cost for each combination of residence
n, workplace i, consumption location j(k) and route r(k) (dni{j(k)r(k)}) as follows:

dni{j(k)r(k)} = exp(−κW τWni )
∏
k∈KS

exp(−κSk τSnij(k)r(k)). (2)

The first term before the product sign captures the cost of commuting from residence n to
workplace i without any detour to consume non-traded services, which depends on travel time
(τWni ) and the commuting cost parameter (κW ), where overall commuting travel time is the sum
of that in each direction:

τWni = τni + τin. (3)

The second term in equation (2) captures the additional travel costs involved in consuming each
type of non-traded service k in location j(k) by the route r(k), which depends on the additional
travel time involved (τSnij(k)r(k)) and the consumption travel cost parameter (κSk ). This additional
travel time depends on the route taken: whether the worker visits consumption location j(k)

from home (r(k) = HH), from work (WW ), on the way from home to work (HW ), or on the
way from work to home (WH):

τSnij(k)HH = τnj + τjn, τSnij(k)WW = τij + τji, (4)

τSnij(k)HW = τnj + τji − τni, τSnij(k)WH = τij + τjn − τin,

where the negative terms on the second line above reflects the fact that the worker travels indi-
rectly between residence n and workplace i via consumption location j on one leg of her journey
between home and work, and hence does not incur the direct travel time between residence n
and workplace i for that leg.10

We make the conventional assumption in the location choice literature following McFadden
(1974) that the idiosyncratic shocks are drawn from an extreme value distribution. In particular,

9Although we model the workplace idiosyncratic draw as a productivity draw, there is a closely-related formu-
lation in which it is instead modelled as an amenity draw.

10While we capture the relative importance of the consumption of non-traded services using the Cobb-Douglas
expenditure shares (αSk ), the frequency of trips can also differ across non-traded sectors, as shown in Figure 1. In
Section C.1 of the online appendix, we explicitly incorporate this additional type of heterogenegity and show that
the model is isomorphic up to a reinterpretation of the parameters κSk . Therefore, all of our counterfactual results
are unaffected by this extension of the model except for the interpretation of the estimated κSk .
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amenities (b), productivity (a), quality (q), route preferences (ν) for worker ω, residence n,
workplace i, consumption location j(k) and route r(k) for non-traded service k are drawn from
independent Fréchet distributions:

GB
n (b) = exp

(
−TBn b−θ

B
)
, TBn > 0, θB > 1, (5)

GW
i,g (a) = exp

(
−TWi,g a−θ

W
)
, TWi,g > 0, θW > 1,

GS
j(k) (q) = exp

(
−T Sj(k)q

−θSk
)
, T Sj(k) > 0, θSk > 1, k ∈ KS,

GR
r(k) (ν) = exp

(
−TRr(k)ν

−θRk
)
, TRr(k) > 0, θRk > 1, k ∈ KS.

where the scale parameters {TBn , TWi,g , T Sj(k), T
R
r(k)} control the average draws and the shape pa-

rameters {θB, θW , θSk , θRk } regulate the dispersions of amenities, productivity, quality and route
preferences, respectively. The smaller these dispersion parameters, the greater the heterogeneity
in idiosyncratic draws, and the less responsive worker decisions to economic variables.11

Using our assumption about the timing or nesting structure, the worker location choice prob-
lem is recursive and can be solved backwards. First, for given a choice of residence, workplace
and sector, and consumption location for each non-traded service, we characterize the probabil-
ity that a worker chooses each route for each non-traded sector (whether to visit consumption
locations from home, from work, or in-between). Second, for given a choice of residence,
workplace and sector, we characterize the probability that a worker chooses each consumption
location in each non-traded sector, taking into account the expected travel cost for consump-
tion trips. Third, for given a choice of residence, we characterize the probability that a worker
chooses each workplace and sector, taking into account expected consumption access for that
workplace and sector. Fourth, we characterize the probability that a worker chooses each resi-
dence, taking into account its expected travel access for both commuting and consumption.

4.2 Route Choices

We begin with the worker’s choice of route for each non-traded service sector k. Conditional
on her residence n, workplace i, and consumption location j(k), she chooses whether to visit
consumption location j(k) from home (r(k) = HH), from work (WW ), on the way from home
to work (HW ), or on the way from work to home (WH). Given the indirect utility (1) and the
specification of the travel cost (2), the component of the utility that depends on the route r(k)

11Although we assume independent Fréchet distributions for amenities, productivity and quality, some locations
can have high expected values for all these idiosyncratic shocks if they have high values for TBn , TWig , TSj(k) and
TRr(k). Additionally, correlations between the shocks can be introduced using a multivariate Fréchet distribution,
as in Hsieh, Hurst, Jones, and Klenow (2019).
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for non-traded service k is given by:

δnij(k)r(k)(ω) = exp(−κSk τSnij(k)r(k))νr(k)(ω). (6)

where the first component is the route-specific travel cost and the second component is the id-
iosyncratic route preference. Under our assumption of independent route draws νr(k)(ω) across
each non-traded sector k, each worker chooses the route r(k) that maximizes δnij(k)r(k)(ω) in-
dependently for each sector k.

Using our independent extreme value assumption, the route choice probability is charac-
terized by a logit form. In particular, the probability that a worker living in residence n and
employed in workplace i consuming non-traded service k in location j(k) chooses the route
r(k) (λRr(k)|nij(k)) is:

λRr(k)|nij(k) =
TRr(k) exp(−θRk κSk τSnij(k)r(k))∑

r′∈R T
R
r′(k) exp(−θRk κSk τSnij(k)r′(k))

. (7)

Using the properties of the extreme value distribution, we can also compute the expected
contribution to utility from the travel cost from consumption trips

dSnij(k) = Enij(k)

[
δnij(k)r(k)(ω)

]
= ϑRk

[∑
r′∈R

TRr′(k) exp(−θRk κSk τSnij(k)r′(k))

] 1

θR
k

(8)

where ϑRk ≡ Γ
(
θRk −1

θRk

)
and Γ(·) is the Gamma function.

4.3 Consumption Choices

We next describe the worker’s decision of where to consume each type of non-traded service,
given these expected travel costs. Conditional on living in residence n and being employed in
workplace i, each worker chooses a consumption location j(k) for each non-traded service k,
after observing her idiosyncratic draws for the quality of non-traded services (d), but before
observing her idiosyncratic route preferences (ν). Therefore, each worker chooses the con-
sumption location j(k) that maximizes the contribution to indirect utility (1) from consuming
that non-traded service k, taking into account the expected travel costs across alternative routes:

γnij(k) (ω) =
[
P S
j(k)/

(
qj(k) (ω)

)]−αSk dSnij(k), k ∈ KS. (9)

where dSnij(k) is the expected travel cost across these alternative routes from equation (8) above.12

12Although for simplicity we assume that workers choose a single consumption location for each non-traded ser-
vice, it is straightforward to extend the model to incorporate multiple consumption locations, by allowing workers
to make multiple discrete choices for each non-traded service.
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Using our extreme value assumption, the probability that a worker living in residence n and
employed in workplace i consumes non-traded service k in location j(k) (λSj(k)|ni) is:

λSj(k)|ni =
T Sj(k)

(
P S
j(k)

)−θSk (
dSnij(k)

) θSk
αS
k

∑
`∈N T

S
`(k)

(
P S
`(k)

)−θSk (
dSni`(k)

) θS
k
αS
k

, k ∈ KS, (10)

which we term the conditional consumption probability, since it is computed conditional on res-
idence n and workplace i. This probability depends on destination characteristics (the price of
non-traded services P S

j(k) and their average quality T Sj(k) in the numerator); expected travel costs
(as determined by dSnij(k) in the numerator); and origin (residence and workplace) characteristics
(as captured by the expected-travel-cost weighted average of destination characteristics in the
denominator). Importantly, the frequency of consumption trips for each destination j(k) and
non-traded service k depends on both the worker’s residence n and her workplace i, because
she can travel to consume non-traded services from either of these locations.

Using the properties of the extreme value distribution, we can also compute the expected
contribution to utility from consuming non-traded service k, conditional on living in residence
n and being employed in workplace i. This expectation for residence n and workplace i cor-
responds to a measure of consumption access for non-traded service k, and depends on the
travel-time weighed average of destination characteristics:

Snik ≡ Enik
[
γnij(k)

]
= ϑSk

[∑
`∈N

T S`(k)

(
P S
`(k)

)−θSk (dSni`(k)

) θSk
αS
k

]αSk
θS
k

, k ∈ KS. (11)

where ϑSk ≡ Γ

(
(θSk /αSk )−1

(θSk /αSk )

)
and Γ(·) is the Gamma function.

Noting that idiosyncratic quality is independently distributed across non-traded sectors, we
can also compute the expected overall contribution to utility from non-traded services:

Sni ≡
∏
k∈KS

Snik =
∏
k∈KS

ϑSk

[∑
`∈N

T S`(k)

(
P`(k)

)−θSk (dSni`(k)

) θSk
αS
k

]αSk
θS
k

. (12)

4.4 Workplace Choice

We next turn to the worker’s choice of workplace, given consumption access. In particular,
conditional on living in residence n, each worker chooses the workplace i and sector g ∈ K that
offers the highest utility, taking into account the wage per efficiency unit (wi,g), the idiosyncratic
draw for productivity (ai,g(ω)), commuting costs (dWni ), and expected consumption access (Sni):

vni,g (ω) = wi,gai,g (ω) dWniSni. (13)
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where dWni ≡ exp(−κW τWni ) is commuting travel cost from equation (2).
Using our independent extreme value assumption for idiosyncratic productivity, the model

also implies a gravity equation for bilateral commuting, such that the probability that a worker
in residence n commutes to workplace i in sector g (λWig|n) is as follows:

λWig|n =
TWi,gw

θW

i,g

(
dWni
)θW

(Sni)θ
W∑

`∈N
∑

m∈K T
W
`,mw

θW
`,m (dWn`)

θW
(Sn`)θ

W
, (14)

which we term the conditional commuting probability, since it is computed conditional on liv-
ing in residence n. Bilateral commuting flows also depend on destination characteristics (the
wage wi,g, average efficiency units TWi,g and consumption access Sni in the numerator); bilateral
travel costs (as captured by dWni in the numerator); and origin characteristics (as captured by
the travel-cost weighted average of destination characteristics across sectors in the denomina-
tor). Aggregating across the different sectors k ∈ K, we also obtain the overall commuting
probability between residence n and workplace i:

λWi|n =
∑
g∈K

λWig|n. (15)

Using the properties of the extreme value distribution, we can also compute an overall mea-
sure of travel access for residence n (An), which is a weighted average of the characteristics of
each workplace i, including consumption access (Sni):

An = En [vni,g] = ϑW

[∑
`∈N

∑
m∈K

TW`,mw
θW

`,m

(
dWn`
)θW

(Sn`)θ
W

] 1

θW

, (16)

where ϑW ≡ Γ
(
θW−1
θW

)
and Γ(·) is the Gamma function.

4.5 Residence Choice

Having characterized a worker’s consumption and workplace choices conditional on her resi-
dence, we now turn to her residence choice. Each worker chooses her residence after observing
her idiosyncratic draws for amenities (b), but before observing her idiosyncratic draws for pro-
ductivity (a), the quality of non-traded services (q), and route preferences (ν). Therefore, each
worker ω chooses the residence n that offers her the highest utility given her idiosyncratic
amenity draws (bn(ω)), expected travel access (An), and other residence characteristics (the
price of floor space (Qn), the price of the traded good (P T

n ) and common amenities (Bn)):

Un (ω) = Bnbn (ω)
(
P T
n

)−αT
Q−α

H

n An,
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Using our extreme value assumption for idiosyncratic amenities, the probability that each
worker chooses residence n (λBn ) depends on its relative attractiveness in terms of travel access
(An), and residential characteristics (Bn, PT,n and Qn):

λBn =
TBn B

θB

n AθB

n

(
P T
n

)−αT θB
Q−α

HθB

n∑
`∈N T

B
` B

θB
` AθB

` (P T
` )
−αT θB

Q−α
HθB

`

. (17)

Taking expectations over idiosyncratic amenities, expected utility from living in the city
depends on the travel access and other residential characteristics of all locations within the city:

E [u] = ϑB

[∑
`∈N

TB` B
θB

` AθB

`

(
P T
`

)−αT θB
Q−α

HθB

`

] 1

θB

. (18)

where ϑB ≡ Γ
(
θB−1
θB

)
and Γ(·) is the Gamma function.

In Section 5.2, we use these residential choice probabilities to decompose the observed
variation in economic activity into the contributions of travel access and a residual for amenities,
without taking a stand on production technology and market structure in the traded and non-
traded sectors. As a result, this quantitative analysis holds in an entire class of quantitative
urban models, with different specifications for production technology and market structure.

Expected income in residence n (En) in turn depends on the overall commuting probabilities
(λWi|n) and expected income conditional on commuting from residence n to workplace i (Eni):

En =
∑
i∈N

λWi|nEni, (19)

where Eni depends on both wages and expected worker idiosyncratic productivity.

4.6 Production

When we undertake counterfactuals in Section 6, we do need to take a stand on a specific pro-
duction technology and market structure. In particular, we assume that both the traded good
and non-traded services are produced using labor and commercial floor space according a con-
stant returns to scale technology. We assume for simplicity that this production technology is
Cobb-Douglas and that production occurs under conditions of perfect competition.13 Together
these assumptions imply that profits are zero in each location with positive production:

P T
i =

1

Ai,k
wβ

T

i,kQ
1−βT
i , 0 < βT < 1, k ∈ K/KS, (20)

P S
i(k) =

1

Ai,k
wβ

S

i,kQ
1−βS
i , 0 < βS < 1, k ∈ KS,

13In Section C.2 of the online appendix, we show that our specification is isomorphic to a model of monopolistic
competition under free entry, once we allow for agglomeration forces (equation (25) below).
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where Ai,k is productivity in location i in sector k.
We allow productivity (Ai,k) to be either exogenous or endogenous to the surrounding con-

centration of economic activity because of agglomeration forces, as discussed further below.
We assume no-arbitrage between residential and commercial floor space, and across the differ-
ent sectors in which commercial floor space is used, such that there is a single price for floor
space within each location (Qi). In general, the wage per efficiency unit (wi,k) differs across
both sectors and locations, because workers draw efficiency units for each sector and location
pair, and hence each sector and location pair faces an upward-sloping supply function for effec-
tive units of labor. Finally, we assume that the traded good is costlessly traded within the city
and wider economy and choose it as our numeraire, such that:

P T
i = 1 ∀ i ∈ N. (21)

4.7 Market Clearing

The price for non-traded service k in each location j (P S
j(k) for k ∈ KS) is determined by market

clearing, which equates revenue and expenditure for that sector k and location j:

P S
j(k)Aj,k

(
L̃j,k
βS

)βS (
Hj,k

1− βS

)1−βS

= αSk
∑
n∈N

Rn

∑
i∈N

λSj(k)|niλ
W
i|nEni, k ∈ KS, (22)

where expenditure on the right-hand side equals the sum across locations of workers travelling
to consume non-traded service k in location j; L̃j,k is the labor input adjusted for expected
idiosyncratic worker productivity in sector k in location j; Rn is the measure of residents in
location n; and recall that λSj(k)|ni is the conditional consumption probability andEni is expected
worker income for residence n and workplace i.

Labor market clearing equates the measure of workers employed in workplace j in sector k
to the measure of workers commuting from all residences n to that workplace j in sector k:

Lj,k =
∑
n∈N

λWjk|nRn, k ∈ K, (23)

where we use Lj,k without a tilde to denote the measure of workers without adjusting for effec-
tive units of labor; and recall that λWjk|n is the conditional commuting probability.

Land market clearing equates the demand for residential floor space (Hi,U ) plus commercial
floor space in each sector (Hi,k) to the total supply of floor space (Hi):

Hi = Hi,U +
∑
k∈K

Hi,k. (24)
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4.8 General Equilibrium

We begin by considering the case in which productivity (Ai,k), amenities (Bi) and the supply
of floor space (Hi) are exogenously determined. The general equilibrium of the model is ref-
erenced by the price for floor space in each location (Qi), the wage in each sector and location
(wi,k), the price of the non-traded good in each service sector and location (P S

i(k)), the route
choice probabilities (λRr(k)|nij(k)), the conditional consumption probabilities (λSj(k)|ni), the condi-
tional commuting probabilities (λWik|n), the residence probabilities (λBn ), and the total measure of
workers living in the city (L̄), where we focus on the open-city specification, in which the total
measure of workers is endogenously determined by population mobility with the wider econ-
omy. These eight equilibrium variables are determined by the system of eight equations given
by the land market clearing condition for each location (24), the labor market clearing condi-
tion for each location (23), the non-traded goods market clearing condition for each location
and service sector (22), the route choice probabilities (7), the conditional consumption proba-
bilities (10), the conditional commuting probabilities (14), the residence probabilities (17), and
the population mobility condition that equates expected utility (18) to the reservation utility in
the wider economy (Ū ).

4.9 Agglomeration Forces and Endogenous Floor Space

We next extend the analysis to allow productivity and amenities to be endogenous to the sur-
rounding concentration of economic activity through agglomeration forces and to allow for an
endogenous supply of floor space. In both the traded and non-traded sector, we allow produc-
tivity (Ai,k) to depend on production fundamentals and production externalities. Production
fundamentals (ai,k) capture features of physical geography that make a location more or less
productive independently of neighboring economic activity (e.g. access to natural water). Pro-
duction externalities capture productivity benefits from the density of employment across all
sectors (Li/Ki), where employment density is measured per unit of geographical land area:14

Ai,k = ai,k

(
Li
Ki

)ηW
(25)

where Li =
∑

k∈K Li,k is the total employment in location i, and ηW parameters the strength of
production externalities, which we assume to the same across all sectors.

In addition to the pecuniary externalities from consumption access, we allow residential
amenities (Bn) to depend on residential fundamentals and residential externalities. Residential
fundamentals (bn) capture features of physical geography that make a location a more or less

14We assume for simplicity that production externalities depend solely on a location’s own employment density,
but we can also allow for the case in where are spillovers of these production externalities across locations.
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attractive place to live independently of neighboring economic activity (e.g. green areas). Res-
idential externalities capture the effects of the surrounding density of residents (Li/Ki) and are
modeled symmetrically to production externalities:15

Bn = bn

(
Rn

Kn

)ηB
(26)

where ηB parameters the strength of residential externalities.
We follow the standard approach in the urban literature of assuming that floor space is

supplied by a competitive construction sector that uses land K and capital M as inputs. In par-
ticular, we assume that floor space (Hi) is produced using geographical land (Ki) and building
capital (Mi) according to the following constant return scale technology:

Hi = Mµ
i K

1−µ
i , 0 < µ < 1. (27)

Using cost minimization and zero profits, this construction technology implies a constant elas-
ticity supply function for floor space as in Saiz (2010):

Qi = ψiH
1−µ
µ

i (28)

where ψi depends solely on geographical land area (Ki) and parameters.
Given these agglomeration forces and endogenous floor space, the determination of general

equilibrium remains the same as above, except that productivity (An), amenities (Bn) and the
supply of floor space (Hn) are now endogenously determined by equations (25), (26) and (28).

5 Quantitative Analysis

In this section, we use our theoretical model to quantify the contributions of workplace access
and consumption access to location choices. The key insight underlying our approach is that
the observed consumption and commuting probabilities in our smartphone data can be used to
reveal the relative valuation placed by users on different locations as consumption and work-
place locations, and hence can be used to estimate travel access in a theory-consistent way. In
Section 5.1, we develop a sequential procedure to estimate the model’s parameters. In Section
5.2, we use these estimated parameters and model’s residential choice probabilities to quantify
the relative importance of workplace access, consumption access and residential amenities in
explaining the observed spatial concentration of economic activity.

15As for production externalities above, we assume that residential externalities depend solely on a location’s
own residents density, but we can allow spillovers of these residential externalities across locations.
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5.1 Estimation Procedure

We begin by discussing the estimation and calibration of the model’s parameters. We proceed
in a number of steps, where each step uses additional model structure. First, we calibrate
the Fréchet dispersion parameters for commuting, consumption, and residence choices (θW ,
θSk , θB, respectively), and the shares of consumer expenditure on housing (αH), traded goods
(αT ), and each type of non-traded service (αSk ) using central values from the existing empirical
literature and the observed data. Second, we estimate the worker’s route choice problem for
each non-traded service and obtain an estimate of the expected travel cost for consumption trips
(dSnij(k)). Third, we estimate her consumption choice problem conditional on her residence and
workplace, and obtain an estimate of the travel time parameter for consumption trips (φSk =

θSkκ
S
k/α

S
k ) and consumption access (Sni). Fourth, we estimate her commuting choice problem,

and obtain an estimate of the travel time parameter for commuting trips (φW = θWκW ) and
travel access (An). Fifth, we calibrate the remaining parameters using the observed data and
central values from the existing empirical literature.

5.1.1 Preference Parameters (θW , θB, θSk , αH , αT and αSk ) (Step 1)

In our first step, we calibrate the preference dispersion parameters (θW , θSk and θB) and expen-
diture shares (αH , αT , αSk ). We set the preference dispersion parameters for commuting, con-
sumption and residence choices equal to θW = θSk = θB = 6, which consistent with the range
of estimated values for these parameters. In the existing literature on commuting, Ahlfeldt,
Redding, Sturm, and Wolf (2015) estimates a preference dispersion parameter for workplace-
residence choices of 6.83 using the division of Berlin by the Berlin Wall; Heblich, Redding, and
Sturm (2020) estimates a value for the same parameter of 5.25 using the construction of Lon-
don’s 19th-century railway network; and Kreindler and Miyauchi (2019) estimates the same
parameter of 8.3 using information on the spatial dispersion of income in Dhaka, Bangladesh.
In Section D.2.1 of the online appendix, we provide an over-identification check on our model’s
predictions, using the property that its predictions for residential income depend importantly
on these parameter values. In particular, we compare the model’s predictions for residential
income in each Tokyo municipality to separate data on residential income not used in its cali-
bration. Although our model is necessarily an abstraction, we find a strong positive relationship
between the model’s predictions and the observed data.

Fewer empirical estimates are available for the preference dispersion parameter for con-
sumption trips (θSk ), which determines the elasticity of consumption trips and consumption ex-
penditure with respect to changes in the cost of sourcing non-traded services. Our calibrated
value for this parameter of θSk = 6 is in line with the existing empirical literature that has esti-
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mated elasticities of substitution across retail stores. In particular, Atkin, Faber, and Gonzalez-
Navarro (2018) estimates an elasticity of substitution of 3.9 using Mexican data, while Couture,
Gaubert, Handbury, and Hurst (2019) estimates an elasticity of substitution of 6.5 using US
data. In Section D.2.2 of the online appendix, we provide another overidentification check on
our model’s predictions, using the property that its predictions for non-traded service prices in
each location are sensitive to this parameter value. Again we show that there is a strong positive
relationship between the model’s predictions and the observed data.

Finally, we calibrate the Cobb-Douglas expenditure share parameters using aggregate data
on observed expenditure shares in Japan. We set the share of expenditure on residential floor
space equal to αH = 0.25, which also corresponds to the values in Davis and Ortalo-Magné
(2011) and Ahlfeldt, Redding, Sturm, and Wolf (2015). We set the expenditure share parameter
for each type of non-traded service (αSk ) equal to the observed expenditure share on that sector
for the Tokyo metropolitan area. Lastly, we solve for the implied traded goods expenditure
share: αT = 1− αH −

∑
k∈KS αSk .

5.1.2 Estimating the Route-Choice Probabilities (Step 2)

In our second step, we estimate expected consumption travel costs (dSnij(k)), using the model’s
predictions for route choice (HH , WW , HW , WH) and our smartphone data. From the route
choice probability (7), the probability of choosing route r(k) for non-traded service k condi-
tional on residence n, workplace i, and consumption location j(k) can be written as:

λRr(k)|nij(k) =
exp(−φRk τSnij(k)r(k))ξ

R
r(k) exp(uRnij(k)r(k))

ζRnij(k)

, (29)

where uRnij(k)r(k) is a stochastic error that captures idiosyncratic determinants of route choice,
given residence, workplace, and consumption location.

We estimate this route choice probability using the Poisson Pseudo Maximum Likelihood
(PPML) estimator of Santos Silva and Tenreyro (2006).16 The estimated semi-elasticity of travel
time (φRk ) in equation (29) is a composite of the response of consumption trips to travel costs
(θRk ) and the response of travel costs to travel times (κSk ), such that φRk = θRk κ

S
k . The estimated

route fixed effect ξRr(k) corresponds to the tendency that each route is chosen conditional on travel
time, such that ξRr(k) = TRr(k). The estimated residence-workplace-consumption-location fixed
effect ζRnij(k) captures the average tendency that routes are chosen for each residence, workplace,
consumption location, such that ζRnij(k) =

∑
`∈R T

R
`(k) exp(−θRk κSk τSnij(k)`(k)).

Table 2 presents the estimation results for each of the different types of non-traded services:
“Finance, Real Estate, Communication, and Professional”; “Wholesale and Retail”; “Accom-

16We find a similar pattern of results if we estimate this choice probability using the multinomial logit model.
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modation, Eating and Drinking”; “Medical, Welfare and Health Care”; “Other Services”. In the
first row, we report the coefficient on the travel time (φRk ). In the second to fourth row report,
we report the coefficient on the dummy variables for each route choice, where r(k) = HH is
the excluded category. Two features of Table 2 are noteworthy. First, we estimate a negative
and statistically significant composite coefficient on travel time (−φRk = −θRk κSk ), highlighting
its relevance for route choice. Second, we estimate negative and statistically significant coef-
ficients on the indicator variables for the included route choices (r(k) ∈ {HW,WH,WW})
relative to the excluded category of r(k) = HH . These results imply a high average preference
for consuming non-traded services from home, consistent with Figure 4 in Section 3.

Using these estimates of φRk and ξRr(k), we construct adjusted expected travel costs for con-
sumption trips conditional on residence n and workplace i from equation (8) above as:

d̃Snij(k) ≡
(
dSnij(k)

)1/κSk = ϑRk

[∑
r′∈R

ξRr′(k) exp(−φRk τSnij(k)r′(k))

] 1

φR
k

, (30)

where ϑRk is again ϑRk ≡ Γ
(
θRk −1

θRk

)
and recall R = {HH,HW,WH,WW}.

In this second step of our estimation, the composite semi-elasticity of travel time (φRk =

θRk κ
S
k/α

S
k ) is a sufficient statistic for the impact of travel time on route choices, as estimated

from the route choice probabilities (29). We do not need to separate out the contributions of
θRk and κSk to the overall value of this parameter. Similarly, our adjusted measure of expected

travel costs (d̃Snij(k) ≡
(
dSnij(k)

)1/κSk
) from equation (30) is a sufficient statistic for the impact of

expected travel costs on workers choice of consumption locations, workplace and residence in
the subsequent steps of our estimation below. We do not need to separate out the contributions
of 1/κSk and dSnij(k) to the overall value of adjusted expected travel costs (d̃Snij(k)).

5.1.3 Estimating Consumption Access (Sni) (Step 3)

In our third step, we estimate the consumption choice probability and consumption access (Sni),
using the observed frequencies of consumption trips to reveal the relative attractiveness of each
location for each type of non-traded service. From the conditional consumption probabilities
(10), the probability that a worker travels to consume non-traded service k in location j(k),
conditional on residence n and workplace i is:

λSj(k)|ni =
ξSj(k)

(
d̃Snij(k)

)−φSk
exp

(
uSnij(k)

)
ζSni,k

, (31)

where d̃Snij(k) is our estimated adjusted expected travel costs from equation (30); and uSnij(k) is a
stochastic error that captures idiosyncratic determinants of consumption travel costs.
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Table 2: Estimation Results for Route Choice

Dependent Variable: Route Choice Probability
Finance

realestate
communication

professional

Wholesale
retail

Accomoda-
tions
eating

drinking

Medical
welfare

healthcare

Other
services

Model: (1) (2) (3) (4) (5)

Variables
Travel Time (Hours) -0.312 -0.269 -0.264 -0.297 -0.271

(0.004) (0.004) (0.004) (0.004) (0.004)
Dummy (HW) -1.58 -1.66 -1.75 -1.67 -1.61

(0.010) (0.010) (0.009) (0.011) (0.012)
Dummy (WH) -1.04 -1.16 -1.10 -1.23 -1.12

(0.009) (0.010) (0.009) (0.011) (0.010)
Dummy (WW) -1.03 -1.13 -1.30 -1.09 -1.09

(0.009) (0.009) (0.008) (0.010) (0.011)

Fixed-effects
Home-Work-Consumption Location Yes Yes Yes Yes Yes

Fit statistics
AIC 3,753,940.7 7,015,231.9 3,461,408.3 3,674,206.4 4,511,086.5
BIC 6,348,159.7 9,717,411.9 6,081,904.7 6,174,892.1 7,210,376.1
Observations 887,212 921,176 895,488 857,704 920,268

Note: Results of estimating the route choice probability (29) using the Poisson Pseudo Maximum Likelihood
(PPML) estimator. Observations are triplets of municipalities in the Tokyo metropolitan area (residence n, work-
place i, and consumption location j(k)) for each type of non-traded service k. We construct the empirical fre-
quencies of route choice (λRr(k)|nij(k)) using our smartphone data (aggregated across weekdays and weekends),
as discussed in Figure 4 in Section 3 above. The dependent variable is these empirical frequencies (λRr(k)|nij(k)),
where r ∈ R ≡ {HH,WW,HW,WH} corresponds to the different route choices: consuming non-traded ser-
vices from home (HH), from work (WW ), on the way from home to work (HW ), and on the way from work to
home (WH). The independent variables are travel time and the dummy variables for the different route choices,
where r(k) = HH is the excluded category. Regressions are weighted by the frequency of observations for each
residence, workplace, consumption-location, and sector, where we stochastically assign each trip to each sector
following the procedure described in Figure 4 in Section 3. Standard errors in parentheses are clustered at the level
of the combination of residence, workplace, and consumption location.

In a conventional gravity equation, travel flows are determined for a bilateral pair of loca-
tions. In contrast, in our extended gravity equation (31), consumption trips are determined at the
level of triplets of residence, workplace and consumption locations. Since workers can travel
to consume non-traded services from either their residence or their workplace, the adjusted ex-
pected consumption travel cost (d̃Snij(k)) from equation (30) to consume non-traded service k in
location j(k) depends on both residence n and workplace i.

We estimate this extended gravity equation (31) separately for each type of non-traded ser-
vice using the Poisson Pseudo Maximum Likelihood (PPML) estimator. This estimator yields
theoretically-consistent estimates of the fixed effects (as shown in Fally 2015) and allows for
granularity and zeros in travel flows (as discussed further in Dingel and Tintelnot 2020). We
obtain three key sets of estimates from this extended gravity equation. First, the estimated elas-
ticity of consumption trips with respect to travel costs (φSk ) is a composite of the elasticity of
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consumption trips with respect to travel costs (θSk /α
S
k ) and the elasticity of travel costs with

respect to travel times (κSk ) in equation (10), such that φSk = θSkκ
S
k/α

S
k . Second, the estimated

consumption destination fixed effect (ξSj(k)) in equation (31) captures the average attractiveness
of consumption destination j(k) for service k in terms of its price for that non-traded service
(P S

j(k)) and quality draws (T Sj(k)) in equation (10), such that:

ξSj(k) = T Sj(k)

(
P S
j(k)

)−θSk . (32)

Third, the estimated residence fixed effect in equation (31) corresponds to the denominator in
the conditional consumption probability in equation (10) and captures the overall attractiveness
of residence n in terms of its access to all consumption locations `(k) for service k:

ζSni,k =
∑
`∈N

T S`(k)

(
P S
`(k)

)−θSk (d̃Sni`(k)

)−φSk
. (33)

From these estimated fixed effects, we recover a theoretically-consistent estimate of con-
sumption access for each type of non-traded service (Snik). Indeed, consumption access can be
recovered from either the consumption destination fixed effects or the residence fixed effects.
First, summing the estimated consumption destination fixed effects (ξSj(k)) weighted by the es-

timated bilateral travel cost (
(
d̃Sni`(k)

)−φSk
) across locations, and using our calibrated values of

θSk and αSk , we obtain our baseline estimate of consumption access:

Sni =
∏
k∈KS

Γ

(
θSk /α

S
k − 1

θSk /α
S
k

)[∑
`∈N

ξS`(k)

(
d̃Sni`(k)

)−φSk]αSkθSk
. (34)

Second, using the estimated residence fixed effects (ζSni,k), and our calibrated values of θSk

and αSk , we obtain another estimate of consumption access: Sni =
∏

k∈KS

[
Γ
(
θSk /α

S
k−1

θSk /α
S
k

)] (
ζSni,k

)αSk
θS
k .

As sample size becomes sufficiently large, these two sets of estimates of consumption access
converge asymptotically towards one another if the model is a correct specification of the true
data generating process, as shown in an international trade context in Fally (2015). In practice,
even in our finite sample, we find that these two estimates are extremely highly correlated with
one another, as shown in Section D.4 of the online appendix.

In Table 3, we report the results of estimating the consumption extended gravity equation
(31) for each type of non-traded service separately. In all cases, we estimate negative and
statistically significant semi-elasticities of consumption trips with respect to travel costs (−φSk ).
We find that these estimated semi-elasticities are relatively constant across the different types
of consumption trips, ranging from -1.08 to -1.19, with the most localized consumption trips
observed for “Finance, Real Estate, Communication, and Professional” and “Medical, Welfare

29



and Health Care”. In Section D.3 of the online appendix, we report a specification check in
which model the relationship between consumption trips and travel costs non-parametrically
and demonstrate a similar pattern of results.17

Table 3: Estimation Results for Consumption Location Choice

Dependent Variable: Consumption Location Choice Probability
Finance

realestate
communication

professional

Wholesale
retail

Accomodations
eating

drinking

Medical
welfare

healthcare

Other
services

Model: (1) (2) (3) (4) (5)

Variables
log d̃Snij(k) -1.15 -1.12 -1.09 -1.19 -1.08

(0.040) (0.036) (0.035) (0.038) (0.036)

Fixed-effects
Home and Work Location Pairs Yes Yes Yes Yes Yes
Consumption Location Yes Yes Yes Yes Yes

Fit statistics
AIC 129,480.5 130,876.3 131,837.4 128,831.5 132,020.7
BIC 291,657.6 293,164.9 294,084.1 290,841.4 294,295.3
Observations 2,981,924 2,983,860 2,983,134 2,979,020 2,983,618

Note: Results of estimating the consumption trip probability (31) using the Poisson Pseudo Maximum Likelihood
(PPML) estimator. Observations are triplets of municipalities in the Tokyo metropolitan area (residence n, work-
place i, and consumption location j(k)). Each column regresses the consumption trip probability for each type
of non-traded service on the adjusted expected travel cost (d̃Snij(k)) from the previous step, consumption location
fixed effects, and residence-workplace pair fixed effects. Standard errors in parentheses are clustered two-way on
consumption location and residence-workplace pair.

5.1.4 Estimating the Workplace Choice and Travel Access (An) (Step 4)

In our fourth step, we estimate the workplace choice probability and overall travel access (An),
by using the observed frequencies of commuting trips to reveal the relative attractiveness of
residences and workplaces. From our parameterization of commuting costs and equations (14)
and (15), the probability that a worker commutes from residence n to workplace i can be written
as the following extended gravity equation:

λWi|n =
ξWi exp

(
−φW τWni

)
(Sni)θ

W

exp
(
uWni
)

ζWn
, (35)

where uWni is a stochastic error that reflects idiosyncratic determinants of bilateral commuting
costs not captured in bilateral travel times (τni).

17As a specification check, we re-estimated the consumption gravity equation under the false assumption that
all consumption trips originate from home. As shown in Table D.5.1 in Section D.5 of the online appendix,
we find substantially smaller semi-elasticities in this robustness check (ranging from -0.8 to -0.6), highlighting the
importance of endogenous route choice. Furthermore, we find a better model fit incorporating route choice than this
alternative specification, as evident from the smaller Akaike Information Criteria (AIC) or Bayesian Information
Criteria (BIC) than in Panel (B) of Table D.5.1.
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In a conventional gravity equation for commuting, the key bilateral determinant of commut-
ing flows is bilateral travel time τWni . In contrast, in our extended gravity equation for commuting
(35), a worker’s choice of workplace depends on the extent to which it enhances the worker’s
access to consumption opportunities, which in turn depends on the worker’s residence. There-
fore, consumption access (Sni) varies bilaterally with both workplace and residence, and enters
as an additional determinant of bilateral commuting flows alongside bilateral travel time

We estimate this extended commuting gravity equation (35) using the Poisson Pseudo Max-
imum Likelihood (PPML) estimator, our measures of commuting travel times (τWni ), and our
estimates of bilateral consumption access (Sni) from the previous step. We again obtain three
key sets of estimates from this extended gravity equation. First, the estimated semi-elasticity
of commuting flows with respect to travel times (φW ) in equation (35) is again a composite
of the response of commuting flows to commuting costs (θW ) and the response of commuting
costs to travel times (κW ) in equation (14), such that φW = θWκW . Second, the estimated
workplace fixed effect (ξWi ) in equation (35) captures the average attractiveness of workplace i
across sectors in terms of its wage (wi,g) and productivity draws (TWi,g ):

ξWi =
∑
m∈K

TWi,mw
θW

i,m. (36)

Third, the estimated residence fixed effect (ζWn ) in equation (35) corresponds to the denominator
in the conditional commuting probability in equation (14) and captures the overall attractiveness
of residence n in terms of its travel-time weighted access to all workplaces:

ζWn =
∑
`∈N

∑
m∈K

TW`,mw
θW

`,m exp
(
−φW τWn`

)
(Sn`)θ

W

. (37)

From these estimated fixed effects, we recover a theoretically-consistent measure of overall
travel access. Indeed, as for consumption access in the previous step, we can recover travel ac-
cess in two different ways. First, summing the estimated workplace fixed effects (ζWi ) weighted
using the estimated bilateral travel costs (exp

(
−φW τWni

)
) across locations, and using θW , we

obtain our baseline estimate of travel access:

An = Γ

(
θW − 1

θW

)[∑
`∈N

ξW` exp
(
−φW τWn`

)
(Sn`)θ

W

] 1

θW

. (38)

Second, using the estimated residence fixed effects (ζWn ) and θW , we obtain another estimate of
workplace access: An = Γ

(
θW−1
θW

) (
ζWn
) 1

θW . As sample size becomes sufficiently large, these
two sets of estimates of travel access again converge asymptotically towards one another if the
model is a correct specification of the true data generating process. In practice, even in our finite
sample, we find that these two estimates are extremely highly correlated with one another, as
shown in Section D.4 of the online appendix.
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In Table 4, we present the results of estimating our commuting extended gravity equation
(31). We include the commuting travel time, consumption access (Sn`) with a known expo-
nent of θW , workplace fixed effects and residence fixed effects. We estimate a negative and
statistically significant semi-elasticity of commuting flows with respect to commuting time of
−φW = −0.617. This estimated value of φW is significantly smaller than our estimates of φSk
above, suggesting that consumption choices are more responsive to travel time than workplace
choices. In Section D.3 of the online appendix, we report a specification check in which we
model the relationship between commuting trips and travel time non-parametrically, and show
that our semi-log specification provides a good approximation to the data.18

Table 4: Estimation Results for Workplace Choice

Dependent Variable: Commuting Choice Probability
Model: (1)

Variables
Commuting Time (Hours) -0.617

(0.037)

Fixed-effects
Home Location Yes
Work Location Yes

Fit statistics
AIC 1,212.0
BIC 5,557.3
Observations 58,564

Note: Results of estimating the commuting probability (35) using the Poisson Pseudo Maximum Likelihood
(PPML) estimator. Observations are all pairs of municipalities in the Tokyo metropolitan area (residence n and
workplace i). Each column regresses the commuting probability on commuting time, workplace fixed effects,
residence fixed effects, and consumption access ((Sn`)) with a coefficient restricted to equal θW . Standard errors
in parentheses are clustered two-way on residence and workplaces.

5.1.5 Other Model Parameters (Step 5)

Together Steps 1-4 are sufficient to undertake our decomposition of the observed spatial vari-
ation in economic activity into the contributions of travel access and a residual for amenities,
within an entire class of quantitative urban models with different specifications of production
technology and market structure. However, when we undertake counterfactuals, such as for
example for transport infrastructure improvements, we need to determine additional structural
parameters related to the supply-side of the economy (land supply, tradable and non-tradable

18As a further specification check, we re-estimated the commuting gravity equation excluding consumption
access (log (Sn`)θ

W

). As shown in Table D.5.2 in Section D.5 of the online appendix, we find a larger travel
time semi-elasticity when omitting consumption access (−0.649 instead of −0.617), highlighting the relevance of
controlling for this term. Furthermore, we find a better model fit for our specification incorporating consumption
access, as measured by the Akaike Information Criteria (AIC) or Bayesian Information Criteria (BIC).
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production, and production and amenity spillovers). In our fifth step, we calibrate these param-
eters directly from the data or using central values from the existing empirical literature.

We calibrate the Cobb-Douglas cost shares for labor in each sector (βS, βT ) as 0.8, which
are broadly consistent with the labor share on production costs for Tokyo metropolitan area. We
assume a standard share of land in construction costs of µ = 0.75. We explore a range of values
for the production and residential agglomeration parameters ranging from zero to the values
estimated in Ahlfeldt, Redding, Sturm, and Wolf (2015): ηW ∈ [0, 0.08] and ηB ∈ [0, 0.15],
which spans most of the existing empirical estimates in the meta-analyses of Melo, Graham,
and Noland (2009) and Ahlfeldt and Pietrostefani (2019).

5.2 Quantifying the Role of Workplace and Consumption Access

We now use our estimates from Steps 1-4 above to quantify the contributions of travel access
and the residual of residential amenities to explaining the observed spatial concentration of
economic activity and to examine the relative importance of workplace access and consumption
access for overall travel access. Re-writing the residential choice probabilities (17), we have:(

λBn
)1/θB

QαH

n = BnAn. (39)

The left-hand side of this relationship corresponds to a summary measure of the relative
attractiveness of locations. A larger share of residents (λBn ) and/or a higher price of floor space
(Qn) both imply that a location is a more attractive place to live. On the right-hand side, Bn is a
composite amenities parameter that includes common amenities (Bn), the parameter determin-
ing average idiosyncratic amenities (TBn ), the common price of the traded good (P T

n = P T = 1),
and the common reservation level of utility (Ū ):

Bn ≡ Bn

(
TBn
)1/θB (

P T
n

)−αT (
Ū/ϑB

)−1
(40)

In these residential choice probabilities (39), we observe the share of residents (λBn ) and the
price of floor space (Qn), and we estimated travel access (An) in equation (38). Therefore, we
can use these residential choice probabilities (39) to recover the unobserved composite ameni-
ties (Bn) as a structural residual that exactly rationalizes the observed data as an equilibrium
of the model. This residential choice decomposition has an intuitive interpretation. If a loca-
tion has a high share of residents (λBn ) and high price of floor space (Qn) on the left-hand side,
despite having relatively low values of composite access (An) on the right-hand side, this is
rationalized in the model by that location having relatively high residential amenities (Bn).

We now decompose the variance of our summary measure of the relative attractiveness of
locations into the contributions of travel access (An) and residential amenities (Bn). In partic-
ular, we use a regression-based variance decomposition from the international trade literature.
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We estimate an ordinary least squares (OLS) regression of each of the components on the right-
hand side of the residential choice probabilities (39) on our summary measure of the relative
attractiveness of locations from the left-hand side:

lnAn = cA0 + cA1 ln
((
λBn
)1/θB

QαH

n

)
+ uAnt, (41)

lnBn = cB0 + cB1 ln
((
λBn
)1/θB

QαH

n

)
+ uBnt,

Noting that OLS is a linear estimator with mean zero residuals, and using the residential
choice probabilities (39), we have cA0 + cB0 = 0 and cA1 + cB1 = 1. Implicitly, this variance
decomposition allocates the covariance terms equally across each of the two components. The
relative values of the slope coefficients {cB1 , cA1 } provide measures of the relative importance
of travel access (An) and residential amenities (Bn) in explaining the observed variation in our
summary measure of the relative attractiveness of locations.

We next examine the relative importance of workplace access and consumption access for
overall travel access, by considering a special case of our quantitative urban model without
consumption trips (αSk = 0 for all k ∈ KS , αT = 1 − αH , λSj(k)|ni = 0 and Sni = 1). In
this special case, we ignore the data on consumption trips, and estimate a standard quantitative
urban model of workplace-residence choice using only the data on commuting trips. As a result,
travel accessibility (Anocons

n ) depends on workplace access alone, and can be constructed using
the estimates from our extended gravity equation estimation of equation (35), but omitting the
consumption access term (log (Sn`)θ

W

):

Anocons
n = Γ

(
θW − 1

θW

)[∑
`∈N

ξW` exp
(
−φW τWn`

)] 1

θW

, (42)

where φW and ξW` are the estimated travel time coefficient and workplace fixed effects from the
extended commuting gravity equation (35). Using this measure of travel access without con-
sumption trips (Anocons

n ) in equation (39), we can recover a measure of amenities without con-
sumption trips (Bnocons

n ), and implement our variance decomposition in equation (41) above.19

Table 5 reports the results of these variance decompositions for our model including con-
sumption trips (Panel A) and the special case excluding consumption trips (Panel B). Obser-
vations correspond to municipalities in the Tokyo metropolitan area for which we have land
price data. We measure the price of floor space (Qn) using the observed land price data (Q̃n)

19As a robustness check, Panel (B) of online appendix Table D.5.3 construct travel access without consumption
trips (Anocons

n ) using the estimates of φW and ξW` from a conventional commuting gravity equation excluding
consumption access. Although the estimated travel time coefficients differ between these two gravity equation
specifications, we find a similar pattern of results for the relative importance of consumption access and residential
amenities in this robustness test as in our baseline specification.
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Table 5: Decomposition of our Summary Statistic for Relative Attractiveness
(log

[(
λBn
)1/θB

QαH

n

]
) into Travel Access (An) and Residential Amenities (Bn)

logAn logBn
(1) (2)

Panel A: Baseline Model

logQαH

n

(
λBn
)1/θB 0.566 0.434

(0.049) (0.049)

Observations 201 201
R2 0.403 0.284

Panel B: No Consumption Trips

logQαH

n

(
λBn
)1/θB 0.373 0.627

(0.036) (0.036)

Observations 201 201
R2 0.352 0.606

Note: Ordinary least squares (OLS) estimates of the regression-based variance decomposition in equation (41).
Panel (A) corresponds to our baseline model, in which we compute travel access (An) incorporating consumption
trips; Panel (B) corresponds to the special case of our model in which we abstract from consumption trips (Anocons

n ),
such that αSk = 0 for all k ∈ KS , αT = 1− αH , λSj(k)|ni = 0 and Sni = 1. Observations are municipalities in the
Tokyo metropolitan area. Heteroskedasticity robust standard errors in parentheses.

and our assumption of competitive construction sector (such that Qn ∝ Q̃1−µ
n ). In our model

including consumption trips, we find that travel access (An) is about as important as the resid-
ual of residential amenities (Bn) in explaining variation in the relative attractiveness of locations
(QαH

n

(
λBn
)1/θB ), with a contribution of 56 percent compared to 44 percent. In contrast, when we

consider a conventional quantitative urban model excluding consumption trips, we find a sub-
stantially reduced contribution from travel access (Anocons

n ) of only 37 percent, with the residual
of residential amenities making up the remaining 63 percent. These results suggest that a sub-
stantial component of the variation in conventional measures of residential amenities that do not
control for consumption trips may reflect unobserved differences in consumption access. They
also suggest that workplace access (Anocons

n ) is far from perfectly correlated with overall travel
access incorporating consumption trips (An), because we find a much smaller contribution from
travel access when we restrict attention to commuting information alone.

6 Counterfactuals

We next use our theoretical framework to undertake counterfactuals for changes in travel costs to
provide further evidence on the role of consumption access in understanding the spatial concen-
tration of economic activity. In particular, we examine the role of consumption trips in shaping
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the welfare effects of transport infrastructure improvements. We undertake a counterfactual for
the construction of a new subway (underground) line in the city of Sendai and compare the
model’s predictions to the observed impact in the data.20

Before the opening of its new subway (underground) line, the city of Sendai had only one
Nanboku (North-South) subway line, which had been in operation since 1987. In December
2015, the new Tozai (East-West) subway line opened, thereby providing a substantial expan-
sion in the overall subway network. In Section 6.1, we report reduced-form evidence on the
impact of the Tozai Subway line on floor space prices, residential population and travel access.
We compare the results of differences-in-differences specifications estimated using the actual
data and the counterfactual predictions of our model. In Section 6.2, we present the model’s
counterfactual predictions for the welfare gains from the opening of the Tozai Subway Line and
evaluate the contribution from consumption access towards these welfare gains.

To undertake the counterfactual simulation, we solve the system of equations for a general
equilibrium of the model using an exact-hat algebra approach, in which we rewrite the counter-
factual equilibrium conditions of the model in terms of the initial travel shares and endogenous
variables of the model and the counterfactual changes in these endogenous variables, as shown
in Section E of the online appendix. In our baseline specification, we use the fitted values
for the initial travel shares from our gravity equation estimation to address potential concerns
about granularity. In Section G.5 of the online appendix, we report a robustness test using the
observed initial travel shares, and demonstrate similar results using both approaches. In our
baseline specification, we consider the closed-city specification of the model, in which total
population for the city as a whole (L̄) is exogenous, and hence the change in travel costs affects
worker welfare.21

6.1 Difference-in-Difference Effects of Tozai Subway Line

We start by analyzing in the impact of the Tozai Subway Line in our observed smartphone and
land price data. Our analysis is based on the following difference-in-difference regression:

∆ log Yn = c0 + c1Tn + un, (43)

where n indexes Oaza; Tn is a dummy variable that equals one if the Oaza includes the new
stations of the Tozai Subway Line (except for Sendai station which is also a station for the ex-
isting Nanboku Subway Line) and zero otherwise; ∆ log Yn is the log difference of an outcome

20In Section F of the online appendix, we provide further evidence on the relative importance of consumption
and workplace access for location decisions by comparing the results of separate counterfactuals for changes in
travel costs for commuting and consumption trips for the Tokyo metropolitan area.

21It is straightforward to instead consider the open-city specification, in which case total population is endoge-
nous, and the welfare effects of the change in travel costs accrue only to landlords, as in the public finance literature
following George (1879).
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of interest before and after the opening of the Tozai Line; any fixed effect in the level of the out-
come of interest is differenced out; the constant c0 captures any common change in the outcome
of interest across all locations; and the coefficient c1 is an estimate of the treatment effect from
the opening of a station on the new Tozai Subway Line. We consider the following outcomes:
(i) the price of floor space (Qn); (ii) the residential probability or share of the city’s residential
population in each Oaza (λBn ); (iii) travel access (An); and (iv) residential amenities (Bn).

We first estimate this regression using the observed data for the pre- and post-periods. We
measure the price of floor space (Qn) using the observed land price data (Q̃n) and our assump-
tion of competitive construction sector (such that Qn ∝ Q̃1−µ

n ). For the land price data, we use
2009 as the pre-period (the earliest available year to mitigate anticipation effects) and 2018 as
the post-period. We construct the residential probability (λBn ) using our smartphone data. We
estimate travel access An and residential amenities Bn using our smartphone data for the pre-
and post-period separately. For these variables constructed from our smartphone data, we use
June 2015 as the pre-period (shortly before the opening of the new subway line), and we use
June 2017 as our post-period (the same month two years after the pre-period). To better proxy
the changes in travel time from the opening of the new subway line in this context where res-
idents use different travel modes, we extend our baseline model to incorporate a mode choice
between public transportation and cars, as discussed in Appendix G.1.22

In Panel (A) of Table 6, we present the results of estimating equation (43) using the ob-
served data. As shown in Columns (1) and (2), we find larger increases in floor space prices
and residential population in Oaza containing new stations than in other Oaza following the
opening of the new subway line, which is consistent with these locations becoming relatively
more attractive. As reported in Column (3), we also observe a larger increase in our estimate
of travel access in locations with new stations, which is consistent with the idea that the in-
crease in floor space prices and residential population in these location is driven by the model’s
mechanism of an improvement in travel access. In contrast, as shown in Column (4), there is
no evidence of a larger increase in the structural residual of residential amenities in these loca-
tions. Therefore, we find that the model is quantitatively able to explain the observed increase
in floor space prices and residential population through its mechanism of an improvement in
travel access, without requiring increases in the residual of residential amenities in these loca-
tions. Notably, if we consider the special case of our model excluding consumption trips, we
find a smaller increase in travel access (0.042 instead of 0.054) and a larger increase in the resid-
ual of residential amenities (0.017 instead of 0.004), as shown in Table G.3.1 in Section G.3 of
the online appendix. Hence, we also find that incorporating consumption trips is important for

22We use the same parameters as above, except for φW and φSk , which we re-estimate using our smartphone data
for the city of Sendai, as discussed in Section G.2 of the online appendix.
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the quantitative success of the model’s mechanism in explaining the observed data.

Table 6: Difference-in-Difference Estimates for the Opening of the Tozai Subway Line Using
the Observed Data and our Model’s Counterfactual Predictions

∆ logQn ∆ log λBn ∆ logAn ∆ logBn
(1) (2) (3) (4)

Panel A: Data

Dummy (Tozai Line Stations) 0.046 0.311 0.054 0.004
(0.014) (0.210) (0.008) (0.036)

Observations 368 305 305 305
R2 0.030 0.007 0.123 0.0001

Panel B: Model Prediction (ηB = 0; ηW = 0.08)

Dummy (Tozai Line Stations) 0.091 0.300 0.073 0.000
(0.010) (0.032) (0.008) (0.000)

Observations 370 370 370 370
R2 0.197 0.191 0.199

Note: Results of estimating the difference-in-difference regression (43) using the observed outcome variables
(Panel A) and the counterfactual model predictions (Panel B). The treatment dummy is an indicator that takes the
value one when the Oaza includes stations of the new Tozai Subway Line (except for Sendai station which is also
a station for the existing Nanboku Subway Line) and zero otherwise. Observations are the 370 Oaza in the City
of Sendai. In Panel (A), 2 observations are missing in Column (1) because land price data is not available, and 65
observations are missing in Columns (2)-(4), because we observe no residents in either the pre- or post-period in
our smartphone data. Standard errors are clustered by Oaza.

To provide further evidence on the predictive power of our model, we next undertake coun-
terfactuals for the impact of the reduction in travel time from the opening of the new subway
line using only information from the pre-period, and estimate the same reduced-form regres-
sions using the model’s counterfactual predictions. In our baseline specification, we assume
the standard value for production agglomeration forces from the existing empirical literature
(ηW = 0.08), and assume that our mechanism of consumption access captures all agglomera-
tion forces in residential decisions (ηB = 0). In Panel (B) of Table 6, we present the results
from estimating equation (43) using these counterfactual predictions for the change in each
economic outcome of interest. We find that the model’s counterfactual predictions align closely
with the observed patterns in the data. In Column (1), we estimate a positive and statistically
significant treatment effect for the price of floor space, which is somewhat larger than that in
the observed data, perhaps in part because the model may not fully capture the expansion in
the supply of floor space following the opening of the new subway line. In Columns (2) and
(3), we also estimate positive and statistically significant treatment effects for the residential
probability and travel access, which lie within the 95 percent confidence intervals around the
estimated treatments in the observed data. Finally, in Column (4), the model necessarily implies
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zero treatment effect for residential amenities in the absence of residential agglomeration forces
(ηB = 0), which is consistent with our finding above using the observed data that the estimated
treatment effect for residential amenities is close to zero and statistically insignificant.23

As an additional specification check, we estimate the same reduced-form regressions, but
use a dummy variable that takes the value one for Oazas that contain stations on the exist-
ing Nanboku (North-South) Subway Line (which opened in 1987) rather than stations on the
new Tozai (East-West) Subway Line (which opened in 2015). If there are positive or negative
network effects from the new Tozai Subway Line on locations with stations on the existing
Nanboku Subway Line, we would expect to again detect statistically significant treatment ef-
fects. In Section G.4 of the online appendix, we show that we find no evidence of statistically
significant treatments effects on the price of floor space, residential population, travel access,
and residential amenities for this existing Nanboku Subway Line. These results are consistent
with a limited net impact of network effects on the existing subway line and suggest that our
earlier estimates for the Tozai Subway Line are indeed capturing effects specific to this new
subway line. Consistent with these findings using the observed data, we also find no evidence
of statistically significant treatment effects for the existing Nanboku Subway Line using our
counterfactual predictions of the model.

6.2 Welfare Gains from the Tozai Subway Line

We now use our baseline closed-city version of the model to evaluate the welfare impact of
the opening of this new subway line. In Table 7, we present the results for the different model
specifications shown in the left-most column. In the second column, we report the percent-
age point increase in expected utility for the residents of the city of Sendai. In our baseline
specification in the first row, we again assume the standard value for production agglomeration
forces from the existing empirical literature (ηW = 0.08), and assume that our mechanism of
consumption access captures all agglomeration forces in residential decisions (ηB = 0). In the
robustness checks in the subsequent rows, we report results for a number of alternative specifi-
cations. In the third column, we report the change in expected utility in each of these alternative
specifications as a percentage of that in our baseline specification in the first row.

As reported in Row (1), we find an increase in the flow of expected utility from the opening
of the new Tozai Subway Line of 2.74 percentage points in our baseline specification. Therefore,
even though we take into account the existence of other modes of transport prior to the opening

23In a robustness test in Section G.3 of the online appendix, we estimate ηB using the identifying assumption
that the log change in residential fundamentals (bn in equation (26)) is uncorrelated with proximity to new subway
stations. We find a small estimate of ηB = 0.01. In the special case of the model that abstracts from consumption
trips, we obtain a somewhat larger estimate of ηB = 0.05, again highlighting the importance of incorporating
consumption trips for the model’s mechanism of travel access to explain the observed data.
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of the new line (such as buses), we find substantial welfare gains from the reduction in bilateral
travel times achieved by the opening of the new subway line. To provide a point of comparison,
Row (2) reports results for the special case of our model excluding consumption trips (αSk = 0

for all k ∈ KS , αT = 1 − αH , λSj(k)|ni = 0 and Snt = 1). In this specification, we find
a welfare gain from the new subway line of 1.44 percentage points, or 53 percent of that in
our baseline specification. Therefore, we find that the undercounting of travel journeys from
focusing solely on commuting trips is quantitatively important for the evaluation of the welfare
effects of observed transport infrastructure improvements.

In Row (3), we consider another special case of the model, in which we falsely assume that
all consumption trips originate from home locations, thereby ruling out travel to consume non-
traded services from work or on the way between home and work.24 In this special case, we find
somewhat larger welfare gains from the new subway line of 2.99 percentage points, or 9 percent
larger than our baseline specification. This pattern of results is intuitive, because excluding
consumption travel from work or on the way between home and work increases average travel
distances for consumption trips, and hence increases the magnitude of the welfare gain from the
reduction in travel times achieved by the opening of the new subway line.

Table 7: Counterfactual Increase in Expected Utility in Sendai from the new Tozai Subway Line
Percentage Point Increase in Residential Utility Relative to Baseline (%)

(1) Baseline (ηB = 0; ηW = 0.08) 2.74 1.00
(2) No consumption trips 1.44 0.53
(3) No trip chains for consumption trips 2.99 1.09
(4) Include residential spillover (ηB = 0.15) 3.24 1.18
(5) Eliminate production spillover (ηW = 0) 2.61 0.95

Note: The second column reports model counterfactuals for the percentage point increase in expected utility as a result of the reduction in travel
time from the opening of the new Tozai (East-West) subway line in the city of Sendai. The first row presents results for our baseline specification
(residential agglomeration forces of ηB = 0, workplace agglomeration forces of ηW = 0.08) and the subsequent rows present results for
a number of alternative specifications. The third column reports the change in expected utility in each of these alternative specifications as a
percentage of the change in our baseline specification in the first row.

In the remaining two rows, we examine the sensitivity of our results to alternative assump-
tions about the strength of residential and production agglomeration forces. In Row (4), we
introduce residential agglomeration forces by assuming ηB = 0.15 instead of ηB = 0. In this
specification, we find welfare gains from the new subway line that are around 18 percent larger
than those in our baseline specification. In Row (5), we exclude productivity spillovers by as-
suming ηW = 0 instead of ηW = 0.08. In this case, we find welfare gains from the new subway
line that are around 5 percent smaller than those in our baseline specification. Therefore, we
find that agglomeration forces magnify the welfare gains from transport infrastructure improve-
ments, consistent with the findings of existing studies, such as Tsivanidis (2018) and Heblich,

24More specifically, we consider the limiting case in which TRr(k) → 0 for r (k) ∈ {WW,HW,WH} and
TRHH > 0, which ensures that workers always travel to consume non-traded services from home.
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Redding, and Sturm (2020). Nevertheless, the impact of these agglomeration forces on the
welfare gains from transport infrastructure improvements (comparing Rows (4) and (5) to Row
(1)) is smaller than the impact of excluding consumption trips (comparing Row (2) to Row (1)),
again highlighting the relevance of consumption access for the evaluation of the welfare effects
of transport infrastructure improvements.

7 Conclusions

We provide new theory and evidence on the role of consumption access in understanding the
spatial concentration of economic activity. We use smartphone data that records the global po-
sitioning system (GPS) location of users every 5 minutes to provide high-resolution evidence
on patterns of travel by hour and day within the Tokyo metropolitan area. Guided by our em-
pirical findings, we develop a quantitative model of internal city structure that captures the fact
that much of the travel that occurs within urban areas is related not to commuting but rather
to the consumption of non-traded services, such as trips to restaurants, coffee shops and bars,
shopping expeditions, excursions to cinemas, theaters, music venues and museums, and visits
to professional service providers.

We begin by establishing four key empirical properties of these non-commuting trips. First,
we show that they are more frequent than commuting trips, so that concentrating solely on
commuting substantially underestimates travel within urban areas. Second, we find that they are
concentrated closer to home and are more responsive to travel time than commuting trips, which
implies that focusing solely on commuting yields a misleading picture of bilateral patterns of
travel within cities. Third, combining our smartphone data with highly spatially-disaggregated
data on employment by sector, we show that these non-commuting trips are closely related to
the availability of nontraded sectors, consistent with our modelling of them as travel to consume
non-traded services. Fourth, we find evidence of trip chains, in which these consumption trips
can occur along the journey between home and work, highlighting the relevance of jointly
modelling both commuting and consumption trips.

We next develop our quantitative theoretical model of internal city structure that incorpo-
rates these consumption trips. Workers choose their preferred residence, workplace and con-
sumption locations, taking into account the bilateral costs of travel and idiosyncratic draws for
amenities for each residence, productivity for each workplace, service quality for each con-
sumption location, and preferences for each route. We show that the observed travel data
and model’s gravity equations for commuting and consumption trips can be used to estimate
theoretically-consistent measures of travel access. We use the model’s residential choice prob-
abilities to derive a summary measure of the relative attractiveness of locations based on the
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observed share of residents and the price of floor space. We show that travel access is more
important than the residual of residential amenities in explaining variation in this summary
measure of relative attractiveness, with a contribution of 56 percent compared to 44 percent. In
a special case of our model excluding consumption trips, we find a substantially smaller con-
tribution from travel access of 37 percent, suggesting that conventional measures of amenities
may in part capture consumption access, and highlighting the usefulness of smartphone data in
measuring consumption trips that are otherwise hard to observe.

Finally, we show how the model can be used to undertake counterfactuals for changes in
transport infrastructure. We compare the model’s counterfactual predictions for the opening
of a new subway line in the city of Sendai to the observed impact in the data. We show that
our model incorporating consumption access generates a similar pattern of estimated treatment
effects as in the observed data. We show that focusing solely on commuting trips leads to
an underestimate of the welfare gains from the transport improvement by around one half,
because of the substantial undercounting of trips that results from abstracting from the many
other reasons besides commuting why individuals travel within urban areas.

Taken together, our findings suggest that access to consumption opportunities as well as ac-
cess to employment opportunities plays a central role in understanding the spatial concentration
of economic activity.
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From Bogotá’s TransMilenio,” University of California, Berkeley, mimeograph.
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