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1 Introduction

Asset prices in the financial market can be extremely volatile. For instance, volatility, as measured

by the VIX index, in the 2007-2009 global finance crisis and the 2010 eurozone debt crisis seemed to

be too high to be justified by fundamental uncertainty. Bacchetta, Tille, and Wincoop (AER, 2012)

(BTW hereafter) propose a theory of “self-fulfilling risk panics”, i.e., the perception of the presence

of high risk tomorrow leads to high risk today. BTW show that even if an asset has no fundamental

uncertainty with a constant dividend process, a stochastic sentiment-driven equilibrium for the asset

price exists besides the well-known fundamental equilibrium which is unique. The core result of

BTW can be described as follows. Consider the following asset pricing equation:

qt = βEt (qt+1 + d)− λvart (qt+1)

where qt is the asset price, d is interpreted as the constant dividend in each period, and β and λ

are constant coeffi cients. Then, clearly, there exists a fundamental equilibrium given by qt = β
1−βd

and vart (qt+1) = 0. Surprisingly, the authors show the existence of another equilibrium, in which

the asset price qt is a function of a state variable – sunspot St, and St follows a stochastic process.

The microfounded model of BTW is built on two key assumptions: 1) the mean-variance utility

of agents, i.e., the variance of wealth or consumption directly enters the utility function, and 2)

an overlapping generation (OLG) structure. These two assumptions, however, deserve some close

scrutiny. First, the mean-variance preference has been severely criticized in the long-standing

literature. Notably, Borch (1969) and Feldstein (1969) proved that mean-variance preferences are

inconsistent with the basic axioms of choice under uncertainty. The criticism forced James Tobin

(1969), one of the pioneers of the mean-variance analysis of portfolio choice, to acknowledge that

the mean-variance preference is applicable only under some special circumstances (Tsiang (1972)).

Second, the OLG structure in BTW gives rise to the question on the source of multiplicity –

whether the results derived under OLG is robust in a general infinite-period model. We know that

a standard Ramsey infinite horizon model of a representative consumer with strictly concave utility,

constant returns to scale production, and the initial capital or asset given, has a unique optimal

solution. The model also can be interpreted as a GE solution where prices faced by the consumer

represent marginal utilities, factors are paid their marginal products, and all markets clear. All

relative prices fall out and are determined as a by-product of the agent’s optimization problem.

Now suppose there were other price sequences that cleared all markets and optimized the sum of

discounted utilities of the consumer at those prices. This would contradict the uniqueness of the

optimization problem and imply that the second equilibrium may not be optimal so that there is

a distortion somewhere.
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In this paper, we generalize the model of BTW. We first show that sentiment-driven equilibria

can exist under the OLG setting of BTW with general utility functions, and we construct such equi-

libria. The construction with analytical solutions is challenging particularly because the functions

involved are non-linear. The intuition nevertheless is easy to understand. If all agents believe that

sunspots affect asset prices, then the agents face price risk and hence demand risk compensation.

Rational self-fulfilling expectation equilibria arise when risk compensation and price jointly satisfy

the agents’utility maximization conditions.

The stochastic sunspot equilibrium constructed in our model features the time-varying, path-

dependent volatility of the sunspot. This is in sharp contrast with the sunspot processes in the

literature on local indeterminacy, where the sunspot is the expectation error, an i.i.d. process

under rational expectations by definition. The asset price generated in our model exhibits asym-

metric volatility, i.e., volatility varies with the price level. This is in line with the well-documented

empirical fact of asymmetric volatility in the asset pricing literature (e.g., Black (1976), Christie

(1982), Schwert (1989, 1990)). The sentiment-driven equilibrium in our model also generates en-

dogenous crashes in asset price. Most times, the sunspot price randomly fluctuates slightly below

the fundamental price, but occasionally the price experiences a significant drop.

One key contribution of our paper is to aim to provide a very general characterization of

self-fulfilling risk panics (Section 6). Specifically, we further investigate whether it is the OLG

structure that is responsible for the existence of sentiment-driven equilibria. We show that as long

as stochastic asset price realizations can affect the contemporaneous consumption, so that the price

and the stochastic discount factor (the price kernel) are not independent, it is possible to construct

a stochastic equilibrium. This is the key feature that allows us to construct sunspot equilibria in

the models and examples that we study. The OLG structure is a convenient device that allows asset

price realizations to affect consumption and stochastic discount factors. In an infinite-period model,

many mechanisms can generate this effect under some realistic frictions such as incomplete market

and borrowing constraints (see, e.g., Geanakoplos and Polemarchakis (1985), Kiyotaki and Moore

(1997)). In this sense, the OLG setting, where not all generations are present and trading at the

beginning of time, can be regarded as a market incompleteness friction in a standard infinite-period

model.

There is one caveat to mention. In an infinite-period model, sunspot equilibria may actually

increase the price above that in the unique certainty equilibrium. This seemly surprising result is

also intuitive. Since sunspots make the asset risky, the asset holders need to be compensated for

the additional risk. For any given future price expectation, a lower current price would make the

asset return more attractive. This explains why the asset price in a sunspot equilibrium is below

that of the certainty equilibrium in an OLG setting. However, the asset holders can be alternatively

compensated if the future price is higher for any given current price. In short, asset prices can be
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either undervalued (as in a large literature on fire sales; see, e.g., the survey by Shleifer and Vishny

(2011)) or overvalued (as in a large literature on bubbles; see, e.g., the survey by Brunnermeier and

Oehmke (2013)). Our results hence complement the original insight of BTW where the sunspots

always reduce the asset price below that of the certainty equilibrium.

Our paper is related to the literature on sunspot equilibria, pioneered by Cass and Shell (1983).

The literature has since become vast, so we do not attempt to make an exhaustive review on it here.

Broadly speaking, there are two types of sunspot equilibria. The majority of sunspot equilibria are

conditional on the existence of multiple certainty equilibria. Sunspot equilibria can be constructed

by some randomization over these certainty equilibria. In a dynamic model of sunspot equilibria,

this often means that there exists a continuum of certainty equilibria all converging asymptotically

to the equilibrium steady state.1 Our sunspot equilibria belong to the second type: the certainty

equilibrium is unique, yet there exists a continuum of sunspot equilibria. Hence, our sunspot

equilibria are not merely randomizations over certainty equilibria. Cass and Shell (1983) provide

the first example of such sunspot equilibria in a simple two-period exchange economy model in their

appendix. But their model is too stylized to study actual fluctuations in asset price or aggregate

fluctuations. Benhabib, Wang, and Wen (2005) show that such sunspot equilibria co-existing

with a unique certainty equilibrium can exist in a monopolistic competition model à la Dixit—

Stiglitz (1977) when firms make production decisions based on their expectations about aggregate

and idiosyncratic demand shocks. Because of imperfect information, firms confuse sunspots with

fundamental demand shocks. Our model differs from that of Benhabib, Wang, and Wen (2005)

in that, in our model, agents fully observe the sunspots. The sunspot equilibria in both Cass and

Shell (1983) and Benhabib, Wang, and Wen (2005) are based on a static or finite-period model. In

contrast, in our model the sunspot equilibria are not possible if the economy is finite because, by

backward reduction, the only equilibrium would be the certainty equilibrium.

The paper is organized as follows. Section 2 lays out the baseline model with an OLG setting.

Section 3 presents the certainty equilibrium, and Section 4 presents the sunspot equilibrium. Section

5 gives the equilibrium with switching across states. Section 6 studies the infinite-period model.

Section 7 conducts an extension of the model. Section 8 concludes.
1 Important early contributions in this line of research include Azariadis (1980), Tirole (1985), Azariadis and

Guesnerie (1986), and Woodford (1986). Following Benhabib and Farmer (1994), it has been shown later that
sunspot equilibria can emerge in a standard RBC model with increasing returns to scale or endogenous markups,
opening the possibility of explaining the actual business cycle fluctuations without resorting to technology shocks (see,
e.g., Farmer and Guo (1994), Benhabib and Farmer (1999), Benhabib and Wen (2004), Jamovich (2008), and Wang
and Wen (2008)). The recent 2007-2009 financial crisis has spurred several studies on sunspot equilibria through
credit constraints (see, e.g., Benmelech and Bergman (2012), Benhabib and Wang (2013), Liu and Wang (2014),
Perri and Quadrini (2018), Miao and Wang (2018), and Schmitt-Grohe and Uribe (2020)).
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2 Baseline Model

We consider a standard asset pricing model à la Lucas (1978), but in an OLG setting. Agents live

for two periods. An agent born in period t, with an endowment W , derives utility at period t+ 1:

U(Ct+1),

where U
′
(·) > 0 and U

′′
(·) < 0. An agent can trade two assets. One is a risky asset, and the other

is a risk-free asset (e.g., bond). The risk-free asset’s gross return is exogenously given as R > 1.2

The risky asset has a constant dividend, D, in each period, and the trading price of the risky asset

at t is denoted by Qt. There is totally one unit of the risky asset in the economy. An agent solves

a simple portfolio problem

max
αt

EtU(Ct+1)

with Ct+1 = W (1− αt) ·R+Wαt ·
Qt+1 +D

Qt
, (1)

where αt is the proportion of wealth invested in the risky asset.

The first-order condition of (1) yields

Et
{
W

(
Qt+1 +D

Qt
−R

)
U ′
[
W

(
(1− αt)R+ αt

Qt+1 +D

Qt

)]}
= 0. (2)

Note that if realizations of asset prices Qt are stochastic they affect marginal utility and, therefore,

the stochastic discount factor fluctuates. In equilibrium, market clearing means

Wαt = Qt · 1, (3)

by considering that there is one unit of the risky asset in the economy.

Let us normalize W = 1 and D = d ×W . Then (2), together with (3), implies the following
Euler equation:

Et
[
(Qt+1 + d−RQt)U ′ (Qt+1 + d+ (1−Qt)R)

]
= 0. (4)

3 Certainty Equilibrium

The certainty equilibrium is a collection of prices Qt for t = 0, 1, 2, ..., such that Equation (4) is

satisfied. Then we have

Qt =
Qt+1 + d

R
,

2The economy can be interpreted as a small open economy with an exogenous R. In Section 6.4, R will be
endogenous in general equilibrium.
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which yields a constant asset price

Qt =

∞∑
j=1

1

Rj
d =

d

R− 1
≡ Qf .

Clearly, the certainty equilibrium is unique. If Qf < W , agents save W − Qt > 0 in the bond

market besides holding the risky asset; otherwise, agents borrow and invest in the risky asset.

We can provide a general equilibrium interpretation of our model if the asset giving a constant

real return R > 1 is capital K, with production function F (K) = RK + WL, where W is the

constant marginal product of labor L, inelastically supplied, and R is the constant return to K.

We can normalize earnings so WL = 1. Note also that the second asset yielding nominal dividends

D can be interpreted as money if D = d = 0, but then Qf = 0 so the return on the money asset

is dominated by R > 1, and therefore money is not held. Then all earnings of the young are then

saved as capital, and we have Kt+1 = WL = 1, equivalent to a constant endowment of capital. In

this general equilibrium interpretation with a capital asset, the certainty equilibrium is unique, and

therefore the sunspots we construct below are not a randomization over certainty equilibria.3 If,

on the other hand, D > 0, the returns on the two assets are equalized in the certainty equilibrium

and the agent is indifferent about the portfolio allocation given by α. In the sunspot cases we

discuss below, the second asset become risky, so the portfolio allocations of the two assets become

determinate under risk aversion.

4 Sunspot Equilibrium

We now consider possible sunspot equilibria. Define qt ≡ Qt−Qf , the difference between the actual
price and the fundamental price of the risky asset. In a sunspot equilibrium, Qt is stochastic and

uncertainty requires the risky asset to bear a premium, so we expect that qt < 0 in general. With

the notation qt, we rewrite the Euler equation, (4), as

Et
[
(qt+1 −Rqt)U ′ (qt+1 −Rqt +R)

]
= 0. (5)

We are interested in whether there are equilibria other than the certainty equilibrium and, in

particular, whether qt is simply a function of a sunspot variable.

3We can also introduce endogenous leisure if the utility of the agent is θ lnCt+1 + (1− θ) (1−Lt) where the time
endowment is 1. Since returns on the two assets are equalized to R in the certainty equilibrium, Ct+1 = Rt+1WtLt.
Then we have the optimally chosen Lt = θ, a constant.
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Equation (5) can be rewritten as

Et


(Et qt+1

R
− qt

)
︸ ︷︷ ︸

term 1

+
(qt+1

R
− Et

qt+1

R

)
︸ ︷︷ ︸

term 2

U ′

R
(Et qt+1

R
− qt

)
︸ ︷︷ ︸

term 1

+
(qt+1

R
− Et

qt+1

R

)
︸ ︷︷ ︸

term 2

+ 1



 = 0,

(6)

where the first term, Et qt+1

R −qt, can be interpreted as the conditional expectation of the discounted
“capital gain”between time t and time t+ 1, and the second term, xt+1 ≡ qt+1

R −Et
qt+1

R , which has

the property Et (xt+1) = 0, characterizes the volatility of the discounted capital gain.

We limit our attention to a stationary process of price qt. Specifically, suppose qt is a linear

function of a sunspot variable, i.e.,

qt = a+ b (zt − z̄) , (7)

where zt is a sunspot following the process

zt+1 = z̄ + ρ (zt − z̄) + εt+1, with z̄ > 0, 1 > ρ ≥ 0, Et (εt+1) = 0. (8)

When ρ > 0, zt is an AR(1) process; when ρ = 0, zt is i.i.d. across time. Given (7) with (8), we

can calculate the two terms in (6); that is,

Et
qt+1

R
− qt =

−a (R− 1)− b (R− ρ) (zt − z̄)
R

and

xt+1 ≡
qt+1

R
− Et

qt+1

R
=

b

R
εt+1,

Considering that Et qt+1

R −qt is a linear function of zt, to simplify the algebra, we can make Et
q1,t+1

R −
q1,t = zt, in which case parameters a and b need to be a = − R

R−1 z̄ and b = − R
R−ρ , implying that

xt+1 = − 1
R−ρεt+1.

Then Euler equation, (5), becomes

Et
[
(zt + xt+1)U ′ (R (zt + xt+1 + 1))

]
= 0 (9)

or

Et
{(

zt −
1

R− ρεt+1

)
U ′
[
R

(
zt −

1

R− ρεt+1 + 1

)]}
= 0. (10)

(10) defines a relationship between zt and εt+1. Therefore, the existence of a stochastic equilibrium

means that we need to find the sunspot process of zt in (8) such that the realization zt and the
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innovation εt+1 for any t has the relationship in (10). The asset price qt then is given by

qt = a+ b (zt − z̄) = − R

R− 1
z̄ − R

R− ρ (zt − z̄) .

To obtain analytical solutions and without loss of generality, we focus on the cases in which

εt+1 follows a uniform distribution or a binomial distribution.

4.1 Uniform distribution of εt+1

Assume that εt+1 ∼ Unif [− (R− ρ)Bt, (R− ρ)Bt] or equivalently xt+1 ∼ Unif [−Bt, Bt]. Then
(9) implies ∫ Bt

−Bt

1

2Bt
(zt + x)U ′ (R(zt + x+ 1)) dx = 0. (11)

This defines an implicit function between Bt and zt. Write the function as Bt = B(zt). As long

as the utility function U (·) is given and known, we can find Bt = B(zt). We have the following

property for B(zt) under a general utility function U (·).

Lemma 1 The solution Bt = B(zt) given by (11) is continuous and increasing in zt ≥ 0 and

B (zt = 0) = 0.

To guarantee Bt ≥ 0, we need zt ≥ 0, which requires

(1− ρ)z̄ + ρzt − (R− ρ)B(zt) ≥ 0 for all zt ≥ 0,

that is,

(1− ρ)z̄ + min
zt≥0

[ρzt − (R− ρ)B(zt)] ≥ 0,

which is true under a suffi cient condition that R− ρ is small enough.

Proposition 1 Under a suffi cient condition that R− ρ is small enough, there exists another type
of equilibrium, in which

qt = − R

R− 1
z̄ − R

R− ρ (zt − z̄)

where

zt+1 = z̄ + ρ (zt − z̄) + εt+1 with εt+1 ∼ Unif [− (R− ρ)Bt, (R− ρ)Bt]

and Bt = B(zt) is given by (11).

The sunspot equilibrium in Proposition 1 features the time-varying, path-dependent volatility

of the sunspot. This result is in sharp contrast with the sunspot process in the literature on local
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indeterminacy, where the sunspot is the expectation error, which is an i.i.d. process under rational

expectations by definition.

Example Consider log utility, that is, U(C) = logC. Then (11) becomes
∫ Bt
−Bt

zt+x
zt+x+1dx = 0

or

zt =

(
2

exp (2Bt)− 1
+ 1

)
Bt − 1, (12)

which implicitly defines function Bt = B(zt). We can show that, for any zt ≥ 0, there is a unique

solution of Bt that satisfies Bt ≥ 0, and that Bt is increasing in zt and bounded from above by zt+1.

Figure 1 plots a simulation of Qt, where parameter values are R = 1.04, ρ = 0.96, z̄ = 0.1251, and

d such that Qf = d
R−1 = 12. The figure shows that the price in the stochastic equilibrium driven

by the sunspot is very persistent due to a high ρ.

Calculate qt+1 − qt = − R
R−ρ (zt+1 − zt) = − R

R−ρ [(ρ− 1) (zt − z̄) + εt+1]. Since V art (εt+1) is

an increasing function of zt, it means that both the (local) drift and the diffusion of the price

process qt are path-dependent. This pattern is along the line of the continuous-time finance models

(see, e.g., Merton (1969)). This literature often models an asset price as a stochastic process:

X (t+4t) − X (t) = µ (t,X (t)) + σ (t,X (t))4W (t), where W (t) is a Wiener process and the

diffusion term σ (t,X (t)) is path-dependent. Also, one well-documented empirical fact in asset

pricing is asymmetric volatility, i.e., volatility varies with the price level (see, e.g., Black (1976),

Christie (1982), Schwert (1989, 1990)). The result generated in our model coincides with this

empirical pattern.

Figure 1: Asset price Qt in sunspot equilibrium with uniform distribution of εt+1 (Red line:

certainty equilibrium; Blue line: stochastic equilibrium)
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4.2 Binomial distribution of εt+1

Assume that εt+1, or, equivalently, xt+1, follows a binomial distribution. For simplicity and without

loss of generality, suppose the upper realization of xt+1 is simply zt, so the binomial distribution

takes the form of

xt+1 =

{
zt w.p mt

zt+mt

−mt w.p zt
zt+mt

, (13)

by considering that xt+1 must satisfy Et (xt+1) = 0. Then (9) implies

2ztU
′ (R (2zt + 1))

mt

zt +mt
+ (zt −mt)U

′ (R (zt −mt + 1))
zt

zt +mt
= 0 (14)

This defines an implicit function between mt and zt. Write the function as mt = m(zt). As long as

the utility function U (·) is given and known, we can find function mt = m(zt) > 0. Guaranteeing

zt ≥ 0 requires that

(1− ρ)z̄ + ρzt − (R− ρ)zt ≥ 0 for all zt ≥ 0,

which is true under the suffi cient condition that ρ ≥ R
2 .

Proposition 2 Under the suffi cient condition that ρ ≥ R
2 , there exists another type of equilibrium,

in which

qt = − R

R− 1
z̄ − R

R− ρ (zt − z̄)

where

zt+1 = z̄ + ρ(zt − z̄) + εt+1 with εt+1 =

{
− (R− ρ) zt w.p mt

zt+mt

(R− ρ)mt w.p zt
zt+mt

and mt = m(zt) is given by (14).

Example Again, we use log utility as an example, that is, U(C) = logC. Then, (14) becomes

2zt
1

2zt+1
mt

zt+mt
+ (zt −mt)

1
zt−mt+1

zt
zt+mt

= 0, which gives the solution of mt = m(zt) as

mt = zt +
1

2
.

Figure 2 plots a simulation of Qt, where parameter values are the same as in Figure 1, that is,

R = 1.04, ρ = 0.96, z̄ = 0.1251, and d such that Qf = d
R−1 = 12. Most of the time, the difference

between the fundamental price (Qf ) and the sunspot price is small but, occasionally, there is a

significant drop in the asset price.
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Figure 2: Asset price Qt in sunspot equilibrium with binomial distribution of εt+1 (Red line:

certainty equilibrium; Blue line: stochastic equilibrium)

5 Equilibrium with Switching across States

We now consider the equilibrium in which there are two states, a sunspot state and sunspot-immune

state. Switching across the two states is driven by an exogenous Markov process. The economy

will switch from the sunspot state to the sunspot-immune state with probability π1, and switch

from the sunspot-immune state to the sunspot state with probability π2.

Denote by q1,t the asset price in the sunspot state and by q0 the asset price in the sunspot-

immune state. For simplicity and without loss of generality, we assume that when the economy

switches from the sunspot-immune state to the sunspot state, the asset price always starts with

the same initial (“reset”) value, denoted by q̄1. (5) implies two equations:

π1 (q0 −Rq1,t)U
′(q0 −Rq1,t +R)

+(1− π1)Et
{

(q1,t+1 −Rq1,t)U
′ [q1,t+1 −Rq1,t +R]

}
= 0 (15)

and

π2 (q̄1 −Rq0)U ′(q̄1 −Rq0 +R) + (1− π2)(q0 −Rq0)U ′(q0 −Rq0 +R) = 0, (16)

where the first equation corresponds to the current state being the sunspot state and the second

equation corresponds to the current state being the sunspot-immune state. With the two equations,

we need to solve the endogenous variable q0 and the endogenous process q1,t.
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Again we are looking for the sunspot process

q1,t = − R

R− 1
z̄ − R

R− ρ (zt − z̄) , (17)

where

zt+1 = (1− ρ)z̄ + ρzt + εt+1, where z̄ > 0 and Et (εt+1) = 0.

Consider the case in which εt+1 is uniformly distributed within [− (R− ρ)Bt, (R− ρ)Bt]. (17)

implies that Et
q1,t+1

R − q1,t = zt and xt+1 ≡ q1,t+1

R − Et q1,t+1

R = − 1
R−ρεt+1 ∼ Unif [−Bt, Bt], so (15)

can be rewritten as

π1 (q0 −Rq1,t)U
′(q0 −Rq1,t +R)

+(1− π1)

∫ Bt

−Bt

1

2Bt
(zt + x)U ′[(R(zt + x+ 1)) dx = 0. (18)

Consider the case of log utility U(C) = logC. Equation (16) becomes

π2

q̄1
R − q0

q̄1
R − q0 + 1

+ (1− π2)
q0
R − q0

q0
R − q0 + 1

= 0,

which gives the solution with respect to q0, that is,

q0 =

(
q̄1
R + 1

R−1π2 + 1
)
−
√(

q̄1
R + 1

R−1π2 + 1
)2
− 4π2q̄1

1
R−1

2
∈ (q̄1, 0) . (19)

Equation (18) becomes

π1

q0 −R
[
− R
R−1 z̄ −

R
R−ρ (zt − z̄)

]
q0 −R

[
− R
R−1 z̄ −

R
R−ρ (zt − z̄)

]
+R

+ (1− π1)
1

2Bt

∫ Bt

−Bt

zt + x

zt + x+ 1
dx = 0. (20)

Since q0 has been solved, (20) gives function Bt = B(zt), namely,

e2Bt =

(
zt +Bt + 1

zt −Bt + 1

) 1

exp

(2Bt)
π1

1−π1

1− 1
q0
R

+ R
R−1

z̄+ R
R−ρ (zt−z̄)+1


. (21)

Note that when π1 = 0, the solution in (21) becomes the one in (12) in the baseline model without

state switching. For any zt, the value of Bt (zt) is higher in the case with π1 > 0 than in the case

with π1 = 0. This is because for the same level of price qt, with a positive probability π1, the asset

price may jump to the higher state in the next period. To accept the same level of price in the

current period, there must be a higher degree of uncertainty in the next period.

11



Proposition 3 Under a suffi cient condition that R− ρ is small enough, there exists another type
of equilibrium, in which the asset price switches across two states according to a Markov process.

In the case of log utility, q0 is given by (19) and q1,t is given by

q1,t = − R

R− 1
z̄ − R

R− ρ (zt − z̄)

where

zt+1 = z̄ + ρ (zt − z̄) + εt+1 with εt+1 ∼ Unif [− (R− ρ)Bt, (R− ρ)Bt]

and Bt = B(zt) is given by (21).

Figure 3 plots a simulation of Qt under parameter values π1 = π2 = 0.01 and q̄1 = − R
R−1 z̄.

The other parameters are given by R = 1.04, ρ = 0.96, z̄ = 0.1251, and again d such that

Qf = d
R−1 = 12. The figure shows that the price alternates between two regions. In one region,

the asset price is constant q0, which is slightly below the certainty equilibrium price, Qf , without

sunspots.

50 100 150 200 250 300 350 400
time

2

4

6

8

10

12

14

Q

Figure 3: Asset price Qt in the equilibrium with switching across states

6 Infinite-Period Model

In the section, we investigate whether the existence of a sentiment-driven equilibrium under the

OLG structure is robust under a standard infinite-period model. We show that as long as the asset

price impacts consumption and thereby the pricing kernel, a sentiment-driven equilibrium can

exist. The OLG structure is a convenient device to model asset price affects consumption. In an

12



infinite-period model, there are many mechanisms to generate the effect that the asset price impacts

consumption, for example, under some realistic frictions such as incomplete market and borrowing

constraints (see, e.g., Geanakoplos and Polemarchakis (1985), Kiyotaki and Moore (1997)).

6.1 Basic asset pricing equation

Consider a general asset pricing equation with two assets. One has the risk-free gross return R

and the other is a Lucas tree, which yields a constant dividend d in each period. Denote the Lucas

tree’s price by Qt and the pricing kernel by Mt,t+1. There is no uncertainty except that the price

of the Lucas tree may fluctuate. We have the standard asset pricing equation for risk premium

0 = βEt
[
Mt,t+1

(
Qt+1 + d

Qt
−R

)]
. (22)

If there is no uncertainty in Qt+1, then this equation implies

Qt+1 + d

Qt
= R

or

Qt =
∞∑
j=1

1

Rj
d =

1
Rd

1− 1
R

=
d

R− 1
≡ Qf .

6.2 Independence between asset price and pricing kernel

If Mt,t+1 does not depend on the asset price Qt+1, then (22) becomes

βEtMt,t+1Et
(
Qt+1 + d

Qt
−R

)
= 0,

which implies

Et
(
Qt+1 + d

Qt
−R

)
= 0.

Again, we have

Qt =

∞∑
j=1

1

Rj
d = Qf .

The price Qt is unique.

6.3 Dependence between asset price and pricing kernel

If Mt,t+1 depends on Qt+1, however, we can construct a sunspot equilibrium. Take an example

Mt,t+1 = mt,t+1 (φ− bQt+1)

13



where mt,t+1 is the deterministic component conditional on information up to t. Equation (22))

becomes

0 = βEt
[
mt,t+1 (φ− bQt+1)

(
Qt+1 + d

Qt
−R

)]
which is equivalent to

0 = Et
[
(φ− bQt+1)

(
Qt+1 + d

Qt
−R

)]
.

Defining qt = Qt −Qf , we then have

Et
[
(φ0 − bqt+1)

(qt+1

R
− qt

)]
= 0, (23)

where φ0 ≡ φ− bQf .

Again we are looking for the sunspot process

qt = − R

R− 1
z̄ − R

R− ρ (zt − z̄) , (24)

where

zt+1 = (1− ρ)z̄ + ρzt + εt+1, where z̄ > 0 and Et (εt+1) = 0.

(24) implies that Et qt+1

R − qt = zt and xt+1 ≡ qt+1

R − Et qt+1

R = − 1
R−ρεt+1, so (23) can be rewritten

as

Et
[(
φ0 + b

[
R

R− 1
z̄ +

R

R− ρ [ρ (zt − z̄) + εt+1]

])(
zt −

1

R− ρεt+1

)]
= 0.

This can be reduced to[
φ0 + b

(
R

R− 1
z̄ +

Rρ

R− ρ (zt − z̄)
)]

zt − b
R

R− ρ
1

R− ρEt
(
ε2
t+1

)
= 0

or

V art (εt+1) =

[
φ0 + b

(
R
R−1 z̄ + Rρ

R−ρ (zt − z̄)
)]
zt

b R
(R−ρ)2

. (25)

Therefore, the asset price process of qt given in (24), with a variance restriction on innovation εt+1

in (25), constitutes a sunspot equilibrium.

6.4 Example 1

We first use a production-economy general-equilibrium model as a concrete example. Let us consider

log utility again. There is a continuum of entrepreneurs, and each of them is initially endowed

with one Lucas tree. A Lucas tree yields a constant dividend d in each period. In each period,

entrepreneurs can also hire labor to produce. Each unit of labor produces A > 1 units of output

14



and the real wage is normalized to unity.4 However, entrepreneurs need to borrow working capital

in advance to hire labor. We assume that the total amount of borrowing is limited to the asset

price Qt (e.g., collateral constraint). An entrepreneur solves

Et
∞∑
t=0

βt log(Ct − C̄),

where C̄ > 0. The entrepreneur faces a constraint

Ct + st+1Qt + bt+1/Rt ≤ (Qt + d)st + Πt + bt,

with

Πt ≡ max
nt

(A− 1)nt

s.t. nt ≤ Qtst,

where bt+1 is the face value of the bond invested in period t with return Rt between period t and

t+ 1, st is the number of Lucas trees held in period t, and Πt is the net profit of labor hiring with

nt being the units of labor hired.

The first-order conditions imply

1

Ct − C̄
= βRtEt

1

Ct+1 − C̄
(26)

and
Qt

Ct − C̄
= βEt

{
1

Ct+1 − C̄
[Qt+1 + d+ (A− 1)Qt+1]

}
. (27)

We assume that βA < 1. In equilibrium, market clearing implies

Ct = d+ (A− 1)Qt.

For simplicity, we assume that d = C̄. Then (27) becomes 1 = βEt
(
d+AQt+1

Qt+1

)
. There is a unique

certainty equilibrium with Qt being constant, namely,

1 = β

(
d+AQt+1

Qt+1

)
,

or

Qt = Qf ≡
βd

1− βA .

4For example, the supply pool of labor is very large.

15



However, any process of Qt+1 satisfying

Et
1

Qt+1
=

1− βA
βd

=
1

Qf
(28)

also constitutes an equilibrium.5 Notice that (28) only puts a restriction on the expectation, Et 1
Qt+1

,

but not on the particular realization of Qt+1. If there is no uncertainty, then Qt+1 = Qf will be

the only equilibrium. But there can also be other types of stochastic equilibria.

Let us assume

Qt+1 = Qf exp(zt+1), (29)

where zt+1 is drawn from a normal distribution with mean µt and variance σ
2
t . Then it requires

Et (exp (−zt+1)) = 1 or

µt =
1

2
σ2
t .

We can simply assume that σ2
t+1 = ρσ2

t + εt+1, where 0 < ρ < 1 and εt+1 is a non-negative random

variable;6 in this case, it is a sunspot on the second moment. We can alternatively specify that σ2
t

is also a function of zt, for example, a linear function of z2
t in the spirit of a GARCH model. No

matter what the process of σ2
t is, as long as zt+1 is drawn from the distribution zt+1 ∼ N(1

2σ
2
t , σ

2
t ),

Qt given in (29) constitutes a sunspot equilibrium. Notice that by Jensen’s inequality, it follows

that Et 1
Qt+1

> 1
EtQt+1

and hence 1
Qf

> 1
EtQt+1

. Or we have EtQt+1 > Qf . In this case, the sunspot

amplifies the asset price, as in a large literature on bubbles (see, e.g., the survey by Brunnermeier

and Oehmke (2013)).

6.5 Example 2

We present another example based on the turnpike model of exchange by Townsend (1980).7 The

model economy is inhabited by two representative infinitely-lived agents. We label them A and

B. Agent A receives an endowment only in every even period, t = 0, 2, 4, 6, 8, ..., whereas agent B

receives an endowment only in every odd period, t = 1, 3, 5, 7, ... The endowment is constant Y .

There are two assets for the agents to smooth their consumption. One is an investment technology

that generates a risk-free gross return R > 1 between two periods. The other is a Lucas tree which

yields a constant dividend, D, in each period. Due to self-fulfilling prophecy, the Lucas tree’s price,

denoted by Qt, may fluctuate. In period 0, the Lucas tree is owned by agent B. The utility for

5By the first-order conditions of (26) and (27), the endogenous Rt is given by Rt =
1
Qt

βEt 1
Qt+1

= 1
1−βA

d
Qt
.

6For example, if the support of εt+1 is
[
η, η̄
]
with η̄ > η ≥ 0, then lim

n→+∞
σ2
t+n lies within

[
1

1−ρη,
1

1−ρ η̄
]
.

7See also Bewley (1986) and Woodford (1986).
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each agent is given by

E0

∞∑
t=0

βt log cit, for i = A,B.

Agents face the constraint

cit +Qtsit+1 + kit+1 ≤ (Qt +Dt)sit + yit +Rkit,

where endowment yit = Y when t = 0, 2, 4, 6, ... and 0 for t = 1, 3, 5, 7, ... for i = A (agent A),

and endowment yit = Y when t = 1, 3, 5, 7, .... and 0 for t = 0, 2, 4, 8, ... for i = B (agent B), and

sit+1 is the unit of the Lucas tree bought at time t, and kit+1 is the amount of wealth invested in

the risk-free technology at time t. Agents cannot short (borrowing against the future endowment),

that is, sit+1 ≥ 0 and kit+1 ≥ 0.

We focus on parameters such that in each period sit+1 = 0 and kit+1 = 0 if yit = 0.8 Then

agent A in period t = 0, 2, 4, 6, ... solves

log cit + βEt log cit+1

with the constraints

cit +Qtsit+1 + kit+1 ≤ Y,

cit+1 ≤ (Qt+1 +D)sit+1 +Rkit+1.

Due to log utility, we obtain

cit =
1

1 + β
Y

Qtsit+1 + kit+1 =
β

1 + β
Y .

And sit+1 and kit+1 are determined by

max
sit+1

Et log[(Qt+1 +D)sit+1 +R(
β

1 + β
Y −Qtsit+1)].

If we normalize β
1+βY = 1, the first-order condition becomes

Et
Qt+1 +D −RQt

(Qt+1 +D) sit+1 +R−RQtsit+1
= 0. (30)

8This requires 1
(Qt+Dt)sit+Rkit

> βR
1

1+β
Y
, which is true under a suffi cient condition that 1

(Qf+D)+RY
> βR

1
1+β

Y
,

where Qf = D
R−1

. When β is small enough, ceteris paribus, the suffi cient condition is satisfied.
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Market clearing implies that

sit+1 = 1 for yit = Y

and

sit+1 = 0 for yit = 0.

So the first-order condition, (30), becomes

Et
Qt+1 +D −RQt

Qt+1 +D +R−RQt
= 0,

which is the same as the first-order condition, (4), in the OLG model. It is, of course, not very

surprising; as Townsend (1980) points out, there is a similarity between the turnpike model of

exchange and the overlapping-generation (OLG) model by Samuelson (1958).

7 Model Extension

To obtain sharp insight, so far we have assumed that the dividend is constant across periods. We

can extend our model by allowing for a stochastic process of dividends. Specifically, to demonstrate

the main mechanism and for simplicity, we modify the setting of the baseline model in Section 2

by instead assuming D = d̃ ×W , where d̃ ∈
{
dH , dL

}
; that is, the dividend d̃ follows a two-state

Markov process, where d̃ switches from state dL to state dH with probability ω1 and switches from

state dH to state dL with probability ω2. All other assumptions remain the same.

The Euler equation in (4) now becomes

Et
[(
Qt+1 + d̃−RQt

)
U ′
(
Qt+1 + d̃+ (1−Qt)R

)]
= 0. (31)

Fundamental equilibrium We find the fundamental equilibrium. Denote the asset price in

state dL by QL and the asset price in state dH by QH . (31) implies that

ω1

[(
QH + dH −RQL

)
U ′
(
QH + dH + (1−QL)R

)]
+ (1− ω1)

[(
QL + dL −RQL

)
U ′
(
QL + dL + (1−QL)R

)]
= 0

(32)

and
ω2

[(
QL + dL −RQH

)
U ′
(
QL + dL + (1−QH)R

)]
+ (1− ω2)

[(
QH + dH −RQH

)
U ′
(
QH + dH + (1−QH)R

)]
= 0.

(33)

We can solve the two unknowns
(
QL, QH

)
with the above system of equations. When dH − dL is

not too large, the solution is unique with QLf < QL < QH < QHf , where Q
L
f ≡ dL

R−1 and Q
H
f ≡ dH

R−1 .
9

9Write (32) as F
(
QL, QH

)
= 0 and (33) as G

(
QL, QH

)
= 0. It follows that dQH

dQL
= − ∂F

∂QL
/ ∂F
∂QH

> R and
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Figure 4 plots a simulation of the process of Qt, where the utility function is U(C) = logC and

parameter values are ω1 = ω2 = 0.01, R = 1.04, and dL such that QLf ≡ dL

R−1 = 11.9 and dH such

that QHf ≡ dH

R−1 = 12.1. We can find that QL = 11.93 and QH = 12.06. The process of Qt is quite

persistent due to a lower ω1 and ω2.

Figure 4: Asset price Qt in fundamental equilibrium with a two-state Markov process of dividend

Sunspot equilibrium In a sunspot equilibrium, the asset price at each period t is a function

of two state variables, the fundamental (i.e., the dividend realization, dH or dL) and the sunspot.

For simplicity and without loss of generality, we assume that when the economy switches from state

dL to state dH , the asset price always starts with the same initial (“reset”) value, denoted by QH0 ;

similarly, when the economy switches from state dH to state dL, the asset price always starts with

the same initial value, denoted by QL0 . (31) implies the following two equations:

ω1

[(
QH0 + dH −RQLt

)
U ′
(
QH0 + dH +

(
1−QLt

)
R
)]

+(1− ω1)Et
[(
qLt+1 −RqLt

)
U ′
(
qLt+1 −RqLt +R

)]
= 0

(34)

and
ω2

[(
QL0 + dL −RQHt

)
U ′
(
QL0 + dL +

(
1−QHt

)
R
)]

+(1− ω2)Et
[(
qHt+1 −RqHt

)
U ′
(
qHt+1 −RqHt +R

)]
= 0,

(35)

where QLf ≡ dL

R−1 , Q
H
f ≡ dH

R−1 , q
H
t ≡ QHt −QHf , and qLt ≡ QLt −QLf .

We are looking for the sunspot process zit such that q
i
t is a function of z

i
t for i = L and H.

Consider the linear function

qit = − R

R− 1
z̄i − R

R− ρ
(
zit − z̄i

)
dQH

dQL
= − ∂G

∂QL
/ ∂G
∂QH

< 1, implying − ∂F
∂QL

/ ∂F
∂QH

> − ∂G
∂QL

/ ∂G
∂QH

at any intersection between the two curves in the

region of
(
QL, QH

)
∈
[
QLf , Q

H
f

]
×
[
QLf , Q

H
f

]
and hence a unique intersection.
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where zit+1 = (1 − ρ)z̄i + ρzit + εit+1, with z̄
i > 0 and εit+1 ∼ Unif

[
− (R− ρ)Bi

t, (R− ρ)Bi
t

]
, for

i = L and H. As in the baseline model, the sunspot equilibrium means that we need to find Bi
t as

a function of zit.

Equation (34) can be rewritten as

ω1

[(
QH0 + dH −RQLt

)
U ′
(
QH0 + dH +

(
1−QLt

)
R
)]

+(1− ω1)

∫ BLt

−BLt

1

2BL
t

(zLt + x)U ′[
(
R(zLt + x+ 1)

)
dx = 0 (36)

and (35) can be rewritten as

ω2

[(
QL0 + dL −RQHt

)
U ′
(
QL0 + dL +

(
1−QHt

)
R
)]

+(1− ω2)

∫ BHt

−BHt

1

2BH
t

(zHt + x)U ′[
(
R(zHt + x+ 1)

)
dx = 0. (37)

(36) gives BL
t as a function z

L
t and (37) gives B

H
t as a function zHt , by noting that Q

L
t in (36) is a

function of zLt and Q
H
t in (37) is a function of zHt . Thus, we obtain the sunspot equilibrium.

Figure 5 plots a simulation of the process Qt, where we use the same utility function and

the same parameter values as in Figure 4 (fundamental equilibrium). Other parameter values are

ρ = 0.96, z̄L = z̄H = 0.1251, and QL0 = 10.01 (corresponding to zLt = 0.02 and qLt = −1.89) and

QH0 = 10.21 (corresponding to zHt = 0.02 and qHt = −1.89).

Figure 5: Asset price Qt in sunspot equilibrium with a two-state Markov process of dividend
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8 Conclusion

Our paper demonstrates that the result of Bacchetta, Tille, andWincoop (2012) on self-fulfilling risk

panics can apply to a general standard setting. Our model not only shows the existence of stochastic

sentiment- or sunspot-driven equilibria but also constructs such equilibria in a general setting in

which non-linear functions are involved. To deliver clean results, we have deliberately made the

model simple. Our results and approach can be potentially incorporated into a more complicated

model to explain and quantify sentiment-driven asset prices and sentiment-driven business cycles

through the channel of self-fulfilling risk.
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Appendix

A Proofs

Proof of Lemma 1: Consider that Bt = B (zt) is defined by
∫ Bt
−Bt(zt+ x̂)U ′ (R(zt + x̂+ 1)) dx̂ =

0, where the utility function satisfies U
′
(·) > 0 and U

′′
(·) < 0. Then, B (zt) is continuous and

increasing in zt ≥ 0 and B (zt = 0) = 0.

By changing the variable to x = zt + x̂, we have

G (zt, Bt) ≡
∫ zt+Bt

zt−Bt
xU ′ (R(x+ 1)) dx = 0.

When zt = 0, it is true that G (zt, Bt = 0) = 0 and so Bt = 0 is a solution. Since G (zt, Bt) is
continuous in zt and Bt, B (zt) is a continuous function. Now we prove that B (zt) is a increasing
function.

Denote f (x) ≡ xU ′ (R(x+ 1)). Then, f ′ (x) = U ′ (R(x+ 1)) + xU
′′

(R(x+ 1))R. So, for any
pair (x−, x+) with x− < 0 < x+, we have that f ′ (x−) > f

′
(0) = U ′ (R) > f ′ (x+) (result 1); that

is, the slope of f (x) is always higher at a negative x than at a positive x.

In the first step, we prove that at any solutionBt = B (zt) given byG (zt, Bt) ≡
∫ zt+Bt
zt−Bt f (x) dx =

0, it must be true that f (x = zt −Bt) + f (x = zt +Bt) < 0 (result 2). We prove by contradiction.
Suppose f (x = zt −Bt) + f (x = zt +Bt) ≥ 0, that is, |f (x = zt −Bt)| ≤ f (x = zt +Bt). By re-
sult 1 and applying the mean value theorem, we have |f (x = zt −Bt +m)| < f (x = zt +Bt −m)
(that is, f (x = zt −Bt +m) + f (x = zt +Bt −m) > 0) for any m ∈ (0, Bt − zt]. In this case, it
follows that∫ zt+Bt

zt−Bt
f (x) dx =

∫ 0

zt−Bt
f (x) dx+

∫ 2zt

0
f (x) dx+

∫ 2zt+(Bt−zt)

2zt

f (x) dx

=

∫ Bt−zt

0
f (zt −Bt +m) dm+

∫ Bt−zt

0
f (zt +Bt −m) dm+

∫ 2zt

0
f (x) dx

=

∫ Bt−zt

0
[f (zt −Bt +m) + f (zt +Bt −m)] dm+

∫ 2zt

0
f (x) dx

> 0.

This forms a contradiction with
∫ zt+Bt
zt−Bt f (x) dx = 0.

In the second step, we prove dB(zt)
dzt

> 0. By applying the implicit function theorem, it follows
that

dB (zt)

dzt
= − ∂G (zt, Bt) /∂zt

∂G (zt, Bt) /∂Bt
= −f (zt +Bt)− f (zt −Bt)

f (zt +Bt) + f (zt −Bt)
> 0,

where the last inequality follows based on result 2.

Proof of Propositions 1-3: Based on the discussions in the main text, the proof is straightfor-
ward and hence omitted.
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