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1 Introduction

Panel data are widely used to assess causal effects of policy interventions on economic outcomes.

These data are particularly useful in settings where researchers are concerned with the presence

of unobserved confounders that invalidate simple comparisons between treated and control out-

comes. With Yit the outcome of interest for unit i in period t, the general setup we consider is

Yit = gt(Wit, Ui, Xit, εit), (1.1)

with Wit an indicator for the treatment, Ui the unobserved confounder, Xit the observed at-

tributes, and εit an independent idiosyncratic error term. The possibility that Ui may be cor-

related with Wit even after controlling for observed characteristics prevents us from estimating

the average effect of Wit on the outcome by comparing treated and control outcomes.

The conventional strategy to deal with the unobserved confounder is to impose restrictions

on the outcome model gt(·) that allow us to remove dependence on Ui. The most common

approach in empirical work relies on a linear additive two-way fixed effect specification for the

outcome model,

gt(w, u, x, e) = α(u) + λt + wτ + x>β + e, (1.2)

in combination with εit ⊥⊥ {(Wil, Xil)}Tl=1, so that the parameters can be estimated by least

squares regression.

In this paper we focus on a different, what we call a design-based, strategy. Recall the

basic linear regression omitted-variable-bias formula insight that the bias from an unobserved

confounder comes from the combination of its correlation with the outcome and its correlation

with Wit. As an alternative, or complement, to building a model for the outcomes that restricts

the dependence of the outcomes on the unobserved confounders, we can therefore restrict the

dependence of the assignment mechanism on the unobserved confounder to remove the bias. Let

W i be the T -vector of assignments with typical element Wit. The restrictions we consider are
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of the form

W i ⊥⊥ Ui

∣∣∣ Si, (1.3)

where Si is a known function of W i. For example, Si may be equal to the average treatment

assignment for unit i, W i =
∑

tWit/T . This would amount to the assumption that units with

the same fraction of treated periods are comparable. Later in the paper we provide several

examples of statistical and structural economic models that justify (1.3) for a particular choice

of Si. If (1.3) holds, we can compare treated unit that are treated with control of unit as long as

the units have the same value for Si. Whether the restrictions in a model such as (1.2) are more

plausible than a restriction as in (1.3) depends on the substantive application. For example

when nonlinearities are important (e.g., Løken et al. [2012]), the model-based approach may be

challenging. The first contribution here is to point out that an alternative to the outcome-model

based strategy is to build a model for the assignment mechanism.

The second contribution of the paper is the insight that one can combine the two strategies,

model-based and design-based, into a single, doubly-robust identification strategy. Models such

as (1.2) validate a particular set of comparisons between treated and control outcomes. The

restriction in (1.3) validates a different set of comparisons between treated and control outcomes.

In many cases we can focus on comparisons that are validated by both the model in (1.2) and

the restriction in (1.3). Such comparisons remain valid as long as at least one of the models is

correct.

To implement our strategy we restrict attention to linear estimators that are widely used

in economics and statistics (e.g., Donoho et al. [1994], Armstrong and Kolesár [2018b]). Our

estimator has the following form:

τ̂ =
1

NT

∑
i,t

γitYit (1.4)

where researchers explicitly select the weights γit by solving a quadratic optimization problem.

Our estimator remains consistent if either outcome or assignment model is correctly specified and

is robust to arbitrary heterogeneity in treatment effects (thus addressing concerns expressed in

de Chaisemartin and D’Haultfœuille [2018]). We also provide an extension to general non-binary

treatments.
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It is important to note that our strategy is not based on constructing consistent estimates

for Ui and then controlling for it. In fact, in the fixed T case we consider, it is usually impossible

to build an unbiased estimator for Ui. Instead, we leverage the fact that the distribution of Ui

stays constant for units with different assignment paths W i as long as we restrict our attention

to subpopulations defined by Si. This emphasizes the practical role that design assumptions

can play in models with unobserved heterogeneity. We can interpret the conventional two-way

fixed effect estimator also as following our approach. Specifically, it can be viewed as comparing

treated and control units at the same point in time within the set of units with the same fraction

of treated periods, that is, conditioning on Si =
∑T

t=1Wit (e.g., Mundlak [1978]). However, as

we show by a simple example, the two-way fixed effect estimator is not doubly robust, primarily

because it controls for Si only linearly. Our proposed estimator explicitly deals with this problem,

while also addressing potential issues that two-way fixed effect estimators have in the presence

of heterogeneous treatment effects.

The additive structure in (1.2) has a long history in applied economics (going back at least to

Mundlak [1961], Hoch [1962], Mundlak and Hoch [1965]) and econometrics (e.g., Chamberlain

[1984, 1992], Arellano and Bonhomme [2011], Graham and Powell [2012], Chernozhukov et al.

[2013], Freyberger [2018]). The second approach justifies (1.3) by putting additional restrictions

on the relationship between W i and Ui, or, in other words, by formulating an assignment model.

This type of restrictions on the assignment mechanism are at the heart of the “credibility

revolution” in applied economics (Angrist and Pischke [2010]) that emphasizes the role of the

research design. Many strategies currently used for causal inference with cross-sectional data

are based on such design assumptions (see Angrist and Pischke [2008], Currie et al. [2020] for

evidence on this). Although less common than outcome modeling in panel data settings, this

design-based approach has been used to achieve identification in settings with grouped data,

e.g., the exchangeability assumption in Altonji and Matzkin [2005], or the exponential family

assumption in Arkhangelsky and Imbens [2018] (see also Borusyak and Hull [2020]). We are

making two contributions to this literature. First, building on the research on binary panel

models (e.g., Honoré and Kyriazidou [2000], Chamberlain [2010], Aguirregabiria et al. [2018]), we

show how to use design-based assumptions to identify treatment effects in this setting. Second,

we propose a doubly robust identification strategy that combines the models for outcomes and

assignments and remains valid if either of them is correctly specified. In practice, this means

that applied researchers can directly exploit information about economic mechanisms behind
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different patterns in W i, without abandoning familiar outcome models such as (1.2).

This paper is also directly related to recent causal panel literature that focuses on two-way

fixed effect estimators (de Chaisemartin and D’Haultfœuille [2018], Callaway and Sant’Anna

[2019], Sant’Anna and Zhao [2020], Goodman-Bacon [2017], Athey and Imbens [2018]). Similarly

to these papers, we use the two-way structure to model the baseline outcomes. However, our

focus is quite different. First, we consider general designs, whereas the previous research has

been focused on either block case or staggered adoption. Second, we develop a new estimator,

that directly utilizes both assignment and outcome model. Finally, our identification strategy

can be applied more broadly. In particular, although we focus on the two-way model for the

baseline outcomes, the strategy can be extended to general factor models, thus connecting to

the literature on synthetic control (e.g., Abadie et al. [2010], Xu [2017], Athey et al. [2017],

Abadie et al. [2010], Ben-Michael et al. [2018], Arkhangelsky et al. [2019], Chernozhukov et al.

[2019]).

2 Setup

In a generic panel data set up we observe N units over T periods (i and t being a generic unit

and period, respectively), e.g., Chamberlain [1984], Arellano and Honoré [2001], Hsiao [2014],

Baltagi [2008], Wooldridge [2010], Arellano et al. [2007]. We focus on settings with large N

and fixed T . We are interested in the effect of a binary policy variable w on some economic

outcome Yit. Later we discuss settings with more general treatments or policies. To formalize

this we consider a potential outcome framework (Rubin [1974], Imbens and Rubin [2015]). The

policy or treatment can change over time, and so is indexed by unit i and time t, Wit ∈ {0, 1}.
Let wt := (w1, w2, . . . , wt) denote the sequence of treatment exposures up to time t, with w

as shorthand for the full vector of exposures wT . Define W i := (Wi1, . . . ,WiT ) to be the full

assignment vector for unit i. For the first part of the paper we abstract from the presence of

additional unit-level covariates. We explicitly introduce them in Section 5. In general, one can

view all our identification results as conditional on covariates.

Let Yit(w
t) denote the potential outcome for unit i at time t, given treatment history up to

time t:

Yit(w
t) ≡ Yit(w1, w2, . . . , wt). (2.1)
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In this paper we consider a static version of this general model where some potential outcomes

are identical.

Assumption 2.1. (No Dynamics) For arbitrary t-compponent assignment vectors wt and wt′

such that the period t assignment is the same, wtt = wt′t the potential outcomes in period t are

the same:

Yit(w
t) = Yit(w

t′). (2.2)

This restriction implies that past treatment exposures do not affect contemporaneous out-

comes. This assumption does not restrict time-series correlation in the realized outcomes and

so on its own does not have any testable implications. However, given a particular assignment

process, Assumption 2.1 can be tested. Because a substantial part of the empirical literature

focuses on contemporaneous effects and assumes away dynamic effects, we view this as a natural

starting point. The conceptual issues we raise are relevant for the dynamic treatment effect case

as well but are discussed most easily in the static case.

Given the no-dynamics assumption we can index the potential outcomes by a single binary

argument w, so we write Yit(w), for w ∈ {0, 1}. Define also Y i(w) ≡ (Yi1(w1), . . . , Yit(wT )) to

be the vector of potential outcomes. In this setup we can be interested in various treatment

effects. The main building block is the individual and time-specific treatment effect:

τit ≡ Yit(1)− Yit(0) (2.3)

We focus primarily on identification and estimation of average treatment effects, typically a

convex combination of individual effects τit.

Next we discuss to assumptions we maintain throughout the paper. First, we restrict out

attention to settings with strictly exogenous covariates (e.g., Arellano [2003]) and make the

following assumption:

Assumption 2.2. (Latent Unconfoundedness) There exist a random variable Ui ∈ Rd

such that the following conditional independence holds:

W i ⊥⊥
{
Y i(w)

}
w

∣∣∣ Ui (2.4)
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This assumption implies that once we control for Ui, then all the differences in the treatment

paths W i across units are unrelated to the potential outcomes. This type of assignment should

be contrasted with the sequential assignment where Wit can depend on past outcomes and latent

characteristics (see Arellano [2003] for a discussion in the linear case). On its own Assumption

2.2 is not restrictive because we allow Ui to be unobserved: if we choose Ui = W i this assumption

is satisfied by construction.

We view Ui as a permanent (time-invariant) unit characteristic that we need to control for if

we wish to compare outcomes across different units. We formalize this by making the following

assumption on the (infeasible) generalized propensity score (Imbens [2000]) that ensures that in

principle such comparisons are possible. Define the infeasible generalized propensity score:

rinf(w, u) := pr(W i = w|Ui = u). (2.5)

Assumption 2.3. (Latent Overlap) For any u ∈ U:

max
w
{rinf(w, u)} < 1 (2.6)

This assumption essentially says that in the population there exist units with the same Ui but

different values of W i. Such restrictions are common in the (cross-section) program evaluation

literature: without an overlap assumption we would not be able to identify the average causal

effect of the treatment without functional form restrictions even if we observed Ui. However,

this latent overlap assumption is not always maintained in the panel literature. For example, if

only time-series variation is used to make causal statements, then one does not need to make

Assumption 2.3.

Considered together Assumptions 2.2 and 2.3 have testable restrictions, because now we

cannot simply choose Ui = W i. Crucially, Assumption 2.2 implies that the assignment process

does not depend on past outcomes. This restriction is often unrealistic in settings where Wit can

be viewed as a choice variable that agents use to optimize Yit. In such cases, past outcomes might

contain important information and thus are useful for decisions today. As a canonical example,

consider a firm that selects inputs to optimize the output while facing uncertainty about future

productivity (e.g., Olley and Pakes [1992]). In this case, past outcomes can be informative about

the unobserved productivity, affecting the decisions today. As another example, consider a well-
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known empirical observation that earnings of labor programs’ participants tend to decline right

before the start of the program (e.g., Ashenfelter [1978]). In this case, the decision to participate

is likely directly affected by recent earnings.

Nothwithstanding these examples, Assumption 2.2 is quite natural when Wit is either driven

by some (quasi)-experimental shocks or is a choice variable that is not used to optimize Yit

directly. Examples of the first type are common in the applied literature, especially when the

shocks are aggregate, but some units are more exposed to them than others. As an example of

the second type, consider a situation where Wit corresponds to national-level prices for product

i in period t and Yit is a measure of sales in a local-level market. In this case, unobserved quality

Ui makes Yit and Wit correlated (over i), despite the fact that Wit is not chosen to optimize Yit

directly. Overall, the relationship between Wit and Ui that satisfies Assumptions 2.2 and 2.3 can

arise for a variety of reasons and in the subsequent sections we show why it is useful to model

it explicitly.

3 Two paths to Identification

3.1 Preliminaries

Before we consider identification in various models we need to define additional objects. Let W

be the support of the vector of assignments W i; we can think of W as a matrix with at most 2T

rows and T columns, where each row is an element of the support of W i. Let Wk be a k row of the

matrix W – a T -dimensional vector of zeros and ones. Let πk ≡ pr(W i = Wk) = E
[
1W i=Wk

]
.

All πk are positive, otherwise the corresponding row of W can be dropped. Let K ≤ 2T be the

number of rows in W .

For example, if T = 3 then a possible form for W is:

W =


0 0 0

1 0 1

0 1 1

1 1 1

 (3.1)

Each row of this matrix represents a possible assignment, and in this particular case only four
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Table 1: Assignment process and weights

k Wk πk γ
(fe)
k1 γ

(fe)
k2 γ

(fe)
k3

1 (0,0,0) 0.09 0.46 -0.64 0.18
2 (1,0,0) 0.04 5.70 -3.26 -2.44
3 (0,1,0) 0.11 -2.16 4.60 -2.44
4 (1,1,0) 0.14 3.08 1.98 -5.07
5 (0,0,1) 0.07 -2.16 -3.26 5.42
6 (1,0,1) 0.08 3.08 -5.88 2.80
7 (0,1,1) 0.15 -4.78 1.98 2.80
8 (1,1,1) 0.32 0.46 -0.64 0.18

out of the eight (23 = 8) possible combinations have positive probability. For a particular unit

i, let k(i) be the row Wk of the support matrix W such that Wk = W i. For the identification

argument we assume we know W and the assignment probabilities πk. We consider the case

with unknown π in Section 5.

We are interested in estimating weighted averages of the treatment effects τit. Our estimators

will be linear in Y , with weights γ:

τ̂(γ) =
1

NT

N∑
i=1

T∑
t=1

γitYit.

For the estimators we consider, the weights γ are a function of the assignment matrix w,

γ : {0, 1}N×T 7→ RN×T (but do not depend on the outcomes data). Thus, choosing an estimator

corresponds to choosing a weight function γit(w). We maintain throughout this section the

no-dynamics assumption (Assumption 2.1), latent unconfoundedness assumption (Assumption

2.2), and latent overlap (Assumption 2.3).

3.2 Double Robust Identification – An Example

We start with an example that illustrates the main message of the paper. Suppose that T = 3

and K = 8 = 2T , so W i has full support. We assume that the distribution of W i in population is

given by the third column of Table 1. Suppose that potential outcomes Yit(w) have the following
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structure:

Yit(w) = α(Ui) + λt + τw + εit

E[εit|W i, Ui] = 0
(3.2)

and we use OLS with two-way fixed effects to “estimate” τ in population. This procedure leads

to a particular set of weights γ
(fe)
it (W ), and then to the following fixed effect estimand:

τ fe = E

[
1

T

∑
t

Yitγ
(fe)
it (W )

]
, (3.3)

where the expectation is taken over the Ui, εit and the assignment W . If (3.2) is correctly

specified then τ fe = τ – the average treatment effect – but in general this equality will not hold.

For the distribution given above the weights are presented in the last three column of Table 1.

By construction these weights sum up to 0 for every row and every column (once re-weighted

by the marginal probability of W i).

In general, the model (3.2) is overidentified which means that we can use other weights to

identify τ . The weights γ
(fe)
t (·) are selected for efficiency reasons, because under homoskedasitic-

ity they lead to an estimator with the least possible variance. In practice, we can have concerns

besides efficiency. In particular, we may be worried that the model (3.2) is misspecified.

To illustrate this, suppose that DGP for the assignment mechanism W i has the following

form:

∀(t, t′): Wit ⊥⊥ Wit′|Ui, E[Wit|Ui] =
exp(α(Ui) + λt)

1 + exp(α(Ui) + λt)
. (3.4)

As we show in the next section, this assumption implies the following conditional independence:

W i ⊥⊥
{
Y i(w)

}
w

∣∣∣ W i (3.5)

where W i ≡
∑T

t=1Wit/T is the fraction of treated periods for unit i. Now we can articulate a

key insight. If the two-way fixed effect outcome model (3.2) is misspecified, but the assignment

mechanism (3.4) is correctly specified and the treatment effect is constant, τit = τ , then the fixed
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Table 2: Aggregated weights

W i E[γ
(fe)
1 (W i)|W i] E[γ

(fe)
2 (W i)|W i] E[γ

(fe)
3 (W i)|W i]

0 0.46 -0.64 0.18
1/3 -0.73 0.60 0.13
2/3 -0.08 0.36 -0.28

1 0.46 -0.64 0.18

effect estimand is equal to the treatment effect, or τ fe = τ , as long as the following condition is

satisfied for all t and W i:

E[γ
(fe)
t (W i)|W i] = 0 (3.6)

This restriction requires the weights γ
(fe)
t (W i) to balance out any time-specific function of W i.

If it is not satisfied, then the differences in the outcomes for treated and control units can be

attributed in the differences in the baseline outcomes Yit(0).

Table 2 shows that this condition does not hold not true for the fixed effect weights from

Table 1. In other words, although fixed effects weights balance individual and time effects

overall, they do not necessarily do so within subpopulations defined by W i. This is particularly

striking, because the two-way estimator can be interpreted as controlling for W i. As shown in

Mundlak [1978] the fixed effects estimand τ fe is numerically equivalent to the estimand in the

following linear regression:

Yit = α + λt + τWit + ηW i + ε̃it (3.7)

As a result, when constructing τ fe we control for W i only linearly and this is not enough to

enforce the necessary balancing property.

This example shows that the weights based on the outcome model (3.2) do not work if the

assignment model (3.5) is correctly specified. As an alternative to the fixed effect weights one

can use the assignment model (3.5) to construct weights that deliver the treatment effect τ if the

design model (3.5) is correctly specified. Similarly to the current example, there is no guarantee

that such weights will “work” for the outcome model (3.2). The question now arises whether we

find the weights that deliver τ if either the fixed effect model (3.2) or the design process (3.5)

is correctly specified. The answer is positive and a set of weights that satisfy this restriction
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Table 3: Doubly robust weights

(W1,W2,W3) γ
(dr)
1 (W k) γ

(dr)
2 (W k) γ

(dr)
3 (W k)

(0,0,0) 0.00 0.00 0.00
(1,0,0) 6.59 -3.95 -2.64
(0,1,0) -1.46 4.10 -2.64
(1,1,0) 3.24 1.66 -4.90
(0,0,1) -1.46 -3.95 5.42
(1,0,1) 3.24 -6.39 3.15
(0,1,1) -4.81 1.66 3.15
(1,1,1) 0.00 0.00 0.00

are given in Table 3. It is evident that the weights some up to zero for each row and a simple

calculation shows that E[γ
(dr)
t (W i)|W i] = 0 for every t and W i. As a result, there is no trade-off

in terms of identification and we can construct the estimator that works for both models.

So far we have assumed that the treatment effects are constant. This assumption is very

strong and it is well-documented that the two-way estimators have problems in cases with

heterogenous treatment effects (e.g., see de Chaisemartin and D’Haultfœuille [2018]). This is

evident from looking at Table 1: in the last row we assign a negative weight to all treated units

in the second period. To guarantee that this does not happen the following restriction can be

enforced when the weights are constructed:

Witγt(W i) ≥ 0 (3.8)

As we show in the next sections this does not make the problem much harder computationally

and in fact the robust weights from Table 3 are constructed with this restriction in mind. As

a result, in this case it easy to be robust to arbitrary heterogeneity in treatment effects. This

should be contrasted with the well-known problem with potentially negative weights that arises

in IV estimation (Imbens and Angrist [1994]).

It is also important to emphasize that with general heterogeneity in treatment effects the

robust weights might not deliver the average treatment effect (the same is true for the fixed effect

weights). Instead, we get a weighted average with observable, or at least estimable, weights. The

fact that the weights are estimable is important, because in the empirical work these weights

can be reported and analyzed.
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3.3 Identification Through the Outcome Model

First we consider outcome models. Recall that by the no-dynamics assumption the potential

outcomes Yit(w) are indexed by a binary treatment w. Here we focus on an outcome model with

the following structure:

Assumption 3.1. The potential outcomes satisfy:

E[Yit(w)|Ui] = α(Ui) + λt + τt(Ui)w. (3.9)

Given Assumption 2.2 the content of this model is that it restricts the time-dependency of

the conditional mean of the control outcome. Rewriting the model we can see that more directly.

The conditional mean for control units is

E[Yit(0)|Ui] = α(Ui) + λt,

which is restricted to be additively separable in time, and the conditional treatment effect is

E[τit|Ui] = τt(Ui),

which is unrestricted.

To motivate this outcome model, note that it has a long tradition in econometric literature.

Chamberlain [1992] analyzed a more general factor model with an additional restriction τt(Ui) =

τ(Ui), and derived an efficiency bound for E[τ(Ui)]. For the two-way case his analysis was refined

in Graham and Powell [2012] which looked at settings in which the semiparametric efficiency

bound is equal to infinity, and thus τ cannot be estimated by a regular estimator. In Arellano and

Bonhomme [2012] authors return to the general model of Chamberlain [1992], impose additional

time-series restrictions on the errors, and show how they can be used to identify the whole

distribution of τ(Ui).

In our analysis we depart from these papers in two important directions. First, we explicitly

allow for τt(Ui) to depend on t in an unrestricted way. Second, we do not focus only on averages

of E[τt(Ui)]. Instead we ask which convex combinations of τt(Ui) can be identified. Analysis in

de Chaisemartin and D’Haultfœuille [2018] shows that both of these directions are important:

there is evidence that treatment effects vary with time, and the standard estimators do not
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deliver convex combinations of treatment effects in general.

To identify a convex combination of τ(Ui) we consider the weights γkt that satisfy the fol-

lowing four restrictions:

1

T

K∑
k=1

T∑
t=1

πkγktWkt = 1, (3.10)

∀k,
∑
t

γkt = 0, (3.11)

∀t,
K∑
k=1

πkγkt = 0, (3.12)

∀(t, k), γktWkt ≥ 0 (3.13)

These constraints are natural given the outcome model described above. The first and the last

restriction insure that we focus on a convex combination of treatment effects. The second and

the third restriction guarantee that weights balance out the systematic variation in the baseline

outcomes Yit(0). By construction, any weights that satisfy these restrictions lead to within-unit

comparisons. We do not include the analogue of non-negativity constraint for control units, thus

allowing for extrapolation. Depending on application, one might want to impose such constraint

as well.

Let Woutc be the set of weights {γtk}t,k that satisfy these restrictions. We can evaluate these

restrictions and thus we can construct this set. For any generic element γ ∈ Woutc define the

random variables γk(i)t:

γk(i)t(γ) :=
K∑
k=1

γkt1W i=Wk
(3.14)
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Using these stochastic weights we can compute the following expectation:

τ(γ) = E

[
1

T

T∑
t=1

Yitγk(i)t(γ)

]
(3.15)

Proposition 1. Suppose Assumptions 2.1, 2.2, and 3.1 hold, and that ω ∈ Woutc. Then τ(γ)

is a convex combination of τt(Ui).

As a result, a certain convex combination of τ(Ui) can be identified whenever Woutc is non-

empty. A necessary and sufficient condition for this is simple: the matrix W should contain at

least one of the following two submatrices (up to permutation of columns):

W1 =

0 1

0 0

 , W2 =

0 1

1 0

 . (3.16)

Consider each of these cases separately. In the first case there are adoptors i of the treatment,

and periods t and t′ with (Wit = 0,Wit′ = 1) and in the same periods t and t′ non-adoptors i′

with (Wi′t = 0,Wi′t′ = 0). In the second case there are adopters with (Wit = 0,Wit+1 = 1) and

units who switch out with (Wit = 1,Wit+1 = 0). To put this discussion in perspective, it is not

sufficient to have assignment matrices of the type

W3 =

0 0

1 1

 , W4 =

0 1

0 1

 , W5 =

1 1

1 0

 ,

where with the first design some units are always in the control group and all others are always

in the treatment group, in the second design all units adopt the treatment at exactly the same

time. The third design is more complicated, because at a first sight W5 looks very similar to

W1; the key difference is that with W1 we have a control period and this allows us to deal

with unobserved unit-specific differences. With W5 this is no longer feasible and we need to use

negative weights that are not allowed. Standard two-way fixed effect estimator treats W1 and

W5 symmetrically and this is the reason why the resulting estimand might be outside of the

convex hull of treatment effects.
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3.4 Identification Through Design

In this section we consider assignment processes that satisfy a certain sufficiency property. Here

we state it as a high-level assumption, and provide examples of economic models that satisfy

this assumption in the next section.

Define r(w, s) to be the feasible generalized propensity score:

r(w, s) := pr(W i = w|Si = s). (3.17)

Assumption 3.2. (Sufficiency) There exist a known W i-measurable sufficient statistic Si ∈
S and a subset A ⊂ S such that: (i)

W i ⊥⊥ Ui

∣∣∣ Si, (3.18)

and (ii), for all s ∈ A:

max
w
{r(w, s)} < 1. (3.19)

This assumption might look restrictive, but Si that satisfies the conditional independence

assumption (3.18) always exists. The obvious choice is Si = W i that satisfies this restriction

by construction. Of course, in this case the overlap condition is not satisfied. Alternatively,

one can consider Sgen
i ≡ fU |W (·|W i), where fU |W (x|y) is the conditional distribution of Ui given

W i. While less restrictive than W i, S
gen
i is not feasible, because fU |W (x|y) is unknown. More

generally, we need to find different values for W i that generate the same distribution of Ui, but

still exhibit variation in some Wit. For example, in addition to conditioning on the fraction of

treated periods, W i, we may want to condition on the number of transitions,
∑T−1

t=1 Wit(1 −
Wit+1). In the next section we describe examples that show that Si arises naturally in different

empirical settings.

The main implication of the Assumption 3.2 coupled with Assumption 2.2 is summarized in

the following proposition:

Proposition 2. Suppose Assumptions 2.1, 2.2, and 3.2 hold. Then for any w:

1W i=w
⊥⊥ Y i(w)

∣∣∣ Si. (3.20)
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This proposition demonstrates that unconfoundedness conditional on Ui (1.3) can be trans-

formed into undonfoundedness conditional on Si (3.20) under the additional assumption that

restricts the assignment process.

Let Si be a potential sufficient statistics. Let W s be a matrix representation of the support

of W i conditional on Si = s and W s
k be a generic row (element of the support). For example, if

Si =
∑

tWit and W is given by (3.1) then Si takes 3 possible values and we have the following:

W 0 =
(

0 0 0
)
,W 2/3 =

1 0 1

0 1 1

 ,W 1 =
(

1 1 1
)

(3.21)

When considering identification strategy based on design assumptions we do not restrict

potential outcomes, but instead require that assumptions behind Proposition 2 are satisfied. In

this case, one can identify a convex combination of individual treatment effects using the weights

that satisfy the following restrictions (for all k, s and t):

1

T

∑
tk

πkγktWkt = 1, (3.22)

∑
k:Wk∈W s

πkγkt = 0. (3.23)

∑
k:Wk∈W s

πkγktWkt ≥ 0, (3.24)

Let Wdesign be the set of weights {γtk}t,k that satisfy these restrictions. It is easy to see that

Wdesign is nonempty whenever there exists at least one s such that W s contains at least two

rows. This is guaranteed by the second part of Assumption 3.2. For any γ ∈Wdesign define the

random variables γk(i)t in the same way as before and consider the following expectation:

τ(γ) = E

[
1

T

T∑
t=1

Yitγk(i)t

]
(3.25)
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Proposition 3. Suppose Assumptions 2.1, 2.2, 2.3, and 3.2 hold, and that γ ∈ Wdesign. Then

τ(γ) is a convex combination of treatment effects.

3.5 Examples

In this section we consider various examples of assignment models. We show that Assumption

3.2 holds in a wide range of examples and discuss their applicability to various applied problems.

3.5.1 Aggregate shocks

As a first case, we consider a situation, where Wit is determined by an observed p-dimensional

aggregate shock ψt, and idiosyncratic noise νit. Importantly, different units are affected by ψt

in a way that is determined by their unobserved Ui. Formally, we have the following model that

includes a latent index:

W ?
it = θt + α1(Ui) + αT2 (Ui)ψt + νit,

{νit}t ⊥⊥ {α(Ui), Y i(w)}

Wit = 1W ?
it>0

(3.26)

Here α(Ui) = (α1(Ui), α2(Ui)) ∈ Rp+1 captures the exposure of different units to aggregate

shocks ψt and νit represents an independent mean-zero idiosyncratic component. Because Wit

is binary, the model is nonlinear: instead of the latent index W ?
it we observe only Wit = 1W ?

it>0.

In this model endogeneity arises because the exposure α(Ui) can be correlated with the

potential outcomes. This should be compared with a situation where α(Ui) = α, but νit can be

correlated with Y i(w). In the latter case, ψt can be used as an aggregate instrument. In our

model the situation is different and we can use ψt to control for α(Ui). To gain some intuition for

why this can be done assume that W ?
it is observed. In this case, we can construct OLS estimates

for α(Ui). More precisely, let ψ̃t = (1, ψt) and define the following estimates:

α̂(Ui) =

(
T∑
t=1

ψ̃tψ̃
>
t

)−1 T∑
t=1

ψ̃t(W
?
it −W

?

t ) (3.27)

We can use α̂(Ui) instead of α(Ui) to control for Ui. Since neither W
?

t nor
(∑

t ψtψ
>
t

)−1
vary over
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i, this is equivalent to controlling for (
∑

tW
?
it/T,

∑T
t=1 ψtW

?
it/T ). This is an intuitive strategy:

if endogeneity arises because of the differential exposure to ψt, then we can simply estimate this

exposure and control for it.

There are two major problems with this strategy: first, we do not observe W ?
it, second, α̂(Ui)

is not equal to α(Ui). To solve both problems we need to make two additional assumptions. First,

we assume that νit is independent over t, second, we assume that νit has a logistic distribution.

Together these two assumptions lead to the following model:

E[Wit|Ui] =
exp(α1(Ui) + θt + αT2 (Ui)ψt)

1 + exp(α1(Ui) + θt + αT2 (Ui)ψt)
,

Wit ⊥⊥ {Wil}l 6=t
∣∣∣ Ui, (3.28)

which is a natural generalization of the familiar two-way logit model

E[Wit|Ui] =
exp(α1(Ui) + θt)

1 + exp(α1(Ui) + θt)
. (3.29)

The key feature of (3.28) is that now the version of the previously outlined strategy works

without any additional caveats. In particular, define the following statistic:

Si =

(
T∑
t=1

Wit/T,
T∑
t=1

ψtWit/T

)
.

Si has the same interpretation as α̂(Ui): it measures the exposure of unit i to aggregate shocks.

Si depends on observable quantities only and can be computed, thus solving the first problem

outlined above. It also solves the second problem, because it is easy to show that the following

independence condition holds:

Ui ⊥⊥ W i

∣∣∣ Si (3.30)

and thus Si satisfies Assumption 3.2.

Undoubtedly the assumptions that make Si a sufficient statistic are strong. In particular,

the logistic distribution of νit is a functional form assumption on the unobserved idiosyncratic

errors. The discussion above shows that we make this assumption to deal with the infeasibility
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of α̂(Ui). At the same time, one can interpret Si as a scale-free estimator for α(Ui) in the

spirit of maximum score estimation (Manski [1975], Horowitz [1992]). As a result, we expect it

to capture essential aspects of the unobserved heterogeneity even if the logistic assumption is

violated.

3.5.2 Stationary dynamics

In the previous example Wit was mainly determined by aggregate exogenous shocks. In this

section, we consider an opposite situation and assume that Wit is mainly determined by its

past. In particularly, we consider the following structure:

Wit ⊥⊥ {Wil}l>t
∣∣∣ Ui,W t−1

i

E[Wit|Ui,Wit−1] =
exp(α(Ui) + η(Ui)Wit−1)

1 + exp(α(Ui) + η(Ui)Wit−1)

(3.31)

This assumption describes a stationary first-order Markov dynamic model with rich unobserved

heterogeneity. As we show below it arises naturally when Wit is a solution of a dynamic opti-

mization problem, with past choices determining the current state.

As a stylized example, consider a sales manager for product i who decides on the price wt

(high or low) solving a dynamic optimization problem with a discount factor β, and the following

instantaneous payoff:

Πit(wt, wt−1) = R(wt, Ui)− c(wt, wt−1, Ui) + νit (3.32)

where Ui is the unobserved quality of the product, νit is an independent (of Ui and over time)

idiosyncratic shock. Here the function R(wt, Ui) reflects the instantaneous profit, and function

c(wt, wt−1, Ui) captures costs of price adjustments. Bellman’s principle implies that the optimal

Wit is a solution of the following problem:

V (Wit−1, Ui, νit) = max
w
{Πit(w,Wit−1) + βE[V (νit+1, w, Ui)|Ui, νit]} (3.33)

where V is a value function. The optimal policy is a function of the state:

Wit = ft(Wit−1, Ui, νit) (3.34)
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and as long as νit are i.i.d. (over time) we get that Wit satisfies the following restrictions:

Wit ⊥⊥ {Wil}l>t
∣∣∣ Ui,W t−1

i

E[Wit|Ui,W t−1
i ] = E[Wit|Ui,Wit−1]

(3.35)

Let πi(Wit−1) := E[Wit|Ui,Wit−1] and observe that log
(

πi(Wit−1)
1−πi(Wit−1)

)
is a linear function of Wit−1:

log

(
πi(Wit−1)

1− πi(Wit−1)

)
= α(Ui) + η(Ui)Wit−1 (3.36)

This can be expressed in a familiar logit form:

E[Wit|Ui,Wit−1] =
exp(α(Ui) + η(Ui)Wit−1)

1 + exp(α(Ui) + η(Ui)Wit−1)
(3.37)

which together with (3.35) implies (3.31).

Define the following statistic:

Si =

(
T−1∑
t=2

Wit,
T∑
t=2

WitWit−1,Wi1,WiT

)
.

It is not hard to show that, as long as conditions (3.31) are satisfied, Si is a sufficient statistic

that satisfies Assumption 3.2. In fact, the discussion above shows that (3.31) is equivalent to

(3.35). This means that contrary to our previous example, in this model, sufficiency does not

follow from a functional form assumption. The only real restriction that we impose is that Wit

is a stationary first-order Markov process.

3.5.3 Discussion

Examples from Sections 3.5.1 and 3.5.2 illustrate two different empirical settings in which one

can use our approach. The first example emphasizes the role of exogenous aggregate shocks that

are frequently used in applied literature to identify policy effects (e.g., Duflo and Pande [2007],

Dube and Vargas [2013], Nunn and Qian [2014], Nakamura and Steinsson [2014]). Our approach

is applicable as long as the primary reason for endogeneity is differential exposure of different
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units to these shocks. The second example emphasizes the role of the structural assumptions,

such as Markov restrictions, thus providing a way of combining structural choice models with

the estimation of treatment effects.

From the formal point of view all the models considered above share the same structure. In

all of them the conditional distribution of W i has the following representation:

log (P(W i|Ui)) = S(W i)
>α(Ui) + β(Ui) + η(W i) (3.38)

In other words, the distribution of Wi belongs to an exponential family, with S(W i) begin the

sufficient statistic. Sufficiency arguments have a long tradition in econometrics of binary panel

models (e.g., Andersen [1970], Chamberlain [1984], Honoré and Kyriazidou [2000], Chamberlain

[2010]) where they have been used to obtain consistent estimators for common parameters. More

recently, sufficiency arguments were used by Aguirregabiria et al. [2018] to identify common

parameters in dynamic structural models. We are using sufficiency differently: instead of using

Si to identify common parameters, we use it to condition on unobserved heterogeneity, similarly

to Arkhangelsky and Imbens [2018].

4 Double robustness

In this section we build on our previous results and present a doubly-robust identification argu-

ment. We then propose a natural algorithm that implements our strategy.

4.1 Identification

The sets of Woutc and Wdesign described in Section 3 are motivated by different models and in

general do not need to be similar. The first set is built with within-unit comparisons in mind,

while the second one is based on within-period comparisons. The non-negativity constraints are

also different: in Woutc we require every treated unit to have a non-negative weight, while in

Wdesign this property only holds for the weights averages within a subpopulation described by

Si. Nevertheless, these sets are not entirely different, because Woutc∩Wdesign can be non-empty.

Consequently, one does not need to take a stand on what comparisons to use: those based on

looking at the same units across time or at different units for a fixed time period.

21



Let Wdr = (Woutc∩Wdesign) and observe that combining the restrictions in (3.10)-(3.13) and

(3.22)-(3.23) we get that any γ ∈Wdr satisfies the following restrictions:

Target :
1

T

∑
tk

πkγktWkt = 1, (4.1)

Within− unit balance :
1

T

T∑
t=1

γkt = 0, (4.2)

Within− period balance :
∑

k:Wk∈W s

πkγkt = 0, (4.3)

Non− negativity : γktWkt ≥ 0. (4.4)

The set Wdr treats units and periods asymmetrically. The weights need to balance arbitrary

functions of Si within each period, but only need to balance unit fixed effects for every unit. Of

course, this is a direct consequence of the two-way model that we consider for the outcomes. If

the underlying model is more complicated – e.g., there are interactive fixed effects – then it will

introduce additional restrictions. While we do not pursue such extensions in this paper, they

can be addressed within our framework using the ideas from Arellano and Bonhomme [2011]

and Freyberger [2018].

Combining earlier discussion of Woutc and Wdesign it is easy to see that a necessary and

sufficient condition for Wdr to be non-empty is that there exists a value s for the sufficient

statistic Si such that the corresponding W s contains at least one of the following two sub-

matrices (up to permutations):

W1 =

0 1

0 0

 W2 =

0 1

1 0

 (4.5)

The requirement that for some s the set W s contains at least one of these sub-matrices is in
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general more demanding than the assumption that W contains one of these submatrices. It is

also more demanding than the overlap restriction in Assumption 3.2. At the same time, if Si

includes W i then for any s, W s can contain W1 only if it contains W2 and this is equivalent to

the overlap condition.

Finally we can state the main identification result. The following theorem is a direct conse-

quence of Propositions 1 and 3:

Theorem 1. Suppose Assumptions 2.1, 2.2, and 2.3 hold, and either 3.1, or 3.2, or both hold.

Then for any γ ∈Wdr, the estimand τ(γ) is a convex combination of treatment effects.

It is important to compare this theorem with other doubly-robust results in the panel liter-

ature (e.g., Sant’Anna and Zhao [2020]). The conventional interpretation of double robustness

(e.g., Robins and Rotnitzky [1995], Chernozhukov et al. [2016, 2018b,a]) is based on two differ-

ent ways of using covariates in estimation. One can either demean the outcomes, thus making

units directly comparable, or re-weight the units to guarantee that the differences between them

average out. To ensure good statistical properties (e.g., semiparametric efficiency), we need to

combine both of these ideas. In this case, the bias of the resulting estimator depends on the

product of two errors. As a result, one can trade a less accurate outcome model for more precise

weighting and vice versa.

Our interpretation of double robustness is different. We have not explicitly introduced the

covariates, and thus any discussion on how to use them is irrelevant for our identification re-

sult. More precisely, our approach is based on combining two different identification arguments,

whereas the traditional double robustness uses a single identification assumption (a version of

conditional independence). In principle, one can combine traditional double robustness with

ours, but this lies outside of the scope of this paper.

4.2 Algorithm

Our estimator uses the panel data {Yit,Wit, Xi}i,t, where we now explicitly introduce time in-

variant covariates Xi. We assume that a researcher has constructed a sufficient statistic Si.

To incorporate covariates we consider two p-dimensional functions of (Xi, Si, t) and (Xi, Si):

ψ(1)(Xi, Si, t) = (ψ
(1)
1 (Xi, Si, t), . . . , ψ

(1)
p (Xi, Si, t)), ψ

(2)(Xi, t) = (ψ
(2)
1 (Xi, t), . . . , ψ

(2)
p (Xi, t)),

and define ψit ≡ (ψ(1)(Xi, Si, t), ψ
(2)(Xi, t)). In cases where Xi is discrete these functions can be

simply set to time-specific indicators for each value of Xi and Si.
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Given these inputs, our estimator is defined in the following way:

τ̂ :=
1

NT

∑
it

γ̂itYit (4.6)

where the weights {γ̂it}it solve the optimization problem:

{γ̂it}it = arg min
{γit}it

1

(NT )2

∑
it

γ2it

subject to:
1

nT

∑
it

γitWit = 1,
1

T

∑
i

γit = 0,

1

N

∑
t

γit = 0,
1

NT

∑
it

γitψit = 0,

γitWit ≥ 0,

(4.7)

The weights γ̂it are related to weights produced by OLS. The key difference is that we are

explicitly looking for weights that balance out functions of Si, not only fixed attributes Xi, and

satisfy certain inequality constraints. The last restriction is crucial, because it is well documented

that the standard OLS estimators with fixed effects in general do not correspond to reasonable

estimands if the effects are heterogeneous (see e.g., de Chaisemartin and D’Haultfœuille [2018]).

Our estimator fits naturally into recent theoretical literature on balancing weights (e.g.,

Imai and Ratkovic [2014], Zubizarreta [2015], Athey et al. [2016], Hirshberg and Wager [2017],

Chernozhukov et al. [2018a,b], Armstrong and Kolesár [2018a]). The main technical difference is

that we need to balance unit-specific functions and explicitly impose non-negativity constraints.

At the same time, we only balance a parametric class of functions of (Xi, Si), rather than a

general nonparametric class (as in Hirshberg and Wager [2017], Armstrong and Kolesár [2018a])

The weights that we get from (4.7) have the least possible norm, subject to balancing con-

ditions motivated by Theorem 1. Our choice of the objective function is justified by statistical

reasons – the variance of any linear estimator is directly related to the norm of the weights. While

we do not pursue this in the current work, one can consider alternative objective functions that

are motivated by economic reasons, e.g., a version of empirical welfare.
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5 Inference

5.1 Statistical framework

We assume that we observe a random sample {Y i,W i, Xi}Ni=1 from some distribution P with

T (number of periods) being fixed. We assume that a researcher has constructed sufficient

statistics Si ≡ S(W i, Xi) based on a design model. We maintain Assumptions 2.1, 2.2,2.3 and

additionally restrict the outcome model:

Assumption 5.1. Either there exist a sufficient statistic Si such that the following is true:

Yit(0) = βt + ψ(2)(Xi, t)
>δ + ψ(1)(Xi, Si, t)

>η + uit

E[uit|Xi, Si] = 0

(ui1, . . . uiT ) ⊥⊥ W i|Xi, Si

(5.1)

or Ui = (αi, Xi) and we have the following:

Yit(0) = αi + βt + ψ(2)(Xi, t)
>δ + uit

E[uit|Xi, αi] = 0

(ui1, . . . uiT ) ⊥⊥ W i|Xi, αi

(5.2)

This assumption allows for our design model to be correct, so that we only need to control

for (Si, Xi), or the more traditional fixed effects model to be correct. We do not impose any

restrictions on Yit(1) and thus on heterogeneity in treatment effects. For simplicity we assume

that in both cases the conditional expectations are linear in parameters with respect to a known

finite-dimensional dictionary. This is without loss of generality if both Xi and Si are discrete.

5.2 Formal resuls

To state the inference results we make several statistical assumptions:

Assumption 5.2. (a) P-a.s. (Xi, Si) ∈ Ω – compact subset of some metric space; (b) ψ(Xi, Si, t)

is a continuous function of its arguments (on Ω); errors uit satisfy the following moment condi-
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tions:

0 < σ2
u ≤ E[u2it|W i, Xi] ≤ σ2

u <∞

E[u4it] <∞
(5.3)

For each i, t define the following 2× p-dimensional random vector:

Γit ≡ (1−Wit)ψit −
∑T

l=1(1−Wil)ψil∑T
l=1(1−Wil)

(5.4)

Assumption 5.3. (a) Si includes W i; (b) for all t and η > 0 we have E[Wit|Si, Xi] ≤ 1 − η;

(c) the following holds:

σmin

(
T∑
t=1

E
[
ΓitΓ

>
it

])
≥ κ > 0 (5.5)

Define the target parameter:

τcond =
1

NT

∑
it

ω̂itWitE[τit|W i, Xi] (5.6)

This is a conditional weighted average treatment effect, where the weights are directly observed

(and equal to ω̂itWit). By construction these weights are nonnegative. Next theorem shows τ̂ is

close to τcond:

Theorem 2. Suppose Assumptions 5.1, 5.2, 5.3 are satisfied. Then there exist a collection of

random variables {ω?t (Xi,W i, t)}Tt=1 such that the following holds:

1

T

T∑
t=1

‖ω̂t − ω?t ‖2 = op(1) (5.7)

and the following convergence in distribution holds:

√
n (τ̂ − τcond)→ N (0, σ2) (5.8)
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The variance has the following form:

σ2 = E

( 1

T

T∑
t=1

ω?it ((uit +Wit (τit − E[τit|W i, Xi]))

)2
 (5.9)

This theorem describes the performance of our estimator in larger samples. The population

weights ω? depend on (Xi,W i), not only on Si which is an implication of the fact that we need

to deal with individual fixed effects.

To conduct inference we need to construct an estimator for σ2. Our next results shows that

conventional unit-level bootstrap can be used for this purpose.

Theorem 3. Let {τ̂(b)}Bb=1 be a set of non-parametric (unit-level) bootstrap analogs of τ̂ . Define:

σ̂2 :=
N

B

B∑
b=1

(
τ̂(b) − τ̂

)2
(5.10)

and suppose that assumption of Theorem 2 hold. Then if E[τit|W i, Xi] = τ σ̂2 is consistent for

σ2; otherwise σ̂2 is conservative.

Theorems 2 and 3 imply that one can construct asymptotically conservative confidence in-

tervals by standard methods. In particular, let zα be an α-level quantile of the standard normal

distribution. Then the following interval has an asymptotic coverage of at least 1− α:

τcond ∈ τ̂ ±
√
σ̂2

N
zα/2 (5.11)

6 Extensions and Experiments

6.1 Non-binary treatment

In applications, the treatment Wit is often non-binary, and the results discussed so far are not

directly applicable. One possibility is to binarize the treatment, but this process will change

both the outcome and the assignment models. This section discusses an alternative strategy for

dealing with a general treatment.

27



To proceed we need to specify the outcome model and the assignment process for general

non-binary treatment Wit. For the outcome model we resort to the two-way linear structure:

Yit(w) = α(Ui) + λt + τt(Ui)w + εit

E[εit|Ui] = 0
(6.1)

thus abstracting away from potential non-linear effects of w. This is the standard assumption

made in applications, and it does not take us far from the current empirical practice.

For the assignment model we consider a baseline distribution f0(w) that has the same support

as Wit. If Wit is non-negative, then this can be an exponential distribution, if Wit represents

counts of certain events, then f0(w) can be Poisson. We then assume that the distribution of

Wi conditional on Ui belongs to the following exponential family:

f(Wi|Ui) = exp

{∑
t

β>(Ui)ψt(Wit)− ψ(Ui)

}∏
t

f0(Wit) (6.2)

where ψt(·) is a known function. This structure directly generalizes the example presented in

Section 3.5.1. In particular, if we observe aggregate shocks Zt then it is natural to consider

ψt(Wit) = ZtWit.

Exponential structure of the assignment model implies the general unconfoundedness condi-

tion:

Wi ⊥⊥ {Yi(w)}w|Si (6.3)

where Si =
∑

t ψt(Wit). Given Si we can proceed by identifying the effect by running the

standard two-way regression:

Yit = αi + λt + τitWit + εit (6.4)

withing the subpopulations defined by Si. This approach delivers meaningful causal effects if

τit does not vary in the subpopulations defined by Si. In practice, we can split the data into

clusters with similar values of Si, run OLS separately for each cluster, and then aggregate the

effects. This approach connects us with the recent work on fixed-effect models (Bonhomme and
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Manresa [2015], Bonhomme et al. [2017]), where the authors argue for using K-means algorithm

to classify units into clusters, as a way to estimate computationally challenging fixed-effect

models. Our results shows how to use the assignment model to derive the characteristics that

can be used for such classification.

The model (6.2) can be considerably generalized. Instead of the aggregate shocks, one can

consider stationary dynamic models from Section 3.5.2. In general, one can use a rich class of

generalized linear models (Nelder and Wedderburn [1972], Efron and Hastie [2016]) to adapt

the assignment process to the particular structure of Wit. These models are commonly used

in applied data analysis to understand complex data structures, and our results show how to

exploit them for identification purposes.

If we use the normal distribution as the baseline for Wit then the assignment model reduces

to linear regression:

Wit = β(Ui)
>ψt + νit

implying that Wit can be decomposed into a low-rank component β(Ui)
>ψt and idiosyncratic

noise νit. This suggests that one can use interactive fixed effects regressions to estimate the

treatment effects. This choice is attractive for some applications, but the panels that we have in

mind have small T and large n, rendering both conventional interactive fixed effects regressions

(e.g., Bai [2009]) and its regularized analogs (e.g., Chernozhukov et al. [2019]) inconsistent.

Also, we do not restrict the persistence in the errors of the potential outcomes; thus, the GMM

estimators in the spirit of Holtz-Eakin et al. [1988], Freyberger [2018] are inapplicable as well.

6.2 Empirical illustration

To illustrate our approach at work in a real application we consider data from Charles and

Stephens Jr [2013]. In the paper authors analyze the relationship between the local voting pref-

erences (expressed by turnout) and local economic outcomes (such as earnings or employment).

In particular, the stylized version of the main regressions that is proposed in the paper has the

following form:

Yit = αi + λt + τWit + εit (6.5)
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where the unit of observation i corresponds to the U.S. counties, Yit measures the local turnout

(we will focus on the presidential elections), Wit measure the log-income per capita in the cor-

responding county. Authors estimate τ by IV, using aggregate shocks to construct instruments.

In particular, their first stage model has the following form:

∆Wit = θt + γ>1 D1i∆Z1t + γ>2 D2i∆Z2t + νit (6.6)

where {Z1t, Z2t}t correspond to nation-level oil and coal prices, and Dki = (D1ki, D2ki) are in-

dicators for the importance of oil and coal for the county i (medium or large). As a result,

authors use the variation in ∆Wit that is “cleaned” from νit and θt to identify τ . This variation

is coming from two sources: the variation in Dki over i and ∆Zt over t. The underlying identi-

fication assumption behind this approach is that the endogeneity problem arises from νit being

correlated with ∆εit, while Dki is not.

Our approach to identification is different: instead of (6.6) we consider the following first

stage model:

Wit = βi + θt + γ1iZ1t + γ2iZ2t + υit (6.7)

and assume that (βi, γ1i, γ2i) are correlated with the potential outcomes, while {υit}t are not.

Using our previous notation, we can express this in the following way:

Ui = (βi, γ1i, γ2i) (6.8)

As a result, our approach is complimentary to that of Charles and Stephens Jr [2013]. While

they exploit the variation in Dki – which can be viewed as a proxy for γki – we instead control

for it and exploit the variation in υit.
1

We use (6.7) to construct the sufficient statistic for Ui:

Si :=

(∑
t≤T

Wit,
∑
t≤T

Z1tWit,
∑
t≤T

Z1tWit

)
(6.9)

1In principle one can utilize variation in Zkt only, but more time periods are needed for this approach to be
practically useful. See Arkhangelsky and Korovkin [2020] for more details.
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estimate s.e.
τ̂DR 0.003 0.007

Table 4: The results are based on the data from n = 2994 counties over T = 8 presidential elec-
tions (1972-2000). The outcome is the turnout in the presidential elections at the county level,
and the treatment is the log-earnings. Sufficient statistic Si is constructed using log(national em-
ployment) in coal and gas industries. K-means algorithm is used to split counties into K = 1000
groups based on Si. Standard errors are computed using county-level bootstrap.

Note that if {νit}t has normal distribution then Si is sufficient for Ui, otherwise one can justify

using Si with the logic from Section 3.5.1. Si is a 3-dimensional object and to control for it we

use K-means algorithm to classify n units into K groups with similar values of Si. Once these

groups are defined, we proceed by estimating 6.5 by OLS with two-way fixed effects within each

group. The results of the estimation are presented in Table 4. These results are qualitatively

similar to those obtained by Charles and Stephens Jr [2013] who also do not find significant

effects for the presidential elections.

6.3 Simulations

We use the data from Charles and Stephens Jr [2013] as a basis for a simulation. Let Y and W

be n × T matrices with enties equal to Yit and Wit, respectively. We standardize each of these

matrices by subtracting the overall mean, and dividing by the overall standard deviation. We

then decompose them into three components:

Y = FY + LY + EY

W = FW + LW + Ew

(6.10)

where Fk = α
(k)
i + λ

(k)
t is the two-way matrix, Lk is a matrix of rank 5, and Ek captures the

residual variation. We compute the size and the correlation between the residuals and elements
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of matrices Lk:

σ2
k(E) =

∑
itE

2
k,it

nT

ρ(E) =

∑
itEy,itEw,it

nTσw(E)σy(E)

σ2
k(L) =

∑
it L

2
k,it

nT

ρ(L) =

∑
it Ly,itLw,it

nTσw(L)σy(L)

(6.11)

and then simulate the data using the following model:

Yit = F
(b)
Y,it +

1

c(ζ)

(√
(1− ζ2)L(b)

Y,it + ζ
σY (L)

σW (L)
L
(b)
W,it

)
+ εit

Wit = F
(b)
W,it + L

(b)
W,it + υit

where (F
(b)
Y,it, L

(b)
Y,it, F

(b)
W,it, L

(b)
W,it) are sampled uniformly from the rows of Fk, Lk, while (εit, νit) have

a joint normal distribution with the covariance matrix implied by σy, σw, ρ. Parameter ζ controls

the excess selection bias that is not present in the real data. Parameter c(ζ) normalizes this

component to have the expected sum of squares equal to σ2
Y (L) to keep the relative sizes of the

fixed effects and the low-rank component constant. We consider two designs: in the first one

ζ = 0, in the second it is equal to 0.05. Note that in this simulation the effect of the treatment

is equal to zero, which is natural given the results presented in the previous section.

The summary of the results over 1000 simulations is presented in Table 5. We use two

benchmarks: the standard two-way OLS regression and the TSLS regression implemented in

the original paper. In the baseline case, our estimator and the standard TW perform equally

well. Both exhibit certain bias, which is not surprising given the presence of the low-rank

components and the correlation between the errors. Once we introduce the additional selection

bias (ζ = 0.05), the performance of TW estimator deteriorates considerably (1300% increase in

RMSE), while our estimator continues to perform well (50% increase in RMSE).

We emphasize that we do not generate the treatment using the first stage described in the

previous section:

Wit = θt + γ1iZ1t + γ2iZ2t + υit
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ρ(L) ρ(E)
RMSE Bias

DR TW TSLS DR TW TSLS

Design 1 (ζ = 1) 0.039 -0.038 0.016 0.016 0.521 -0.01 0.013 -0.005
Design 2 (ζ = 0.95) 0.351 -0.038 0.023 0.205 0.505 0.02 0.205 0.222

Table 5: Results are based on 1000 simulations, with n = 2994 and T = 8; size of the outcome
and assignment models components: (σ2

Y (L), σ2
W (L), σ2

Y (E), σ2
W (E)) = (0.12, 0.09, 0.02, 0.06).

Instead, we use the actual data to extract the systematic components of Wit. Moreover, we do

not set the correlation between υit and εit to zero. There are two reasons for the success of our

estimator. First, the contribution of the errors υit, εit to the corresponding outcomes is small

compared to the contribution from Lk,it and Fk,it. In particular, in both cases, the two-way

fixed effects play a key role, explaining 85% of the variation in the data. This drives the good

behavior of both TW and DR when ζ = 0. Once we scale the correlation between LW,it and LY,it

the low-rank component starts to play a role, and TW estimator does not do anything about

it. In contrast, the aggregate shocks (Z1t, Z2t) allow us to extract important components of the

low-rank matrix and control for them.

7 Conclusion

In this paper, we propose a novel identification argument that can be used to evaluate a causal

effect using panel data. We show that one can naturally combine familiar restrictions on the

relationship between the outcome and the unobserved unit-level characteristics with reasonable

economic models of the assignment. Our approach allows us to construct a doubly robust

identification argument: out estimand has causal interpretation if either the outcome model

is correct, or the assignment model is correct (or both). Using these results, we construct a

natural generalization of the standard two-way fixed effects estimator that is robust to arbitrary

heterogeneity in treatment effects, prove that it is asymptotically normal, and show how to

conduct inference of it.
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8 Appendix

8.1 Dual representation

The Lagrangian saddle-point problem for the program (4.7) has the following form:

inf
γit

sup
λ(t),λ(i),η,µit≥0,π≥0

1

(NT )2

∑
it

γ2it +
1

N

∑
i

λ(i)

(
1

T

∑
i

γit

)
+

1

T

∑
t

λ(t)

(
1

N

∑
t

γit

)
+ π

(
1− 1

NT

∑
it

γitWit

)
−

η>

(
1

NT

∑
it

γitψit

)
− 1

NT

∑
it

µitγitWit (A.1)

where we use ψit as a shorthand for ψ(Xi, Si, t). In Lemma A.1 we show that strong duality holds and

we can rearrange the minimization and maximization:

sup
λ(t),λ(i),η,µit≥0,π≥0

inf
γit

1

(NT )2

∑
it

γ2it +
1

N

∑
i

λ(i)

(
1

T

∑
i

γit

)
+

1

T

∑
t

λ(t)

(
1

N

∑
t

γit

)
− π

(
1

NT

∑
it

γitWit − 1

)
−

η>

(
1

NT

∑
it

γitψit

)
− 1

NT

∑
it

(µitγitWit) (A.2)

Solving this in terms of γit (an unconstrained quadratic problem) we get the following representation:

inf
λ(t),λ(i),η,µit≥0,π≥0

Pn

[
1

T

T∑
t=1

(
πWit − λ(t) − λ(i) − η>ψit − µitWit

)2]
− 4π

N
(A.3)

We can further simplify this expression by concentrating out µit and π. To this end, define the following

loss function:

ρz(x) := x2(1− z) + x2+z (A.4)
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After some algebra we get the following:

inf
λ(t),λ(i),η

Pn

(
1

T

T∑
t=1

ρWit

(
Wit − λ(t) − λ(i) − η>ψit

))
(A.5)

Let {λ̂(t), λ̂(i), η̂}i,t be the solutions to this problem. The optimal unnormalized weights are equal to

the following:

γ̂
(un)
it =

(
Wit − λ̂(t) − λ̂(i) − η̂>ψit

)
(1−Wit) +

(
Wit − λ̂(t) − λ̂(i) − η̂>ψit

)
+
Wit (A.6)

and the optimal weights are given by the normalization:

γ̂it :=
γ̂
(un)
it

1
NT

∑
it γ̂

(un)
it Wit

(A.7)

By construction the weights are non-negative for the treated units and sum up to one once multiplied

by Wit. The denominator is strictly positive under the conditions of Lemma A.1.

8.2 Propositions

Proof of Proposition 1: For any ω ∈Woutc we defined the random variables

ωk(i)t :=
K∑
k=1

ωkt{W i = Wk} (A.8)

and considered the following estimator:

τ(ω) = E

[
1

T

T∑
t=1

Yitωk(i)t

]
(A.9)
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By assumption we have the representation:

E

[
1

T

T∑
t=1

Yitωk(i)t

]
= E

[
1

T

T∑
t=1

(α(Ui) + λt + τ(Ui)Wit + εit)ωk(i)t

]
=

E

[
1

T

T∑
t=1

(α(Ui) + λt + τ(Ui)Wit + εit)
K∑
k=1

ωkt{W i = Wk}

]
= E

[
1

T

T∑
t=1

(α(Ui)ωkt{W i = Wk})

]
+

1

T

T∑
t=1

λt

K∑
k=1

E [ωkt{W i = Wk}] + E

[
τ(Ui){W i = Wk}

1

T

K∑
k=1

T∑
t=1

Wktωkt

]
=

1

T

T∑
t=1

λt

K∑
k=1

πkωkt + E [τ(Ui)ξ(W i)] = E [τ(Ui)ξ(W i)] (A.10)

where ξ(W i) := {W i = Wk} 1T
∑K

k=1

∑T
t=1Wktωkt ≥ 0. The first equality follows from the restrictions

on the outcome model, the second – by definition of the weights, the third – because E[εi|Ui] = 0

and strict exogeneity assumption; finally the last two equalities follow by construction of weights. By

construction we also have that ξ(W i) ≥ 0 and E[ξ(W i)] = 1. This proves the claim.

Proof of Proposition 3: The proof is very similar to the one above and is omitted.

Proof of Proposition 2: We need to prove the following for arbitrary w and measurable A0, A1:

E[{W i = w}{Y i(0) ∈ A0, Y i(1) ∈ A1}|Si] = E{W i = w}|Si]E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Si] (A.11)

We have the following chain of equalities that proves the claim.

E[{W i = w}{Y i(0) ∈ A0, Y i(1) ∈ A1}|Si] =

E[{W i = w}E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Si, Ui,W i]|Si] =

E[{W i = w}E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Ui, Si]|Si] =

EE[{W i = w}|Si, Ui]E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Ui, Si]|Si] =

E[E[{W i = w}|Si]E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Ui, Si]|Si] =

E{W i = w}|Si]E[{Y i(0) ∈ A0, Y i(1) ∈ A1}|Si] (A.12)

where the second inequality follows by strict exogeneity, the fourth one – by sufficiency.
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8.3 Lemmas

Lemma A.1. Suppose that {Wit}i,t are such that there is no {αi, βt, γ}i,t such that the following is

true:

αi + βt + ψ>itγ ≥ 0

Wit = {αi + βi + ψ>itγ > 0}
(A.13)

Then (a) the primal problem always has a unique solution and (b) the strong duality holds, i.e., for a

function

h(λ, µ, π, γ, ω) :=
1

(nT )2

∑
it

ω2
it +

1

n

∑
i

λ(i)

(
1

T

∑
i

ωit

)
+

1

T

∑
t

λ(t)

(
1

n

∑
t

ωit

)
+ π

(
1− 1

nT

∑
it

ωitWit

)
−

γ>

(
1

nT

∑
it

ωitψit

)
− 1

nT

∑
it

µitωitWit (A.14)

we have

inf
ωit

sup
λ(t),λ(i),γ,µit≥0,π≥0

h(λ, µ, π, γ, ω) = sup
λ(t),λ(i),γ,µit≥0,π≥0

inf
ωit

h(λ, µ, π, γ, ω) (A.15)

Proof. Direct application of Generalized Farkas’ lemma implies that the constraint set is empty iff

there exist (α?i , β
?
t , γ

?) such that the following is true:

α?i + β?t + ψ>itγ
? ≥ 0

Wit = {α?i + β?t + ψ>itγ
? > 0}

(A.16)

By assumption such (α?i , β
?
t , γ

?) does not exist and thus the constraint set is not empty and convex.

Since the objective function is strictly convex we have that the primal problem has the unique solution.

Since all the inequality constrains are affine strong duality holds (see 5.2.3 in Boyd and Vandenberghe

[2004]) and we have the result.
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Lemma A.2. For arbitrary γ define g(X,W, γ) in the following way:

g(X,W, γ) ∈ arg min
α

{
1

T

T∑
t=1

ρWt(Wt − α− ψ>t γ)

}
(A.17)

Then for any W such that W < 1 this function is uniquely defined. Also if ‖ψt‖∞ < K then g(X,W, γ)

is P a.s. uniformly (in (X,W )) Lipschitz in γ.

Proof. If W < 1 then the minimized function is strictly convex with a unique minimum. Define

ht := Wt −ψ>t γ; and let h̃(1), . . . , h̃(
∑T

t=1Wt)
be the decreasing ordering of ht for units with Wt = 1; let

h̃(0) = 0. For k = 0, . . . ,
∑T

t=1Wt define the following functions:

gk(X,W, γ) :=

∑T
t=1(1−Wit)ht +

∑k
l=0 h̃(l)∑T

t=1(1−Wit) + k
(A.18)

It is easy to see that we have the following:

g(X,W, γ) = g0(X,W, γ) +

k∑
l=1

{h̃(l) ≥ g(l−1)}(gl(X,W, γ)− (gl−1(X,W, γ)) (A.19)

From this representation if follows that g(X,W, γ) is differentiable and P-a.s. uniformly (in (X,W ))

Lipschitz in γ.

Lemma A.3. Let {W i, Xi} be distributed according to P; assume that Si includes W i and E[Wit|Si, Xi] <

1− η P a.s. for η > 0. Then there exist a σ(W i, Xi)-measurable random variable α?i and a vector γ?

such that the following conditions are satisfied:

ξit := Wit − α?i − ψ>itγ?

E

[
T∑
t=1

ξitψit(1−Wit{Wit − α?i − ψ>itγ? ≤ 0})

]
= 0

T∑
t=1

ξit(1−Wit{Wit − α?i − ψ>itγ? ≤ 0}) = 0

(A.20)

Proof. Define F := {f ∈ L2(P)T : ft = g(W i, Xi) + ht(Si, Xi), g, ht ∈ L∞(P)}, similarly define

G := {g = (g1, . . . gT ) : gt = f + ψ>t γ, f ∈ L2(P), γ ∈ Rp}.
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Consider the following optimization program:

inf
g∈G

E

[
1

T

T∑
t=1

ρWit(Wit − git)

]
(A.21)

and let r? be the value of infimum. We prove that there exists a function g? ∈ G that solves this

problem. This is not entirely trivial because G is not compact and the loss function is not quadratic

so we cannot directly use neither Weierstrass nor the standard projection theorem.

Consider the set F(r?) := {f ∈ F : E
[
1
T

∑T
t=1 ρWit(Wit − fit)

]
≤ r?}. It is straightforward to see that

this set is convex and because R(f) is continuous on LT2 (P) it follows that f ∈ F(r?) ⇒ R(f) ≤ r?.

The set F(r?) is closed and convex. Now assume that g? does not exist and thus F(r?) ∩ G = ∅. By

construction G is closed (in L2(P)) and convex; as a result we have two closed convex sets with empty

intersection.

Assume that F(r?) is weakly compact then by strict separating hyperplane theorem it follows that

there exist h? ∈ LT2 (P) and a ∈ R such that sup
f∈F(r?)(f, h

?) < a1 < a2 < infg∈G(g, h?). Assume that

there exist a function f? ∈ F(r?)∪G0 such that R(f?) ≤ R(f) for any function f ∈ F(r?)∪G0. Fix an

ε > 0 and consider a function gε ∈ G such that R(gε) < r? + ε. Using this function construct g0ε ∈ G0

such that R(g0ε) < r? + ε. For t ∈ [0, 1] consider a function r(t) = R(f? + t(f? − g0ε)). By convexity of

t it follows that r(t) is convex and by definition of f? it follows that r(t) has a minimum at zero.

For t ∈ [0, 1] consider a function:

(h?, f? + t(g0ε − f?)) =: a+ bt (A.22)

and define t1 := a1−a
b and t2 := a2−a

b . It follows that t2−t1
t1

= a2−a1
a1−a > 0 – does not depend on

g0ε . By construction it follows that r(t1) ≥ r? and r(t2) < r? + ε and by convexity we have r(t2) ≥

r(t1) + r(t1))−r(0)
t1

× (t2 − t1) ≥ r? + r?−R(f?)
t1

× (t2 − t1). The RHS of this inequality does not depend

on ε which leads to contradiction.

To finish the proof we need to show that (a) f? exists and is unique and (b) that F(r?) is weakly

compact. The latter statement will follow if we prove that F(r?) is bounded in L2(P). This follows

because R(f) is convex and has a unique minimum at f? in F(r?).

Finally we prove that R(f) has a unique minimum at f?. Consider f? such that f?t := E[Wit|Si, Xi].

Because Si includes W i it follows that 1
T

∑T
t=1 f

?
t = W i. Take any function f ∈ F and consider a convex

45



combination f(λ) := f? + λ(f − f?). Because ft ∈ L∞(P) and f?t ≤ 1− η it follows that for all λ < λ0

we have ft(λ) < 1 almost surely. For any λ < λ0 we have that R(f(λ)) = E
[
1
T

∑T
t=1(Wt − f?t )2

]
+

E
[∑T

t=1(f
?
t − ft(λ))2

]
> R(f?). By convexity of R(f) it follows that R(f) > R(f?) which proves that

g? exists. The final result follows because R(f) is Gato-differentiable on F and the results follows by

taking first order conditions.
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8.4 Theorems

Proof of Theorem 2: We split the proof into two parts. First, we assume that ‖(ω?)un − ω̂un‖2 =

op(1), (ω?it)
un is uniformly bounded, and E

[
1
T

∑T
t=1(ω

?
it)
unWit

]
> 0, and prove the normality result.

Then we prove the first statement.

Part 1: Assume that ‖(ω?)un − ω̂un‖2 = op(1).

For the estimator τ̂ we have the following:

τ̂ =
1

nT

∑
it

ω̂itYit =
1

nT

∑
it

ω̂itτitWit +
1

nT

∑
it

ω̂ituit = τemp +
1

nT

∑
it

ω̂ituit =

τemp +
1

Pn 1
T

∑T
t=1 ω̂

un
it Wit

(
1

nT

∑
it

(ω?it)
unuit +

1

nT

∑
it

(ω̂unit − (ω?it)
un)uit

)
(A.23)

By construction and assumption we have the following:

E[(ω̂unit − (ω?it)
un)uit|{W j , Xj}nj=1] = (ω̂unit − (ω?it)

un)E[uit|{W j , Xj}nj=1] =

(ω̂unit − (ω?it)
un)E[uit|W i, Xi] = 0 (A.24)

This implies that by conditional Chebyshev inequality we have the following:

ζn(ε) := E

[{
√
n

∣∣∣∣∣Pn 1

T

T∑
t=1

(ω̂unit − (ω?it)
un)uit

∣∣∣∣∣ ≥ ε
}
|{W j , Xj}nj=1

]
≤

PnE
[(∑T

t=1(ω̂
un
it − (ω?it)

un
)2
|{W j , Xj}nj=1

]
T 2ε2

≤ σ2u
Tε2
‖(ω?)un − ω̂un‖22 = op(1) (A.25)

Since indicator is a bounded function it follows that for any ε > o

E[ζn(ε)] = o(1) (A.26)

and thus we have 1
nT

∑
it ‖(ω?)un− ω̂un‖2uit = op

(
1√
n

)
. Finally we need to check that CLT applies to

1
nT

∑
it(ω

?
it)
unuit. The mean of each summand is zero and the variance is bounded:

E

( 1

T

T∑
t=1

(ω?it)
unuit

)2
 ≤ 1

T

T∑
t=1

E
[
((ω?it)

unuit)
2
]
≤

T∑
t=1

√
E[u4it]E[((ω?it)

un)4] <∞ (A.27)
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Finally, define:

ω?it :=
(ω?it)

un

E
[
1
T

∑T
t=1(ω

?
it)
unWit

] (A.28)

It is easy to see that we have:

Pn
1

T

T∑
t=1

ω̂unit Wit = E

[
1

T

T∑
t=1

(ω?it)
unWit

]
+ op(1) (A.29)

and thus we have the following:

‖ω? − ω̂‖2 = op(1)

√
n(τ̂ − τemp)→ N (0, σ2τ )

(A.30)

which concludes the first part.

Part 2: In this part we prove that ‖(ω?)un − ω̂un‖2 = op(1), (ω?it)
un is uniformly bounded, and

E
[
1
T

∑T
t=1(ω

?
it)
unWit

]
> 0. We use the dual representation derived in Section 8.1 and show that the

solution converges to a population one.

The proof below shows that empirical weights converge to oracle weights that solve a certain problem

in population. We use a natural adaptation of the “small-ball” argument from Mendelson [2014]. This

is not necessary and most likely one can construct a simpler proof using classical results for GMM

estimators. We present a different argument because it can be naturally generalized to handle more

sophisticated estimation procedures – something that we want to address in future work.

We start by defining relevant oracle weights. Consider ({α?i }ni=1, γ
?) that satisfy the following restric-

tions:

ξit := Wit − α?i − ψ>itγ?

E

[
T∑
t=1

ξitψit(1−Wit{Wit − α?i − ψ>itγ? ≤ 0})

]
= 0

T∑
t=1

ξit(1−Wit{Wit − α?i − ψ>itγ? ≤ 0}) = 0

(A.31)

Where we include time fixed effects λt into the definition of ψit, since T is fixed this does not create
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any problems. We prove that oracle weights that satisfy these restrictions exists in Lemma A.3. Using

these parameters we consider a lower bound on individual components of the loss function:

ρWit(Wit − αi − ψ>itγ) = (Wit − αi − ψ>itγ)2
(

1−Wit{Wit − αi − ψ>itγ ≤ 0}
)

=

(Wit − αi − ψ>itγ)2
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
)

+

(Wit − αi − ψ>itγ)2Wit

(
{Wit − α?i − ψ>itγ? ≤ 0} − {Wit − αi − ψ>itγ ≤ 0}

)
≥

(Wit − αi − ψ>itγ)2
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
)
−

(Wit − αi − ψ>itγ)2Wit{α?i + ψ>itγ
? < 1 ≤ αi + ψ>itγ} (A.32)

Using this and the properties of the oracle weights we get the following inequality for the excess loss

for unit i:

T∑
t=1

(
ρWit(Wit − αi − ψ>itγ)− ρWit(Wit − α?i − ψ>itγ?)

)
≥

T∑
t=1

(
(α?i − αi) + ψ>it (γ

? − γ))2
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
))

+

T∑
t=1

(
ξit(α

?
i − α?i )

(
1−Wit{Wit − α?i − ψ>itγ? ≤ 0}

))
+

T∑
t=1

(
ξitψ

>
it (γ

? − γ)
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
))
−

T∑
t=1

(
(Wit − αi − ψ>itγ)2Wit{α?i +X>i γ

? < 1 ≤ αi + ψ>itγ}
)

=

T∑
t=1

(
(α?i − αi) + ψ>it (γ

? − γ))2
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
))

+

T∑
t=1

(
ξitψ

>
it (γ

? − γ)
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
))
−

T∑
t=1

(
(Wit − αi − ψ>itγ)2Wit{α?i + ψ>itγ

? < 1 ≤ αi + ψ>itγ}
)

(A.33)

Note that the last equality follows by definition of ξit and ({α?i }ni=1, γ
?).
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In Lemma A.2 we show that α?i is a function of γ? and data for unit i:

α?i = g(Xi,Wi, γ
?) (A.34)

and prove that g is uniformly Lipschitz. By construction for every γ we only need to consider αi that

satisfies the following equality:

αi = g(Xi,Wi, γ) (A.35)

Define:

fit = αi + ψ>itγ

f?it = α?i + ψ>itγ
?

(A.36)

and observe that we have the following:

Pn
T∑
t=1

(1−Wit{Wit < f?it})(fit − f?it)2 ≥ Pn
T∑
t=1

(1−Wit)(fit − f?it)2 ≥

(γ − γ?)>
(

T∑
t=1

PnΓitΓ
>
it

)
(γ − γ?) = κ‖γ − γ?‖22 + op(‖γ − γ?‖22) (A.37)

where

Γit := (1−Wit)ψit −
∑T

l=1(1−Wil)ψil∑T
l=1(1−Wil)

(A.38)

Assume that ‖γ − γ?‖22 = r2, which implies that |αi − α?i | ≤ C1r. Assumptions guarantee that ψit is

bounded and thus
∑T

t=1 ‖ft − f?t ‖∞ ≤ C2r. Using CS we get the following inequality:

Pnξitψ>it (γ? − γ)
(

1−Wit{Wit − α?i − ψ>itγ? ≤ 0}
)
≤

‖γ? − γ‖2 ×
∥∥∥Pnξitψit (1−Wit{Wit − α?i − ψ>itγ? ≤ 0}

)∥∥∥
2

(A.39)
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We also have the following inequality:

Pn

[
1

T

T∑
t=1

(Wit − αi − ψ>itγ)2Wit{α?i + ψ>itγ
? < 1 ≤ αi + ψ>itγ}

]
≤

Pn

[
1

T

T∑
t=1

(f?it − fit)2{f?it < 1 ≤ fit}

]
≤ ‖f? − f‖2∞ × Pn

[
1

T

T∑
t=1

{f?it < 1 ≤ fit}

]
(A.40)

where the first implication follows because of the indicator, and the the second one follows by Holder

inequality. Since ‖f? − f‖∞ ≤ C2r we have the following:

Pn

[
1

T

T∑
t=1

{f?it < 1 ≤ fit}

]
≤ Pn

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
(A.41)

DKW inequality implies that we have the following with high probability:

Pn

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
≤ E

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
+
C3√
n

(A.42)

It is now easy to see that if r is greater than O
(

1√
n

)
then the excess loss is positive with high probability.

Since the loss function is convex this implies that optimum should belong to a ball of radius 1√
n

around

({α?i }ni=1, γ
?) with high probability which proves that for all t ‖ω̂(un)

t − (ω?t )
un‖2 = op(1).
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Proof of Theorem 3:

Part 1 For each observation i define Mi – the number of times this observation is sampled in a

bootstrap sample. Using this notation we can define bootstap analogs of αi and γ from the proof of

Theorem 2:

{α(b)
i , γ(b)}ni=1 = arg minPnMi

1

T

T∑
t=1

ρWit(Wit − αi − ψTitγ) (A.43)

in case if Mi = 0 we define α
(b)
i using the function g(Xi,Wi, γ

?) from 2. It is straightforward to extend

the proof of Theorem 2 and show that bootstrap weights converge to population ones. Most part follow

because of two key properties of {Mi}ni=1:

PnMiXi = E[Xi] + op(1)

PnMiεi = Op

(
1√
n

) (A.44)

for any square integrable Xi and any square integrable mean-zero εi (all independent of Mi). The

second inequality follows by applying Chebyshev inequality, the first one follows from the second one.

The only additional result that we need is the following one:

PnMi

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
= Pn(Mi − 1)

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
+

Pn

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r} − E

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]]
+

E

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
= E

[
1

T

T∑
t=1

{f?it < 1 ≤ f?it + C2r}

]
+Op

(
1√
n

)
(A.45)

where the last line follows by DKW inequality, the fact that the set of intervals is Donsker, and the

multiplier process converges to same limit process as the standard empirical one. It follows that we

have convergence results:

‖ω(b) − ω?‖∞ = op(1)

‖ω(b) − ω?‖2 = Op

(
1√
n

) (A.46)
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Part 2: By construction of bootstrap estimator we have the following representation:

τ̂ (b) − τ̂ = PnMi
1

T

T∑
t=1

ω
(b)
it τitWit − Pn

1

T

T∑
t=1

ω̂itτitWit+

PnMi
1

T

T∑
t=1

ω
(b)
it uit − Pn

1

T

T∑
t=1

ω̂ituit =

PnMi
1

T

T∑
t=1

ω
(b)
it (τit − E[τit])Wit − Pn

1

T

T∑
t=1

ω̂it(τit − E[τit])Wit+

Pn(Mi − 1)
1

T

T∑
t=1

ω?ituit + op

(
1√
n

)
(A.47)

From this representation it follows that if τit = const then the bootstrap estimator is consistent for

the asymptotic variance of τ̂ . In case if τit is heterogenous we further expand the first term. Define

τt(W i, Xi) := E[τit|W i, Xi] and ηit := τit − τt(W i, Xi). We have the following:

PnMi
1

T

T∑
t=1

ω
(b)
it τitWit − Pn

1

T

T∑
t=1

ω̂itτitWit =

PnMi
1

T

T∑
t=1

ω
(b)
it τt(W i, Xi)Wit − Pn

1

T

T∑
t=1

ω̂itτt(W i, Xi)Wit+

PnMi
1

T

T∑
t=1

ω
(b)
it ηitWit − Pn

1

T

T∑
t=1

ω̂itηitWit =

Pn
1

T

T∑
t=1

(Miω
(b)
it − ω̂it)τt(W i, Xi)Wit + Pn(Mi − 1)

1

T

T∑
t=1

ω?itηitWit + op

(
1√
n

)
(A.48)

It follows that we have the following:

τ̂ (b) − τ̂ = Pn(Mi − 1)
1

T

T∑
t=1

ω?it(ηitWit + uit)+

Pn
1

T

T∑
t=1

(Miω
(b)
it − ω̂it)τt(W i, Xi)Wit + small order terms (A.49)

Since the second summand is uncorrelated with the first one we have that the bootstrap variance is a

conservative estimator of the correct variance.
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