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1. Introduction 

 

 Mitigation of infectious disease through vaccination is  a core concern of health policy. Vaccination may 

be beneficial to reduce illness in vaccinated persons and disease transmission across the population.  

 In the American federal system, states make vaccination policy. States have legal power to mandate 

vaccination of specified groups against specific diseases. Immunization Action Coalition (2020) lists current 

state mandates. The development of COVID-19 vaccines has opened the possibility that states may mandate 

vaccination to reduce transmission of this novel disease.1 The alternative to a mandate is decentralization, 

with vaccination decisions being made by families, schools, care facilities, and employers. In decentralized 

regimes, states may encourage vaccination without requiring it. 

 Mandatory vaccination has been a subject of controversy. Vamos, McDermott, and Daley (2008) give 

arguments for and against mandatory administration of the HPV vaccine to middle-school girls. Thomas 

(2009) and May and Silverman (2005) do likewise for mandatory vaccination of health care workers against 

influenza and children against multiple diseases. Reiss and Caplan (2020) discuss legal and ethical 

considerations regarding mandatory COVID-19 vaccination. These and other articles in the legal and health 

literatures acknowledge that society has conflicting objectives when deciding whether to mandate vaccination. 

However, they do not provide formal frameworks to help policy makers reconcile the conflicting objectives. 

 The welfare-economic practice of specifying a social welfare function and considering a planner who 

seeks to optimize welfare provides a constructive framework to evaluate vaccination policy. A broad 

objective is to minimize the social cost of illness and vaccination. Vaccination is beneficial to the extent that it 

prevents illness. However, vaccines are costly to produce and may have health side effects. Specifying a 

social cost function expresses quantitatively how society trades off the advantages and disadvantages of 

different policies. 

 
1 In September 2020, Wisconsin Governor Evers stated that requiring COVID-19 vaccination is the right thing to do, but 
he questioned if it is “feasible in this political environment” (Star Tribune, 2020). In November 2020, the New York 
State Bar Association recommended that the state consider mandating a COVID-19 vaccine once a scientific consensus 
emerges that it is safe, effective and necessary (New York State Bar Association, 2020). 
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 This paper characterizes choice of vaccination policy as a planning problem that aims to minimize the 

social cost of illness and vaccination. Economists have usually studied vaccination as a deterministic planning 

problem, assuming that a planner knows the outcomes that alternative policies would yield. See, for example, 

Brito, Sheshinski, and Intriligator (1991), Francis (1997) and Chen and Toxvaerd (2014). In contrast, Manski 

(2010, 2017) studied vaccination as a problem of planning under uncertainty. 

 Manski (2010) assumed that a planner can choose any vaccination rate for a population. Manski (2017) 

assumed that the planner has only two options: mandate or decentralize vaccination. In both articles, the 

analysis focused on uncertainty regarding the effect of vaccination on disease transmission, assuming only 

that vaccination reduces transmission. With this weak assumption, planning is a problem of decision making 

under ambiguity. Planning was studied using the minimax and minimax-regret criteria. Explicit algebraic 

solutions were obtained. 

 Here I weaken the assumptions of Manski (2010, 2017) to recognize multiple uncertainties relevant to 

evaluation of policy for vaccination against COVID-19. These include uncertainty not only about the effect of 

vaccination on disease transmission, but also about the fraction of susceptible persons in the population, the 

effectiveness of vaccination in reducing illness and infectiousness, and the health risks associated with 

vaccination. As in the precedent work, the paper studies planning under ambiguity using the minimax and 

minimax-regret criteria. It also studies settings where the planner places a subjective probability distribution 

on unknown quantities and minimizes subjective expected social cost. 

 Algebraic solution of the planning problem is not feasible when multiple uncertainties are present, but 

computational solution is tractable. The paper develops algorithms that may be applied flexibly to express 

specified degrees and types of uncertainty. While the paper focuses on COVID-19 because of its immediate 

salience, the analytical framework developed here is applicable to other infectious diseases as well. 

 Section 2 specifies an optimization problem that a planner with complete information would be able to 

solve. Section 3 calls attention to sources of uncertainty that make it infeasible to solve this optimization 

problem. Section 4 considers how policy making might reasonably cope with these uncertainties. 
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1.1. Differentiating Epidemic Suppression from Social Cost Minimization 

 

 Before proceeding, I find it important to distinguish the welfare economic objective of minimization of 

social cost from the epidemiological objective of suppressing epidemics. Epidemiologists have used dynamic 

susceptible-infectious-removed (SIR) and related dynamic compartmental models of disease transmission to 

study epidemics and to evaluate policies that seek to prevent their onset or stop them once begun. An 

epidemic is a dynamic concept, defined to occur when the infected fraction of the population increases with 

time relative to some baseline (Centers for Disease Control and Prevention, 2006). Studies of vaccination 

policy performed by epidemiologists use SIR and related dynamic models to frame their research.2 

 Dynamic epidemiological modeling can help to evaluate vaccination policy, but such modeling has 

practical and conceptual drawbacks. A practical problem has been that the analytical and computational 

complexity of epidemiological models inhibits understanding of their mathematical properties and their 

realism. Researchers use models of disease transmission to forecast outcomes that would occur with various 

policies. However, authors generally provide little information that would enable one to assess the accuracy of 

the many assumptions their models place on individual behavior, social interactions, and disease transmission. 

Hence, it is prudent to view their forecasts as computational experiments rather than accurate predictions of 

policy impacts. 

 A conceptual drawback has been the prevailing focus of epidemiologists on the goal of suppressing 

epidemics rather than on the objective of minimizing the social cost of illness and vaccination. 

Epidemiologists often seek a policy that keeps the effective reproduction rate, a parameter governing the rate 

of disease transmission, below the rate at which a model forecasts that a new epidemic will begin or that an 

ongoing one will cease. An epidemic is forecast to cease when the fraction of the population who are immune, 

 
2 Some models applied to COVID-19 policy are described in Aguas et al. (2020), Ferguson et al. (2020), IHME (2020), 
and Paltiel et al. (2021). Some of the many instances of pre-covid research are Becker and Starczak (1997), Ball and 
Lyne (2002), Scuffham and West (2002), Hill and Longini (2003), Patel, Longini, and Halloran (2005), Boulier, Datta, 
and Goldfarb (2007), Althouse, Bergstrom, and Bergstrom (2010), and Keeling and Shattock (2012). 
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either through natural infection or vaccination, reaches the so-called herd immunity threshold (HIT).  Formal 

definitions of the effective reproduction rate and the HIT vary with the epidemiological model studied.  See 

Anderson and May (1991), Fine (1993), and Fine, Eames, and Heymann (2011). 

 The goal of suppressing epidemics may sometimes be congruent with the objective of minimizing social 

cost. However, epidemiological research does not show that achieving the former goal is necessary or 

sufficient for accomplishment of the latter objective. 

 

1.2. Conceptualizing Choice of Vaccination Rate as a Static Optimization Problem 

 

 This paper builds on Manski (2010, 2017), weakening some assumptions to increase the relevance to 

COVID-19. As in these precedent papers, I abstract from the dynamics of infectious disease and study 

minimization of the social cost of illness and vaccination as a static optimization problem. I assume that 

vaccination occurs at a specified point in time, rather than as a process performed gradually over time. I 

assume that society is concerned with social cost over a specified horizon following vaccination. I study 

choice of an aggregate vaccination rate rather than disaggregated choice of whom to vaccinate. Differentiating 

itself from the earlier work, this paper simplifies study of the effect of vaccination on illness prevalence by 

assuming a simple representation of the HIT. 

 The static optimization problem studied here transparently expresses the core tension of the mandate 

decision: the higher vaccination rate achieved by a mandate reduces illness relative to decentralized 

vaccination, but it raises the social cost of vaccination. Analysis of the static problem is much simpler than 

study of policy making with a dynamic compartmental model. 

 The tradeoff is that abstracting from dynamics is an idealization. It disregards the possibility that the 

social cost of illness and vaccination may depend not only on the prevalence of illness and vaccination but 

also on the timing. For example, capacity constraints in hospitals might make the social cost of illness depend 

on the timing of severe cases, not just their totality. Heterogeneity in susceptibility and infectiousness may 
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make policy effectiveness depend on the temporal sequence of vaccination of persons with different 

attributes. Welfare analysis of a dynamic optimization problem could shed light on these matters. 

 

2. Optimization with Complete Knowledge of the Social Cost Function 

 

2.1. Direct and Indirect Effects of Vaccination on Illness 

 

 To formalize the planning problem, suppose that a vaccine has been developed, approved, and is 

available for use at a specified point in time. Using the compartmental concepts of SIR models, let S > 0 

denote the fraction of the population who are susceptible to illness in the absence of vaccination. Let I > 0 

denote the fraction who are currently infected. Let R ≥ 0 denote the fraction who have recovered from 

previous infection. Assume that a recovered person has immunity and so cannot later become susceptible or 

infectious. Also assume that the death rate from illness is negligible. Then S + I + R = 1. 

 Vaccination may benefit a susceptible person by generating an immune response that prevents illness. It 

may also prevent this person from becoming infectious, thereby preventing transmission of the disease to 

susceptible persons who are unvaccinated or unsuccessfully vaccinated. Thus, vaccination may have a direct 

preventive effect on the person vaccinated and an indirect preventive effect on other persons. It is generally 

thought that the immune response sufficient to achieve a direct preventive effect is weaker than the response 

required to achieve an indirect preventive effect. Infectiousness is prevented if vaccination yields sterilizing 

immunity, which means an immune response that prevents the virus from replicating inside the body. 

 To formalize the direct effect, suppose that the available vaccine generates a protective immune response 

in a vaccinated person that lasts over the social horizon with probability λ ≥ 0 and confers no immunity with 

probability 1  λ. Let v denote the rate of vaccination of susceptible persons. Then the effective vaccination 

rate is λv. The fraction of the population who are susceptible given vaccination rate v is (1  λv)S. 



6 

 
 I maintain the usual assumption that vaccination has beneficial indirect effects. In principle, it might have 

negative indirect effects. In the context of COVID-19, persons receiving vaccines that are less than fully 

effective may perhaps behave in ways that increase disease transmission, foregoing mask-wearing and social 

distancing. Vaccination may encourage evolutionary selection of the virus towards variants resistant to the 

vaccine. These negative biological forces have previously been thought to be weak in practice (Mishra et al., 

2012) and will not be considered here. 

 To formalize the beneficial indirect effect of vaccination, suppose that it prevents a susceptible person 

from transmitting disease over the social horizon with probability μ ≥ 0. Then the fraction of the population 

who cannot transmit disease is (μv)S + R. Recall that prevention of infectiousness requires a stronger immune 

response than prevention of illness. Hence, we should expect that μ ≤ λ. 

 Let the infection rate p give the fraction of susceptible persons who become infected over the social 

horizon. In general, the infection rate may vary with [(S, R), (λ, μ), v]. Section 2.2 poses a model with a 

specific functional form. For conciseness, I define θ ≡ [(S, R), (λ, μ), v] to be the vector of parameters, and I 

write the infection rate as p(θ). 

 Illness prevalence, the fraction of the population who become ill over the social horizon, equals the 

fraction who are susceptible times the rate of infection among those who are susceptible. When the 

vaccination rate is v, illness prevalence is p(θ)∙[(1  λv)S]. Increasing the vaccination rate reduces illness 

prevalence in two ways. It reduces the fraction (1  λv)S of persons who are susceptible, and it may reduce 

the rate p(θ) of illness among those who are susceptible. 

 This formalization generalizes the one in Manski (2010, 2017). That paper considered vaccination prior 

to spread of disease and hence assumed that S = 1. It assumed that a vaccine generates a protective direct 

immune effect if and only if it generates an indirect effect that prevents a person from being infectious; hence, 

λ = μ. It assumed that the infection rate is a weakly decreasing function of the effective vaccination rate λv. 

These assumptions implied that illness prevalence is p(λv)(1  λv), which decreases with λv. 
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 The present paper does not assume that S = 1 because COVID-19 vaccines have been developed in the 

midst of the pandemic, when many persons have already been infected and recovered; thus, S < 1 and R > 0. 

Moreover, it may not be realistic to assume that λ = μ for COVID-19 vaccines. 

 

2.2. Illness Prevalence with A Sharp Herd Immunity Threshold 

 

 Given values for [(S, R), (λ, μ), v], illness prevalence depends on the shape of the infection-rate function 

p(∙). This function has a specific form under a simple model of disease transmission that makes these 

assumptions: (i) infection spreads until an HIT h* is reached and then ceases immediately; (ii) the 

transmission process is rapid enough to occur entirely within the social horizon; (iii) the fraction of the 

population who are currently infectious when vaccination occurs is negligible, so I ≈ 0. 

 These assumptions may not hold exactly, but they may be sufficiently reasonable to warrant application 

as approximations. The realism of assumption (ii) necessarily depends on the specified social horizon. Given 

this, dynamic epidemiological models can shed some light on the accuracy of assumptions (i) and (ii). 

 Assumption (iii) enables approximation of the compartmental equation by S + R = 1 and, hence, the 

fraction of non-transmitters in the population by (μv)S + 1 − S. Empirical evidence supports the assumption in 

the setting of COVID-19. It is thought that persons infected by the SARS-CoV-2 virus on average are 

infectious for about ten days. Combining this average infection period with an estimate of new cases in 

December 2020 implies that the fraction of the American population who were infectious when vaccination 

commenced in late December was about 0.033.3 

 
3 New York Times (2020) reported that the number of newly confirmed cases per day in the week ending December 20, 
2020 was 216,070. Confirmed cases undercount actual cases to an unknown degree. A plausible possibility is that the 
actual number of cases was five times the number of confirmed cases (Kalish et al., 2021). If so, the actual number of 
new cases per day was 1,080,350. Multiplying this by a ten-day infection period implies an estimate of 10,803,500 
currently infected persons. The U.S. population in December 2020 was estimated to be about 331,000,000. This yields 
the estimate I = 0.033. 
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 Recall that h* denotes the HIT. The assumptions imply that the infection rate is zero if (μv)S + 1 − S ≥ 

h*; hence, illness prevalence is zero as well. The infection rate may be positive if (μv)S + 1 − S < h*. Then the 

sum of illness prevalence and the fraction of non-transmitters cannot exceed the HIT. That is, 

  

(1)                                            p(θ)∙[(1  λv)S] + [(μv)S + 1 – S]  ≤  h*. 

 

If the fraction (1  λv)S of potentially ill persons exceeds the distance h* − [(μv)S + 1 − S] of society from 

herd immunity, infection spreads until the population attains herd immunity, making inequality (1) an 

equation. If  (1  λv)S < h* − [(μv)S + 1 − S], all susceptible persons become infected. Combining these 

results,  the infection rate among susceptible persons is 

 

(2)                                    p(θ)  =  {h* − [(μv)S + 1 − S]}/[(1  λv)S]  

                                                                       if  (μv)S + 1 − S < h* and (1  λv)S ≥ h* − [(μv)S + 1 − S], 

                                         p(θ)  =  1               if  (μv)S + 1 − S < h* and (1  λv)S ≤ h* − [(μv)S + 1 − S], 

                                                  =  0               if  (μv)S + 1 − S ≥ h*. 

 

2.3. The Social Cost of Illness and Vaccination 

 

 I assume that the social cost of illness and vaccination is an additive function of  illness prevalence and 

the vaccination rate. Let b > 0 denote the mean social cost resulting from a case of illness. Let k > 0 denote 

the mean social cost per vaccination, measured in commensurate units. The values of b and k are intended to 

express all socially relevant health, financial, and other costs generated by illness and vaccination. The 

additive structure of the social cost function implies that comparison of alternative vaccination rates only 

requires knowledge of the ratio of b to k, not the magnitudes of the two parameters. 
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 The COVID-19 vaccination plans being formulated by state health agencies in the United States do not 

restrict vaccination to persons thought to be susceptible. Hence, I assume that a vaccination rate v is applied 

to the entire population rather than only to those who are susceptible. Then the social cost of rate v is 

 

(3)               S(v)  =  b∙p(θ)∙[(1  λv)S] + kv. 

 

In the model with a sharp HIT, p(θ) given in (2) implies that, for v ∊ [0, 1], (3) becomes 

 

(4)             S(v)  =  b∙{h* − [(μv)S + 1 – S]} + kv 

                                                                     if  (μv)S + 1 – S < h* and  1 + (μ  λ)vS ≥ h*, 

                 =  b∙(1  λv)S + kv                     if  (μv)S + 1 – S < h* and  1 + (μ  λ)vS ≤ h*, 

                =  kv                                           if  (μv)S + 1 – S ≥ h*. 

 

2.3.1. Optimal Unconstrained Choice of Vaccination Rate 

 A planner with complete knowledge of the social cost function and the power to choose any vaccination 

rate can choose a rate that minimizes S(v) over all v ∊ [0, 1]. Minimization of the general form (3) of the 

social cost function is not conducive to analysis because the infection-rate function p(θ) is an unspecified 

function of v. Minimization yields an explicit solution when there is a sharp HIT. 

 Equation (4) has three regimes. In each regime, social cost is a linear function of v, subject to linear 

inequalities. The analysis below assumes that μ ≤ λ. 

 In regime 1, v satisfies the inequalities (μv)S + 1 – S < h* and 1 + (μ  λ)vS ≥ h*. The first inequality 

requires v < [h* − (1 – S)]/μS, which is feasible if h* > 1 – S. The second holds for all v if μ = λ and requires v 

≤ (1 − h*)/[(λ− μ)S] if μ < λ. For vaccination rates that satisfy these inequalities, social cost increases with v if 

k ≥ bμS and decreases if k ≤ bμS. Hence, the optimal rate subject to the inequalities is v = 0 if k ≥ bμS. It is v 

= min{1, [h* − (1 – S)]/μS, (1 − h*)/[(λ− μ)S]} if k ≤ bμS. 
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 In regime 2, v satisfies the inequalities (μv)S + 1 – S < h* and 1 + (μ  λ)vS  ≤  h*. The first inequality 

again requires v < [h* − (1 – S)]/μS, which is feasible if h* > 1 – S. The second requires v ≥ (1 − h*)/[(λ− μ)S], 

which is feasible if 1 − h* ≤ (λ− μ)S. Thus, feasible v satisfy (1 − h*)/[(λ− μ)S] ≤ v < [h* − (1 – S)]/μS when 

this interval exists. Social cost increases with v if k ≥ bλS and decreases if k ≤ bλS. Hence, the optimal 

vaccination rate in regime 2 is v = min{1, (1 − h*)/[(λ− μ)S]} if k ≥ bλS and v = min{1, [h* − (1 – S)]/μS} if k 

≤ bλS. 

 In regime 3, v satisfies the inequality (μv)S + 1 – S ≥ h*. Hence, v ≥ [h* − (1 – S)]/μS, which is feasible if 

 h* − (1 – S) ≤ μS. Social cost is kv, an increasing function of v, so the optimal vaccination rate is the smallest 

value satisfying the inequality. Thus, the optimal rate in this regime is v = max{0, [h* − (1 – S)]/μS}. 

 The overall optimal vaccination rate minimizes social cost across the regimes that are feasible. 

 

2.3.2. Optimal Constrained Choice Between Mandate and Decentralization 

 A planner who is only empowered to choose between a mandate and decentralization makes a 

constrained choice. Let vd denote the vaccination rate generated by decentralized decision making. Assume 

that v = 1 with a mandate.4 The constrained optimal decision is 

 

(5)   mandate if                     b∙p(θm)∙[(1  λ)S] + k  ≤  b∙p(θd)∙[(1  λvd)S] + kvd, 

        do not mandate if          b∙p(θm)∙[(1  λ)S] + k  ≥  b∙p(θd)∙[(1  λvd)S] + kvd, 

 

where θm = [(S, R), (λ, μ), 1] and θd = [(S, R), (λ, μ), vd]. If there is a sharp HIT, θm and θd are the values given 

in (2) with v = 1 and v = vd respectively. 

 

 
4 In practice v may be less than one because states may exempt persons with religious objections to vaccination. 
 



11 

 
2.4. Optimization with Illustrative Parameter Values 

 

 Knowledge of [p(∙), (S, R), (λ, μ), (b, k)] enables a planner to choose an optimal unconstrained 

vaccination rate. Additionally, knowledge of the decentralized rate vd enables choice between a mandate and 

decentralization. I illustrate here, using the model with a sharp HIT and values of its parameters [h*, S, (λ, μ), 

(b, k)] that may perhaps be plausible when considering COVID-19 at the end of 2020. However, section 3 

will argue that knowledge of these parameters is seriously incomplete and, hence, optimization is not feasible. 

 Empirical evidence and modeling provide partial grounding for selection of values for (h*, S, λ, vd). 

Findings reported for the Pfizer and Moderna vaccine trials suggest λ = 0.95 as a realistic estimate of the 

probability that these vaccines generate immune responses that prevent illness; see Section 3.3 for further 

discussion. Epidemiologists have conjectured many values for the COVID-19 HIT. I use h* = 0.7, which has 

been a common conjecture (McNeil, 2020). A Gallup poll surveying the American public in November 2020 

about their willingness to be vaccinated suggests vd = 0.58 as an estimate of the decentralized vaccination rate 

(Reinhart, 2020). 

 A perhaps plausible estimate of the fraction of susceptible persons in late December 2020 is S = 0.73. To 

obtain this estimate, I begin with the cumulative confirmed national case count on December 20, which was  

about 17.9 million. Epidemiologists have conjectured a wide range of possibilities for the degree to which 

confirmed cases undercount actual cases. A plausible possibility is that the actual number of cases is five 

times the number of confirmed cases (Kalish et al., 2021), which implies that the actual cumulative number of 

cases is about 89.5 million. The size of the American population is about 331 million. Applying the 

approximation that I ≈ 0, it follows that R = 89.5/331 and hence that S = 1 – 89.5/331 = 0.73. 

 Choice of exact values for (μ, b, k) must be speculative. The investigators in vaccine trials have not 

reported evidence that is directly informative about μ. I use the value μ = 0.8. Careful analysis of the costs of 

illness and vaccination may in principle enable realistic estimation of (b, k), but I am not aware of such 
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analysis to date. Comparison of vaccination rates only requires knowledge of the ratio of b and k. I use b/k = 

10. Recognizing that these values are speculative, I will replace them by bounds in Section 4. 

 With these parameter values, the threshold value of v that separates regimes 1 and 2 from regime 3 is [h* 

− (1 − S)]/(μS) = 0.736 and the threshold separating regime 1 from regime 2 is (1 − h*)/[(λ − μ)S] = 2.74. 

Thus, the second regime is not feasible. Regime 1 applies when 0 ≤ v < 0.736 and regime 3 applies when 

0.736 ≤ v ≤  1. The inequality k ≤ bμS holds, so social cost decreases with v in regime 1, whereas it increases 

with v in regime 3. Hence, social cost is minimized at v = 0.736. 

 Figure 1 shows graphically how social cost and post-vaccination illness prevalence vary with the 

vaccination rate. The graph normalizes b/k by setting b = 1 and k = 0.1. The upper graph displays the social-

cost function S(v). The lower graph displays illness prevalence, which equals h* − (μv + 1 − S) in regime 1 

and zero in regime 3. 

  Finally, consider choice between a mandate and decentralization. Social cost under a mandate is k = 0.1. 

It is 0.149 with the assumed decentralized vaccination rate vd = 0.58. Hence, a mandate yields lower social 

cost than decentralization with the assumed parameter values. 

 

3. COVID-19 Uncertainties 

 

 Optimization remains feasible if a planner lacks the complete knowledge assumed in Section 2 but 

knows enough to determine what vaccination rate minimizes social cost. Optimization is not possible with 

less information. In the setting of COVID-19, knowledge is seriously incomplete. I explain here. 

 

3.1. The Infection-Rate Function 

 

 Manski (2010, 2017) considered policy choice with incomplete knowledge of the infection-rate function 

p(∙). Epidemiological models predict that the future rate of infection of susceptible persons weakly decreases 
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with the fraction of the population who have already achieved immunity by vaccination or previous illness. 

This broad idea makes it credible to assume that p(∙) decreases with (μv)S + R, but it does not per se suggest 

further structure on the function. 

 Specific models imply further structure. Assuming a hard HIT implies the functional form (2), which 

makes the infection rate a function of three quantities: the fraction (μv)S + R of non-transmitters in the 

population, the fraction (1  λv)S of persons susceptible to infection, and the HIT h*. 

 The HIT has long been a prominent concept in epidemiology, but a persistent problem has been to 

estimate its magnitude credibly. A serious difficulty has been scarcity of empirical evidence revealing how 

disease transmission varies with the compartmental composition of the population. Studies of disease 

transmission have to rely on the limited observational data generated by actual epidemics. Randomized 

clinical trials (RCTs) may enable one to learn the direct effect of vaccination on illness in vaccinated persons, 

but RCTs typically do not provide evidence on the indirect effect of vaccination preventing transmission of 

disease. An RCT that randomly vaccinates a specified fraction of a population only reveals the illness 

outcomes that occur with the vaccination rate used in the trial. The outcomes that the population would 

experience with other vaccination rates remain counterfactual. Yet policy choice requires comparison of 

alternative vaccination rates.5 

 Scarcity of empirical evidence is problematic when studying any infectious disease, but it is particularly 

severe when studying COVID-19. This is a new disease whose transmission process differs in some respects 

from that of other infectious diseases. At the beginning of the pandemic essentially no data were available to 

provide an empirical foundation for modeling disease transmission. The influential early COVID-19 model 

developed in Ferguson et al. (2020) made forecasts using a modified version of a simulation model previously 

 
5 Vaccine trials can reveal indirect effects if the population partitions into isolated groups (aka clusters) of persons. Then 
the members of each group may infect one another but not the members of other groups. In such cases, one can define 
treatment units to be groups rather than persons, randomly assign varying vaccination rates to different groups, and use 
the trial to learn about illness outcomes under alternative vaccination rates. Hudgens and Halloran (2008) develop 
methodology for analysis of RCTs performed in such settings. Loeb et al. (2010) report a trial performed on isolated 
Hutterite communities in Canada. However, populations rarely partition in modern societies. RCTs have no identifying 
power in the polar case of a fully connected society, where social interactions are global rather than local (Manski, 
2013). 
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developed to support pandemic influenza planning. Observational data in various locations has gradually 

accumulated as the COVID-19 pandemic has progressed, but considerable uncertainty about disease 

transmission persists. 

 

3.2. Compartmental Composition of the Population 

 

 Serious data problems have limited knowledge of the fraction S of local, regional, and national 

populations who are currently susceptible to COVID-19 and, correspondingly, the fraction R who have 

previously been ill and are now recovered. 

 Measurement of cumulative infection has been hampered by substantial missing data. Confirmed cases 

have been measured by rates of positive findings among persons who have been tested for infection. Infection 

data are missing for persons who have not been tested. The persons who have been tested differ considerably 

from those who have not been tested. Criteria used to determine eligibility for testing have typically required 

demonstration of symptoms associated with presence of infection or close contact with infected persons. This 

gives considerable reason to believe that some fraction of untested persons are asymptomatic or pre-

symptomatic carriers of the COVID-19 disease. Hence, the actual cumulative rate of infection has been higher 

than the reported rate. 

 A second problem of data quality is that measurement of confirmed cases is imperfect because the 

prevalent nasal swab tests for infection are not fully accurate. There is basis to think that accuracy of nasal 

swab tests is highly asymmetric, with few false positive results but many false negative ones. Given this 

asymmetry, the actual rate of infection has again been higher than the reported rate. 

 Combining the problems of missing data and imperfect test accuracy yields the conclusion that reported 

cumulative rates of infections are lower than actual rates. Researchers have put forward widely varying point 

estimates derived in various ways. The estimates differ in the assumptions used. The assumptions vary and so 

do the findings. No assumption or estimate has been thought sufficiently credible as to achieve consensus. 
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Rather than make point estimates that lack foundation, Manski and Molinari (2021) combined available data 

with credible assumptions to bound the cumulative infection rate at specific locations and dates. The bounds 

were wide. 

  

3.3. Direct and Indirect Effectiveness of Vaccination 

 

 The probabilities λ and μ respectively measure the direct and indirect preventive effects of vaccination 

on illness. We currently lack an empirical basis to measure μ. We have some capacity to measure λ. 

 The investigators in ongoing COVID-19 vaccine trials have to date reported no findings that are 

informative regarding μ. They could in principle measure viral shedding, the release of virus from a person’s 

body into the environment, but they have not done so. Measurement of viral shedding would help in 

estimating μ, but it would not suffice. Infectiousness is determined by both biology and behavior. Viral 

shedding is a biological prerequisite for infectiousness but behavior, including lack of social distancing and 

mask wearing, determines whether shed virus is transmitted to other persons. 

 Ongoing vaccine trials report a measure of efficacy that equals λ given certain assumptions. Consider a 

trial in which persons are randomized into receipt of a vaccine (z = 1) or no vaccine (z = 0). Let y(t) = 1 if a 

person becomes ill within a time period of a specified length t after the date of vaccine receipt/non-receipt and 

let y(t) = 0 if the person does not become ill. Trial data enable estimation of P[y(t) = 1|z = 1] and P[y(t) = 1|z 

= 0], the probabilities of illness conditional on vaccination status. Efficacy is defined as one minus the risk 

ratio; that is, 1 – P[y(t) = 1|z = 1]/P[y(t) = 1|z = 0]. Pfizer Inc. reported an efficacy estimate of 0.95 for its 

COVID-19 vaccine in a press release on November 18, 2020.6 Moderna has reported a similar estimate. 

 The measurements of P[y(t) = 1|z = 1] and P[y(t) = 1|z = 0] made public by Pfizer and Moderna have 

thus far concerned relatively short time periods, whereas the social horizon for vaccination policy presumably 

is much longer. If the trial and social horizons are identical, knowledge of P[y(t) = 1|z = 1] and P[y(t) = 1|z = 

 
6 https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-
vaccine , accessed December 11, 2020. 

https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine
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0] reveals λ if one assumes that a vaccinated person becomes ill if and only if the person lacks immunity and 

is exposed to the virus. In the absence of natural immunity, the probability that a vaccinated person lacks 

immunity is 1 – λ. In a perfect RCT, the observed illness rate P[y(t) = 1|z = 0] of unvaccinated persons equals 

the probability of exposure to the virus. Hence, P[y(t) = 1|z = 1] = (1 – λ)P[y(t) = 0|z = 0]. Solving this 

equation gives λ = 1 − P[y(t) = 1|z = 1]/P[y(t) = 0|z = 0]. Thus, λ is the vaccine efficacy. 

 

3.4. Social Costs of Illness and Vaccination 

 

 Uncertainty about the social costs of illness and vaccination is a generic problem when evaluating 

vaccination policies. There may be uncertainty about the relative frequencies of severe and mild cases, the 

former being more costly to treat and generating greater health harm than the latter. There may be uncertainty 

about the frequency and severity of long-term side effects of vaccination, which may occur after the 

observation period in trials end. 

 These uncertainties may be substantial in the context of COVID-19. It is widely thought that the fractions 

of asymptomatic cases and ones with mild symptoms are grossly underestimated in official statistics because 

persons with such cases tend not to be tested. However, there is no consensus on the extent of 

underestimation. Essentially nothing is presently known about the long-term side effects of vaccination 

because the observation periods in trials have thus far been short. 

 

3.5. Decentralized Vaccination Rate 

 

 Finally, there is uncertainty about the fraction of the population who would choose to be vaccinated in a 

regime with decentralized decision making. Some suggestive data are available in surveys undertaken during 

the course of pandemic. Samples of persons have been asked whether they would choose to be vaccinated 
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should vaccines with specified characteristics be approved and made available. The findings have varied over 

time and place. 

 

4. Policy Choice under Uncertainty 

 

4.1. Some Basic Decision Theory 

 

 To cope with the uncertainties described above, I bring to bear some basic decision theory, applied 

previously to choice of vaccination policy in Manski (2010, 2017). To begin,  suppose that a decision maker 

must choose among a set of feasible actions. The welfare achieved by an action depends on an unknown 

feature of the environment, called the state of nature. The decision maker lists all the states of nature that he 

believes could possibly occur.  This list, the state space, expresses partial knowledge.  The larger the state 

space, the less the decision maker knows about the outcome of each action. 

 In this paper, an unconstrained planner chooses a vaccination rate v in the set [0, 1] of all possible rates. 

A constrained planner chooses between a mandate and decentralization. In either case, welfare is measured by 

social cost function (3). In the unconstrained case, the state space is the set of values for [p(∙), (S, R), (λ, μ), 

(b, k)] that the planner deems possible. In the constrained case, the decentralized vaccination rate vd adds an 

additional dimension to the state space. 

 The fundamental difficulty of planning under uncertainty is clear even in a simple setting with two 

feasible actions and two states of nature. Suppose that one action yields lower social cost in one state of 

nature and the other action yields lower social cost in the other state. Then the planner does not know which 

action is better. Recognizing that optimization is impossible, decision theory offers various reasonable criteria 

for decision making, each with its own properties. 

 To economists, the most familiar decision criterion places a subjective probability distribution on the 

state space and minimizes subjective expected social cost. This approach, commonly called Bayesian 
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planning, is compelling if a planner feels able to select a credible subjective distribution. However, a 

subjective distribution is a form of knowledge, and a planner may not feel able to assert one. 

 When it is difficult to assert a credible subjective distribution, a reasonable way to act is to use a decision 

criterion that achieves uniformly satisfactory results, whatever the true state of nature may be. There are 

multiple ways to formalize the idea of uniformly satisfactory results. The two most commonly studied are the 

minimax and minimax-regret criteria. 

 The minimax criterion chooses an action that minimizes the maximum social cost that might possibly 

occur. The minimax-regret criterion considers each state of nature and computes the loss in welfare that 

would occur if one were to choose a specified action rather than the one that is best in this state. This quantity, 

called regret, measures the nearness to optimality of the specified action in the state of nature. The decision 

maker must choose without knowing the true state. To achieve a uniformly satisfactory result, he computes 

the maximum regret of each action; that is, the maximum distance from optimality that the action would yield 

across all possible states of nature. The criterion chooses an action that minimizes this maximum distance 

from optimality.7 

 

4.2. Computational Determination of Bayesian, Minimax, and Minimax-Regret Vaccination Policies 

 

 Each of the decision criteria described above --- Bayesian, minimax, and minimax-regret --- merits 

consideration as an approach to choose a vaccination policy. Algebraic determination of the policies yielded 

by the criteria is not always feasible when multiple uncertainties are present, but computation is tractable. To 

demonstrate, I have implemented an algorithm that assumes there exists a sharp HIT. Then the state space 

lists the feasible values of [h*, S, (λ, μ), (b, k), vd], with vd being relevant in the case of constrained planning. 

I summarize the main features of the algorithm here. 

 
7 The minimax and minimax-regret criteria are sometimes confused with one another, but they yield the same choice 
only in certain special cases. Whereas the former criterion considers the worst outcome that an action may yield in 
absolute terms, the latter considers the worst outcome relative to what is achievable in a given state of nature.   
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 The algorithm is applicable when the state space is a specified hyperrectangle of values for [h*, S, (λ, υ), 

(1, k), vd], where μ ≡ υλ. Thus, υ expresses the indirect effect of vaccination as a fraction of the direct effect. 

Setting b = 1 is without loss of generality, because the policy chosen by each decision criterion depends only 

on the ratio b/k rather than on b and k separately. 

 The rectangular state space is formed by placing specified lower and upper bounds on each of the 

parameters [h*, S, (λ, υ), k, vd]. All parameters are logically non-negative, so each lower bound must be non-

negative. All parameters except k are logically less than or equal to one, so their upper bounds must be less 

than or equal to one. In principle k may exceed one, but such cases yield the trivial result that the optimal 

vaccination rate is zero whatever values the other parameters take. 

 Computation of the minimax policy is simple when the state space is rectangular. Inspection of equation 

(4) shows that, for all values of v, the state that maximizes social cost places (h*, S, k) at their upper bounds 

and (λ, υ) at their lower bounds. 

 To make computation of minimax-regret policies tractable, a user of the algorithm approximates the state 

space by a finite grid of parameter values. A selected density of the grid controls the closeness of the 

approximation. The performance of a given vaccination rate is evaluated by computing its maximum regret 

over the grid of values. 

 Bayesian planning requires specification of a subjective probability distribution on the state space. The 

algorithm enables the user to place a selected Beta distribution on the bound for each parameter and creates a 

joint distribution by assuming subjective statistical independence across parameters. The subjective expected 

social cost of a given vaccination rate is approximated by Monte Carlo integration. That is, the algorithm 

makes repeated simulated draws of parameter values from the joint distribution, computes social cost with 

each draw, and then averages the computed social cost across draws. The user-chosen number of simulated 

draws controls the closeness of the approximation. 
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4.3. Policy Choices with an Illustrative State Space 

 

 To illustrate, I determine minimax and minimax-regret vaccination rates for a specified state space. I do 

not present findings for Bayesian policy choice, which depends on the subjective distribution placed on the 

state space. 

 I let the state space be the hyperrectangle with S ∊ [0.5,0.8], h* ∊ [0.6,0.8], λ = 0.95, υ ∊ [0.7,0.9], and k 

∊ [0.05, 0.2]. This space is a neighborhood of the state used in the illustration of Section 2.4. It contains 

intervals of parameter values that appeared credible in late December 2020. I use the single point λ = 0.95 

because this quantity, alone among the parameters, has a relatively firm evidentiary grounding. 

 For this state space, the upper graph in Figure 2 shows how maximum social cost across different states 

of nature varies with the vaccination rate. The lower graph displays the post-vaccination illness rates 

associated with these social costs. The slight kinks in the graphs that occur at about the vaccination rate v = 

0.9 arise because the determination of maximum social cost transitions from regime 1 to regime 2 here. 

 We find that maximum social cost and the associated illness prevalence both decrease as the vaccination 

rate increases. Hence, the policy that minimizes maximum social cost vaccinates the complete population. 

This implies that a vaccine mandate is socially preferable to decentralized vaccination, regardless of the 

fraction of the population who would choose to vaccinate with decentralization. 

 Figure 3 shows findings for maximum regret across the state space, as a function of the vaccination rate. 

Maximum regret initially decreases as the vaccination rate increases, attains an interior minimum at about v = 

0.74, and then increases as the vaccination rate increases further. The minimum occurs at the threshold 

between vaccination regimes 1 and 3. The illness rate in the state yielding maximum regret initially decreases 

continuously and then drops discontinuously to zero at about v = 0.74, where the transition to regime 3 

occurs. The values of (S, h*, υ, k) that maximize regret all change discontinuously at this value of v. 

 Considered from the perspective of maximum regret, the choice between a mandate and decentralization 

varies with the decentralized vaccination rate. A mandate yields maximum regret equal to 0.2. Maximum 
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regret with decentralization is greater than 0.2 for vd < 0.63 and less than 0.2 when 0.63 ≤ vd  < 1. Hence, a 

mandate is preferable if one deems it feasible that vd < 0.63. Decentralization is preferable if one is certain 

that vd ≥ 0.63. 
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Figure 1: Social Cost (upper graph) and Illness Prevalence (lower graph) 

 as Functions of the Vaccination Rate 
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Figure 2: Maximum Social Cost (upper graph) and Associate Illness Prevalence (lower graph) 

as Functions of the Vaccination Rate 
 

 

0.2 

0.4 

0.6 

0.00 0.25 0.50 0.75 1.00 
 

 



27 

 
Figure 3: Maximum Regret (non-monotone graph) and Associate Illness Prevalence (decreasing graph) 

as Functions of the Vaccination Rate 
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