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1. Introduction 

 Contract and incentive theory has provided powerful insight into the optimal design of 

compensation contracts.  Chief among them, for instance, is the idea that contracts should provide 

higher compensation when output suggests that the agent was more likely to have engaged in 

desired behavior.  In particular, Holmstrom’s (1992) Informativeness Principle states that any 

measure of performance that reveals information about the agent’s effort should be included in the 

compensation contract.  A prime example is the use of Relative Performance Evaluation (RPE), in 

which the agent’s performance is measured relative to an average of her peers in order to filter out 

common sources of noise.  In other words, optimal contracts should not “pay for luck” due to 

aggregate shocks, but only pay for indicators of individual performance. Yet despite this clear 

benefit, such performance benchmarking is observed much less frequently than theory would 

predict.1   

 But while principals may care about relative performance, agents may also care about their 

relative wage.  In this paper, we consider such a setting and explore its consequences. Specifically, 

we suppose agents have a “keeping up with the Joneses” component to their preferences, and 

compare their wage to a weighted average of the wages of their peers.  We allow for a general 

network of peer relationships, where the strength of comparison may vary both within and across 

firms based on proximity, salience, or other factors. We fully characterize optimal contracts in this 

setting, and show that many standard contracting results may be overturned – contracts may reward 

agents for peer performance, and, despite seemingly weaker incentives, equilibrium effort may 

exceed the first best.  

 In particular, we show that when peer effects are strong enough, compensation 

benchmarking undoes performance benchmarking, leading to wage contracts that positively load 

on peer (or team) output. But although these contracts appear inefficient, we show that this effect 

on its own does not diminish incentives nor welfare. In fact, despite what appear to be “lower 

power” incentives, when there are multiple principals, or if contracts are privately negotiated, a 

 
1 For empirical evidence of “pay for luck” in the context of CEO compensation, see e.g. Murphy (1985), Coughlan 
and Schmidt (1985), Antle and Smith (1986), Gibbons and Murphy (1990), Janakiraman, Lambert, and Larker (1992), 
Garen (1994), Aggarwal and Samwick (1999a,b), Murphy (1999), Frydman and Jenter (2010), and Jenter and Kanaan 
(2014). 
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“rat race” ensues that leads to higher wages and effort that may even exceed the first best.  And 

although rat race effects increase productivity, wages rise even more, causing a decline in profits. 

Measures that increase external wage transparency (such as public disclosure requirements) are 

likely to exacerbate these rat race effects. Finally, if peer-effects are asymmetric, principals can 

exploit the asymmetry by reallocating effort to less visible agents.  Though production is 

inefficient, incentive costs fall and, somewhat surprisingly, profits and welfare rise relative to 

when agents’ preferences lack peer-effects.    

 Our model includes many agents who take hidden effort to produce output that is subject 

to both common and idiosyncratic shocks.  Agents receive a compensation contract which specifies 

their wage as a function of their own output as well as the output of others. Agents are risk averse 

and have preferences that are increasing in both their own wage as well as the difference between 

their own wage and a weighted-average benchmark of their peers’ wages.  We allow these weights 

to depend on a general peer-network structure so that, for example, agents may put more weight 

on close colleagues versus peers elsewhere in the firm (or in other firms). We then consider the 

sensitivity of the optimal contract to both the strength of agents’ relative wage concerns, as well 

as the peer-network structure, and evaluate implications for welfare. 

 We begin in Section 2 by analyzing the RPE benchmark in a multi-agent model absent any 

peer effects, and show that as expected, compensation in the optimal contract is based on a measure 

of the agent’s relative performance; that is, compensation is positively related to the agent’s own 

output and negatively related to the output of others, in relative proportions that depend on the 

correlation between agents’ output.  A key prediction of RPE is therefore that the incentive 

component of wages should be negatively correlated.  Additional standard predictions are that 

equilibrium effort is reduced relative to the first best (in order to limit agents’ risk) and that the 

optimal contract for each agent is independent of the contracts of others (and therefore, 

independent of how they are determined, whether they are disclosed or not, etc.).    

 In Section 3, we consider optimal contracts with peer network effects.  Because agents care 

about their compensation relative to their peers, the incentives for each agent will depend on both 

their own contract and the contracts offered to all other agents.  Principals independently choose 

contracts for agents on their teams, which are composed of one or many agents.  We assume (for 
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now) that agents see the full set of contracts offered by their principal to their team before deciding 

to accept or reject their own contract.   

 As an initial baseline, we first consider a setting in which peer weights are symmetric 

(determined, for example, by a distance metric) and there is a single principal.  We then 

demonstrate an important welfare equivalence result: the optimal contracts for a single principal 

will fully hedge peer effects and lead to the same productivity, profitability, and welfare as the 

RPE benchmark.  On the other hand, observed contracts will have markedly different sensitivities 

than those predicted by RPE. In particular, to limit relative wage risk, contracts may positively 

load on peer output (contradicting RPE). This result therefore implies that empirically observed 

deviations from RPE need not be inefficient.   

 Next, we consider the case with multiple principles independently setting contracts for 

distinct teams.  In this case, there is an important “rat race” externality across teams, as principals 

do not account for the impact of raising the wage for their team on the welfare of agents on other 

teams.  As a result, in equilibrium average wages and productivity are higher, but profitability and 

welfare are lower, than in the RPE or single principal benchmark.  We show that the rat race 

inefficiency increases with the number of principals, the strength of peer effects, and the 

importance of external (non-teammate) peers.  In fact, the rat race effect can be so extreme that 

equilibrium effort exceeds the first best, in stark contrast to standard agency models. 

 We then explore in greater detail the consequences of peer effects for wage correlations.  

We show that wage correlations are the same in both the single and multi-principal case and are 

therefore solely related to the peer effects and independent of welfare.  We show that wage 

sensitivity to peer-performance increases monotonically with the strength of peer-effects, leading 

to positive wage correlation, consistent with empirical evidence on wage compression within 

firms.2 We characterize specific cases, and show that wage contracts load more positively on 

“nearby” versus more distant peers.  Thus, for example, if agents care more about peers within 

 
2 For example, Silva (2016) and Gartenburg and Wulf (2016) document wage convergence in multidivisional firms, 
which is heightened by geographic or social proximity. Shue (2013) shows similar wage convergence across 
executives who were former classmates. While inequity aversion is a possible explanation for wage compression (see 
Englmaier and Wambach (2010) and Koszegi (2014)), our analysis demonstrates that peer effects are sufficient.  



5 
 
 

their own firm or team, we find that optimal wage contracts will always have a positive exposure 

to the relative performance of their team.3  

 In Section 4 we allow for peer relationships to be asymmetric.  In that case, some agents 

may be “more visible” than others in the sense that their wage is more salient to their peers.  In 

that case, the principal can exploit this asymmetry and use the departure from RPE to increase 

profits.  Specifically, it is optimal to reallocate effort, and therefore compensation, to less visible 

agents. Although this reallocation is technologically inefficient, it lowers the principal’s expected 

cost of providing incentives and thereby overall output and profits. 

 In Section 5 we consider the consequences of alternative disclosure environments.  

Importantly, in the RPE framework wage and contract disclosure has no effect.  Here, on the other 

hand, disclosure interacts with peer effects.  For example, we show that if the principal can 

privately negotiate individual wage contracts, the ability to do so exacerbates the rat race effect, 

raising equilibrium wages and lowering profits.  Indeed, a single principal that cannot commit not 

to renegotiate may have worse outcomes than would occur if all contracts were negotiated by 

independent principals. 

 We also consider the effect of greater wage transparency across teams or firms.  Wage 

transparency is likely to make peer comparisons more salient, and thereby exacerbate the rat race 

externalities across teams; as a result, we expect average wages to rise and their correlation to 

increase.  We also show that when incentive contracts are disclosed ex ante, there is an additional 

incentive to increase the contract loading on external peers, and equilibrium effort is distorted 

downward (and can be below second best). 

1.1. Related Literature 

 The key premise of our paper is that some agents have Keeping up with the Joneses (KUJ)-

type preferences in which they care about their relative wage with respect to their peers. Our 

objective is to understand implications for contracting of such preferences. Evidence supporting 

the presence of KUJ / relative wage-based preferences has accumulated from multiple disciplines 

 
3 Ibert, Kaniel, Van Niuwerburgh, and Vestman (2018) find that fund managers elasticity of pay to fund family 
revenue, excluding revenue managed by the given manager, is comparable to that of manager revenue. 
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and research designs. Early evidence was derived mostly from survey questions regarding 

happiness and satisfaction (for example: Luttmer 2005, Ferrer-i-Carbonell 2005).4 More recently, 

researchers have utilized interesting natural experiments as well as FMRI evidence to further 

bolster support for the presence of such preferences. Kuhn et.al. (2011)  utilize the Dutch Postcode 

Lottery as a natural-experimental. They show that while the majority of BMW winners do not own 

a BMW six months after the lottery, having an immediate neighbor win the lottery raises the 

probability that a household will buy a car in the next six months by close to 7 percentage points. 

Card et.al. (2012) provide field-based confirmation of relative pay comparisons by randomized 

manipulation of revelation of information on coworkers’ salaries.5 Fliessbach et.al. (2007), using 

two adjacent FMRI scanners, provide neuro-physiological foundations of relative comparison by 

showing that variation in a subject’s relative payment affects blood oxygenation level–dependent 

responses in the ventral striatum, a brain region known to be involved in processing of rewards. In 

a similar setting, Dohem et. al. (2011) find effects of own and others’ income on activation in the 

ventral striatum are equal and opposite. 

 In providing evidence for relative wage preferences the literature has considered a variety 

of different peer groups: co-workers (Clark and Oswald (1996)); neighbors (Luttmer (2005), and 

Kuhn et.al. (2011)); household members (Clark (1996)); siblings (Neumark and Postlewaite 

(1998)); caste members in India (Carlsson, Gupta, and Johansson-Stenman (2009)); past MBA 

classmates (Shu (2013)); division managers within the same firm (Duchin, Goldberg, and Sosyura 

(2014)). 

 More recently, Bouwman (2013) finds that CEO pay is strongly correlated with that of 

geographically-close CEOs. After carefully controlling for a host of potentially confounding 

effects, she concludes that KUJ preferences is the most plausible explanation.6 Two result in 

 
4 See Heffetz and Frank (2011) for a review. 
5 Following a court decision on California’s “right to know” law, the Sacramento Bee newspaper established a website 
that made it possible to search for the salary of any state employee. After the sites launch, the researchers contacted a 
random subset of University of California employees informing them about it, and a few days later surveyed all 
campus employees about job satisfaction. 
6 Bouwman (2013) rules out three key competing hypothesis. First, that geography may introduce commonalities in 
the performance-relevant characteristics of CEOs that firms in a given area emphasize in their selection of CEOs.  
Second, that firms may follow “leading” firms in the vicinity in setting CEO pay. Third, local labor market competition 
for CEOs. 
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Bouwman (2013) are especially pertinent to our conceptual peer group framework. First, 

correlations are higher for locally connected CEOs, where connectedness is inferred from rolodex 

connections. Second, and more striking, CEO pay is related to the compensation of high flying 

sports stars in their areas, highlighting that peers need not be in the same profession.  Shue (2013) 

demonstrates wage convergence across executives who were former classmates, and shows the 

effect is stronger for section mates. Our modeling framework contributes to the literature by 

allowing for a flexible structure of peer preferences, with differential peer preference sensitivities 

for a given agent and across agents. These heterogeneous peer preference sensitivities implicitly 

aggregate a wide variety of factors differentially impacting the sensitivity to different agents: the 

size and complexity of firms they work for or manage, common background, geographical 

proximity, social interactions, person specific psychological traits etc. 

 While Keeping/Catching up with the Joneses and habit formation preferences have been 

used in asset pricing applications starting with Abel (1990), they have received much less attention 

in explaining behavior in the corporate finance domain. Ederer and Patacconi (2010) introduce 

status considerations into a tournament setting analyzing implications for the provision of 

incentives.  Goel and Thakor (2010) use envy-based preferences for managers to explain merger 

waves.7 Dur and Glazer (2008) consider the optimal contract, with contractible effort, for an 

employee that is envious of his employer. Goel and Thakor (2005) consider within firm capital 

allocation decisions of division managers where each manager derives direct utility from wages, 

and in addition envies both the wages of other managers and their capital allocation as well. Their 

analysis focuses on induced capital distortions, ignoring the moral hazard and contracting 

considerations which are the focus of our analysis.   

 The central theme of our analysis is to underscore contracting implications of KUJ 

preferences.  We contribute to the literature by showing that these preferences reverse central 

results from standard contract theory: Compensation can load positively rather than negatively on 

outputs of other agents; effort levels are too high rather than too low and can even exceed first 

 
7 While closely related, envy refers to a disutility from having a lower wage than one’s peer, whereas keeping up with 
the Joneses preferences also include a benefit from having a higher wage. 
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best;8 disclosure of contracts may reduce efficiency, instead of being neutral or better; and when 

peer effects are asymmetric, the principal’s profits can be higher than when agents have standard 

preferences that do not depend on peers.  

 There is extensive empirical literature that has for the most part rejected the RPE 

hypothesis that CEO compensation should depend on relative performance, and so be negatively 

related to the performance of peers. Most of the evidence documents a positive relation, in direct 

contrast to the standard RPE prediction.9 A few have noted that KUJ preferences can provide a 

resolution for these findings within the agency model, as these preferences lead to optimal 

contracts with a reduced magnitude of RPE and, when strong enough, even a positive dependence 

of pay on external performance measures (Fershtman, Hvide, and Weiss (2003), Itho (2004), 

Miglietta (2008), Bartling (2011), Liu and Sun (2016)). Bartling and von Siemens (2010) consider 

the impact of envy on contracts in a general moral hazard model when a principal hires two agents 

that are envious of each other. They argue that with risk-averse agents and without limited liability 

envy can only increase the costs of providing incentives. The scope of their analysis is limited by 

the fact that they do not derive explicit optimal contracts. We, on the other hand, show that under 

the optimal contract a principle that hires multiple agents can in fact attain at least the second best, 

implying no loss in efficiency. In fact, when the collective peer weight put on agents by others is 

heterogeneous, the principal’s profits are higher than when agents have standard preferences, 

implying increased efficiency. More generally, none of the above papers scale agents’ outside 

options to make appropriate welfare comparisons as preferences vary. In contrast, our analysis 

provides general conditions for efficiency as well as meaningful comparative statics with regard 

to the strength of relative wage concerns.   

 In addition to providing a more comprehensive welfare comparison, our analysis considers 

a market-wide equilibrium with multiple principals, employing potentially multiple agents, within 

a general network structure of potential peer relationships.  This setting allows us to additionally 

analyze contracting externalities across principals.  Finally, we investigate the impact of the 

 
8 The predicted link between peer effects and effort is consistent with evidence in Ghazala, A. and N. Iriberri (2010), 
which utilizes a natural experiment to show that adding to a students’ report cards their average grade over all subjects, 
as well as the class average over all subjects and students led to an increase of 5% in students’ grades. 
9 Examples include: Antle and Smith (1986), Barro and Barro (1990), Jensen and Murphy (1990), Janakiraman, 
Lambert and Lacker (1992), Hall and Liebman (1998), Joh (1999), Aggarwal and Samwick (1999a,b), Bertrand and 
Mullainathan (2001), and Garvey and Milbourn (2003).  
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disclosure environment, both inside the firm and across firms, on contracts and efficiency.  For 

example, we predict that compensation disclosure mandates will increase rat race incentives and 

raise wages, consistent with the findings in Park, Nelson, and Huson (2001), Perry, and Zenner 

(2001), Schmidt (2012), Gipper (2016) and Mas (2016). 

2. A Model of Peer-Contracting 

2.1. Peers and Preferences 

 We consider a setting with a set  of 2N = ≥  identical agents.  We make the standard 

assumption that the utility of each agent i  is increasing in his own wage, iw , and decreasing in his 

hidden choice of effort, ia .  We depart from the usual principal-agent framework, however, by 

assuming that agents also care about their wage relative to that of their peers.  We model this 

preference by assuming agent i  benchmarks his own wage against a weighted average of the wages 

of his peers,10  

  i ij j
j

w w−
∈

≡ µ∑


with 0ij jiµ = µ ≥ , 1iiµ < , and 1ij
j∈

µ =∑


. (1) 

The weights ijµ  capture peer network effects in which agents may care more about the wages of 

some peers versus others.  For now, we restrict the weights to be symmetric as we interpret them 

to be a measure of “closeness”; for example, the wages of peers in the same office / firm / industry 

may be more salient and thus more important.  For simplicity, we assume the set of peers is 

irreducible (i.e. for any pair ( , )i j  there is a sequence connecting them with positive weights).   

 We assume agent i  derives utility from his “relative wage” iv , which is increasing in his 

own wage and decreasing in the peer benchmark, 

  ( ) 1
1 1 1− −

δ δ     ≡ − =     − δ − δ − δ     
+ −i i i i ii w w w wwv  with [0,1)δ∈ .  (2) 

 
10 It is natural to assume 0iiµ =  so that the benchmark includes only the wages of others.  We allow 0iiµ >  for 

additional generality (see footnote 11) but restrict 1iiµ <  to ensure some weight is put on peers. 
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Here δ  captures the strength of agents’ relative wage concerns, with 0δ =  corresponding to the 

standard model without peer effects ( i iv w= ).11  Finally, to avoid wealth effects and for tractability, 

we assume agents have CARA utility ( ) exp( )i iu c c= − −λ , where ic  is the “adjusted consumption” 

level 

  ( )i i ic v a≡ −ψ , (3) 

and ψ  measures the cost of effort, which we assume for simplicity is quadratic: 21
2( )a kaψ = . 

 This specification of the agent’s utility incorporates several properties that are both natural 

and important given our goal of comparing welfare and contract design for different levels of 

relative wage concerns δ .  First, iv  is linear in wages so that changing δ  has no direct effect on 

the agent’s risk aversion (and therefore the magnitude of the agency friction). Second, the weights 

in iv  sum to one, so that peer effects do not alter the aggregate tradeoff between income and effort.  

Of course, because wage variation is necessary for incentive provision, agents with peer-dependent 

preferences experience additional disutility associated with the risk of their wage differentials, 

which will have important effects on optimal contracts.  

2.2. Production and Wages 

   The production technology has additive shocks, so that the output iq  of agent i  is equal 

to a known constant 0 0q >  plus effort plus noise:12 

  0i i iq q a≡ + +  . (4) 

 
11 Many of our results also apply if 0δ <  so that agents are altruistic, but we do not analyze that case here.  Note also 
that 0iiµ >  is equivalent to reducing the weight agent i  places on others to ( ) ( )ˆ 1 1i ii iiδ = µ − δµ−δ .  Thus, by 

adjusting iiµ  for each i  we can consider a setting in which agents differ in terms of the strength of their concern for 
peers. 
12 We can think of 0q  as corresponding to some component of output that is not subject to moral hazard. We assume 
it is large enough such that hiring an agent is strictly profitable. 
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The random shocks i  are joint normal with mean zero and variance 2σ , and have a pairwise 

correlation of [0,1)ρ∈ .13   

 Given the production technology and preferences, the first-best effort level maximizes 

( )i ia a−ψ , which is solved by 1fba k −≡ .  Effort choices are hidden, however, and therefore 

appropriate compensation contracts are needed to motivate the agent.  Even absent relative wage 

concerns, the correlation between output shocks implies that optimal contracts will depend on both 

own output and peer output. We restrict attention to linear compensation contracts iy  of the form:14 

  0 0
i

i i ii i
j

ij ijw y y q y qq q y
∈

== + + ⋅∑


 (5) 

where \{ }i i=   is the set of i ’s peers, 0iy  determines the constant component of the wage, iiy  

is the sensitivity of the wage to i ’s own output, and ijy  is the sensitivity of i ’s wage to the output 

of peer j .15  Of particular interest is the contract’s “relative sensitivity” to peer output, which we 

define by:  

  
i

ij
i

ij i

y
y∈

φ ≡ ∑


. (6) 

 To evaluate payoffs, note that with normally distributed shocks, linear contracts, and 

CARA utility, agents will have mean-variance preferences.  Therefore, given normally distributed 

consumption c , we can evaluate the agent’s utility in terms of the corresponding certainty 

equivalent consumption level  

  [ ]( )1 1
2( ) [ ] ( ).u E u c E c Var c− = − λ  (7) 

 
13 Equivalently, we can write the shocks as 1i i C= σ − ρη + ρη   , with η independent standard normal. We 

assume for simplicity that the pairwise correlations are equal so that the relative performance evaluation benchmark 
is uniform across all workers and all contract asymmetries are due solely to peer effects in preferences. 
14 Goukasian and Wan (2010) demonstrate optimality of linear contracts with one principal and two agents in a 
continuous time context as in Holmstrom and Milgrom (1987).  Similar results may be possible in our more general 
framework, but we have not pursued that here. 
15 It is not essential that 0q  in (5) is the same as the constant component in (4), but because the constant in (5) is 
arbitrary (as long as it is nonzero), we use the same term for notational convenience. 
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We assume that each agent has an outside option with certainty equivalent 0 0c q≤ , which implies 

that hiring an agent is always efficient (even without providing incentives). 

2.3. Teams 

 The contract for each agent is set by a risk neutral principal. Each principal manages a 

distinct set of agents, which we refer to as a team. Teams may correspond to different firms, or 

different divisions or groups within a firm. The set of teams is a partition of the set   of agents.  

The objective of the principal for team I ⊆   is to offer a set of contracts to maximize the team’s 

expected output net of wages paid: 

  ( )iI ii I
E q w

∈
 − π ≡ ∑ . (8) 

The principal must respect each agent’s incentive compatibility constraint, which given (7) can be 

written as 

  arg max [ ]i iE ca ∈ , (9) 

and the participation constraint, 

  1
02[ ] ( )i iE c Var c c− λ ≥ . (10) 

 The maximum team size is the total population; in this case one principal manages all peers 

(e.g. workers within a single firm). At the other extreme, each agent may have his own principal 

(for example, CEOs with distinct boards). In general, an agent will have peers both within and 

outside his team.  We refer to agents on the same team as teammates or “internal” peers, whereas 

agents on different teams are “external” peers.  We denote the total number of peers and the number 

of people on a team by 

  1in N≡ = −  and [1, ]IN I N≡ ∈ . (11) 

2.4. Contracting 

 We assume each principal chooses contracts for their team taking as given the contracts 

offered and actions taken by all other teams. That is, the contracts proposed by the principal for 

team I are visible to all members of the team, but not to principals or agents outside the team. (We 



13 
 
 

will consider other disclosure assumptions in Section 5.) The timing of the contracting problem 

faced by team I is shown in Figure 1.16 

 

 
Figure 1: The Contracting Game for a Single Principal 

The principal-agent problem for team I (taking all other contracts and actions as given). 

 

 Figure 2 depicts the different channels that may affect the agent’s utility.  The solid blue 

lines correspond to the standard principal-agent problem in which agents’ output is uncorrelated.  

In that setting, the optimal wage contract depends only on the agent’s own output.  When there are 

multiple agents with correlated output shocks a new information channel is introduced, depicted 

by the dashed green lines.  In this case, the principal can use the information in the output of others 

to filter out any common component of the agent’s productivity shock, and relative performance 

evaluation (RPE) becomes optimal.  

 Finally, the dotted orange lines represent the new channels introduced when peer effects 

cause agents to also care about their relative wage. Each agent is now exposed to both the risk and 

the level of their wage differential with their peers.  This interaction introduces two new aspects 

to the optimal contract.  First, the principal may adjust the contract to hedge the agent against peer 

wage risk.  Second, the principal may distort the agent’s effort in order to affect the level of the 

average peer wage.    

 

 
16 Note that this timing presumes that contract details are visible within a team, but only ex-post output and wages are 
visible across teams.  Wages and output are likely to be more easily observed even externally due to standard reporting 
requirements as well as consumption and investment effects.  That said, we explore the consequences of alternative 
information structures in Section 5. 

Principal I
posts 

contracts

Agents i∈I
accept or 

reject

Agents i∈I
choose 
effort

All outputs 
and payoffs 

realized
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Figure 2:  Alternative Channels by which Effort and Output Impact Utility 

Standard principal-agent model is shown in solid blue. The information channel for relative performance evaluation 
is shown in dashed green.  The dotted orange channel represents relative wage concerns.  

 

2.5. The RPE Benchmark 

 As an important benchmark, before we consider peer effects we first solve for the optimal 

contract in the benchmark case without peer effects and obtain the standard prediction that optimal 

contracts should utilize relative performance evaluation (RPE): each agent’s wage should have a 

negative sensitivity to the output of his peers.  

 Consider the standard setting with 0δ =  so that peer effects are absent.  In that case, the 

contracting problem for agent i  does not depend on the wage contracts of other agents.  The only 

interdependence between agents arises from the positive correlation between agents’ shocks. As a 

result, it is optimal for the principal to reduce the agent’s risk by “filtering out” the common 

component of output when assessing the agent’s performance.   

 In particular, the contract can reward the agent for his performance relative to a benchmark 

of output based on the performance of his peers.  The efficient benchmark will minimize the 

agent’s exposure to the common risk factor.  This benchmark is the multiple θ  of the average peer 

performance 1
i

i jn j
qq− ∈

= ∑ 
 that minimizes the residual variance: 

  [ )1
1,)( ( )arg min 0,

( ) (1 )
i i

i
i n

i
qq Cov qa q

ar
V

V
r

q
−

−
θ −

ρ
θ ≡ θ = = ∈

ρ+ −ρ
− .   (12) 

Given this benchmark, the residual uncertainty is given by 
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yii
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  ( )2 2 0)( 1iiVar qq −σ ≡ θ −ρ− = θ σ > . (13) 

The volatility σ  of the optimal signal available to the principal determines the magnitude of the 

agency problem, as it is costly for the agent to bear this risk.  Together the parameters ( , )θ σ  

summarize the information externalities in our model.   

LEMMA 1 (RELATIVE PERFORMANCE EVALUATION).  Absent relative wage concerns 

( 0)δ = , the optimal contract for each agent solves 

  1
2max ( ) ( ) . .

i
i i i i iiy

a a Var c s t a ky
⋅

− Ψ − λ = . (14) 

Optimal contracts and actions are given by 

  *
2

1
1ii k

y =
+ λσ

, * *1
ij iiny y= − θ , and * * /i iia y k= . (15) 

The constant term *
0iy  is set so that the expected wage is [ ] *1

20 +=i iE w c a , and the expected 

profit per agent is *
2

* 1
0 0π −= +i iq ac . 

PROOF: See Appendix.    

 

 The intuition for this result is as follows.  Equation (14) states that the optimal contract 

maximizes the expected output net of the cost of effort and risk-bearing. The wage parameter iiy  

determines the agent’s incentives for effort, and so the (IC) constraint (9) implies that effort solves  

  max ( )
ia ii i iy a a−Ψ , (16) 

which is equivalent to /i iia y k= .  Finally, the sensitivity to peer output ijy  is used to minimize 

the agent’s exposure to systematic risk, and 1iiy <  reduces his exposure to project specific risk. 

 LEMMA 1 provides the standard contracting result that effort is attenuated relative to the 

first best ( * * 1 fb
i iiy k aka <= = ) because of the cost of imposing risk on the agent.  Effort 

decreases with the cost of effort ( k ), the agent’s risk aversion (λ ), and the residual risk (σ ). It 
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also predicts that the relative sensitivity of the agent’s wage to peer output versus his own output 

will correspond to the optimal benchmark in (12): 

  
*

*
*

i

ij
i

iij

y
y∈

θφ ≡ = −∑


. (17) 

 Equation (17) forms the basis for standard tests of RPE in the empirical literature, which 

generally conclude that compensation tends to be much less negatively correlated with peer 

performance than is predicted by an optimal contracting framework.  Indeed, many studies often 

find the opposite sign – pay is positively related to aggregate performance.  A key goal of this 

paper is to understand how the optimal performance benchmark changes when agents have relative 

wage concerns, and how this change affects wages, productivity, and profits.  

 Remark. In the subsequent analysis, it will sometimes be useful to consider comparative 

statics in the size of the peer population, n , while keeping the fundamentals of the agency problem 

unchanged.  To do so, we can vary n  while holding fixed ( , )θ σ , which determine the information 

externalities, and let ( , )ρ σ  adjust with n  according to (12) and (13).  As shown in LEMMA 1, in 

the RPE setting the optimal actions ia , relative contract sensitivities iφ , and profits Iπ  (and thus 

total welfare), are all independent of n  given ( , )θ σ .  

3. Peer-Contracting Equilibrium 

 Now we consider the case in which agents have peer-dependent preferences ( 0δ > ).  Due 

to relative wage concerns, the agent is exposed to the output of all other agents both directly 

through his own contract as well as indirectly through his concern for other’s wages. As illustrated 

in Figure 2, given a set of contracts with parameters ijy , agent i ’s total exposure to output jq  is 

given by17 

  
1

ij ik kji k
ij

j

y yc
q

−δ µ∂
β ≡

∂ δ
=

−
∑ . (18) 

 
17 We write kΣ  as a shorthand for the summation is over all agents k ∈ . 
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 As equation (18) shows, agent i  has both a direct exposure (through his own contract) and 

an indirect exposure (through his concern for others’ wages) to j ’s output, and hence there is now 

an interaction between the contracts offered to different agents.  For example, the (IC) constraint 

(9) becomes 

  max ( )
ia ii i ia aβ −Ψ   ⇒  /i iia k= β . (19) 

Therefore, the agent’s effort choice depends upon the contracts given to all agents.  Similarly, the 

agent’s risk is given by  

  ( )2
2 2( ) (1 )i ij ijj j

Var c  = −ρ β +ρ β σ  ∑ ∑  , (20) 

which again is a function of all contracts offered.   

 In the remainder of this section, we evaluate the consequences of this interdependency on 

equilibrium contracts.  As we will see, we can restate the contracting problem for the principal in 

terms of the exposures β  in place of y , and then solve for the contract parameters that induce 

these exposures.  First, we evaluate the consequences for efficiency, and show that a single 

principal can design contracts that hedge peer effects without sacrificing efficiency.  When there 

are multiple principals, however, competition between them leads to a rat race effect in which 

agents work harder than in the RPE benchmark – and potentially harder than first best -- but firm 

profits and welfare are lower.  We also look at the optimal wage sensitivities and correlations.  

There we show that, independent of welfare, peer effects lead to wage compression and, when 

sufficiently strong, cause wages to load positively on peer output.    

3.1. Efficiency and Rat Races 

3.1.1. Optimal Welfare 

 It is useful to begin by considering the case with a single team, or principal ( I =  ).  In 

that case the principal has full control of all contracts, and there is no issue of coordination.  We 

can also view the single team case as the outcome a social planner would achieve given same 

information constraints faced by the principals. 
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 The following result demonstrates that we can restate the contracting problem for the 

principal in terms of the implied exposures β  in place of direct contract sensitivities y .  More 

strikingly, despite the presence of peer effects, real outcomes and welfare are identical to the RPE 

setting. 

PROPOSITION I (SINGLE PRINCIPAL: WELFARE EQUIVALENCE). Suppose agents have 

relative wage concerns ( 0)δ ≥  and there is a single principal ( )I =  . Then the principal 

will choose β  to solve (14), and effort, expected output and profits are equal to the RPE 

outcome and independent of δ . The optimal contracts are given by 

  1 *Sy y−= ∆ , (21) 

where * ( 1),S N Ny y × +∈  are matrices of contract sensitivities (with row i  the contract for 

agent i ) and [ ]1
1

I∆ ≡ δµ−
−δ

 where µ  is the N N×  matrix of weights ijµ .   

PROOF: See Appendix.    

 

 The key intuition behind PROPOSITION I is that a single principal can effectively undo the 

peer effects in preferences via the wage contracts that are offered.  As a result, effort and efficiency 

are unaffected by the strength δ  of peer effects.  Observed contracts and wages, however, will be 

affected by δ  according to  (21).  Indeed, in this case the principal offers a wage that combines 

the RPE wage with a hedge position that insures against peer effects:   

COROLLARY A (OPTIMAL WAGES).  Let *w  be the wages paid with RPE contracts, and 

let Sw  be the optimal wages with a single team.  Then, 

  * * *( ) (1 )S S S
i i i i i iw w w w w w− −= − − +δ = −δ δ , (22) 

and *S S
i i i

i i i
w w w−= =∑ ∑ ∑ . 

PROOF: See Appendix.    
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 As the result shows, because the hedge positions aggregate to zero ( * 0S
i ii

w w−− =∑ ), they 

can be implemented by the single principal at no cost. We will explore further the qualitative 

impacts on the observed contracts shortly, but first we consider the efficiency implications of 

having multiple teams.18 

3.1.2. Rat Race Distortions 

 When there is more than one principal or team ( )I ≠  , each principal must choose the 

contract for agents on her team while taking the contracts and actions of agents on other teams as 

given.  In this case, there are two new effects that arise relative to the single principal case. 

 First, if the principal raises the expected wage of an agent on her team, she must also raise 

the wages of others on her team to compensate for the higher peer benchmark wage. But if her 

agents also have external peers on other teams, her impact on the peer benchmark is dampened, 

lowering the total cost of compensation for the principal.  As a result, a principal whose agents 

have external peers is willing to increase incentives relative to the single principal case. 

 Second, by changing incentives and therefore the expected output of her own team, 

principal I  can influence the realized wages of agents on other teams whose contracts put weight 

on the output of team I .  Then, by acting to lower the expected wage of other teams, the principal 

can raise the relative wage of agents on her own team.  This negative externality provides an 

additional incentive to distort contracts.  

 We first consider the optimal contract for an individual team taking the contracts and action 

choices of other teams as given.  To simplify the analysis and notation, we impose an additional 

restriction that all agents on team I  put the same aggregate weight µI  on the wages of their 

teammates, and thus put total weight 1−µI  on non-teammates:   

  
∈
µ = µ∑ ik Ik I

 for all ∈i I . (23) 

  

 
18While we do not pursue it here, we can also solve for Sw  iteratively as the fixed point of the mapping defined by 
(22).   
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LEMMA 2 (TEAM CONTRACT).  Given the contracts and actions of other teams, the optimal 

contract M
iy  for agent i  on team I  has exposures *(1 )β = +αj i

M
i ijy  and action 

*(1 )M
i i ia a= +α , where 

  ˆ
ˆ ,

1
1i I jiij

i I j I

y
∈ ∈/

δ
α ≡ µ

 
−

−
− µ

δ 
∑ . (24) 

PROOF: See Appendix.    

 

 The proof of LEMMA 2 relies on the ability of the principal for team I  to implement any 

set of exposures Iβ  for her team members with an appropriate set of contracts Iy  (which will 

depend on both Iβ  and the contracts Jy  chosen by all other teams).  As a result, it is optimal for 

the principal to choose the relative exposures for agent i , /ij ikβ β ,  to minimize risk as in the RPE 

case. 

 The effort choice, however, is distorted relative to the RPE or single principal setting due 

to the cross-team externalities described previously.  This distortion is given by the factor iα  

defined in (24).  Note that if there are no peer effects ( 0δ = ) or no external peers ( 1Iµ = , and 

therefore 0ikµ =  for ,i I k I∈ ∈/ ), then 0iα =  and we achieve the same efficiency as the RPE 

benchmark.  But if 0δ >  and 1Iµ < , the principal’s effective cost of compensation is reduced, 

which raises the optimal effort choice.  Second, if 0jiy ≠ , the principal can change agent j ’s 

expected wage by distorting agent i ’s effort.  Then, by lowering j ’s expected wage, the principal 

lowers the cost of compensating any agent î I∈  with ˆ 0ijµ > .  The definition of iα  aggregates 

these effects.   

 While LEMMA 2 reveals the potential for effort to be distorted when there are multiple 

teams, the direction of the distortion is still unclear as it depends upon the equilibrium contracts 

used by all teams.  That is, the above result provides the optimal response for one team given the 

contracts of other teams.  In equilibrium, all teams choose optimal responses to each other.  We 
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evaluate this equilibrium next, and demonstrate that in fact the distortion leads to higher effort than 

the second-best setting, and, for δ  close to 1, it will even exceed the first best effort level. 

 For tractability, we make additional symmetry assumptions to compute the equilibrium.  

First, each team has the same size: 

  ˆI IN N=  for all teams ˆ,I I . (25) 

Second, agents place the same weight on peers who are external to their team: 

  1 µ
µ = µ

−
=

−
I

ij
I

e N N
, for all i I∈  and j I∈/ . (26) 

 Note that we allow the internal weights within teams to be different, though the aggregate 

internal weight Iµ  remains constant.  Despite that, these conditions are sufficient to imply that the 

equilibrium effort distortions will be symmetric (even though contracts need not be).  Our next 

result characterizes this outcome, and demonstrates a rat race effect in which the effort of each 

agent is distorted upward ( 0α > ), reducing overall efficiency. 

PROPOSITION II (SYMMETRIC TEAM EQUILIBRIUM: RAT RACE).  In the multi-team 

equilibrium, optimal contracts { }
0>

M
ij j

y  and actions M
ia  are given by 

  (1 )= +αM S
ij ijy y   and  *(1 )+= αM

i ia a , (27) 

where 

  
( )

11 1
111

1
SI

I e
I

N y
+ =


α ≥

µ
δ −

µ
−

− 
− δ 

 (28) 

and S
ijy  follows from (21), and for external peers is given by 

  
( ) ( )1

1*
1 1
1

n
N

eS
e ii

e

y
N

y
δµ θ θ δ

=
δ + δµ

− − −
<

−
. (29) 

If 0δ >  and 1Iµ < , then 0α > .  Expected wages and profits per agent are given by 



22 
 
 

  ( )2*1
0 2 1 + =  + αM

i iw aE c  and * 21
2

*π = π − αM
i i ia . (30) 

PROOF: See Appendix.    

 

 PROPOSITION II establishes that when principals compete with each other, they neglect the 

peer externality on other teams and thus provide inefficiently high-powered incentives, with 

contract terms and effort scaled by the factor (1 )+α .  Agent’s work harder, but the increase in the 

expected wage that is required more than offsets the increase in productivity, and the expected 

profit of each team is lower than in the RPE or single team benchmark.  The next result 

demonstrates that these distortions increase with the strength of external peer-effects – due to a 

higher number or higher weight on external peers –  and can cause effort to exceed even the first-

best level. 

PROPOSITION III (RAT RACE MONOTONICITY).  In the team equilibrium with multiple 

teams and positive external weights 0eµ > , the rate race distortion α  decreases with team 

size IN  and increases with the external weights eµ  and the strength δ  of peer effects.  As 

1δ→ , equilibrium effort increases and ultimately exceeds the first-best level: 

  
( )

*

1
1 1(1 ) fb

I

Na a
k kN

+α → > =
θ−

. (31) 

 

PROOF: See Appendix.    

 

 The following result provides an even simpler characterization of the magnitude of the rat 

race effect when the number of teams grows large, and shows that the strength of the effect 

increases with both δ  and the total weight 1 I−µ  put on external peers: 

COROLLARY B (DIFFUSE EXTERNAL PEERS).  Holding ( , )µI IN  fixed as →∞N , 

( )
1

1 I
δ

α→
−

−µ
δ

.  When N  is large, α  increases with N  if and only if 
( ) .
1 I
δ − θ

> µ
δ − θ

 



23 
 
 

PROOF: See Appendix.    

COROLLARY B also shows the despite the constant returns to scale in our model, we may see either 

increasing or decreasing returns to scale depending on the magnitude of δ  versus Iµ . 

 We will discuss these results further in Section 5.2 when we consider the potential 

consequences of public disclosure of wage contracts. 

 While our prior results have focused on symmetrically sized teams, we can also apply 

LEMMA 2 to evaluate equilibria when teams are asymmetric. The following result considers the 

case with two teams of differing size.  Because each principal does not take into account the effect 

of its wage contracts on the other team, the rat race externality is largest for the smaller team.  As 

a result, agents on the smaller team will work harder, but despite having higher productivity, its 

per capita expected profits are lower. 

PROPOSITION IV (ASYMMETRIC TEAM SIZE).  Suppose there are two teams I  and J  of 

size 1 I JN N< < , with symmetric external weights 1/ij e Nµ = µ <  for i I∈  and j J∈ .  

Then for (0,0.8)δ∈ , the rat race effect is larger for the smaller team, i jα > α , and its 

expected profits are lower. 

PROOF: See Appendix.    

 

The intuition for this result is that the rat race externality is strongest when the size of the 

team is small.  If the size of the team is very large (close to N ) then the rat race externality is 

weak.  Moreover, if 0.5δ >  and S
ey  is also large, it is possible that 0Jα < ; in that case the principal 

of the large team reduces effort so as not to indirectly benefit external agents and raise her own 

cost of compensation.   

Finally for δ  very close to 1, the rat race distortion can become so large that at least one 

team becomes unprofitable (see (30)).  In that case, we may expect principals to exit and the 

remaining teams to grow, creating an endogenous restriction on the number and size of teams that 

can participate in an industry before the rat race effect makes it unprofitable. 
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3.2. Wage Sensitivity and Correlation 

 The prior results have examined the welfare consequences of peer effects.  In this section 

we consider their effects on observed contracts and wages. A key insight behind PROPOSITION I 

and PROPOSITION II is that each principal can effectively undo the peer effects in preferences via 

the wage contracts that are offered.  By hedging the peer preferences via the contract, the principal 

can provide a relative exposure iβ  to agent i  that exposes him to the same level of risk σ  per 

incremental unit of output as in the RPE contract.  While the level of output is impacted by the rat 

race effect, optimal risk sharing is maintained. 

 But while the implied total exposures match the RPE outcome, the observed contracts iy  

will be affected by the strength δ  of relative wage concerns.  As δ  increases and peer effects 

become more dominant, contracts will be distorted more and more in order to hedge agents against 

relative wage shocks.  In this section we explore the consequences of these distortions and their 

implications for wage sensitivity and correlation. 

 Recall that from PROPOSITION I, the optimal single-team contracts are given by 
1 *Sy y−= ∆ , where ( ) [ ]11 I−∆ δ−≡ −δµ  is the peer-weighting matrix and *y  is the optimal RPE 

contract. PROPOSITION II further shows that when there are multiple teams the only change to the 

optimal contract loadings is a rescaling by the rat race factor (1 )+α , and hence relative contract 

sensitivities are unchanged.  We can now use these results to further analyze the impact of peer-

effects on optimal contracts: 

PROPOSITION V (CONTRACT SENSITIVITIES).  In the single team setting of PROPOSITION 

I, contract loadings are compressed relative to the RPE setting: 

 *1* *S S
ii ii ij ij n iiy y yy y≥ ≥ ≥ = − θ . (32) 

With single or multiple teams (as in PROPOSITION II), agent i ’s sensitivity to peer output 

in the optimal contract satisfies 

  
( )1 11

1 1
1 −∈

θ
φ φ = φ ≡ =

θ ∆
=

− θ
−

−
+∑

i

S
ijM S

i i i S
ii ii

j
n n

y
y

. (33) 
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When there are no peer effects ( 0δ = ), φ θ= −i . But as δ  increases, φi  strictly increases, 

and as 1δ→ , 

  1
S
ij
S
ii

y
y

→  for all j , and φ →i n . (34) 

PROOF: See Appendix.    

  

 PROPOSITION V demonstrates that peer effects compress the contract loadings and increase 

the relative importance of peer output in the wage determination, with the overall peer sensitivity 

depending solely on the diagonal term 1
ii
−∆  of the inverted peer-weighting matrix.  Most strikingly, 

as 1δ→  and peer effects dominate, the principal will optimally adjust contracts to have equal 

weight on each agent’s output.  In other words, agents will be compensated based on aggregate 

output only, and wages will become perfectly correlated ( M M M
i i jw w w−= = ).19  By doing so, 

“relative wage risk” is eliminated.  

 Yet despite this apparent distortion in contracts, in the single-team case effort levels are 

maintained and the principal’s expected profit is unchanged.  This result highlights that fact that 

even if contracts appear inefficient relative to RPE, such contracts may be optimal and efficient if 

agents have peer-dependent preferences.  The inefficiencies that do arise are the result of rat race 

externalities across teams and are not due to failures of RPE. 

3.3. Special Cases 

 Thus far we have made no assumptions on the precise network structure of preferences 

embodied in µ .  In this section we consider several special cases of peer weights and compute 

explicit solutions for the optimal contracts and their sensitivities. We begin with a setting of 

uniform internal weights and external weights.   Specifically, in addition to (25) and (26), we 

assume agent’s put the same weight µt  on each teammate: 

 
19 In the single principal case, this result is immediate from COROLLARY A.  In the case of multiple teams, wages are 
rescaled due to rat race effects. 
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( )

ˆ
1

1 1
− − µµ

µ = µ = =
− −

I eI
tii

I I

N N
N N

 for all ˆ, ∈i i I  with ˆ≠i i . (35) 

It is natural to assume agents put more weight on internal versus external peers; the following 

result demonstrates that same weighting will be inherited by equilibrium contracts.  

PROPOSITION VI (UNIFORM INTERNAL AND EXTERNAL WEIGHTS).  Suppose agents have 

uniform internal and external weights with 1/µ ≥ ≥ µt en . Then equilibrium contracts have 

uniform internal and external exposures  

 ( ) ( ) ( ) *
11 1

1
1

ne
t e ii

e

y y
N

y
− − −

+
δµ θ θ δ

≥
+ µ

=
δ−

α
δ

,  (36) 

with equality if and only if 1/µ = µ =e t n  or 0δ = . Holding team size fixed, φi  and ey  are 

increasing in µe , with  

 0≥ey  if and only if  1
1 1

 δ θ
≥  − δ µ − θ en

. (37) 

PROOF: See Appendix.    

 

 PROPOSITION VI shows that with uniform weights, wages will depend on the agent’s own 

output, team output, and aggregate output.  The exposure to aggregate output, ey , is positive for 

δ  sufficiently high, while the incremental loading on team output, −t ey y , is always nonnegative.   

 The following corollary examines the special case of equal weights, which also includes 

the setting with unitary teams. 

COROLLARY C (EQUAL WEIGHTS).  Suppose 1/ij nµ =  for all i j≠ .  Then 

 * 1S
ii ii

ny y
n

 + θ
δ 



+


= − 

 δ 
,  *


δ − θ

=  + δ
=


S S
t e iiy y y

n
, and 

)(1
( )
) (1

φ =
−

δ − θ
δ + δ − θi n

n . (38) 

Finally, with unitary teams ( 1IN = ), the rat race factor is 
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*

1 11
1 1

S
e

iiy
n

y
α

δ+ δ δ
δ +

+ = =
−  − θ

−  
 

δ
+ δ

. (39)    

PROOF: See Appendix.    

 

 Again, consistent with PROPOSITION III and PROPOSITION V, we can see easily from  (38) 

and (39) that as δ  increases optimal contracts put more weight on peer performance and less 

weight on the agent’s own performance, and the rat race effect intensifies.   

 Figure 1 shows the impact of peer effects on wage volatility and correlation in the case 

with uniform weights.  Note that wage volatility decreases, and wage correlation increases and 

converges to 1, as δ  increases.20  

 
Figure 3: Wage Volatility and Dispersion 

Wage volatility (expressed relative to (1 )+ α σ ) declines, and wage correlation increases (converging to 1), with the 

strength δ  of peer effects. (Uniform weights, 50%θ = , * 75%iiy = ). 

 

 
20 Englmaier and Wambach (2010) demonstrate that wage compression results if agents are inequity averse, and thus 
suffer a disutility if their payoff exceeds that of others.  Here, even though agents gain from being ahead of their peers, 
it is still optimal to reduce wage variation. 
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 COROLLARY C implies that with equal weights, wage contracts will load positively on peer 

output as long as δ > θ , in stark contrast to the RPE prediction.  The next result demonstrates that 

this same conclusion holds more generally as long as the set of peers is large, and the weights 

agents put on others are diffuse. 

COROLLARY D (DIFFUSE WEIGHTS).  Suppose 0
max

µ →  as N →∞ .  Then  

  
1

S
i

δ − θ
φ →

−δ
 as N →∞ . 

PROOF: See Appendix.    

 

 As a contrast to the case of diffuse weights, we consider next a case with concentrated 

weights.  Suppose agents are arranged in a circle and care only about their nearest neighbors; that 

is 1
2ijµ =  if and only if { }1,i j n− ∈ . We can again show that the total weight on peers is positive 

as long as the RPE hedge ratio θ  is not too large relative to δ (though the constraint is a bit tighter 

than in PROPOSITION VI).  In addition, while the agent only cares directly about his immediate 

neighbors, the contract loading for every peer is distorted above the RPE case, with the distortion 

decreasing with distance to that peer.  The reason the contract is distorted even for non-neighboring 

peers is due to a chain reaction effect through the network of peer relationships.  

COROLLARY E (CIRCULAR WEIGHTS).  Consider a circular network of peers in which 

each agent puts equal weight on their two nearest neighbors.  Then ijy  is decreasing in the 

distance between i  and j , with 1min θ> −j i ii njy y .  Moreover,  

  lim 0
→∞

φ >iN
 iff  11

1 δ
−

−
δ

<
+

θ . 

PROOF: See Appendix.    

 

 As mentioned in Section 2.1, our general formulation of peer-based preferences allows 

0iiµ > , so that the agent puts weight on his own wage in the benchmark.  Raising iiµ , therefore, 
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effectively lowers the strength of the agent’s relative wage concerns (see footnote 11).  The 

following result shows that if we increase the weight agent i  puts on his own wage, and reduce 

the weight he puts on his peers, then his relative sensitivity to peer output in the optimal contract 

declines. 

COROLLARY F (ASYMMETRIC DELTA).  Let ( )µ λ  be a valid peer matrix parameterized by 

λ .  Suppose 0( )ii′ λ >µ  and 0( )ijµ ′ λ ≤  for all j i≠ .  Then ( ) 0φ ′ λ <i . 

PROOF: See Appendix.    

 

4. Asymmetric Visibility and Efficiency Gains 

 Our prior results demonstrate that profits either stay the same (with a single principal) or 

decline (with multiple principals), with the strength peer effects when peer relationships are 

symmetric. In this section we relax the symmetry requirement and show that in when some peers 

are “more visible” than others, the principal can exploit this asymmetry and increase profits. 

 Specifically, if we define the “visibility” jµ  of agent j  as the collective weight put on that 

agent by others, then under our current assumption (1) we have: 

  1j iji
µ ≡ µ =∑  for all j . (40) 

That is, each agent has symmetric visibility (equivalently, in mathematical terms, the matrix µ  is 

doubly stochastic).  Indeed, it is straightforward to show that our welfare results in Section 3.1 rely 

only on (40), and not on the stronger pairwise symmetry assumption in (1).21 

 Now suppose we relax (40), so that some agents are more visible than others.  As before, 

the principal can still use the agent’s wage contract to hedge peer effects.  In addition, however, 

the principal may exploit the asymmetric importance of agents and provide higher incentives (and 

therefore high expected compensation) to agents who are less visible, and lower the wages and 

 
21 See e.g. the proof of PROPOSITION I, which only uses symmetry to establish that 11 1 1−′∆ = ′µ = ′ . 
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incentives to agents who are highly visible, in a way that lowers the expected cost of compensation 

and raises profits.   

PROPOSITION VII (ASYMMETRIC VISIBILITY AND EFFICIENCY GAINS).  Suppose that we 

relax the symmetry assumption so that for at least one agent j , 1jµ =/ . If 0δ > , then 

although the relative contract sensitivities satisfy (33) as before, a single principal can 

distort effort to achieve higher expected profits than in the RPE case ( 0δ = ).  Then the 

relative cost of compensating agent j  is given by  

 1
j ji i

−ω ≡ ∆∑ , where  1 111 −= <ω ω∑ ∑NjN j j j , (41) 

and the equilibrium effort provision and the expected profit from each agent is asymmetric 

with  

  1 *A
j j ja a−= ω   and  ( ) ( )1 * * 1 *1

0 0
1

2 2 1− −π = +ω − π ω= + −A
j j i j j iq aa c . (42) 

PROOF: See Appendix.    

 

 We can interpret jω  as the effective cost of compensating agent j  once we account for the 

influence of his wage on the utility of his peers. (Recall from PROPOSITION I that 1−∆  determines 

the contract adjustments required for the principal to hedge each agent’s exposure to his peer 

benchmark.) While the average jω  is 1 (because 11 1 1 1 N−′∆ = ′ = ), when visibility jµ  is 

asymmetric so is the effective cost.  The proposition shows that in that case, the principal can lower 

the total cost of compensation by shifting incentives (and hence wages) to those agents with the 

lowest effective cost.     

 To illustrate the relationship between the preference weights ( , )µ δ  and the principal’s 

expected profit, Figure 4 shows the average benefit per agent, ( )11 1jN j
−ω −∑ , for a range of 

randomly generated models.  Here, we have measured the asymmetry in µ  according to the 

heterogeneity in the agents’ visibility µ .  As the figure shows, the principal’s expected profit 

increases with this variation (standard deviation of jµ ) as well as with the intensity δ  of the peer 
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effects.  The latter effect, monotonicity with respect to δ  for a given µ , appears to hold quite 

generally across all numerical examples. 

 

 
Figure 4: Benefit to Principal from Agent Heterogeneity 

The average benefit per agent to the principal 11
1−ω −∑ jjN

   as function of standard deviation of µ j
 . Simulating 

40,000 random stochastic matrixes µ  for 10=N . Blue (orange) dots are for ( )0.3 0.5 .δ = δ =     

 

 To further elucidate the source of increased profits to the principal, we next consider a 

specific natural example of asymmetry in which there are two types of agents: 

• Independent Agents: 1jjµ = , 0jkµ =  for k j≠ ; thus their effective δ  is zero.  

These agents care only about their own wage, and do not care about the wages of 

their peers. 

• Peer-Dependent Agents: 0δ > , 0mmµ = , 1/mk nµ =  for k m≠ .  These agents 

benchmark their wage to the average of their peers. 

Note that in this example, because peer-dependent agents care about independent agents, but not 

vice versa, independent agents are more visible.  The following proposition shows that as a result, 
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independent agents will be given lower equilibrium incentives and wages.  We also show that the 

principal’s profit increases with the heterogeneity of the population.  

 

PROPOSITION VIII (MIXED POPULATION).  Suppose agents j J∈  are independent, 

whereas agents m J∈/  are peer-dependent. Then independent agents receive a standard 

RPE contract with A
jφ = −θ .  Peer-dependent agents work harder than independent agents, 

  
11 1

1

A
m n
A
j

a
a

+ δ
= ≡ ψ >

−δ
, 

and furthermore, 

 ( )111 21 1jj

J J
N N N

− −  
ω = + − +ψ


ψ −


∑ , (43) 

so that the principal’s profit per agent increases with an increase in population 

heterogeneity: that is, with an increase in δ , or shifting the proportion of independent 

agents closer to 50%.  

PROOF: See Appendix.    

 

 Note that for 1
2J N=  , the principal’s gain per agent decreases in N  with the limit 

  ( ) ( )
2

11 1
4 1jjN

− δ
ω −

−δ
→∑  as .N →∞   

Thus, the average gain per agent does not completely dissipate even when N  is very large. 

 The ability of the single principal to internalize the impact of the contracts he sets allows 

him to capitalize on population heterogeneity. With multiple principals, there will be competing 

effects between the population heterogeneity within teams, which will increase efficiency, and the 

rat-race effect across teams, which will decrease efficiency. 
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5. Disclosure Effects 

 In the standard RPE contracting framework without peer effects, agent’s incentives are 

independent of each other’s contracts.  As a result, the timing and visibility of contracts and wages 

are not consequential.  As we show in this section, however, with peer effects these details will 

matter.  For example, if principals can negotiate privately with individual agents, additional rat 

race effects emerge within teams.  In addition, the public disclosure of wage contracts across teams 

may increase their salience, strengthening peer effects, while also creating incentives for principals 

to distort contracts to affect the productivity of other teams.  

5.1. Private Negotiation 

 Thus far we have assumed that each principal discloses to her team the incentive contracts 

to be used within the firm.  This assumption implies that the principal cannot privately negotiate 

(or renegotiate) these contracts with individual agents. If instead individual contracts terms can be 

set or altered in a way that is hidden from other team members, then in equilibrium we should 

require that contracts be “renegotiation-proof” with respect to any principal-agent pair.  That is, in 

equilibrium, there should be no alternative contract the principal could offer to a single agent which 

the agent would accept and would raise the principal’s expected profit, while holding other 

contracts and effort as given.  

 When privately negotiating, the principal and agent will ignore the impact of their wage 

choice on the utility of other agents, as well as try to lower the wage of others through the 

performance benchmark, just as in the setting of multiple teams discussed earlier.   Moreover, there 

is now an added benefit to the principal: changing the agent’s effort in a way that lowers the wage 

of other agents within the same team contributes directly to the principal’s profits. 

 Though there is an incentive to renegotiate, the opportunity to do so must hurt the principal 

ex-ante.  In equilibrium, other agents within the team will anticipate the renegotiated contract and 

seek commensurate terms.  In other words, because the renegotiation-proof contract could always 

be proposed in an environment with disclosure, allowing hidden renegotiation only constrains the 

principal. But while each principal is individually worse off with hidden contracting, the 
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equilibrium consequence of renegotiation is less clear, as constraining contracts in this way might 

reduce some of the “rat race” inefficiency that arises with multiple teams.   

 The following result characterizes the optimal contract when contracts are privately 

negotiated: 

LEMMA 3 (PRIVATE NEGOTIATION CONTRACT).  Given the contracts and actions of other 

agents, principal I  has an incentive to renegotiate privately with agent i  unless agent i  

has exposure *(1 )R R
i i iyβ = +α   where 

  ˆ
ˆ

11
1

1
1

i

R ii
i ij ji ii

j i i Iii

y y
= ∈/

   −   
− δµ δ

+α ≡ − µ
− − δ δµ 

∑ ∑ . (44) 

PROOF: See Appendix.    

  

 To understand (44), it is useful to consider the case with 0iiµ = .  (Recall that 0iiµ >  is 

equivalent to adjusting δ  for agent i , see footnote 11).  In that case, 

  ˆ
ˆ

1 11
1

i

R
i ij ji ii

j i i I

y y
= ∈/

   −   − 
+ α ≡ −δ µ

δ 
∑ ∑ . (45) 

Here the term ij ji
j i

y
=/

µ∑  captures the benefit to agent i  from altering agent j ’s expected wage.  

The term ˆ
ˆ i

ii
i I

y
∈
∑  captures the benefit to the principal from altering the expected wages of other 

agents on team I .  Finally, we note that (24) and (44) coincide in the case of a single agent team, 

as in that case the contract is already negotiated in isolation. 

 To evaluate the equilibrium impact of renegotiation, we again consider the symmetric case, 

and set 0iiµ =  for simplicity. 

PROPOSITION IX (PRIVATE NEGOTIATION EQUILIBRIUM).  Under (25) and (26), with 

0iiµ =  for all i , in the symmetric equilibrium with private renegotiation, 
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( ) ( )*1 1 1

1
+α ≡ ≥ α

−δ δ
+

− + θ −−
R

S
ii I ey N N y

, (46) 

with equality only if 1=IN . If all weights are equal ( 1/ij nµ = ), then letting 1I In N= − , 

  
( ) ( ) *

1 1 1
1 1

R
S

II e
ii

nn y y
n

+α
δδ + δ δ +

= =
+


δ − θ

δ
− +  −  +

. (47) 

PROOF: See Appendix.    

 

 Note that in the case of a single principal ( IN N= ), (46) implies 

  
( ) *

11 1
1

R

iiy
>

− +
+α =

δ δ θ−
. (48) 

Therefore, renegotiation leads to higher expected output and lower expected profit for the 

principal. On the other hand, with unitary teams ( 0In = ), (47) implies 

  
( ) *

1 1 1
1 1

+α
δδ + δ δ

= =
−  −  +

+
δ


− θ

δ

R
S
e

ii
y y

n

,  (49) 

which matches the previous outcome in PROPOSITION VI without renegotiation – again, with 

single-agent teams each principal is already negotiating in private and there is no scope for further 

renegotiation.  Comparing (48) and (49), we see that for δ < θ , the rat race effect is even stronger 

for a single principal who can privately negotiate than it is for independent principals with 

singleton teams. 

5.2. Wage Transparency and Public Disclosure  

 Recent regulation has increased disclosure requirements regarding executive 

compensation.  The SEC now requires compensation disclosures for the CEO, CFO, and the three 

additional most highly compensated officers the firm.  Websites such as Glassdoor collect and 

provide data on salaries for a broad range of managerial positions within firms. Compensation 
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disclosure requirements for public employees have also increased as a result of transparency and 

accountability measures.  For example, individual faculty member salaries for all faculty at the 

University of California can be looked up online. 

 In the context of our model, we interpret greater wage transparency and disclosure as 

leading to an increase in the salience of peer compensation.22  As a result, individuals are likely to 

put higher weight on their relative, versus absolute, wage – that is, an increase in δ  – as well as 

put higher weight on more distant peers – an increase in µe .  These effects may be due to the 

agent’s own visibility of others’ wages, or the fact that agents believe that others can more easily 

make such comparisons.23 

 Under this interpretation, the results of Section 3 allow for the following empirical 

implications of increased disclosure: 

COROLLARY G (WAGE TRANSPARENCY).  In the symmetric team setting of PROPOSITION 

II, suppose an increase in transparency or disclosure leads to an increase in δ .  This change 

will lead to an 

• Increase in rat race effects (α ): higher wages and productivity, lower profits, 

• Increase in the wage contract exposure to external peers ( ey ), 

• Increase in wage correlation and sensitivity to peer output (φ ). 

The same results apply for an increase in µe , where in the case of the wage correlation and 

peer sensitivity we additionally assume uniform internal weights. 

PROOF: See Appendix.    

 

The effects of increasing δ  and eµ  are illustrated in Figure 5.  Note that an increase in eµ , holding 

IN  and N  fixed, necessitates a decline in tµ , which explains the decline in S
ty  in the right panel. 

 
22 Card et.al. (2012) provide field-based confirmation of relative pay comparisons by randomized manipulation of 
revelation of information on coworkers’ salaries for University of California employees.  
23 For example, we can think of the weights µ ij

 as based in part on the probability that others are able to see and 
compare agent i and j’s wages. 
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Figure 5: Effect of Increased Wage Transparency on Contract Sensitivities and Rat Race Effects 
Increased wage transparency strengthens peer effects (higher δ ) especially for external peers (higher eµ ). As a 

consequences, the contract sensitivities and rat race effects  increase. 
(Parameters: 12, 3, 20%, 40%, 5.6%, 50%

I e I
N N= = θ = δ = µ µ == ).    

     
 Recent regulation has increased disclosure requirements of CEO compensation. Our results 

suggest this change should lead to higher expected compensation. Consistent with this prediction, 

Gipper (2016) shows that the 2006 SEC enhanced disclosure requirements24 on managerial 

compensation increased CEOs’ pay. In addition, the U.S Congress Jumpstart Our Business 

Startups (JOBS) Act of 2012, that rolled back some disclosure requirements for a subset of firms 

lead to a decline in managers’ compensation.25  

 

5.3. Ex Ante Contract Disclosure 

 We have assumed thus far that agents can only see the contracts or wages of other teams 

after making their effort decisions.  In this section we consider an additional effect that arises if 

contracts are disclosed across teams before effort is determined. Specifically, we modify the timing 

in Figure 1 so that prior to choosing effort, each agent can observe the wage contracts of agents on 

other teams. 

 
24 For details see http://www.sec.gov/rules/final/2006/33-8732a.pdf. 
25 Further evidence, in other settings, that increased disclosure of executive compensation increases executive pay is 
provided in Park, Nelson, and Huson (2001), Perry, and Zenner (2001), Schmidt (2012), and Mas (2016). 
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Figure 6: Contracting Game with Ex Ante Disclosure 

  

 Ex ante disclosure matters because agent i I∈ ’s contract, once revealed, will influence the 

effort choice of other agents j I∈/ .  For example, an increase in ijy , the loading of i ’s contract on 

j ’s output, will reduce agent j ’s effort incentives, since higher jq  would have a more positive 

impact on i ’s wage, reducing j ’s utility.  Principal I  can take advantage of this effect, by offering 

agent i  a contract with higher ijy , and then, anticipating that agent j  will reduce effort and earn 

a lower wage as a result, lower the expected wage paid to team I  (given the lower expected peer 

benchmark). 

 This intuition has several important implications.  First, it suggests that each principal will 

no longer choose the implied sensitivity to minimize the agent’s risk.  Instead, the principal will 

raise the sensitivity to external peers in order to distort their effort downward.  But, because the 

agent is now exposed to additional external output risk, the contract will expose him to less output 

risk from his own team. Finally, because these distortions raise the cost of providing incentives, 

the optimal level of effort declines.   

 The following result confirms these effects.  For simplicity, we focus on the case with 

uniform internal and external weights, where those weights may differ from each other.  We show 

that in the optimal contract the agent’s effort (determined by D
iiβ ) is distorted downward, as is the 

agent’s implied exposure to the output of his teammates ( ˆβD
ii ), whereas the agent’s implied 

exposure to the output of agent’s on other teams ( D
ijβ ) is distorted upward, relative to the setting 

without public disclosure. 

 

Principal i
proposes 
contract 

to Agent i

Agent i
accepts or 

rejects
contract

Agents 
choose 
effort

Output and 
payoffs 
realized

All 
contracts 
disclosed
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PROPOSITION X (EX ANTE DISCLOSURE).  Suppose teams have the same size IN  and 

agents have uniform internal and external peer weights: 0µ =ii , ˆµ = µtii  for ˆ \∈i I i  and 

µ = µij e  for ∈/j I .  Then the equilibrium contracts with ex ante disclosure have uniform 

internal and external loadings: D
iiy , ˆ =

D
tiiy y  and = D

ij ey y  with exposures: 

  ( ) * *1β ν= +α −D
ii I ii iiy y ,  

  ( )1
*

1
ˆ *1

1
 

β θβ + θ ν−  − 
= −D D ii

ii nii
ii

n
y

y
, and  (50) 

  ( )1
*

1
*1

( )
1

1
 

− + − ν
 

β = θβ + θ− − 
 
 θ

D D ii
ij ii n

I ii
n

n
N N y

y
,  

where ( )
2

2 ( 1) 2 )
1 1

( 0
  −δ  ν = θ µ + − −  − δ − 

>
 

+D D DI
I e ii I t I e

N N N y N N yNy
N

 and 

 ( )1 ( )
1

α −
δ

= µ − µ
−δ

− D
I I I I e eN yN N . 

Without ex ante disclosure, (50) holds with 0ν = .   

PROOF: See Appendix.    
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Figure 7: Effort and Contract Sensitivity with Ex Ante Disclosure 

Ex ante disclosure increases contract sensitivity to external peers and decreases effort relative to case when contracts 
are not externally disclosed. (Parameters: *2, , 50%, 75%1= θ = == iiIN N y ).    

 Figure 7 shows the effect of ex ante disclosure on both effort and contract sensitivity.  Note 

that the effect of public disclosure increases with strength of peer effects δ .  Indeed, when δ

sufficiently high, public disclosure is can cause effort to collapse well below the second-best level, 

in contrast the settings without disclosure where it is always above the second-best. 

 Thus, ex ante disclosure is likely to lead to even greater departures from “RPE” in observed 

contracts.  And although public disclosure lowers equilibrium productivity, because effort is 

inefficiently high due to the rat race effect, this decrease in effort can raise profitability.   

6. Conclusion 

 In this paper we have extended a standard moral hazard optimal contracting framework to 

a setting in which agents care about both their absolute wage, as well as how their wage compares 

to that of their peers.  We allow for a general network of peer relationships, both within and across 

firms.  Our results overturn standard predictions from contracting models.  We find that rat race 

effects across teams raise equilibrium effort, and that compensation benchmarking offsets 

performance benchmarking, so that optimal contracts load more positively on peer output 
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(including indirect peers) than the standard RPE model would imply.  When peer effects are 

sufficiently strong, effort can exceed first best, while at the same time wages are driven primarily 

by aggregate (rather than individual) performance.  Finally, principals can exploit asymmetric peer 

effects within their teams and raise profits, relative to when agents’ preferences are devoid of peer 

effects, by inefficiently shifting effort to less visible agents.     

 We also considered the implications of different levels of disclosure and transparency.  On 

one hand, if contract terms are not disclosed internally to teammates, a rat race effect emerges even 

within teams which raises team effort and output and lowers profits.  On the other hand, external 

disclosure across teams is likely to increase the saliency of peer comparisons, exacerbating the rat 

race effect across teams and increasing wage levels and correlations. 

 In addition to these broad predictions, our model makes more nuanced predictions 

regarding the relationship between contract sensitivities and the details of peer relationships.  In 

particular, we show that relative to RPE contracts, peer effects imply that contracts will be less 

sensitive to the agent’s own output, and will have higher (more positive) sensitivity to peer output.  

The contract loading on peers will be highest for peers who are “closer” in the network, such as 

teammates or neighbors. With data on social networks becoming more readily available to 

researchers, one could envision merging such data with data on compensation to empirically 

evaluate these predictions.   

 To highlight these effects, we have kept all other aspects of the principal-agent model 

symmetric.  In practice, we might expect the correlation between agents’ output will also vary with 

some measure of distance.  In that case the contract loadings will depend on relative distance 

between peers in the social network versus the production matrix.    

 In the multi-team context, we have also treated team and population size as exogenous.  It 

would be interesting to explore the consequences of peer effects on industry structure when entry 

and exit is endogenous.  For example, although we have assumed constant returns to scale in our 

model, larger teams are more efficient due to their ability to internalize rat race effects and thereby 

prevent wages from escalating.  Conversely, rat race effects may be an important barrier to entry 

for smaller entrants to an industry.  
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7. Appendix 

PROOF OF LEMMA 1: When 0δ = , the contracting problem for agent i  is independent of the wage 

contracts of other agents, except to the extent that other agents’ actions affect the expectation of 

the benchmark iq− . Because ( ) 0[ ( )] 1
i

i i ii i j ij ijE c y q aay y a
∈

= ⋅ + + Ψ−∑ 
, the agent will choose 

effort ia  to maximize ( )ii i iy a a−Ψ , and thus i iia y k= .  The principal will choose 0iy  so that the 

agent’s participation constraint binds; therefore 1
02[ ] ( )i iE c Var c c− λ = .  Because ( )i i ic v a≡ −ψ ,  

  
0

1
0 2[ ] [ ] ( ) ( )i i i iE v E w c a Var c

δ=

= = +Ψ + λ


. (51) 

The principal therefore chooses ij iiy y  to minimize variance as in (12), so that the volatility of 

consumption is iiy σ .  Then, because i iia y k= , the principal chooses iiy  to trade off incentives 

for effort and the cost of risk-bearing in order to maximize 

  
1

0 02
2 2 21 1

0 02 2

[ ] ( ) ( )

,( )

π − = + −Ψ − λ −

= + − σ

=

−− λ
i i i i i i

ii ii ii

E q w q a a Var c c

q y yk k cy k
 (52) 

which implies (14) and (15). The principal’s expected profit is 0
1
2

*
0 −π = +i iaq c . Finally, note that 

the constant term of the wage contract is set so that the participation constraint (51) binds; hence, 

because *
0] ][ [= +=j i iq E q q aE  by symmetry, 

 ( ) ( )( )2* * 2 * 2 * * * *1 1
0 0 0 0 0

1
22 2 [( ) ] 1= −λ+ + σ + − += − θ∑i i ii i ij j j i iy cq kc a y y E q a k aa q . 

   

 

PROOF OF PROPOSITION I: Note first that the participation constraint for each agent must bind, as 

otherwise the principal could cut the fixed component of the wage, increasing profits and (due to 

peer effects) relaxing the participation constraint of other agents. Therefore, 

  
( ) ( )

1
0 2

2
2 21

0 2

( ) ( )

/ (1 ) ( ),

[ ] i i

ii ij ijj

i

ij

E a Var
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c C
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+ λ

= + β λ −ρ β +ρ β σ ≡ β  
ψ + ∑ ∑ 

 (53) 
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where the function C  is the implied total cost borne by the agent given sensitivities β . Rewriting 

(53) in column vector form by stacking the equation for each agent i , and using the fact that 

v w= ∆  and ∆  is invertible (it has a strictly dominant diagonal), we have 

  1 1 1[ ] [ ([ ]] )E wE Cv E w− − −= = =∆ ∆ ∆ ∆ β , (54) 

where we write ( )C β  to be the column vector with row i  equal to ( )iC β .  Next let 11 N×∈  denote 

the column vector of ones. Then the principal’s objective becomes 

  
( )11 [ ] 1 [ ] 1 ( ) 1 [ ] ( )

( ) ,

i i
i

i i
i

E q w E q w E q C E q C

E q C

−

∈

∈

 
− = ′ − = ′ − ′∆ β = ′ − β 

 
 

= − β 
 

∑

∑





 (55) 

where the penultimate step follows because µ  is doubly stochastic ( 1 1µ =  from (1) and µ  is 

symmetric implies 1 1′µ = ′ )  and therefore ∆  and 1−∆  are doubly stochastic (∆  is a convex 

combination of I  and µ , which are both doubly stochastic, and 1 11 1 1− −= ∆ ∆ = ∆ ), and hence 
11 1−′∆ = ′ .  Because 0[ ]i iE q c a= +  also depends only on iiβ , the solution *β  to (55) does not 

depend on δ , and so the solution matches the RPE case with 0δ = ; i.e., * *yβ = .  The optimal 

contract Sy  then follows from * Syβ = ∆ .     

 

PROOF OF COROLLARY A: From (21), * * S Sw q qy y w= = =∆ ∆  and given the definition of ∆ , we 

have 

  *(1 ) S S S S
iw w w w w−− δ = − δµ δ= − , 

which is equivalent to (22).  Pre-multiplying by 1′ , and using 1 1′µ = ′ , shows that the aggregate 

wages and the wage benchmarks are all identical.   

 

PROOF OF LEMMA 2: For an N-row matrix, M , let IM  be the matrix formed from rows i I∈ , and 

JM  be the matrix formed from rows \=J I .  Similarly, let IIM  and IJM  select the 
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corresponding rows and columns (where we interpret column 0 I∈  when relevant).  Then, because 

yβ = ∆ ,  

  [ ] I
I I II IJ II I IJ J

J

y
y y y

y
 

β = ∆ = ∆ ∆
 

+= ∆ ∆  , 

which we can rearrange as, 

  II I I IJ Jy yβ −∆ = ∆ . 

Because II∆  is invertible (it has a strictly dominant diagonal), we can solve for Iy  in terms of Iβ  

and Jy  as follows: 

  ( ) [ ]1
I II I IJ Jy y− −= ∆ β ∆ . (56) 

Equation (56) shows that the principal for team I  can implement any set of exposures Iβ  with an 

appropriate set of contracts Iy .  Using the definitions w yq=  and q yq w vβ = ∆ = ∆ = , together 

with the binding participation constraint (53), we have  
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−

∆
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 (57) 

Because 0IJ∆ ≤ , (57) reflects the fact that an increase in the wage of agent j I∈/  raises the cost 

of compensating agent i I∈ .  Because II∆  has constant row (and column) sums equal to 

1 ,
1

I−µ δ 
 − δ 

 the principal’s expected profit πI  is equal to 
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Finally, removing terms that do not depend on Iy , maximizing Iπ  is equivalent to maximizing  

  ( )
( )

ˆˆ

ˆˆ

1
1

1 1

( )

(
1

( )1

)

I
ji i iijI ij

I ji i iij

i

i

i

I ij

i i iI

Cy a

y a C

Ca

∈

∈

∈

µ δ
+ ∆ β

δ

δ
µ −

 −   −  −  
 = + − − 
 

= +

µ β
−

−

δ

α β

∑ ∑

∑ ∑

∑

 (58) 

Hence, principal I  will choose iβ  to maximize ( )1 ( )i i ia Cα − β+ .  From the incentive constraint 

/i iia k= β , iiβ  maximizes  

  (1 ) ( )ii ii Ck+α β − β . (59) 

As in LEMMA 1, at the optimum 1M M
ij iinβ = − θβ  to minimize variance, but the agent’s sensitivity to 

his own output is distorted by the factor iα , with *(1 )M
ii iii yβ = +α .  The optimal contract for team 

I  then follows from (56).  

 

PROOF OF PROPOSITION II: In a symmetric equilibrium, iα = α , and LEMMA 2 implies the 

principals choose sensitivities *(1 )M yβ = +α .  Because M Myβ = ∆ , 

  1 1 *(1 ) (1 )M M Sy y y− −= ∆ β = ∆ +α = +α . 

Conditions (25) and (26) imply that 1 ( )I e IN Nµ = −µ −  and also that 1
ij e
−∆ = λ  is constant for 

agents on different teams.  Because 1 I−∆ ∆ = ,26  

  10,
1 (1 )

e
e

eN N
δµ  λ = ∈ − δ − µ  

. (60) 

 
26 We can write 11

1 eA
δ

∆ = − µ ′
− δ

 and 1 11eB−∆ = + λ ′  where both A  and B  are block diagonal with AB I= .  

Because 1 1 11 1 1 1
1 1e eA N
δ δ

= ∆ + µ ′ = + µ
− δ − δ

 and 1 11 1 1 11 1 1 1e eA B N− −= = ∆ − λ ′ = − λ , the value of eλ  follows 

from the fact that we must have ( ) 11 1
1 e eN N −δ

+ µ = − λ
− δ

 .  
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Therefore, from 1 *Sy y−= ∆ ,  

  ( )( ) ( ) ( ) )1
*

1
1

1
1

,
1

1 
− −δµ θ θ δ

= λ θ λ ∈ θ λ
δ + δµ

−
− − = −

−
n

n

S
ee

e e en
ii e

y
y N

 . (61) 

As an aside, note that 0S
ey >  iff  

  
( )1 1

δ θ
>

−δ µ − θen
. (62) 

Finally, from (24), 

  ( )( )
ˆ ,

1 1 (11 )
1 1

M S
I e e I I e

i I j I

y N y
∈ ∈/

δ δ
α = µ − µ µ −


− = − + 

− δ
α

−δ 
∑ , 

and (28) follows by solving for 1+α .  Because / 1S
I e IN y N N< < , we have 0α > .  The expected 

wages and profit per agent follow because, by symmetry, [ ] [ ]= =i i iE w E v C , and  

  

1
0 02

* * 2 *2 21
0 02

* 1
2

*
2 * * 2

[ ] ( ) ( )

(1 ) ((

.

1 ) ) (1 )

2

π − = + −Ψ − λ −

= + +α −Ψ +α − λ +

=π

=

−α σ

− α π= − α

M M M
i i i i i i

i i ii

ii
i i i

E q w q a a V c

c

a

ar c

q a a y

y
k

 

Again, the constant component of the wage contract is set so that the agent’s participation 

constraint binds: 

  ( ) ( )( ) ( )( )2
2* *

0 0
1 *

0 0 1 1 1 1= + − α−+ α α θ ++ +M
i i i iy c a kaq aq . 

  

 

PROOF OF PROPOSITION III: From (28), as 1δ→ , 11 S
I eN y

+α→ .  For 0eµ >  (equivalently, 

IN N<  and 1Iµ < ), from (61), ( ) *1 1→ θ−S
e iiN yy .   Combining these results and using * * /iia y k=

, we have 
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  ( )
* 1(1

1
)

I

Na
kN

α →
−

+
θ

, 

which implies that effort will exceed the first-best level 1/ k  for δ  sufficiently close to 1. 

 To establish monotonicity in δ , from (28) it suffices to show 

   ( )1 0
1
1 SI

I e
I

N y
 −
 
 

 µ∂
δ − > ∂ δ − δµ 

. 

Plugging in for S
ey  from (61), taking the derivative, and simplifying we can show 

  

( )( ) ( ) ( )

( )( ) ( ) ( )( )( )( )

( ) ( )

0

2 2

* *

0

*

0

1 1 1
1

1 1

1 1 1 1 1

1 1

1

>

>

≥

   − − δ + δ µ −δµ µ∂
δ − =   −µ ∂δ − δµ    

− δ − + θ + − δ − − θ µ −δ + δ µ

−

 −

δ − + θ µ −δµ


 








A

e I SI
I e

I I

I ii I ii e e

B

I ii e I

C

N N
N y

N N y N N N y N

N y N

 

Because *0 , , , 1ii Iy≤ δ θ µ ≤ , the terms A , B , and C  are positive; we thus need to show that 

0B C− ≥ . Note that a lower bound on B  is obtained by setting 0θ =  and * 1iiy = , and an upper 

bound for C  is obtained by setting * 1iiyθ = = .  These substitutions, together with the fact that 

( ) 1I e IN N− µ = −µ ,  imply 

   
( ) ( )( )( ) ( )
( )( )( ) ( )

1 1 1 1

1 1 1 1
I e e I e I

e I I e I

B C N N N N N N

N N NN

− ≥ − −δ + δ − µ −δ + δ µ − δ µ −δµ

= − −δ + δ µ −δµ − δµ −δµ
 

Dividing by (1 )I−δµ  maintains the sign, and yields 

  ( )( ) ( )1 1 1 0I eN N N N− −δ + δ − − µ > , 

where the final inequality holds given 1IN N< −  with more than one principal. 
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 To show monotonicty in IN , we show  ( )1 1
1
1 SI

I e
I

N y
 µ

δ −
 − δµ

−
−  


 increases in IN  , where 

we of course need to keep in mind that Iµ  and S
ey  depend on IN  as well. Furthermore, it suffices 

to focus on 1
2IN N≤  since for IN N= , 0.α =  Taking the derivative with respect to IN  and  

multiplying by 

  ( ) ( )( ) ( )( )21 1 1 1 0e I e eN N N N−δµ − δ + − δµ − −δ + δ µ >   

and simplifying yields   

 
( )( )( )

( )( ) ( )( ) ( ) ( )( )( )2*

1 1 1

2 1 1 1 1

e

ii I I e e e

N N

y N N N N N N

 − − δ − δ + δ µ 

+ − −δ + − δµ − δµ − θ −δ + − δµ
  

Note that the square bracket is positive.  Since 2 IN N≥ , ( )( ) ( )( )22 1 0I I eN N N N− −δ + − δµ ≥

and is decreasing in IN .  Hence, if ( ) ( )( )( )1 1 1 0e eN N− δµ −θ −δ + − δµ ≥ , we are done. 

Otherwise, a lower bound for the whole expression is obtained by setting * 1θ= ==ii INy , which 

after simplification yields 

  
( )( )( ) ( ) ( )( ) ( )( )

( )( ) ( )

21 1 1 1 2 1 1

11 1 1 0
1

e e

e

N N N N

N
N

 − − δ − δ + δ µ − −δ − −δ + − δµ 

  = − − δ − δ + δµ >  −  

  

 Finally, we show  ( )1 1
1
1 SI

I e
I

N y
 µ

δ −
 − δµ

−
−  


 decreases in eµ . Taking the derivative with 

respect to eµ , multiplying by  

  ( )( ) ( ) ( )( ) ( )1 2 21 1 1 1 0I I e eN N N N N N
−

 − − δ δ − −δ + − δµ −δ + δ  >µ   

and simplifying yields 
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( )( )
( ) ( ) ( )( )

( )( ) ( )( )( )

2

*
2 2 2

0

1 1

1 2 1 2

1 2 2 1 1 2

e

e e I

ii I
e I e

N N

N N N
y N N N N N

>

− − − δ + δ µ

 − δµ −δ + δµ −
 

+  − θ − δ + δ − −δ δµ + + − δ µ
 
 

+


  

Because the first term is negative, if the square bracket term is negative as well we are done. We 

can maximize the above by setting 0θ =  and 1IN =  inside  [ ]⋅ , and * 1iiy =  and / 2IN N=  outside  

[ ]⋅ . Substituting and simplifying yields 

  
( ) ( ) ( )

( )( )( )

2 1
21 1 1

1 1 1 0

e e e e

e

N N N N

N N

 − − − δ + δ µ δ µ −δ + δ µ − δµ 
< − − −δ µ

+

+ δ −δ <
  

  

 

PROOF OF COROLLARY B: The limiting case is immediate from (28) and 1S
e ny ≤  from (61).  Also 

from (28), α  is increasing in N  iff S
ey  is decreasing. As N  increases, 0S

ey → , and the highest 

order term in N  of S
eN y∂

∂  is proportional to ( ) ( )( )2 1 1 0I IN − θ − δµ −δ −µ < .  Hence α  increases 

with N  for N  sufficiently large if 
( )1
1

I

I

−µ
θ < δ

−δµ
 (it can also be shown if this holds as an equality 

by checking the 1N − -order term).  Otherwise, the convergence is either decreasing or hump-

shaped.    

 

PROOF OF PROPOSITION IV: From LEMMA 2, because 1I J eNµ + µ =  and, in equilibrium, 

(1 ) S
ji j ey y= +α , 

  

( )( )

( )

ˆ
ˆ ,

1
1 1

1 1

1

j

S
i I ji J e I J e j eij

i I j I

S S
J e I J e e I J e e j

A B

Ny N N y

N yN N N N y

∈ ∈/

α
 
− = −

δ δ
≡ µ − µ µ µ α

−δ −δ

δ δ
= µ µ µ α

δ

+ 
 

− −
− −δ

∑

 

 (63) 
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and symmetrically for jα . Thus,  

  
( )

0,
1 1 1

i j i j i j

i j e J I

A

A
B

N

A B

A N
B

α α −

=

α −α

− δ −

− = +

=
− −
µ

>
δ−

 (64) 

where the final inequality follows because J IN N>  (by assumption) and 1B <  as we will show 

below.  Next note that 

  
( )

0,
1

i j i j i j

i jA

A B

B

A

A

α ++ = −

= >
+

α + α α

+  (65) 

where the last inequality follows because iA  and jA  are both positive (which follows from 

1/S
ey N≤  from (61)), and 1B > −  as we show next.  Together, (64) and (65) establish i jα > α , 

and the ranking of expected profits follows by the logic of (30). 

Finally, we need to confirm 1B < .  From (61),  

  ( ) *1 1

1 (1 )
1

e
n

S e
e e e iiny y

N
 δµ

µ = µ θ θ −
−

δ 
+

− µ
, (66) 

which is minimized by setting * 1iiyθ = =  and 1/e Nµ = ; hence, 

  ( )
( )
11 1

1 1
S

e e
N

N N N N N
y

N
− −δ δ  µ ≥ − =  − −  

.  

Therefore 

  1
1 ( 1)

S I J
I J e e

NB
N

NyN N
N

δ
= µ ≥ −

−δ −
>δ − . 

Next note that (66) is maximized by setting *0, 1,iiyθ = =  and 1/e Nµ = ; hence, 

  2
S

e ey
N
δ

µ ≤ . 

Therefore, 
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22 1

4
2 1

1 1 1
S I J

I J e e
NB N N

N
Ny δδ δ

= µ ≤ < <
−δ −δ − δ

, 

where the last inequality holds for 2( 2 1) 0.828δ < − ≈ .   

 

PROOF OF PROPOSITION V: We can write *y  as  

  ( )* * 1 11 11ii n nIy y = + θ θ ′ − , (67) 

and because 11 1 1 1−∆ = ⇒ ∆ = , we have  

  ( )1 * * 11 11 11S
ii n ny y y− − = + ∆ = ∆ ′θ − θ . (68) 

Equation (68) implies * 1[ ,1]S
ij ii ny y ∈ − θ , and S S

ii ijy y≥  follows from 1 1
ii ij
− −∆ ≥ ∆ , which we establish 

below. For the overall peer sensitivity, ( )* 11 * 11 1 1 1n n
S

ii
ny y y− +−∆ =  = + θ θ   implies 

  
( )

( )
( )

( )

*

1

1

1

11 1

11 1

1(1 1 1
1

1 1
1

1)i

S S s
ij ij nS i

n

i S S
ii ii n iiii

n

n

n i

j

ni

j
y y

y
y

y y
∈

−−

+

−

+ θ − θ
= − = − = −

+ θ −

−
=

φ ≡
∆ θ∆

θ
θ ∆ θ

−
+ −

∑ ∑

 (69) 

Thus the behavior of S
iφ  is determined by i

ii
−∆ .  Specifically,  S

i n−θ < φ <  is equivalent to 

11 1ii N−> ∆ > .  To bound 1
ii
−∆  from above, note that [ ]1

1
I∆ ≡ δµ−

−δ
 implies 

  ( ) ( )1 1 2 21 1I I− −  ∆ = −δ δµ∆ = −δ δµ + δ µ +…++  , (70) 

and therefore 1−∆  is a symmetric, strictly positive (since µ  is irreducible), stochastic matrix. 

Because 1iiµ <  and 1t
iiµ ≤  for all t ,  for (0,1)δ∈  we have 

  1 2 3(1 )(1 ) 1 (1 )(1 ) 1ii ii ii
−∆ ≤ − δ + δµ + δ + δ +… = − −δ −µ δ < .   

 To bound 1
ii
−∆  from below, we show next that the diagonal elements of 1−∆  are larger than 

the off-diagonal elements.  Suppose instead that there exists ĵ i≠  such that 1 1
ˆ max j ijij
− −∆ = ∆ . But 
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then ( )1 1 1 1
ˆ ˆˆ

maxik k ikkj ijkij

− − − −δ ∆ µ δ ∆ µ ≤ δ ∆ ∆= <∑ , contradicting ( )1 11 I− −∆ δ += − δ∆ µ . Hence 

1 1m 1axii j ij N− −∆ = ∆ ≥ . 

 In the limit when 1δ = , (70) implies 1 1 1t− − −∆ == µ∆ µ ∆ .  Because µ  is ergodic and doubly 

stochastic, 1/t
ij Nµ →  as t →∞ , and therefore 1 1ij N−∆ → .  Therefore, * (1 ) /S

ij iiy y N→ −θ . 

 Finally, from (70), 

  

( ) ( )
( ) ( )

[ ]

( )

( )

( )
1 1

1 1 1 1

1 1

1 1 1 1 1

from
11

1

from

1 1

1

1
(11 )

II

I I

I I

I

− −= +

∂

−

− − − −∂ ∂
∂δ ∂δ ∂δ

− −

− − − − −

∆ −δ δµ∆∆≡
−

δµ
δ

 ∆ = −δ δµ∆ = − µ∆ δµ ∆ 

δµ µ∆

−
∆ ∆

+ − +

=


∆ = ∆ ∆

− − −

  = − − −  − δ δ δ − δ


 (71) 

Because 1 1 1max minii j ij j ij
− − −= ∆ ∆>∆  for (0,1)δ∈ , we have 

  

( ) ( )
( )

21 1 1 1 1

1 1 1

1 1 1

max

0

ii ijii

ii j ij ij

ii

j

i

j

i

− − − − −

− −

=

−

− −

∆ ∆ ∆ = ∆ ∆

> ∆ ∆ ∆

− −

−

= −∆ ∆ =

∑
∑


 

and thus 1 0ii
−∂

∂δ ∆ < .   

 

PROOF OF PROPOSITION VI:  With uniform internal and external weights, the symmetric matrix 

µ  can be diagonalized with three distinct eigenvalues 

  

multiplicity 1 multiplicity 

1{ , , {1 , / }} ,

−

= µ − µ µ = −µ−
 

N N
IN NI I

n

a b I I e t I Ie e e N n . 

It is straightforward to show that 1−∆  has the same structure with eigenvalues 

  1 11 , ,
1 1

 − −
= = 

δ δ
δ δ − − a be e

a b , 

and thus has corresponding external, internal, and diagonal elements: 
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  1 1− −
∆ =e

a
N

, 1 1− − −
∆ = ∆ +t e

I

a b
N

, 1 1− −∆ = ∆ +ii t b . (72) 

Equilibrium contracts are given by ( ) ( ) 1 *1 1 −= + α = +α ∆M S
iiy y y , with external, internal, and 

own exposures 

  ( ) 11 1
* 1 −= θ ∆ − θ+
S
x

xn n
ii

y
y

.  (73) 

Because ( )
( )

1 11
1 1

− δ δµ
∆

−−
= = =

− µ−δ δ + δ
a e

e
a eN

e
e N

a
N

, we have 

  
( ) ( ) *

11 1
1

δµ θ θ δ

δ

− −

δ

−

−
=

+ µ
eS

e i
n

i
e

y y
N

 , 

which is increasing in µe  and implies (37). Because the rat race factor α  is also increasing in µe  

from PROPOSITION III, M
ey  is also increasing in µe .   

Note that  

 ( )
( )

( )
( )

1
2 2

1 11 1 1 1 11
1 1

−∂
∂

− −       
∆ = − ′ + − ′ = − ′ + ′       

− −       e

I
ii a b

I I I Ia b

na b e e
N N N N N Ne eµ

δ δ δ δ

δ δ
, 

and because 1≤ ≤b ae e ,  ′ = −ae N , and ( ) /′ = −b I Ie N N n ,  

  ( )
( ) ( )

1
2 2

1 11 1 0
1 1

−∂
∂µ

  
 ∆ = δ − δ − − ≤  − δ − δ  

e ii
I b a

N
N e e

, 

with equality if and only if 1/µ =e n .  Hence (33) implies φi  is increasing in µe . 

When 0µ =e , then 1µ = = =I ae a  and so 1 0−∆ =e  and 1= − θe ny . Because 0α =  and 

( )
( )

( )
( )

1

1

1
11

1 1
1−

δδ− δ
∆ =

δ δ

+−
= = =

− ++ δ
I

I

b
t

I I b

n

InIN
eb

e nNN
, the optimal contract has team weights   

  * δ θ
= =  δ 

−
+

In
M S n
t t ii

I

y y y
n

.   
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PROOF OF COROLLARY C: With equal weights, 

 
1 11 11

1 1
n nI+ δ δ

∆ = − ′
− δ − δ

, 
1

1
1 1

1 11
1 1

n

n n

I− δ− δ
+

+ δ + δ
=∆ ′ , and ( )* * 1 11 11ii n nIy y= θ θ ′ + −  , 

and the result then follows from (21). The rat race factor is immediate from (38) and (28).   

 

PROOF OF COROLLARY D: From (70), ( )1 11 I− −∆ = +−δ δµ∆  implies 1 1 ,1ii max
−  ∆ ∈ −δ −δ + δ µ 

.  Then from (33),  

  ( ) 1 11

1 11 1
11 n

S
i

iin
−

θ θ
φ

− −
= − −

−+
→

δθ ∆ θ−
,   (74) 

and the result follows.  

 

PROOF OF COROLLARY E: Let ( , )d i j  be the distance between i  and j  on the circle. Then we 

can check that  

  
( , ) ( , )

1 1
1 1

d i j N d i j

ij N

z z
z

−
−  − +
=  −δ 

δ
+ 

∆   where 2

1 1 1 (0,1)z ∈
δ

−=
δ

− . (75) 

Therefore, 1 0−∆ >ij  is decreasing in ( , )d i j , and thus 1− θ>ij iiny y  and decreasing in ( , )d i j .  In 

addition, 

  1 1 1 1
1 1 1

N

ii N

z
z

− δ δ
∆

δ
 − + −

=  →+  δ +−
 as N →∞ , (76) 

and so from (33)  the result follows because 
( ) 1 111

1 11 1
1 −−

− −
= − −

+ −
θ θ

φ →
∆θ ∆ θn

i
iiiin

.  

 

PROOF OF COROLLARY F: From (70), 
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( )

( )

1 1 1

1

1 1

1 1

1 ( ) ( )

( )

( )  because ( )1 0

0  be .cause 

− − −∂ ∂
∂λ ∂λ

−

− −

− −

   ∆ = −δ δµ λ ∆ = δ

=

µ′ λ ∆   
δ µ ′ λ ∆

δ µ ′ λ ∆ ∆ ← µ′ λ

←

+

=

− =

> ∆ ≤ ∆

∑
∑

ii ii ii

ij jij

ij ji iij

ji ii

I

 

Hence, ( ) 0φ ′ λ <i  from (33).   

 

PROOF OF PROPOSITION VII: Note first that 11 1−′∆ = ′  implies 11 1 1−′∆ = ′∆ ∆ = ′ , and then because 

1 1I ∆−
−δ

µ =
δ δ

, we have 11 1 11 1−δ
′µ = ′ ′∆ = ′

δ δ
− .  Therefore, 1 1′µ ≡ µ = ′/  implies 11 1−ω′ ≡ ′∆ = ′/

.  Moreover, because 11 1 1 11 N−ω′ = ′∆ = ′ = , by Jensen’s inequality we have 1
jj

N−ω >∑ . 

Next, recall from (54) that the principal maximizes 

  11 [ ] 1 [ ] 1 ( ) )(i i i i ii i
E q w E q w E q C CE q−   − = ′ − = ′ − ′∆ β = −ω β   ∑ ∑ , (77) 

from which the optimal effort level follows. The principal’s total expected payoff is  

  ( ) ( )0
1 1
2 2

* 1 * *
0 0 0( ) −− + ω > − + = π∑i j i ij

N aNaq c q c N ,  

which improves upon the RPE payoff.    

 

PROOF OF PROPOSITION VIII: In this setting, we can represent ∆  in block format as 

, ,

,0

N J J N J N J

J J N JI

− − −

− 
∆ =  ∆ ∆ 

 with 

  
,

1 1
1

1
N J J N J Jn− −

δ
− δ

− ′∆ = , and 
( ),

1

,1
1 1 1

1
1

N J N J

n
N J JN N J NJI

n− − − − −−

+ δ
∆

δ ′
− δ

= −
−δ

. 

Computing the inverse yields  
, ,

,1
1 1

0

N J J N J N J

J J N JI

− − −

−−
− −

 
∆ =  ∆ ∆ 

 with 

  
( ),

1 1 1 1
1 1 /N J J N J Jn J n− −

− δ ′
− − δ

∆ = , and   
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( )

( )
( )( ),

1
,1 1

1 1
1

1
1 1

1 1 /1N J N J N J N JN J N J
n nn J n

I
− −

−
−− −−

− δ
∆

−
= +

+ δ
−δ

δ δ+
δ ′

−
 . 

Finally, by direct calculation, the effective cost for each agent type is 

 ( )
( ) ( )

1
1

1 1j

n J n
n J n J

+ − δ + δ
ω = + =

−δ + δ − δ + δ
 and 

 ( )
( )

( ) ( )
1 1 1

1 1 1 1 
(1 ) )

1
1 1 1(1m j j

n n n

n J n
n J n J

−δ
+ω

+ − δ −δ −δ − δ
=

+
= = ω < ω

−δ + δ −δ + δ+ δ δ + δ
. 

Letting 
1

1
1

1+ δ
ψ = >

−δ
n , from PROPOSITION VII we have 

1

1

A
m m
A
j j

a
a

−

−

ω
= ≡ ψ
ω

, and 
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PROOF OF LEMMA 3: Following the proof of LEMMA 2, holding the contracts and actions of all 

other agents ij J N∈ =  fixed,  
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In addition, by changing [ ]iE q , the principal also changes the expected wage to agent î  by îiy .  

Therefore, letting ˆ
iI I= , the principal will choose iβ  to maximize 
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which is solved by *(1 )R R
i i iyβ = +α .    

 

PROOF OF PROPOSITION IX: Using (44) with symmetric Rα , 
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where the final step follows because 
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To show that Rα > α , note from (60) and (61) that 



58 
 
 

  
( )

( ) ( )

1
1

1 (1 ) 1 111

I

IIe
e

e I II

I

N N
N N N

N
N N

−µ
δ

δ −µ−δµ
λ = =

−δ − µ −δµ − −δ−µ
−δ +

 
 
 =

 
δ 

 − 

, 

and 

  ( )( ) ( )( )
( ) ( )

* *
11 1

1 11 1
1

1 IS
e e ii ii

I I

N
N

y y y
N N

N
N

 δ −µ θ
 = λ θ θ θ
 − δµ −

=
−δ 

− +
− + − −

− −
. 

Therefore, 

 

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )

*

*

*

11
1 1

1 11

1 11 1

1
1

1 1

1 1 1
1

(

1

1

1

α α+ +

 − − + − −− −

δ

µ δ δ θ −δ −
−δµ

µ µ
δ δ δ θ δ

− δµ −δµ


 

    − −

θ
δ − δ µ −δµ −δ 

δ +  δµ − δµ 

−
=

+= − − − − − + −         
−

= − −
−





SSI
ii I eI e

I

S SI I
ii I e e

I I

I I I S
ii e

I I

R

y N N y

y Ny

N
y

N y

N y

N
y

( )
( )

*1)
1

0,

1
 
 

 −µ
δ − δ − θ 

µ −−  δ µ 
≥

II
ii

I I

y
N

N

 

and the inequality is strict as long as 1>IN  so that 0µ >I . The formula for Rα  with equal weights 

on all agents follows from (38).    

 

PROOF OF COROLLARY G: The rat race results follow from PROPOSITION III.  The effects on ey  

follow because, from (61),  
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which is monotone in both δ  and µe .  The final bullet follows from PROPOSITION V and 

PROPOSITION VI, and the fact that from (72) and (73), 
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PROOF OF PROPOSITION X:  Following the steps of the proof of LEMMA 2 up to (58), but now 

retaining the terms that depend on Jq , we see that maximizing Iπ  is equivalent to maximizing  
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where  ( )( 1) 2 )(= µ + − −+e jj I t I eNy y N y N y .  Recall that /i iia k= β , and hence we can 

equivalently maximize 
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Taking the first-order condition of (79) with respect to βii  we have: 
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or equivalently,  
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Finally, the first-order condition with respect to ijy  implies 
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Summing (81) and (82), 
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Note that without public disclosure, 0∂β
∂ =jj

ijy , so that the last term in (82) is zero.  Hence the solution 

is the same as with 0ν = , which matches the result of LEMMA 2.  Note also, in equilibrium, the 

sensitivities for each agent should be consistent with the contract parameters; that is β = ∆y : 
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We thus have six linear equations we can solve to determine the six unknowns ( , )D Dyβ .      

  



62 
 
 

8. References 

Aggarwal, R. K., and A. A. Samwick. 1999a. The Other Side of the Trade-Off: The Impact of 

Risk on Executive Compensation. Journal of Political Economy 107:65–105. 

———. 1999b. Executive Compensation, Strategic Competition, and Relative Performance 

Evaluation: Theory and Evidence. Journal of Finance 54:1999–2043. 

Antle, R., and A. Smith. 1986. An Empirical Investigation of the Relative Performance 

Evaluation of Corporate Executives. Journal of Accounting Research 24:1–39. 

Anton, M., F. Ederer, M. Gine, and M. Schmalz 2016. Common Ownership, Competition, and 

Top Management Incentives.  Working paper, University of Michigan. 

Barro, J., and R. Barro. 1990. Pay, Performance, and Turnover of Bank CEO's. Journal of Labor 

Economics 8: 448-81. 

Bartling, B. 2011. Relative Performance or Team Evaluation? Optimal Contracts for Other-

Regarding Agents. Journal of Economic Behavior & Organization 79 183– 193. 

Bartling, B., and F. von Siemens. 2010. The intensity of incentives in firms and markets: moral 

hazard with envious agents. Labour Economics 17 (2), 598–607. 

Bellet, C. 2017. The Paradox of the Joneses: Superstar Houses and Mortgage Frenzy in Suburban 

America.  London School of Economics, CEP Discussion Paper No 1462. 

Bertrand M, Mullainathan S. 2001. Are CEOs rewarded for luck? The ones without principals 

are. Quarterly Journal of Economics 116(3):901‐32. 

Bouwman, C.H.S. 2013 The Geography of Executive Compensation. Wharton Financial 

Institutions Center working paper. 

Card, D., A. Mas, E. Moretti, and E. Saez. 2012. Inequality at Work: The Effect of Peer Salaries 

on Job Satisfaction. American Economic Review: 2981-3003. 

Carlsson,. F., G. Gupta and O.  Johansson-Stenman. 2009. Keeping up with the Vaishyas? Caste 

and relative standing in India. Oxford Economic Papers 61:  52–73. 



63 
 
 

Clark, A.E. 1996. L'utilité est-elle relative? Analyse à l'aide de données sur les ménages. 

Economie et Prévision, vol.121, pp. 151-164. 

Clark, A.E. and A.J.  Oswald.  1996. Satisfaction and comparison income. Journal of Public 

Economics 61: 359-81. 

DeMarzo, P., M. Fishman, Z. He, and N. Wang. 2012. Dynamic Agency and the q Theory of 

Investment. Journal of Finance 67 (6), 2295-2340. 

Dohmen, T., A. Falk, K. Fliessbach, U. Sunde and B. Weber. 2011. Relative versus absolute 

income, joy of winning, and gender: Brain imaging evidence. Journal of Public 

Economics 95: 279-285. 

Duchin, R., A. Goldberg, and D. Sosyura. 2016. Spillovers inside Conglomerates: Incentives and 

Capital. Review of Financial Studies, forthcoming. 

Dur, R., and A. Glazer. 2008. Optimal contracts when a worker envies his boss. Journal of Law, 

Economics, and Organization 24 (1), 120–137. 

Englmaier, F., and  A. Wambach. 2010. Optimal Incentive Contracts under Inequity Aversion. 

Games and Economic Behavior 69 (2), 312–28. 

Ederer, F. and A. Patacconi. 2010. Interpersonal Comparison, Status and Ambition in 

Organizations. Journal of Economic Behavior & Organization 75 (2010) 348–363. 

Ferrer-i-Carbonell, A. . 2005. Income and well-being: an empirical analysis of the comparison 

income effect. Journal of Public Economics 89: 997 – 1019. 

Fershtman, C., H.K. Hvide, and Y. Weiss. 2003. A behavioral explanation of the relative 

performance evaluation puzzle. Annales d’Economie et de Statistique (71–72), 349–361. 

Fliessbach, K., B. Weber, P. Trautner, T. Dohmen, U. Sunde, C. E. Elger and A. Falk. 2007. 

Social  

Comparison Affects Reward-Related Brain Activity in the Human Ventral Striatum. Science 318 

(5854): 1305-1308. 

Frydman, C. and D. Jenter. 2010. CEO Compensation.  Annual Review of Financial Economics 

2: 75-102. 



64 
 
 

Garcia, D. and G. Strobl 2011. Relative Wealth Concerns and Complementarities in Information 

Acquisition. Review of Financial Studies 24:169-207. 

Gartenberg, C. and J. Wulf. 2016. Pay Harmony? Peer Comparison and Performance 

Compensation in Multi-business Firms.  Working paper, Harvard Business School. 

Garvey, G., and T. Milbourn. 2003. Incentive Compensation When Executives Can Hedge the 

Market: Evidence of Relative Performance Evaluation in the Cross Section. Journal of 

Finance 58:1557–81. 

Garvey, G., and T. Milbourn.  2006. Asymmetric Benchmarking in Compensation: Executives 

Are Rewarded for Good Luck But Not Penalized for Bad. Journal of Financial 

Economics 82:197–225. 

Ghazala, A. and N. Iriberri. 2010. The importance of relative performance feedback information: 

Evidence from a natural experiment using high school students. Journal of Public  

Economics 94: 435-452.Gibbons, R., and K.J. Murphy. 1990. Relative Performance Evaluation 

for Chief Executive Officers. Industrial and Labor Relations Review 43(3):   30S-51S. 

Gipper, B., 2016, Assessing the Effects of Disclosing Management Compensation, Working 

paper Stanford University. 

Goel, A.M., and A.V. Thakor. 2005.  Green with Envy: Implications for Corporate Investment 

Distortions.  Journal of Business 78(6), 2005, pp. 2255-2288. 

Goel, A.M., and A.V. Thakor. 2010. Do envious CEOs cause merger waves? Review of 

Financial Studies 23, 487–517. 

Gopalan, R., T. Milbourn and F. Song. 2010. Strategic Flexibility and the Optimality of Pay for 

Sector Performance. Review of Financial Studies 23: 2060-2098. 

Goukasian, L. and X. Wan. 2010. Optimal Incentive Contracts Under Relative Income Concerns. 

Mathematics and Financial Economics 4:57-86. 

Hall, B.J., and J.B. Liebman. 1998. Are CEOs Really Paid Like Bureaucrats? Quarterly Journal 

of Economics 3: 653-691. 



65 
 
 

Heffetz, O. and R.H. Frank. 2011. Preferences for Status: Evidence and Economic Implications. 

In Jess Benhabib, Alberto Bisin, and Matthew Jackson (eds.), Handbook of Social 

Economics (vol. 1A, pp. 69-91). Amsterdam: Elsevier. 

Himmelberg, C.P., and R.G. Hubbard. 2000. Incentive pay and the market for CEOs: An analysis 

of pay-for-performance sensitivity.  Working paper Columbia University. 

Ibert, M., R. Kaniel, S. Van Nieuwerburgh, and R. Vestman. 2018. Are Mutual Fund Managers 

Paid For Investment Skill? Review of Financial Studies 31(2): 715–772. 

Janakiraman, S. N., R. A. Lambert, and D. F. Larcker. 1992. An Empirical Investigation of the 

Relative Performance Evaluation Hypothesis. Journal of Accounting Research 30:53–69. 

Jenter, D. and F. Kanaan. 2014. CEO Turnover and Relative Performance Evaluation.  Journal of 

Finance, forthcoming. 

Jensen, M. C., and K. J. Murphy. 1990. Performance Pay and Top-Management Incentives. 

Journal of Political Economy 98:225–64. 

Joh, S.W. 1999. Strategic Managerial Incentive Compensation in Japan: Relative Performance 

Evaluation and Product Market Collusion. The Review of Economics and Statistics 

81(2):303-313. 

Knight, J., L. Song and R. Gunatilaka. 2009. Subjective well-being and its determinants in rural 

China. China Economic Review 20: 635–649. 

Koszegi, B. 2014. Behavioral Contract Theory. Journal of Economic Literature 52(4):1075-

1118. 

Liu, Qi and Bo Sun. 2016. Relative Wealth Concerns, Executive Compensation, and Systemic 

Risk-Taking. Working paper, Federal Reserve Board of Governors. 

Luttmer, E. 2005. Neighbors as negatives: Relative earnings and well-being. Quarterly Journal 

of Economics 120: 963-1002. 

Mas, A., 2016, Does Disclosure affect CEO Pay Setting? Evidence from the Passage of the 1934 

Securities and Exchange Act, Working paper Princeton University. 



66 
 
 

Miglietta, S. 2008. Incentive Contracts and Status-Concerned Agents. Working Paper BI 

Norwegian School of Management. 

Neumark, D., and A. Postlewaite.1998. Relative income concerns and the rise in married  

women’s employment. Journal of Public Economics 70: 157–183. 
Oyer, P. 2004. Why Do Firms Use Incentives That Have No Incentive Effects? Journal of 

Finance 59, 1619–1640. 

Park, Y.W., T. Nelson, and M.R. Huson, 2001, Executive Pay and Disclosure Environment: 

Canadian Evidence, Journal of Financial Research, 347-365. 

Perry, T., and M., Zenner, 2002, Pay for performance? Government regulation and the structure 

of compensation contracts, Journal of Financial Economics, 435-488. 

Schmidt, C., 2012, Does Transparency Increase Executive Compensation?, Working paper, 

SSRN. 

Shue, K. 2013. Executive Networks and Firm Policies: Evidence from the Random Assignment 

of MBA Peers, Review of Financial Studies 26, 1401-1442. 

Silva, R. 2013. Internal Labor Markets and Investment in Conglomerates. Working Paper, 

London Business School. 

 


	1.  Introduction
	1.1. Related Literature

	2. A Model of Peer-Contracting
	2.1. Peers and Preferences
	2.2. Production and Wages
	2.3. Teams
	2.4. Contracting
	Figure 1: The Contracting Game for a Single Principal The principal-agent problem for team I (taking all other contracts and actions as given).
	Figure 2:  Alternative Channels by which Effort and Output Impact Utility Standard principal-agent model is shown in solid blue. The information channel for relative performance evaluation is shown in dashed green.  The dotted orange channel represent...

	2.5. The RPE Benchmark
	Lemma 1 (Relative Performance Evaluation).  Absent relative wage concerns , the optimal contract for each agent solves
	Remark. In the subsequent analysis, it will sometimes be useful to consider comparative statics in the size of the peer population, , while keeping the fundamentals of the agency problem unchanged.  To do so, we can vary  while holding fixed , which ...


	3. Peer-Contracting Equilibrium
	3.1. Efficiency and Rat Races
	3.1.1. Optimal Welfare
	Proposition I (Single Principal: Welfare Equivalence). Suppose agents have relative wage concerns  and there is a single principal . Then the principal will choose  to solve , and effort, expected output and profits are equal to the RPE outcome and in...
	Corollary A (Optimal Wages).  Let  be the wages paid with RPE contracts, and let  be the optimal wages with a single team.  Then,
	3.1.2. Rat Race Distortions
	Lemma 2 (Team Contract).  Given the contracts and actions of other teams, the optimal contract  for agent  on team  has exposures  and action , where
	Proposition II (Symmetric Team Equilibrium: Rat Race).  In the multi-team equilibrium, optimal contracts  and actions  are given by
	Proposition III (Rat Race Monotonicity).  In the team equilibrium with multiple teams and positive external weights , the rate race distortion  decreases with team size  and increases with the external weights  and the strength  of peer effects.  As ,...
	Corollary B (Diffuse External Peers).  Holding  fixed as , .  When  is large,  increases with  if and only if
	Proposition IV (Asymmetric Team Size).  Suppose there are two teams  and  of size , with symmetric external weights  for  and .  Then for , the rat race effect is larger for the smaller team, , and its expected profits are lower.

	3.2. Wage Sensitivity and Correlation
	Proposition V (Contract Sensitivities).  In the single team setting of Proposition I, contract loadings are compressed relative to the RPE setting:

	3.3. Special Cases
	Proposition VI (Uniform Internal and External Weights).  Suppose agents have uniform internal and external weights with . Then equilibrium contracts have uniform internal and external exposures
	Corollary C (Equal Weights).  Suppose  for all .  Then
	Figure 3: Wage Volatility and Dispersion Wage volatility (expressed relative to ) declines, and wage correlation increases (converging to 1), with the strength  of peer effects. (Uniform weights, , ).
	Corollary D (Diffuse Weights).  Suppose  as .  Then
	Corollary E (Circular Weights).  Consider a circular network of peers in which each agent puts equal weight on their two nearest neighbors.  Then  is decreasing in the distance between  and , with .  Moreover,
	Corollary F (Asymmetric Delta).  Let  be a valid peer matrix parameterized by .  Suppose  and  for all .  Then .


	4. Asymmetric Visibility and Efficiency Gains
	Proposition VII (Asymmetric Visibility and Efficiency Gains).  Suppose that we relax the symmetry assumption so that for at least one agent , . If , then although the relative contract sensitivities satisfy  as before, a single principal can distort e...
	Figure 4: Benefit to Principal from Agent Heterogeneity The average benefit per agent to the principal   as function of standard deviation of  . Simulating 40,000 random stochastic matrixes  for . Blue (orange) dots are for
	Proposition VIII (Mixed Population).  Suppose agents  are independent, whereas agents  are peer-dependent. Then independent agents receive a standard RPE contract with .  Peer-dependent agents work harder than independent agents,

	5. Disclosure Effects
	5.1. Private Negotiation
	Lemma 3 (Private Negotiation Contract).  Given the contracts and actions of other agents, principal  has an incentive to renegotiate privately with agent  unless agent  has exposure   where
	Proposition IX (Private Negotiation Equilibrium).  Under  and , with  for all , in the symmetric equilibrium with private renegotiation,

	5.2. Wage Transparency and Public Disclosure
	Corollary G (Wage Transparency).  In the symmetric team setting of Proposition II, suppose an increase in transparency or disclosure leads to an increase in .  This change will lead to an
	Figure 5: Effect of Increased Wage Transparency on Contract Sensitivities and Rat Race Effects Increased wage transparency strengthens peer effects (higher ) especially for external peers (higher ). As a consequences, the contract sensitivities and ra...

	5.3. Ex Ante Contract Disclosure
	Figure 6: Contracting Game with Ex Ante Disclosure
	Proposition X (Ex Ante Disclosure).  Suppose teams have the same size  and agents have uniform internal and external peer weights: ,  for  and  for .  Then the equilibrium contracts with ex ante disclosure have uniform internal and external loadings: ...
	Figure 7: Effort and Contract Sensitivity with Ex Ante Disclosure Ex ante disclosure increases contract sensitivity to external peers and decreases effort relative to case when contracts are not externally disclosed. (Parameters: ).


	6. Conclusion
	7. Appendix
	Proof of Lemma 1: When , the contracting problem for agent  is independent of the wage contracts of other agents, except to the extent that other agents’ actions affect the expectation of the benchmark . Because , the agent will choose effort  to maxi...
	Proof of Proposition I: Note first that the participation constraint for each agent must bind, as otherwise the principal could cut the fixed component of the wage, increasing profits and (due to peer effects) relaxing the participation constraint of ...
	Proof of Corollary A: From ,  and given the definition of , we have
	Proof of Lemma 2: For an N-row matrix, , let  be the matrix formed from rows , and  be the matrix formed from rows .  Similarly, let  and  select the corresponding rows and columns (where we interpret column  when relevant).  Then, because ,
	Proof of Proposition II: In a symmetric equilibrium, , and Lemma 2 implies the principals choose sensitivities .  Because ,
	Proof of Proposition III: From , as , .  For  (equivalently,  and ), from , .   Combining these results and using , we have
	Proof of Corollary B: The limiting case is immediate from  and  from .  Also from ,  is increasing in  iff  is decreasing. As  increases, , and the highest order term in  of  is proportional to .  Hence
	Proof of Proposition IV: From Lemma 2, because  and, in equilibrium, ,
	Proof of Proposition V: We can write  as
	Proof of Proposition VI:  With uniform internal and external weights, the symmetric matrix  can be diagonalized with three distinct eigenvalues
	Proof of Corollary C: With equal weights,
	Proof of Corollary D: From ,  implies .  Then from ,
	Proof of Corollary D: From ,  implies .  Then from ,
	Proof of Corollary E: Let  be the distance between  and  on the circle. Then we can check that
	Proof of Corollary F: From ,
	Proof of Proposition VII: Note first that  implies , and then because , we have .  Therefore,  implies .  Moreover, because , by Jensen’s inequality we have .
	Proof of Proposition VIII: In this setting, we can represent  in block format as  with
	Proof of Lemma 3: Following the proof of Lemma 2, holding the contracts and actions of all other agents  fixed,
	Proof of Proposition IX: Using  with symmetric ,
	Proof of Corollary G: The rat race results follow from Proposition III.  The effects on  follow because, from ,
	Proof of Proposition X:  Following the steps of the proof of Lemma 2 up to , but now retaining the terms that depend on , we see that maximizing  is equivalent to maximizing

	8. References



