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1 Introduction

Firms differ in the wages that they pay to otherwise identical workers and in the share of revenue
that they allocate to labor. In fact, larger firms tend to have higher premia and lower labor
shares.1 In Chile, a developing economy with high income inequality, earnings premia and labor
shares of value-added are 2.2 and 3.6 times higher respectively for firms at the 75th percentile
of the corresponding distribution compared with firms at the 25th percentile. What explains
these patterns? Understanding the sources of firm heterogeneity in earnings premia and labor
shares has been a longstanding focus in economics. Firm earnings premia have been shown
to be an important driver of earnings inequality across workers (see Card et al. (2018) for a
survey). Further, firm-level heterogeneity in the labor share has been shown to be relevant for
understanding trends in the aggregate labor share (Autor et al. (2020)).

This paper investigates the role of production networks in shaping firm heterogeneity in
earnings premia and labor shares, using a framework with firm and worker heterogeneity, labor
market power, and a flexible elasticity of substitution between labor and materials. Production
networks may matter for earnings premia for two reasons: (i) firms who tend to match with larger
downstream customers face higher effective demand and (ii) firms who source materials from
more efficient upstream suppliers will incur a lower cost of materials. These two mechanisms
lead to a higher marginal revenue product of labor. Combined with labor market power, they
lead to a higher firm wage premia.2 Similarly, when labor and materials are gross substitutes, a
firm’s labor share of cost is decreasing in the relative cost of labor to materials. Thus, a firm may
have a lower labor share due to a higher cost of labor arising from (i) and (ii), or alternatively
due to a lower cost of materials arising directly from greater access to more efficient suppliers.

Existing studies have typically interpreted firm heterogeneity in earnings premia and labor
shares as arising from differences in the innate characteristics of firms themselves. For example,
Van Reenen (1996), Kline et al. (2019), and Lamadon et al. (2022) consider heterogeneity in firm
earnings premia as arising in part from differences in firm productivities.3 Similarly, Kehrig and
Vincent (2021) attribute differences in labor shares to differences in firm-specific demand shocks,
while Karabarbounis and Neiman (2014) and Gouin-Bonenfant (2022) focus on heterogeneity
in the cost of capital inputs and firm productivities, respectively. Our framework also allows
a role for innate firm characteristics to shape earnings premia and labor shares. However, our
focus is on the production network because much less is known about its importance for driving
these patterns. Furthermore, production network heterogeneity has been shown to be crucial for

1For example, see Abowd et al. (1999), Card et al. (2018), and Bonhomme et al. (2019) on heterogeneity in
earnings premia, Oi and Idson (1999) on the relationship between firm size and earnings premia, and Autor et al.
(2020) and Kehrig and Vincent (2021) on labor share heterogeneity and how this correlates with firm size.

2In our framework, we show that (i) always leads to higher earnings premia, while (ii) leads to higher earnings
premia under reasonable restrictions on model parameters that we discuss below.

3Dunne et al. (2004), Faggio et al. (2010), and Barth et al. (2016) also interpret trends in wage dispersion as
being related to productivity dispersion across industries and firms.
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explaining differences in firm outcomes such as size (Bernard et al. (2022)), that are well-known
to be correlated with earnings premia and labor shares, but its implications for labor market
outcomes directly are not well understood. At the same time, we show that size is not a sufficient
statistic for a firm’s earnings premium, so that unpacking the determinants of heterogeneity in
size is complementary but not equivalent to unpacking the determinants of heterogeneity in firm
earnings premia.

Our paper makes three key contributions. First, using linked employer-employee and firm-
to-firm transactions data from Chile, we document new stylized facts showing that firms with
greater access to larger customers and more efficient suppliers in the production network tend
to have higher earnings premia and lower labor shares of both value-added and cost. Second,
we develop a structural model featuring labor market power and production networks that is
capable of rationalizing these new facts, as well as firm heterogeneity in earnings premia and
labor shares more generally.4 To validate the key mechanisms in our model relating production
network linkages to firm earnings premia and labor shares, we provide reduced-form evidence
showing that exogenous network demand and material cost shocks translate into changes in
worker earnings. Third, we structurally estimate the model using the Chilean administrative
data, showing in particular how to estimate the labor-materials substitution elasticity in a
model-consistent way when both inputs are heterogeneous within the firm. Using the estimated
model, we perform counterfactual simulations to investigate the sources of firm heterogeneity in
earnings premia and labor shares, focusing in particular on quantifying the role of production
network heterogeneity in driving these patterns.

Our three key findings from the estimated structural model are as follows. First, we esti-
mate that labor and materials are gross substitutes and statistically reject the hypothesis of
Cobb-Douglas production functions. This is important because, as we show, Cobb-Douglas
technology is necessary for the production function to have a value-added representation, as
is typically assumed in models of firm labor market power. Second, we find that production
network heterogeneity is a key driver of firm heterogeneity in earnings premia and labor shares,
accounting for: (i) one-third of the variation in firm-specific earnings premia and 13% of the
overall variation in worker earnings; (ii) half of the positive covariance between firm size and
earnings premia; (iii) one-quarter of the variation in labor shares of value-added; and (iv) two-
thirds of the negative covariance between firm size and labor value-added shares. Third, we
find that the importance of the production network for explaining firm heterogeneity in earn-

4Understanding the sources of firm heterogeneity in earnings premia and labor shares in a single framework
is important. The frameworks that have been proposed to explain firm heterogeneity in earnings premia typically
assume value-added production functions with constant labor shares, which imply counterfactual predictions
about the passthrough of firm productivity shocks to worker earnings (e.g., see the discussion in Berger et al.
(2019)). Similarly, the frameworks used to examine firm heterogeneity in labor shares typically assume perfectly
competitive labor markets, implying that firms can scale employment without affecting the unit cost of labor and
thus the incentive to substitute toward other inputs.
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ings premia differs by almost a factor of two when the production function is restricted to be
of a value-added form. Taken together, these findings highlight the importance of accounting
for firm-to-firm production network linkages and of moving away from value-added production
functions in explaining empirical patterns of firm heterogeneity in both earnings premia and
labor shares.

We now explain in greater detail the contributions of our paper. First, to motivate our focus
on production network linkages, we begin in section 2 by showing that differences in earnings
and labor shares across firms are empirically related to production network heterogeneity in
Chile. We establish this using linked employer-employee and firm-to-firm transactions data,
which allow us to observe annual earnings for every employee at each firm in our data, as well
as annual transaction values between buyer-seller firm pairs. We use these data to perform two
two-way statistical decompositions. First, a decomposition of worker earnings into worker and
firm effects (as in Bonhomme et al. (2019)), which is used to obtain a measure of firm-specific
earnings premia. This improves on approaches that study firm earnings premia using average
wages, which may be confounded by compositional differences in worker quality across firms.
Second, a decomposition of firm-to-firm sales into buyer and seller effects (as in Bernard et al.
(2022)), which is used to construct measures of a firm’s access to customers downstream and
suppliers upstream in the production network. This improves on approaches that measure a
firm’s position in the production network using coarser data (e.g., industry-level input-output
tables). We then establish two novel stylized facts: firms with greater downstream and upstream
access tend to have (i) higher earnings premia and (ii) lower labor shares.

In section 3, we develop a structural model to study firm heterogeneity in earnings premia
and labor shares. We model the production network as a set of heterogeneous linkages between
firms that trade intermediate inputs (as in Lim (2019), Huneeus (2019), Bernard et al. (2022),
and Dhyne et al. (2022)) and allow for labor market power arising from horizontal employer
differentiation (as in Manning (2003), Card et al. (2018), Lamadon et al. (2022), Azar et al.
(2022), Chan et al. (2022), and Kroft et al. (2022)). In addition, the framework allows for
worker heterogeneity in ability, firm heterogeneity in employer amenities (as in Rosen (1986)
and Sorkin (2018)) that vary at the worker-firm level, and complementarities in production
between workers and firms. These features allow the model to speak directly to the richness of
the Chilean administrative data, including the heterogeneous sorting of different worker types to
different firms. We show that the model can reconcile firm heterogeneity in both earnings premia
and labor shares, and that it rationalizes the relationships between labor market outcomes and
production network linkages that we document in section 2. This is useful since it allows us to
probe the deeper economic mechanisms underlying these correlations.

In section 4, we use the model to characterize the key mechanisms linking firm earnings
premia and labor shares to production network heterogeneity. First, we show that the reduced-
form measures of upstream and downstream access described in section 2 are in fact sufficient
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statistics for the relevance of the production network in firms’ wage-setting decisions in the
model. Second, we establish why firms with greater downstream and upstream access in the
production network tend to have higher earnings premia. Greater downstream access implies
higher demand and hence higher scale, requiring higher wages to attract more workers since
the labor supply elasticity (γ) is finite. Similarly, greater upstream access implies a lower
cost of materials and tends to increase wages through higher scale. However, this also induces
substitution away from labor toward materials, which may increase or decrease wages depending
on the elasticity of substitution between the two inputs (ε). We show that a necessary and
sufficient condition for greater upstream access to lead to higher wages (one satisfied by our
empirical estimates) is that ε is small relative to the elasticity of substitution across suppliers in
the production function (σ). Third, we show how production network heterogeneity can alter
the covariance between a firm’s size and its earnings premium. Intuitively, firms with lower
costs of materials are able to achieve the same size with fewer workers and hence offer lower
wages. A corollary of this result is that size is not a sufficient statistic for a firm’s earnings
premium. Finally, we show that firms facing lower costs of materials relative to labor optimally
choose smaller labor shares of both cost and value-added. Hence, larger firms, which tend to
have greater upstream access and lower costs of materials relative to labor, will also tend to
have smaller labor shares.

To externally validate our model, section 5 provides reduced-form evidence of the passthrough
of demand and material cost shocks into changes in labor market outcomes at the firm level. This
analysis relies on transactions-level customs data for Chile to construct external export demand
and import cost shocks using a Bartik shift-share design, accounting for both direct exposure
to these shocks (i.e., firms that directly export or import) as well as indirect exposure through
the production network (i.e., firms that sell to or buy from a direct exporter or importer). As
predicted by our model, increases in demand and reductions in material costs have positive
effects on firm wage bills and employment. We also use our constructed import cost shocks
to estimate the passthrough of changes in value-added per worker at a firm to changes in the
earnings of the firm’s workers, which is a key elasticity in studies of rent-sharing between firms
and workers. We estimate this elasticity to be 0.14, which is consistent with other studies that
have found a passthrough coefficient below one (see Card et al. (2018), Kline et al. (2019), and
Berger et al. (2019), for example). We show that our structural model is capable of replicating
this passthrough coefficient and that a necessary condition for this is that labor and materials
are gross substitutes (ε > 1), which rules out the assumption of Cobb-Douglas technology in
particular. These findings also contribute to the empirical literature studying the relationship
between firm shocks and worker earnings (for example, Guiso et al. (2005) and Chan et al.
(2021)) by extending the analysis to account for passthrough via production network linkages.

In section 6, we formally establish identification of model parameters (including ε, γ, and σ)
and structurally estimate our model using the Chilean administrative data. Three steps of our
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identification strategy are particularly important. First, while it is well-known that the labor-
materials substitution elasticity ε can be identified from the relationship between firms’ relative
expenditures on these inputs and their relative prices, the literature offers little guidance as to
how input prices should be aggregated when both wages and material prices are heterogeneous
within the firm.5 We show that the two-way statistical decompositions of worker earnings
(Bonhomme et al. (2019)) and firm-to-firm transactions (Bernard et al. (2022)) can be used to
construct price indices for labor and materials that control for heterogeneity in these inputs. We
construct these price indices and use an instrumental variables strategy (following Doraszelski
and Jaumandreu (2018)) to estimate ε = 1.5, indicating gross substitutability of labor and
materials. We also statistically reject the hypothesis of a value-added production function.6

Second, we show how to identify the labor supply elasticity γ using the passthrough of changes
in firm wage bills into changes in worker earnings. In particular, we demonstrate that existing
approaches using the passthrough of changes in firm value-added shocks to identify γ (as in
Guiso et al. (2005) and Lamadon et al. (2022), for example) are not valid in the presence of
firm heterogeneity in material cost shares. Using our approach, we estimate γ = 5.5. Third,
we identify the elasticity of substitution across products σ using the ratio of aggregate sales to
profits, which yields an estimate of σ = 3.1.

Finally, in section 7, we use the model to investigate what drives the variances of worker
earnings, firm earnings premia, and labor shares, as well as the covariances between firm earnings
premia, labor shares, and size. We first show that our estimated model provides a good fit to
these outcomes in the data. We then solve for counterfactual equilibria in which heterogeneity
in different sets of model primitives – including a firm’s network linkages – is removed and use
these simulations to quantify the importance of production network heterogeneity for the labor
market variances and covariances. In each case, we find that production network heterogeneity
plays a key role. Furthermore, restricting the production function to be of a value-added form
(ε = 1) greatly overstates the importance of production network heterogeneity for explaining
earnings inequality. Thus, seemingly small differences in the value of ε can have quantitatively
large effects on the importance of production networks for earnings inequality.

To our knowledge, there are only three other papers that study linked employer-employee
and firm-to-firm transactions data. Adao et al. (2020) use data from Ecuador to measure the
effects of international trade on individual-level factor prices, while Demir et al. (2018) study the
effects of trade-induced product quality upgrading on wages in Turkey. Both of these analyses
assume a market price for skill and focus on the effects of trade shocks. In contrast, we allow for
imperfect competition in labor markets and use our data to speak to the role of the production

5For example, existing approaches typically use average wages as a measure of the cost of labor (as in Do-
raszelski and Jaumandreu (2018)) or treat material prices as an industry rather than firm characteristic (as in
Oberfield and Raval (2019)).

6As discussed in section 4.2.1 below, value-added production functions are only consistent with a Cobb-Douglas
structure on the aggregation of labor and materials (ε = 1).
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network itself in shaping earnings inequality. Finally, Alfaro-Ureña et al. (2020) adopt an event
study research design to examine the effects on worker earnings in Costa Rica when a local firm
starts interacting with multinationals. In contrast, we use our data to address both worker-
level earnings and aggregate outcomes such as earnings inequality, which requires a general
equilibrium model.

2 Motivating Facts

We first document the severity of earnings inequality in Chile and show that, as in many other
countries, differences in firm earnings premia matter for explaining differences in worker earnings.
We also document the extent of labor share heterogeneity amongst Chilean firms. To motivate
our focus on production network linkages, we then present two new stylized facts relating a firm’s
access to customers and suppliers in the production network to its earnings premium (Fact 1)
and its labor shares of cost and value-added (Fact 2). In documenting these facts, we rely on
employer-employee and firm-to-firm trade transactions data from Chile for 2005-2010, a detailed
discussion of which we defer to section 6.7

2.1 Heterogeneity in firm earnings premia and labor shares in Chile

Figure I shows a scatter plot of the Gini coefficient of worker earnings against the 90-10 earnings
percentile ratio for current OECD members and a few other countries, where values are averaged
across 2005-2010, while row (i) of Table I provides other moments of the log earnings distribution
in Chile. Evidently, earnings inequality in Chile is severe. Workers at the 90th percentile of the
earnings distribution have earnings that are almost nine times higher than workers at the 10th

percentile of the distribution, while in comparison, the average 90-10 ratio among all other OECD
members is 4.3, less than half of the ratio in Chile.8 Similarly, the earnings Gini coefficient in
Chile is the highest among OECD members and lies above the 90th percentile across all countries
during this period based on data from the World Bank. This underscores the importance of
unpacking the determinants of earnings inequality in a country such as Chile.

To obtain a preliminary look at the role of firms in driving earnings inequality in Chile, we
first decompose the log earnings of worker m at firm i and time t as:

logwimt = θixm + log fit + x̂mt (2.1)

where xm is a worker fixed effect, fit is a time-varying firm effect, θi allows for worker-firm
7Since we do not observe clear trends in earnings inequality or labor share heterogeneity over our sample

period, we focus below on cross-sectional patterns in our data.
8The 90-10 earnings ratio based on the administrative employer-employee data that we use in the paper is

slightly lower at 7.1, but still higher than the 90-10 ratios for all other OECD members.
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interactions, and x̂mt is an orthogonal residual.9 In particular, the firm effect fit provides a
measure of an employer’s premium on wages after adjusting for differences in worker composition,
which would otherwise be reflected in measures such as the average wage at the firm.

We estimate the decomposition (2.1) using matched employer-employee data following a
procedure described in detail below (see sections 6.3.1 and 6.3.2). Row (ii) of Table I shows
moments of the distribution of firm effects fit, while for comparison, row (iii) shows moments
from the distribution of average wages across firms. Evidently, there is substantial variation in
firm effects on earnings. For instance, firms at the 75th percentile of the firm effect distribution
have earnings premia that are 2.2 (≈ e0.87−0.06) times greater than firms at the 25th percentile
of the distribution. As discussed in Appendix A, we also find that the variation in firm earnings
premia explains around 11% of the overall variation in worker earnings, while the covariance
between firm earnings premia and worker effects explains around 20%.10 In addition, between-
firm variation in log earnings explains 46% of total log earnings variance in the average year.11

These results highlight the importance of differences in firm earnings premia for explaining
differences in worker earnings more broadly.

Furthermore, firms are heterogeneous not only in the wages that they offer to workers,
but also in the extent to which they allocate revenue to labor versus other productive inputs
(including firm owners, who capture profits). To fix ideas, suppose that firms produce output
using labor and materials, and let Rit, ELit , and EMit denote firm i’s sales, expenditures on labor,
and expenditures on materials, respectively. We consider the share of labor in total production
costs and the share of labor in value-added, defined respectively as:

s
L/C
it ≡ ELit

ELit + EMit
, s

L/V A
it ≡ ELit

Rit − EMit
(2.2)

Note that these shares can be interpreted as measures of within-firm inequality: between pay-
ments made to labor versus the firm’s suppliers in the production network (sL/C) and between
payments made to labor versus firm owners (sL/V A).12 Rows (vi) and (vii) show moments of
the distributions of sL/C and sL/V A, from which we observe substantial heterogeneity in both of
these labor shares across firms. For example, firms at the 75th-percentile of the labor cost share
distribution spend 88% of their production costs on workers, compared with only 11% for firms

9As we discuss below, this decomposition is consistent with the structural model that we develop in the
paper and can be viewed as an extension of the well-known earnings model in Abowd et al. (1999) to allow for
worker-firm interactions (as in Bonhomme et al. (2019)) and time-variation in the firm effect.

10In comparison, using US data, Lamadon et al. (2022) find that the variance of log f̃it explains 4.3% of log
earnings variance – less than half of our value for Chile – and that the sorting covariance explains 13.0% – about
two-thirds of our value for Chile.

11In comparison, Song et al. (2019) report between-firm shares of 38-41% for the US over the same time period
and a maximum share of 42% over their entire sample period (1978-2013).

12These shares are closely linked through the identity sL/V A = sL/C

µ̃−1+sL/C , where the firm’s sales-cost ratio
µ̃ ≡ R

EL+EM is reflective of its output markup.
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at the 25th-percentile of the distribution.

2.2 Stylized facts: the production network, earnings premia, and labor shares

Fact 1: Firms that have greater access to customers and suppliers in the production
network tend to pay higher wages.

The statistical decompositions presented above establish the importance of differences in em-
ployers for earnings inequality, but do not shed light on why employers matter for wages. Here,
we present preliminary evidence highlighting the role of heterogeneity in employers’ access to
customers and suppliers in the production network. To measure this, we first decompose log
sales by a seller j to a buyer i at time t as follows:

log rijt = log dit + log sjt + log eijt (2.3)

where dit is a buyer effect, sjt is a seller effect, and eijt is an orthogonal residual.13 Intuitively,
firms with larger buyer effects tend to spend more on inputs from their suppliers conditional on
their suppliers’ characteristics, while firms with larger seller effects tend to sell more to their
customers conditional on their customers’ characteristics. We estimate this decomposition using
firm-to-firm trade data following a procedure described in detail below (see section 6.3.3). We
then construct measures of a firm’s downstream access (Dnet

it ) and upstream access (Snetit ):

Dnet
it ≡

∑
j∈ΩCit

djtejit, Snetit ≡
∑
j∈ΩSit

sjteijt (2.4)

where ΩC
it and ΩS

it denote the set of firm i’s customers and suppliers, respectively. Intuitively,
Dnet
it summarizes the extent to which firm i is connected to customers that have high demand

for intermediate inputs, while Snetit summarizes the extent to which the firm is connected to
suppliers that tend to have high sales to other firms in the production network. As we show
in the structural model that we develop below, Dnet

it and Snetit are sufficient statistics for the
relevance of the production network for firms’ wage-setting decisions.

The relationship between firm earnings premia and network access is documented in Figure
II, which shows bin scatter plots of a firm’s sales, downstream access, and upstream access
against the firm earnings effect fit estimated from the worker earnings decomposition (2.1),
where all variables are residualized by industry-municipality-year fixed effects. For reference,
rows (iv) and (v) of Table I also provide moments of the distributions of Dnet

it and Snetit . As
expected, we find that larger firms tend to pay higher wages. In addition, we see that firms with
greater access to customers and suppliers in the production network have higher wage premia,

13This decomposition is also studied by Bernard et al. (2022) using firm-to-firm trade data from Belgium.
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which suggests an important role for production network heterogeneity in explaining earnings
inequality.

Fact 2: Firms that have greater access to customers and suppliers in the production
network tend to have lower labor shares of production costs and lower labor shares
of value-added.

Preliminary evidence suggests that network heterogeneity also plays a key role in shaping dif-
ferences in both labor shares of cost and value-added. This is documented in Figure III, which
plots firm sales, downstream access Dnet

it , upstream access Snetit , and firm earnings effects fit
against the two labor share measures defined above, where all variables are parsed of industry-
municipality-year means. In the left panel of the figure, we see that firms with greater network
access tend to have lower labor shares of cost. In the right panel, we see that the same is
approximately true for labor shares of value-added as well. Although we observe some non-
monotonicity in the middle of the labor share distribution, the overall correlation between labor
shares of value-added and both our downstream and upstream access measures is negative.
These patterns suggest an important role for heterogeneity in production network linkages in
shaping these shares. In addition, we find a negative relationship between firm size and both la-
bor shares, which is consistent with recent evidence documented by Autor et al. (2020) regarding
the relationship between firm sales and labor shares of value-added.14

3 A Model of Labor Markets and Production Networks

To investigate more carefully the relationship between production network linkages and earnings
inequality, we now develop a structural model that can shed light on the stylized facts docu-
mented above. The economy is populated by a set of workers ΩL and a set of firms ΩF . Workers
are heterogeneous in a characteristic that we refer to as ability, denoted by a, with an exogenous
measure of each ability type denoted by L (a) and the set of abilities denoted by A. Firms are
also heterogeneous in a variety of characteristics that we specify below. Time is discrete and
indexed by t.

3.1 Labor market

Firms and workers interact in the labor market as follows. Each firm i chooses wages wit (a)
and offers exogenous amenities gi (a) for each worker of ability type a. In addition, workers
derive idiosyncratic utility values ξit from employment at firm i, which are independent across

14Interestingly, we also find a weakly positive relationship between a firm’s labor shares and its earnings effect.
In comparison, Kehrig and Vincent (2021) find that average wages are essentially unrelated to a firm’s labor share
of value-added, although as we show in our structural model below, it is the firm earnings effect rather than the
average wage that is relevant for a firm’s labor shares.
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workers and firms for a given t and follow a Gumbel distribution with cumulative distribution
function Fξ (ξit) = e−e

−γξit , where the variance of the distribution is declining in the shape
parameter γ.15 Each worker then observes the wage offers and amenities corresponding to her
ability and chooses an employer to maximize utility. Workers are also residual claimants to firm
profits, which are rebated through transfers in proportion to labor income, so that the rebate
received by a worker earning wage w is equal to τtw.16 Total income is then used to finance
final consumption, which is a CES aggregate of products produced by all firms in the economy
with elasticity of substitution σ across products.

Formally, the potential utility of a worker of ability a with a vector ξt ≡ {ξit}i∈ΩF of idiosyn-
cratic utility values is given by:

ut (a| ξt) = max
i∈ΩF

{log (1 + τt)wit (a) + log gi (a) + ξit} (3.1)

where we treat the price of the CES final consumption aggregate as the numeraire so that
all income is in real terms. As is well known, under the Gumbel distribution of idiosyncratic
utilities, the measure of workers of ability a that choose employment at firm i is given by:

Lit (a) = κit (a)wit (a)γ (3.2)

where κit (a) is a firm-specific labor supply shifter:

κit (a) ≡ L (a)
[
gi (a)
It (a)

]γ
(3.3)

and It (a) is a labor market index summarizing the wages and amenities offered by all firms for
workers of ability a:

It (a) ≡

 ∑
i∈ΩF

[gi (a)wit (a)]γ
 1
γ

(3.4)

We assume that the cardinality of the set of firms ΩF is large enough such that each firm
views itself as atomistic in the labor market and hence takes the labor market indices It (·) as
given when choosing wages. Each firm therefore behaves as though it faces an upward-sloping
labor supply curve with a constant elasticity γ that is common to all firms and worker ability
types. Intuitively, labor supply is more sensitive to differences in wages when there is less

15It is simple to allow for correlation in ξit across firms by instead assuming that the vector {ξit}i∈ΩF has joint

cumulative distribution function given by exp
[
−
(∑

i∈ΩF e
−ργξit

) 1
ρ

]
, where the correlation of the distribution is

increasing in the parameter ρ ∈ [1,∞). This version of the model is observationally equivalent to the version with
independent draws of ξit across firms, with ργ replacing γ.

16Rebating profits in proportion to labor income ensures that these transfers do not affect the sorting of workers
across firms.
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dispersion in preference shocks across firms.17

3.2 Production technology

Firm i produces output Xit using labor and materials via the following production technology:

Xit = Tit
∑
a∈A

F [ωitφi (a)Lit (a) ,Mit (a)] (3.5)

where Tit is total factor productivity (TFP), ωit is labor productivity, φi (a) reflects worker-firm
complementarities in production, and Mit (a) is the quantity of materials assigned to workers

of ability a.18 The function F is a CES aggregator, F (L,M) =
(
λ

1
εL

ε−1
ε + (1− λ)

1
ε M

ε−1
ε

) ε−1
ε ,

where λ controls the importance of labor relative to materials in production and ε is the elasticity
of substitution between labor and materials.

While firms hire workers in the labor market by posting wages, materials are sourced through
firm-to-firm trade in the production network. In particular, firm i produces a materials bundle
by combining inputs from all of its suppliers ΩS

it ⊂ ΩF using a CES technology, so that the total
quantity of materials used in production Mit ≡

∑
a∈AMit (a) satisfies:

Mit =

 ∑
j∈ΩSit

ψ
1
σ
ijt (xijt)

σ−1
σ


σ
σ−1

(3.6)

where xijt denotes the quantity of inputs purchased by i from j and ψijt is a relationship-specific
productivity shifter. We assume that the latter can be decomposed as:

ψijt = ψitψjtψ̃ijt (3.7)

where we refer to ψit as the relationship capability of firm i and ψ̃ijt as the relationship produc-
tivity residual. This decomposition allows firms to differ systematically in the produtivity of
their buyer-seller relationships. As is standard in the literature, we also assume the same elas-
ticity of substitution σ across products in production as in final consumption, which simplifies

17Note that instead of arising from employer differentiation, labor market power could also stem from concen-
tration (Chan et al. (2022), Berger et al. (2019), Jarosch et al. (2019)) or search frictions (Burdett and Mortensen
(1998), Postel-Vinay and Robin (2002), Taber and Vejlin (2018)). Like ours, most of these models imply that
wages are a markdown below the marginal revenue product of labor (MRPL) at a firm, where the firm effect on
earnings is the component of the MRPL that is common to all workers at a firm. Hence, the mechanisms that we
highlight below regarding the interaction between the production network and worker earnings are relevant for a
broader class of models of the labor market.

18One can also think of certain types of capital inputs as sourced from suppliers in the production network
under the label of “materials” if these inputs are chosen statically. Alternatively, it is straightforward to extend
the production function to allow for a separate static capital input. See Appendix B for a formal discussion of
this extension.
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the firm’s profit maximization problem as it ensures that both final and intermediate demand
have the same price elasticity.

We highlight several important features of the production technology. First, although it is
straightforward to incorporate imperfect substitutability between workers of different abilities,
the linear aggregation across worker types in equation (3.5) is necessary for the model to generate
an earnings equation that is consistent with well-known reduced-form models of earnings such
as those in Abowd et al. (1999) and Bonhomme et al. (2019). Second, although we allow
for time-varying labor productivities ωit, we restrict worker-firm complementarities φi (·) to be
time-invariant, which will be important for identification of these terms. Third, in the limit
as λ → 1, output is produced using labor alone and the model simplifies to a version of the
model studied in Lamadon et al. (2022). Finally, the production network is not restricted
to be bipartite: firms can simultaneously be buyers and sellers, with ΩC

it ≡
{
j ∈ ΩF |i ∈ ΩS

jt

}
denoting the set of customers for firm i. However, for tractability, we treat the set of active
buyer-seller relationships in the economy as an exogenous primitive of the model and do not
model network formation.19 Nonetheless, this imposes no restrictions on how the distribution of
buyer-seller links is correlated with other firm primitives or how the network changes over time.
For example, more productive firms may have more links and add links at a faster rate than less
productive firms. As we discuss below, our identification of model parameters does not require
such restrictions.

3.3 Price setting

Firms are monopolistically competitive in output markets, setting prices for their customers
while taking the prices set by other firms as given. As with firm behavior in labor markets, we
assume that firms behave atomistically in output markets and hence perceive a constant price
elasticity of demand equal to −σ. Note that a firm’s relationships with each of its customers are
inherently interlinked: a reduction in the price charged to one customer increases demand and
hence raises both output and marginal cost, which in turn affects the choice of prices charged
to other customers. However, even though we allow firms to charge different prices to different
customers, the following result establishes that it is never optimal for them to do so.20

Claim 1. The profit-maximizing price charged by a firm i to each of its customers (including
final consumers) does not vary across customers:

pjit = pit, ∀j ∈ ΩC
it ∪ {F} (3.8)

19Existing models of endogenous production network formation such as those in Huneeus (2019) and Lim
(2019) require that marginal production costs are independent of output, so that the decision of a firm to sell
to one customer can be analyzed independently of who else the firm sells to. This assumption is violated in our
model due to the upward-sloping labor supply curves, which generates marginal costs that are increasing with
output.

20Proofs of all claims and propositions are relegated to Section D of the appendix.
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Intuitively, each firm maximizes profits by choosing prices such that marginal revenue from
each customer is equal to marginal cost. Since demand features a constant and common price
elasticity of −σ, marginal revenue is proportional to price. Furthermore, even though marginal
cost is increasing, it depends only on total output of the firm and hence is common across
customers. As a result, each firm optimally chooses to charge a common price to each of its
customers in equilibrium.

3.4 Firm network characteristics

With the result in equation (3.8), we can express total sales for firm i as:

Rit ≡ pitXit = Ditp
1−σ
it (3.9)

where Dit is a demand shifter. This is given by:

Dit = Et +
∑
j∈ΩCit

∆jtψjit (3.10)

where Et denotes aggregate consumer expenditure and ∆jt is a firm-specific intermediate demand
shifter that we refer to as the buyer effect:

∆jt = EMjt (Zjt)σ−1 (3.11)

with EMjt ≡ ZjtMjt denoting total material cost and Zjt denoting the unit cost of materials
corresponding to the CES materials bundle in equation (3.6). The unit cost of materials for firm
i can in turn be expressed as:

Zit =

 ∑
j∈ΩSit

ψijtΦjt


1

1−σ

(3.12)

where Φjt is an inverse measure of supplier j’s output price that we refer to as the seller effect:

Φjt ≡ p1−σ
jt (3.13)

Note that the relevance of the production network for firm i’s production decisions is summarized
by the sufficient statistics {Dit, Zit}, which we henceforth refer to as the network characteristics
of the firm. The demand shifter Dit summarizes firm i’s downstream connections with its cus-
tomers (including final consumers), while the unit cost of materials Zit summarizes its upstream
connections with suppliers.
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3.5 Profit maximization and wage setting

The profit-maximization problem for firm i can now be described as:

πit = max
{wit(a),Mit(a)}a∈A

{
D

1
σ
itX

σ−1
σ

it −
∑
a∈A

wit (a)Lit (a)− Zit
∑
a∈A

Mit (a)
}

(3.14)

where the maximization is subject to the labor supply curves (3.2) and production technology
(3.5). Since the price of materials is invariant with respect to worker ability, the marginal revenue
product of materials must first of all be equalized across worker ability types in equilibrium, as
implied by the first-order condition for (3.14) with respect to materials:

Zit = 1
µ
D

1
σ
itX

− 1
σ

it TitFM (1, νit) (3.15)

where FM denotes the derivative of F with respect to its second argument and νit ≡ Mit(a)
φi(a)ωitLit(a)

is materials per efficiency unit of labor, which does not vary by worker ability.
The first-order condition for (3.14) with respect to wit (a) then allows us to express equilib-

rium wages as:

wit (a) = ηφi (a)Wit (3.16)

Equation (3.16) states the familiar result that wages are a constant markdown η ≡ γ
1+γ ∈ (0, 1)

over the marginal revenue product of labor (MRPL) of the respective worker types, φi (a)Wit.
The component of wages that is common to all workers employed at firm i, Wit, is given by:

Wit = 1
µ
D

1
σ
itX

− 1
σ

it ωitTitFL (1, νit) (3.17)

where FL denotes the derivative of F with respect to its first argument and we define the output
markup µ ≡ σ

σ−1 for brevity. We henceforth refer to Wit as the firm earnings effect.21 Note that
in the limit as labor supply becomes infinitely elastic (γ → ∞), the markdown η approaches
unity as in the benchmark with perfectly competitive labor markets.

Equilibrium output for firm i can then be characterized as follows:

Xit = TitF (1, νit) L̄it (3.18)

L̄it = (ηWit)γ ωitφ̄it (3.19)

φ̄it ≡
∑
a∈A

κit (a)φi (a)1+γ (3.20)

21As we show below, Wit is equivalent to ηfit, where fit is the firm effect in the reduced-form decomposition
(2.1) presented in section 2.
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while expenditures on labor and materials are given respectively by:

ELit = ηWitL̄it/ωit (3.21)

EMit = ZitνitL̄it (3.22)

where L̄it ≡
∑
a∈A φi (a)ωitLit (a) is the total efficiency units of labor hired by the firm and

we define the φ̄it as the sorting composite for firm i, since this varies across firms only due to
primitives that affect differential sorting of worker types across firms (gi (·) and φi (·)).

Given the firm’s technological primitives {Tit, ωit}, network characteristics {Dit, Zit}, and
sorting composite φ̄it, equations (3.15), (3.17), (3.18), and (3.19) define a system of equations in
the firm-level variables

{
Wit, νit, Xit, L̄it

}
. In particular, the production network shapes earnings

through the dependence of Wit on Dit and Zit.

3.6 General equilibrium

To close the model, it remains to characterize total consumer expenditure Et, which is equivalent
to aggregate value-added. This is simply given by the sum of labor income and firm profits:

Et =
∑
i∈ΩF

(
ELit + πit

)
(3.23)

We can then define the primitives and an equilibrium of the model as follows.

Definition 1 (model primitives). The primitives of the model at time t, Θt, are TFPs Tit, labor
productivities ωit, relationship capabilities ψit, relationship productivity residuals ψ̃ijt, buyer-
supplier linkages ΩS

it, production complementarities φi (·), amenities gi (·), the worker ability
distribution L (·), elasticities {γ, ε, σ}, and the weight on labor in production λ.

Definition 2 (equilibrium). Given a set of primitives, an equilibrium of the model at time t is a
set of values for aggregate value-added Et, demand shifters Dit, material costs Zit, buyer effects
∆it, seller effects Φit, firm earnings effects Wit, output prices pit, output Xit, labor efficiency
units L̄it, sorting composites φ̄i, labor expenditures ELit, material expenditures EMit , wages wit (·),
labor supply shifters κit (·), and labor market indices It (·), all of which satisfy equations (3.3),
(3.4), (3.9), (3.10), (3.11), (3.12), (3.13), (3.14), (3.15) (3.17), (3.18), (3.19), (3.20), (3.21),
(3.22), and (3.23).

4 Equilibrium Analysis

We now use the model to shed light on the stylized facts presented in section 2 by providing
a theoretical characterization of how the production network shapes worker earnings, the firm
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size wage premium, and labor shares of value-added and cost. This analysis will also provide
context for the empirical results that follow.

4.1 Structural interpretation of reduced-form network access measures

We begin by providing a structural interpretation of the network access measures Dnet
it and Snetit

presented in section 2. First, log sales between buyer i and seller j in our model can be expressed
as:

log rijt = log (∆itψit) + log (Φjtψjt) + log ψ̃ijt (4.1)

Comparing this with the reduced-form decomposition of firm-to-firm sales (2.3), we hence have
dit ≡ ∆itψit, sjt ≡ Φjtψjt, and eijt ≡ ψ̃ijt. Therefore, in our model, the network access measures
defined in equation (2.4) are given by:

Dnet
it ≡

∑
j∈ΩCit

∆jtψjtψ̃jit, Snetit ≡
∑
j∈ΩSit

Φjtψjtψ̃ijt (4.2)

In other words, a firm’s downstream access Dnet
it is increasing in the buyer effects ∆jt and

relationship capabilities ψjt of its customers, while its upstream access Snetit is increasing in the
seller effects Φjt and relationship capabilities ψjt of its suppliers. Furthermore, from equations
(3.10) and (3.12), we can express a firm’s demand shifter as:

Dit = Et + ψitD
net
it (4.3)

and its unit cost of materials as:
Zit =

(
ψitS

net
it

) 1
1−σ (4.4)

Hence, the network access measures
{
Dnet
it , S

net
it

}
are sufficient statistics for how the production

network shapes {Dit, Zit} and therefore the firm effect on earnings Wit.

4.2 The firm effect on earnings

Recall that firms with better downstream access (higher Dnet
it and thus higher Dit) and better

upstream access (higher Snetit and thus lower Zit) also tend to have higher firm effects on earnings
(Fact 1). Here, we discuss the key mechanisms in our model that rationalize these observed
relationships.

4.2.1 Case with Cobb-Douglas technology

We begin by examining a special case of the model where production technologies are of the
Cobb-Douglas form (ε → 1). This case admits a closed-form solution for the firm effect on
earnings and hence is useful for providing a more transparent discussion of the key mechanisms.
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At the same time, we highlight properties of the model that obtain only under Cobb-Douglas
technology, which underscores the importance of proper identification of ε.

Under Cobb-Douglas technology, the firm’s profit maximization problem (3.14) can be rewrit-
ten by first solving out for the optimal choice of material inputs:

max
{wit(a)}a∈A

{
AitX̃

1−α
it −

∑
a∈A

wit (a)Lit (a)
}

(4.5)

s.t. X̃it =
∑
a∈A

φit (a)Lit (a) (4.6)

where AitX̃1−α
it is equal to nominal value-added for firm i, α ≡ 1

σλ+(1−λ) > 0 reflects curvature
in value-added arising from imperfectly elastic demand (σ < ∞), and Ait is a composite term
that can be interpreted as value-added productivity:

Ait ≡ const.× T
σ−1

σλ+1−λ
it ω

λ(σ−1)
σλ+1−λ
it D

1
σλ+1−λ
it Z

− (1−λ)(σ−1)
σλ+1−λ

it (4.7)

Equations (4.5) and (4.6) hence represent the firm’s profit maximization problem in terms of a
value-added production function, which is a common approach in the literature (see Lamadon
et al. (2022), for example). The firm effect Wit can then be solved for explicitly as:

Wit = const.×A
σλ+1−λ

γ+σλ+1−λ
it φ̄

− 1
γ+σλ+1−λ

it (4.8)

This special case of the model allows for several important takeaways.
First, from equation (4.7), demand and supply shocks in the network that operate through

{Dit, Zit} act as shifters of value-added productivity Ait. In this sense, the introduction of
production networks provides a microfoundation for value-added productivity. From equation
(4.8), it is then clear that increases in demand Dit and reductions in material costs Zit both
lead to increases in the earnings effect Wit. Second, it is immediately obvious from equations
(4.7) and (4.8) that without further information, identification of Ait alone does not allow one
to separately identify the components of Ait (and hence of the firm effect Wit) that stem from
TFP, labor productivity, and network characteristics. Hence, the value-added approach naturally
leaves open the question of how heterogeneity in production network linkages shapes earnings
inequality, which we examine in section 7.

Finally, note that the value-added representation of the firm’s production function is only
valid when ε = 1.22 When this condition does not hold, the concept of value-added productivity
is no longer meaningful. In section 6.3.5 below, we estimate ε and find that it is statistically
greater than 1. Furthermore, the assumption of Cobb-Douglas technology not only restricts

22The value-added representation is valid for any ε in the limit as σ →∞. This case is not empirically relevant
since it corresponds to perfect competition in output markets.
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labor shares of cost to be constant across firms, but as we show in Appendix C, it also implies
complete passthrough of changes in firm value-added per worker to changes in worker earnings,
which is at odds with existing empirical evidence (see Card et al. (2018), Kline et al. (2019), and
Berger et al. (2019), for example). In section 5.2, we estimate this passthrough elasticity, find
that it is less than one, and show that a necessary condition for our structural model to replicate
this is that ε > 1. Hence, while the Cobb-Douglas case is useful as a heuristic for developing the
intuition behind the model, it is a simplification that is unsupported by our data.

4.2.2 General case

Beyond the case of Cobb-Douglas technology, one cannot solve for Wit as a closed-form function
of a firm’s network characteristics {Dit, Zit}, technological primitives {Tit, ωit}, and sorting
composite φ̄it. Nonetheless, comparative static results are useful for highlighting the mechanisms
that shape differences in firm effects. To focus on the role played by the production network, we
examine here the passthrough of demand and material cost shocks in the network into changes
in earnings, which we will evaluate empirically below in section 5 (see Appendix D.2 for a full
discussion of comparative statics with respect to Tit, ωit, and φ̄it).

First, in what follows, let X̂it denote the marginal log change in any variable X and let
Xt ≡ {Xit}i∈ΩF denote a vector of firm-specific variables. Furthermore, let sMit denote the share
of materials in firm i’s production costs adjusted for wage markdowns:

sMit ≡
EMit

1
ηE

L
it + EMit

(4.9)

and let
{
Ssalest , Smatt

}
denote the sales share and material cost share matrices, with (i, j)-

elements equal to the share of firm i’s sales accounted for by firm j and the share of firm
i’s material expenditures accounted for by firm j, respectively.

Now, consider a vector of exogenous shocks
{
D̂t, Ẑt

}
to demand and material costs for all

firms in the production network.23 The following Proposition then summarizes how these shocks
affect wages through the firm effects on earnings. As we discuss in Appendix D.2, these results
abstract from feedback effects arising from the fact that marginal costs are scale dependent due
to upward-sloping labor supply curves, which are second-order and likely to be small empirically.

Proposition 1. The first-order effects of demand and material cost shocks
{
D̂t, Ẑt

}
in the

production network on firm i’s earnings effect are given by:

Ŵit = ΓitD̂total
it , Ŵit = − (σ − ε) ΓitsMit Ẑtotalit (4.10)

23In our empirical analysis below, we will treat these as arising from export demand and import cost shocks,
which are outside the model.
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where Γit ≡ 1
γ+σ(1−sMit )+εsMit

> 0 is the scale elasticity for firm i and firms’ total demand and
material cost shocks are defined as:

D̂total
t ≡

[
I − Ssalest δDt

]−1
D̂t, Ẑtotal

t ≡
[
I − Smatt δUt

]−1
Ẑt (4.11)

where δDt and δUt are diagonal matrices of downstream and upstream weights with (i, i)-elements
given by δDit ≡

γ+ε
γ+σ(1−sMit )+εsMit

and δUit ≡
γ+ε

γ+σ(1−sMit )+εsMit
· sMit .

The intuition for these results can be understood as follows. First, D̂total
it and Ẑtotalit are

sufficient statistics summarizing a firm’s total exposure to demand and material cost shocks
in the production network, where the Leontief inverses of the weighted sales and material cost
share matrices Ssalest δDt and Smatt δUt account for own-firm shocks, shocks to direct customers
and suppliers, as well as shocks to indirect customers and suppliers (those connected via other
customers and suppliers). Intuitively, the importance of each customer for a firm’s total exposure
to demand shocks depends on sales shares, while the importance of each supplier for a firm’s
total exposure to material cost shocks depends on material cost shares.

Second, demand shocks have a positive effect on firm earnings effects (Γit > 0). This occurs
because higher demand raises the output price of a firm, which translates into a higher MRPL
and hence higher wages given the upward-sloping labor supply curves faced by each firm. The
scale elasticity Γit summarizes the three conditions that are necessary for the existence of such
scale effects: (i) the labor market is imperfectly competitive (γ <∞), so that marginal costs of
labor are increasing; (ii) the output market is imperfectly competitive (σ <∞), so that higher
demand raises output prices at the level of the firm; and (iii) labor and materials are imperfect
substitutes (ε < ∞), so that firms cannot fully escape from increasing marginal costs of labor
by purchasing materials at constant marginal cost.

Third, the sign of the relationship between the firm effect and material cost shocks depends
on the sign of σ−ε. This is because a change in material cost has both a scale and a substitution
effect on Wit. On one hand, a higher cost of materials is akin to a negative productivity shock,
which induces the firm to contract in scale and hire fewer workers at lower wages. The strength of
this scale effect is increasing in the parameter σ, since a firm’s scale is more sensitive to changes
in production costs when products are more differentiated. On the other hand, an increase in
the cost of materials induces firms to substitute away from materials toward labor, which may
either increase wages (if ε > 1, so that labor and materials are substitutes) or decrease wages
(if ε < 1, so that labor and materials are complements). Hence, the net effect of material cost
shocks on Wit depends on the relative magnitude of σ versus ε. In our estimation of the model’s
parameters below, we find that σ > ε and hence higher material costs induce lower wages.

Finally, the downstream and upstream weights
{
δDt , δ

U
t

}
in (4.11), which are strictly less than

1 if σ > ε, reflect the fact that demand and material cost shocks are only incompletely passed
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through into demand for inputs from suppliers and into output prices charged to customers
respectively. When a customer experiences an increase in demand, this not only raises demand
for materials, but also raises the wages paid by the firm, hence increasing the firm’s marginal
cost of output and partially offsetting the increase in its material demand. Similarly, when
a supplier faces a higher cost of materials, this not only increases the firm’s marginal cost of
output, but also reduces the wages that the firm pays (given σ > ε), which partially offsets the
increase in marginal cost.

In sum, increases in demand for a firm or its customers lead to higher wages, while increases
in material costs for a firm or its suppliers reduce wages. An immediate corollary is that, all else
equal, firms with higher values of demand Dit and lower material costs Zit will pay higher wages,
which provides a theoretical rationalization for the relationships described in Fact 1. In section
5, we provide a validation of the mechanisms highlighted above by estimating the passthrough
of export demand and import cost shocks into changes in earnings.

4.3 Labor shares of value-added and cost

Recall that firms with greater downstream and upstream access in the production network tend
to have lower labor shares of value-added and lower labor shares of cost (Fact 2). To see how
these patterns might arise in our model, first let sLit ≡

1
η
ELit

1
η
ELit+E

M
it

denote the labor share of cost
with wage bills adjusted for markdowns on wages. Note that this adjusted share varies across
firms and time only through the ratio ELit

EMit
and hence is a sufficient statistic for the more standard

unadjusted labor share ELit
ELit+E

M
it

. Furthermore, in our model, sLit is completely determined by the
productivity-adjusted cost of labor relative to materials:24

sLit = 1−
[
1 + λ

1− λ

(
Wit/ωit
Zit

)1−ε]−1

(4.12)

As discussed below, we estimate that ε > 1, so that the labor cost share is declining in the
relative price Wit

Zit
. Furthermore, as established in Proposition 1, increases in downstream and

upstream access in the network raise Wit (given that we estimate σ > ε), while greater upstream
access directly lowers Zit. Hence, firms with greater downstream and upstream network access
tend to have lower labor shares of cost because they tend to face higher costs of labor relative to
materials. Furthermore, since larger firms tend to have greater downstream and upstream access
in the network, production network heterogeneity tends to amplify the negative relationship
between labor cost shares and firm size.

24Since the definition of sLit already adjusts wage bills for markdowns on wages, the right-hand side of equation
(4.12) does not contain the markdown η. In contrast, the unadjusted labor share of cost is given by ELit

EL
it

+EM
it

=

1−
[
1 + η

(
λ

1−λ

) (
Wit/ωit
Zit

)1−ε]−1
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As for labor shares of value-added, sL/V Ait ≡ ELit
Rit−EMit

, first note that a simple identity allows
us to write:

s
L/V A
it ≡ ηsLit

Rit/TCit −
(
1− sLit

) (4.13)

where TCit ≡ 1
ηE

L
it+EMit is a measure of the firm’s total production cost adjusted for markdowns

on wages. As a matter of accounting, a firm’s labor share of value-added is lower when, ceteris
paribus, labor makes up a smaller share of its production cost or its sales-cost ratio is large (since
the latter implies that more revenue is allocated to firm profits). It is straightforward to show
that the sales-cost ratio Rit/TCit in our model is simply equal to the output markup µ. Hence,
labor shares of value-added vary across firms only in relation to differences in input cost shares.
In particular, firms with lower labor cost shares also have lower labor shares of value-added.
Consequently, firms with greater downstream and upstream access in the production network
tend to have lower labor shares of value-added, while production network heterogeneity also
tends to amplify the negative relationship between labor value-added shares and firm size.

4.4 The firm size wage premium

As discussed in the motivation, larger firms tend to have higher firm effects on earnings (Figure
II). To examine the role of production network linkages in driving this relationship, first note
that we can express a firm’s earnings effect in terms of its sales, sorting composite, and labor
cost share:

logWit = const. + 1
1 + γ

logRit −
1

1 + γ
log φ̄it + 1

1 + γ
log sLit (4.14)

The covariance between firm earnings effects and firm size can therefore be expressed as:

cov (logWit, logRit) = 1
1 + γ

var (logRit)−
1

1 + γ
cov

(
log φ̄it, logRit

)
(4.15)

+ 1
1 + γ

cov
(
log sLit, logRit

)
Hence, conditioning on the variance in firm sales, the firm size wage premium is stronger if: (i)
larger firms have smaller sorting composites (since these firms must then pay higher wages to
compensate for poorer amenities, for example); or (ii) larger firms tend to have smaller labor
cost shares. It is through the latter channel that production network linkages play a key role. As
discussed in the preceding section, larger firms tend to have greater downstream and upstream
access in the network, which tends to generate a negative relationship between the labor cost
share and firm size. Consequently, production network heterogeneity amplifies the firm size
wage premium.

In addition, note from equation (4.14) that firm size is generally not a sufficient statistic for
the firm effect on earnings. Even if one accounts for differences in sorting through φ̄it (as, for
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example, in Lamadon et al. (2022)), differences in material cost shares due to heterogeneity in
the production network still contribute to differences in worker earnings conditional on sales (as
long as ε 6= 1). This further implies that unpacking the determinants of heterogeneity in firm
size (as in Bernard et al. (2022), for example) is complementary but not equivalent to unpacking
the determinants of heterogeneity in worker earnings.

5 Reduced-form Passthrough Evidence

5.1 Passthrough of Demand and Material Cost Shocks into Worker Earnings

Before taking our model to data, we first provide reduced-form evidence to validate some of
its key mechanisms. We focus here on the predictions encapsulated in Proposition 1, which
characterize how demand and material cost shocks in the production network affect worker
earnings.

To test these predictions, we require firm-level demand and material cost shocks
{
D̂it, Ẑit

}
.

To provide validation that is external to the model, we rely on Bartik shift-share shocks to
export demand and import costs for Chilean firms that participate directly in exporting and
importing. Appendix G describes a simple extension of our model that rationalizes the following
approach to constructing these export and import shocks.

First, we define an international trade market m as a product-by-foreign-country pair. We
then construct the following shift-share shocks to export demand and import costs:

∆̂X
it ≡

∑
m∈ΩM,Xi1

sXmi1ŝ
I
mt, p̂Iit ≡ −

∑
m∈ΩM,Ii1

sIim1ŝ
X
mt (5.1)

where ΩM,X
i1 (ΩM,I

i1 ) denotes the markets in which firm i actively exports (imports) in the first
year of our sample, sXmi1 (sIim1) denotes the share of firm i’s exports (imports) accounted for
by market m in the first year of our sample, and ŝImt (ŝXmt) denotes the annual log change in
market m’s share of world imports (exports) excluding trade with Chile within the corresponding
product category. Intuitively, if a Chilean firm initially exports to markets that subsequently
become more important sources of global demand for imports, we interpret this as an increase in
export demand for the Chilean firm. Similarly, if a Chilean firm initially imports from markets
that subsequently become more important suppliers of global exports, we interpret this as a
decline in the cost of imports for the Chilean firm.

To translate export demand and import cost shocks into overall demand and material cost
shocks, we weight these respectively by the share of each firm’s sales accounted for by exports
(ssalesXit ) and the share of each firm’s material cost accounted for by imports (smatiIt ):

D̂it ≡ ssalesXit ∆̂X
it , Ẑit ≡ smatiIt p̂

I
it (5.2)

22



We then construct each firm’s total exposure to these shocks
{
D̂total
it , Ẑtotalit

}
following equation

(4.11). Finally, we estimate the following regression via OLS using long differences between 2005
and 2010:

Ŷit =αDD̂total
it + αZẐ

total
it + find(i) + ζit (5.3)

where Ŷit is the log change in an outcome of interest Yit, find(i) is an industry fixed effect
corresponding to the industry ind (i) of firm i, and ζit is a residual that accounts for changes
in Yit arising from shocks other than our constructed demand and material cost shocks (for
example, fluctuations in TFP and labor productivities, which by construction are orthogonal to
our regressors).

Note that even though Proposition 1 concerns changes in firm effects Wit, firm wage bills
are also affected by demand and material cost shocks only through changes in firm effects (since
ELit = (ηWit)1+γ φ̄it). Since we can measure wage bills directly in the data whereas firm effects
must be estimated, we test the model’s predictions using changes in firm wage bills as the main
outcome of interest. Proposition 1, together with our structural estimates of σ and ε, then
implies the following sign restrictions: αD > 0 (higher demand raises wage bills) and αZ < 0
(higher material costs lower wage bills, given σ > ε).25

Column (1) of Table II shows our estimation results treating Yit as a firm’s wage bill. For
comparison, we also include results for specifications where Yit is a firm’s average wage (column
(2)) and sales (column (3)). We highlight the following takeaways. First, we estimate positive
and statistically significant effects of demand shocks on firm wage bills, average wages, and sales
(row A).26 Second, we estimate negative and statistically significant effects of cost shocks on
firm wage bills, average wages, and sales (row B). In sum, we find evidence of the passthrough of
demand and cost shocks into changes in earnings that is broadly consistent with the predictions
of our estimated structural model.

5.2 Value-added Per Worker and Worker Earnings

A key elasticity of interest in studies of rent-sharing between firms and workers is the passthrough
of changes in value-added per worker (VAPW) at a firm into changes in the earnings of workers
employed at the firm (see Card et al. (2018) and Berger et al. (2019), for example). We obtain
an estimate of this elasticity as follows.

First, note that in models with value-added production functions, VAPW is a technological
primitive of a firm. In our model, however, VAPW is an endogenous outcome of a firm’s

25From the expressions in (4.10), the regression coefficients αD and αZ can also be interpreted as average
values of the structural terms (1 + γ) Γit and − (σ − ε) (1 + γ) ΓitsMit respectively, where the additional factor of
1 + γ reflects the elasticity of wage bills with respect to firm effects.

26We also note that evidence of positive passthrough from both own demand shocks and customer demand
shocks has been documented by Dhyne et al. (2021) using data from Belgium.
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production decisions. Hence, how worker earnings change relative to VAPW depends on the
underlying shock that drives both of these changes. With this in mind, we consider the effect
of the material cost shock Ẑit constructed above in equation (5.2) on both VAPW and worker
earnings, since this shock is akin to a productivity shock in that both operate on the supply-side.
Treating the outcome variable Ŷit in the estimating equation (5.3) as the log change in VAPW
at firm i, we estimate a passthrough coefficient on Ẑit of 0.456 (s.e. = 0.160).

Second, as discussed above, the log change in a firm’s wage bill arising from a material cost
shock can be expressed as ÊLit = (1 + γ) Ŵit.27 As shown in row B, column (1) of Table II, we
estimate a passthrough coefficient on Ẑit of 0.413 with the outcome variable Ŷit treated as ÊLit .
Hence, the implied passthrough to Ŵit and therefore to worker earnings is 0.413

1+γ . As discussed
below (see section 6.3.1), we estimate a value of γ = 5.5, which implies a passthrough coefficient
to worker earnings of 0.064. Therefore, the implied change in log worker earnings relative to
log VAPW is 0.064

0.456 = 0.140, which is within the range of estimates in the literature reported by
Card et al. (2018).

In Appendix C, we show that the corresponding elasticity implied by our estimated structural
model is around 0.34, which is slightly larger but still quite similar to the reduced-form estimate
above. Furthermore, we show that a necessary condition for this passthrough coefficient to be
less than one is that labor and materials are gross substitutes (ε > 1). In particular, restricting
the production function to be of a value-added form (which requires ε = 1) implies a passthrough
coefficient of exactly one, which is clearly rejected by our data and the literature.

6 Connecting the Model to Data

We now turn towards identification and estimation of the model’s parameters. We first describe
the main sources of data used in our empirical analysis (section 6.1). We then describe a set
of additional assumptions that are helpful for identification (section 6.2), before presenting our
identification strategy and estimation results (section 6.3).

6.1 Data sources

We use four administrative datasets from the Internal Revenue Service (IRS, or SII for its
acronym in Spanish) in Chile, covering the entire formal private sector. In each of the datasets
described below, firms are assigned a unique tax ID, which facilitates the merging of these
datasets. Hence, in what follows, we define a firm as a tax ID.28 In addition, we convert all

27We assume here that import cost shocks do not affect the sorting composites φ̄it, which are determined in
general equilibrium.

28As all tax forms are reported at the headquarter-level, plant-level information is not available. Furthermore,
while it is possible that a firm has several tax IDs, information that allows us to observe firm ownership is not
available.
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nominal variables to real 2015 dollars.
Matched employer-employee data. These data are obtained from IRS tax affidavits

1887 and 1879, and report annual earnings from each job that a worker has from 2005-2018,
including wages, salaries, bonuses, tips, and other sources of labor income deemed taxable by the
IRS. As earnings are reported net of social security payments, we adjust the earnings measure
to include these payments.

Firm-to-firm trade data. These data are obtained from IRS tax forms 3323 and 3327,
and are based on value-added tax (VAT) records from 2005-2010. Each firm in this dataset
reports the full list of its intermediate buyers and suppliers, as well as the total gross value of
transactions with each buyer and supplier. As reporting occurs semi-annually, we aggregate this
data to the annual level to make it consistent with the other datasets. Since this dataset reports
transactions gross of taxes, we measure transactions net of taxes by using the flat value-added
tax rate of 19% that was in effect in Chile during the sample period.

Worker age data. We obtain the year of birth of each individual who is alive in 2018
from a civil registry database. Merging this dataset with the employer-employee dataset using
workers’ unique tax IDs gives us a measure of the age of every worker. As we discuss below, we
use these data to remove age effects from worker earnings.

Firm balance sheet data. These data are obtained from IRS tax form 29 and contain a
set of firm balance sheet characteristics from 2005-2010. We use this dataset to measure total
sales and material cost for each firm.

To prepare the data for use in our empirical analysis, we first clean the firm-to-firm trade
and employer-employee data following procedures described in detail in Appendix E.1. We
refer to these cleaned datasets respectively as the baseline firm-to-firm dataset and the baseline
employer-employee dataset. The former contains 32 million firm-to-firm-year observations and
17 million observations of unique firm pairs, with 593 (923) thousand supplier-year (buyer-year)
observations and 195 (289) thousand unique suppliers (buyers). The latter contains 42 (2)
million worker-year (firm-year) observations and 6,497 (488) thousand unique workers (firms).

Starting from the baseline employer-employee dataset, we then define two subsamples that we
will use in different parts of the paper. The first, which we refer to as the stayers sample, restricts
the baseline sample to workers observed with the same employer for at least 8 consecutive years
and to employers that have at least 10 stayers in each year. These restrictions allow for a flexible
specification of how worker’s earnings evolve over time at a given firm and ensures a sufficient
sample size to perform the analyses at the firm level. We also omit the first and last years of
workers’ employment spells to avoid concerns over exit and entry into employment during the
year, which confound our measure of annual earnings.

The second, which we refer to as the movers sample, restricts the baseline sample to workers
observed at multiple firms over time. In other words, the firm that pays a worker her greatest
earnings in a given year is not the same firm in all years. Following previous work and motivated
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by concerns about limited mobility bias, we also restrict the movers sample to firms with at least
two movers (Lamadon et al., 2022). Finally, as in the previous literature (Abowd et al., 1999;
Lamadon et al., 2022), we restrict this sample to firms that belong to the largest connected set
of firms, which in our dataset represents 99.9% of workers.

Finally, for the purpose of estimating the elasticity of substitution between labor and ma-
terials, we merge the baseline employer-employee and the baseline firm-to-firm dataset using
the unique tax IDs discussed above. We implement this merge at the firm-year level and thus
exclude in the merged dataset the set of firms that do not have information in either the employer-
employee or the firm-to-firm dataset. The sample includes 126 thousand firm-year observations
and 48 thousand unique firms. We refer to this merged dataset as the baseline firm-level dataset.

Appendix Table A.I compares the size of the three employer-employee datasets, the firm-to-
firm dataset and the firm dataset we use throughout the paper. Detailed summary statistics of
these samples are provided in Appendix Table A.II. The samples are broadly similar. The most
noticeable differences are that the stayers sample has older, higher-earning workers and higher
labor shares, as well as larger firms in terms of employment and degree (number of suppliers
and buyers). Nonetheless, the firms in the stayers sample are broadly similar to the firms in
the baseline employer-employee dataset in terms of value-added per worker, materials share of
sales, and intermediate sales as a share of total sales.

6.2 Assumptions for identification

We now impose additional assumptions that will be helpful for identification of the model’s
primitives. These assumptions relate mainly to functional forms and the underlying stochastic
processes for time-varying primitives. As we move toward connecting the model with worker-
level data, we now also explicitly index individual workers by m.

Assumption 6.1. The ability of worker m at time t, amt, is comprised of a permanent com-
ponent ām and a time-varying component âmt, where log âmt follows a stationary mean-zero
stochastic process that is independent of ām.

This distinction between permanent and transient worker ability will be important for a
decomposition of worker earnings into firm and worker effects that we implement below.

Assumption 6.2. Worker-firm production complementarity takes the following form:

log φi (amt) = θi log ām + log âmt (6.1)

and the firm amenity function depends only on permanent worker ability, gi (amt) = gi (ām).

This functional form for φi (·) allows the model to generate an earnings equation that is con-
sistent with the reduced-form model in Bonhomme et al. (2019), which features time-invariant
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worker-firm interactions. More generally, this assumption imposes that the two sources of
worker-firm interactions in the model – φi (·) and gi (·) – are time-invariant. In what follows, we
refer to the primitive θi simply as the production complementarity of firm i.

Assumption 6.3. Relationship productivity residuals ψ̃ijt are iid across firm pairs and time.

This assumption will be important for the decomposition of firm-to-firm transactions into
buyer and seller effects that we implement below.

Assumption 6.4. Time-varying firm primitives {Tit, ωit, ψit} follow stationary first-order Markov
processes with innovations that are iid across both firms and time.

This follows well-known papers in the literature on production function estimation such as
Olley and Pakes (1996) and Doraszelski and Jaumandreu (2018). As described below, we adopt
the approach in the latter paper to estimate parameters of the production function and hence
consider this Markov structure.

Assumption 6.5. The stochastic processes for transient worker ability âmt, time-varying firm
primitives {Tit, ωit, ψit}, and relationship productivity residuals ψ̃ijt are mutually independent.

Independence of the stochastic processes for worker and firm characteristics ensures that
residual worker earnings due to transient ability shocks are uncorrelated with the characteristics
of the worker’s firm and is the same as the orthogonality assumption imposed in Lamadon et al.
(2022). Furthermore, independence of firm primitives and relationship productivity residuals
does not imply that firms match at random, only that they do not match based on ψ̃ijt.

6.3 Identification strategy and estimation results

6.3.1 Labor supply elasticity

Given the functional form for φi (·) in Assumption 6.2, the earnings equation (3.16) first allows
us to express the log wage of worker m at firm i and time t as:

logwimt = θi log ām + log ηWit + log âmt (6.2)

Note that this is consistent with the decomposition of log earnings in equation (2.1) presented
in the motivation, with xm ≡ log ām and fit ≡ ηWit. Using equations (3.19) and (3.21) to
substitute for Wit, we then obtain:

logwimt = θi log ām −
1

1 + γ
log φ̄it + 1

1 + γ
logELit + log âmt (6.3)

Now, note that the sorting composite φ̄it is time-varying only through the labor market indices
It (·). Since Assumptions 6.1 and 6.4 impose stationarity on the distributions of time-varying
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worker and firm primitives respectively, we treat the aggregate indices It (·) and hence φ̄it as
time-invariant. Restricting attention to workers that do not change employers between t and
t+ 1 (stayers) and taking first-differences of equation (6.3) then gives:

∆ logwimt = 1
1 + γ

∆ logELit + ∆ log âmt (6.4)

Intuitively, the change in a firm’s wage bill is a sufficient statistic for all firm-level shocks
that matter for changes in the earnings of stayers at the firm, including shocks to a firm’s
customers and suppliers in the production network. Since the labor supply elasticity γ controls
the extent of imperfect competition in the labor market and mediates the extent of rent-sharing
between a firm and its employees, the passthrough of changes in wage bills to changes in wages
is informative about the magnitude of γ. In particular, stronger passthrough implies greater
labor market power and a smaller value of γ.

This approach to the identification of γ resembles the passthrough analysis in Guiso et al.
(2005) and Lamadon et al. (2022), but with one key difference: both of these papers construct
shocks at the firm-level using changes in value-added, whereas our model motivates using changes
in wage bills instead.29 This distinction is moot in two special cases of our model: if output
markets are perfectly competitive (σ →∞), so that profits are zero and value-added is equivalent
to the wage bill; or if intermediates are not used in production (λ→ 1), in which case the wage
bill is a constant fraction of value-added for every firm. In the general case, however, wage bills
are not proportional to value-added and identification of γ requires leveraging changes in the
former instead of the latter.30

To estimate γ in practice, we first remove age and year effects from log wages (since these
are outside of our model) by regressing the latter on a vector of year dummy variables and
a cubic polynomial in worker age, then treating the residual as our measure of logwimt. We
then estimate the passthrough elasticity in equation (6.4) using the stayers sample. As we show
formally in Appendix F.1, an IV approach that instruments ∆ logELit with its own lags of at
least 3 and greater is robust to allowing for measurement error in observed log wage bills (of
an MA(1) form), whereas OLS estimation of equation (6.4) is not. Hence, in our preferred
specification, we instrument the change in the log wage bill using a cubic polynomial in 3, 4 and
5 of its own lags (stopping at 5 lags due to sample size considerations). The results obtained

29There are also subtle differences in the assumptions placed on the stochastic processes for firm-level shocks.
Guiso et al. (2005) assume that log value-added follows an AR(1) process with innovations comprised of a unit
root process plus an MA(1) process. Lamadon et al. (2022) make the same assumptions as Guiso et al. (2005)
but constrain the AR(1) coefficient to be zero. In contrast, we allow for non-linear first-order Markov processes
in firm primitives that determine firm wage bills (Assumption 6.4) and MA(1) measurement errors in wage bills,
but consider only stationary processes for firm and worker shocks.

30In appendix F.1, we document our estimates of the labor supply elasticity γ using value-added shocks instead
of wage bill shocks and show that we obtain different results. Hence, the distinction is both theoretically and
empirically relevant.
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from this specification are shown in Column 1 of Table III. We estimate a passthrough elasticity
of around 0.15, which implies a labor supply elasticity of γ = 5.5.

For comparison, we also report results obtained from other specifications. In Column 2, we
instrument ∆ logELit using only a cubic polynomial in its third lag. In this case, the passthrough
elasticity increases to 0.18 (γ = 4.6), although the first-stage F-statistic for this specification is
substantially smaller than the corresponding F-statistic in our preferred specification. Nonethe-
less, both the estimates reported in Columns 1 and 2 are in line with estimates of passthrough
elasticities reported in the literature.31 In Column 3, we show the OLS estimate that ignores po-
tential measurement error in wage bills. We find that the passthrough elasticity is substantially
larger at 0.27. This implies γ = 2.7, which is half of our preferred estimate.32

6.3.2 Worker abilities and firm production complementarities

We identify worker abilities {ām, âmt} and firm production complementarities θi using the de-
composition of log worker earnings studied by Bonhomme et al. (2019). We first move all time
variation in wage bills to the left-hand side of the earnings equation (6.3) by rewriting this as:

log w̃imt = θi log ām︸ ︷︷ ︸
worker-firm interaction

+ log W̄i︸ ︷︷ ︸
firm FE

+ log âmt︸ ︷︷ ︸
residual

(6.5)

where W̄i ≡
(
ĒLi /φ̄i

) 1
1+γ is a time-invariant firm effect, log ĒLi is the time-average of firm i’s log

wage bill, and log w̃imt ≡ logwimt − 1
1+γ

(
logELit − log ĒLi

)
is log worker earnings residualized

by the innovation in its employer’s log wage bill. Given the orthogonality of âmt to both ām

(Assumption 6.1) and employer primitives (Assumptions 6.2 and 6.5), we then obtain the key
identifying restriction in Bonhomme et al. (2019):

E
[

1
θj

(
log w̃jm,t+1 − log W̄j

)
− 1
θi

(
log w̃im,t − log W̄i

)
|m ∈M i→j

t,t+1

]
= 0 (6.6)

where the expectation is taken over the set of workers M i→j
t,t+1 that move from firm i at time t to

firm j at time t+1. In principle, this restriction gives
∣∣∣ΩF

∣∣∣2 moment conditions for identification

of 2
∣∣∣ΩF

∣∣∣ parameters (θi and W̄i for every firm), where intuitively, changes in earnings accom-
panying changes in employers are informative about the firm-specific determinants of earnings.

31For example, in a survey, Card et al. (2018) report values for this elasticity between 0.10 and 0.15. Lamadon
et al. (2022) in particular estimate a passthrough elasticity of 0.15. Note that these estimates rely on different
sources of variation: whereas we use changes in wage bills (as justified by our model), Card et al. (2018) review
estimates using value added per worker while Lamadon et al. (2022) use changes in value added.

32For additional robustness, we also consider a difference-in-difference estimator for γ proposed by Lamadon
et al. (2022), which considers firms with above-median values of ∆ logELit as treated and others as untreated.
We find estimates of γ that are similar to our preferred estimate using this approach, the details of which are
relegated to Appendix F.1 for brevity.

29



In practice, we follow Bonhomme et al. (2019) and first assign each firm in our data to
one of ten clusters via a K-means clustering algorithm that targets moments of the within-firm
distribution of residualized earnings w̃imt, with k (i) denoting the earnings cluster of firm i.33

Although not strictly necessary for identification, this reduces the dimension of the parameter set
that needs to be estimated and ameliorates the well-known limited mobility bias issue. We then
estimate

{
W̄k(i), θk(i)

}
via limited information maximum likelihood using the movers sample

and the moment condition (6.6).34 Permanent worker ability is then recovered as log ām =
E
[

log w̃imt−log W̄k(i)
θk(i)

]
, while transient worker ability is recovered as the residual in earnings given

our estimates of all other determinants of earnings. This allows us to estimate the worker ability
distribution L (·). Furthermore, the time-varying firm earnings effect Wit can be recovered as
logWit = − log η + log W̄k(i) + 1

1+γ

(
logELit − log ĒLi

)
, which is firm-specific even though the

time-invariant firm effect W̄k(i) is restricted to vary only by cluster. Note that this approach
allow us to estimate the decomposition of worker earnings (2.1) presented in section 2.

Our estimates of log W̄k and θk obtained using this procedure are presented in Table IV,
where clusters are sorted according to the former variable. We observe a positive correlation
between log W̄k and θk, indicating that firms with higher wage premia are also those where
workers of higher ability are more productive.35 In addition, the estimates that we obtain for
θk are indicative of strong production complementarities. For example, they imply that workers
in the top 2% of the permanent ability distribution are around 40% more productive when
employed at firms in the highest W̄k cluster than at firms in the lowest W̄k cluster.

6.3.3 Relationship capabilities and productivity residuals

Rewriting the firm-to-firm sales equation (4.1), we have:

log rijt = log ∆̃it + log Φ̃jt + log ψ̃ijt (6.7)

where ∆̃it ≡ ∆itψit and Φ̃jt ≡ Φjtψjt. Since the assignment of buyers to sellers is independent
of ψ̃ijt under Assumption 6.3, ∆̃it is identified from purchases by firm i from all its suppliers
controlling for total sales by these suppliers, Φ̃jt is identified from sales by firm j to all its
customers controlling for total expenditures by these customers, and ψ̃ijt is identified from the
residual.36

33Appendix F.2 provides more details including diagnostics of the clustering procedure and robustness of our
results with respect to the number of clusters.

34We thank Bradley Setzler for providing the code for this step of the estimation procedure.
35This positive correlation is also documented in Lamadon et al. (2022) using US data.
36Since matching in intermediate input markets can occur many-to-many (each seller can have several buyers

at once and each buyer can have several sellers), this identification strategy only requires cross-sectional moments.
This is in contrast with identification of the worker and firm earnings effects in equation (6.5), which requires
movements of workers across firms over time.
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In practice, we estimate the terms on the right-hand side of equation (6.7) by regressing
log firm-to-firm transactions on buyer-year and seller-year fixed effects. Details of the imple-
mentation are discussed in Appendix F.4. Of the total variance in log transaction values across
all relationships, we find that 11.8% is explained by log ∆̃it, 33.6% by log Φ̃it, −0.5% by the
covariance of the first two terms, and the remaining 55.1% by log ψ̃ijt. Hence, both firm-specific
and relationship-specific characteristics are important drivers of variation in firm-to-firm sales.

To separately identify buyer effects ∆it, seller effects Φit, and relationship capabilities ψit
from ∆̃it and Φ̃it, first note that the share of a firm’s total sales that come from the network

(i.e. excluding final sales) can be expressed as snetit =
ψit
∑

j∈ΩC
it

∆̃jtψ̃jit

Et+ψit
∑

j∈ΩC
it

∆̃jtψ̃jit
. Solving for ψit, we

obtain:
ψit = Et

(
snetit

1− snetit

)
1∑

j∈ΩCit
∆̃jtψ̃jit

(6.8)

which therefore allows identification of ψit up to a normalizing constant given observable network
sales shares snetit .37 Intuitively, a higher value of ψit increases sales only within the network but
not to final consumers. Buyer and seller effects are then easily recovered from ∆̃it and Φ̃it.

6.3.4 Product substitution elasticity

In Appendix F.5, we show that the product substitution elasticity σ is identified from the
following moment condition:

σ = E [Rit]
E [Rit − TCit]

(6.9)

where expectations are taken over all firms in the economy. Intuitively, σ controls the extent of
output market power and hence determines the aggregate ratio of sales to profits that appears on
the right-hand side of (6.9), where total production costs TCit in the denominator are adjusted
for markdowns on wages. Using the sample moment analog of the right-hand side of equation
(6.9), we obtain an estimate of σ = 3.1 for the average year in our sample.

6.3.5 Labor-materials substitution elasticity and labor productivities

Given the first-order Markov structure of firm productivity primitives in Assumption 6.4, we
can first express log labor productivity as logωit = Fω (logωi,t−1) + ξωit, where Fω is a Markov
transition function and ξωit is an innovation. Combining equations (3.15), (3.17), (3.21), and

37The normalizing constant for ψit is irrelevant for the same reason that one can normalize either Hicks neutral
productivity or one factor-biased productivity without loss of generality.
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(3.22), we then obtain:

log E
M
it

ELit
= log

[1
η

(1− λ
λ

)]
+ (ε− 1) log Wit

Zit
+ (1− ε)Fω (logωi,t−1) + (1− ε) ξωit (6.10)

which is the standard relationship between relative factor expenditures (E
M
it

ELit
) and relative factor

prices (Wit
Zit

) implied by cost minimization under CES technologies. Note, however, that Wit and
Zit are both firm-specific statistics reflecting the heterogeneous wages and material prices that a
firm pays to its workers and suppliers respectively, which generally differ from simple averages of
these input costs. Instead, Wit is identified from the decomposition of worker earnings discussed
in section 6.3.2, while Zit =

(∑
j∈ΩSi

Φjtψijt
) 1

1−σ can be constructed from the seller effects
and relationship productivities obtained from the firm-to-firm sales decomposition discussed
in section 6.3.3, given a value for the product substitution elasticity σ. This highlights the
importance of merged employer-employee and firm-to-firm data for identifying these factor price
aggregates within the firm.

Under Assumption 6.4, identification of the labor-materials substitution elasticity ε from
equation (6.10) then follows the strategy in Doraszelski and Jaumandreu (2018). We implement
this on the baseline firm-level dataset, using polynomials in one-period lagged factor prices and
expenditures to instrument for log Wit

Zit
, as well as a cubic polynomial control function in log EMit−1

ELit−1

and log Wit−1
Zit−1

to control for Fω(logωi,t−1), with a detailed derivation of the approach relegated to
Appendix F.6. Since there are many potential instruments available, we implement estimation
using all possible combinations of the instruments and vary the order of the polynomials used.
Among specifications that deliver a p-value of the Hansen J test above 0.1, we then choose the
specification that yields the highest F-statistic.

Table V presents our results. Our preferred specification based on the criteria above is shown
in Column 1. This specification uses quadratic polynomials in {EMit−1, E

L
it−1} as instruments and

delivers an estimate of ε = 1.5, implying that labor and materials are substitutes (ε > 1), a result
that holds with statistical significance. For comparison, we also present results obtained from
other specifications. In Column 2, we use estimates of Wit obtained from the wage model and
estimation strategy in Abowd et al. (1999), which does not address the issue of limited mobility
bias and rules out worker-firm interactions. Applying the instrument selection criteria above, we
use a linear polynomial in {EMit−1, E

L
it−1,Wit−1, Zit−1} as instruments and find ε = 1.6, which is

not statistically different from our preferred estimate in Column 1. In Column 3, we follow the
standard approach in the literature of using average firm wages instead of the model-consistent
firm earnings effect Wit. Our instrument set in this case is comprised of quadratic polynomials
in {Wit−1, Zit−1}. We find ε = 1.05, which is not statistically different from one.38 In all cases,

38Oberfield and Raval (2019) and Doraszelski and Jaumandreu (2018) estimate values of ε below one using
US and Spanish data respectively. However, their measures of factor prices differ fundamentally from ours. Both
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we estimate that σ > ε with statistical significance (recall our baseline estimate of σ = 3.1),
which from Proposition 1 implies that reductions in material costs Zit have positive effects on
wages.

Given an estimate of ε, labor productivities are then easily recovered as residuals in the
relationship between relative input expenditures and prices. Furthermore, the weight on labor in
the production function λ is not separately identified from the average level of labor productivity
ωit across firms, which is intuitive since both λ and ωit control the productivity of labor relative
to materials. Hence, in what follows we set λ to an arbitrary constant in the interval (0, 1)
without any loss of generality.

6.3.6 Amenities

We identify firm amenities from variation in employment shares that is unexplained by differences
in observable wages. Just as we restrict production complementarities θi to vary only by a firm’s
earnings cluster k (i), we impose a similar restriction on amenities to reduce the dimension of
parameters that need to be estimated:

gi (ā) = g̃iḡk(i) (ā) (6.11)

where ḡk(i) (ā) allows for worker-firm variation in amenities but restricts this to be the same for
firms within a cluster, while variation in amenities across firms within a cluster is accounted for
by g̃i. As shown in Appendix F.3, the cluster-ability component of amenities can be identified
from:

ḡk (ā) = 1
(ām)θk

[Λkt (ā)]
1
γ (6.12)

where Λkt (ā) is the share of workers of permanent ability ā that are employed by firms in
earnings cluster k. Similarly, the firm-specific component of amenities can be identified from:

g̃i = 1
Wit

(
Λ̄it
) 1
γ (6.13)

where Λ̄it is the share of employment of all worker types by firms in cluster k (i) accounted for
by firm i. Since a firm with a high value of amenities is able to attract a large share of workers
at a lower wage, amenities are intuitively identified from employment shares after controlling
for relevant determinants of earnings – āθk at the cluster-ability level and Wit at the firm-level.

papers use average wages in place of Wit, while Oberfield and Raval (2019) use an industry fixed effect in place
of Zit and Doraszelski and Jaumandreu (2018) use a weighted-average of intermediate input prices in place of
Zit. Thus, our estimates, which are based on constructed price indices, are not strictly comparable. Nevertheless,
in Column 3, we move closer to the empirical specification in Doraszelski and Jaumandreu (2018) by using the
average wage instead of our model-based labor price index. Our estimate of ε falls and becomes more similar to
their estimates.
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For a given worker type, we find lower amenity values at larger firms, with this negative
relationship being stronger for workers of higher permanent ability. Furthermore, our estimates
of amenities and production complementarities jointly imply the sorting of high-ability workers
to firms with high wage premia (large values of W̄i). Details of these findings are relegated to
Appendix F.3 for brevity.

6.3.7 Firm TFP

Identification of firm TFPs requires at least as many moment conditions as there are firms. For
these, we rely on the firm earnings effects, which one can write in general as:

Wit = Fi
(
Tt|Θ−Tt

)
(6.14)

where Θt is the set of model primitives listed in Definition 1, Tt ≡ {Tit}i∈ΩF , Θ−Tt ≡ Θt \ Tt,
and {Fi}i∈ΩF is a set of known functions that depend on the structural relationships of the
model. Given identification of all other primitives Θ−Tt , equation (6.14) therefore provides a set
of moments for exact identification of firm TFPs.

We choose this approach because it ensures that the model replicates the firm effects on
earnings that we estimate from the data, which in turn guarantees that the model matches
observed earnings for a given worker conditional on also replicating the worker’s observed choice
of employer. This allows us to examine changes in labor market outcomes under various coun-
terfactual scenarios with the confidence that the baseline model provides a good fit to observed
data. Note that in the limit of our model without intermediates (λ → 1), logWit is linear
in log Tit and hence identification is trivial. With intermediates, however, the functions Fi are
generally implicit and involve complex non-linearities, which hence requires a numerical solution
for the TFP vector (see Appendix F.7 for details).39

7 The Production Network and Inequality Outcomes

We now use the estimated model to investigate the importance of the production network for
explaining the four patterns of earnings inequality highlighted at the start of the paper. In
particular, we quantify how production network heterogeneity shapes the following outcomes:
(i) the variance of firm earnings effects and worker earnings; (ii) the covariance between firm
earnings effects and firm size; (iii) the variance of labor shares of value-added; and (iv) the
covariance between labor shares of value-added and firm size. For brevity, we henceforth refer
to these variances and covariances as inequality outcomes.

39Due to these features of the Fi functions, establishing a unique solution for Tt given a vector of firm effects
Wt is not trivial. Nonetheless, we have explored the potential for multiplicity by varying the initial guess for the
TFP vector and never find multiplicity to occur in practice.
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7.1 Numerical solution approach

We begin by solving for a baseline equilibrium in which all model primitives are set to their
estimated values (with time-varying primitives averaged across 2005-2010). Note that in our
model, key outcomes such as the firm effect on earnings do not admit closed-form solutions
in terms of model primitives due to non-linearities arising from the input-output structure of
the production network. Hence, we require a numerical solution procedure to solve for model
equilibria. Since this is not computationally feasible at the level of individual workers and firms
(we have over 6 million workers and over 48 thousand firms), we proceed as follows.

First, we discretize the permanent and transient worker ability distributions into 50 quan-
tiles each, which gives us 2,500 worker types. We then set primitives for each worker type (i.e.,
abilities and amenities) equal to the corresponding average across workers of each type. Second,
within each of the ten firm earnings clusters (see section 6.3.2), we again cluster firms into ten
subclusters via a K-means clustering algorithm targeting primitives {ωit, ψit, g̃i} that have been
estimated at the firm-level. This gives us 100 firm cluster-subcluster pairs that we henceforth
simply refer to as firm groups. We then set primitives for each firm group equal to the corre-
sponding average across firms within each group, except for TFP, which we solve for numerically
at the firm group level (see section 6.3.7). Finally, for the production network, we measure the
fraction of potential buyer-seller firm pairs that are active between each group of buyers b and
each group of sellers s in the average year, denoting this by mbs. We then assume that each
buyer in b matches with a random fraction mbs of suppliers in s. We also set relationship pro-
ductivity residuals for each buyer-seller group pair to the corresponding average across active
relationships between each pair.

Using this approach, we solve for the model’s equilibrium at the worker type and firm group
level using a numerical solution algorithm described in Appendix H. Figure IV shows the fit
of the model’s baseline equilibrium to key moments in the data, where each circle in a plot
represents a firm group and the size of each circle is increasing in the number of firms in the
group. The figure also shows the correlation (ρ) between each variable in the data and model
at the firm group level, weighted by the number of firms in each group. Evidently, the model
provides a good fit to all the key moments even after discretizing worker and firm primitives.40

By implication, the model is able to closely replicate all of the inequality outcomes observed in
the data.

40We observe a greater discrepancy between the model and data for labor shares of value-added, largely due
to the fact that we do not consider firm heterogeneity in output markups. Even in this case, however, the model
fit is good (ρ = 0.87).
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7.2 Sources of variation and a Shapley approach for counterfactuals

All inequality outcomes in the model are driven by heterogeneity in the following worker and firm
primitives: (i) the production network, ΩS

it; (ii) relationship productivity residuals, ψ̃ijt (iii) firm
productivities, {Tit, ωit, ψit}; (iv) production complementarities, θi; (v) amenities, gi (·); (vi) and
worker abilities, {ām, âmt}. We refer to each of these six sets of primitives as a source of variation
in the model.

To quantify the contribution of each source of variation to a given inequality outcome, we
then proceed as follows. First, we simulate counterfactual equilibria of the model in which each
source of variation v is eliminated by setting its value for all workers or firms equal to the
mean of v across the respective sample. We then compute inequality outcomes and compare
these to the baseline equilibrium, taking the difference between these values as a measure of
the contribution of the source of variation v to each inequality outcome. For the production
network, we do this separately for heterogeneity across suppliers and customers. For example,
to eliminate heterogeneity across suppliers, we replace the observed network at the buyer group
(b) and seller group (s) level, mbs, with a counterfactual network m̂S

bs =
∑

s′ mbsNs′∑
s′ Ns′

that is
randomized across suppliers while holding constant the total supplier count for each firm group,
where Ns′ denotes the number of firms in seller group s′. We follow an analogous procedure to
eliminate heterogeneity in customer matching.

However, note that eliminating a source of variation v not only removes variation in equilib-
rium outcomes arising from v but also from the covariance between v and all other sources of
variation. Therefore, any changes in inequality outcomes that arise from eliminating v cannot be
attributed to v alone. To address this, we adopt a Shapley-based approach: we simulate coun-
terfactuals by eliminating all possible combinations of the sources of variation listed above and
then compute the Shapley value for each source of variation in terms of its effect on inequality
outcomes. Intuitively, this provides an average measure of the change in each inequality out-
come when a source of variation is eliminated, under all possible combinations of the remaining
sources of variation. This approach has two advantages. First, it accounts for interdependencies
between sources of variation. Second, it has the appealing feature that each inequality outcome
is apportioned exactly to each source of variation.

To illustrate, consider two sources of variation, ΘA and ΘB, and suppose that an inequality
outcome such as the variance of earnings can be expressed in the baseline as var (ΘA)+var (ΘB)+
2cov (ΘA,ΘB). The change in earnings variance from eliminating ΘA relative to the baseline is
δA1 = var (ΘA) + 2cov (ΘA,ΘB). The change in earnings variance from eliminating ΘA relative
to the equilibrium in which ΘB has already been eliminated is δA2 = var (ΘA). The Shapley
contribution of ΘA to earnings variance is then δA1+δA2

2 = var (ΘA)+cov (ΘA,ΘB). The Shapley
approach is therefore equivalent to splitting the covariance equally between ΘA and ΘB in this
linear case, but is also applicable in the more general case where inequality outcomes cannot
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be expressed as a linear combination of the variances and covariances of model primitives. See
Appendix I for a formal definition of the Shapley value.

7.3 Results

Table VI presents our findings. Each panel shows results for a different inequality outcome, with
the values in each panel reporting the shares of the inequality outcome accounted for by the
indicated sources of variation.

First, consider the role of production network heterogeneity in explaining differences in earn-
ings. In panel (a), around one-third (30.2%) of the variation in log earnings effects across firms
(weighted by employment) is accounted for by network heterogeneity, with supplier heterogeneity
(23.6%) playing a more important role than customer heterogeneity (6.6%). Therefore, network
heterogeneity is a key driver of differences in employer-specific earnings premia. In panel (b),
we see that production network heterogeneity also explains 12.9% of the variance of log earnings
across workers, with supplier heterogeneity (9.7%) again playing a larger role than customer
heterogeneity (3.2%). In comparison, own-firm primitives (productivities, production comple-
mentarities, and amenities) explain 19.3% of log earnings variance, while worker abilities explain
the remainder (67.8%). Hence, network heterogeneity accounts for around two-fifths ( 12.9

12.9+19.3)
of the variance of log worker earnings that is unexplained by worker characteristics.41

Second, consider the role of the production network in explaining the positive firm size wage
premium. In panel (c), 51.1% of the positive covariance between log earnings effects and log
sales across firms (weighted by employment) is explained by network heterogeneity, 35.3% from
supplier heterogeneity and 15.8% from customer heterogeneity. In other words, about half of the
firm size wage premium is attributable to differences in production network linkages. Intuitively,
this occurs because better access to suppliers and customers in the production network leads to
increases in both firm size and firm earnings effects. Hence, network heterogeneity amplifies the
positive relationship between these two outcomes.

Third, consider the role of the production network in explaining differences in labor shares
across firms. In panel (d), 26.1% of the variation in labor shares of value-added across firms
(weighted by value-added) is explained by network heterogeneity. As discussed in section 4.3,
network heterogeneity affects the labor share of value-added through the relative cost of labor
to materials, Wit/Zit. Higher upstream access directly lowers Zit while also having a positive
effect on Wit. On the other hand, higher downstream access only affects this statistic through
a positive effect on Wit. Hence, the role of production network in driving differences in labor
shares of value-added across firms accrues mostly from supplier heterogeneity (21.9%) rather

41Note that network heterogeneity shapes earnings inequality not only through the variance in firm earnings
effects, but also through the covariance between firm effects and worker effects. We find that network heterogeneity
accounts for 20.4% of this covariance, which in turn explains 19.8% of the variance in log worker earnings (see
equation (A.1) in Appendix A).
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than customer heterogeneity (4.2%), as one might expect.
Finally, consider the role of the production network in explaining why larger firms tend

to have lower labor shares of value-added. In panel (e), we see that 68.1% of the negative
covariance between labor shares of value-added and log sales across firms (weighted by value-
added) is explained by network heterogeneity. As shown in Fact 2 of the motivation, larger firms
tend to have lower labor shares of value-added and better upstream and downstream network
access in the baseline equilibrium. Furthermore, as discussed above, improvements in upstream
and downstream access both tend to lower labor shares. Hence, the advantage that large firms
tend to have in terms of network access amplifies the negative relationship between firm size
and labor shares of value-added.

In sum, we find that production network heterogeneity plays a key role in explaining all four
inequality outcomes.

7.4 Sensitivity of results to value-added production functions

How important is relaxing the assumption of value-added production functions for our main
quantitative findings? To assess this, we proceed as follows.

First, we set the labor-materials substitution elasticity to ε = 1 instead of our preferred
estimate of ε = 1.5. This imposes a Cobb-Douglas technology on the aggregation of labor and
materials, which, as discussed in section 4.2.1, is necessary for a value-added representation
of the production function to be valid. Second, since labor productivity ωit is not separately
identified from TFP when ε = 1, we set ωit = 1 for all firms without loss of generality. Third,
note that differences in ωit are what allow our baseline model to fit labor shares of cost at the
firm-level, while the weight on labor in the production function λ is not separately identified
from the mean of ωit across firms. With ε = 1, labor shares of cost are instead determined by
λ, which we hence choose to match the aggregate labor share of cost. Fourth, since our TFP
estimates depend on the value of ε, we re-estimate TFP under ε = 1.

Finally, we recompute decompositions of inequality outcomes shown in Table VI. It is im-
mediately obvious that the model with ε = 1 cannot speak to labor share heterogeneity, since
the Cobb-Douglas technology imposes common labor shares of cost and therefore common labor
shares of value-added across firms. Hence, we focus here only on panels (a)-(c) of Table VI,
which decompose the variance of log firm earnings effects, the variance of log worker earnings,
and the covariance between log firm earnings effects and log sales. Table VII shows the results
of these decompositions with ε = 1. We highlight two key insights.

First, the share of each inequality outcome accounted for by production network heterogene-
ity is substantially different under ε = 1 compared with our baseline case of ε = 1.5. Specifically,
under Cobb-Douglas technology, we find that production network heterogeneity explains 51.2%
of the variance in log firm earnings effects (baseline: 30.2%), 21.1% of the variance in log worker
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earnings (baseline: 12.9%), and 75.2% of the covariance between log firm earnings effects and
log sales (baseline: 51.1%). In other words, in terms of our outcomes of interest, our estimated
production function with ε = 1.5 is by no means “close” to being approximated by a value-added
production function.

Second, it is evident that the importance of production network heterogeneity for the three
inequality outcomes above is greater under Cobb-Douglas technology than under our estimate
of ε = 1.5. The core intuition for this is the following. As described in section 2, firms with
higher earnings effects tend to have greater upstream network access (Fact 1). Consequently,
eliminating heterogeneity in the production network tends to reduce upstream access for firms
with higher earnings effects and tends to increase upstream access for firms with lower earnings
effects. Then, as discussed in section 4.2.2, changes in upstream access have two effects on wages.
First, a reduction in upstream access lowers the scale of a firm, which tends to reduce wages
as firms choose to hire fewer workers. This scale effect hence tends to reduce (increase) wages
at firms with high (low) earnings effects in the baseline, thereby reducing earnings inequality.
However, when ε > 1, there is an additional substitution effect, as a reduction in upstream
access induces a firm to substitute away from materials and towards labor, thereby increasing
wages. Consequently, when ε > 1, the substitution effect partially offsets the scale effect, so
that the importance of heterogeneity in upstream access for earnings inequality is dampened.
In contrast, the offsetting substitution effect is not operative under Cobb-Douglas technology
and hence heterogeneity in upstream access matters more for earnings inequality in this case.42

8 Conclusion

We have developed in this paper a unifying framework with firm heterogeneity in both earnings
premia and labor shares of value-added. Central to our framework are firm labor market power
and heterogeneous firm-to-firm production network linkages with CES production technologies.
These features allow the model to reconcile stylized facts about earnings inequality and labor
shares in the cross-section, as well as empirical correlations between measures of production
network access and labor market outcomes. The key mechanisms linking production network
access to earning premia and labor shares in our model are well-supported by reduced-form
evidence of the passthrough of demand and material cost shocks into changes in worker earnings.

Using linked employer-employee and firm-to-firm transactions data from Chile, we struc-
turally estimate the model and show how these data can be used to identify the elasticity of

42The value of ε also matters for how heterogeneity in downstream network access affects earnings inequality,
although this channel is less important quantitatively than the channel described above. One can see this from the
fact that changing the value of ε mainly affects the shares for heterogeneity in the customer network as opposed
to heterogeneity in the supplier network in panels (a)-(c) of Tables VI and VII. Eliminating heterogeneity across
customers holds constant the number of customers for each firm but assumes that each seller is equally likely to
sell to any given buyer, which hence leads to identical upstream network access measures for all firms.
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substitution between labor and materials when these inputs are heterogeneous within firms. We
estimate that labor and materials are gross substitutes and reject the hypothesis of value-added
production functions. Counterfactual simulations of our estimated model indicate that produc-
tion network heterogeneity is an important driver of key labor market outcomes, in particular
the variances of worker earnings, firm earnings premia, and labor shares of value-added, as well
the covariances between firm earnings premia, labor shares of value-added, and firm size.

We conclude with two potential directions for future research on the interaction between
workers and production networks. First, there is growing evidence that worker outsourcing is a
key driver of increases in earnings inequality (Goldschmidt and Schmieder (2017)). However, in
these settings, it is typically not possible to directly observe and hence measure outsourcing. The
growing availability of linked employer-employee and firm-to-firm datasets provides a unique op-
portunity to measure flows of both goods and workers between firms. This will allow researchers
to more accurately measure outsourcing at the firm and to understand its incidence on both
workers and firms. However, there are as yet no studies of outsourcing that have leveraged these
data.43

Second, there is growing interest among both policymakers and researchers in understanding
the effects of automation on worker outcomes. It is natural to view these effects as arising
from the substitution of labor by inputs such as industrial robots. For example, Acemoglu and
Restrepo (2020) estimate the effects of increased robot usage on employment and wages in US
labor markets, finding robust negative effects. More recent theoretical work by Jackson and
Kanik (2020) develops a model of robot-labor substitution that accounts for production network
linkages between firms. A quantitative study of the mechanisms highlighted by this literature
using matched employer-employee and firm-to-firm transactions data is therefore likely to yield
important insights.

43Cardoza et al. (2022) provide evidence that workers are more likely to move to a customer or supplier of
their original employer than to an unrelated firm, but do not consider outsourcing specifically.
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Appendix A Decompositions of the variance of worker earnings

Following Lamadon et al. (2022), we first utilize equation (2.1) to decompose the variance of log
earnings as:

var (logwimt) = var (x̃m)︸ ︷︷ ︸
57%

+ var
(
log f̃it

)
︸ ︷︷ ︸

10.8%

+ 2cov
(
x̃m, log f̃it

)
︸ ︷︷ ︸

19.8%

+ int︸︷︷︸
-2.0%

+ var (x̂mt)︸ ︷︷ ︸
14.4%

(A.1)

where x̃m ≡ (xm − x̄) θ̄ is the worker effect when employed at the average firm, log f̃it ≡
log fit + θix̄ is the firm effect when matched with the average worker,

{
x̄, θ̄

}
denote the av-

erages of {xm, θi} across workers, int collects terms arising from non-linear interactions between
the worker and firm effects, and all variances and covariances are computed at the worker-level.
Unsurprisingly, we find that the variance of the (transformed) worker effect accounts for the
majority of earnings variance. However, we also find that firms play an important role: the
variance of the (transformed) firm effect accounts for 10.8% of log earnings variance, while the
sorting covariance between worker and firm effects explains 19.8%.

Following Song et al. (2019), we also decompose the variance in log earnings across workers
into a between-firm and a within-firm component:

var (logwmit) = vari
(
logwit

)
︸ ︷︷ ︸

between-firm: 46%

+ Σi%itvarm∈Mit (logwmit)︸ ︷︷ ︸
within-firm: 54%

(A.2)

where for each year t, logwit denotes the average log wage at firm i and %it is the share of workers
employed at firm i. The operator vari denotes the variance across firms weighted by employment
and varm∈Mit denotes the variance across the set of workers Mit employed at firm i. Computing
this decomposition for each year in our sample, we find that the between-firm component of log
earnings variance explains 46% of total log earnings variance in the average year.

Appendix B Model Extension with Capital Inputs

Suppose that firms produce output using capital in addition to labor and materials with a
production function of the following form:

Xit = TitK
α
itF

[
{φit (a)Lit (a) ,Mit (a)}a∈A

]1−α (B.1)

where α is the capital share of cost. Suppose also that capital is available at a price rit that may
vary across firms due to differences in access to capital markets. The firm’s profit maximization
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problem can now be written as:

max
Kit,{wit(a),Mit(a)}a∈A

{
D

1
σ
itX

σ−1
σ

it −
∑
a∈A

wit (a)Lit (a)− Zit
∑
a∈A

Mit (a)− ritKit

}
(B.2)

subject to the production function (B.1) and labor supply curves (3.2). The first-order condition
for this problem with respect to the capital input is:

αD
1
σ
itX

σ−1
σ

it = ritKit (B.3)

Using this to substitute for the choice of capital, we can rewrite the profit maximization problem
as a choice over wages and material inputs alone, as in the original problem (3.14):

max
{wit(a),Mit(a)}a∈A

{
D

1
σ̃
it X̃

σ̃−1
σ̃

it −
∑
a∈A

wit (a)Lit (a)− Zit
∑
a∈A

Mit (a)
}

(B.4)

s.t. X̃it = T̃itF
[
{φit (a)Lit (a) ,Mit (a)}a∈A

]
(B.5)

where σ̃ ≡ σ (1− α) + α and T̃it ≡ (1− α)
σ̃
σ̃−1

(
α
rit

) α
1−α T

1
1−α
it . Hence, the firm’s problem with

capital is isomorphic to the problem without capital if one replaces σ with σ̃ and Tit with T̃it.
Note that the introduction of capital lowers the effective price elasticity of demand (since σ̃ < σ

for any α ∈ (0, 1)), while differences in capital prices rit can be viewed as differences in effective
productivity.

Appendix C Value-added per worker and wages

We discuss here the implications of the model for the passthrough of changes in value-added
per worker to changes in worker earnings. First, note that value-added is equal to the difference
between sales and material costs:

V Ait = D
1
σ
itX

σ−1
σ

it − EMit (C.1)

Using equations (3.15), (3.17), (3.18), (3.19), and (3.22) we can write this as:

V Ait = ηγW 1+γ
it φ̄it

[
1 +

( 1
σ − 1

)
F (1, νit)
FL (1, νit)

]
(C.2)

Furthermore, total employment at firm i is given by:

Lit = (ηWit)γ φ̃it (C.3)
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where φ̃it ≡
∑
a∈A κit (a)φi (a)γ . Hence, value-added per worker can be expressed as:

V APWit = Wit

(
φ̄it

φ̃it

)[
1 +

( 1
σ − 1

)
F (1, νit)
FL (1, νit)

]
(C.4)

Note that the term φ̄it
φ̃it

varies over time only through general equilibrium effects. Hence,
when considering shocks at the firm-level, equation (C.4) implies that log changes in value-
added per worker are equal to log changes in the firm effect Wit only in three special cases of
the model: (i) no output market power (σ →∞); (ii) no materials in production (νit = 0); and
(iii) Cobb-Douglas technology (so that F (1,νit)

FL(1,νit) is independent of νit). An immediate corollary
is that the assumption of Cobb-Douglas technology in our model implies complete passthrough
of changes in value-added per worker to changes in worker earnings, which is strongly rejected
by the empirical literature (as in Berger et al. (2019) and Kline et al. (2019), for example).

Furthermore, note that value-added per worker is an endogenous outcome in our model as
opposed to an exogenous technological primitive of the firm (as in Lamadon et al. (2022), for
example). Hence, when examining how changes in value-added per worker compare to changes
in worker earnings, the underlying shock that drives both of these changes matters.

To connect with our empirical passthrough estimates discussed in section 5, consider an
exogenous change in a firm’s cost of materials Zit, as arising, for example, from changes in
the cost of imported intermediates. As discussed in Appendix D (see equation (D.24)), the
passthrough of changes in Zit to changes in Wit is characterized by:

∂ logWit

∂ logZit
= − (σ − ε) sMit Γit (C.5)

where recall that Γit ≡ 1
γ+σ(1−sMit )+εsMit

and sMit ≡
EMit

1
η
ELit+E

M
it

. Then, log differentiating equation

(C.4) and using the result that νit = 1−λ
λ

(
Wit
ωitZit

)ε
, we obtain the passthrough from a change in

Zit to value-added per worker as:

∂ log V APWit

∂ logZit
= −

[
σ − ε+ (ε− 1) (γ + σ)

σ
(
1− sMit

)
+ sMit

]
sMit Γit (C.6)

Hence the log change in Wit relative to V APWit arising from a shock to Zit is:

∂ logWit
∂ logZit

∂ log V APWit
∂ logZit

= 1
1 + c

(
γ, σ, ε, sMit

) (C.7)

where the term c is given by:

c
(
γ, σ, ε, sMit

)
= (ε− 1) (γ + σ)

(σ − ε)
[
σ
(
1− sMit

)
+ sMit

] (C.8)
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This result makes clear the following. First, as discussed above, imposing Cobb-Douglas technol-
ogy on the aggregation of labor and materials (ε = 1) implies ∂ logWit

∂ logZit /
∂ log V APWit
∂ logZit = 1. Second,

departing from Cobb-Douglas technology can either raise the relative passthrough coefficient
above one (if ε < 1) or lower it below one (if ε > 1). Specifically, for the relative passthrough
coefficient to be less than one, as is consistent with empirical evidence in both our paper and
others, a necessary condition is that labor and materials are gross substitutes (ε > 1).

In addition, as discussed in section 6, our baseline estimates of the model’s parameters are
γ = 5.5, σ = 3.1, and ε = 1.5. Furthermore, the median value of sMit in our data is around 0.81.
These values imply c = 1.92 and hence ∂ logWit

∂ logZit /
∂ log V APWit
∂ logZit = 0.34. This is slightly larger than

but still quite similar to the empirical passthrough coefficient of 0.15 highlighted in section 5.2.

Appendix D Proofs of Claims and Propositions

D.1 Proof of Claim 1

Omitting time subscripts for brevity, the profit-maximization problem for a firm i can be written
generally as:

max
{pji}j∈ΩC

i
∪{F}


∑

j∈ΩCi ∪{F}

pjixji − C [Xi|li (·) , Zi]

 (D.1)

s.t. xji = ∆jψjip
−σ
ji (D.2)

Xi =
∑

j∈ΩCi ∪{F}

xji (D.3)

where ψFi = 1. Here, C [Xi|li (·) , Zi] denotes the total cost of producing Xi units of output given
the labor supply functions li (·) and material input cost Zi. The latter depends on the prices
charged by suppliers of firm i, which firm i takes as given in the problem above. Importantly,
the total production cost for firm i depends only on total output of the firm Xi and not on how
this output is allocated to each customer.

The first-order condition for the profit-maximization problem with respect to pji is then:

(1− σ) ∆jψjip
−σ
ji = −σC ′ [Xi|li (·) , Zi] ∆jψjip

−σ−1
ji (D.4)

Solving for the optimal price yields:

pji = σ

σ − 1C
′ [Xi|li (·) , Zi] (D.5)

Note that the right-hand side of (D.5) does not vary by customer j. Hence, the optimal prices
set by firm i do not vary by customer and are equal to the standard CES markup over the firm’s
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marginal cost. The existence of imperfect competition in the labor market implies that marginal
cost is not constant, but this does not break the standard CES markup result.

D.2 Proof of Proposition 1

First, we establish comparative statics of a firm’s earnings effect Wit with respect to the firm’s
network characteristics {Dit, Zit}, technological primitives {Tit, ωit}, and sorting composite φ̄it.
In what follows, we omit firm and time subscripts for brevity and all derivatives of the production
function f are evaluated at {φL,M} = {1, ν}. Totally differentiating (3.15), (3.17), and (3.18)
for a given firm, we obtain:

Ŵ + 1
σ
X̂ −

(
fLMν

fL

)
ν̂ = 1

σ
D̂ + T̂ + ω̂ (D.6)

1
σ
X̂ −

(
fMMν

fM

)
ν̂ = 1

σ
D̂ + T̂ − Ẑ (D.7)

−γŴ + X̂ −
(
fMv

f

)
ν̂ = T̂ + ω̂ + ˆ̄φ (D.8)

Solving for
{
Ŵ , X̂, ν̂

}
, we obtain:

Ŵ = ΓD̂ + (σ − 1) ΓT̂ − (σ − ε) εMΓẐ +
[
σ − 1− (σ − ε) εM

]
Γω̂ (D.9)

− Γ ˆ̄φ

X̂ =
(
γ + εεM

)
ΓD̂ + σ

(
γ + εεM + 1− εM

)
ΓT̂ − σ (γ + ε) εMΓẐ (D.10)

+ σ
(
1− εM

)
(1 + γ) Γω̂ + σ

(
1− εM

)
Γ ˆ̄φ

v̂ = εΓD̂ + ε (σ − 1) ΓT̂ − ε (γ + σ) ΓẐ − ε (1 + γ) Γω̂ (D.11)

− εΓ ˆ̄φ

where εM ≡ fMν
f denotes the elasticity of f with respect to materials and Γ ≡ 1

γ+σ(1−εM )+εεM is
the scale elasticity for the firm.

Now from equations (3.21) and (3.22), we can express the material share of cost (adjusted
for markdowns on wage) for the firm as:

sM ≡ EM

1
ηE

L + EM
= Zων

W + Zων
(D.12)

Then, from the first-order conditions (3.17) and (3.15), relative factor prices can be expressed
as:

Z

W/ω
= fM

fL
(D.13)
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Using the result that f = fMν + fL for a homogeneous of degree one function f then implies:

εM = Zων

W + Zων
(D.14)

Finally, comparing equations (D.12) and (D.14) implies εM = sM , so that the elasticity of
f with respect to materials is equal to the material share of cost in equilibrium. From the
coefficients on the right-hand side of equation (D.9), we observe the own-firm effects of demand
and material cost shocks as stated in Proposition 1. Furthermore, we see that a firm’s earnings
effect is increasing in its TFP, increasing in its labor productivity if and only if sM < σ−1

σ−ε , and
decreasing in its sorting composite.

Next, we characterize the passthrough of shocks in the production network into firm earnings
effects more generally, including the passthrough effects highlighted in Proposition 1. We begin
by deriving an expression for marginal changes in demand shifters, D̂. Totally differentiating
equation (3.10) gives:

D̂ = Ssales∆̂ (D.15)

where we have used the result that the share of firm i’s sales accounted for by firm j can be
expressed as:

ssalesjit ≡ Rjit∑
k∈ΩCit∪{F}

Rkit
= ∆j

Di
(D.16)

Totally differentiating (3.11) and using (3.22), we obtain:

∆̂ = γŴ + σẐ + ν̂ + ω̂ (D.17)

Then, taking the ratio of the first-order conditions for the profit-maximization problem (3.15)
and (3.17) and totally differentiating gives:

Ŵ − Ẑ = ε−1ν̂ + ω̂ (D.18)

Combining (D.15), (D.17), and (D.18), we then obtain the following expression for marginal
changes in demand shifters:

D̂ = Ssales
[
(γ + ε) Ŵ + (σ − ε) Ẑ + (1− ε) ω̂

]
(D.19)

Next, we derive an expression for marginal changes in material costs, Ẑ. Totally differenti-
ating equation (3.12) gives:

Ẑ = − 1
σ − 1S

matΦ̂ (D.20)

where we have used the result that the share of firm i’s input expenditures accounted for by
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firm j can be expressed as:
smatijt ≡

Rijt∑
k∈ΩSit

Rikt
= Φjtψijt

Z1−σ
it

(D.21)

Then, from (3.9) and (3.13), we can express marginal changes in network productivities as:

Φ̂ = σ − 1
σ

(
X̂ − D̂

)
(D.22)

Hence, combining (D.20) and (D.22), we obtain the following expression for marginal changes
in material costs:

Ẑ = 1
σ
Smat

(
D̂ − X̂

)
(D.23)

Now equations (D.9)-(D.11), (D.19), and (D.23) define a linear system in
{
Ŵ , X̂, ν̂, D̂, Ẑ

}
,

given changes in TFP T̂ and labor productivity ω̂. Eliminating X̂ and ν̂ from this system, we
can write the remaining equations as:

Ŵ = HWT T̂ +HWωω̂ +HWDD̂ +HWZẐ (D.24)

D̂ = Ssales
[
HDT T̂ +HDωω̂ +HDDD̂ +HDZẐ

]
(D.25)

Ẑ = Smat
[
HZT T̂ +HZωω̂ +HZZẐ +HZDD̂

]
(D.26)

where the H matrices are all
∣∣∣ΩF

∣∣∣ × ∣∣∣ΩF
∣∣∣ diagonal matrices. The matrices summarizing the

dependence of
{
Ŵ , D̂, Ẑ

}
on productivity shocks

{
T̂ , ω̂

}
have ith-diagonal elements given by:

HWT
i = (σ − 1) Γi HWω

i =
[
(σ − 1)− (σ − ε) sMi

]
Γi

HDT
i = (γ + ε) (σ − 1) Γi HDω

i = (1 + γ) (σ − ε)
(
1− sMi

)
Γi

HZT
i = −

[
γ + 1− sMi + εsMi

]
Γi HZω

i = − (1 + γ)
(
1− sMi

)
Γi

(D.27)

while the matrices summarizing the interrelation between
{
Ŵ , D̂, Ẑ

}
have ith-diagonal elements

given by:

HWT
i = (σ − 1) Γi HWD

i = Γi HWZ
i = − (σ − ε) sMi Γi

HDT
i = (γ + ε) (σ − 1) Γi HDD

i = (γ + ε) Γi HDZ
i = (σ − ε) (γ + σ)

(
1− sMi

)
Γi

HZT
i = −

[
γ + 1− sMi + εsMi

]
Γi HZD

i =
(
1− sMi

)
Γi HZZ

i = (γ + ε) sMi Γi

(D.28)

Now, first note the existence of feedback effects arising from the fact that marginal costs are
increasing with scale due to the upward-sloping labor supply curves faced by each firm. These
feedback effects go in two directions. To illustrate, consider a simple supply chain js → i→ jc,
where arrows indicate the flow of goods. First, consider a positive demand shock to customer jc.
This leads to an increase in demand Di for firm i (HDD), which not only has an effect on firm
i’s earnings effect as in Proposition 1 (HWD), but also leads to an increase in marginal cost and
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hence in the output price for firm i, thus raising the cost of materials for customer jc (HZD).
This in turn has a feedback effect on the demand from customer jc (HDZ). Second, consider an
increase in material cost for supplier js. This raises the material cost for firm i (HZZ), which
not only has an effect on firm i’s earnings effect as in Proposition 1 (HWZ), but also affects the
demand for materials by firm i and hence the demand faced by supplier js (HDZ). This in turn
has a feedback effect on the marginal cost and output price of the supplier, and hence on the
cost of materials faced by firm i (HZD).

In sum, feedback effects stemming from scale-dependent marginal costs are captured by
elements of the product HZDHDZ (which is symmetric, given that the H matrices are diagonal).
Given our estimates of {γ, σ, ε} and evaluating firm-specific material cost shares at the median
value in the average year in our sample, the magnitudes of the elements of these matrices are
approximately HDZ

i ≈ 0.29 and HZD
i ≈ 0.02, so that the feedback elasticity is approximately

0.6%. Hence, feedback effects are likely to be small empirically. Ignoring these feedback effects
by setting HDZ and HZD to zero in equations (D.25) and (D.26) and solving for Ŵ as a
function of D̂ and Ẑ then gives the passthrough expressions in Proposition 1. More generally,
however, it is straightforward to solve the linear system (D.24)-(D.26) for Ŵ including feedback
effects, with coefficients that can be fully determined given estimates of {γ, σ, ε}, network shares{
Ssales, Smat

}
, and material shares of cost sMi .

Appendix E Data Details

E.1 Data cleaning

To clean the firm-to-firm trade dataset, we drop relationships involving firms that do not report
value-added or employment, or firms that report negative value-added, sales, or materials. We
also follow Bernard et al. (2022) and iteratively drop firms that have only one relationship, which
is required for a decomposition of firm-to-firm transaction values into buyer and seller effects
that we describe below.

To clean the employer-employee dataset, we impose sample restrictions following the criteria
outlined in Lamadon et al. (2022). In each year, we start with all individuals aged 25-60 who
are linked to at least one employer. We identify links using only information on labor contracts
(tax affidavit 1887). Next, we drop firms that have missing or negative value-added, sales, or
materials in the balance sheet data (tax form 29). Then, we keep for each worker the firm that
pays the highest earnings in a given year. Since we do not have hours worked or a direct measure
of full-time employment, we follow the literature by including workers for whom annual earnings
are above a minimum threshold (Song et al., 2019). We set the threshold equal to 32.5% of the
national average of earnings in order to make our estimates comparable to the cross-country
study of earnings inequality in Bonhomme et al. (2020).
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Finally, in terms of confidentiality, we merge these data sets using unique tax IDs of workers
and firms that are common across sources. To secure the privacy of workers and firms, the
Chilean IRS requires all results that are published to be calculated using at least 25 unique tax
IDs. All the analysis was implemented by the authors and did not involve nor compromise the
Chilean IRS. Officials of the Central Bank of Chile processed the disaggregated data from the
Chilean IRS. The information contained in the databases of the Chilean IRS is of a tax nature
originating in self-declarations of taxpayers presented to the Service; therefore, the veracity of
the data is not the responsibility of the Service.

E.2 Sample sizes and descriptive statistics

Table A.I provides sample size information for our baseline firm-to-firm dataset, employer-
employee dataset (including the movers and stayers subsamples), and firm-level dataset, which
are defined in section 6.1. Table A.II provides basic descriptive statistics about these datasets.

Table A.I: Overview of Sample Sizes

Panel A: Firm-to-Firm Dataset Links Suppliers Buyers
Sample Unique Observation-Years Unique Observation-Years Unique Observation-Years

Baseline 16,831,546 31,743,495 194,615 592,622 289,344 923,155

Panel B: Employer-Employee Dataset Workers Firms
Sample Unique Observation-Years Unique Observations-Years

Baseline 6,496,849 41,954,008 487,504 2,315,927
Movers 6,183,692 40,130,960 200,592 1,378,554
Stayers: Complete Spells 953,865 8,472,302 64,670 602,622
Stayers: 10 Stayers per Firm 724,957 6,571,483 5,726 61,823

Panel C: Firm Dataset Firms
Sample Unique Observations-Years

Baseline 47,685 125,726

Notes: This table provides an overview of the samples used throughout the paper.
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Table A.II: Descriptive Statistics of Datasets

Dataset Employer-Employee Firm Firm-to-Firm
Panel A: Worker Characteristics Baseline Movers Stayers Baseline Baseline

Mean Log Worker Earnings (Log US $) 9.36 9.38 9.74 9.17 9.22
Median Log Worker Earnings (Log US $) 9.25 9.27 9.66 9.02 9.10
Mean Worker Age 40.2 40.1 42.6 39.3 39.8
Median Worker Age 39.4 39.4 42.6 38.5 39.0

Panel B: Firm Characteristics Baseline Movers Stayers Baseline Baseline

Mean Number of Workers 9 20 281 27 12
Median Number of Workers 2 4 94 7 2
Mean Wage Bill per Worker (US $) 10,199 11,145 7,833 9,440 8,306
Median Wage Bill per Worker (US $) 6,943 8,323 6,672 7,103 5,490
Mean Value Added per Worker (US $) 56,315 58,610 50,077 49,604 50,091
Median Value Added per Worker (US $) 23,424 25,659 26,583 23,389 18,771
Mean Log Value Added (Log US $) 11.0 11.8 14.6 12.2 10.9
Median Log Value Added (Log US $) 11.0 11.7 14.8 12.1 10.9
Mean Labor Share 0.49 0.45 0.70 0.42 0.49
Median Labor Share 0.32 0.34 0.21 0.34 0.32

Panel C: Production Network Characteristics Baseline Movers Stayers Baseline Baseline

Mean Number of Suppliers 67 67 306 67 35
Median Number of Suppliers 36 36 208 36 19
Mean Number of Buyers 80 80 580 80 34
Median Number of Buyers 8 8 59 8 4
Mean Materials Share of Sales 0.58 0.58 0.55 0.58 0.57
Median Materials Share of Sales 0.61 0.61 0.60 0.61 0.61
Mean Intermediate Share of Sales 0.40 0.40 0.45 0.40 0.38
Median Intermediate Share of Sales 0.38 0.38 0.50 0.38 0.33

Notes: This table provides descriptive statistics of all the samples used in the paper.

Appendix F Estimation Details

F.1 Labor supply elasticity

We first formally describe the identification of γ in the presence of measurement error in wage
bills. To this end, suppose that wage bills in the data ËLit are related to wage bills in the model
ELit as follows:

logELit = log ËLit + eLit (F.1)

where eLit denotes an MA(k) measurement error given by eLit =
∑k
s=0 δ

L,suLi,t−s for some weights
δL,s and mean-zero shocks uLit that are iid across firms and time. In this case, equation (6.4)
becomes:

∆ logwimt = 1
1 + γ

∆ log ËLit + ∆ log âmt + 1
1 + γ

∆eLit (F.2)

In the absence of measurement error, the residual in equation (F.2) contains only worker-level
shocks (∆ log âmt), which are orthogonal to changes in firm wage bills under Assumption 6.5.
However, with measurement error in wage bills, the unobserved error term in equation (F.2)
contains a component that is potentially correlated with observed changes in the wage bill.
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To address this, note that ∆eLit depends only on measurement error shocks uLit in periods
{t− k − 1, · · · , t}. Hence, as long as uLit is orthogonal to all lagged innovations in the Markov
processes for time-varying firm primitives, lagged changes in wage bills log ∆ËLis for any s <

t− k − 1 are valid instruments for log ∆ËLit in identifying γ from equation (F.2). The relevance
of these instruments requires serial correlation in ∆ËLit to be non-zero with at least k + 2 lags,
which is also consistent with the Markov processes for firm productivities specified in Assumption
6.4.

For robustness, we also follow Lamadon et al. (2022) and estimate γ using a difference-in-
difference approach (DiD). For this, we follow a three step procedure. First, for each year,
we order firms according to log changes of the wage bill of the firm. Second, we identify the
treatment when firms have log changes of their wage bill above the median of log changes of
wage bill across firms each year. Finally, we plot difference in wage bill of treated and control
firms both at each year (t = 0) and years before (t < 0) and after (t > 0). We perform this step
for each calendar year and weight firms by the number of workers.

Results are presented Figure A.I. By construction, the treatment and control groups differ
in the wage bill from period t = −1 to t = 0. On average, firms in the treatment group face an
increase of 21 log points growth in their wage bill relative to firms in the control group. The
effect of the treatment appears to be permanent in levels up to 5 years after the treatment.
Figure A.I also shows the effect on the average earnings of firms. On average, firms in the
treatment group face an increase of 3.25 log points of their average earnings relative to firms in
the control group. Once again, the effect of the treatment appears to be permanent in levels up to
5 years after the treatment. Finally, firms in the treatment and control group do not experience
statistically significant differences up to 5 years before the treatment, for both the wage bill
and the average earnings. Through the lens of a DiD design, these results imply a passthrough
rate of firms shocks of around 0.155 (= 0.0325/0.21). From equation (6.3), this implies a labor
supply elasticity of γ̂ = 5.5, which is the same as our preferred estimate documented in the main
text.
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Figure A.I: Difference-in-difference Estimate of passthrough of Firm Shocks to Worker Earnings
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Notes: This figure presents the results from the Lamadon et al. (2022) difference-in-difference approach
to estimating passthrough of wage bill shocks to worker wages.

F.2 Worker and firm wage effects

To estimate the Bonhomme et al. (2019) decomposition of worker earnings from equation (6.5),
we first cluster firms using a k-means clustering algorithm intoK = 10 groups. We use a weighted
K-means algorithm with 100 randomly generated starting values. We use firms’ empirical dis-
tributions of log earnings on a grid of 10 percentiles of the overall log-earnings distribution.
Second, we use these K groups as the relevant firm identifier in the Bonhomme et al. (2019) esti-
mation approach. This procedure yields estimates of the firm fixed effect W̄i and the worker-firm
production complementarity θi for every firm i ∈ ΩF , as well as the permanent and transient
components of ability for every worker.

To assess robustness of our results to the number of clusters used, Table A.III documents
the share of variance of wages accounted for by the firm fixed effect W̄i. We implement this for
the basic model of Abowd et al. (1999) and also the basic version of the model of Bonhomme
et al. (2019) with only firm and worker fixed effects for different levels of K (thus, excluding
interactions and time-varying firm effects). First, one can see that the basic version of the
model of Bonhomme et al. (2019) implies a role for the firm fixed effect that is significantly
lower than the model of Abowd et al. (1999), consistent with previous literature that has found
that addressing the limited mobility bias inherent in estimates of Abowd et al. (1999) decreases
the share of the variance accounted for by the firm fixed effect (Bonhomme et al., 2020). Second,
as one increases K from 10 to 50, the share of the variance of wages accounted for the firm fixed
effects increases only 0.7 percentage points from 7.8 to 8.5%. At least with this piece of evidence,
this implies that the limited mobility bias does not represent a substantially bigger problem for
K = 50 than what it represents for K = 10.
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Table A.III: Share of Log Earnings Variance Accounted for by the Firm Fixed Effect

Estimation Strategy Number of Clusters Firm Fixed EffectShare

AKM 12.3
BLM 10 7.8
BLM 50 8.5

Notes: This table documents the share of the log of earnings variance accounted for by the firm fixed
effect. It is documented for the estimation strategy of Abowd et al. (1999) (row 1), for the estimation
strategy of Bonhomme et al. (2019) with K = 10 clusters (row 2) and the estimation strategy of Bonhomme
et al. (2019) with K = 50 clusters (row 3).

To further assess whether clustering with K = 10 or K = 50 makes a difference, we docu-
ment how much clusters account for the variance of firm-level characteristics. Tables A.IV-A.V
document the share of the variance of variables accounted for by within-cluster variation. Table
A.IV shows the within-cluster share of variance of variables in levels, whereas Table A.V shows
the same evidence for variables in ratios. Although there is substantial heterogeneity across
firms that the clustering procedure of Bonhomme et al. (2019) does not account for, this result
does not vary significantly if one uses K = 10 or K = 50 clusters.

Table A.IV: Within Clusters Share of Total Variance of Variables in Levels

Number Clusters Total Sales Materials Wage Bill Employment Number of Buyers Number of Suppliers Firm-to-Firm Sales

10 79 90 67 88 90 85 95
50 74 86 62 84 88 81 92

Notes: This table documents the share of the variance of each variable accounted for by the within cluster
variance. It is implemented for K = 10 and K = 50 and for variables in levels.

Table A.V: Within Clusters Share of Total Variance of Variables in Ratios

Number Clusters Wage Bill/Sales Materials/Sales Materials/Wage Bill Sales/Employment Wage Bill/Employment Materials/Employment

10 96 97 95 92 26 99
50 95 97 95 90 21 98

Notes: This table documents the share of the variance of each variable accounted for by the within cluster
variance. It is implemented for K = 10 and K = 50 and for variables in ratios.

F.3 Amenities

To estimate firm amenities, we begin with the labor supply equation (3.2). It will be useful for
the exposition to write this explicitly in terms of permanent and transient worker abilities:

Lit (ā, â)
L (ā, â) = [gi (ā)wit (ā, â)]γ∑

j∈ΩF [gj (ā)wjt (ā, â)]γ (F.3)
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where note that under Assumption 6.1, amenity values only vary across workers in relation to
permanent ability ā. Next, consider the equilibrium wage equation (3.16). Under assumption
6.1, we can write this as:

wit (ā, â) = ηāθi âWit (F.4)

The average wage paid by firm i to workers with permanent ability ā is hence:

w̄it (ā) = ηāθiE [â]Wit (F.5)

where E [â] denotes the average value of transient ability. Under Assumptions 6.1 and 6.5, this
mean does not depend on permanent ability of the worker or the identity of the firm. Combining
(F.4) and (F.5), we then have:

wit (ā, â) = w̄it (ā) â

E [â] (F.6)

Substituting this into (F.3) and using the decomposition of amenities in equation (6.11), we
obtain:

Lit (ā, â)
L (ā, â) =

[
g̃iḡk(i) (ā) āθk(i)Wit

]γ
∑
j

[
g̃j ḡk(j) (ā) āθk(j)Wjt

]γ (F.7)

Now notice that the employment share of workers of ability {ā, â} varies across firms only in
relation to permanent ability ā. This is a direct implication of Assumption 6.1, which implies
that workers do not sort to firms based on transient ability â. Therefore, the share of workers
of permanent ability ā employed by firm i is also given by equation (F.7). Summing this (F.7)
across all firms within cluster k, we can similarly express the share of workers of permanent
ability ā that are employed by firms in cluster k as:

Λkt (ā) =
∑
i∈k

[
g̃iḡk (ā) āθkWit

]γ
∑
j

[
g̃j ḡk(j) (ā) āθk(j)Wjt

]γ (F.8)

Next, note that for each value of permanent ability ā, equilibrium outcomes are invariant
to scaling gi (ā) by a constant for all firms i. Therefore, we are allowed to choose one nor-
malization of amenity values for each permanent worker ability type ā. For this, we choose∑
j

[
g̃j ḡk(j) (ā) āθk(j)Wjt

]γ
= 1. Furthermore, mean differences in amenity values can be loaded

onto either g̃i or ḡk(i) (ā). Hence, we are allowed to choose one normalization of the values for
g̃i for each firm cluster. For this, we choose

∑
i∈k [g̃iWit]γ = 1. With these normalizations,

equations (6.12) and (6.13) follow immediately.
Our results are summarized in Figure A.III, which shows average log amenity values by
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deciles of firm sales and worker permanent ability. Evidently, larger firms tend to offer lower
amenity values to workers of each ability type, with this relationship being more pronounced
for workers of higher permanent ability. Furthermore, as shown in Figure A.II, our estimates
of amenities and production complementarities imply positive sorting of workers to firms. Note
that by construction, the model provides an exact fit to the cluster-level employment shares
shown in the figure.

Figure A.II: Employment shares by firm earnings cluster and worker ability

Notes: Firm earnings clusters are sorted in ascending order of the time-invariant firm earnings effect,
W̄k(i).
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Figure A.III: Distribution of Amenities

Notes: This figure shows the joint distribution of amenity estimates log gi (ā) by deciles of firm sales
and worker permanent ability. Values are normalized for presentation purposes such that: (i) average log
amenities within the smallest decile of firm sales are equal across deciles of worker permanent ability, and
(ii) the smallest value of mean log amenities across sales-ability quantiles is equal to zero.

F.4 Firm relationship capability and relationship-specific productivity

To estimate equation (6.7), firms must have multiple connections. To identify seller fixed effects,
each seller needs to have at least two buyers. Similarly, to identify buyer fixed effects, each
buyer needs to have at least two sellers. In the data, some firms have either one supplier or
one seller. Hence, we implement the aforementioned restriction using an iterative approach
known as “avalanching”. Specifically, we first drop firms with one supplier or seller. Doing
this may result in additional firms that have one supplier or seller, hence in the next step, we
drop these firms as well. We continue this process until firms are no longer dropped from the
sample. The algorithm takes three iterations to converge in practice and reduces the sample
size of firm-to-firm linkages from a total of 32 million transactions to 31.7 million transactions,
that is, a reduction of 1% of transactions. Hence, the avalanching algorithm has little impact
on our sample size. Bernard et al. (2022) report that avalanching also eliminates around 1% of
firm-to-firm links in the production network for Belgium.
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F.5 Product substitution elasticity

To derive equation (6.9), first note that the share of firm profits in total sales can be expressed
as:

πit
Rit

= 1
σ

1 + (σ − 1) (1− η)

1 + η
EMit
ELit

 (F.9)

Solving for σ and using the fact that πit = Rit − ELit − EMit gives equation (6.9). Hence, we
estimate σ using the sample average of the right-hand side of (6.9), which is observable given
our estimate of the labor supply elasticity γ and data on firm sales, labor costs, and material
costs.

F.6 Labor-materials substitution elasticity and labor productivity

For estimation of ε using equation (6.10), we follow the approach in Doraszelski and Jaumandreu
(2018). To control for Fω (ωi,t−1), we first rearrange the t−1 version of equation (6.10) to write:

logωi,t−1 = 1
ε− 1 log

[1
η

(1− λ
λ

)]
− 1
ε− 1 log

EMi,t−1
ELi,t−1

+ log Wi,t−1
Zi,t−1

(F.10)

≡ G
(

log
EMi,t−1
ELi,t−1

, log Wi,t−1
Zi,t−1

)
(F.11)

Substituting this into (6.10), we obtain:

log E
M
it

ELit
= log

[1
η

(1− λ
λ

)]
+ (ε− 1) log Wit

Zit
+H

(
log

EMi,t−1
ELi,t−1

, log Wi,t−1
Zi,t−1

)
(F.12)

+ (1− ε) ξωit (F.13)

where H (·, ·) ≡ (1− ε)Fω [G (·, ·)]. Hence, we control for the term H using polynomials in
lagged relative expenditures log ẼMi,t−1

ẼLi,t−1
and lagged relative input prices log W̃i,t−1

Zi,t−1
. In addition,

we follow Doraszelski and Jaumandreu (2018) and instrument for relative input prices at date t
using polynomials in one-period lags of logged input expenditures and factor prices.

F.7 Firm TFP

We choose values for TFP Tit to fit the estimated firm-level wages Wit as specified in equa-
tion (6.14). We do this using an iterative numerical procedure that is similar in spirit to the
equilibrium solution algorithm described in section H:

1. Compute
{
φ̄it
}
i∈ΩF

from (3.20), using (3.4), (3.3), and the estimated firm-level wages
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{Wit}i∈ΩF .

2. Guess Et.

(a) Guess {Dit, Zit}i∈ΩF .

(b) Compute the values of {Tit}i∈ΩF implied by equation (H.1), given the estimated
firm-level wages {Wit}i∈ΩF .

(c) Compute new guesses of {Dit}i∈ΩF from (3.10) and {Zit}i∈ΩF from (3.12).

(d) Iterate on steps (a)-(c) until convergence.

3. Compute a new guess of Et from (3.23), using (3.2), (3.14), and (3.16).

4. Iterate on steps 1-2 until convergence.

Appendix G Export Demand and Import Cost Shocks

To construct export demand shocks, suppose that Chilean exporter i sells to a set of export
markets ΩM,X

it , with each market comprised of a representative customer with exogenous buyer
effect ∆F

mt. Then, we can write the firm’s demand as:

Dit = Et +
∑

j∈ΩC,Dit

∆jtψjit +
∑

m∈ΩM,Xit

∆F
mtψ

F
mit (G.1)

where ΩC,D
it now denotes the set of firm i’s domestic customers and ψFmit accounts for firm

heterogeneity in export demand from each export market m. Then, differentiating (G.1) with
respect to

{
∆F
mt

}
m∈ΩM,Xit

allows us to write:

D̂it = ssalesXit

∑
m∈ΩM,Xit

sXmit∆̂F
mt (G.2)

Now let EImt denote the total value of imports by market m from all countries excluding Chile
in year t. Under the assumption that foreign customers have the same CES preferences as
consumers in Chile, imports by market m are given by:

logEImt = (1− σ) logZFmt + log ∆F
mt (G.3)

where ZFmt is the CES price index that market m faces for its non-Chilean imports. We further
suppose that these price indices can be decomposed as ZFmt = τmz

F
h(m)t, where τm captures

static differences in import costs across markets, while zFh(m)t captures time-varying differences
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in import costs that are equal for all importing countries within the product category h (m) to
which market m belongs. Hence, taking first differences of equation (G.3), we obtain:

ÊImt = δh(m)t + ∆̂F
mt (G.4)

where δh(m)t ≡ (1− σ) ẑh(m)t is a product-year fixed effect that is orthogonal to ∆̂F
mt by as-

sumption. Now we assume that the expectation of ∆̂F
mt across countries is zero, so that there

is no aggregate growth in demand within a product category. The log change in market m’s
buyer effect is then equal to the log change in EImt relative to the corresponding change in world
imports of product category h (m). Given this, the first expression in (5.2) follows immediately
from (G.2).

Similarly, to construct import cost shocks, suppose that Chilean importer i purchases im-
ported materials from a set of markets ΩM,I

it , with each market comprised of a representative
supplier that charges price pXmt. Then, we can write the firm’s material input cost as:

Zit =

 ∑
s∈ΩS,Dit

(pst)1−σ +
∑

m∈ΩM,Iit

(
pXmt

)1−σ


1

1−σ

(G.5)

Differentiating this with respect to
{
pXmt

}
m∈ΩM,Iit

and replacing contemporaneous import shares
with initial import shares as before then gives the second expression in (5.2).

Appendix H Solution Algorithm

We solve numerically for an equilibrium of the model using the following solution algorithm.

1. Guess Et.

(a) Guess
{

∆it,Φit, φ̄it
}
i∈ΩF

.

(b) Compute {Dit}i∈ΩF from (3.10) and {Zit}i∈ΩF from (3.12).

(c) Solve for {Wit, νit, Xit}i∈ΩF from (3.15), (3.17), and (3.18).

(d) Compute new guesses of {∆it}i∈ΩF from (3.11), {Φit}i∈ΩF from (3.13), and
{
φ̄it
}
i∈ΩF

from (3.20).

(e) Iterate on steps (a)-(d) until convergence.

2. Compute a new guess of Et from (3.23), using (3.2), (3.14), and (3.16).

3. Iterate on steps 1-2 until convergence.
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Note that step 1(c) involves numerical solution of a system in {Wit, νit, Xit}. This system can
be reduced to one in firm-level wages alone:

W γ+ε
it

[
λ (Wit/ωit)1−ε + (1− λ)Z1−ε

it

]σ−ε
1−ε φ̄it = λ

µσηγ
DitT

σ−1
it ωε−1

it (H.1)

which has a unique solution for Wit given
{
Dit, Zit, φ̄it

}
. Solutions for νit and Xit are then easy

to recover given Wit.

Appendix I A Shapley Value Approach for Counterfactuals

In the counterfactual exercises studied in section 7, we deal with interdependencies between
sources of variation in shaping inequality outcomes using the following approach. Let Θ denote
the estimated vector of values for all model primitives and let X (Θ) denote the value of some
equilibrium outcome X under this parameter vector. Now, define some N subsets of the pa-
rameter vector {θn}Nn=1 such that Θ = ∪Nn=1θn and denote N ≡ {1, · · · , N}. We are interested
in computing values of outcome X under known counterfactual values θ̂n for each subset of the
parameter vector. Therefore, let Θ̂S ≡

{
∪n∈S θ̂n

}
∪{∪n/∈Sθn} denote the parameter vector under

counterfactual values for parameter subsets in S for some S ⊆ N . We define the Shapley value
Xn for parameter subset n in relation to outcome X as follows:

Xn =
∑

S⊆N\{n}

|S|! (N !− |S|!− 1)
N !

[
X
(
Θ̂S∪{n}

)
−X

(
Θ̂S

)]
(I.1)

For example, suppose that X is the variance of log earnings across all workers, θn is the estimated
vector of firm TFPs, and θ̂n is a counterfactual vector of firm TFPs with each value equal to the
mean of θn across firms. Then, we measure the contribution of TFP heterogeneity to earnings
variance as − Xn

X(Θ) . By construction of the Shapley value, these measures sum to one across all
n ∈ N .
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with imperfect competition. Working paper.

Chan, M., S. Salgado, and M. Xu (2021). Heterogeneous passthrough from tfp to wages. Working

paper.

Demir, B., A. C. Fieler, D. Y. Xu, and K. K. Yang (2018). O-Ring Production Network. Working

paper.

Dhyne, E., A. K. Kikkawa, M. Mogstad, and F. Tintelnot (2021). Trade and domestic production

networks. Review of Economic Studies 88(2), 643–668.

Dhyne, E., K. Kikkawa, T. Komatsu, M. Mogstad, and F. Tintelnot (2022). How do firms grow

in response to demand shocks? a network perspective. Working paper.

Doraszelski, U. and J. Jaumandreu (2018). Measuring the bias of technological change. Journal

of Political Economy 126(3), 1027–1084.

Dunne, T., L. Foster, J. Haltiwanger, and K. R. Troske (2004). Wage and productivity dis-

persion in united states manufacturing: The role of computer investment. Journal of Labor

Economics 22(2), 397–429.

Faggio, G., K. Salvanes, and J. V. Reenen (2010). The evolution of inequality in productivity

and wages: Panel data evidence. Industrial and Corporate Change 19(6), 1919–1951.

Goldschmidt, D. and J. F. Schmieder (2017). The rise of domestic outsourcing and the evolution

of the german wage structure. Quarterly Journal of Economics 132(3), 1165–1217.

62



Gouin-Bonenfant, E. (2022). Productivity dispersion, between-firm competition, and the labor

share. Working paper.

Guiso, L., L. Pistaferri, and F. Schivardi (2005). Insurance within the firm. Journal of Political

Economy 113(5), 1054–1087.

Huneeus, F. (2019). Production Network Dynamics and the Propagation of Shocks. Working

paper.

Jackson, M. O. and Z. Kanik (2020). How automation that substitutes for labor affects produc-

tion networks, growth, and income inequality. Working paper.

Jarosch, G., J. Nimczik, and I. Sorkin (2019). Granular search, market structure, and wages.

Working paper.

Karabarbounis, L. and B. Neiman (2014). The global decline of the labor share. Quarterly

Journal of Economics 129(1), 61–103.

Kehrig, M. and N. Vincent (2021). The micro-level anatomy of the labor share decline. Quarterly

Journal of Economics 136(2), 1031–1087.

Kline, P., N. Petkova, H. Williams, and O. Zidar (2019). Who profits from patents? rent sharing

at innovative firms. Quarterly Journal of Economics 134(3), 1343–1404.

Kroft, K., Y. Luo, M. Mogstad, and B. Setzler (2022). Imperfect competition and rents in labor

and product markets: The case of the construction industry. Working paper.

Lamadon, T., M. Mogstad, and B. Setzler (2022). Imperfect Competition, Compensating Dif-

ferentials, and Rent Sharing in the U.S. Labor Market. American Economic Review 112(1),

169–212.

Lim, K. (2019). Production Networks and the Business Cycle. Working paper.

Manning, A. (2003). Monopsony in motion: Imperfect competition in labor markets. Princeton

University Press.

63



Oberfield, E. and D. Raval (2019). Micro Data and Macro Technology. Working paper.

Oi, W. and T. Idson (1999). Firm size and wages. In O. Ashenfelter and D. Card (Eds.),

Handbook of Labor Economics, Vol. 3, pp. 2165–2214. Amsterdam: Elsevier.

Olley, G. S. and A. Pakes (1996). The dynamics of productivity in the telecommunications

equipment industry. Econometrica 64(6), 1263–1297.

Postel-Vinay, F. and J.-M. Robin (2002). Equilibrium wage dispersion with worker and employer

heterogeneity. Econometrica 70(6), 2295–2350.

Rosen, S. (1986). The theory of equalizing differences. Handbook of Labor Economics 1, 641–692.

Song, J., D. J. Price, N. Bloom, and T. von Watcher (2019). Firming up inequality. Quarterly

Journal of Economics 134(1), 1–50.

Sorkin, I. (2018). Ranking firms using revealed preference. Quarterly Journal of

Economics 133(3), 1331–1393.

Taber, C. and R. Vejlin (2018). Estimation of a roy/search/compensating differentials model of

the labor market. Working paper.

Van Reenen, J. (1996). The creation and capture of rents: Wages and innovation in a panel of

u.k. companies. Quarterly Journal of Economics 111(1), 195–226.

64



Figure I: Earnings 90-10 percentile ratio vs. Gini coefficient, 2005-2010 average

Notes: Statistics for Chile are obtained from the OECD Income Inequality database (red circle) and
from an administrative employer-employee dataset described in section 6.1 (red square). Data for all other
countries are obtained from the OECD Income Inequality database.
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Figure II: Plots of sales and network access against firm earnings effects

Notes: All plots are generated using the bin scatter program provided by Michael Stepner:
https://michaelstepner.com/software. The firm earnings effect is measured as fit from the worker
earnings decomposition in equation (2.1). The network access measures Dnet and Snet are as defined
in (2.4). All variables are parsed of industry-municipality-year means.
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Figure III: Plots of sales and network access against various labor share measures

Notes: All plots are generated using the bin scatter program provided by Michael Stepner:
https://michaelstepner.com/software. The firm earnings effect is measured as fit from the worker
earnings decomposition in equation (2.1). The network access measures Dnet and Snet are as defined
in (2.4). All variables are parsed of industry-municipality-year means.
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Figure IV: Fit of the baseline equilibrium to key empirical moments

Notes: Each marker in the figure represents a firm group, with the size of each marker increasing in the
number of firms in the group. ρ indicates the correlation between model and data moments at the firm
group level, weighted by the number of firms in each group.
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Table I: Moments of the distributions of key labor market and production network variables

mean var. p10 p25 p50 p75 p90

(i) worker earnings 9.37 0.56 8.51 8.77 9.26 9.81 10.40

(ii) firm earnings effect 0.53 0.19 0.00 0.06 0.56 0.87 1.11

(iii) firm average wage 8.85 0.39 8.19 8.38 8.68 9.21 9.74

(iv) firm downstream access 4.99 4.20 2.50 3.47 4.78 6.26 7.73

(v) firm upstream access 4.90 3.28 2.67 3.73 4.88 5.96 7.07

(vi) firm labor share of cost 0.43 0.14 0.05 0.11 0.26 0.88 1.00

(vii) firm labor share of VA 0.53 0.32 0.09 0.17 0.33 0.61 1.28
Notes: Moments in row (i) are calculated at the worker level and all other moments are calculated at the
firm-level (unweighted). Variables in all rows except (vi) and (vii) are in logs.
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Table II: Reduced-form passthrough estimates

(1) (2) (3)
Wage Bill Employment Sales

A. demand shocks, αD 0.357 0.283 0.521
(0.128) (0.109) (0.127)

B. cost shocks, αZ -0.413 -0.466 -0.426
(0.127) (0.108) (0.126)

sector fixed effects yes yes yes
N 27,696 27,696 27,696

Notes: This table presents our estimates of the passthrough coefficients in equation
(5.3) for different outcome variables Ŷit. Each of the outcome variables in columns
(1)-(3) are measured in logs. Standard errors are shown in parentheses.
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Table III: Estimation of labor supply elasticity (γ)

∆ logwimt
(1) (2) (3)

∆ log ẼLit 0.155 0.177 0.268
(0.006) (0.007) (0.001)

γ 5.5 4.6 2.7

Strategy GMM GMM OLS
Instruments Accumulated Lags 5 3
First Stage F-Stat 2325 1426
Number of Observations 2,507,868 2,507,868 2,507,868

Notes: This table presents results from the passthrough regression based on equation (6.4). All GMM
strategies use different instruments of cubic polynomials of lags of wage bill and is implemented in two stages
with a robust weighting matrix used to compute standard errors. Column 1 (our preferred specification)
uses changes of wage bill lagged for 3, 4 and 5 periods as instruments. Column 2 uses changes of wage bill
lagged for 3 periods as instruments. Column 3 estimates the model with OLS, which ignores measurement
error on the wage bill. Standard errors are shown in parentheses.
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Table IV: Estimates of firm fixed effects and production complementarities

Cluster 1 2 3 4 5 6 7 8 9 10

log W̄k 0 0.25 0.61 0.89 1.06 1.24 1.50 1.69 1.80 1.92
θk 1 1.13 1.42 1.66 1.77 1.91 2.19 2.37 2.44 2.26

Notes: This table presents estimates of firm fixed effects log W̄k and production complementarities θk in
the earnings equation (6.5) by earnings cluster k using the movers sample. Clusters are sorted in ascending
order of log W̄k. Note that log W̄k and θk are normalized to zero and one respectively for firms in the first
earnings cluster.
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Table V: Estimation of labor-materials substitution elasticity, ε

logEM/EL

(1) (2) (3)

logW/Z 0.553 0.623
(0.058) (0.094)

log w̄/Z 0.052
(0.043)

ε 1.55 1.62 1.05

Model for Wage Component BLM AKM Average
Instruments {EMit−1, E

L
it−1} {EMit−1, E

L
it−1,Wit−1, Zit−1} {Wit−1, Zit−1}

Instrument Polynomial Quadratic Linear Quadratic
First Stage F-Stat 130 84 186
Hansen’s J Test 0.121 0.379 0.003
Number of Observations 44,967 44,967 44,967

Notes: This table presents estimates of equation (6.10) using the baseline firm-level dataset. Column
1, our preferred specification, is based on the specification selection criteria described in section 6.3.5.
Column 2 uses the AKM wage model to estimate the firm effect Wit while Column 3 uses the average
firm wage instead of Wit. All specifications are estimated using two-stage GMM with a robust weighting
matrix. Standard errors are shown in parentheses.
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Table VI: Decomposition of inequality outcomes

(a) variance, log firm earnings effect (baseline = 0.18)

supplier network: 23.6% customer network: 6.6% firm productivities: 40.7%

prod. complementarities: 26.7% firm amenities: 13.3% worker abilities: -10.8%

(b) variance, log worker earnings (baseline = 0.64)

supplier network: 9.7% customer network: 3.2% firm productivities: 16.6%

prod. complementarities: 1.7% firm amenities: 1.1% worker abilities: 67.8%

(c) covariance, log firm earnings effect and log sales (baseline = 0.57)

supplier network: 35.3% customer network: 15.8% firm productivities: 44.8%

prod. complementarities: 8.0% firm amenities: 1.7% worker abilities: -5.5%

(d) variance, labor share of value-added (baseline = 0.02)

supplier network: 21.9% customer network: 4.2% firm productivities: 76.2%

prod. complementarities: -1.7% firm amenities: -1.1% worker abilities: 0.5%

(e) covariance, labor share of value-added and log sales (baseline = -0.09)

supplier network: -3.8% customer network: 71.9% firm productivities: 30.9%

prod. complementarities: 4.5% firm amenities: 0.2% worker abilities: -3.8%

Notes: Each panel shows results for a different inequality outcome, with the value of the outcome in
the baseline equilibrium reported in the panel headers. The variance in (a) and covariance in (c) are
weighted by firm employment, while the variance in (d) and covariance in (e) are weighted by firm value-
added. In each panel, the values reported are the shares of each inequality outcome accounted for by the
corresponding source of variation.
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Table VII: Decomposition of inequality outcomes under Cobb-Douglas technology

(a) variance, log firm earnings effect (baseline = 0.18)

supplier network: 26.7% customer network: 24.4% firm productivities: 14.7%

prod. complementarities: 32.4% firm amenities: 16.2% worker abilities: -14.4%

(b) variance, log worker earnings (baseline = 0.64)

supplier network: 10.7% customer network: 10.4% firm productivities: 6.9%

prod. complementarities: 2.4% firm amenities: 1.9% worker abilities: 67.8%

(c) covariance, log firm earnings effect and log sales (baseline = 0.63)

supplier network: 39.3% customer network: 35.9% firm productivities: 17.1%

prod. complementarities: 13.2% firm amenities: 2.3% worker abilities: -7.7%

Notes: This table shows the same results as in panels (a)-(c) of Table VI, but with the elasticity of
substitution between labor and materials set to ε = 1 instead of our estimated value of ε = 1.5 and with
all other model primitives re-estimated as described in section 7.4.
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