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ABSTRACT

This paper uses newly available data from Web of Science on publications matched to 
researchers in Survey of Doctorate Recipients to compare scientific publications collected by 
surveys and algorithmic approaches. We aim to illustrate the different types of measurement 
errors in self-reported and machine-generated data by estimating how publication measures from 
the two approaches are related to career outcomes (e.g. salaries, placements, and faculty 
rankings). We find that the potential biases in the self-reports are smaller relative to the 
algorithmic data. Moreover, the errors in the two approaches are quite intuitive: the measurement 
errors of the algorithmic data are mainly due to the accuracy of matching, which primarily 
depends on the frequency of names and the data that was available to make matches; while the 
noise in self reports is expected to increase over the career as researchers’ publication records 
become more complex, harder to recall, and less immediately relevant for career progress. This 
paper provides methodological suggestion on evaluating the quality and advantages of two 
approaches to data construction. It also provides guidance on how to use the new linked data.
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1 Introduction 

As academic maxim goes, “Publish or perish.” In this environment, it is important to be able 

to measure the publication trajectories of scientists; how they vary across researchers, including 

by gender, race, ethnicity, immigrant status, and over the career; and how they relate to outcomes 

such as earnings and placements. Traditionally, researchers have turned to survey questions on 

productivity, but recently researchers have focused on using algorithmic approaches. However, 

little is known about the validity and accuracy these two sources of data.  

Among the best survey data available for such analyses have come from the Survey of 

Doctorate Recipients (SDR). The National Center for Science and Engineering Statistics (NCSES) 

within the National Science Foundation has conducted SDR biennially since 1973, collecting 

demographic information along with educational and occupational histories. Starting in 1995, self-

reported data on publication counts for a reference period of five years are collected. On the other 

side, there are an increasing number of algorithmically disambiguated databases available 

commercially and from researchers. Examples include Elsevier, Microsoft Academic Graph, 

CiteSEER, Author-ity (Torvik et al., 2005; Torvik and Smalheiser, 2009). One of the best-known 

commercial databases is the Web of Science. 

In recent years, NCSES has explored enriching survey data with alternative data sources to 

increase the value of its data and to avoid imposing further response burden of the survey 

participants. One aspect of this work was an effort to link survey respondents from the 1993-2013 

SDR to publications indexed by the Web of Science (Freyman et. al, 2017). These linked data 

provide a unique opportunity to compare algorithmically disambiguated and matched data to 

survey data, including as determinants of research outcomes (Chang et al., 2019; Hopkins et al., 

2013; Sabharwal, 2013; Whittington, 2011; Ginther et al., 2020).  
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We use these newly available data on publications matched to the SDR to compare survey-

based and algorithm-based measures on the publications of scientists. Our work makes four 

contributions. First, we study how publication counts compare across the two approaches overall 

and for specific demographic groups and assess the relative quality of the two approaches. While 

our specific results only apply to the WoS data and some may prefer other publication and citation 

datasets, the WoS data are a prominent, respected dataset and our analysis provides a valuable 

head-to-head comparison of one algorithmic approach to the survey approach to collect complex 

data that may be informative. Second, our analysis involves estimating how publication measures 

from the two approaches are related to career outcomes (e.g. salaries, placements, and faculty 

rankings), estimates that are of interest in their own right. Third, as algorithmic approaches 

proliferate1, so does the importance and cost of validation. While the conventional approach would 

be to collect a “gold standard,” something that is costly and extremely difficult to do well (e.g. 

even CV data contain mistakes), we lay out a radically different and far lower cost approach to 

assessing data quality that others may find valuable. The utility of our approach has begun to be 

recognized, with Ginther et al. (2020) already applying it.2 Last, we provide guidance on how to 

use the new linked SDR-WoS data. 

It is important to realize at the outset that there are reasons to believe that both approaches to 

data collection are likely to yield different information, results, and generate some errors. First, 

                                                
1 The use of algorithmic data has recently growing in many research fields, including economics, social sciences, 
etc. For example, using geocoding and surname to impute race or using first name to impute gender is usual when 
demographic information is hard to be collected or matched (e.g. Marschke et al., 2018).  
2 As indicated, Ginther, Zambrana, and Chang (2020) start from our basic approach and modify it by adding a 
manually-collected gold standard. Their basic approach answers a slightly different question from ours. Their work 
is best suited for assessing the signal-to-noise ratio in the WoS, which is more useful for assessing the quality of the 
WoS and working with the WoS data. Our approach compares the signal-to-noise ratio in the WoS to that in the 
SDR self-reports. Thus, it is better suited to assisting a researcher who is choosing between using one dataset 
relative or the other. We also point to potential solutions. At a methodological level, their approach requires the 
development of a gold standard, which is difficult to do accurately and costly (as a consequence their main estimates 
are based on a sample that is roughly 7% the size of ours). 
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there is likely to be pure measurement error in retrospective self-reports. Second, self-reported 

publication counts, such as those included in the SDR typically do not account for the quality of 

publications and are, therefore, a noisy measure of scientific contributions. Lastly, it is possible 

that there is, what we might refer to as “bragging bias” in self-reports, with people who over-report 

their publications also over-reporting other outcomes such as salaries (bragging may well be less 

common for other outcomes, such as tenure status and institutional affiliation, which are more 

discrete). Another source of discrepancy between algorithmic data and self-reports is coverage, 

with the target coverage of articles and journals in a database being defined, while self-reports 

cover all journal publications. (Of course, this defined coverage may or may not provide more 

uniformly quality.) 

The algorithmic approach has limitations and errors too, the most obvious of which are 

disambiguation and linking errors, which are likely to be greatest for relatively common names 

and when links must be made based on less information (e.g. without using e-mail addresses). 

Fortunately, for our comparison because disambiguation and linking errors and coverage issues 

stem from such different sources than self-reports, we have no reason to believe that the differences 

between the algorithmic data and self-reports will be highly correlated. Moreover, unlike the 

possible mis-reporting in the self-reports, the algorithmic measurement errors in the SDR-WoS 

dataset are unlikely to be correlated with over-reports in outcomes. Our methods section outlines 

a series of statistical approaches to assess the accuracy of the two data approaches.  

Our findings are twofold. First, the overall results indicate that the potential biases in the SDR 

self-reports are likely smaller than those in the algorithmic data. While machine learning 

algorithms are improving rapidly over time and the WoS is only one algorithmic approach, this 

finding suggests that machine learning should not be viewed as categorically superior to self-
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reports. Second, while we find that overall the algorithmic approach underperforms self-reports, 

the errors in the two approaches are quite intuitive, which could be leveraged by researchers using 

the SDR data and guide users and producers of other data. Specifically, the accuracy of matching 

depends on the frequency of names and the data that was available to make matches (e.g. e-mail 

addresses). By subsetting the sample, we are able to show that the algorithmic data perform as well 

or better than the self-reports for people with uncommon names or for whom more data were 

available for matching. On the other hand, the noise in self reports is expected to increase over the 

career as researchers’ publication records become more complex, harder to recall, and less 

immediately relevant for career progress (e.g. once researchers have permanent positions and have 

progressed up the academic career ladder).  

Taken together, our findings suggest potential approaches for users of the SDR publication 

data. One natural approach is to run estimates using both sets of variables and triangulate the 

findings. Depending on the research question, a second option would be to subset the data to the 

groups for which a given measure is more precise. A third option is to instrument for one measure 

(e.g. the self-reported publications) using the other (e.g. the algorithmic measure). Obviously, the 

preferred approach will depend on the specific research question. 

The algorithmic approach has at least two additional advantages. First, the direct linkage to 

publications makes it possible to include a range of measures of scientific impact (i.e. citations to 

articles), which would be hard to collect as part of a survey. These can be used to control for 

publication quality, which we have explored, but including WoS citation / impact measures does 

not have a meaningful effect on our wage, affiliation, or promotion estimates. Second and as 

indicated, the algorithmic approach has the advantage of being lower burden for respondents, 

which might reduce the length of the survey or provide space for additional questions. 



 7 

2 Data 

2.1 SDR and Thomson Reuters Web of Science™ 

The Survey of Doctorate Recipients (SDR) is a longitudinal survey of individuals who have earned 

a research doctorate in science, engineering, or health (SEH) field from a U.S. institution. It is 

conducted by the National Center for Science and Engineering Statistics (NCSES) and contains a 

range of information on demographics, employment, and educational histories. The survey 

included questions about research outputs, including publications and patents, in 1995, 2003, and 

2008.  

To improve the understanding of the products of research by U.S.-trained SEH doctorates, 

NSF collaborated with Clarivate Analytics to use a machine learning approach to match the SDR 

respondents to the authors of publications indexed by the WoS. Drawing heavily on the description 

in Baker and Wolcott (2016), the matching algorithm incorporates name commonality, research 

field, education and employment affiliations, co-authorship network and self-citations to predict 

matches from the SDR respondents to the WoS. The overall procedure consists of five steps 

(Chang et. al, 2019):  

1. A gold standard data set was constructed for use in training of prediction models 

and for validation of predicted matches;  

2. Candidate publications were identified and blocked using last name and first initial;  

3. The round one matching is conducted by Random ForestTM (RF) classification 

models trained to identify publications which could be matched to SDR respondents with a high 

degree of confidence. The high confident matches are called the ‘seed publications’ and used to 

increase the amount of data available for the subsequent matching; 
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4. Data were extracted from the seed publications and combined with survey data used 

in round one to enrich the RF models for increased recall and make the final predictions; 

5. The final matched data set was refined to ensure that no respondent was matched to 

more than one authorship on a single publication and that those with an exact match by email were 

considered matches.  

 

2.2 Subset of SDR and WoS Data Used in This Paper 

For our purpose to assess and compare the validity and quality of the SDR self-reported and WoS-

linked publications, we analyze all three waves of SDR that have been linked to WoS, 1995, 2003, 

and 2008 wave. We present the results from the 2003 survey, the middle of the three waves with 

publication data. Results for the 1995 and 2008 rounds are in the appendix. The results are 

qualitatively similar across all three waves of data, with exceptions noted below.  

        Our main dataset, 2003 SDR, provides individual-level, self-reports of journal article 

publication counts during 1998—20033. We compare this publication to the aggregated number 

of publications from the WoS under the same time frame. The SDR also provides comprehensive 

information on doctorate recipients, including demographic characteristics, academic records, and 

career outcomes. We focus on the sample of doctorate recipients who placed in academia. Table 1 

shows the summary statistics for the key variables we used in this paper: publication counts from 

SDR and WoS, self-reported salary, total annual federal research funding received by the 

employing institution, academic age, and gender share in the sample. The three outcome variables 

to measure individual career achievement are self-reported salary from SDR, total annual federal 

                                                
3 SDR surveys both journal article publication counts and conference article publication counts. We only use journal 
article publication counts in this analysis. 
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research funding received by the employment institution from NSF’s Higher Education Research 

and Development (HERD) Survey4, and tenure status5. The self-reported salary is in USD of the 

survey year (i.e., 2003, for the dataset we use in the main text). The lower panel of Table 1 shows 

the comparison of SDR and WoS publication counts by sub-category, such as gender, race, and 

faculty ranking. On average, WoS publication counts exceed SDR publication counts across the 

entire sample and all subgroups. The correlation coefficient indicates that they are somewhat but 

not highly correlated. As it is better to visualize the publication counts by academic age6, we plot 

the average SDR and WoS publication by academic age, shown in Figure 1. It indicates that the 

WoS publication counts exceed those from the SDR at almost every academic age, except for the 

very senior ones.  

 

3 Methods 

The heart of our work will be to employ a standard set of econometric methods to address errors 

in the publication variables (Greene, 2003). This approach, which we believe is more broadly 

applicable differs markedly from a more conventional comparison to, for instance, a manually 

constructed “gold standard.” Specifically, we analyze the relationship between faculty’s self-

reported career outcomes and the number of publications from both the SDR and WoS, to assess 

the quality of each measure of publication records. For our test case, the career outcomes, yi, for 

                                                
4 The Higher Education Research and Development Survey is the primary source of information on R&D 
expenditures at U.S. colleges and universities. The survey collects information on R&D expenditures by field of 
research and source of funds and also gathers information on types of research, expenses, and headcounts of R&D 
personnel. The survey is an annual census of institutions that expended at least $150,000 in separately accounted for 
R&D in the fiscal year. 
5 Tenure status used in this study is defined by self-reported faculty rank in SDR. There are four faculty ranks: 
Assitant Professor, Associate Professor, Professor, and Other Faculty and Postdocs. We categorize Associate 
Professor and Professor as tenure = 1; and the rest as tenure = 0.  
6 Academic age is defined by number of years since the researcher got the Ph.D. degree. 



 10 

individual 𝑖𝑖, include self-reported earnings, academic promotions, academic rank, and institution 

rank. Outcomes are related to researchers’ own characteristics, Xi; including demographics (e.g. 

gender, ethnicity, immigrant status, and age), experience, and field of study. This section lays out 

our conceptual framework and approach. 

We start from the assumption that the true number of publications by researcher i is 𝑃𝑃𝑖𝑖 . 

Unfortunately, we do not observe the true number of publications. Rather, we observe the self-

reported number of publications from SDR, 𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , and the number of matched publications from 

the WoS, 𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊. We can write 𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆and 𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊  as functions of 𝑃𝑃𝑖𝑖: 

𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆    (1A) 

𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊   (1B) 

Where 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆and 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊are measurement errors in the SDR number of publication and WoS number 

of publications, respectively, which we regard as “errors-in-variables”. These are assumed to be 

uncorrelated with true publications, 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊� = 0. At the same time, it is 

possible that measurement error in the SDR self-reports might be correlated, most likely positively, 

with the true number of publications, 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆� ≠ 0. We discuss the sensitivity of our results 

to this violation of our assumptions. The main source of error in the SDR is reporting error on the 

part of respondents, while the main source of measurement error in the WoS data is due to 

algorithmic disambiguation and linking errors. Thus, it seems plausible these two types of 

measurement errors would be uncorrelated with each other, that 𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆, 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊) = 0. 

 For much of what we do, we condition on a range of control variables, in this case, we 

augment equations (1A) and (1B) by including control variables represented by 𝑋𝑋𝑖𝑖 . In this 

formulation, we assume that 𝐶𝐶𝑜𝑜𝑜𝑜�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖� = 0 ; and that 

𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 0.  
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3.1 Horse Race Test: Compare Coefficients 

A “horse race” test is a simple, informal approach to compare the ability (i.e. explanatory power) 

of the two key measures of publication counts to explain wages. Given that both measures are 

supposed to capture the same underlying construct, if one of the measures is a better predictor in 

the sense that it has a greater coefficient and stronger statistical significance, that indicates that it 

is measured more precisely (Farber and Gibbons, 1996, and Altonji and Pierret, 2001, employ 

similar logic, albeit in a very different context). 

Specifically, consider a regression of some outcome 𝑦𝑦𝑖𝑖, such as the natural logarithm of 

wages, on publications. With the true data on publications, that regression would be 

𝑦𝑦𝑖𝑖 = 𝛽𝛽𝑃𝑃𝑖𝑖 + 𝛾𝛾𝑋𝑋𝑖𝑖 + 𝑢𝑢𝑖𝑖 (2A) 

and it would say how an increased number of publications translates into higher wages. (Although 

it is not critical for our analysis, would be hesitant to give β a causal interpretation because wages 

and publications are both likely to be positively related to unobserved ability or motivation.) 

 Because we do not observe actual publications, we regress our outcomes, 𝑦𝑦𝑖𝑖, on the SDR 

and WoS measures of number of publications both one at a time (i.e. separate regressions) and 

also include them in the same regression. Our data are cross-sectional, and allow us to control for 

individual demographic and academic characteristics.   

𝑦𝑦𝑖𝑖 = 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛾𝛾𝑋𝑋𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆  (2B) 

𝑦𝑦𝑖𝑖 = 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊 + 𝛾𝛾𝑋𝑋𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊 (2C) 

𝑦𝑦𝑖𝑖 = 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 + 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖𝑊𝑊𝑜𝑜𝑆𝑆 + 𝛾𝛾𝑋𝑋𝑖𝑖 + 𝑢𝑢𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵ℎ  (2D) 
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and compare the coefficients, 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆  and 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊. We note that the various 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆  and 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊  and 𝛾𝛾 

estimates from (2B)-(2D) are analogous, but different parameters. 

 Under the assumptions that measurement errors in our publication measures are 

uncorrelated with each other 𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 0  and with the error in (2A) 

𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢𝑖𝑖, 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 0, standard errors-in-variables logic allows us to get a 

sense of the amount of measurement error in the two measures (in (1A) and (1B)) from the 

estimated coefficients 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆  and 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊(Greene, 2003). To lay out the effects of these errors-in-

variables formally, consider one of the regressions (2B) or (2C) where we regress outcomes on 𝑃𝑃𝑖𝑖
𝑗𝑗, 

where j ∈ {SDR, WoS}.  

𝛽𝛽𝚥𝚥� =  
𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑖𝑖 ,𝑃𝑃𝑖𝑖

𝑗𝑗|𝑋𝑋𝑖𝑖)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖

𝑗𝑗|𝑋𝑋𝑖𝑖)
=

𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑖𝑖 ,𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖
𝑗𝑗|𝑋𝑋𝑖𝑖)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖
𝑗𝑗|𝑋𝑋𝑖𝑖)

= 𝛽𝛽
𝑉𝑉𝑉𝑉𝑉𝑉( 𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖
𝑗𝑗|𝑋𝑋𝑖𝑖)

   (3) 

Thus, the error in the variable 𝑃𝑃𝑖𝑖
𝑗𝑗 biases  𝛽𝛽𝑗𝑗  toward zero relative to the true 𝛽𝛽 in (2A) with the 

downward bias depending directly on the amount of noise in the publication measure 𝑃𝑃𝑖𝑖
𝑗𝑗 relative 

to the true variation in publications. We refer to this expression as the “errors-in-variables” formula. 

In the case where 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆� ≠ 0, 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆� =  𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽� 𝑃𝑃𝑖𝑖�𝑋𝑋𝑖𝑖�+𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖,𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖�

𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃𝑖𝑖�𝑋𝑋𝑖𝑖�+𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�+2𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖,𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖�
 , so the 

bias will not solely reflect the signal-to-noise ratio in 𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 .  

Returning to our maintained assumptions that 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖� = 0 

and that the measurement errors in our publication measures are uncorrelated with each other 

𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊) = 0 and with the error in (2A) 𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢𝑖𝑖, 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 0, we 

can compare (qualitatively) the amount of noise in each publication measure from the relative size 

of 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆  and 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊 . Formally,  
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𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆�

𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊� =
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖)

  (4) 

 We can also assess the variance in publications. This can be done by noting that if 

𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 0, then  

𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 𝑐𝑐𝑐𝑐𝑣𝑣(𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖)  (5) 

We conduct three broad analyses – a baseline analysis, an analysis of different age groups, and an 

analysis based on the match quality in WoS, for which we have a series of direct measures. 

 There are four critical assumptions underlying this analysis — that the measurement errors 

in our publication measures are uncorrelated with each other, 𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 0, that each 

of the measurement errors is uncorrelated with the error in (2A) 𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� =

𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢𝑖𝑖, 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 0 , and that 𝑐𝑐𝑐𝑐𝑐𝑐�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑃𝑃𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖� = 0 . As indicated, we 

believe that 𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆, 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 0 is reasonable. We believe that assuming 𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖� =

0 is also reasonable – a counter example would be that people with more ambiguous names might 

over- or under-report their earnings. Given that Asian names (especially Chinese and Korean 

names) are the most ambiguous, this cannot be excluded as a possibility, but it also seems remote, 

especially because our baseline regressions control for race and ethnicity. If one of these 

assumptions were to be violated, the assumption 𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖) = 0  seems like a likely 

candidate. We have referred to 𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖� > 0 as “bragging bias”, in which people who 

over-report their earnings may also over-report their publications. Such a violation would tend to 

bias 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆�  upward, which would make it appear to be less noisy than the errors-in-variables 

formula (given in equation (3)) would suggest. Formally, in this case, 
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𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆� =  
𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑖𝑖 ,𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 |𝑋𝑋𝑖𝑖)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖

𝑗𝑗|𝑋𝑋𝑖𝑖)
=

𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑖𝑖 ,𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖)

= 𝛽𝛽
𝐶𝐶𝐶𝐶𝐶𝐶�𝑢𝑢𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆� + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽( 𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖)
𝑉𝑉𝑎𝑎𝑎𝑎(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖)

   (3′) 

As above, if 𝑐𝑐𝑐𝑐𝑐𝑐�𝑃𝑃𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� ≠ 0, then equation (4) will not hold and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) =

𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖) , which would overstate the 

variance in 𝑃𝑃𝑖𝑖. 

 

3.2 Instrumental Variable Analysis 

Another approach is to employ instrumental variables. Instrumental variable analysis is a standard 

approach in many of the social sciences to address correlations between independent variables and 

the error term in a regression such as (2A)-(2D) (Goldberger, 1971; Bowden and Turkington, 1984; 

Morgan, 1990). There are two sources of bias in our estimates of   𝛽𝛽. One is the errors-in-variables 

in our 𝑃𝑃𝑖𝑖
𝑗𝑗, for which instrumental variables is ideal when there are two measures of a predictor 

variable that are subject to measurement errors, but with uncorrelated errors (i.e. 

𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 0). It is also possible that 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆�  is biased upward because of bragging bias, 

whereby people who overreport their earnings also overreport their publications 

𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� > 0. So long as 𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖� = 0, instrumenting for 𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆  with 𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊 can 

also address this concern. (At the same time, publications and wages both likely reflect “ability” 

and motivation, which are omitted from the models. Instrumental variables will not address this 

source of bias, because ability is likely to be correlated with earnings and both measures of 

publications.) 

Formally, we regress 𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆on 𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊: 
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𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛿𝛿𝑊𝑊𝑊𝑊𝑊𝑊𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊 + 𝜋𝜋𝑋𝑋𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆     (6) 

Where the coefficient, 

𝛿𝛿𝑊𝑊𝑊𝑊𝑊𝑊� =
𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊�𝑋𝑋𝑖𝑖�
𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊�𝑋𝑋𝑖𝑖�

=
𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊�𝑋𝑋𝑖𝑖�
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊�𝑋𝑋𝑖𝑖�

=
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊�𝑋𝑋𝑖𝑖�
    (7) 

under the assumption that 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊 are uncorrelated. Thus, we can directly estimate the 

variance in the measurement error in the WoS publication measure relative to the variance in 

publications (i.e. a signal to noise ratio). The more measurement error, the greater the attenuation 

bias and the closer 𝛿𝛿𝑊𝑊𝑜𝑜𝑆𝑆�  will be to zero. In the case where 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� ≠ 0, then 𝛿𝛿𝑊𝑊𝑊𝑊𝑊𝑊� =

𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃𝑖𝑖�𝑋𝑋𝑖𝑖�+𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�
𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃𝑖𝑖�𝑋𝑋𝑖𝑖�+𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀′𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊�𝑋𝑋𝑖𝑖�

 then 𝛿𝛿𝑊𝑊𝑊𝑊𝑊𝑊�  will overstate the signal to noise ratio in the SDR self-

reports.  

Of course, the same procedure can be run in reverse to obtain a measure of the signal to 

noise ratio in 𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , which generates a symmetric set of results. Specifically, if we estimate  

𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊 = 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜋𝜋𝑋𝑋𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊    (8) 

We obtain  

𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆� =
𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊 ,𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�

𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�
=
𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑊𝑊0𝑆𝑆 ,𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�

=
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�
    (9)  

This gives us an estimate of the measurement error in the SDR publication measure. In the case 

where 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� ≠ 0 , then 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆� =
𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃𝑖𝑖�𝑋𝑋𝑖𝑖�+𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�

𝑉𝑉𝑉𝑉𝑉𝑉�𝑃𝑃𝑖𝑖�𝑋𝑋𝑖𝑖�+𝑉𝑉𝑉𝑉𝑉𝑉�𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊�𝑋𝑋𝑖𝑖�+2𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖,𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖�
 then 𝛿𝛿𝑊𝑊𝑊𝑊𝑊𝑊�  

will overstate the signal to noise ratio in the SDR self-reports. 
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Equation (6) and (8) above form the first stage of the instrumental variable estimation. The 

second stage of the instrumental variables procedure involves taking the prediction from the first 

stage and including it as an independent variable in a regression where the original outcome is the 

dependent variable. Specifically, we estimate models where outcomes are related to publications 

using both publication measures one by one as in equation (1) and using instrumental variables to 

address measurement error. Formally, we first estimate equation (6). We then regress the outcome 

variable, 𝑦𝑦𝑖𝑖, on the fitted value from the first stage, 𝑃𝑃𝚤𝚤𝑆𝑆𝑆𝑆𝑆𝑆�  

𝑦𝑦𝑖𝑖 = β𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝚤𝚤𝑆𝑆𝑆𝑆𝑆𝑆� + 𝛾𝛾𝑋𝑋𝑖𝑖 + 𝑢𝑢𝑖𝑖        (second stage) 

       The estimates from this model will account for measurement error in 𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆  even if the 

measurement in 𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆  is correlated with the error in the earnings equation, with 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆 = 𝛽𝛽 so long 

as the error in the earnings equation is not also correlated with the error in 𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊, 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊. Intuitively, 

the instrumental variables procedure uses the portion of 𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆  that is predicted by 𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊, which is 

assumed to be uncorrelated with the error in the earnings equation. 

We can also implement this procedure in reverse running equation (8) as our first stage and 

then regressing the outcome on the predicted value from that equation in a second stage. This 

model will produce unbiased estimates under assumptions that the measurement errors in the two 

publication measures are uncorrelated with each other and that the measurement error in 𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , 

𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 , is uncorrelated with the measurement error in the outcome equation, 𝑢𝑢𝑖𝑖. Insofar as we may 

have some questions about the last assumption, this approach may be less compelling than the 

former. At the same time, under the assumptions that 𝑐𝑐𝑐𝑐𝑐𝑐(𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆, 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖) = 0  and that 

𝑐𝑐𝑐𝑐𝑐𝑐�𝑢𝑢𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢𝑖𝑖, 𝜀𝜀𝑖𝑖𝑊𝑊𝑜𝑜𝑜𝑜|𝑋𝑋𝑖𝑖) = 0 , 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆� = 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊� = 𝛽𝛽 .  That is, if both measurement 
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errors are orthogonal to the error in the outcome equation, they will both be valid instruments and 

generate consistent estimates for 𝛽𝛽. 

We note that if 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� ≠ 0 then 

𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆� =
𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖,𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊�𝑋𝑋𝑖𝑖�

𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊�𝑋𝑋𝑖𝑖�
=

𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑖𝑖 ,𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖)
𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 ,𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊�𝑋𝑋𝑖𝑖�

= 𝛽𝛽
𝐶𝐶𝐶𝐶𝐶𝐶(𝑃𝑃𝑖𝑖,𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊|𝑋𝑋𝑖𝑖)

𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖�
= 𝛽𝛽

𝑉𝑉𝑉𝑉𝑉𝑉( 𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝐶𝐶𝑜𝑜𝑜𝑜�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖�

 

Thus, if 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� ≠ 0, 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆�  will be biased downward with the bias being greater the 

greater the covariance between 𝑃𝑃𝑖𝑖 and 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 . Similarly, if 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� ≠ 0 then 

𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊� =
𝐶𝐶𝐶𝐶𝐶𝐶�𝑌𝑌𝑖𝑖,𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�

𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊 ,𝑃𝑃𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�
=

𝐶𝐶𝐶𝐶𝐶𝐶�𝑦𝑦𝑖𝑖 ,𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�
𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊,𝑃𝑃𝑖𝑖 + 𝜀𝜀′𝑖𝑖

𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�

= 𝛽𝛽
𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖,𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�𝑋𝑋𝑖𝑖�

𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖�
= 𝛽𝛽

𝑉𝑉𝑉𝑉𝑉𝑉( 𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖�
𝑉𝑉𝑉𝑉𝑉𝑉(𝑃𝑃𝑖𝑖|𝑋𝑋𝑖𝑖) + 𝐶𝐶𝐶𝐶𝑣𝑣�𝑃𝑃𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖�

= 𝛽𝛽 

Thus, 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊�  is consistent even if 𝐶𝐶𝐶𝐶𝐶𝐶�𝑃𝑃𝑖𝑖, 𝜀𝜀𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆|𝑋𝑋𝑖𝑖� ≠ 0 . This result obtains because we the 

measurement error in the instrument biases the first stage and reduced form estimates similarly 

leaving the second stage estimates consistent. 

4 Findings 
4.1 Results of the Horse Race Tests 
4.1.1 Baseline 
We first assess the explanatory power of the two publication measures to our three outcome 

variables on the base of the entire sample. In specific, we estimate equation (1) using the full 

sample of those worked in academic sector in the 2003 SDR. Note that we replicate all analyzers 

using the 2008 and 1995 SDR as a robustness check. We estimate this model with three 
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functional forms for the independent variables of interest: 1. The SDR publication counts and the 

WoS publication counts, 2. ln(SDR count + 1) and ln(WoS count +1); and 3. ln(SDR count), 

ln(WoS count), and indicators of zero publications. In specific, when we use logarithmic 

measures of publications, i.e. ln(SDR count) and ln(WoS count), we set the log count variables 

equal to zero (ln(SDR count) = 0) if SDR count = 0 and control for indicators of zero publication 

for SDR. In this procedure, the indicator on having zero publications gives the difference in 

wages between people with zero and one publication. 

        Table 2 shows the main results of the baseline analysis with ln(salary) as the outcome 

variable. We explore several regression specifications (each column is a separate regression 

model). Model (1) only includes the key variable, SDR publication counts and WoS publication 

counts. Model (2) adds in demographic controls including, a female indicator, an indicator of 

marital status, a linear term of academic age, a square term of academic age, and race indicators. 

Model (3) adds in field of study fixed effects by a coarse definition of fields of study (7 fields in 

total). Model (4) replaces the coarse field of study fixed effects with a fine definition (83 fields in 

total). Model (5) replaces the linear and squared terms in academic age with a full set of 

academic age fixed effects, to further control more flexibly for variation in academic career 

stage. Model (5) is the richest model and is our preferred specification. Model (6) has the same 

specification as model (5) but replaces the SDR and WoS publication count measured in levels 

with ln(SDR+1) and ln(WoS +1). Model (7) replace them with ln(SDR), ln(WoS), and an 

indicator for zero SDR publications. The standard errors are clustered at academic age level.  

In general, we find that the 1998-2003 SDR’s publication count has substantially greater 

explanatory power for the 2003 base annual salary than WoS’s publication count over the same 

time period. This relationship holds across all regression specifications: with or without 
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demographic characteristics, controlling for linear or nonlinear academic age, controlling for 

coarse or fine research field classifications, and estimated in levels or either of the natural 

logarithm specifications of publication count. Specifically, one SDR publication is associated 

with a 0.7% increase in salary while one WoS publication is associated with a 0.34% increase in 

salary. The explanatory power of the model that uses SDR publications is more than double that 

of the one that uses WoS publications. 

We replicate this table using the 1995 and 2008 rounds of the SDR, which also include 

self-reported publication count, and find that the results are robust. Interestingly, the magnitudes 

of the coefficients on the SDR publications are larger in the 2008 and 2003 rounds than in the 

1995 round. By contrast the magnitude of the coefficient on the WoS publications is quite similar 

across all three years. One potential explanation is that people are becoming better at keeping 

publication records and reducing the measurement errors in self-reported publication count. 

Another explanation is that the rate of return to publishing has increased, but that measurement 

error in the WoS has also increased, which we find less plausible because the quality of 

algorithmic disambiguation and linkage typically improve over time as more data elements are 

available.Although salaries are a very common measure of career outcome, there is concern that 

the measurement error in the self-reported salary and the measurement error in the independent 

variable—the SDR publication count—might be correlated. We then investigate alternative 

measures of career outcomes, which are presumably less subject to individual reporting errors. 

One of the alternative outcome variables is federal research funding received by respondents’ 

institutions. This measure is an institution-level outcome, which is strongly related to 

reputational rankings but available for considerably more institutions. We use it as a proxy for 
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the quality of academic placement7.  We estimate the same set of regressions in Table 2 

replacing the dependent variable with the natural logarithm of federal research funding received 

by the employing institution. Estimates in Table 3 shows the same pattern as we see in Table 2. 

The coefficients of SDR counts are 2-3 times larger than the coefficients of WoS counts, 

although the differences between the two coefficients diminish when we use a log specification 

for publication count. 

The third outcome variable is researcher’s tenure status, which is defined by the self-

reported faculty rank (i.e., assistant professor, associate professor, professor, or other faculty and 

postdocs). Faculty rank is self-reported and may be misreported, but because it is discrete and 

highly salient, it may be reported more accurately than salary, which is continuous and is known 

to be reported with error. Table 4 shows the estimates using a dummy variable of tenure status8 as 

the dependent variable. The finding that SDR publication counts have more explanatory power 

than WoS counts is robust and even stronger than results in Table 2 and Table 3. 

                                                
7 Respondents were asked their institutional affiliations and we assigned funding amounts from NSF’s HERD data, 
so measurement error would have to come from respondents misreporting their institutions or survey staff 
misrecording it, which seems unlikely to be widespread. 
8 The dummy variable tenure status is defined as 1 if faculty rank is professor or associate professor; 0 otherwise. 
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4.1.2 Academic Age Group Heterogeneity 

We hypotheses that self-reported publication counts will become increasingly noisy over 

the career as a researcher has more publications and the precise timing of publications becomes 

harder to recall. If so, self-reported publication counts are likely to degrade in quality later in the 

career. By contrast, the accuracy of WoS’s algorithmically generated publication counts should 

not change over the career. These hypotheses lead us to expect the coefficient on the SDR’s self-

reported publication counts to decline over the career while the coefficient on WoS’s publication 

counts to be roughly stable, or perhaps increase in specifications where the coefficients on SDR 

publication counts decline. We run the horse race test by age quintiles. As shown in Table 5, we 

find that the coefficient on the SDR’s publication count becomes less important as academic age 

increases, while the coefficient on the WoS’s publication count becomes more important as 

academic age increases. In particular, the coefficients on the WoS’s publication count is not 

statistically different from zero in quintile 1, where the dependent variable is ln(Salary), but 

significantly different from zero in quintile 2—5. Similarly, the coefficients on the WoS’s 

publication count is not statistically different from zero in quintile 1—3, where the dependent 

variable is ln(Funding), but significantly different from zero in quintile 4—5.  

 
4.1.3 Match Quality Analysis 

      The quality of self-reported publication counts are likely to vary according to a series of 

WoS’s match quality measures. Specifically, if WoS was unable to make a high-quality match, 

the WoS publication counts are likely to be noisy and then the coefficient on the WoS 

publication counts should be lower. By contrast, we do not expect the accuracy of the SDR’s 

self-reported publication counts to vary with WoS match quality and therefore we expect the 
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coefficients on the SDR’s self-reports to be essentially constant or perhaps increase slightly as 

WoS match quality deteriorates and hence the coefficient on WOS publication counts declines. 

We explored three publication-level measures on the match quality of WoS. First, the 

probability that a publication matches to the SDR respondent, as predicted by WoS’s random 

forest models, which is a continuous variable ranging between (0.5, 1). The higher the match 

probability, the more accurate the match. Second, the round at which the match was made, which 

indicates the number of rounds the random forest took to match the publication to the 

respondent. This is a discrete variable taking values of 0, 1 and 2, representing descending match 

quality: matched with an email address (value = 0), matched on round 1 (value = 1), and matched 

on round 2 (value = 2). The lower the number of match rounds, the higher of the match quality. 

Both the match probability and match rounds are at the article level. To obtain an author level 

measure, we take the mean of each variable across each respondent’s publications and use the 

author mean to proxy for WoS’s match quality. Third, the frequency that a particular 

respondent’s last name and first initial combination appears in the WoS database, which ranges 

from 1 to 218422. We expect that the lower the frequency, the higher the match quality. We 

estimate the horse race model across subsamples defined by quintile or quartile of each match 

quality proxy.  

Table 6 shows different coefficients on  SDR’s publication counts and WoS’s publication 

counts across quintiles of match probability. Each panel, from the top to the bottom, presents the 

regression estimates for each outcome variable: salary, funding, and tenure status. We find that: 

when the match probability is low (quintiles 1 or 2), WoS publication counts have significantly 

lower explanatory power than SDR publication counts. As the match quality gets higher, the 

coefficient on WoS publication counts increases and even exceeds the coefficient on SDR 
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publication counts in some subgroup. This pattern is robust in the replicated results using the 

2008 and 1995 datasets. 

A similar pattern emerges in Table 7, where the coefficient on the WoS publication counts 

is higher for people with more WoS publications that were matched in earlier rounds. Specifically, 

the coefficient on the WoS publication counts is not statistically different or even larger than the 

coefficient on SDR publication counts in the 1st and 2nd quintiles. This finding reaffirms that WoS 

publication counts has larger explanatory power than that of SDR when the WoS publication is 

matched with the highest quality. 

Lastly, Table 8 shows that when the frequency of names identified for the same author is 

low (quintiles 1—3), the coefficient on WoS publication counts is mostly higher than the 

coefficient on SDR publication counts9. For authors of the publications with common / ambiguous 

names (i.e., quintiles 4—5), the SDR’s coefficient is significantly larger than WoS’s. 

Thus, across our three analyses, we find considerable and plausibly differential explanatory 

power for WoS publication counts across different levels of match quality in the WoS data. In 

general, the quality of the algorithmic data appears to be as good as the self-reported data when 

we restrict to the highest quality matches, although the overall quality of the algorithmic data is 

not as good as the self-reports. Still with improvements in matching algorithms, it seems plausible 

that algorithmic approaches have or will surpass many self-reports. 

 
4.2 Results of the Instrument Variable Analysis 

We now compare the measurement errors in the two data sources using instrumental 

variables. We present the second stage and the first stage in the upper and lower panel of Table 9, 

                                                
9 We have no explaination of the coefficient of WoS in column (1) of last panel is negative. 
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respectively. We find both the deltas (coefficients in the first stage), δ𝑆𝑆𝑆𝑆𝑆𝑆  and δ𝑊𝑊𝑊𝑊𝑊𝑊 , and the betas 

(coefficients in the second stage), 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆and 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊 , are statistically different. Specifically, β𝑆𝑆𝑆𝑆𝑆𝑆  is 

statistically larger than β𝑊𝑊𝑊𝑊𝑊𝑊 , which reinforces our previous finding in the horse race tests.  

Compared to the coefficients in OLS models, the coefficients, 𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆and 𝛽𝛽𝑊𝑊𝑊𝑊𝑊𝑊 , in the IV models 

are significantly larger (more than double) than the coefficients in the OLS analysis. This finding 

is important because it indicates that there is considerable measurement error in both 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆and 

𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊. 

The magnitudes of the coefficients, δ𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 δ𝑊𝑊𝑊𝑊𝑊𝑊 , from the first stage are also informative. 

We find that δ𝑊𝑊𝑊𝑊𝑊𝑊  is near 0.4 across all specifications, which is consistent with substantial 

measurement error. By contrast, δ𝑆𝑆𝑆𝑆𝑆𝑆is close to 1. Specifically, the low δ coefficient in the first 

stage (i.e. δ� < 1) shown in the lower panel of Table 9, is consistent with measurement error in 

publication counts. The lower estimate for δ𝑊𝑊𝑊𝑊𝑊𝑊 compared to δ𝑆𝑆𝑆𝑆𝑆𝑆  corroborates our results above, 

indicating that there is more measurement error in the WOS measures of publication counts than 

in the SDR measure. 

One argument for using algorithmic data is that it is possible to obtain far greater 

information on the quality of articles from algorithmic links than from self-reports. In other 

analyses, we have taken advantage of the measures of article quality (citation counts and the quality 

of journals) that are available in the WoS. Specifically, we add one of the following variables as a 

measure of article quality: the total number of citations in the past five years, the average number 

of citations per year, the total impact of journals in the past five years, or the average impact of 

journals. These estimates do not show marked improvements in the explanatory power of the WoS 
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data, which suggests that even the additional wealth of information in WoS does not offset its 

greater noise. 

5. Conclusions 

Machine learning provides a promising route to data linkage, which efficiently increases 

the utility of individual data sources and offers a wealth of research opportunities. This paper has 

explored a case of importance to the scientific community in which both algorithmic and survey 

responses are available and can be compared. Specifically, we focus on measures of scientists’ 

publications and how they relate to career outcomes measured by earnings, placements, and faculty 

rank. Perhaps surprisingly, we find that overall the publication counts generated by machine 

learning are more noisy than self-reports. Moreover, we find that the relative noise in the two sets 

of measures varies in an intuitive way. That is, self-reports degrade for senior researchers who 

have more publications and for whom it may be harder to recall the exact quantity and timing of 

publications. Algorithmic measures degrade when names are more ambiguous (i.e. more common) 

or less data is available to make high-quality matches. 

These findings are valuable for researchers using the publication variables in the SDR. A first 

approach is to run estimates using both sets of variables and triangulates the findings. Second, 

depending on the research question, one might subset the data to the groups for which a given 

measure is more precise. A third option is to instrument for one measure (e.g. the self-reported 

measure) using the other (e.g. the algorithmic measure). Obviously, the preferred approach will 

depend on the specific research question. 

Other known databases, such as Google Scholar, Microsoft Academic Graph, or Scopus, 

might have different coverage of publications and/or authors and/or take a different 
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disambiguation approach, and thus have different quality (Paszcza, 2016). Our analysis is based 

on the WoS database, which is the only database for which links to the SDR self-reported 

publications are available. Thus, while the use of one specific dataset is a limitation, the WoS is a 

prominent and widely-used dataset and we believe that the analysis contributes to the scarce 

literature on comparing self-reported and algorithmic data.  

Stepping back from our specific context, our results may be useful for data producers. They 

suggest that despite the understandable enthusiasm for them, even high-quality algorithmic 

approaches are not yet uniformly superior to self-reports. At the same time, we expect algorithmic 

approaches to improve over time relative to survey methods. Another promising approach that 

might be explored are recommendation systems, where algorithmic methods are used to populate 

lists for people to accept or reject. The ORCiD system (https://orcid.org/) is one prominent 

example of such an approach. Such approaches also have the potential to reduce burdens on survey 

respondents at the same time that they allow for training data that can be used to further refine 

algorithmic approaches. 

We also believe that our underlying approach is broadly applicable. The conventional 

approach to assessing data quality is to manually build a “gold standard,” which can be quite time-

consuming and costly. Our approach permits estimation of data quality without requiring a gold 

standard using accepted statistical methods. 

  

https://orcid.org/
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Tables and Figures 

 

 

 

 

Figure 1: SDR v.s. WoS Publication Counts across Academic Age 
Notes: This figure shows the average publication counts by academic age from the two sources: SDR and WoS in the period of 
1998--2003. The size of each bubble represents the size of the academic age group. Survey weights are used in creating this figure. 
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Table 1. Summary Statistics 
Variable Obs Weight Mean Std. Dev. 
    SDR_Pub 10,738 238053.4 8.049375 11.26069 
    WoS_Pub 10,738 238053.4 10.78217 18.11434 
    Salary 10,738 238053.4 74748.89 44173.57 
    Federal Research Funding by Institution 6,435 141374.8 209320.5 216959.2 
    Academic Age 10,716 237487.3 20.47783 10.84935 
    Correlation Coefficient between SDR&WoS 0.6838    
Male     
    SDR_Pub 3,758 70938.51 6.263584 8.358401 
    WoS_Pub 3,758 70938.51 8.052527 14.97344 
Female     
    SDR_Pub 6,980 167114.9 8.807425 12.20892 
    WoS_Pub 6,980 167114.9 11.94088 19.17743 
Race = Asian    
    SDR_Pub 739 7487.479 7.88612 11.09726 
    WoS_Pub 739 7487.479 8.477628 13.82493 
Race = Black    
    SDR_Pub 637 7262.115 4.480074 5.7293 
    WoS_Pub 637 7262.115 5.241426 10.04866 
Race = Hispanic    
    SDR_Pub 1,344 29532.64 9.272687 11.70309 
    WoS_Pub 1,344 29532.64 10.759     18.2453 
Race = Others    
    SDR_Pub 7,799 190300.7 7.981884    11.26394 
    WoS_Pub 7,799 190300.7 11.08077    18.37407 
Race = White    
    SDR_Pub 219 3470.463 9.161368 14.22251 
    WoS_Pub 219 3470.463 11.17215 21.52893 
Facultyrank_ordered = “Other Faculty and Postdoc”   
    SDR_Pub 2,379 51134.9 4.970001 7.745157 
    WoS_Pub 2,379 51134.9 7.063239 12.43537 
Facultyrank_ordered = “Assistant Professor”   
    SDR_Pub 2,352 46999.94 6.828229 7.450015 
    WoS_Pub 2,352 46999.94 8.813287 13.15191 
Facultyrank_ordered = “Associate Professor”   
    SDR_Pub 2,316 50982.98 7.533814 9.269903 
    WoS_Pub 2,316 50982.98 9.727193 13.82979 
Facultyrank_ordered = “Professor”   
    SDR_Pub 3,341 81509.44 11.48489 14.96245 
    WoS_Pub 3,341 81509.44 15.48039 24.45626 

Notes: This table shows summary statistics of the key variables used in this paper from the 2003 SDR and respondent’s SDR and 
WoS publication counts between 1998—2003. 
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Table 2. Horse Race Test: Salary 

 (1) (2) (3) (4) (5) (6) (7) 
SDR_Pub 0.00952*** 0.00796*** 0.00807*** 0.00842*** 0.00839***  
 (0.0008) (0.0007) (0.0008) (0.0008) (0.0008)   
WoS_Pub 0.00437*** 0.00334*** 0.00350*** 0.00327*** 0.00328***  
 (0.0006) (0.0004) (0.00050) (0.0005) (0.0005)   
ln_SDR_Pub1     0.10962*** 
      (0.0120)  
ln_WoS_Pub1     0.05231*** 
      (0.0074)  
ln_SDR_Pub      0.08513*** 
       (0.0095) 
ln_WoS_Pub      0.05530*** 
       (0.0070) 
Zero_SDR_Pub=1      -0.05264* 
       (0.0264) 
Female  -0.08485*** -0.08146*** -0.07375*** -0.07258*** -0.05943*** -0.05955*** 
  (0.0143) (0.0160) (0.0169) -0.0169) -0.0164) (0.0165) 
Marital status 0.0048 0.0045 0.0047 0.0122 0.0131 0.0126 

  (0.0134) (0.0135) (0.0135) (0.0155) (0.0155) (0.0154) 
Academic Age  0.04248*** 0.04242*** 0.04186***   
  (0.0032) (0.0032 (0.0032    
Academic  Age2  -0.00071*** -0.00069*** -0.00067***   
  (0.0001) (0.0001) (0.0001)    
Asian  0.0210 0.0188 0.0217 0.0193 0.0160 0.0161 

  (0.0451) (0.0441) (0.0439) (0.0428) (0.0437) (0.0442) 
Black  0.0844 0.0687 0.0639 0.0604 0.0775 0.0764 

  (0.0538) (0.0548) (0.0562) (0.0567) (0.0556) (0.0562) 
Hispanic  0.0527 0.0457 0.0391 0.0395 0.0336 0.0331 

  (0.0445) (0.0437) (0.0418) (0.0423) (0.0424) (0.0426) 
Others  0.0367 0.0365 0.0391 0.0388 0.0320 0.0329 

  (0.0422) (0.0413) (0.0414) (0.0415) (0.0418) (0.0424) 
Field of Study FE (Coarse) NO NO YES NO NO NO NO 
Field of Study FE (Fine) NO NO NO YES YES YES YES 
Academic Age FE NO NO NO NO YES YES YES 
Observations 10716 10101 10101 10101 10101 10101 10101 
R-squared 0.0493 0.1315 0.1420 0.1581 0.1642 0.1761 0.1759 
Adjusted R-squared 0.0492 0.1306 0.1407 0.1502 0.1528 0.1648 0.1644 

Notes: The dependent variable in this table is the natural log of the self-reported salary in 2003. Each column is a separate regression, 
with different set of control variables. Column (1) include level of SDR publication count and level of WoS publication count. 
Column  (2) add in demographic controls including, an indicator of female, an indicator of marital status, a linear trend of academic 
age, a square term of academic age, and race indicators. Column (3) add in field of study fixed effects by a coarse definition of 
fields of study (7 fields). Column (4) replace the field of study fixed effects from the one by the coarse definition to a fine definition 
(83 fields). Column (5) replace the linear and squared terms of academic age to a full set of academic age fixed effects. Column (5) 
is our preferred specification. Column (6) has the same specification as column (5) but replace level SDR and WoS publication 
counts with log(SDR+1) and log(WoS +1). Column (7) replace them with log(SDR), log(WoS), and an indicator for zero SDR. 
The standard errors are clustered at academic age level.  *p<0.1, **p<0.05, ***p<0.01.  
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 Table 3. Horse Race Test: Federal Research Funding 

Notes: The dependent variable in this table is the natural log of federal research funding received by the employing institution in 
2003. Each column is a separate regression, with different set of control variables. Column (1) include level of SDR publication 
count and level of WoS publication count. Column  (2) add in demographic controls including, an indicator of female, an indicator 
of marital status, a linear trend of academic age, a square term of academic age, and race indicators. Column (3) add in field of 
study fixed effects by a coarse definition of fields of study (7 fields). Column (4) replace the field of study fixed effects from the 
one by the coarse definition to a fine definition (83 fields). Column (5) replace the linear and squared terms of academic age to a 
full set of academic age fixed effects. Column (5) is our preferred specification. Column (6) has the same specification as column 
(5) but replace level SDR and WoS publication counts with log(SDR+1) and log(WoS +1). Column (7) replace them with log(SDR), 
log(WoS), and an indicator for zero SDR. The standard errors are clustered at academic age level.  *p<0.1, **p<0.05, ***p<0.01.  
 

 

  

 (1) (2) (3) (4) (5)                       (6) (7) 
SDR_Pub 0.02971*** 0.03049*** 0.03089*** 0.03130*** 0.03124*** 

 
 

(0.0030) (0.0031) (0.0029) (0.0029) (0.0029) 
  

WoS_Pub 0.01481*** 0.01555*** 0.01314*** 0.01164*** 0.01146*** 
 

 
(0.0020) (0.0019) (0.0018) (0.0017) (0.0017) 

  

ln_SDR_Pub1 
    

 0.34913***       
(0.0311) 

 

ln_WoS_Pub1 
    

 0.33929***       
(0.0386) 

 

ln_SDR_Pub 
     

 0.31932***        
(0.0407) 

ln_WoS_Pub 
     

 0.31453***        
(0.0373) 

Zero_SDR_Pub=1 
     

 0.0383        
(0.1288) 

Female 
 

0.20885*** 0.21334*** 0.15406** 0.16265** 0.21717*** 0.21848***   
(0.0579) (0.0624) (0.0603) (0.0612) (0.0636) (0.0621) 

Marital status  0.0143 0.0193 0.0283 -0.0333 -0.0339 -0.0359   
(0.0470) (0.0461) (0.0455) (0.0512) (0.0486) (0.0488) 

Academic Age 
 

-0.06806*** -0.06931*** -0.07085*** 
  

  
(0.0133) (0.0127) (0.0123) 

   

Academic Age2 
 

0.00164*** 0.00172*** 0.00182*** 
  

  
(0.0003) (0.0003) (0.0003) 

   

Asian 
 

-0.0949 -0.1411 0.0562 0.0445 -0.0307 -0.0262   
(0.2218) (0.2299) (0.2257) (0.2176) (0.2024) (0.1990) 

Black 
 

0.39291* 0.3753 (0.3263 0.3358 -0.1934 -0.1942   
(0.2239) (0.2425) (0.2436) (0.2420) (0.2246) (0.2233) 

Hispanic 
 

0.53818** 0.44568* 0.43972* 0.42763* 0.42464** 0.42064**   
(0.2121) (0.2254) (0.2232) (0.2163) (0.2056) (0.2035) 

Others 
 

0.0343 0.0021 0.0849 0.0773 0.0360 0.0416   
(0.1980) (0.2079) (0.2061) (0.1982) (0.1825) (0.1815) 

Field of Study FE (Coarse) NO NO YES NO NO NO NO 
Field of Study FE (Fine) NO NO NO YES YES YES YES 
Academic Age FE NO NO NO NO YES YES YES 
Observations 6420 6059 6059 6059 6059 6059 6059 
R-squared 0.0587 0.0784 0.1051 0.1445 0.1567 0.1940 0.1957 
Adjusted R-squared 0.0584 0.0768 0.1028 0.1312 0.1374 0.1757 0.1769 
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Table 4. Horse Race Test: Tenure Status 

Notes: The dependent variable in this table is an indicator of tenure status in 2003. Each column is a separate regression, with 
different set of control variables. Column (1) include level of SDR publication count and level of WoS publication count. Column  
(2) add in demographic controls including, an indicator of female, an indicator of marital status, a linear trend of academic age, a 
square term of academic age, and race indicators. Column (3) add in field of study fixed effects by a coarse definition of fields of 
study (7 fields). Column (4) replace the field of study fixed effects from the one by the coarse definition to a fine definition (83 
fields). Column (5) replace the linear and squared terms of academic age to a full set of academic age fixed effects. Column (5) is 
our preferred specification. Column (6) has the same specification as column (5) but replace level SDR and WoS publication counts 
with log(SDR+1) and log(WoS +1). Column (7) replace them with log(SDR), log(WoS), and an indicator for zero SDR. The 
standard errors are clustered at academic age level.  *p<0.1, **p<0.05, ***p<0.01.  

 

  

 (1) (2) (3) (4) (5)                       (6) (7) 
SDR_Pub 0.00676*** 0.00462*** 0.00477*** 0.00485*** 0.00481*** 

 
 

(0.0007) (0.0006) (0.0006) (0.0006) (0.0006) 
  

WoS_Pub 0.00134** -0.0004 0.0001 0.00048* 0.00047* 
  

 
(0.0006) (0.0003) (0.0003) (0.0003) (0.0003) 

  

ln_SDR_Pub1 
    

 0.06339***       
(0.0083) 

 

ln_WoS_Pub1 
    

 0.0083       
(0.0050) 

 

ln_SDR_Pub 
     

 0.04509***        
(0.0074) 

ln_WoS_Pub 
     

 0.0059        
(0.0047) 

Zero_SDR_Pub=1 
     

 -0.05582**        
(0.0209) 

Female 
 

-0.04478*** -0.04962*** -0.04160*** -0.04488*** -0.03945*** -0.04000***   
(0.0110) (0.0106) (0.0097) (0.0098) (0.0093) (0.0093) 

Marital status  0.01561* 0.01448* 0.01368* 0.01653** 0.01681** 0.01720**   
(0.0079) (0.0078) (0.0077) (0.0070) (0.0071) (0.0071) 

Academic Age 
 

0.07074*** 0.07069*** 0.06973*** 
  

  
(0.0034) (0.0034) (0.0034) 

   

Academic Age2 
 

(0.00127*** (0.00126*** (0.00124*** 
  

  
(0.0001) (0.0001) (0.0001) 

   

Asian 
 

0.05389* 0.05646** 0.06016** 0.05400** 0.05411** 0.05380**   
(0.0276) (0.0258) (0.0263) (0.0264) (0.0257) (0.0257) 

Black 
 

0.08680*** 0.07440** 0.07567*** 0.07639*** 0.08515*** 0.08520***   
(0.0321) (0.0292) (0.0278) (0.0275) (0.0275) (0.0276) 

Hispanic 
 

-0.0018 0.0055 0.0158 0.0120 0.0098 0.0105   
(0.0254) (0.0235) (0.0237) (0.0236) (0.0235) (0.0235) 

Others 
 

0.0236 0.0274 0.0277 0.0248 0.0239 0.0237   
(0.0243) (0.0227) (0.0227) (0.0230) (0.0225) (0.0226) 

Field of Study FE (Coarse) NO NO YES NO NO NO NO 
Field of Study FE (Fine) NO NO NO YES YES YES YES 
Academic Age FE NO NO NO NO YES YES YES 
Observations 10366 9778 9778 9778 9778 9778 9778 
R-squared 0.0347 0.4262 0.4443 0.4617 0.4761 0.4827 0.4824 
Adjusted R-squared 0.0345 0.4256 0.4434 0.4565 0.4687 0.4754 0.4750 
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Table 5. Horse Race: by Quintiles of Academic Age 

 (1) (2) (3) (4) (5) 
Junior  Senior Quintile = 1 Quintile = 2 Quintile = 3 Quintile = 4 Quintile = 5 
Dep. Var = Salary      
SDR_Pub 0.00464* 0.00619*** 0.00921*** 0.00758*** 0.01052*** 
 (0.00245) (0.00234) (0.00197) (0.00177) (0.00179) 
WoS_Pub 0.00227 0.00279*** 0.00318** 0.00303*** 0.00354*** 
 (0.00148) (0.00091) (0.00129) (0.001) (0.00117) 
Observations 2047 2175 1916 1986 1977 
R-squared 0.133883 0.169215 0.123533 0.201415 0.151448 
Adjusted R-squared 0.091709 0.126632 0.070635 0.150487 0.093655 

      
Dep. Var = Funding      
SDR_Pub 0.02242* 0.03414** 0.04596*** 0.02865*** 0.02405*** 
 (0.01136) (0.01544) (0.00902) (0.00555) (0.00503) 
WoS_Pub 0.00398 0.01846 0.01081 0.01099** 0.01378*** 
 (0.00677) (0.01313) (0.00666) (0.00536) (0.00348) 
Observations 1294 1159 1206 1210 1190 
R-squared 0.200916 0.18674 0.223501 0.189167 0.226101 
Adjusted R-squared 0.143981 0.122316 0.159316 0.123169 0.159666 

      
Dep. Var = Tenure      
SDR_Pub -0.00073 0.00556*** 0.00760*** 0.00471*** 0.00369*** 
 (0.00128) (0.00148) (0.00175) (0.00108) (0.00051) 
WoS_Pub -0.00002 -0.00088 0.00132 0.00066 0.00026 

 (0.00065) (0.00071) (0.00114) (0.00057) (0.00041) 
Observations 2025 1953 1992 1910 1898 
R-squared 0.104062 0.238973 0.205691 0.127491 0.084093 
Adjusted R-squared 0.063337 0.202617 0.166771 0.083313 0.035807 

 Note: This is the 2003 SDR sample. The ranges of each quintile of the academic age are: [1, 4], [5, 9], [10, 16], [17, 25], 
[26, 45].   
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Table 6. Horse Race: by Quintiles of Match Probability 

 (1) (2) (3) (4) (5) 

Match Quality from Low  High Quintile = 1 Quintile = 2 Quintile = 3 Quintile = 4 Quintile = 5 

Dep. Var = Salary      
SDR_Pub 0.01132*** 0.00831*** 0.00338* 0.00575*** 0.00262 

 (0.00262) (0.00162) (0.00177) (0.00183) (0.00165) 
WoS_Pub 0.00210* 0.00155* 0.00419*** 0.00361*** 0.00594*** 
 (0.00123) (0.00093) (0.00134) (0.00124) (0.00139) 
Observations 1668 1674 1665 1674 1678 
R-squared 0.159493 0.241056 0.222262 0.229861 0.248865 
Adjusted R-squared 0.088403 0.178179 0.158546 0.167134 0.186796 
      
Dep. Var = Funding      
SDR_Pub 0.05155*** 0.01756** 0.02433*** 0.01554** 0.01768*** 
 (0.01753) (0.00868) (0.00544) (0.00718) (0.00621) 
WoS_Pub 0.00373 0.01282** 0.00341 0.01709*** 0.02011*** 
 (0.0095) (0.00485) (0.00276) (0.00344) (0.00331) 
Observations 928 972 1055 1077 1096 
R-squared 0.243907 0.195302 0.19187 0.261325 0.229858 
Adjusted R-squared 0.123877 0.076405 0.083134 0.165111 0.130613 

      
Dep. Var = Tenure      
SDR_Pub 0.00694*** 0.00381** 0.00284*** 0.00457*** 0.00131 

 (0.00105) (0.00148) (0.00092) (0.00093) (0.00088) 
WoS_Pub -0.00058 -0.00014 0.00102* 0.00013 0.00171*** 
 (0.00067) (0.00073) (0.00053) (0.00073) (0.00054) 
Observations 1574 1617 1633 1648 1657 
R-squared 0.464462 0.55502 0.528846 0.54065 0.567874 
Adjusted R-squared 0.416215 0.516742 0.489427 0.502597 0.531981 

Notes: This is the 2003 SDR sample. The ranges of each quintile of the match probability are: [0.5000, 0.6901], [0.6902, 0.7568], 
[0.7568, 0.8128], [0.8128, 0.8693], [0.8693, 1].   

 

  



 37 

Table 7. Horse Race: by Match Rounds 

 (1) (2) (3) (4) 
Match Quality from Low  High Quartile 4 Quartile 3 Quartile 2 Quartile 1 
Dep.Var = Salary     
SDR_Pub 0.00601*** 0.00588** 0.00576*** 0.00660*** 
 (0.00217) (0.00223) (0.00158) (0.0011) 
WoS_Pub 0.00129 0.00234** 0.00168 0.00656*** 

 (0.0011) (0.0011) (0.00103) (0.001) 
Observations 1670 1665 1165 3859 
R-squared 0.165848 0.232442 0.376459 0.184256 
Adjusted R-squared 0.095974 0.167395 0.300094 0.155584 
     
Dep.Var = Funding     
SDR_Pub 0.03476*** 0.02116*** 0.00792 0.02977*** 
 (0.00802) (0.00603 (0.00657) (0.00608) 
WoS_Pub 0.00233 0.01282*** 0.00568 0.01784*** 

 (0.00567) (0.00479 (0.00458) (0.00467) 
Observations 1019 1006 709 2394 
R-squared 0.228306 0.235426 0.250621 0.168647 
Adjusted R-squared 0.120286 0.125829 0.093059 0.121278 
     
Dep.Var = Tenure     
SDR_Pub 0.00262*** 0.00548*** 0.00357*** 0.00357*** 
 (0.00095) (0.00126 (0.001) (0.0007) 
WoS_Pub 0.00022 0.00062 0.00001 0.00117*** 

 (0.00038) (0.00076 (0.00066) (0.00036) 
Observations 1607 1607 1142 3773 
R-squared 0.500633 0.531406 0.580369 0.516813 
Adjusted R-squared 0.457019 0.490479 0.527811 0.499429 

Notes: This is the 2003 SDR sample. The ranges of the mean match rounds for the quartile 1-4 are: [0, 1], [1, 1.3076], [1.3076, 
1.767], [1.768, 2]. The larger the mean match rounds, the lower the match quality. Note that we choose to use quartile instead of 
quintile of the mean math rounds is because that the first quartile has a large cluster at 1.  
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Table 8. Horse Race: by Quintiles of Name Frequency 

 (1) (2) (3) (4) (5) 

Match Quality from Low  High Quintile = 5 Quintile = 4 Quintile = 3 Quintile = 2 Quintile = 1 

Dep. Var = Salary      
SDR_Pub 0.00712*** 0.00611*** 0.00705*** 0.01045*** 0.01004** 
 (0.00141) (0.00179) (0.00169) (0.00335) (0.00457) 
WoS_Pub 0.00251** 0.00297*** 0.00687*** 0.00546 0.02006*** 
 (0.00104) (0.00057) (0.00162) (0.00367) (0.00639) 
Observations 1940 1949 1920 1918 1985 
R-squared 0.218619 0.211081 0.223103 0.191477 0.181616 
Adjusted R-squared 0.162929 0.154202 0.168044 0.133144 0.123286 
      
Dep. Var = Funding      
SDR_Pub 0.02747*** 0.01906*** 0.01390*** 0.04056*** 0.05406*** 
 (0.0062) (0.00494) (0.00471) (0.0135) (0.01584) 
WoS_Pub 0.0051 0.00768*** 0.02879*** 0.04271*** 0.07160** 

 (0.00568) (0.00249) (0.00402) (0.01365) (0.0338) 
Observations 1171 1182 1177 1184 1134 
R-squared 0.241076 0.220955 0.266244 0.239645 0.200691 
Adjusted R-squared 0.149482 0.127085 0.178976 0.147394 0.097991 
      
Dep. Var = Tenure      
SDR_Pub 0.00333** 0.00313*** 0.00533*** 0.00634*** 0.00830*** 
 (0.00133) (0.00065) (0.00086) (0.00158) (0.00205) 
WoS_Pub 0.00056 0.0005 0.00091 0.00043 0.00432 

 (0.00063) (0.00032) (0.00079) (0.00161) (0.00437) 
Observations 1881 1900 1870 864 1902 
R-squared 0.527515 0.522224 0.516449 0.488341 0.452809 
Adjusted R-squared 0.492706 0.486823 0.481196 0.450276 0.411978 

Notes: This is the 2003 SDR sample. The ranges of quintiles 1-5 of frequency of first name last name combination are: [1, 24], [25, 
82], [83, 281], [282, 1423], [1423, 218422]. The larger the name frequency, the lower the potential match quality.  
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Table 9: Instrumental Variable Analysis 

 (1) (2) (3) (4) (5) (6) 
Second Stage Salary Salary Funding Funding Tenure Tenure 
       
SDR_Pub 0.0163***  0.0583***  0.00594***  
 (0.00181)  (0.00476)  (0.000746)  
WoS_Pub  0.0113***  0.0419***  0.00506*** 
  (0.00130)  (0.00410)  (0.000602) 
       
N 10101 10101 6059 6059 9778 9778 
R-sq 0.157 0.146 0.147 0.129 0.476 0.463 
adj. R-sq 0.146 0.134 0.128 0.109 0.468 0.455 
       
       
First Stage SDR_Pub WoS_Pub SDR_Pub WoS_Pub SDR_Pub WoS_Pub 
SDR_Pub  1.0481  1.0270  1.0494 
  (0.0469)  (0.0612)  (0.0471) 
WoS_Pub 0.4165  0.4228  0.4178  
 (0.0193)  (0.0246)  (0.0198)  
F-stat of the First Stage 807.32 1762.56 36.35 938.95 863.08 1715.97 
Notes: This is the 2003 SDR sample. This table shows the estimates of instrument variable analysis. The upper panel shows the 
estimates from the second stage and the lower panel shows the estimates form the first stage. Each column is a separate model, 
where column (1) and (2)’s outcome variable is ln(Salary), column (3) and (4)’s outcome variable is ln(Funding) and column (5) 
and (6)’s outcome variable is tenure status. Models in column (1), (3) and (5) are using WoS’s publication counts to instrument 
SDR’s and models in column (2), (4) and (6) are using SDR’s publication counts to instrument WoS’s. 
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