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The seminal work by Dye (1985) challenged the unraveling arguments of Gross-

man and Hart (1980), Grossman (1981), and Milgrom (1981) and showed that plausi-

ble deniability could induce firms with news below an equilibrium threshold (bound-

ary) to credibly withhold information from the market. Following this, uncertainty

about whether asymmetric information exists has generally been shown to adversely

affect the quality of public knowledge.1

But how strategic disclosure affects risk and asset prices has received little atten-

tion. This is a more challenging problem. In the classic paradigm, agents typically

receive signals about their values that are independent draws from a defined distribu-

tion. But, idiosyncratic risk does not command a risk premium in securities markets,

so the standard paradigm needs to be extended to a setting in which investors are

risk-averse and firm values are correlated (i.e., systematic risk exists).

Additionally, to characterize the time-dependent risk premia that investors re-

quire over any horizon, it is necessary to consider a dynamic asset pricing model with

Bayesian learning.2 As Savor and Wilson (2016) point out, earnings announcement

premia routinely arise as correlated information from issuing firms conveys signals

about related firms and the general economy. Under this view, Bayesian investors

learn from news and solve a signal extraction problem to determine how much of the

1See Matthews and Postlewaite (1985); Jung and Kwon (1988); Shin (2003); Acharya, DeMarzo,
and Kremer (2011); Carlin, Davies, and Iannaccone (2012).

2Acharya, DeMarzo, and Kremer (2011) is the closest paper to ours and includes some of the
elements our our model. Their model is dynamic with a single firm whose value is correlated with
a public announcement. They assume the firm and investors are risk neutral. They find that a firm
with good (bad) news discloses early (late), and there is clustering after bad news in the sense that
the firm discloses more quickly after a bad public announcement than after a good announcement.
They also characterize the effect of plausible deniability on volatility and skewness.

1



announcing firm’s information is systematic in nature (Ben-Rephael et al., 2020).

In this paper, we analyze a dynamic game in continuous-time where competitive

firms stochastically receive a signal about the value of their terminal cash flow.

At each instant in time, if a firm is informed, it may choose plausible deniability,

whereby its presence in a pool of other firms commands a rational price by risk averse

investors. Otherwise, the firm discloses its value, separating from others.

When the managers of a firm are informed, they have an American disclosure

option. They choose the optimal time to exercise this option, concealing the firm’s

value prior to exercise. If the pool price drops below the known value, they incur

a cost at each instant of time they do not disclose. However, the possible benefit

of remaining in the pool is that another firm may become informed and disclose a

higher value, thereby raising the pool price and prolonging the value of plausible

deniability.

Given this, the Nash equilibria that arise are fundamentally different from pre-

vious studies because they are history-dependent and strategic. The disclosure of

one firm endogenously affects the equilibrium boundary of other firrms. Not only is

the market price of firms in the pool a function of the probability of being informed

(presence of plausible deniability), but it depends on previous disclosures (correlated

values) and the time at which they disclosed. We obtain the equilibrium disclosure

threshold by solving a fixed point condition at each point in time, conditioned on

prior disclosures.

One main result is that risk premia rise over time prior to disclosures. Conse-

quently, prices are lower on average than they would be if disclosure were mandatory.
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Prior to disclosures, investors regard firm values as having a mixture distribution,

with the mixing variable being whether a firm has learned its value and hence could

feasibly disclose. The distribution conditional on having learned the value is trun-

cated from above at the disclosure boundary, so the mixture is a combination of the

unconditional and a truncated distribution. Investors make inferences about aggre-

gate risks from firms’ failures to disclose conditioning on the mixture distribution.

These inferences combined with risk aversion cause state prices for bad states to rise

faster than probabilities, producing rising risk premia for the firms.

A novel feature of our model is that more than two distributions are mixed

after some firm has disclosed, because there can be different truncation boundaries

depending on whether a firm learned its value before the other firm disclosed or

after it disclosed. We study a setting with only two firms and hence at most two

truncation boundaries. Some of our analysis can be extended to more than two firms,

but dealing with multiple truncation boundaries becomes difficult as the number of

firms and hence the number of such boundaries increases.

We document various properties of the equilibrium, some of which relate to prior

literature. For example, we analyze the excess of the disclosure boundary over the

price, which arises due to the real option effect that another firm may disclose and

lift the pool price, prolonging the value of plausible deniability as mentioned above.

Acharya, DeMarzo, and Kremer (2011) do not solve a multi-firm model, but they

do point out that this real option effect will not exist for uncorrelated or for per-

fectly correlated firms. We confirm this and show that the excess of the disclosure

boundary over the price is in fact hump-shaped in the correlation between the firms
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and is zero for a correlation of zero or one. The emphasis of Acharya, DeMarzo, and

Kremer (2011) is on clustering of announcements in response to a negative exoge-

nous announcement. A similar clustering happens in our model: the time between

disclosures is smaller on average when the disclosing firm announces relatively bad

news.

We separate disclosure returns into scheduling returns (the returns firms would

experience if it were announced that a firm has decided to disclose, without condi-

tioning on the content of the disclosure) and announcement returns (total returns

less scheduling returns). Both scheduling returns and announcement returns are pos-

itive on average for the disclosing firm and also for the nondisclosing firm, though

naturally smaller for the nondisclosing firm. The scheduling return is positive on av-

erage under both the risk-neutral probability and the physical probability, because

it is good news that a firm is separating from the pool. The average announcement

return is a pure risk premium. Both the disclosing firm and the nondisclosing firm

earn a risk premium in our model because some risk is resolved for both. Because

risk premia rise and prices fall prior to disclosures, average announcement returns are

higher than unconditional risk premia, consistent with the high average announce-

ment returns that have been documented empirically (e.g., Beaver, 1968; Ball and

Kothari, 1991; Cohen et al., 2007).

Positive scheduling returns are natural in a model of plausible deniability but

can be puzzling in other settings. For example, Ross (1989) shows, using only no-

arbitrage assumptions, that a change in the rate of information flow should not affect

asset prices. In Ross’s model, the change in information flow is exogenous, whereas

4



in our model the change is endogenous (a disclosure) and signals the firm’s value.

Section 1 presents the model and some facts about the risk-neutral and condi-

tional distributions. Section 2 solves the model with a single firm and explains how

the change in the mixture distribution produces a risk premium that rises as time

passes prior to the firm’s disclosure. Section 3 solves the model with two firms. Un-

like the single-firm model, the two-firm model contains the real option effect that

delaying disclosure can be valuable because a firm that delays has the potential to

benefit from the other firm disclosing. Section 4 discusses the implications for asset

prices. Section 5 concludes. All proofs are in the appendices.

1. Model Set-Up

Assume firms learn their date–T values x̃i at random times θ̃i ∈ [0, T ]. We

make assumptions about firm values and market pricing that are consistent with

the Capital Asset Pricing Model (CAPM). There is a representative investor with

constant absolute risk aversion γ who maximizes the expected utility of her wealth w̃

at date T . The values x̃i are symmetrically distributed and joint normally distributed

with w̃. Therefore,

x̃i = α + βw̃ + ε̃i

for some α and β, where the ε̃i are normally distributed mean-zero variables that

are independent of w̃ and independent of each other. Denote the mean and standard

deviation of w̃ by µw and σw, respectively. Let µ = α + βµw denote the mean of x̃i,

and let σε denote the standard deviation of ε̃i. The variance of x̃i is σ2 = β2σ2
w +σ2

ε .

The correlation of x̃i with x̃j is ρ = β2σ2
w/σ

2.
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Assume the interest rate r is constant. The stochastic discount factor (SDF) at

date 0 for pricing payoffs at date T is proportional to the representative investor’s

marginal utility, which is proportional to e−γw̃. Because the interest rate is r, the

expected SDF must be e−rT . Hence, the SDF is

m̃ = e−rT
e−γw̃

E[e−γw̃]
.

We will use risk-neutral pricing. The risk-neutral expectation of any random variable

ỹ is E∗[ỹ] = erTE[m̃x̃]. Lemma 1.1 below shows that the risk-neutral and physical

distributions differ only with regard to the mean of the x̃i. Let µ∗ denote the risk-

neutral mean. The risk premium γβσ2
w in Lemma 1.1 equals risk aversion multiplied

by the covariance of the firm value x̃i with the representative investor’s wealth w̃,

as in the CAPM (the CAPM holds in our model at date 0 but not at subsequent

dates, due to the non-normalities induced by investors’ inferences in the presence of

plausible deniability).

Lemma 1.1. Under the risk-neutral probability, firm values x̃i are joint normally

distributed with means µ∗ = µ − γβσ2
w and with the same standard deviations and

correlation as under the physical probability. Conditional on x̃j, the value x̃i of firm

i 6= j is normally distributed under the physical probability with mean ρx̃j + (1− ρ)µ

and with standard deviation σ
√

1− ρ2. The conditional distribution is the same

under the risk-neutral probability except that the conditional mean is ρx̃j + (1−ρ)µ∗.

Assume the random times θ̃i are uniformly distributed on [0, T ] and are indepen-

dent of each other and independent of the x̃i and w̃. This implies that the θ̃i are

independent of each other and independent of the x̃i under the risk-neutral distri-
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bution also. Assume no information arrives to the market between 0 and T other

than through the disclosures of firms (or the absence of disclosures). Let Pt denote

the price at date t of all firms that have not disclosed (the pool price). This price

evolves deterministically between disclosures and jumps up or down when there is a

disclosure. After a firm discloses, its price is e−r(T−t)x̃i.

Assume the firm’s objective is to choose a disclosure date τ ≥ θ̃i to maximize

E∗
[∫ τ

0

e−rtPt dt+

∫ T

τ

e−rte−r(T−t)x̃i dt

]
= E∗

[∫ τ

0

e−rtPt dt+ (T − τ)e−rT x̃i

]
. (1.1)

For any time t prior to θ̃i, the firm has no choice but to remain silent. However, for

t ≥ θ̃i, it optimally chooses τ to maximize its payoff from t onward. The disclosure

date τ is chosen based on all information prior to that date, including the firm’s

own value and any disclosures made by other firms. Our choice of the objective

function (1.1) is motivated by the assumption that the firm or its managers benefit

from having a higher share price over the course of time until T . For simplicity, we

assume the benefit is additive in time and that the benefit is valued according to the

market’s SDF, producing the objective (1.1).

2. A Single Firm

We first solve the model with only a single firm. This model is analyzed in

Section IIIA of Acharya, DeMarzo, and Kremer (2011), but here we are assuming

a risk-averse representative investor rather than risk neutrality. This enables us to

calculate the dynamics of the risk premium.
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The equilibrium price Pt before the firm discloses is the discounted risk-neutral

expectation of x̃, conditional on the firm not having disclosed. We conjecture that

Pt decreases as time passes, because the likelihood that the firm has learned its value

and is exercising plausible deniability increases as time passes. In this circumstance,

the firm will choose to disclose its value as soon as its discounted value exceeds

the price; consequently, the equilibrium price will indeed decrease as time passes as

conjectured. So, the firm discloses whenever x̃ ≥ er(T−t)Pt. Thus, Bt = er(T−t)Pt is

the disclosure threshold (boundary).

Let φ and Φ denote the standard normal density and distribution functions. At

any date t, there are two possible events. With probability (T − t)/T , the firm

has not received a signal, in which case its expected value is µ∗. With probability

(t/T )Φ((Bt − µ∗)/σ), it received a signal and x̃1 ≤ Bt, in which case (from the

standard formula for the mean of a truncated normal) its expected value is µ∗ −

σφ((Bt − µ∗)/σ)/Φ((Bt − µ∗)/σ). These facts lead immediately to the following

formula for Pt.

Lemma 2.1. The market price Pt of the firm prior to disclosure is

Pt = e−r(T−t)
[
µ∗ − σ tφ((Bt − µ∗)/σ)

T − t+ tΦ((Bt − µ∗)/σ)

]
. (2.1)

When we combine (2.1) with the condition Bt = er(T−t)Pt, we obtain a fixed-point

problem. It turns out that we can solve this fixed-point problem for a standardized

model (µ∗ = 0 and σ = 1) and then just scale and translate to solve it for general

(µ∗, σ). We denote the negative of the solution of the standardized model as z(t)
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and compute it as follows.

Lemma 2.2. The equation

z =
tφ(z)

T − tΦ(z)
(2.2)

has a unique solution z(t). The solution is positive and is increasing in t.

With Lemmas 2.1 and 2.2, we have

Proposition 2.1. The unique equilibrium price is Pt = e−r(T−t)Bt, where

Bt = µ∗ − σz(t) . (2.3)

We can use Proposition 2.1 to calculate the risk premium prior to disclosure.

The risk premium is (e−r(T−t)Et[x̃]− Pt)/Pt, where Et is the expectation conditional

on date–t information. In Lemma 2.1, we compute the risk-neutral conditional ex-

pectation. The same reasoning can be applied to calculate the physical conditional

expectation, which is

µ− σ
tφ
(
µ−Bt

σ

)
T − tΦ

(
µ−Bt

σ

) . (2.4)

Figure 2.1 plots the risk premium and shows that it rises over time prior to disclosure.

The fundamental reason that the risk premium rises prior to disclosure is that

investors make inferences about the aggregate state from the failure to disclose,

producing rising state prices for bad states. A state price is the price of an Arrow

security, meaning a security that pays $1 in a particular state of the world and 0

otherwise. The price of an Arrow security (relative to Lebesgue measure) is the
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Figure 2.1: This figure shows the risk premium (e−r(T−t)Et[x̃]− Pt)/Pt, conditioning on
the firm not having disclosed by t. The parameter values are T = 1, µ = 105, µ∗ = 100,
σ = 15, and r = 0.

SDF multiplied by the physical density.3 State prices equal the discounted risk-

neutral density. Figure 2.2 shows the risk-neutral and physical densities of x̃ at

different dates, conditioning on the firm not having disclosed by that date.4 In a

risk-neutral world, state prices equal the discounted physical density. Even with

risk neutrality, state prices for bad states rise prior to disclosure as Figure 2.2 shows,

3In our model, the SDF at date t for pricing payoffs that depend on x̃ at date T is

e−r(T−t)e−λ(x̃−µ)/σ
/
Et
[
e−λ(x̃−µ)/σ

]
, (2.5)

where λ = (µ− µ∗)/σ and where Et denotes the physical expectation conditioned on date–t infor-
mation.

4The event that the firm does not disclose by t is, as discussed preceding Lemma 2.1, the joint
event {θ̃ > t}∪{θ̃ ≤ t, x̃ < Bt}. Under either the risk-neutral or physical probability, the probability
that x̃ ≤ a for any real a conditioned on this event is

tprob(x̃ ≤ a ∧Bt) + (T − t) prob(x̃ ≤ a)

tprob(x̃ ≤ Bt) + T − t
.

Differentiating produces the densities shown in Figure 2.2.
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because such states become more probable. However, the combination of risk aversion

with systematic risk causes state prices for bad states to rise faster than the physical

density rises (and state prices for good states to fall faster than the physical density

falls), producing the rising risk premium.
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Figure 2.2: The risk-neutral and physical densities of the firm value x̃ are shown at
different dates, conditional on the firm not having disclosed by that date. The parameter
values are T = 1, µ = 105, µ∗ = 100, σ = 15, and r = 0.

Because the firm can exercise plausible deniability, its announcement is frequently

delayed relative to the time at which it acquires information. The probability that

the firm discloses before any date t is (t/T ) prob(x̃ > Bt). Differentiating through

the fixed-point condition in Lemma 2.2 to calculate z′(t), it is straightforward to

calculate the density of the disclosure time. Under the physical probability, the
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Figure 2.3: The physical density of the firm’s disclosure date is shown, compared to the
uniform density of the arrival time of information to the firm. The parameter values are
T = 1, µ = 105, µ∗ = 100, σ = 15, and r = 0.

density is

1

T
Φ

(
µ−Bt

σ

)
+
t

T
φ

(
µ−Bt

σ

)
φ(z(t)) + z(t)Φ(z(t))

T − tΦ(z(t))
. (2.6)

Figure 2.3 provides an illustration.

3. Multiple Firms

When multiple firms have correlated values and some have not yet disclosed, it

may be optimal for a firm to continue to exercise plausible deniability even after

the pool price drops below its discounted value. This is due to the possibility that

another firm may become informed, disclose a high value, and cause the pool price

to jump upwards, which prolongs the value of plausible deniability. In other words,

like typical American options, the disclosure option must be sufficiently far in the
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money before it is optimal to exercise it.5

We analyze this disclosure option like any other American option. The optimal

disclosure threshold is determined by a differential equation in the inaction region, in

conjunction with value matching and smooth pasting conditions at the boundary of

the region. As in Section 2, let Pt denote the price of any firm that has not disclosed,

and let Bt denote the optimal disclosure boundary. At each date t after a firm learns

its value x̃i, define the value function

Jt = sup
τ

E∗t

[∫ τ

t

e−r(u−t)Pu du+

∫ T

τ

e−r(u−t)e−r(T−u)x̃i du

]
. (3.1)

The supremum in (3.1) is taken over disclosure times that can depend on all prior

information, and the value (3.1) depends on all prior disclosures and on the firm’s

value x̃i.

We can rewrite (3.1) as

E∗t

[∫ T

t

e−r(u−t)Pu du

]
+ sup

τ
E∗
[∫ T

τ

e−r(u−t)
{

e−r(T−u)x̃i − Pu
}

du

]
. (3.2)

The second term in (3.2) is the value of an American exchange option in which the

firm exchanges the reward process Pu for the process e−r(T−u)x̃i. The formulation

(3.2) is natural from an option-pricing point of view, but another formulation is also

5Acharya, DeMarzo, and Kremer (2011) describe this same real option effect relative to the
exogenous announcement that they study. The difference in our model is that all announcements
are endogenous. Each firm takes into account the option values created by others, and, in turn,
each firm’s optimal reaction to the option value affects the options values of all other correlated
firms.
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interesting. We can write (3.1) as:

(T − t)e−r(T−t)x̃i + sup
τ

E∗
[∫ τ

t

e−r(u−t)
{
Pu − e−r(T−u)x̃i

}
du

]
. (3.3)

The first term in (3.3) is the value the firm would achieve if disclosure were manda-

tory, and the second term is the value of plausible deniability.

Bellman’s Principle of Optimality implies that the stochastic process∫ t

0

e−ruPu + e−rtJt (3.4)

is a martingale under the risk-neutral probability. Taking the differential of (3.4),

we see that the martingale property of (3.4) can be stated as

(P − rJ) dt+ E∗[dJ ] = 0 . (3.5)

The value Jt is determined by equation (3.5) in conjunction with value matching

and smooth pasting. The value matching condition is that, at the optimal disclosure

time t = τ ,

Jt =

∫ T

t

e−r(u−t)e−r(T−u)x̃i du = (T − t)e−r(T−t)x̃i . (3.6)

The smooth pasting condition at the boundary is that J paste together smoothly

(in x) with the value on the right-hand side of (3.6).

We show in Appendix A that equation (3.5), value matching, and smooth pasting

are equivalent to a simple marginal condition for the exercise boundary. Consider a

firm with value x̃i such that e−r(T−t)x̃i > Pt. In other words, the firm would trade

at a higher price if it disclosed. The cost of delaying disclosure for an instant dt
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is [e−r(T−t)x̃i − Pt] dt. The benefit of delaying disclosure is that another firm may

disclose a high value during the instant dt, lifting the pool price and producing

a positive jump ∆Jt in Jt.
6 The marginal condition is that the cost of delaying

disclosure must equal the expected benefit for a firm that is at the optimal exercise

boundary. Thus, the optimal exercise boundary at date t is the number Bt such that

[
e−r(T−t)Bt − Pt

]
dt = E∗t [∆Jt | x̃i = Bt] . (3.7)

The reasoning leading to (3.7) is valid for any number of firms, and it is also valid

in a single-firm model with an exogenous disclosure as in Acharya, DeMarzo, and

Kremer (2011). The complication that we address in this paper is that in our model

(3.7) is an equilibrium condition rather than just an optimality condition, because

the jumps ∆Jt in our model depend on the disclosure policies of other firms, which in

a symmetric equilibrium must also conform to the time-varying Bt defined by (3.7).

We are able to solve this equilibrium condition explicitly when there are only

two firms, which we assume henceforth. Let us define Stage 1 of the game to be the

(endogenous) period of time during which no firm has made a disclosure. Likewise,

let Stage 2 be the time period when one firm is left, as in Section 2. Let Pit and

Bit denote the price of any firm that has not disclosed and the optimal disclosure

boundary, respectively, in stage i of the model. The price P and boundary B jump

6For a firm at the optimal exercise boundary, downward jumps in Jt are not possible, because
a downward jump in the boundary does not affect the optimal policy of a firm that is already at
the boundary – the firm should still disclose, so the value of J is still the right-hand side of (3.6)
after such a jump. On the other hand, an upward jump in the boundary means that it is optimal
to continue to exercise plausible deniability a while longer, so the value of J becomes larger than
the right-hand side of (3.6), that is, there is a positive jump ∆Jt.
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from P1,t andB1,t to P2,t andB2,t, respectively, at the time that the first firm discloses.

We solve the model by working backwards.

3.1. Stage 2

After one firm has disclosed, the model is similar to the single-firm model studied

in Section 2. The only difference is that the market’s inference problem can be more

complicated in Stage 2 of a two-firm model. Without loss of generality, denote the

firm that discloses first by firm 1. Let τ denote the disclosure time. Consider a date

t ≥ τ prior to firm 2’s disclosure. We know that firm 2 will disclose as soon as the

price drops below its discounted value, that is, when x̃2 ≥ er(T−t)P2t. So, B2 and P2

are related as in Section 2, namely, B2t = er(T−t)P2t.

The market computes P2t by conditioning on x̃1 and on the event

{
θ̃2 > t

}
∪
{
θ̃2 ≤ τ, x̃ < B1τ ∧B2t

}
∪
{
τ < θ̃2 ≤ t, x̃ < B2t

}
.

The three events in this union are (i) firm 2 learns its value after t, (ii) firm 2 learns its

value before τ and the value is less than both B1τ and B2t, and (iii) firm 2 learns its

value between τ and t and the value is less than B2t. These are the three possibilities

given that firm 2 has not disclosed by t. To understand event (ii), note that if firm 2

received its value before τ , then it would have disclosed before τ if x̃2 > B1τ and

would have disclosed before t if x̃2 > B2t, so if it has not disclosed before t then it

must be that both x̃2 < B1τ and x̃2 < B2t. On the other hand, in event (iii), if the

firm learned its value between τ and t and has not disclosed by t, then we can be

sure that its value is below B2t, but we cannot be sure that it is below B1τ . In this

case, both boundaries affect the pool price. However, if it happens to be true that
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B2t ≤ B1τ , then in both (ii) and (iii), the discounted value is known to be lower

than B2t, and we can combine events (ii) and (iii) as: (ii′) firm 2 learns its value

before t and the discounted value is less than B2t. The case (ii′) is the same as the

conditioning in Lemma 2.1. As time passes, B2t will drop, and we will eventually be

in case (ii′).

We are now conditioning on x̃1 also. As stated in Lemma 1.1, the risk-neutral

distribution of x̃2 conditonal on x̃1 is normal with mean µ̃∗2
def
= ρx̃1 + (1 − ρ)µ∗

and standard deviation σ2
def
= σ

√
1− ρ2. As in Section 2, we can solve the model

for a standardized distribution (µ̃∗2 = 0 and σ2 = 1) and then scale and translate to

produce the solution for general (µ̃∗2, σ2). For any real number y and any date t ≥ τ ,

consider the fixed point condition

z =
τφ(y) + (t− τ)φ(z)

T − τΦ(y)− (t− τ)Φ(z)
. (3.8)

Lemma 3.1. Equation (3.8) has a unique solution z2(τ, t, y). It is positive and is an

increasing function of t. Furthermore, z2(τ, t, y) < y if and only if z(t) < y, where

z(t) is defined in Lemma 2.2.

We are now able to describe the equilibrium price and boundary in Stage 2. The

standardized boundary switches from the fixed point in Lemma 3.1 to the fixed point

in Lemma 2.2 when we move to case (ii′) as described above. This appears in (3.10)

below as the switch from z2 to z.

Proposition 3.1. Suppose firm 1 discloses x̃1 at date τ and consider t ≥ τ . The

unique equilibrium price of firm 2 after the disclosure of firm 1 and before the dis-
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closure of firm 2 is P2t = e−r(T−t)B2t, where

B2t = µ̃∗2 − σ2Z2t (3.9)

and where

Z2t =


z2(τ, t, ỹ) if z(t) < ỹ

z(t) otherwise ,

(3.10)

with ỹ = (µ̃∗2 −B1τ )/σ2.

3.2. Stage 1

Now, we back up and find the equilibrium price and exercise boundary before

either firm discloses. We begin by finding the equilibrium price conditional on the

boundary. Then, we will use the marginal condition (3.7) to find the boundary.

Consider any date t and suppose neither firm disclosed prior to t. The equilibrium

price is

P1t = e−r(T−t)E∗[x̃i | neither firm disclosed prior to t] . (3.11)

Unlike the single-firm model, in which we condition on a firm not disclosing, here we

also have to condition on the lack of disclosure by another correlated firm that may

also be exercising plausible deniability. This depresses the equilibrium price further.

The event on which we are conditioning in (3.11) is the union of the following four

disjoint events:

(i) neither firm learned its value prior to t;

(ii) firm 1 learned its value x̃1 < B1t prior to t and firm 2 did not learn its value

prior to t;
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(iii) firm 2 learned its value x̃2 < B1t prior to t and firm 1 did not learn its value

prior to t;

(iv) both firms learned their values x̃i < B1t at dates prior to t.

As before, we can work with standardized distributions and then scale and translate

for general (µ∗, σ). We will obtain B1t = µ∗ − σz1(t), where z1 is a deterministic

function that does not depend on the parameters µ∗ and σ. Let Γ(· | ρ) denote

the bivariate distribution function for normal random variables with zero means,

unit standard deviations, and correlation equal to ρ. By combining the risk-neutral

expectations of the four events described above, we obtain the following description

of the equilibrium price conditional on the boundary, that is, conditional on z1(t).

Lemma 3.2. Suppose there has been no disclosure prior to date t. Then,

er(T−t)P1t − µ∗

σ

= −
t(1 + ρ)φ (z1(t))

[
T − tΦ

(√
1−ρ
1+ρ

z1(t)
) ]

[
T − tΦ (z1(t))

]2
+ t2

[
Γ (−z1(t),−z1(t) | ρ)− Φ(−z1(t))2

] , (3.12)

where z1(t)
def
= (µ∗ −B1t)/σ.

From Lemma 3.2, the left-hand side of the marginal condition (3.7), that is, the

cost of waiting to disclose for a firm at the boundary, can be computed in terms of
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the unknown z1(t) as

e−r(T−t)B1t − P1t = σe−r(T−t) × t(1 + ρ)φ (z1(t))
[
T − tΦ

(√
1−ρ
1+ρ

z1(t)
) ]

[
T − tΦ (z1(t))

]2
+ t2

[
Γ (−z1(t),−z1(t) | ρ)− Φ(−z1(t))2

] − z1(t)
 . (3.13)

We can derive a useful bound on the equilibrium disclosure boundary from the fact

that (3.13) must be nonnegative. Nonnegativity of (3.13) follows from the fact that

a firm will never disclose when the pool price is above its discounted value. The

bound relates the boundary in Stage 1 of the two-firm model to the boundary in the

single-firm model in Section 2. On the one hand, the boundary (and price) should be

lower in the two-firm model because it is bad news that another correlated firm has

also not disclosed; on the other hand, the boundary should be higher in the two-firm

model because of the real option effect represented in the marginal condition (3.7).

We can most conveniently express the relationship between the boundaries in terms

of the negatives of the standardized boundaries (z1 and z) as follows.

Lemma 3.3. In equilibrium prior to either firm’s disclosure, it must be true that

z1(t) ≤
√

1 + ρ

1− ρ
z(t) . (3.14)

Now, consider the right-hand side of the marginal condition (3.7). To compute

the value of waiting to disclose when at the boundary, suppose firm 2 is at the

exercise boundary at t, that is, x̃2 = B1t. Suppose firm 1 discloses at t. As discussed

previously, there will be a nonzero jump in firm 2’s value function if and only if the
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boundary rises following the disclosure—that is, if and only if B2t > B1t.

So, which disclosures by firm 1 have the property that B2t > B1t? By combining

the description of B2t in Proposition 3.1 with the bound in Lemma 3.3, we obtain

the following. We use the same definition of ỹ as in Proposition 3.1.

Lemma 3.4. Suppose firm 1 discloses x̃1 at date t. Then B2t > B1t if and only if

ỹ
def
=

ρx̃1 + (1− ρ)µ∗ −B1t

σ2
> z(t) . (3.15)

A necessary condition for (3.15) is that x̃1 > B1t.

Lemma 3.4 shows that a jump in the value of firm 2 occurs at date t if and only

if firm 1 learns its value at t and has a sufficiently high value x̃1 > B1t.
7 Now we

turn to computing the jump in firm 2’s value when B2t > B1t. Given our working

assumption that firm 2 is at the boundary at t, its value at t is

Jt =

∫ T

t

e−r(u−t)e−r(T−u)B1t du . (3.16)

When firm 1 discloses at t and we have a jump in the boundary B2t > B1t, then

firm 2 will continue to exercise plausible deniability and earn the reward P2u until

P2u drops down to e−r(T−u)B1t, equivalently, B2u drops down to B1t. The jump in

7This result is quite important for rendering the model tractable. It means that, for computing
the marginal condition (3.7), we can ignore the case in which firm 1 learns its value before t and
discloses at t (which happens only when x̃1 = B1t). The arrival rate of such disclosures depends on
the slope of the boundary B1 at t (more disclosures happen in a given time interval if the boundary
is steeper) . Thus, absent a result like Lemma 3.4, we would have to solve the marginal condition
(3.7) as a dynamical system, perhaps as a differential equation. Because of Lemma 3.4, we can
instead solve for the boundary pointwise in t, by solving the fixed-point problem in Proposition 3.2
at each t.
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firm 2’s value function is the difference between the value of this and the value (3.16),

which is ∫ s

t

e−r(u−t)
[
P2u − e−r(T−u)B1t

]
du , (3.17)

where s denotes the date after t at which B2s = B1t. From Proposition 3.1, the date s

is the solution of z(s) = ỹ, that is, it is s = z−1(ỹ). Furthermore, Proposition 3.1

shows that, for u ∈ [t, z−1(ỹ)],

e−r(u−t)
[
P2u − e−r(T−u)B1t

]
= σ2 e−r(T−t)[ỹ − z2(t, u, ỹ)] . (3.18)

Combining these facts, we conclude that the risk-neutral expected jump in firm 2’s

value conditional on a jump occurring and conditional on firm 2 being at the bound-

ary at t is

σ2 e−r(T−t)E∗

[∫ z−1(ỹ)

t

[ỹ − z2(t, u, ỹ)] du

∣∣∣∣∣ x̃2 = B1t, firm 1 discloses, ỹ > z(t)

]
.

(3.19)

We need to derive the density of ỹ given the information on which we are condi-

tioning in (3.19). Maintaining our assumption that x̃2 = B1t, the distribution of x̃1

conditional on x̃2 is normal with mean ρB1t + (1− ρ)µ∗ and standard deviation σ2.

An easy calculation then shows that the distribution of ỹ conditional on x̃2 is normal

with mean
√

1− ρ2z1(t) and standard deviation ρ. The distribution of ỹ conditional

on x̃2 and conditional on ỹ > z(t) is truncated normal with density

1

ρ
φ

(√
1− ρ2z1(t)− y

ρ

)/
Φ

(√
1− ρ2z1(t)− z(t)

ρ

)
. (3.20)

The last piece we need is the arrival rate of disclosures by firm 1 having ỹ > z(t).
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For any ε > 0, the probability that firm 1 learns its value at some u ∈ (t, t+ ε) and

ỹ > z(t), conditional on x̃2 = B1t, is

1

T

∫ t+ε

t

Φ

(√
1− ρ2z1(u)− z(t)

ρ

)
du .

The probability conditional on x̃2 = B1t and conditional on firm 1 not having dis-

closed prior to t is∫ t+ε

t

Φ

(√
1− ρ2z1(u)− z(t)

ρ

)
du

/[
T − tΦ

(√
1− ρ
1 + ρ

z1(t)

)]
.

The arrival rate (hazard rate) is the derivative of this ratio with respect to ε, evaluated

at ε = 0, so it is

Φ

(√
1− ρ2z1(t)− z(t)

ρ

)/[
T − tΦ

(√
1− ρ
1 + ρ

z1(t)

)]
. (3.21)

Putting these things together, we arrive at the following formula for the right-hand

side of the marginal condition (3.7).

Lemma 3.5.

E∗t [∆J2t | x̃2 = B1t] =

{
σ
√

1− ρ2
ρ

e−r(T−t)

/[
T − tΦ

(√
1− ρ
1 + ρ

z1(t)

)]}

×
∫ ∞
z(t)

∫ z−1(y)

t

[y − z2(t, u, y)]φ

(√
1− ρ2z1(t)− y

ρ

)
du dy . (3.22)

We can now express the marginal condition (3.7) as a numerically tractable fixed-

point condition. Note that the only model parameter that appears in (3.24) is the

correlation ρ. The correlation determines the standardized boundary and price, and
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then we obtain the general boundary and price by scaling and translating as discussed

before.

Proposition 3.2. Prior to any disclosure, the equilibrium disclosure boundary at t

is

B1t = µ∗ − σz1(t) , (3.23)

where z1(t) satisfies

t(1 + ρ)φ (z1(t))
[
T − tΦ

(√
1−ρ
1+ρ

z1(t)
) ]

[
T − tΦ (z1(t))

]2
+ t2

[
Γ (−z1(t),−z1(t) | ρ)− Φ(−z1(t))2

] − z1(t) =

√
1− ρ2
ρ

×

∫∞
z(t)

∫ z−1(y)

t
[y − z2(t, u, y)]φ

(√
1−ρ2z1(t)−y

ρ

)
du dy

T − tΦ
(√

1−ρ
1+ρ

z1(t)
) . (3.24)

Figure 3.1 shows the equilibrium pool price and disclosure boundary described

in Proposition 3.2 and also the pool price and disclosure boundary in the single-firm

model. In all versions of the model, the price begins at µ∗ at date 0 and decreases

to −∞ as t → T . The pool price is uniformly decreasing in the correlation at each

date, because the failure of another correlated firm to disclose is more meaningful,

and hence the price is lower, when the correlation is higher. In the single-firm model,

the boundary and price are the same (with r = 0); however, in the multi-firm model,

the boundary exceeds the price due to the real option effect. Therefore, the boundary

in the multi-firm model is initially higher than in the single-firm model.

Figure 3.2 shows the equilibrium timing of disclosures. The first announcement

in the two-firm model generally occurs before the announcement in the single-firm
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Figure 3.1: Panel (a) presents the equilibrium disclosure boundary, and Panel (b) presents
the equilibrium pool price for the single-firm model and for Stage 1 of the two-firm model
with different correlations ρ. The parameter values are T = 1, µ = 105, µ∗ = 100, σ = 15,
and r = 0.

model, both because the minimium of the two information arrival times is generally

smaller than the arrival time in the single-firm model and because the boundary in

the multi-firm model is generally lower than the boundary in the single-firm model.

The second of the two announcements generally occurs after the announcement in

the single-firm model. Recall that the boundary that determines the second of the

two announcements is the Stage 2 boundary described in Proposition 3.1.

4. Implications for Asset Prices

We first present our main results regarding risk premia and average prices. Then,

we discuss some issues considered by Acharya et al. (2011). Finally, we describe the

scheduling and announcement returns for the disclosing and nondisclosing firms.
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Figure 3.2: The red curve is the density function of the disclosure time in the single-firm
model, as shown in Figure 2.3. The histograms are the distributions of the first and second
disclosure times in the two-firm model, generated from 100,000 simulations of the model.
The parameter values are ρ = 0.5, T = 1, µ = 105, µ∗ = 100, σ = 15, and r = 0.

4.1. Risk Premia and Average Prices

As in the single-firm model, the risk premium rises over time prior to disclosures.

Figure 4.1 shows that it rises faster with multiple firms than with a single firm and

rises faster when the firms are more highly correlated. The risk premium rises for the

same reason that it rises in the single-firm model: rising state prices for bad states.

It rises faster with multiple firms and with higher correlation, because the market

makes a stronger inference from the absence of disclosures by correlated firms.

Figure 4.2 shows the effect of plausible deniability on average prices. We compute

the expectation under the physical probability of the average of the two firms’ prices

at each date, given the equilibrium disclosure times and the market pricing described

in Section 3. We compare this to the expectation of the average price when disclosure

26



0.0 0.2 0.4 0.6 0.8 1.0
time

4%

6%

8%

10%

12%

14%

16%

18%

20%

ris
k 

pr
em

iu
m

single firm
corr = 0.2
corr = 0.5
corr = 0.8

Figure 4.1: The Stage 1 risk premium is computed as the difference between the market’s
discounted conditional expectation of x̃i and the price divided by the price. The parameter
values are r = 0, µ = 105, µ∗ = 100, and σ = 15.

is mandatory.8

Figure 4.2 shows that the possibility of plausible deniability depresses average

prices.9 This is due to the higher risk premium that plausible deniability induces.

Of course, the risk is eventually resolved as firms disclose, so the effect of plausible

deniability vanishes as t→ T , as Figure 4.2 shows. The patterns for different corre-

lations are due to (i) the risk premium rises faster in Stage 1 when the correlation

is higher, as shown in Figure 4.1, so the average price initially falls faster when the

correlation is higher, and (ii) when the correlation is higher, the risk reduction for the

8When disclosure is mandatory, the pool price is µ∗ until one firm discloses, and then the price
for the nondisclosing firm (firm 2) is ρx̃1 +(1−ρ)µ∗. Integrating over the information arrival times,
we can easily compute that the expected average price is t2µ+t(1−t)[(1+ρ)µ+(1−ρ)µ∗]+(1−t)2µ∗.

9Thus, firms might prefer, if possible, to commit to disclosing as soon as they learn their values.
A preference for commitment occurs in many contexts. We should note however that the discounted
prices are martingales under the risk-neutral probability, so it is only under the physical probability
that the average price is depressed, and we are assuming firms maximize risk-neutral expectations.
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Figure 4.2: The figure presents the difference between the expected average price in the
two-firm model (computed from 100,000 simulations for each correlation) and the expected
average price with mandatory disclosure, shown as a percent of the expected average price
with mandatory disclosure. The parameter values are r = 0, µ = 105, µ∗ = 100, and
σ = 15.

second firm to disclose is greater when the first firm discloses, so the risk premium

and price reduction are generally smaller with higher correlations at later dates.

4.2. Real Option Effect and Clustering

Here we examine two issues addressed by Acharya et al. (2011). In their model,

the firm is willing to allow the pool price to drop some distance below its value before

disclosing, because of the possibility that the public announcement will be good news,

which will lift the pool price and prolong the value of plausible deniability. This

real option effect (relative to the other firm’s disclosure rather than an exogenous

announcement) is what underlies our marginal condition (3.7). Figure 4.3 plots the

excess of the Stage 1 boundary over the price in our model, in relation to the price,

as a function of the firms’ correlation. In their discussion of a multi-firm model,

Acharya et al. (2011) point out that this excess will be zero at correlations of 0 and
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1 when there are multiple firms and no exogenous announcement. This is confirmed

in Figure 4.3, which shows moreover that the pattern is in general hump-shaped.
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Figure 4.3: The figure presents the difference between the Stage 1 boundary and the Stage
1 price in relation to the price: (B1t − P1t)/P1t. The parameter values are r = 0, µ = 105,
µ∗ = 100, and σ = 15.

The marginal condition (3.7) demonstrates that the spread between the Stage 1

boundary and price shown in Figure 4.3 depends on the probability that the other

firm discloses, the distribution of the other firm’s potential disclosure, and the effect

of the other firm’s disclosure on the market’s inference regarding the nondisclosing

firm. Correlation of firm values has two opposing effects on the spread. First, the

higher the correlation, the greater the inference the market will make regarding the

nondisclosing firm. So, for any given disclosure by the other firm, the benefit for the

nondisclosing firm is greater when the correlation is higher. Second, the higher the

correlation, the less likely it is that the other firm will disclose a value markedly dif-

ferent from the nondisclosing firm’s value. This channel reduces the potential benefit
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of disclosure by the other firm, and hence reduces the spread between boundary and

price, when the correlation is increased. Figure 4.3 shows that the first effect dom-

inates at low correlations—the spread rises with correlation—and the second effect

dominates at high correlations—the spread falls with correlation.

The passage of time affects both channels described in the previous paragraph.

The distributions of value from both the market’s perspective and from the perspec-

tive of the nondisclosing firm become more skewed as time passes, as explained in

Section 2. Section 2 discusses how the relation between risk-neutral and physical dis-

tributions changes with the truncation-induced skewness. The distributions that are

relevant for Figure 4.3 are the nondisclosing firm’s perception of the other firm’s value

and the nondisclosing firm’s perception how the market will perceive its value after

disclosure of the other firm’s value. The first distribution (the distribution of x̃1 given

x̃2) is a truncation of the normal distribution with mean ρx̃2+(1−ρ)µ∗ and standard

deviation σ
√

1− ρ2. The second distribution (the distribution of ρx̃1+(1−ρ)µ∗ con-

ditional on x̃2) is a truncation of the normal distribution with mean ρ2x̃2 +(1−ρ2)µ∗

and standard deviation ρσ
√

1− ρ2. The difference between the distributions obvi-

ously depends on the correlation ρ. Thus, how the passage of time affects the spread

between the boundary and the price depends on the correlation. The upshot is that

the passage of time increases the spread between the boundary and price for low

correlations (on the left in Figure 4.3, the green curve is highest) and decreases the

spread for low correlations (on the right in Figure 4.3, the green curve is lowest).

Acharya et al. (2011) show that disclosures happen faster after a negative public

announcement than a positive public announcement. The same phenomenon occurs
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Figure 4.4: The figure presents Stage 1 and Stage 2 boundaries. The red curve is the
Stage 1 boundary prior to t = 0.2. The other curves are Stage 2 boundaries resulting
from different disclosures at t = 0.2. The parameter values are ρ = 0.5, r = 0, µ = 105,
µ∗ = 100, and σ = 15. At t = 2, the Stage 1 boundary is 99.0, so a disclosure at 99.0 causes
the Stage 2 boundary to drop relative to the Stage 1 boundary, as shown in Lemma 3.4.

in our model relative to the endogenous announcements by the firms: the second firm

delays less after the first firm’s announcement when the first firm’s announcement

is relatively bad news. The second firm announces when its value is above the

Stage 2 boundary, so this clustering effect is equivalent to the Stage 2 boundary

being lower when the first firm’s announcement is worse news. The clustering effect

is an implication of Proposition 3.2. Figure 4.4 illustrates the phenomenon. It plots

equilibrium Stage 2 boundaries conditional on various possible disclosures. The

Stage 2 boundary is higher—implying that the second disclosure will be delayed

longer on average—when the disclosure is better news.

When the first firm’s disclosure is at or near the Stage 1 boundary, the Stage 2

boundary is lower at the disclosure date than the Stage 1 boundary, as shown in
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Lemma 3.4. This is illustrated in Figure 4.4. If the second firm has learned its value

and its value lies in the interval between the two boundaries, then it will disclose

at the same time as the first firm. Thus, there is a nonzero probability that both

firms will disclose at the same time, even though their information arrival times are

independently and uniformly distributed. This is the extreme case of clustering.

4.3. Scheduling and Announcement Returns

Now, we look at announcement returns. Announcements in our model occur

at unpredictable times. In practice, announcements are usually scheduled ahead of

time. In a world where plausible deniability is a possibility, the mere act of scheduling

an announcement conveys good news, because it demonstrates that the firm wants

to separate from the pool. So, there should be a positive market reaction when the

announcement is scheduled.10 On the other hand, the market reaction to the actual

news that is released should be zero on average under the risk-neutral probability and

positive on average under the physical probability only if it is positively correlated

with the pricing kernel. To separate the reaction to the scheduling and the reaction

to the actual announcement in our model, we compute the risk-neutral expectation

of the announcement at the announcement date, conditioning on an announcement

occurring but not conditioning on the content of the announcement. This is the price

at which the firm would trade an instant before the announcement if it were known

at that time that an announcement was forthcoming. Call this price the interim

10As mentioned in the introduction, plausible deniability is one answer to a question asked by Ross
(1989): “how could the mere announcement of the acceleration of the release of some information
concerning its future payoff possibly influence the price of an asset?” In Ross’s model (as apparently
in the example of New York City bonds that he cites) the acceleration is not a signal, but it is a
signal in a model with plausible deniability.
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price. The total announcement return is the pre-announcement-to-interim return

compounded with the interim-to-post-announcement return. We call the former the

scheduling return and the latter the announcement return.

Figure 4.5 shows that the scheduling return for the disclosing firm is substantially

larger than the expected announcement return (the announcement risk premium) in

our model. The same is true for the non-disclosing firm, which also experiences a

positive scheduling return and earns a positive risk premium upon announcement as

shown in Panel (b) of Figure 4.5. Both the scheduling return and the announcement

risk premium are smaller for the non-disclosing firm than for the disclosing firm,

consistent with Savor and Wilson (2016). All of the returns are larger if the disclosure

happens later, consistent with the rising risk premium shown in Figure 4.1.

0.0 0.2 0.4 0.6 0.8 1.0
time

10%

20%

30%

40%

50%

re
tu

rn

(a) Disclosing Firm
expected total return
scheduling return
expected announcement return

0.0 0.2 0.4 0.6 0.8 1.0
time

(b) Non-Disclosing Firm
expected total return
scheduling return
expected announcement return

Figure 4.5: Average returns are calculated as a function of the first disclosure time. The
definitions of the returns are given in the text. The parameter values are ρ = 0.5, T = 1,
µ = 105, µ∗ = 100, σ = 15, and r = 0.
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5. Conclusion

When plausible deniability is possible, risk premia rise prior to disclosures and

consequently prices decline on average. This is a consequence of investors making

inferences about the aggregate risks from firms’ failure to disclose. The rising risk

premia and falling prices produce announcement returns that are higher than un-

conditional risk premia, consistent with the empirical evidence of Savor and Wilson

(2016). These effects are stronger when firm values are more highly correlated.

We demonstrate these results in a model that advances the literature in two

respects: risk-averse investors and competing firms. We solve the model by solving a

fixed-point condition at each date. One might expect that the equilibrium disclosure

boundary at any date would depend on the boundary at other dates and hence

could be obtained at best as the solution of a differential equation. However, we

show that disclosures at the boundary cause the boundary for the nondisclosing firm

to fall, which simplifies the problem substantially, making it possible to solve for

the boundary pointwise in time. This result also implies that there is a nonzero

probability of simultaneous disclosure by the two firms, an extreme version of the

clustering studied by Acharya et al. (2011). Whether this simplification can be

attained with more than two firms is an open question. However, many of our

results (in particular, the rising risk premia and the effect of correlation on the real

option effect) should be robust to the number of firms.
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Appendix A. Marginal condition for Optimal Stopping

We want to describe the equilibrium boundary in Stage 1 of the two-firm model.

Consider a firm that has learned its value x. If it has disclosed at t, then its remaining

value is equal to ∫ ∞
t

e−r(u−t)e−r(T−u)x = (T − t)e−r(T−t)x (A.1)

Prior to disclosing, its value function depends on whether the other firm has disclosed.

If not, then we are in Stage 1 and we write the value function as J1(t, x). If the other

firm has disclosed, then we are in Stage 2 and the firm’s value function depends

on (t, x) and on the timing and content of the other firm’s disclosure. Write it as

J2(τ, d, t, x) where τ denotes the date of the other firm’s disclosure and d denotes the

content of the other firm’s disclosure. Set

J =


J1(t, x) in Stage 1

J2(τ, d, t, x) in Stage 2

(T − t)e−r(T−t)x after disclosure

The value matching condition is that J equal (A.1) when x is at the optimal disclosure

boundary. The smooth pasting condition is that

∂J

∂x
= (T − t)e−r(T−t) (A.2)

when x is at the optimal disclosure boundary.

For concreteness, label the firm whose value we are studying as firm 2, so x denotes

the realization of x̃2, and d denotes the realization of x̃1. We need to compute E∗[dJ ]
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in Stage 1. We have

E∗[dJ ] =
∂J1(t, x)

∂t
dt+ E∗[∆J ] (A.3)

where the possible jump ∆J would be a result of a disclosure by firm 1. The jump

size and arrival rate of disclosures is discussed in the text. Let λ(t, x) denote the

arrival rate of disclosures that create jumps, so

E∗[∆J ] =
(
E∗[J2 | jump]− J1

)
λ(t, x) dt .

Denote

E∗[J2 | jump]λ(t, x)

by ω(t, x). Substituting into the martingale condition (3.5), we have

P1t − [r + λ(t, x)]J1(t, x) +
∂J1(t, x)

∂t
+ ω(t, x) = 0 . (A.4)

For each x, this is an ordinary differential equation (ODE) for J1 as a function of t.

The value matching condition is a terminal condition for the ODE. Let τ(x) denote

the date t such that x = B1t. Solving the ODE subject to the value matching

condition gives, for t ≤ τ(x),

J1(t, x) = x[T − τ(x)]e−r(T−t) exp

(
−
∫ τ(x)

t

λ(u, x) du

)

+

∫ τ(x)

t

e−r(u−t) exp

(
−
∫ u

t

λ(s, x) ds

)
[P1u + ω(u, x)] du . (A.5)

To apply the smooth pasting condition, we differentiate with respect to x and eval-
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uate at t = τ(x). Equating the derivative to (T − t)e−r(T−t) gives

e−r(T−t)x− P1t = ω(t, x)− (T − t)e−r(T−t)xλ(t, x) . (A.6)

This is the same as equation (3.7).

Appendix B. Proofs Excluding Lemma 3.3

Proof of Lemma 1.1. Project w̃ on x̃1 + x̃2 as

w̃ − µw = λ(x̃1 + x̃2 − 2µ) + ũ, (B.1)

where ũ is the residual and is independent of x̃1 and x̃2, and where

λ =
cov(w̃, x̃1 + x̃2)

var(x̃1 + x̃2)
=

βσ2
w

2β2σ2
w + σ2

ε

.

Thus,

E[w̃ | x̃1, x̃2] = λ(x̃1 + x̃2) + µw − 2λµ .

The correlation of x̃1 and x̃2 is ρ = β2σ2
w/σ

2, and we have

λ =
ρ

(1 + ρ)β
.

The conditional variance of w̃ given x̃1 and x̃2 is the variance of ũ in (B.1), and we

have

var(ũ) = σ2
w − λ2

(
4β2σ2

w + 2σ2
ε

)
=

(
1− ρ
1 + ρ

)
σ2
w .
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We have

E[m̃ | x̃1, x̃2] =
e−rT

E[e−γw̃]
E[e−γw̃ | x̃1, x̃2] .

From Step 1 and the usual formula for the mean of an exponential of a normal

random variable,

E[e−γw̃] = exp

(
−γµw +

γ2σ2
w

2

)
and

E[e−γw̃ | x̃1, x̃2] = exp

(
−γλ(x̃1 + x̃2)− γµw + 2γλµ+

(
1− ρ
1 + ρ

)
γ2σ2

w

2

)
.

Thus,

E[m̃ | x̃1, x̃2] = exp

(
−rT − γλ(x̃1 + x̃2) + 2γλµ−

(
ρ

1 + ρ

)
γ2σ2

w

)
.

Consider any numbers a1 and a2 and let A denote the event {x̃1 ≤ a1, x̃2 ≤ a2}.

The risk-neutral probability of the event is

Q(A) = erTE[1Am̃] = erTE

[
1AE[m̃ | x̃1, x̃2]

]
.

Therefore, from Step 2,

Q(A) = e−ργ
2σ2

w/(1+ρ)E[1Ae−γλ(x̃1+x̃2−2µ)]

= e−ργ
2σ2

w/(1+ρ)

∫ a2

−∞

∫ a1

−∞
e−γλ(x1+x2−2µ)g(x1, x2) dx1 dx2 , (B.2)

where g denotes the density function of (x̃1, x̃2).
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Set x = (x1 x2)
′, µ = (µ µ)′, and ι = (1 1)′. Let Σ denote the covariance matrix

of x̃, which is 1 ρ

ρ 1

σ2 .

We use the standard fact that for any vector b,

e−b′(x−µ)g(x) = eb′Σb/2g(x + Σb) . (B.3)

Set b = γλι. Direct calculations show that

ργ2σ2
2

1 + ρ
=

1

2
b′Σb ,

and Σb = γβσ2
wι. Substituting these and (B.3) into (B.2), we obtain

Q(A) =

∫ a2

−∞

∫ a1

−∞
g(x1 + γβσ2

w, x2 + γβσ2
w) dx1 dx2 .

This shows that x̃1 and x̃2 have the same distribution under the risk-neutral proba-

bility as under the physical probability, but with means shifted by γβσ2
w.

The remaining task is to compute the distribution of x̃i given x̃j. Project x̃i on

x̃j under the physical probability as

x̃i − µ = b(x̃j − µ) + ẽ (B.4)
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where ẽ is the residual and is independent of x̃j. Thus,

E[x̃i | x̃j] = bx̃j + (1− b)µ ,

and we have

b =
cov(x̃i, x̃j)

var(x̃j)
= ρ .

The conditional variance of x̃i given x̃j is the variance of ẽ, and (B.4) implies that

this conditional variance is

var(ẽ) = σ2(1− ρ2) .

The calculation is the same under the risk-neutral probability with µ∗ replacing µ.

Proof of Lemma 2.1. This follows from a direct calculation of the expected value.

Proof of Lemma 2.2. Fix t and T such that 0 ≤ t ≤ T . Equation (2.2) can be

rewritten as

F (t, z)
def
= z [T − tΦ(z)]− tφ(z) = 0 . (B.5)

We have ∂F/∂z = T − tΦ(z) > 0, F (0) < 0, and limz→∞ F (t, z) = ∞. Therefore,

F (t, z) = 0 admits a unique solution for every t, and the solution is positive. Because

F is continuously differentiable and ∂F/∂z 6= 0, the implicit function theorem states

that z(t) is also continuously differentiable and

dz

dt
= − ∂F

∂t

/
∂F

∂z
=

zΦ(z) + φ(z)

T − tΦ(z)
> 0 .
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Proof of Proposition 2.1. Use Lemmas 2.1 and 2.2 and the substitutions φ(−z) =

φ(z)

T − t+ tΦ(−z) = T − t+ t[1− Φ(z)] = T − tΦ(z) .

Proof of Lemma 3.1. Equation (3.8) is equivalent to

z
[
T − τΦ(y)− (t− τ)Φ(z)

]
− τφ(y)− (t− τ)φ(z) = 0 . (B.6)

The left-hand side of (B.6) is negative at z = 0 and infinite at z =∞. Furthermore,

its derivative with respect to z is

T − τΦ(y)− (t− τ)Φ(z) > 0 ,

so there is a unique solution z of (B.6), and the solution is positive. Denote the

solution by z2(τ, t, y). The implicit function theorem gives us

∂z2(τ, t, y)

∂t
=

zΦ(z) + φ(z)

T − τΦ(y)− (t− τ)Φ(z)
> 0 .

Because (B.6) is strictly monotone in z, the condition y < z2(τ, t, y) is equivalent

to

y
[
T − τΦ(y)− (t− τ)Φ(y)

]
− τφ(y)− (t− τ)φ(y) < 0 ,

which simplifies to

y
[
T − tΦ(y)

]
− tφ(y) < 0 . (B.7)
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The definition of z(t) is that z(t) = z where

z
[
T − tΦ(z)

]
− tφ(z) = 0 . (B.8)

The left-hand side of (B.8) is strictly monotone in z, as noted in the proof of

Lemma 2.2, so (B.7) is equivalent to y < z(t).

Proof of Proposition 3.1. The equilibrium boundary is the solution B2t of the fixed-

point condition

B2t =

E∗
[
x̃2

∣∣∣∣ x̃1,{θ̃2 > t
}
∪
{
θ̃2 ≤ τ, x̃ < B1τ ∧B2t

}
∪
{
τ < θ̃2 ≤ t, x̃ < B2t

}]
. (B.9)

There are two possible cases: (i) B2t ≤ B1τ , and (ii) B2t > B1τ . In case (i), the fixed

point problem in (B.9) translates to a single-firm problem, whose solution is given

in Proposition 2.1. Hence, in case (i),

B2t = µ̃∗2 − σ2z(t) .

The condition B2t ≤ B1τ translates to z(t) ≥ ỹ. In case (ii), the fixed point problem

in (B.9) becomes

B2t = E∗
[
x̃2

∣∣∣∣ x̃1,{θ̃2 > t
}
∪
{
θ̃2 ≤ τ, x̃ < B1τ

}
∪
{
τ < θ̃2 ≤ t, x̃ < B2t

}]
. (B.10)

Define Z2t = (µ̃∗2 − B2t)/σ2. We can calculate the probabilities of the events on the

42



right-hand side of (B.10) as

Pr
{
θ̃2 > t

}
=
T − t
T

,

Pr
{
θ̃2 ≤ τ, x̃ < B1τ

}
=
τ

T

(
1− Φ(ỹ)

)
,

P r
{
τ < θ̃2 ≤ t, x̃ < B2t

}
=
t− τ
T

(
1− Φ(Z2t)

)
.

Using these probabilities and the fact that E∗[x̃2|x̃1, x̃2 ≤ a] = µ̃∗2 − σ2φ(a)/Φ(a), we

can rewrite (B.10) as

B2t =
T − t

T − τΦ(ỹ)− (t− τ)Φ(Z2t)
× µ̃∗2

+
τ
(
1− Φ(ỹ)

)
T − τΦ(ỹ)− (t− τ)Φ(Z2t)

×
(
µ̃∗2 − σ2

φ(ỹ)

1− Φ(ỹ)

)
+

(
t− τ

)(
1− Φ(Z2t)

)
T − τΦ(ỹ)− (t− τ)Φ(Z2t)

×
(
µ̃∗2 − σ2

φ(Z2t)

1− Φ(Z2t)

)
.

This simplifies to

B2t = µ̃∗2 − σ1
τφ(ỹ) + (t− τ)φ(Z2t)

T − τΦ(ỹ)− (t− τ)Φ(Z2t)
, ,

which is equivalent to

Z2t =
τφ(ỹ) + (t− τ)φ(Z2t)

T − τΦ(ỹ)− (t− τ)Φ(Z2t)
.

This implies Z2t = z2(τ, t, ỹ).

Proof of Lemma 3.2. Set k = z1(t). The risk-neutral probabilities of the events (i)–
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(iv) are, respectively,

p1 =
t(T − t)
T 2

Φ (−k)

p2 =
t(T − t)
T 2

Φ (−k)

p3 =
t2

T 2
Γ (−k,−k, ρ)

p4 =
(T − t)2

T 2
.

The risk-neutral expectation of x̃1 conditional on each of the four events is

a1
def
= E∗[x̃1 | x̃1 < B1t]

a2
def
= E∗[x̃1 | x̃2 < B1t]

a3
def
= E∗[x̃1 | x̃1 < B1t, x̃1 < B1t]

a4
def
= E∗[x̃1] .

To compute a1, a2, and a3, write x̃i = µ∗ + σξi, where the ξi are correlated standard

normals under the risk-neutral probability. We have

a1 = µ∗ + σE [ξ1 | ξ1 < −k]

= µ∗ − σφ(−k)/Φ(−k) ,

a2 = (1− ρ)µ∗ + ρE[x̃2 | x̃2 < B1t]

= µ∗ + ρσE [ξ2 | ξ2 < −k]

= µ∗ − ρσφ(−k)/Φ(−k) .
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Also,

a3 = µ∗ + σE [ξ1 | ξ1 < −k, ξ2 < −k]

= µ∗ − σE [−ξ1 | −ξ1 > k,−ξ2 > k]

= µ∗ − σ (1 + ρ)φ(−k)Φ(−δ)
Γ(−k,−k, ρ)

.

We use equation (1) in Rosenbaum (1961) for the last line. The equilibrium price is

e−r(T−t) ·
∑4

i=1 piai∑4
i=1 pi

,

which simplifies to the formula stated in the lemma.

Proof of Lemma 3.4. Notice that µ̃∗2 − σ2ỹ = B1t. Furthermore, B2t = µ̃∗2 − σ2Z2t.

Therefore, B2t > B1t if and only if Z2t < ỹ. It follows from the definition (3.10) of

Z2t and Lemma 3.1 that this is equivalent to z(t) < ỹ. Now, if x̃1 = B1t, then

ỹ =
(1− ρ)(µ∗ −B1t)

σ2
=

1− ρ√
1− ρ2

· µ
∗ −B1t

σ
=

√
1− ρ
1 + ρ

z1(t) .

Combining this with Lemma 3.3, we see that if x̃1 = B1t, then ỹ ≤ z(t). Hence,

x̃1 > B1t is a necessary condition for z(t) < ỹ.

Proof of Lemma 3.5. The calculation is explained in the text.

Proof of Proposition 3.2. This follows directly from Proposition 3.1 and Lemmas 3.2–

3.5.
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Appendix C. Proof of Lemma 3.3

Set k = z1(t) and

d =

√
1− ρ
1 + ρ

k .

We need to establish that d ≤ z(t). Because z(t) > 0, this is clearly true if d < 0, so

we can assume d ≥ 0. The definition of z(t) in Lemma 2.2 is that z(t) = z where

z[T − tΦ(z)]− tφ(z) = 0 .

The derivative of the left-hand side of this is T − tΦ(z) > 0, so the left-hand side is

a monotone function of z. Hence, the condition d ≤ z(t) is equivalent to

d[T − tΦ(d)]− tφ(d) ≤ 0 .

So, what we need to show is that

d ≤ tφ(d)

T − tΦ(d)
. (C.1)

What we know from the nonnegativity of (3.13) is that

k ≤
t(1 + ρ)φ (k)

[
T − tΦ (d)

][
T − tΦ (k)

]2
+ t2

[
Γ (−k,−k | ρ)− Φ(−k)2

] .
Multiplying by

√
(1− ρ)/(1 + ρ), we obtain

d ≤
t
√

1− ρ2φ (k)
[
T − tΦ (d)

][
T − tΦ (k)

]2
+ t2

[
Γ (−k,−k | ρ)− Φ(−k)2

] .
Therefore, to establish (C.1), it suffices to show that√

1− ρ2φ (k)[
T − tΦ (k)

]2
+ t2

[
Γ (−k,−k | ρ)− Φ(−k)2

] ≤ φ(d)[
T − tΦ(d)

]2 . (C.2)
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Given d, we can regard the left-hand side of (C.2) as a function of either k or ρ ,

because

k = d

√
1 + ρ

1− ρ
⇔ ρ =

k2 − d2

k2 + d2
. (C.3)

The right-hand sideof (C.2) is the same function evaluated at ρ = 0 ⇔ k = d. It

suffices therefore to show that (C.2) is decreasing in k when we set ρ = ρ(k) as

defined in (C.3).

Taking the log of (C.2) and differentiating, it suffices to show that

{[
T − tΦ (k)

]2
+ t2

[
Γ (−k,−k | ρ(k))− Φ(−k)2

]} d log
[√

1− ρ(k)2φ (k)
]

dk

≤ d

dk

{[
T − tΦ (k)

]2
+ t2

[
Γ (−k,−k | ρ(k))− Φ(−k)2

]}
. (C.4)

We have √
1− ρ(k)2 =

2dk

d2 + k2
,

so

d log
[√

1− ρ(k)2φ (k)
]

dk
=

1

k
− 2k

d2 + k2
− k = −ρ

k
− k .

Therefore, the left-hand side of (C.4) is

−
{[
T − tΦ (k)

]2
+ t2

[
Γ (−k,−k | ρ(k))− Φ(−k)2

]}(ρ
k

+ k
)
,

Also,

d

dk

[
T − tΦ (k)

]2
= −2t

[
T − tΦ (k)

]
φ(k) (C.5)

and

d

dk

[
−Φ(−k)2

]
= 2Φ(−k)φ(k) . (C.6)
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We prove the following at the end of this appendix.

Lemma C.1.

d

dk
Γ(−k,−k) | ρ(k)) = 2φ(k)

[
Φ(−d) +

dφ(d)

d2 + k2

]
(C.7)

Equations (C.5)–(C.7) imply that the right-hand side of (C.4) is

−2tφ(k)
[
T − tΦ (k)

]
+ 2t2φ(k)

[
Φ(−d) +

dφ(d)

d2 + k2
+ Φ(−k)

]
.

Substituting Φ(−k) = 1− Φ(k), this simplifies to

−2tTφ(k) + 2t2φ(k)

[
1 + Φ(−d) +

dφ(d)

d2 + k2

]
The inequality (C.4) is therefore equivalent to

{[
T − tΦ (k)

]2
+ t2

[
Γ (−k,−k | ρ(k))− Φ(−k)2

]}(ρ
k

+ k
)

≥ 2tTφ(k)− 2t2φ(k)

[
1 + Φ(−d) +

dφ(d)

d2 + k2

]
(C.8)

A sufficient condition for (C.8) is

[
T − tΦ (k)

]2 (ρ
k

+ k
)
≥ 2tTφ(k)− 2t2φ(k)

[
1 + Φ(−d) +

dφ(d)

d2 + k2

]
.

We can rewrite this as

2t2φ(k)

[
1 + Φ(−d) +

dφ(d)

d2 + k2

]
+ t2Φ(k)2

(ρ
k

+ k
)

− 2tTΦ (k)
(ρ
k

+ k
)
− 2tTφ(k) + T 2

(ρ
k

+ k
)
≥ 0 (C.9)
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The left-hand side is quadratic in t with a unique minimum at

TΦ (k)
(
ρ
k

+ k
)

+ Tφ(k)

2φ(k)
[
1 + Φ(−d) + dφ(d)

d2+k2

]
+ Φ(k)2

(
ρ
k

+ k
)

Substituting this into (C.9) and cancelling a T 2 factor, we see that (C.9) holds for

all t if and only if{
2φ(k)

[
1 + Φ(−d) +

dφ(d)

d2 + k2

]
+ Φ(k)2

(ρ
k

+ k
)}(ρ

k
+ k
)

≥
[
Φ (k)

(ρ
k

+ k
)

+ φ(k)
]2

This simplifies to

2

[
Φ(−k) + Φ(−d) +

dφ(d)

d2 + k2

](ρ
k

+ k
)
− φ(k) ≥ 0 . (C.10)

Set x = d/k so d = xk. Then, (C.10) is equivalent to

2

[
kΦ(−k) + kΦ(−xk) +

xφ(xk)

1 + x2

](
1− x2

1 + x2
+ k2

)
− k2φ(k) ≥ 0 . (C.11)

It will suffice to establish (C.11) for all k > 0 and all x ∈ (0, 1). A sufficient condition

for (C.11) is

2kΦ(−k)

(
1− x2

1 + x2
+ k2

)
+

2xk2φ(k)

1 + x2
− k2φ(k) ≥ 0 . (C.12)

The left-hand side of (C.12) is larger than 2k3Φ(−k) − k2φ(k), so (C.12) holds if

2kΦ(−k)− φ(k) ≥ 0.

Set h(k) = 2kΦ(−k) − φ(k). Then h′(k) = 2Φ(−k) − kφ(k) and h′′(k) = (k2 −

3)φ(k). Thus, h′ is a decreasing function for k >
√

3. It is negative at k =
√

3 and
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hence negative for all k >
√

3. This means that h is decreasing for k >
√

3. The

function h is positive at k =
√

3 and is equal to 0 at k = ∞, so it is positive for all

k >
√

3. We have h′′ < 0 for k <
√

3, so h is concave on the region (0,
√

3); hence,

it is positive for all k > k∗
def
= inf{x | h(x) > 0} ≈ 0.62 and negative for k < k∗.

We have shown that (C.12) holds for k ≥ k∗. Consider k < k∗. Multiply by

(1 + x2)/k to write (C.12) as

2Φ(−k)
[
1− x2 + k2(1 + x2)

]
− (1− 2x+ x2)kφ(k) ≥ 0 . (C.13)

This can be rearranged as[
kh(k)− 2Φ(−k)

]
x2 + 2kφ(k)x+ 2Φ(−k) + kh(k) ≥ 0 . (C.14)

The left-hand side of (C.14) is concave in x when k < k∗. It is equal to 4k2Φ(−k) > 0

at x = 1, and it is equal to j(k)
def
= 2Φ(−k) + kh(k) at x = 0. A concave function

on (0, 1) that is positive at 0 and at 1 must be positive everywhere on (0, 1), so it

suffices now to show that j(k) > 0 when k < k∗. The function j is decreasing on

(0, k∗), because its derivative is 2h(k) − (1 + k2)φ(k). Furthermore, h(k∗) = 0, so

j(k∗) = 2Φ(−k∗) > 0. Hence, j must be positive on (0, k∗).

Proof of Lemma C.1. Consider two standard normals with correlation ρ defined as

x̃1 = ε̃1 and x̃2 = ρε̃1+
√

1− ρ2ε̃2 where ε̃1 and ε̃2 are independent standard normals.
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We have

Γ(a, b | ρ) = prob

(
ε̃1 ≤ a, ε̃2 ≤

b− ρε̃1√
1− ρ2

)

=

∫ a

−∞

∫ (b−ρε1)/
√

1−ρ2

−∞
φ(ε2) dε2 φ(ε1) dε1

=

∫ a

−∞
Φ

(
b− ρε1√

1− ρ2

)
φ(ε1) dε1

So, using the fact that

∂

∂ρ

b− ρε1√
1− ρ2

= (1− ρ2)−3/2(ρb− ε1) ,

we obtain

∂Γ(a, b | ρ)

∂ρ
= (1− ρ2)−3/2

∫ a

−∞
φ

(
b− ρε1√

1− ρ2

)
(ρb− ε1)φ(ε1) dε1

Also,

φ

(
b− ρε1√

1− ρ2

)
φ(ε1) =

1

2π
exp

(
−1

2

[
(b− ρε1)2

1− ρ2
+ ε21

])

and

(b− ρε1)2

1− ρ2
+ ε21 = b2 +

(ε1 − bρ)2

1− ρ2

so

φ

(
b− ρε1√

1− ρ2

)
φ(ε1) = φ(b)φ

(
ε1 − bρ√

1− ρ2

)
.
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Hence,

∂Γ(a, b | ρ)

∂ρ
= (1− ρ2)−3/2φ(b)

∫ a

−∞
(ρb− ε1)φ

(
ε1 − bρ√

1− ρ2

)
dε1

Finally, making the change of variables u = (ε1 − bρ)/
√

1− ρ2, we obtain

∫ a

−∞
(ρb− ε1)φ

(
ε1 − bρ√

1− ρ2

)
dε1 = (1− ρ2)

∫ (a−bρ)/
√

1−ρ2

−∞
−uφ(u) du

= (1− ρ2)φ

(
a− bρ√
1− ρ2

)
.

Therefore,

∂Γ(a, b | ρ)

∂ρ
=

1√
1− ρ2

· φ(b)φ

(
a− bρ√
1− ρ2

)
.

Also, we have

∂

∂a
Γ(a, b | ρ) = Φ

(
b− ρa√
1− ρ2

)
φ(a)

and

∂

∂b
Γ(a, b | ρ) = Φ

(
a− ρb√
1− ρ2

)
φ(b) .

Substituting a = −k and b = −k, we obtain

b− ρa√
1− ρ2

=
a− ρb√
1− ρ2

= −d .

Furthermore, √
1− ρ(k)2 =

2dk

d2 + k2
,
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and

ρ′(k) =
4d2k

(d2 + k2)2
,

so

ρ′(k)√
1− ρ(k)2

=
2d

d2 + k2
.

Therefore,

d

dk
Γ(−k,−k) | ρ(k)) = 2Φ(−d)φ(−k) +

1√
1− ρ2

· φ(−k)φ (−d) ρ′(k)

= 2Φ(−d)φ(k) +
2d

d2 + k2
φ(d)φ(k)

= 2φ(k)

[
Φ(−d) +

dφ(d)

d2 + k2

]
.
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