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1 Introduction

Most decision problems implicitly or explicitly specify an option that serves as a default, in the

following sense: if the individual fails to make a choice, whether intentionally or by neglect, the

default option will prevail. Default options may impact outcomes either because active choice

requires the expenditure of effort, or because the identity of the default alters the psychology of

choice. The ubiquity of default options gives rise to important normative questions about the

optimal design of “choice architectures” (Thaler and Sunstein 2008). Because different people have

different preferences, any given default may be appropriate for some and inappropriate for others.

The literature has addressed the problem of choosing the optimal default primarily in the context

of contribution rates for 401(k) pension plans, where a collection of empirical studies, starting with

Madrian and Shea (2001), have revealed that changing the default option has a powerful effect on

employees’ contributions.1 The same conceptual considerations arise in other contexts, including

widely studied topics such as asset allocation in investment portfolios (Agnew and Szykman 2005)

and employee health insurance plan choice (Handel and Kolstad 2015).

Discussions of optimal default options begin with Thaler and Sunstein (2003), who propose a

simple rule of thumb: minimize the fraction of consumers who opt out of the default. While their

justification for the criterion is informal, the subsequent literature examines this issue more rigor-

ously. Unfortunately, the general mathematical conditions that characterize optimal defaults do not

have useful economic interpretations. Existing theoretical studies therefore focus on identifying re-

strictive sufficient conditions under which the Thaler-Sunstein rule is optimal; see especially Carroll

et al. (2009) and Goldin and Reck (2022). Niether paper offers a general analytical characterization

of optimal defaults for settings that violate these conditions, and one is left with the impression

that the result may be fragile. Indeed, both studies find that the opposite rule, opt-out maxi-

mization, can also be optimal. And yet, analyses of empirically parametrized models suggest that

opt-out minimization may be attractive more generally for reasons the theoretical literature has

not identified. Specifically, based on numerical simulations, Bernheim, Fradkin, and Popov (2015)

conclude that “the Thaler Sunstein opt-out-minimization criterion yields small welfare losses even

when it is suboptimal; hence it is a reasonable rule of thumb” (see also Choukhmane 2023).

In this paper, we adopt an alternative methodological approach that allows us to characterize

“appoximately” optimal defaults with much greater generality. The essence of our strategy is to

consider a general version of the optimization problem, and to study the properties of its solution

as one of the problem’s parameters approaches a limiting value. The parameter in question governs

the distribution of opt-out costs, and the limiting value yields a degenerate distribution (zero costs).

Because the problem’s mathematical structure simplifies as the parameter approaches this limit, we

are able to provide a general characterization of “asymptotically optimal” defaults. We interpret

this characterization as describing approximately optimal solutions for non-limiting opt-out cost

distributions, and we justify this interpretation through numerical simulations. Conceptually, this

1See Beshears et al. (2018) for a summary of the subsequent literature. More recent evidence suggests that, for
many workers, the effects may be transient (Choukhmane 2023).
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approach is related to familiar strategies used in asymptotic econometrics,2 as well as in computer

science.3

We begin by analyzing settings with two distinguishing characteristics: first, the distribution

of “ideal points” across heterogeneous individuals (i.e., the options they would actively select) is

atomless; second, the designer’s objectives concerning each individual’s outcome coincide with the

individual’s objectives. Because the existing studies of optimal defaults impose these “baseline”

assumptions, they provide a natural starting point for our analysis.

Certain applications fit the baseline assumptions well. For example, the manufacturer of a

television screen establishes a default setting for brightness, but a customer can opt out by locating

the control and altering the setting continuously. Likewise, when preparing a salad, a chef at a

restaurant establishes a default for the quantity of salad dressing, but a customer can opt out by

requesting dressing on the side and adding it to taste.

Other applications fit the baseline assumptions less well. In some cases, options are discrete

and sparse. Examples include selecting from a short list of employer-sponsored health care plans

or specifying whether one wishes to be a potential organ donor on a driver’s license application.

In other cases, atoms in the ideal-point distribution naturally appear at the boundaries of the

opportunity set, or at special points on the interior of that set, such as “kink” points associated

with caps on 401(k) contributions eligible for an employer match. The objectives of the designer

and the chooser concerning the chooser’s selection may also diverge. One possibility is that the

designer’s attitude toward the chooser is paternalistic. For example, an employer may worry that

employees do not save enough for their own good. Another possibility is that the chooser’s selection

may create externalities. External cost and benefits may be direct, as when someone participates

in an organ donation program. They may also arise indirectly by impacting market equilibria, as

when improved individual choices exacerbate adverse selection problems (Handel 2013) or impact

firms’ pricing decisions (Ericson 2020).

The paper’s first contribution is to provide a general characterization of asymptotically optimal

defaults under the baseline assumptions. Focusing for the sake of concreteness on the problem

of setting a default contribution rate for a 401(k) pension plan, we consider enivronments with

multiple dimensions of worker heterogeneity: workers differ with respect to their ideal points, as-if

opt-out costs, biases (i.e., the differences between their as-if and normative opt-out costs), and the

shapes of their continuation valuation functions. We impose no restrictions on correlations between

these characteristics. Our main result demonstrates that opt-in maximization yields approximately

optimal outcomes when opt-in frequencies are weighted according to the workers’ characteristics,

2Absent restrictive assumptions, the small-sample properties of common estimators are often difficult to character-
ize, and the problem of determining the best (most efficient) estimator can be intractible. However, the mathematics
often become tractable as the number of observations grows without bound. In that limit, one can determine, for
example, that maximum is asymptotically efficient, in the sense that it achieves the Cramer-Rao lower bound (see,
e.g., Greene 2003, Theorem 17.1, p. 473). To draw inferences about finite samples, economists typically rely on such
asymptotic approximations, often supported by numerical simulations.

3In computer science, an algorithm is asymptotically optimal if (loosely), as the inputs become arbitrarily large,
performance is improvable by no more than a fixed factor.
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with weights given by a fixed formula.

Specifically, the weight on any worker’s decision reflects two characteristics: the ratio of the

worker’s opt-out costs to the population mean (η), and the degree to which the worker over-

remphasizes the importance of opt-out costs, relative to subsequent consequences, when making

decisions (1/β).4 The formula for the weight is simply ω(η, β) ≡ η
(

1− 1
3β

)
. The roles of η and

β are intuitive. Avoiding opt-out yields larger benefits for those with higher values of η. However,

there is an offsetting cost: those who opt in end up with outcomes that are further from their ideal

points. When workers’ perceptions of opt-out costs are unbiased (β = 1), the benefit to each opt-in

necessarily exceeds their cost, and a simple geometric construction shows that, asymptotically, the

average cost is one-third the average benefit. When workers exaggerate opt-out costs (β < 1), the

ideal points of the opt-ins are further on average from the default, so the offsetting cost is larger,

as the formula implies. If the bias is large enough to inflate the average cost-offset by a factor of

three or more, the cost exceeds the benefit, so the weight becomes negative.

Next, we use our general characterization to demonstrate that the Thaler-Sustein rule (un-

weighted opt-out minimization) is asymptotically optimal as long as ideal points and utility cur-

vature parameters are distributed independently of opt-out costs and biases (η and β). When this

independence condition is satisfied, the integral representing the weighted average of the asymp-

totic opt-in frequencies factors in a way that guarantees fixed proportionality between the weighted

and unweighted averages. In effect, the assumption guarantees that those who opt in at any given

default receive neither greater nor lesser weight than those who opt in at any other default, which

means the weights simply rescale the entire problem. As a result, unweighted opt-out minimization

inherits the asymptotic optimality property from weighted opt-out minimization. Moreover, un-

der the alternative assumption that ideal points are distributed independently of the continuation

value function’s curvature properties as well as opt-out costs and biases, the asymptotically optimal

default is simply the modal ideal point.

Notably, our general characterization allows us to interpret the two polar cases identified in

the literature—those for which opt-out minimization is optimal, and those for which opt-out max-

imization is optimal—as two sides of the same coin. Specifically, an inspection of the formula for

ω(η, β) reveals that, if pervasive biases are small (β > 1
3), the weights on opt-in rates are positive,

so opt-out minimization is asymptotically optimal. However, if these biases are large (β < 1
3), the

weights are negative, in which case opt-out maximization is asymptotically optimal.

After establishing these results, we relax the two baseline assumptions. First we consider the

possibility that the distribution of ideal points may include atoms, either because ideal points

“bunch” at certain options (e.g., boundary points and kink points), or because opportunity sets

are discrete and sparse. We show that our general characterization extends to these settings,

with a small adjustment: the opt-in weighting function that ensures the asymptotic optimality

of weighted opt-out minimization is simply ω(η) = η. We explain this difference intuitively and

discuss its implications. Most notably, because the weight is always strictly positive, the optimal

4For example, if the worker’s preferences are quasi-hyperbolic, β is the “present bias” parameter.
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strategy necessarily has the flavor of opt-out minimization rather than maximization, even when

biases are large.

Next, we consider the possibility that the designer and the choosers have divergent objec-

tives concerning the activity’s level, and that the designer cannot resolve this conflict by imposing

Pigouvian fees. To simplify the analytics, we make the assumptions that guarantee asymptotic

optimality of the modal ideal point in the baseline model, and we add a positive linear externality.

We demonstrate that the optimum is achievable asymptotically by maximizing the weighted sum

of the ideal-point distribution’s density and the negative of its first derivative. When nearly all

weight falls on the density (as is the case when β exceeds 1
3 and externalities are small), unweighted

opt-out minimization is approximately optimal. But when nearly all weight falls on the density’s

derviative (as is the case when externalities are large and workers’ loss functions are symmetric),

setting the default at the distribution’s upper inflection point is approximately optimal. For in-

termediate cases, whether the asymptotic optimum is closer to the mode or the upper inflection

point depends on the magnitude of externalities, as well as the direction and degree of loss-function

asymmetry.

We use numerical methods to explore the accuracy of our asymptotic approximations. Our

simulations show that the limiting case provides a decent guide for a range of reasonable settings

with substantial opt-out costs and, consequently, meaningful social stakes. We also use simulations

to evaluate the cost of pursuing unweighted opt-out minimization in settings where weighted and

unweighted opt-out minimization do not coincide.

Our findings have substantive implications for the selection of default options in practical set-

tings. The implications differ according to the designer’s objectives (most notably, whether the

choosers’ selections generate externalities), whether the designer can deploy other instruments

(such as Pigouvian fees), certain observable features of the setting (such as whether the choice

set is sparse or approximately continuous), and the nature of the data the designer can access or

generate. However, our analysis suggests that a few rules of thumb perform reasonably well in

practice, and it offers guidance for data collection and directional tweaks that may improve that

performance.

The remainder of the paper proceeds as follows. Section 2 details the baseline model. Section

3 demonstrates the asymptotic optimality of weighted opt-out minimization, identifies conditions

under which unweighted opt-out minimization also coincides asymptotically with welfare maxi-

mization, and explains how our analysis applies to settings with normative ambiguity (as in the

welfare framework of Bernheim and Rangel 2009). It also provides a more detailed account of the

relationships between our findings and existing results. Section 4 examines extensions to settings

with bunching (arising, for example, from boundary constraints or caps on matching provisions),

and to decisions with sparse opportunity sets. Section 5 examines cases in which designers disagree

with choosers’ ideal points (for example, due to externalities). Section 6 describes our numerical

simulations. Section 7 summarizes the implications of our analysis for the selection of defaults in

practice. We close in Section 8 with some brief thoughts about directions for subsequent research.
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Abbreviated proofs appear in the Appendix.

2 The baseline model

This section outlines our baseline model, in which the distribution of “ideal points” across hetero-

geneous individuals is atomless, and the designer’s objectives concerning each individual’s outcome

coincide with the individual’s objectives. For concreteness and to promote interpretability, we de-

pict the problem of interest as one of selecting a default contribution rate for workers participating

in an employer-based retirement savings plan. However, the model is sufficiently general to apply

in a wide range of contexts.

2.1 Workers

We use x to stand for the contribution rate of a worker (“he”) newly eligible to participate in a

plan sponsored by his employer (“she”). The worker chooses x from a compact interval X = [x, x].

The plan’s provisions specify a default contribution rate of D. We focus on the worker’s initial

choice between accepting the default and opting out to some x 6= D.

For the sake of tractability, we assume the worker’s utility is linear in income (m), and is

additively separable in income, the contribution rate (x), and the effort exerted to opt-out (γI(x 6=
D), where I(x 6= D) = 1 if x 6= D and 0 otherwise):

u(x,m;x∗, ρ, β, γ,D) = βV (x, x∗, ρ) +m− γI(x 6= D). (1)

Notice that the function V depends not only on x, but also on a parameter x∗ ∈ X, which we

interpret as the contribution rate the worker regards as ideal, in the sense that x = x∗ uniquely

maximizes V (x, x∗,ρ). We also write V as a function of a parameter ρ that governs properties such

as curvature. Another important feature of equation (1) is that we apply a weighting factor, β, to

the utility derived from retirement contributions. We use this parameter to introduce inclinations

that the employer views as biases pertaining the the evaluation of opt-out costs. We elaborate on

the interpretation of this parameter below when discussing the employer’s objectives.5 We allow

workers to differ with respect to x∗, ρ, β, and γ. We will write γ as the product of a relative opt-out

cost parameter, η, that differs across workers, and a common scaling parameter, λ; thus, γ = λη.

This formulation allows us to hold the distribution of relative opt-out costs fixed while shrinking

the average opt-out cost toward zero. To keep our notation as compact as possible, we will write

the worker’s characteristics, other than his ideal point, as θ = (ρ, β, η).

We assume that the effort cost of opting out, λη, is independent of the option selected. Con-

sistent with other work on this topic (Bernheim, Fradkin, and Popov 2015; Carroll et al. 2009;

Goldin and Reck 2022), our analysis presupposes that opt-out costs reflect effort the worker must

5With this formulation, the bias applies to V but not to m, which may be appropriate if, for example, β captures
present bias and m is an immediate payment. Applying β to V (x, x∗, ρ) +m, rather than merely V (x, x∗, ρ), would
alter the formula for the optimal fine in Proposition 5, but would otherwise leave our results unchanged.
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expend to implement any selection other than D. For example, he must inform himself about

selection procedures, fill out forms, visit his employer’s personnel office, and the like. We abstract

from the interesting possibility that the worker must expend cognitive effort to understand his own

preferences (the function V (·, x∗, ρ)).

As explained in Bernheim, Fradkin, and Popov (2015), this formulation accommodates dynam-

ics, in that we can interpret V as a reduced form representing the worker’s perceived continuation

value. Because the original default, D, affects the continuation value only through the initial con-

tribution, x, D does not appear as an argument of V . Accordingly, when optimizing the default

D, we do not have to contemplate direct effects through V .6

For one of our results (Proposition 5), we assume that, in addition to specifying a default

contribution rate D, the plan may also specify a fixed fine, K, that falls on those who make passive

choices (i.e., accept the default). The purpose of the fine will be to incentivize active choice. To

be clear, in a setting where workers must expend effort to understand their own preferences, an

incentive of this type might simply induce them to go through the motions of opting out, for example

by selecting an option that differs only slightly from D without giving serious consideration to his

choice. It is therefore worth emphasizing that our result on optimal fines, like other results in this

literature, are applicable only in settings where implementation rather than deliberation is costly.

The worker hence chooses x to maximize u(x,M − I(x = D)K;x∗, ρ, β, λη,D), where M rep-

resents compensation received from the firm. When the worker opts out (x 6= D), it is obviously

in his interest to select x = x∗. Accordingly, we can also treat him as choosing c ∈ {0, 1}, where

these options lead to the following payoffs:

β [(1− c)V (D,x∗, ρ) + cV (x∗, x∗, ρ)]− cλη − (1− c)K +B

The worker therefore opts out of the default whenever

β (V (x∗, x∗, ρ)− V (D,x∗, ρ))︸ ︷︷ ︸
:=∆(D,x∗,ρ)

≥ λη −K. (2)

Thus, the mass of agents who opt-out is given by Pr
[
∆(D,x∗, ρ) ≥ λη−K

β

]
. We define the optimal

opt-out function as follows: Cλ(D,x∗, θ) = 1 when expression (2) is satisfied, and Cλ(D,x∗, θ) = 0

otherwise. The worker’s optimized utility is then

Uλ(D,x∗, θ) =β [(1− Cλ(D,x∗, θ))V (D,x∗, ρ) + Cλ(D,x∗, θ)V (x∗, x∗, ρ)]

− Cλ(D,x∗, θ)λη − (1− Cλ(D,x∗, θ))K +B,

We assume that θ ∈
[
ρ, ρ
]
×
[
β, β

]
×
[
η, η
]
≡ Θ, where all of these bounds are finite, and where

6For settings in which V is a state evaluation function for some dynamic process, it is worth emphasizing that
our approximation involves taking the limit as the current opt-out cost approaches zero, holding future opt-out costs
constant. This construction allows us to treat V as a fixed function as we change λ.
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β, η > 0. Let G(θ) denote the CDF governing the marginal distribution of θ across workers, and

F (x∗ | θ) denote the CDF governing the distribution of x∗ conditional on θ.

Throughout, we impose minimal restrictions on V :

Assumption 1. For all (x, x∗ρ) ∈ X2 ×
[
ρ, ρ
]
, (i) V (x, x∗, ρ) is real-valued and continuous, and

has continuous first through third derivatives with V11(x∗, x∗, ρ) < 0, and (ii) V12(x, x∗, ρ) > 0.

Part (i) of Assumption 1 is a mild regularity condition. Because x = x∗ maximizes V (x, x∗, ρ),

we know that V11(x∗, x∗, ρ) ≤ 0, so the final portion simply rules out the possibility that V is “too

flat” at any optimum. Part (ii) is a single-crossing requirement. It ensures that those who prefer

higher contributions also benefit more (or suffer less) on the margin as contributions increase from

any specified level. This property is useful because it implies that the set of types who accept

the default is an interval. However, the arguments we use to prove our results appear to rely on

this implication only as an analytic convenience. We therefore suspect that an even less restrictive

assumption would suffice.

Without loss of generality, we normalize the total population size to unity (
´

Θ dG(θ) = 1).

Except where stated otherwise, we also impose the following restrictions on F and G:

Assumption 2. F and G are atomless distributions with well-defined densities. The following

properties hold for F : (i) (Full Support) there exists fmin > 0 such that for f , the density function

of F , f(x∗ | θ) > fmin holds for all x∗ ∈ X, θ ∈ Θ; (ii) (Differentiability) F is twice continuously

differentiable with respect to x∗ and θ.

2.2 The employer

The employer (or planner) cannot distinguish among workers based on x∗, their ideals, or θ, their

other characteristics. Instead, she must select a default D ∈
[
D,D

]
and, when permitted, the fine

K that applies uniformly to everyone. To avoid some technical complications that arise for defaults

at the boundaries of workers’ opportunity sets, we assume that D > x and D < x. We describe

the reason for this restriction below, and separately explain how the ability to set defaults at the

boundaries of X would affect our results.

The employer is a utilitarian: she seeks to maximize the aggregate value of workers’ utilities,

attributing the same value to a dollar regardless of who receives it. However, she may disagree

with the workers concerning the assessment of their well-being at the moment they decide whether

to opt out of the default. We will assume that this disagreement is limited to the normatively

appropriate value of β, which she takes to be unity. Thus, to the extent the worker’s β diverges

from unity, the employer is of the opinion that cognitive bias infects opt-out decisions.

One potential interpretation of β < 1 is that the employer believes workers are subject to

“present bias”: she thinks they place “too much” weight on effort costs, which are immediate,

compared with their utility from retirement income which is delayed.7 For other interpretations of

β, see Bernheim, Fradkin, and Popov (2015) and Goldin and Reck (2022).

7See Bernheim and Taubinsky (2018) for a critical discussion of this normative perspective.
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A key feature of our baseline framework is that the employer sees bias as pertaining to the

opt-out decision, rather than to the choice of x conditional on opting out. In other words, she

agrees that x∗ is the worker’s ideal choice.8 Whether this assumption is reasonable depends on the

context; we relax it in Section 5. For retirement savings accounts, companies implement changes

in contribution rates with a delay, so all consequences of contribution elections aside from effort lie

in the future. Thus, to the extent the employer believes workers are quasi-hyperbolic discounters

and interprets β as “present bias,” that bias would infect the opt-out decision, but not the worker’s

perceived continuation value (V ) nor the chosen contribution rate, precisely as we assume.

When imposing a fine for passive choice, the employer earns revenue B per worker. We assume

the employer is indifferent, on the margin, between taking incremental revenue as profit and using

it to enhance profits indirectly by increasing employee compensation.9Under this assumption, we

can, without loss of generality, treat the employer as using the revenue to pay a lump sum bonus

of B per worker. For simplicity, the employer levies fines and disburses these bonuses at the same

point in time. Each worker is infinitessimal, and therefore ignores any effect of his own choice on

the magnitude of the bonus. Because utility is linear in income, the level of the worker’s baseline

compensation (before fines and bonuses) is immaterial, so we take it to be zero (in other words,

M = B). When the employer chooses D and K, the resulting value of B is given by:

B = K Pr

[
∆(D,x∗, ρ) ≤ λη −K

β

]
. (3)

Under the preceding assumptions, the employer evaluates the worker’s well-being according the

following function:

Ũλ(D,x∗, θ) =(1− Cλ(D,x∗, θ))V (D,x∗, ρ) + Cλ(D,x∗, θ)V (x∗, x∗, ρ)

− Cλ(D,x∗, θ)λη − (1− Cλ(D,x∗, θ))K +B.

In other words, she recognizes that bias (potentially) governs workers’ opt-out choices through

Cλ(D,x∗, θ), but she ignores the bias parameter β when evaluating welfare. Aggregate utility for

all workers is then given by E
[
Ũλ(D,x∗, θ)

]
(where the expectation is taken over both x∗ and θ).

That expression serves as the employer’s objective function.

3 The basic results

In this section, we characterize optimal defaults under the baseline assumptions. We start by

establishing the asymptotic optimality of weighted opt-out minimization (Section 3.1). Then we

derive conditions under which weighted opt-out minimization coincides with (i) the Thaler-Sunstein

8More specifically, she does not take issue with V , which reflects the worker’s understanding and assessment of
future consequences.

9As long as the employer’s profits are differentiable in the employee’s compensation, this indifference is a conse-
quence of profit maximization.
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rule (unweighted opt-out minimization), and (ii) selecting the mode of the ideal-point distribution

(Section 3.2). We also explain how our analysis accommodates any normative ambiguity stemming

from possible controversy concerning the interpretation of β < 1 as a “bias” (Section 3.3). We close

this section by clarifying the relationship between our findings and existing results (Section 3.4).

3.1 The asymptotic optimality of weighted opt-out minimization

In this section, we provide a general characterization of asymptotically optimal defaults that estab-

lishes a connection between welfare maximization and weighted opt-out minimization. Our main

results show that, as λ→ 0, rescaled versions of aggregate welfare and of the weighted opt-out fre-

quency (using specified weights) both converge uniformly to the same function, and consequently

the defaults that maximize those functions also converge. To be clear, the same result does not

necessarily hold for large λ,10 which is why we verify the quality of the asymptotic approximation

for plausible parameter values through simulations in Section 6. Throughout this section, we con-

fine attention to settings in which the employer does not have the ability to impose fines for passive

choice (i.e., we fix B = 0).

Because the opt-in frequency for workers with characteristics θ, Prx∗|θ

[
∆(D,x, ρ) ≤ λη

β

∣∣∣ θ],
converges to zero for all D and θ as λ → 0, we study the limiting properties of the weighted-opt-

out-minimizing defaults by progressively adjusting the scale of the objective function. For this

purpose, we define

Qλ(D, θ) ≡
Pr
[
∆(D,x, ρ) ≤ λη

β

∣∣∣ θ]
2λ

1
2

For any weighting formula ω(θ), the overall opt-out frequency, rescaled by (2λ)−
1
2 , is then

Ωλ(D) =

ˆ
θ
ω(θ)Qλ(D, θ)dG(θ).

Our analysis focuses on a specific weighting formula:

ω(η, β) = η

(
1− 1

3β

)
.

Under our assumptions concerning continuity, bounds, and atomless distributions, it is easy to check

that, fixing λ, the (rescaled) opt-in frequency, Ωλ(D), varies continuously with D. Accordingly,

because X is compact, there exists a (possibly non-unique) default option, DΩ (λ), that maximizes

weighted opt-in (and minimizes weighted opt-out).

To characterize the limiting case as λ → 0, we define the approximate (rescaled) opt-out fre-

quency for workers with characteristic θ,

10As λ→∞, only a trivial fraction of the population opts out and, critically, those individuals have small opt-out
costs. Consequently, their total contribution to social welfare goes to zero. It follows that, in the limit, the employer
sets the default to zero-out the average marginal utility of contributions for the entire population. That criterion
does not generally coincide with weighted opt-out minimization.
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Q(D, θ) ≡
(
η

β

) 1
2

f(D | θ)

(
1

−1
2V11(D,D, ρ)

) 1
2

.

To understand why we interpret this expression as the approximate opt-out frequency for workers

with characteristics θ, notice that a worker’s perceived net benefit to opting out is−1
2V11(D,D, ρ) (D − x∗)2−

λη
β to a second-order approximation. This expression implies that workers will opt in as long as

they fall within an interval with an approximate length of 2
(
λη
β

) 1
2
(

1
− 1

2
V11(D,D,ρ)

) 1
2
.11 If this inter-

val is small, then the density within it is roughly constant at f(D | θ). Consequently, the product

of these two terms approximates the opt-in frequency. The function Q(D, θ) simply equals this

product divided by a scaling factor, 2λ
1
2 .

To the extent Q(D, θ) approximates the (rescaled) weighted opt-out frequency for workers

with characteristics θ, the following function approximates the overall (rescaled) weighted opt-out

frequency:

Ω(D) ≡
ˆ
θ
η

(
1− 1

3β

)
Q(D, θ)dG(θ).

Our analysis identifies a special role for the default rate D∗ that maximizes the approximate rescaled

(weighted) opt-in frequency:

D∗ ≡ arg max
D∈X

Ω(D)

As with DΩ (λ), existence follows directly from our assumptions. Cases with multiple maxima are

non-generic and therefore of little interest. To avoid some technical complications, we will therefore

rule those cases out by assumption.

Assumption 3. D∗ is unique.

It is worth emphasizing that, even when Θ is degenerate, D∗ generally differs from the point

of maximal density, except in special cases (e.g., when the curvature of V is the same at all ideal

points).

Our first main result tells us that D∗ approximates the opt-out minimizing default rate for

small λ. The proof consists of establishing the intuitive property that the actual weighted opt-out

frequency, divided by the scaling factor 2γ
1
2 , converges uniformly to Ω(D) as λ→ 0.

Proposition 1. Under Assumptions 1-3, the weighted opt-out-minimizing default option DΩ (λ)

converges to D∗ as λ→ 0.

Our second main result tells us that D∗ also approximates the welfare-maximizing default rate

for small λ.

11With a default of either x or x, only half of this interval is relevant even when λ is arbitrarily small. Consequently,
at these boundary points, the asymptotic opt-out frequency is half as a large as our approximation implies. Taking
D > x and D < x avoids this technical complication.
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Proposition 2. Under Assumptions 1-3, the welfare-maximizing default option DL(λ) converges

to D∗ as λ→ 0.

Combining Propositions 1 and 2, we reach our central conclusion: the difference between the

weighted-opt-out-minimizing and welfare-maximizing default options vanishes as λ→ 0.

To build intuition for this result, note that the employer’s problem—setting D to maximize

E
[
Ũ(D,x∗, θ)

]
—is equivalent to maximizing

Lλ(D) ≡ E
[
Ũλ(D,x∗, θ)− V (x∗, x∗, ρ)

]
,

which we interpret as the (negative of) total welfare loss relative to the ideal retirement saving

choice. For any given x∗, the term in brackets is either −λη (if the worker incurs the opt-out cost

and selects his optimal contribution rate) or V (D,x∗, ρ)−V (x∗, x∗, ρ) = −∆(D,x∗, ρ) (if he accepts

the default). We can therefore rewrite the objective function as follows:

Lλ(D) = −
´
θ ληdG(θ) +

´
θ Pr

(
∆(D,x∗, ρ) ≤ λη

β | θ
)

×
[
λη − E

(
∆(D,x∗, ρ) | θ,∆(D,x∗, ρ) ≤ λη

β

)]
dG(θ)

(4)

Intuitively, inducing opt-out potentially creates a total welfare loss of −
´
θ ληdG(θ). Those who

opt in mitigate this loss, but only by the difference between λη and the average loss associated with

the utility difference between choosing x∗ and choosing D.

Now let’s think about maximizing Lλ(D) over D for a fixed value of λ. Plainly, the −
´
θ ληdG(θ)

term does not affect the argmax. The rest of the expression integrates the product of the conditional

opt-in frequency and another term involving D. It is therefore not immediately obvious why

maximization of the weighted opt-in frequency (or minimization of opt-out) should coincide with

maximization of the entire expression. However, if it turned out that the term in brackets was

independent of D, then the welfare maximization problem would be equivalent to weighted opt-out

minimization. In point of fact, this property holds generally in the limit as λ→ 0.

Here we encounter a small technical complication: as λ → 0, the function Lλ converges to the

function L0, which maps all default rates to the same value. That property renders the limiting

optimization problem unenlightening. To learn about optimization with small λ from the limiting

case, we have to translate and rescale Lλ so that the objective function neither collapses to a

constant nor explodes to infinity as λ→ 0. We therefore define the following objective function:

Wλ(D) ≡
Lλ(D) +

´
θ ληdG(θ)

2λ
3
2

.

For any given λ, the maximizers of Lλ and Wλ obviously coincide. Moreover, when we use Wλ, the

optimal defaults for the limiting case approximate the optimal defaults for small λ.

To visualize the limiting optimization problem, we can consider a second-order approximation

in x∗ for ∆(D,x∗, ρ). Recalling that ∆(x∗, x∗, ρ) = 0 for all x ∈ X, we see that ∆(D,x∗, ρ) is
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Figure 1: Second-order approximation to the conditional expectation

(approximately) a parabola with a minimized value of 0 at x∗ = D. Truncating that parabola at

the boundaries of the opt-in interval and taking the density to be constant (to an approximation)

over this interval, we see that the E (·) term in equation (4) is approximately the area beneath this

truncated parabola divided by its width. It turns out that this ratio is always λη
3β .

Figure 1 illustrates the underlying mathematical principle. It shows the parabola y = v (x∗ −D)2

(where v is an arbitrary constant) for x∗ in the interval [D − t,D + t], which reaches a height of

h = vt2 at the interval’s endpoints. A straightforward computation shows that the ratio of the

shaded area B to the length of the interval A equals h
3 , regardless of v. Returning to the objec-

tive function (equation (4)), and using h = λη
β , we see that the bracketed term is approximately

λη − λη
3β = λη

(
1− 1

3β

)
—in other words, a quantity that is independent of D—regardless of the

second-order coefficient (which may vary with D). It follows that, when λ is small, the welfare-

maximization problem is approximately the same as maximizing the weighted opt-in frequency with

weights ω(η, β) = η
(

1− 1
3β

)
. The formal proof uses the fact that the conditional opt-out probabil-

ity divided by the scaling factor 2γ
1
2 converges uniformly to Q(D, θ) as λ→ 0 (as discussed above),

as well as the fact that the bracketed term divided by the scaling factor λ converges uniformly to

η
(

1− 1
3β

)
.

Notably, our general characterization applies regardless of whether the weights implied by the
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formula ω(η, β) = η
(

1− 1
3β

)
are positive or negative. If β > 1

3 , then all the weights are positive,

which means the employer tries to achieve low opt-out frequencies. If β < 1
3 , then all the weights

are negative, which means the employer sets the default to achieve high opt-out frequencies. If

β < 1
3 < β, then some weights are positive while others are negative, which means the employer

tries to set the default to achieve low opt-out frequencies for some groups of workers and high opt

out frequencies for others. Consequently, our analysis allows us to interpret the two polar cases

identified in the literature—those for which opt-out minimization is optimal, and those for which

opt-out maximization is optimal—as two sides of the same coin.

So far, we have assumed that D > x and D < x. As noted in footnote 11, with an atomless

ideal-point distribution, our approximation understates opt-out frequencies at boundary points.

Setting the default at either boundary is therefore less attractive than our approximation would

imply when the opt-out is detrimental in the aggregate (e.g., with β > 1
3), but more attractive and

potentially optimal when opt-out is beneficial in the aggregate (e.g., with β < 1
3).

3.2 The asymptotic optimality of unweighted opt-out minimization

Given the focus of the previous literature, it is also important to investigate the circumstances

under which unweighted opt-out minimization is approximately optimal. The unweighted opt-in

frequency is given by (2λ)−
1
2 ΩU

λ (D), where

ΩU
λ (D) =

ˆ
θ
Qλ(D, θ)dG(θ).

Our analysis references both the opt-out minimizing default option, DU
Ω(λ) ≡ minD∈X ΩU

λ (D), and

the opt-out maximizing default option, dUΩ(λ) ≡ maxD∈X ΩU
λ (D). As with the weighted-opt-out

minimizing default option, DΩ (λ), existence follows directly from our assumptions.

In light of Propositions 1 and 2, we know that unweighted opt-out minimization is asymptoti-

cally welfare-maximizing in settings where weighted and unweighted opt-out minimization coincide.

A sufficient condition for this coincidence is that the weighted and unweighted opt-in frequencies

are related by a fixed constant of proportionality. There are two potential routes to ensuring

that this proportionality requirement holds. The first is to identify conditions under which the

weight is the same for all workers. Unfortunately, this route does not lead to useful insights, be-

cause ω(η, β) = η
(

1− 1
3β

)
is constant only if there is no heterogeneity in η or β or if there is

a fortuitous deterministic relationship between them. The second route is to identify conditions

under which the weighted opt-in frequency is separable into a component encompassing the char-

acteristics that determine the weights and a component involving the default D. Unfortunately,

Prx∗|θ

[
∆(D,x, ρ) ≤ λη

β

]
does not generally factor in this way.

The second route becomes more promising when we focus on small λ. Below, we consider two

alternative conditions under which Prx∗|θ

[
∆(D,x, ρ) ≤ λη

β

]
factors as desired in the limit.
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Condition 1: (x∗, ρ) is distributed independently of (β, η). Recall that the (rescaled)

weighted opt-in frequency, Ωλ(D), converges uniformly to Ω(D), which we can write as follows:

Ω(D) =

ˆ
θ
η

(
1− 1

3β

)
Q(D, θ)dG(θ) (5)

=

ˆ
θ

[
η

(
1− 1

3β

)(
η

β

) 1
2

]f(D | θ)

(
1

−1
2V11(D,D, ρ)

) 1
2

 dG(θ)

We have divided the integrand into two bracketed components. The first depends only on the

parameters (η and β) that determine the weight, while the second depends on D. We do not

yet have the desired separability property, however, because f (D | θ) may depend on η and β.

Additionally, η and β may be stochastically related to ρ, which appears in the V11 term. However,

both of these potential dependencies disappear if x∗ and ρ are distributed independently of η and

β. In that case, using h(η, β) to denote the density of the marginal distribution of η and β, and

using k(ρ) to denote the density for the marginal distribution of ρ, we can write:

Ω(D) = Φ×
ˆ

ρ

f(D | ρ)

(
1

−1
2V11(D,D, ρ)

) 1
2

k(ρ)dρ

where

Φ =

ˆ
η,β

η

(
1− 1

3β

)(
η

β

) 1
2

h(η, β)dηdβ. (6)

To demonstrate formally the asymptotic equivalence of weighted and unweighted opt-out min-

imization under the stated independence assumption, we need to provide a characterization of the

limiting unweighted opt-in frequency function. Using essentially the same arguments as in the proof

of Proposition 1, one can show that ΩU
λ (D) converges uniformly to

ΩU (D) =

ˆ
θ
Q(D, θ)dG(θ)

A calculation analogous to the one provided above for Ω(D) then implies

ΩU (D) =

[ˆ
η,β

(
η

β

) 1
2

h(η, β)dηdβ

] ˆ
ρ

f(D | ρ)

(
1

−1
2V11(D,D, ρ)

) 1
2

dk(ρ)

Accordingly, we have

π × ΩU (D) = Ω(D), (7)

where

π = Φ

[ˆ
η,β

(
η

β

) 1
2

h(η, β)dηdβ

]−1

.
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Thus, the asymptotic weighted and unweighted opt-in frequencies are related by a positive fixed

factor of proportionality when Φ > 0, and by a negative fixed factor of proportionality when Φ < 0.

Applying Propositions 1 and 2, we see that unweighted opt-out minimization is asymptotically

welfare-optimal when Φ > 0. Alternatively, when Φ < 0, weighted opt-out minimization involves

negative weights for some or all workers, and as a result coincides with unweighted opt-out maxi-

mization. In that case, unweighted opt-out maximization is asymptotically welfare-optimal.

The following proposition summarizes these observations:

Proposition 3. Suppose Assumptions 1-3 and Condition 1 hold. If Φ > 0, then the unweighted

opt-out-minimizing default option DU
Ω (λ) converges to D∗ as λ→ 0. If Φ < 0, then the unweighted

opt-out-maximizing default option dUP (λ) converges to D∗ as λ→ 0.

Condition 2: x∗ is distributed independently of θ, and x∗ translates V . If we assume

that x∗ is distributed independent of θ (so that f(D | θ) = f(D)), then we can rewrite equation

(5) as follows:

Ω(D) = f(D)

ˆ
θ
η

(
1− 1

3β

)(
η

β

) 1
2

(
1

−1
2V11(D,D, ρ)

) 1
2

dG(θ)

Notice that the integral potentially depends on D only through the term V11(D,D, ρ). Even

that dependence vanishes if we assume in addition that V (x, x∗, ρ) = v(x−x∗, ρ) for some function

v—in other words, that variations in x∗ translate the function V . With this restriction, deviating

from the worker’s ideal point by a fixed amount inflicts a utility penalty that does not depend on

the ideal point. In that case, we have V11(D,D, ρ) = v11(0, ρ). It follows that

Ω(D) = Ψf(D)

where

Ψ1 =

ˆ
θ
η

(
1− 1

3β

)(
η

β

) 1
2

(
1

−1
2v11(0, ρ)

) 1
2

dG(θ)

Trivially, D∗ is then the ideal point that either maximizes or minimizes f(D), depending on whether

Ψ1 is positive or negative. Consequently, by Proposition 2, we know that the welfare maximizing

default option converges to the mode of the ideal point distribution if Ψ1 > 0, and to a point of

minimum density (the antimode) if Ψ1 < 0.12

To characterize the default that minimizes the unweighted opt-out frequency, we again invoke

the uniform convergence of ΩU
λ (D) to ΩU (D). Under Condition 2, we can rewrite the latter function

as follows:

ΩU (D) = ψf(D)

12For simplicity, we also take the antimode to be unique.
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where

ψ =

ˆ
θ

(
η

β

) 1
2

(
1

−1
2v11(0, ρ)

) 1
2

dG(θ)

Accordingly, the unweighted opt-out-minimizing default option also converges to the mode of the

ideal point distribution, and the unweighted opt-out-maximizing default option converges to the

antimode.

The following proposition summarizes these observations:

Proposition 4. Suppose Assumptions 1-3 and Condition 2 hold. If Ψ1 > 0, then the welfare-

maximizing and unweighted opt-out-minimizing default options both converge to the mode of the

ideal point distribution as λ→ 0. If Ψ1 < 0, then the welfare-maximizing and unweighted opt-out-

maximizing default options both converge to the antimode as λ→ 0.

Fines for passive choice. Propositions 3 and 4 both point to opt-out minimization when the

distribution of β is concentrated above 1
3 , and to opt-out maximization when the distribution is

concentrated below 1
3 . However, to the extent the employer can impose non-disappative fines for

passive choice, opt-out minimization becomes relatively more attractive.

We establish the preceding claim under Condition 1. (The analysis for Condition 2 is similar.)

To allow for the possibility that the optimal fine shrinks along with the scale of opt-out costs, we

write it as K(λ). The opt-in condition becomes

∆(D,x∗, ρ) ≤ λη −K(λ)

β

Visualizing E
(

∆(D,x∗, ρ) | θ,∆(D,x∗, ρ) ≤ λη−K(λ)
β

)
as the area beneath a truncated parabola

divided by the parabola’s width (and recalling that ∆(D,x∗, ρ) ≥ 0), we see that it equals

max
{

0, λη−K(λ)
3β

}
to a second-order approximation. It follows that

1

λ

[
λη − E

(
∆(D,x∗, ρ) | θ,∆(D,x∗, ρ) <

λη −K(λ)

β

)]

converges uniformly to η−max
{

0, η−κ3β

}
, where κ ≡ limλ→0

K(λ)
λ . Accordingly, for fixed fines K(λ),

welfare maximization coincides asymptotically with weighted opt-out minimization using weights

given by the formula

ωκ(η, β) ≡ η −max

{
0,
η − κ

3β

}
.

Now notice that, for any given η and β, the weight is (weakly) increasing in κ. Indeed, if κ >

η(1 − 3β), then all of the weights are positive, which implies Φ > 0, and hence that unweighted

opt-out minimization is asymptotically optimal when x∗ and ρ are distributed independently of η

and β.
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To illustrate why it may be optimal for the employer to set a positive fine for passive choice,

we specialize to settings in which worker heterogeneity is confined to x∗. The following proposition

characterizes the optimal fine.

Proposition 5. Suppose Assumptions 1-3 and Condition 1 hold, and assume Θ is degenerate.

Fixing D, the optimal fine is K∗ = (1− β)γ.

The intuition for Proposition 5 is that, by establishing a fine for passive choice equal to the por-

tion of active-choice costs that the worker ignores, (1− β) γ, the employer corrects the “internality”

that would otherwise give rise to a welfare loss. The literature on Behavioral Public Economics

contains a collection of parallel results; see Bernheim and Taubinsky (2018).

Conditional on setting the optimal fine and bonus for each D, the induced objective function

coincides with one for a setting in which β = 1. Consequently, solving for the optimal default with

arbitrary β conditional on the optimal fine is mathematically equivalent to solving for the optimal

default with β = 1 and no fine. The optimality of unweighted opt-out minimization then follows

immediately under the independence condition stated in Proposition 3, regardless of whether the

bias is large or small.

As a final observation, we note that if x∗ and ρ are distributed independently of η and β,

then asymptotically the unweighted opt-out minimizing and maximizing defaults do not depend on

the size of the fine. With the introduction of a fine, the asymptotic unweighted opt-in frequency

becomes

ΩU (D) =

[ˆ
η,β

(
max

{
0,
η − κ
β

}) 1
2

h(η, β)dηdβ

] ˆ
ρ

f(D | ρ)

(
1

−1
2V11(D,D, ρ)

) 1
2

dk(ρ)

As long as κ < η, the bracketed term is a positive constant, which means that the same default D

maximizes this expression regardless of κ. This property is convenient as a practical matter, because

it implies that the employer can optimize the default by minimizing (or alternatively maximizing)

the opt-out frequency based on data from a regime in which it imposed no fine. Because the size

of the fine can determine whether minimization or maximization is appropriate, the employer must

still optimize the default and the fine simultaneously, but the problem reduces to consideration of

just two fine-invariant default alternatives.

3.3 Accommodating normative ambiguity

Depending on which psychological mechanisms β purportedly captures, there may be controversy

as to whether it constitutes a bias. Imagine, for example, that β parametrizes time-inconsistency.

Some studies advocate evaluating welfare based solely on forward-looking choices, on the grounds

that people suffer from “self-control problems” when making decisions contemporaneously (see,

e.g., O’Donoghue and Rabin 1999). However, this language may reflect normative preconceptions

rather than objective inferences. If people fully appreciate experiences only in the moment and
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overintellectualize at arms length, their in-the-moment choices, rather than the forward-looking

choices, would be the ones that merit deference. Absent an objective basis for adjudicating between

these perspectives, there is an argument for remaining agnostic and respecting both.

To accommodate normative ambiguity, Bernheim, Fradkin, and Popov (2015) deployed the

welfare framework developed in Bernheim and Rangel (2009) and elaborated in Bernheim (2009;

2016; 2021) and Bernheim and Taubinsky (2018). Within that paradigm, one can evaluate a change

from policy p to p′ by computing two versions of equivalent variation: EVA, which is the smallest

increment to income with p (that is, the smallest increase or the largest reduction) such that the

bundle obtained with p is unambuously chosen over the bundle obtained with p′ (i.e., the individual

would choose the first bundle over the second in all decision frames), and EVB, which is the largest

increment to income with p (that is, the largest increase or smallest reduction) such that the bundle

obtained with p′ is unambiguously chosen over the bundle obtained with p. Despite the ambiguities

implied by inconsistent choices, one can say that the change is unambiguously worth at least EVA

and no more than EVB.

Bernheim, Fradkin, and Popov (2015) provide a formal justification for aggregating these welfare

measures over populations of decision makers. For default-setting problems with sophisticated

present focus, they also showed that one calculates EVB by treating β as a bias, as above. To

determine EVA, one instead evaluates welfare according to a slightly modified objective function

that respects β:

Ũλ(D,x∗, θ) =(1− Cλ(D,x∗, θ))βV (D,x∗, ρ) + Cλ(D,x∗, θ)βV (x∗, x∗, ρ)

− Cλ(D,x∗, θ)λη − (1− Cλ(D,x∗, θ))K +B.

Surprisingly, for empirically parametrized opt-out models, Bernheim, Fradkin, and Popov (2015)

find that the same default option maximizes both EVA and EVB.

Our analysis provides insight into the mechanisms that drive this conclusion, and also allows us

to state precisely the conditions under which it holds (asymptotically). For EVA, the welfare loss

function becomes

Lλ(D) = −
´
θ ληdG(θ) +

´
θ Pr

(
∆(D,x∗, ρ) ≤ λη

β | θ
)

×
[
λη − βE

(
∆(D,x∗, ρ) | θ,∆(D,x∗, ρ) ≤ λη

β

)]
dG(θ)

Replicating our earlier reasoning, we see that maximization of this objective function is asympot-

ically equivalent to minimizing weighted opt-out, using weights ω(η, β) = η
(
1− 1

3

)
, rather than

ω(η, β) = η
(

1− 1
3β

)
(the weights used for EVB).

From these observations, it follows that maximization of EVA coincides (asymptotically) with

maximization of EVB, and consequently that the optimal default is robust with respect to strate-

gic ambiguity, as long as the same default achieves weighted opt-out minimization with weights

η
(

1− 1
3β

)
and η

(
1− 1

3

)
. This condition is obviously satisfied when there is no heterogeneity in β
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(the case considered in Bernheim, Fradkin, and Popov 2015), provided β > 1
3 . More generally, the

result survives the introduction of heterogeneity with respect to present focus as long as the distri-

bution of β is independent of x∗, ρ, and η. Notice that the latter condition does not require that η

is independent of x∗ and ρ, which means that weighted opt-out minimization may be normatively

robust even when it diverges from unweighted opt-out minimization.

3.4 Relation to existing results

The previous literature contains a few theoretical results related to our Propositions 3 and 4. Goldin

and Reck (2020) study settings in which worker heterogeneity is limited to ideal points and as-if

opt-out costs (our x∗ and η). They focus on settings that satisfy our baseline assumptions and

establish the optimal of unweighted opt-out minimization under the following sufficient conditions:

(i-a) ideal points are distributed independently of opt-out costs; (i-b) the distribution of ideal points

is single-peaked and symmetric; (ii-a) the utility derived from the action depends only on the dif-

ference between the action and the worker’s ideal point; (ii-b) utility is a convex, single-peaked,

symmetric function that difference; and (iii) as-if and normative opt-out costs are sufficiently sim-

ilar. Furthermore, unweighted opt-out maximization becomes optimal when as-if and normative

opt-out costs are sufficiently different. Carroll et al. (2009) consider a specialized dynamic model in

which present focus, which they interpret as a bias, causes workers to place excessive weight on opt-

out costs. Their sufficient conditions for the optimality of opt-out minimization and maximization

are similar to those in Goldin and Reck (2020).

Our focus on asymptotic optimality rather than exact optimality allows us to treat the baseline

problem with greater generality and to establish the desirability of unweighted opt-out minimization

under substantially weaker sufficient conditions (Propositions 3 and 4). With respect to distribu-

tional assumptions, we allow for two additional dimensions of worker heterogeneity (bias and utility

function curvature). Moreover, while Conditions 1 and 2 both impose (i-a), neither requires (i-b).

With respect to assumptions concerning utility functions, Condition 2 retains (ii-a) while while

Condition 1 dispenses with it; both replace (ii-b) with a modest single-crossing requirement. We

also retain (iii), but identify a precise quantitative threshold (specifically, β > 1
3 , i.e., cognitive

biases inflate as-if opt-out costs relative to continuation utility by a factor of no more than three).

Additionally, our Proposition 5 extends the literature by showing, in effect, that one can dispense

with (iii) in settings where the employer can impose financial penalties for passive choice.13

The existing literature also contains no counterpart to our Proposition 2, which provides a

general characterization of asymptotically optimal defaults for settings that violate the Golden-

Reck assumptions. The characterization involves a suprisingly simple form of weighted opt-in

13Bernheim, Fradkin, and Popov make a related point in arguing that the optimality of extreme and unattractive
defaults in settings with large biases may be artifactual because it ignores the possibility of using complementary
policy instruments. Their simulations encompass the possibility that the employer can also impose a dissipative
penalty for passive choice such as “red tape” requirements. Although they do not provide a theoretical result, their
numerical calculations imply that the employer never uses the default to incentivize active choice when such penalities
are available. We depart from Bernheim, Fradkin, and Popov by considering the natural possibility that the employer
can establish non-dissipative fines, and by addressing the question theoretically rather than computationally.
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maximization with weights ω(η, β) = η
(

1− 1
3β

)
. Our analysis allows us to understand unweighted

opt-out minimization as a special case of this general rule, one that emerges when the integral of

the opt-in frequencies factors appropriately. The general characterization also helps to explain the

previous computational finding that unweighted opt-out minimization yields small welfare losses

even when it is suboptimal (Bernheim, Fradkin, and Popov 2015, and Choukhmane 2023): as long

as correlations between x∗ and ω(η, β) are not too large, one would not expect weighting to make

much of a difference. Finally, because the sign of ω depends on the magnitude of β, the general

characterization reveals that results concerning the optimality of the two opposing rules highlighted

in the literature—unweighted opt-out minimization and maximization—are two sides of the same

coin.

Goldin and Reck (2020) also address the topic of normative ambuity. While their analysis

is related to ours, it is also distinct. The distinctions begin with different conceptualizations

of normative ambiguity. Goldin and Reck proceed from the premise that people have “true”

preferences (in the conventional sense), and consequently (to use our notation) that there is a

single normatively correct value of β, call it βT . In their view, ambiguity arises because the analyst

may not know βT . By focusing on the polar cases (one in which the perceived costs of opt-out equal

their “true” costs, another in which the “true” costs are zero), they emphasize that one cannot tell

whether employers should maximize or minimize opt-out until one nails down the value of βT . In

contrast, following Bernheim and Rangel (2009), we allow for the possibility that people construct

their judgments contextually, in which case the notion of “true” preferences is an analytic fiction.

Unlike Goldin and Reck, we therefore consider normative ambiguity potentially irreducible. From

our perspective, the notable finding is that irreducible normative ambiguity need not impact the

optimality of weighted opt-out minimization (or the formula for the weights) provided the values

of β that govern naturalistically framed opt-out decisions exceed 1
3 . In contrast, if choices within

the welfare-relevant domain are consistent with values of β that span 1
3 , then irreducible normative

ambiguity may preclude discerning comparisons between minimization and maximization of the

(weighted) opt-out frequency.

The previous theoretical literature concerning optimal defaults is also limited to settings that

satisfy our two baseline assumptions: the distribution of x∗ is atomless, and the designer’s objec-

tives concerning each individual’s outcome coincide with the individual’s objectives. In the next

two sections, we extend the literature by relaxing those assumptions, using the same asymptotic

approach as for the baseline model.

4 Optimal defaults with bunching and sparse menus

In this section, we relax the first of our two baseline assumptions by considering the possibility that

the distribution of ideal points includes atoms. In some contexts, ideal points “bunch” at distinctive

options. For example, with respect to 401(k) contributions, workers typically bunch at zero and at

the option that exhausts their employer’s matching contributions (due to the resulting kink point
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in the worker’s opportunity set). In other contexts, the set of options is discrete and sparse. For

example, employers typically present workers with a limited menu of health insurance plans. We

show that our general characterization extends to these settings, with a small adjustment: the

opt-in weighting function that ensures the asymptotic optimality of weighted opt-out minimization

is simply ω(η) = η. We explain this finding intuitively and reconcile it with our results for the

baseline model.

4.1 Bunching

We take the view that bunching usually results from a characteristic of the opportunity set, such

as a kink or a boundary, rather than from atoms in the underlying distribution of workers’ charac-

teristics. Accordingly, we model the ideal point, x∗(y), as depending on some latent characteristic,

y ∈ Y , where Y is a compact set. We assume there is a finite set of disjoint non-degenerate

intervals, Y1, ..., YN , where Yn =
[
y
n
, yn

]
, along with a set of associated contribution levels,

Z = {z1, ..., zN} ⊂ X, such that all values of y ∈ Yn map to the same value, x∗(y) = zn. For

example, y might represent the worker’s long-run discount factor, and x∗ might be choices from

a non-linear budget set, in which case the zn correspond to kink points in an opportunity set,

induced for example by a cap on employer matching contributions, or alternatively zn might be a

boundary point of X. We will assume that, outside Y0 ≡ ∪Nn=1Yn, x∗(y) is strictly increasing and

differentiable with a derivative that is uniformly bounded away from 0.

Consistent with these modifications, we now model continuation utility, V (x, y, ρ), as depending

on the latent characteristic y rather than the ideal point x∗(y), which is presumably specific to the

opportunity set. Here it is important to avoid the assumption of differentiability, precisely because

an underlying kink in an opportunity set generally translates into a point of non-differentiability,

which in turn produces the bunching assumed above. Accordingly, we make the following weak

assumption concerning V :

Assumption 4. For all (x, y, ρ) ∈ X×Y ×
[
ρ, ρ
]
, V (x, y, ρ) is real-valued, continuous, and uniquely

maximized at x = x∗(y).

Notice that Assumption 4 dispenses not only with our differentiability assumptions, but also

with the single-crossing property.

To conserve on new notation, we will use F to represent the distribution of y rather than x∗.

We can also make due with weaker assumptions concerning F :

Assumption 5. F and G are atomless distributions with well-defined densities. There exists

fmax > 0 such that for f , the density function of F , f(y | θ) < fmax holds for all y ∈ Y , θ ∈ Θ.

While Assumption 2 did not explicitly call out the existence of an upper bound on f(x | θ),
that property followed from the assumed continuity of the density as well as the compactness of

the sets X and Θ. Thus, Assumption 5 is unambiguously weaker than Assumption 2.
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Under these assumptions, the fraction of the population with an ideal point of zn ∈ Z is

πn ≡
ˆ

θ

Pr (x∗(y) = zn | θ) dG(θ) =

ˆ

θ

[
F (yn | θ)− F (y

n
| θ)
]
dG(θ). (8)

Were we to assume full support (as in Section 2), we would have πn > 0. Here we will assume only

that there is some zn ∈ Z with πn > 0, which implies the existence of bunching. Notice that the

analog of expression (8) is 0 for any D /∈ Z.

Our analysis will focus on weighted opt-out minimization with weights ω(η) = η. The weighted

opt-in frequency is then

Ω̂λ(D) ≡
ˆ
θ
ηPr

(
∆(D,x∗(y), ρ) ≤ λη

β

∣∣∣∣ θ) dG(θ)

Let DΩ̂ (λ) denote any default that maximizes this objective function.

For any D /∈ Z, it is easily verified that Ω̂λ(D)→ 0 as λ→ 0.14 Consequently, it is natural to

conjecture that, as λ → 0, the weighted opt-out minimizing default DΩ̂ (λ) converges to z∗ ∈ Z,

defined as arg maxz∈Z Ω̂(z), where (for z ∈ Z),

Ω̂(z) ≡
ˆ
θ
ηPr (x∗(y) = z | θ) dG(θ).

We will assume that z∗ is unique within Z, a property that holds generically.

Now we turn to welfare maximization. Equation (4), which defines the aggregate welfare func-

tion L
λ
(D), is unchanged, except that we replace x∗ with x∗(y). Following the structure of the

arguments in Section 3.1, we define

Ŵλ(D) ≡
Lλ(D) +

´
θ ληdG(θ)

λ
.

Notice that we use a different scaling factor here, λ−1 rather than = (2λ)−
3
2 , to ensure that the

objective function neither explodes to infinity nor collapses everywhere to zero. The reason for

the change in scaling is that, here, some probabilities do not converge to zero. Let DŴ (λ) be

any welfare-maximizing default, given λ. Our objective is to characterize the limiting behavior of

DŴ (λ) as λ→ 0.

It is useful to rewrite the welfare function as follows:

14The convergence is not necessarily uniform, however, since there are values of D /∈ Z that are arbitrarily close to
points in Z.
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Ŵλ(D) =
´
θ Pr

(
∆(D,x∗(y), ρ) ≤ λη

β

∣∣∣ θ)
×
[
η − 1

λE
(

∆(D,x∗(y), ρ) | θ,∆(D,x∗(y), ρ) ≤ λη
β

)]
dG(θ),

= Ω̂λ(D)−
´
θ Pr

(
∆(D,x∗(y), ρ) ≤ λη

β

∣∣∣ θ)
×
[

1
λE
(

∆(D,x∗(y), ρ) | θ,∆(D,x∗(y), ρ) ≤ λη
β

)]
dG(θ)

(9)

Now think about what happens to Ŵλ(D) as λ → 0. For D /∈ Z, Pr
(

∆(D,x∗(y), ρ) ≤ λη
β

∣∣∣ θ) →
0, so the second term (specifically, everything after Ω̂λ(D)) vanishes.15 In contrast, for D ∈
Z, Pr

(
∆(D,x∗(y), ρ) ≤ λη

β

∣∣∣ θ) need not vanish. The limiting behavior of the second term then

depends on the bracketed expression in the last line. In Section 3.1, we showed that, with no

bunching, that expression converges to λη
3β . In the current context, it converges to zero. Intuitively,

for such D = zn ∈ Z, as λ→ 0, the fraction of workers choosing zn for whom x∗(y) 6= zn converges

to zero. The conditional expectation is therefore governed entirely by workers for whom x∗(y) = zn.

But for those workers, ∆(zn, x
∗(y), ρ) = 0. It is therefore intuitive that Ŵλ(D)− Ω̂λ(D) converges

to 0, and consequently that DŴ (λ) also converges to z∗.

By articulating this intuition while attending to a number of technical issues, we prove the

following result:

Proposition 6. Suppose Assumptions 4 and 5 hold, and that z∗ is unique. The weighted opt-out-

minimizing default option DΩ̂ (λ) and the welfare-maximizing default option DŴ (λ) both converge

to z∗ as λ→ 0.

One important feature of this result is that the asymptotic optimum is always a contribution

rate at which bunching occurs (formally, z∗ ∈ Z). Another important feature is that the asymptotic

optimum does not depend on the distribution of the bias parameter, β. In this context, because

Pr
(

∆(D,x∗(y), ρ) ≤ λη
β

∣∣∣ θ) converges to Pr (∆(D,x∗(y), ρ) = 0| θ), the bias parameter can only

enter in the limit through the bracketed term in the last line of equation (9). But as we have

explained, that term disappears in the limit, which is why we arrive at the weight η rather than

η
(

1− 1
3β

)
. Several implications follow.

First, because the weights η are strictly positive, the asymptotically optimal rule always has

the flavor of opt-out minimization rather than maximization, even when bias is severe. In contrast

to our baseline results, a fine for passive choice is not required for this property to hold.

Second, because the weights do not depend on β, weighted opt-out minimization is always

normatively robust (in the sense that the asymptotic maximizers of EVA and EVB coincide).

Third, the asymptotic optimality of unweighted opt-out minimization only requires the indepen-

dence of y (which stands in for x∗) and η. Relative to the corresponding results for the basline model

(Propositions 3 and 4), we are able to dispense with the independence assumptions concerning β

and ρ.

15A technicality here is that it does not vanish uniformly.
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To understand this third point, notice that we can rewrite Ω̂(z) as follows:

Ω̂(z) =

ˆ

η

η

ˆ
ρ

ˆ

β

Pr (x∗(y) = z | β, ρ)h(β, ρ | η)dβdρ

 k(η)dη

=

ˆ

η

ηPr (x∗(y) = z | η) k(η)dη,

where k(η) is the density for the marginal distribution of η, while h(β, ρ | η) is the density for the

joint distribution of β and ρ, conditional on η. If we assume y and η are independent, then the

probability term factors out, which means we are left with Ω̂(z) = Pr (x∗(y) = z), the (limiting)

unweighted opt-out frequency.

Reconciling Propositions 2 and 6.

A comparison between Propositions 2 and 6 reveals an apparent tension: with no bunching, β

appears in the weighting formula, but with even the tiniest amount of bunching, it vanishes. To

underscore this tension, suppose Condition 1 is satisfied, and that β < 1
3 for all workers. Assuming

the distribution of x∗ has a single atom, Proposition 6 implies that opt-out minimization is optimal.

As we shrink the size of the atom toward zero, this implication is unchanged. But once we reach

the limit and the atom disappears, Proposition 2 implies (through Proposition 3) that opt-out

maximization is optimal.

The aforementioned tension reflects a general mathematical principle: in settings where mul-

tiple variables approach limiting values, the maximum of a well-behaved function can converge to

different values depending on the order in which one takes the limits.16 In the previous para-

graph’s example, the variables in question are λ and the size of the atom. When we invoke

Proposition 6, we are taking the limit with respect to λ before shrinking the size of the atom.

When we invoke Proposition 2, we are (in effect) taking limits in the opposite order. The term
1
λE
(

∆(D,x∗(y), ρ) | θ,∆(D,x∗(y), ρ) ≤ λη
β

)
converges to 0 in the first instance, but to η

3β in the

second.

Accounting for this tension mathematically leaves open the question of whether, in any given

practical application, one ought to heed the implication of Proposition 2 or of Proposition 6. The

answer to the question depends on which approximation is closer to the case of interest, the “small

atom” limit or the “small opt-out cost” limit. That comparison boils down to whether, for D ∈ Z
(bunching points) and typical values of θ, the opt-in set

{
y | ∆(D,x∗(y), ρ) ≤ λη

β

}
is dominated by

values for which x∗(y) = D (in which case Proposition 6 provides the better approximation), or by

values for which x∗(y) 6= D (in which case Proposition 2 provides the better approximation).

Fortunately, this determination is relatively easy to make in practice. For each ideal point at

16For example, consider the function f : {0, 1} → R such that f(0) = ς and f(1) = τ . If we first take the limit of
the function as ς → 0, and then take the limit as τ → 0, the sequence of maximizers converge to 1. If we take the
limits in the opposite order, the sequence of maximizers converge to 0.
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which bunching occurs (z ∈ Z), one can compute the ratio of the fraction of workers contribut-

ing z when D is far from z, to the fraction of workers contributing z when D = z. This ratio

approximates the proportion of workers falling within the set
{
y | ∆(z, x∗(y), ρ) ≤ λη

β

}
for whom

x∗(y) = z.17Let χ(z) denote that proportion. If χ(z) is close to unity for all z ∈ Z, bunching is

relatively inconsequential for the analytics of optimal defaults, so Proposition 2 provides better

guidance than Proposition 6. The opposite conclusion follows when χ(z) is close to zero for all

z ∈ Z.

When χ(z) is close to neither zero nor unity for some z ∈ Z, it may be preferable to employ an

asymptotic approximation for which λ and the size of each atom converge to zero simultaneously

at rates that preserve χ(z).18 With constant χ(z), we have19

1

λ
E

(
∆(z, x∗(y), ρ) | θ,∆(z, x∗(y), ρ) ≤ λη

β

)
= χ

1

λ
E

(
∆(z, x∗(y), ρ) | θ, z 6= ∆(z, x∗(y), ρ) ≤ λη

β

)
Furthermore, the right-hand-side expression converges in the aforementioned limit to χ η

3β . Con-

sequently, the asymptotically optimal rule is to maximize the weighted opt-in frequency using

weights ω(η, β,D) = η
(

1− χ(D)
3β

)
, where χ(D) ≡ 0 for contribution rates at which ideal points

do not bunch (D /∈ Z). With a large degree of bunching, the asymptotic optimum tends to fall

within Z because the associated opt-in frequency and weights are both larger than for options in

the complement of Z. Propositions 2 and 6 thus emerge as boundary cases.

4.2 Sparse menus

To analyze environments with sparse menus, we modify the model of Section 2. For simplicity,

we assume the action x takes on one of two values, 0 or 1. Our analysis extends to settings with

more than two discrete options in an obvious but tedious way, and this simplification allows us to

illustrate the applicable principles while avoiding uninstructive notational complexity. The problem

of setting default options for choices with binary alternatives is also of independent practical interest

because it regularly arises in practice, for example with respect to organ donation elections.

As before, we assume we can write continuation utility, V (x, x∗, ρ), as a function of the action

x, a characteristic x∗ governing the individual’s preferred option, and a characteristic ρ governing

the intensity of that preference. Here, however, x and x∗ belong to different sets ({0, 1} and

X, respectively), so we reinterpret x∗ as a latent characteristic rather than an ideal point. The

incremental continuation utility the individual derives from action 1 relative to action 2 is then

C(x∗, ρ) = V (1, x∗, ρ)− V (0, x∗, ρ)

17The ratio understates this proportion because, with any D 6= z, some of the workers with x∗(y) = z will not
make active choices. Using a default that is far from z when measuring the numerator minimizes the resulting bias.

18When taking this limit, we scale the objective function by λ−
3
2 as in Proposition 2, rather than by λ−1 as in

Proposition 6.
19To obtain this expression, we use the fact that ∆(z, x∗(y), ρ) = 0 iff x∗(y) = z.
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To the assumptions listed in the previous subsection (V real-valued and continuous), we add that

C(x∗, ρ) is strictly increasing in x∗. This assumption is simply a matter of arranging latent types

in order of increasing preference for option 1. We also assume that C(x, ρ) < 0 and C(x, ρ) > 0,

so that some people strictly prefer each option. These assumptions plainly imply the existence of

some threshold value xT such that C(xT , ρ) = 0.

Next we define

∆(D,x∗, ρ) = max
{

0, (−1)1−DC(x∗, ρ)
}

In other words, when D = 0, ∆(D,x∗, ρ) equals C(x∗, ρ) truncated below at zero, while if D = 1,

it equals −C(x∗, ρ) truncated below at zero. This function has precisely the same interpretation

as in previous sections: it measures the difference between the utility the individual derives from

receiving his most preferred option, and the utility he derives from receiving another specified

alternative (which may or may not be his most preferred option). It follows that the individual

opts out of the default when ∆(D,x∗, ρ) > λη
β , exactly as before.

As in the last subsection, our analysis will focus on weighted opt-out minimization with weights

ω(η) = η. The weighted opt-out frequency is then

Ω̃λ(D) ≡
ˆ
θ
ηPr

(
∆(D,x∗, ρ) ≤ λη

β

∣∣∣∣ θ) dG(θ).

Let DΩ̃ (λ) denote any default that maximizes this objective function. It is easy to see that, as

λ→ 0, Ω̃λ(D) converges to

Ω̃(D) ≡
ˆ
θ
ηPr

(
(−1)D (x∗ − xT ) ≤ 0 | θ

)
dG(θ)

Let D∗ be the default that maximizes Ω̃(D). It is straightforward to establish the existence of some

λΩ̃ > 0 such that, for λ < λΩ̃, we have DΩ̃ (λ) = D∗.

Even though we have altered our original model, equation (4) for Lλ(D) continues to describe

aggregate welfare. In parallel with the preceding subsection, we define

W̃λ(D) ≡
Lλ(D) +

´
θ ληdG(θ)

λ
,

which we can rewrite as

W̃λ(D) = Ω̃λ(D)−
´
θ Pr

(
∆(D,x∗, ρ) ≤ λη

β

∣∣∣ θ)
×
[

1
λE
(

∆(D,x∗, ρ) | ∆(D,x∗, ρ) ≤ λη
β

∣∣∣ θ)] dG(θ).

As in the last subsection, we claim that the bracketed term converges to zero. Intuitively, for

either value of D, as λ → 0, the fraction of workers choosing zn for whom (−1)D (x∗ − xT ) > 0,

and hence for whom ∆(D,x∗, ρ) > 0, converges to zero. The conditional expectation is therefore

governed entirely by workers for whom (−1)D (x∗ − xT ) ≤ 0. Because ∆(D,x∗, ρ) = 0 for those
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workers, the bracketed term converges to zero. It follows that W̃λ(D) − Ω̃λ(D) converges to zero,

which in turn means that W̃λ(D) − Ω̃(D) converges to zero. An immediate implication is that

there is some λW̃ > 0 such that, for λ < λW̃ , we have DW̃ (λ) = D∗. Thus, the weighted opt-out

minimizing default with weights ω(η) = η is welfare-optimal for sufficiently small λ. While the

preceding discussion omits some details, they are easy to fill in, and indeed they involve simpler

versions of the arguments used in the proof of Proposition 6. Because the weights are the same as

for settings with bunching, the same conclusions follow.

As in the previous section, there appears some tension between Proposition 2 and the conclusions

we have just reached: with a continuous menu, β appears in the weighting formula, but with any

finite menu, no matter how fine, it vanishes. The explanation is similar: the asymptotic optimum

depends on the order in which one takes limits—in this context, whether one first lets increasingly

fine discrete menus approach a continuum before or after taking the limit as λ goes to zero.

When considering any practical application, one must therefore determine whether the grid

size is large or small relative to opt-out costs. If the grid size is small enough, the opt-in window

for any default D will include workers with many other ideal points, and those with x∗ = D will

consistute a small fraction of the total opt-ins. In that case, Proposition 2 provides a reasonable

guide. Alternatively, if the the grid size is coarse enough, workers with x∗ = D will dominate the

opt-ins. In that case, it is more appropriate to use the rule derived in the current section. Once

again, one can evaluate these alternative possibilities by computing the ratio of the fraction of

workers contributing x when D is far from x, to the fraction of workers contributing x when D = x.

5 Optimal defaults with divergent objectives

In this section, we relax the second of our two baseline assumptions by considering the possibility

that the designer disagrees with the choosers concerning the activity’s benefits or costs, and cannot

resolve this disagreement by levying a Pigouvian fee. For the sake of analytic tractability, we focus

primarily on settings where the discrepancy is linear in the activity’s level—in other words, ones

with linear externalities. Our formulation subsumes a variety of possibilities, including cases where

the activity’s overall level has desirable or undesirable general equilibrium effects, as in Handel

(2013) and Ericson (2020). In keeping with some of the behavioral literature, one can alternatively

interpret the discrepancy as reflecting an “internality” associated with cognitive biases regarding

the level of the activity x (see, e.g., Bernheim and Taubinsky 2018).

Formally, we assume the employer evaluates the outcome associated with the choice of any given

worker exactly as in Section 2, but also perceives an added benefit of σx, where σ parameterizes

the importance of the externality. Accordingly, when the default is D, a worker with characteristics

(x∗, θ) makes the following contribution to the employer’s objective function:

Uλ(D,x∗, θ) = Ũλ(D,x∗, θ) + σ [x∗ + (1− Cλ(D,x∗, θ))(D − x∗)] ,

where the functions Ũλ and Cλ are defined as before.
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Throughout this section, we maintain Assumptions 1 and 2, and simplify by imposing Condition

2 (x∗ is distributed independent of θ, and we can write V (x, x∗, ρ) as v(x− x∗, ρ)). The employer’s

overall objective is then to maximize the following function:

Lλ(D) = Lλ(D) + E(x∗) + σ

ˆ
θ

[ˆ
∆(D,x∗,ρ)≤λη

β

(D − x∗)dF (x∗)

]
dG(θ)

We write the optimal default as DL(λ).

As in Section 3, we encounter the difficulty that, as λ → 0, the objective function becomes

completely flat. To overcome this difficulty, we once again add a constant and rescale by 2λ−
3
2 :

W λ(D) ≡Wλ(D) + Jλ(D).

where

Jλ(D) ≡ σ

2λ
3
2

ˆ
θ

[ˆ
∆(D,x∗,ρ)≤λη

β

(D − x∗)dF (x∗)

]
dG(θ)

In establishing Proposition 4, we showed that under Condition 2, as λ → 0, Wλ(D) converges

uniformly to Ψ1f(D) for some fixed constant Ψ1. The constant may be positive or negative de-

pending on the distribution of β. The next step is to provide a similar asymptotic characterization

of Jλ(D). It turns out that Jλ(D) converges uniformly to −σ [v111(0, ρ)Ψ2f(D) + Ψ3f
′(D)], where

Ψ2 and Ψ3 are strictly positive constants. Thus, the transformed objective function converges

uniformly to (Ψ1 − σv111(0, ρ)Ψ2) f(D)− σΨ3f
′(D).

We define the optimum for the limiting case as follows:

D
∗ ≡ arg max

D∈X

[
(Ψ1 − σv111(0, ρ)Ψ2) f(D)− σΨ3f

′(D)
]
,

As before, cases with multiple maxima are non-generic and therefore of little interest, so we rule

them out by assuming that D
∗

is unique. If we strengthen part (i) of Assumption 1 to encompass

fourth derivatives, we then have:

Proposition 7. Suppose Assumptions 1-2 and Condition 2 hold, v1111(x − x∗, ρ) is continuous,

and D
∗

is unique. Then the welfare-maximizing default option DL(λ) converges to D
∗

as λ→ 0.

Proposition 7 allows us to understand Proposition 4 as one end of a spectrum: when externalities

are unimportant (σ is close to zero), the asymptotically optimal default roughly coincides with the

option that maximizes the ideal-point density—in other words, the distribution’s mode. At the

other end of the spectrum, with sufficiently large σ, externalities are so important that Jλ(D)

dwarfs Wλ(D). If, in addition, v111(0, ρ) = 0 (so that, roughly speaking, opt-in windows are

symmetric), the asymptotically optimal default roughly coincides with the option at which the

ideal-point density has the greatest downward slope—in other words, an inflection point of the

ideal-point distribution. For intermediate values of σ, the solution maximizes a weighted average
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of the density and the (negative) slope of the density, where the weight attached to the density is

greater when opt-in windows are left-skewed (v111(0, ρ) < 0) and smaller when they are right-skewed

(v111(0, ρ) > 0).

For distributions with common shapes, we can say more about the optimal default. A distribu-

tion is quasi-bell-shaped if the density function is three-times differentiable, single-peaked at some

xm, and has two inflection points, xh and xl, one above and one below the peak, with f ′′′(x) < 0

for x ∈ (xl, xm) and f ′′′(x) > 0 for x ∈ (xm, xh). For cases in which biases in assessing opt-out

costs are not too severe (i.e., the distribution of β is mostly above 1
3 , so that Ψ1 > 0) and opt-in

windows are weakly left-skewed (v111(0, ρ) ≤ 0) we reach the following conclusions:20

Proposition 8. Suppose Assumptions 1-2 and Condition 2 hold, v1111(x − x∗, ρ) is continuous,

f is quasi-bell-shaped, Ψ1 > 0, and v111(0, ρ) ≤ 0. For all σ ≥ 0, the asymptotically optimal

default option D
∗

is unique and lies (weakly) between the mode and the upper inflection point of

the ideal-point distribution. It equals the mode when σ = 0 and rises monotonically with σ. When

v111(0, ρ) = 0, it converges to the upper inflection point as σ →∞.

When Ψ1 ≤ 0 and v111(0, ρ) < 0, the same result holds for sufficiently large σ. When v111(0, ρ) >

0, the weight on f(D) is negative for large σ (as well as for small σ if Ψ1 ≤ 0). Consequently, the

asymptotic optimum lies either in the upper tail of the opt-out distribution beyond the upper

inflection point, or in the lower tail.

For the special case of a normal ideal-point distribution, under the conditions stated in Propo-

sition 8, the asymptotically optimal default lies above, but not more than one standard deviation

from, the mean. Equivalently, it falls between the 50th and 84th percentiles of the ideal-point

distribution. When externalities are incidental, it falls close to the 50th percentile, but when they

loom large, it approaches the 84th percentile if opt-in windows are symmetric.

Figure 2 provides intuition for the asymptotic characterization of Jλ(D). The interval [D − wl, D + wh]

represents the opt-out window associated with the default D. The translation assumption ensures

that wl and wh do not depend on D. For the purpose of this discussion, we assume the opt-in

window is left-skewed (wl > wh). The figure separates the window into a symmetric part and an

asymmetric part. The symmetric part, [D − wh, D + wh] , is centered on D. The asymmetric part,

[D − wl, D − wh], is entirely below D.

First, consider the symmetric part. When the designer sets a default D, any chooser with ideal

points in the opt-in window end up with D rather than x∗. For choosers with x∗ ∈ [D − wh, D],

this effect yields an external benefit of σ(D − x∗); for choosers with x∗ ∈ [D,D + wh], it yields an

external cost of σ(x∗−D). The mass of people for whom there is an external benefit corresponds to

the area beneath f(x) over [D − wh, D], and the mass of people for whom there is an external cost

corresponds to the area beneath f(x) over [D,D + wh]. Moreover, if we consider an individual from

the first subinterval and one from the second with ideal points equidistant from D, the external

benefits and costs just offset. Consequently, the net gain depends on the difference between the

20The third-derivative condition ensures uniqueness of the maximizer; the other properties hold without it.
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Figure 2: The asymptotic characterization of Jλ(D)

population mass associated with the two subintervals. That difference is given by the sum of the

two shaded areas, A and B, shown in the figure. The area of A ∪ B depends on the width of

[D − wh, D + wh] and the magnitude of f(D − wh) − f(D + wh). The width is of order
√
λ. The

term f(D −wh)− f(D +wh) is therefore of order
√
λ and proportional to −f ′(D). It follows that

the area of A ∪ B is of order
(√

λ
)2

= λ and proportional to −f ′(D). Furthermore, because the

external benefit for someone with x∗ ∈ [D − wh, 0] is σ (D − x∗), the average external benefit is of

order
√
λ. The total net benefit is therefore of order λ3/2 and proportional to f ′(D). Thus, the

symmetric part of the interval accounts for the −Ψ3f
′(D) term.

Next, consider the asymmetric part of the opt-in window, [D − wl, D − wh]. For those in this

interval, selecting D rather than x∗ generates an external benefit of σ(D−x∗). The mass of people

in this interval is given by the shaded area C. Here, there are no choosers for whom setting the

default D creates offsetting costs. The height of C is approximately f(D). The width depends on

v111(0, ρ). If v111(0, ρ) = 0, the width is too small to matter. Even when v111(0, ρ) 6= 0, as λ → 0,

the the asymmetric part of the opt-in window becomes vanishingly small relative to the symmetric

part. Specifically, the proof of the proposition shows that wl − wh is of order λ. It then follows

that the area C is of order λ and proportional to f(D). Furthermore, because the external benefit

for someone with x∗ ∈ [D − wl, D − wh] is σ (D − x∗), the average external benefit is of order
√
λ.

The total net benefit is therefore of order λ3/2 and proportional to f(D). Thus, the asymmetric

part of the opt-in interval accounts for the −v111(0, ρ)Ψ2f(D) term.

We close this section with a discussion of some generalizations. First, recall that our analysis

excludes the possibility of setting a default at the boundaries of X (formally, D > x and D < x).
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Assuming the externality is positive, our approximation overstates the net external benefit of setting

D = x (because there are no ideal points below x), and understates the net external benefit of setting

D = x (because there are no ideal points above x). In either case, if the ideal-point density falls

to zero at a boundary point, one can easily adjust our formulas to accomodate a default at that

boundary. The most interesting possibility arises when the ideal-point density is bounded away

from zero near x. In that case, the welfare effect in Figure 2 would include the total area under the

density function between D−wh and D, rather than the area of A∪B. Critically, the former area is

of order
√
λ rather than λ, which means the aggregate external benefits are of order λ rather than

λ
3
2 . It follows that, in the limit as λ → 0, the positive externalities generated by setting D = x

dominate all other welfare effects at all possible defaults. Hence, D = x is optimal.21

Next, consider a non-linear aggregate externality of the form σN(E(x)) rather than σE(x).

Asymptotically, the externality is approximately σ [N(E(x∗)) + (E(x)− E(x∗))N ′(E(x∗))], so the

same characterization holds for Jλ(D), with Ψ2 and Ψ3 subsuming N ′(E(x∗)). Alternatively, with

a non-linear individual-level internality of the form σN(x), the total internality is approximately

σ [E(N(x∗)) + E(N ′(x∗)(x− x∗))]. Notice that the second term integrates the product of x − x∗

and N ′(x∗)f(x∗). The expression for the total internality would therefore be the same in a setting

with linear individual-level internalities and an ideal-point density function f̃(x∗) = N ′(x∗)f(x∗).

Accordingly, the same characterization holds for Jλ(D) with a reweighted distribution.

6 Numerical simulations

Next, we illustrate our main convergence result by simulating welfare-maximizing, weighted opt-

out minimizing, and unweighted opt-out minimizing defaults under various parametric assumptions.

These simulations also show that our asymptotic results provides decent approximations for settings

with substantial opt-out costs and, consequently, meaningful social stakes. We also investigate the

magnitude of the inefficiencies resulting from minimizing the unweighted opt-out frequency, rather

than the weighted opt-out frequency, in settings with correlations between x∗, η, and β.

6.1 Parametrizations

Table 1 summarizes the various parametric specifications used in our main simulations. For V ,

we employ a quadratic utility function, which exhibits the symmetry property imposed in the

prior literature, and an asymmetric linear-exponential utility function (Martinez-Mora and Puy

2012). For F , we examine a truncated Normal distribution that exhibits the symmetry and single

peakedness properties imposed in the prior literature, a highly asymmetric distribution with a

unique mode at a boundary value, and an asymmetric bimodal distribution. In all simulations,

21When limx→x f(x) > 0, it also may be natural to assume that there is an atom in the ideal-point distribution
at x. However, that consideration has no bearing on the size of the total externality created by setting D = x. The
reason is that those with x∗ = x end up with their ideal points. That said, as discussed in Section 4.1, the existence
of atoms can also change the analysis in other ways.
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Figure 3: Utility Functions and Distribution Functions for Numerical Simulations
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Notes: Left panel shows utility functions: quadratic utility (solid red) and linear-exponential asym-
metric utility (dotted black) for defaults D ∈ [0, 5] given ideal point x∗ = 2.5. Right panel shows
density of ideal point x∗ over support x ∈ [0, 5]: truncated Normal distribution (solid red), right-
peaked distribution (dotted black), and bimodal distribution (dashed blue).

the support of the ideal-point distribution is the interval [0, 5], and the designer agrees with the

choosers’ assessments of the activity’s value (σ = 0). Figure 3 depicts the alternatives we consider.

When introducing heterogeneity in β and η, we assume βi ∈ {0.5, 0.8, 1} and ηi ∈ {0.5, 1, 2}.
Because the possibilities for correlations are virtually limitless, we either assume independence

or employ a simple correlational structure that allows us to explore the impact of directional

relationships between the variables. Our specific distributional assumptions appear in Table 1.

6.2 Simulation results

Table 2 summarizes our main simulation results.22 Each row represents a separate simulation.

Columns (1) through (5) provide details concerning the parametrization. Columns (6) through

(13) present results for different values of the cost-scaling parameter λ. For each simulation, we

choose the value of λ to achieve the opt-out frequencies listed at the top of the columns: 95%, 90%,

75%, and 40%.23 Converting values of λ into their implied opt-out frequencies renders the size of

the parameter more easily interpretable.24

22The table omits the combination of a truncated Normal preference distribution and quadratic utility, as the opt-
out minimizing and welfare maximizing defaults always coincide. We performed all simulations using Python3 and
Scipy. We employ the Limited-Memory approximation to the Broyden–Fletcher–Goldfarb–Shanno algorithm with
Simplex Box constraints. We employ a grid-search over multiple starting points to ensure we reach a global maximum
rather than one of potentially many local maxima. We calculated all integrals numerically using quadrature. We
employed a maximal function value tolerance of 1e− 11 and maximal absolute quadrature error of 1e− 12.

23We select λ so that the opt-out rate under the welfare-maximizing default matches the stated target rate. For
the same λ, the opt-out minimizing default necessarily leads to lower opt-out rates.

24By way of comparison, in the sample studied by Choukhmane (2023), opt-out rates in a 401(k) pension plan vary
by tenure from about 20% to about 75%.
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Table 1: Utility Functions and Distribution Functions Used in Numerical Simulations
Name Function Parameterization

Quadratic V (x,D) = −α(x−D)2 α = 0.5

Linear-Exponential V (x,D) = − exp(α(x−D)) + α(x−D) + 1 α = 0.75

Table 1a): Utility functions used in the numerical simulations.

Distribution Mean Median Var. Max. Corr(x, η)

Truncated Normal
2.5 2.5 ≈ 0.911 2.5 −0.1531

f(x) = H ∗ φ (x− 2.5)

Right-peaked
3.3 ≈ 3.538 ≈ 1.389 5 −0.1608

f(x) = H ∗ x

Bimodal ≈ 2.408 ≈ 2.245 ≈ 0.583 {2, 3} −0.0942

f(x) = H ∗
(

1
(x−3)2+ 1

10

+ 1
(x−2)2+ 1

20

)

Table 1b): Probability density functions f(x) for the distributions used in the numerical simulations.
For all distributions, the range is x ∼ [0, 5] and H is a normalization constant that ensures the
density sums to 1. Var. displays the variance and Max. lists the (local) maximand(s) of the
distribution. “Corr(x, η)” refers to the correlation between x, the ideal point, and η, the cost
parameter, in the case of interdependence, as detailed in Table c).

Heterogeneity? Distribution of β Distribution of η

No Heterogeneity Pr[β = 0.8] = 1 Pr[η = 1] = 1

Independence
Pr[β = 0.5] = 1/3 Pr[η = 0.5] = 1/3

Pr[β = 0.8] = 1/3 Pr[η = 1] = 1/3

Pr[β = 1] = 1/3 Pr[η = 2] = 1/3

Interdependence
Pr[β = 0.5] =

{
0.5 x < 1.5

0.25 x ≥ 1.5
Pr[η = 0.5] =

{
0.5 x > 3.5

0.25 x ≤ 3.5

Pr[β = 0.8] =

{
0.5 x ∈ [1.5, 3.5]

0.25 otherwise
Pr[η = 1] =

{
0.5 x ∈ [1.5, 3.5]

0.25 otherwise

Pr[β = 1] =

{
0.5 x > 3.5

0.25 x ≤ 3.5
Pr[η = 2] =

{
0.5 x < 1.5

0.25 x ≥ 1.5

Table 1c): Types of heterogeneity studied in the numerical simulations: 1) no heterogeneity in β
and η, 2) independent random heterogeneity in one or both of β and η, and 3) heterogeneity in one
or both of β and η, with dependence on x.
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For each specification and opt-out frequency, the table reports the distance between the welfare-

maximizing default option DL(λ) and the weighted opt-out-minimizing default option DΩ(λ), as

well as the fraction of the potential welfare gain, ∆L(λ), achieved by the opt-out-minimizing default

option relative to a zero-default policy. Both of these metrics require explanation. For each simu-

lation, we first find the default DL(λ) that maximizes welfare; to obtain DΩ(λ), we then minimize

weighted opt-out for the same λ. The table reports the absolute value of the difference between

these two defaults, i.e., |DL(λ) − DΩ(λ)|. To compute ∆L(λ), we first evaluate the welfare gain

achieved by the welfare-optimal policy relative to a baseline scenario in which the default is D = 0:

Lλ (DL(λ))−Lλ(0). Next we calculate the welfare gain achieved by the weighted opt-out minimiz-

ing policy relative to the same baseline: Lλ (DΩ(λ))−Lλ(0). We then define ∆L(λ) as the ratio of

the second welfare gain to the first, expressed as a percentage: ∆L(λ) = 100%Lλ(DΩ(λ))−Lλ(0)
Lλ(DL(λ))−Lλ(0) .

Convergence and the quality of the approximation.

Part A of Table 2 focuses on simulations for which heterogeneity is limited to ideal points. Several

notable patterns emerge. First, we see numerical corroboration of Proposition 2: in each case, when

λ is low enough to produce an opt-out frequency of 95%, DΩ(λ) and DL(λ) are nearly identical. The

maximal difference between the two, 0.0075, for the case of a right-peaked distribution and quadratic

utility, is only 0.63% of the standard deviation of the ideal points x∗ under this distribution, and

the fraction of the potential welfare gain achieved through opt-out minimization, ∆L(λ), is larger

than 98% in all cases we consider.

Second, for higher opt-out costs (lower opt-out rates), the correspondence between the two

defaults remains close. With 75% opt-out, the maximal distance between DΩ(λ) and DL(λ) (which

again occurs for right-peaked preference distribution and quadratic utility), 0.0521, is only 4.4% of

the standard deviation of x∗, and the corresponding weighted opt-out minimizing default achieves

97.84% of the total attainable welfare improvement. Even for the smallest opt-out percentage

considered in the table, 40%, the approximations remain surprisingly good, with between 80% and

99.9% of welfare gain achieved across the parameterizations.

Figure 4, which focuses on the specification with an asymmetric linear-exponential utility func-

tion along with a bimodal ideal-point distribution, shows the relationship between DΩ(λ) and

DL(λ), as well as welfare losses, for λ yielding opt-out frequencies between roughly 14% and 91%.

The limiting approximation is extremely good for parameters that produce opt-out rates above

50%, and remains reasonably good even with higher opt-out costs (lower opt-out rates).

Additional dimensions of heterogeneity.

The rest of Table 2 introduces various forms of heterogeneity. We allow η and x∗ to vary indepen-

dently across workers in Part B, and introduce correlation between them in Part E. Parts C and F

are analogous, with β varying rather than η. We allow all three parameters to vary independently

across workers in Part D, and introduce correlations among them in Part G. None of these changes

produce meaningful divergences between the limiting values of the welfare-maximizing and weighted
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Figure 4: Illustration of welfare-maximizing and weighted opt-out-minimizing defaults
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Panels 1 and 2 show same results at higher resolution for λ close to zero. Bottom panel: percentage
of potential welfare gain achieved through the weighted opt-out-minimization.

opt-out minimizing defaults. Moreover, we see only small divergences and modest inefficiencies from

weighted opt-out minimization even when opt-out costs are high enough to produce opt-out fre-

quencies as low as 40%: despite allowing for full interdependent heterogeneity, the weighted opt-out

minimizing default captures at least 84% of the achievable welfare gains and above 95% in three of

the five simulation cases.

Limitations of the asymptotic approximation method

While the results in Table 2 generally support the asymptotic approximation method, they also help

us identify the types of circumstances that render the method less reliable. Focusing on the table’s

final column, we see a handful of cases for which weighted opt-out minimization achieves only 75

to 80 percent of the potential welfare gain. These cases share two features: first, the distribution of

ideal points is bimodal; second, opt-out costs are relatively large (in the sense that 60% of workers

stick with the default).

Figure 4 illustrates why these features may erode the accuracy of the asymptotic approximation.

With opt-out rates below 50%, weighted opt-out minimization favors defaults in the trough of the

ideal-point distribution between the two peaks (at 2% and 3%). In contrast, welfare maximiza-

tion favors defaults near the highest peak (at 2%) even when the opt-out rate is as low as 30%.

This difference is intuitive: within the opt-out window, the average distance between a worker’s
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ideal point and the default matters for the welfare criterion, but does not matter for the opt-out

minimization criterion. While a default in the trough can achieve opt-out minimization when the

opt-out window is large enough to encompass both peaks, a default near the highest peak can

achieve greater welfare because it is closer, on average, to the ideal points of those who opt in. The

lower-left panel of the figure shows that opt-out minimization achieves the smallest fraction of the

potential welfare gains when the opt-out frequency is around 45%. Reducing opt-out costs from

that level shrinks the opt-in window to the point where a default in the trough of the ideal-point

distribution no longer captures enough of the mass around the peaks to yield the lowest possible

opt-out rate. As a result, the opt-out-minimizing default shifts rapidly toward the higher peak,

which brings it into closer alignment with welfare maximization.

Unweighted opt-out minimization

We have conducted analogous simulations for unweighted opt-out minimization. In other words,

instead of finding the weighted opt-out minimizing default DΩ(λ), we find the unweighted opt-out

minimizing default DU
Ω(λ) for a given combination of the cost scaling factor λ and the specified

utility function, distribution of x∗, and individual cost and bias parameters η and β. We also make

analogous welfare calculations.

Results appear in the Appendix. For cases with no heterogeneity, and with independence be-

tween η, β,and x∗, the simulation results match those in Table 2 for weighted opt-out minimization:

weighted and unweighted opt-out minimization perform equally well relative to the welfare maxi-

mizing default option, just as our analytical results imply. For cases involving non-independence

between the distributions of x and η and/or β, unweighted opt-out minimization still performs com-

parably to weighted opt-out minimization. The percentage of the maximal welfare gain captured

is slightly smaller in some instances and slightly higher in others, depending on parameterization

and cost scaling factor λ.

A case with strong correlation between ideal points and opt-out costs

Proposition 3 tells us that unweighted opt-out minimization is asymptotically optimal as long as

x∗ and ρ are distributed independently of η and β. In the preceding simulations, it also performs

well when η and β are mildly correlated with x∗ (correlation coefficients ranging from −0.09 to

−0.16). We now show through an additional simulation that a sufficiently strong correlation be-

tween x∗ and η can significantly erode the asymptotic performance of the unweighted procedure.

However, weighted opt-out minimization continues to maximize welfare in the limit (as Proposition

2 guarantees), and the asymptotic approximation remains accurate even with relatively low opt-out

rates.

For the case depicted in Figure 5, we introduce a strong correlation between η and x∗ (correlation

coefficient of 0.8).25 In particular, we assume the population falls into ten groups indexed i ∈
25Note that the relevant consideration is the absolute magnitude of the correlation coefficient, not the sign.
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Figure 5: A case where weighted and unweighted opt-out minimization converge to different limits.
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1, . . . , 10, each with equal mass. The cost scaling factor for each group, ηi, simply equals i. Ideal

points are Normally distributed with means µi = 5 i
11 . Thus, the ideal point for group 10 is ten

times as large as for group 1, and group 10 faces ten times the opt-out cost of group 1 for any

given λ. For all workers, we assume β = 0.8 and take the continuation utility function to be

quadratic (with the same curvature) around the ideal point. The top panel of the figure shows

the welfare-maximizing, unweighted opt-out minimizing, and weighted-opt-out-minimizing default

options at various opt-out frequencies. Because unweighted opt-out minimization attaches too

much importance to the workers with low as-if opt-out costs, it prescribes default contribution

rates that are too low compared to the welfare maximizing defaults. In contrast, weighted opt-

out minimization coincides with welfare maximization in the limit, and approximates the welfare-

optimal solution to a high degree of accuracy at much lower opt-out rates.

The bottom panel of the figure shows how weighted and unweighted opt-out minimization per-

form relative to true welfare optimization. As in Figure 4 above, we express the welfare gain

achieved through weighted and unweighted opt-out minimization as a fraction of the greatest pos-

sible gain. (In each case, we measure the gain relative to setting a default rate of zero.) Weighted

opt-out minimization performs extremely well: it acheives more than 99% of the potential welfare

gain as long as the opt-out rate exceeds 51%. In contrast, unweighted opt-out minimization does

not achieve 95% of the potential welfare gain at for any opt-out rate.
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7 Practical implications

In this section, we collect and summarize the practical implications of our analysis for the selection

of default options. These implications differ according to the designer’s objectives (most notably,

whether the choosers’ selections generate externalities), whether the designer can deploy other

instruments (such as Pigouvian fees), certain observable features of the setting (such as whether

the menu is sparse or approximately continuous), and the nature of the data the designer can access

or generate.

First, suppose the designer agrees with the choosers’ ideal points or resolves any disagreement

through Pigouvian fees. It is relatively easy to discover the distribution of ideal points, for example

through surveys, or more reliably by piloting an active-choice requirement. If there is no reason to

suspect strong correlations between ideal points and other characteristics, our results suggest the

designer ought to select either the modal ideal point or the antimode, depending on whether biases

impacting the assessment of opt-out costs are thought to be mild or severe (Proposition 4).

To refine this selection, the designer must collect additional data. In principle, the relationship

between the default and the opt-out frequency is discoverable through experimentation. When

opt-out biases are mild (respectively, severe), selecting the opt-out-minimizing (respectively, maxi-

mizing) default rather than the modal ideal point (respectively, antimode) can yield an improvement

(Proposition 3), because the ideal point may be systematically related to the width of the opt-in

window (through the local curvature of the continuation value function).26However, the designer

should be aware that, when opt-out rates are high and the distribution of ideal points is bimodal,

the asymptotic approximation that justifies this rule of thumb may be less accurate.

Further refinements require information concerning the distributions of other chooser character-

istics—specifically, as-if opt-out costs and biases pertaining to the evaluation of those costs. Simple

experiments or surveys can provide reasonable proxies for those parameters. For example, it is

possible to assess the degree of time inconsistency (a potential driver of β) in general population

samples through unincentivized survey questions; see Goda et al. (2019), who adapt the approach

used in Falk et al. (2023) . Furthermore, because it is only necessary to measure relative opt-out

costs (in other words, η rather than ηλ), measures of willingness-to-pay to avoid opt-out-like tasks,

rather than the actual opt-out protocol, likely suffice and are easy to elicit. By conducting such

elicitations while piloting an active-choice requirement, one can also determine how η and β covary

with x∗.

Knowing the distribution of β, by itself, is useful for two reasons. First, this knowledge allows

the designer to assess with greater precision whether the opt-out bias is mild (β generally exceeds 1
3)

or severe (β is generally less that 1
3). Second, it allows the designer to determine the magnitude of

an appropriate Pigouvian fee for passive choice, which (if feasible) can render opt-out minimization

26In some contexts, opt-out rates may be insensitive to defaults; see, for example, Brot-Goldberg et al. (2023). If
this insensitivity reflects a relatively uniform ideal-point distribution, then our results imply that all alternatives are
equally good. An alternative explanation is that people fall into two categories, some who always opt out, some who
never opt out. The designer’s problem then involves selecting an optimal default for the sugroup who never opt out.
Because that group acts as if opt-out costs are infinite, our results do not apply.
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superior to opt-out maximization under a much broader range of circumstances (Proposition 5).

In principle, simultaneous optimization of the fee and the default could prove challenging because

each might affect the other. However, we have shown that the designer can determine the optimal

default based on opt-out patterns in a setting where no fine is imposed.

Information concerning the joint distribution of x∗, β, and η facilitates further improvements

in the selection of the default D. In settings where the set of options is either continuous or

approximates a continuum, and where there is no evidence that ideal points bunch to a significant

degree, one can use this information to calculate the average weighting factor η
(

1− 1
3β

)
for each

x∗. The best choice is then the default D that maximizes the product of this weight (for x∗ = D)

and the corresponding opt-in frequency (Proposition 2).

For settings where bunching dominates the distribution of selections in an active-choice pilot, the

designer can identify the best default through a similar calculation, restricting attention to defaults

that coincide with ideal points at which bunching occurs, and replacing the weight η
(

1− 1
3β

)
with

the average of η for each such x∗ (Proposition 6). A similar prescription applies to settings with

sparse menus (see Section 4.2).

For settings with intermediate degrees of bunching, the designer can proceed as in the continuous

case, replacing the weights η
(

1− 1
3β

)
with η

(
1− χ(x∗)

3β

)
for each ideal point at which meaningful

bunching occurs, where χ(x∗) denotes the ratio of the number of choosers with an ideal point of x∗

to the number who opt in when the default is x∗ (see Section 4.1). The denominator of this ratio

is directly observable. To approximate the numerator, the designer can examine the popularity of

x∗ when the default is far from x∗.

Next, suppose the designer disagrees with the choosers’ ideal points, and cannot resolve this

disagreement through Pigouvian fees. For the case of a continuous (or roughly continuous) ideal-

point distribution, if there is no reason to suspect strong correlations between ideal points and

other characteristics, and if the disagreement takes the form of a roughly linear externality (or

internality), our results suggest the designer should set the default to maximize the weighted sum

of the ideal-point density and its derivate (Proposition 7). The required information is recoverable

by piloting an active-choice requirement. For cases in which (i) the externality is positive, and

(ii) the biases impacting the assessment of opt-out costs are thought to be relatively mild, the

weight on the ideal-point density is positive, and the weight on its derivative is negative. When

the distribution of ideal points is quasi-bell-shaped, it then follows that the optimal default lies

between the mode and the upper inflection point; whether it is closer to the latter or the former

depends on whether the externality is large or small relative to opt-out costs (Proposition 8). It

follows that, for a normal ideal-point distribution, the optimal default lies between the mean and

the mean plus one standard deviation–in other words, between the 50th and 84th percentiles.
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8 Conclusion

We have provided a general characterization of the solution to the problem of selecting a default

option for a heterogeneous group of individuals, which we obtained by studying the asymptotic

properties of welfare-maximizing defaults as one of the problem’s parameters approaches a limiting

value. We interpret these “asymptotic optima” as approximate optima for non-limiting cases and

justify this interpretation through numerical simulations. Our main results show that, when the

designer and choosers agree about the activity’s value, simple forms of weighted opt-out minimiza-

tion are asymptotically optimal. Existing results concerning the optimality of (unweighted) opt-out

minimization and maximization emerge as special cases. Our extensions encompass setting with

bunching and sparse menus, for which the weights simplify further. Additional results clarify the

role Pigouvian fees and establish robustness with respect to normative ambiguity. A final extension

explores settings in which the designer and choosers disagree about the activity’s value, for example

due to the existence of an externality. Under specified conditions, a designer who cares only about

a linear externality should set the default equal to the upper inflection point of the ideal-point

distribution; with a more modest externality, the optimum lies between the upper inflection point

and the mode. We have also highlighted the practical implications of our analysis for the selection

of default options.

Further explorations of generality could usefully test the limits of our conclusions. The following

two issues merit additional scrutiny. First, while the framework used here potentially accomodates

many types of decision-making biases (Goldin and Reck 2022), other important classes of bias may

require different formulations. As an example, the model of mechanistic (as opposed to optimal)

inattention in Bernheim, Fradkin, and Popov (2015) involves a different formulation. Second, as

noted in Section 2, the literature has conceptualized opt-out costs as arising from the mechanics

of implementation, rather than from deliberation. Because the latter mechanism seems plausbile

in many settings, it merits further study. One can imagine a class of models in which the worker

starts with a diffuse prior over the best option and can refine that prior by acquiring a costly signal.

A worker whose prior aligns insufficiently with the default will incur the cost of signal aquisition,

and then potentially opt out depending on what the signal reveals. It would be useful to examine

the robustness of our conclusions to these types of possibilities.
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Appendix

Proofs of Propositions

We begin with a lemma that simplifies our analysis by guaranteeing that the set of ideal points for

which workers opt in (that is, accept the default) is an interval.

Lemma 1. For any given D, there is a unique interval [xl (D, θ, λ) , xh (D, θ, λ)] containing D such

that the worker weakly prefers the default to opt-out if and only if x∗ ∈ [xl (D, θ, λ) , xh (D, θ, λ)].

This preference is strict on the interior of the interval, and the worker is indifferent at any boundary

of the interval that is interior to X.

Proof. Consider any x1 < D and x2 ∈ (x1, D). Then

∆(D,x1, ρ) = V (x1, x1, ρ)− V (D,x1, ρ)

= [V (x1, x1, ρ)− V (x2, x1, ρ)] + [V (x2, x1, ρ)− V (D,x1, ρ)]

> V (x2, x1, ρ)− V (D,x1, ρ) = −
D̂

x2

V1(z, x1, ρ)dz

> −
D̂

x2

V1(z, x2, ρ)dz = V (x2, x2, ρ)− V (D,x2, ρ) = ∆(D,x2, ρ)

where the first inequality follows from the optimality of x1 for a worker with ideal point x1, and the

second follows from single crossing (V12 > 0) (Assumption 1, (iii)). It follows that opt-out from D

by x2 implies opt-out from D byt x1, and opt-in to D by x1 implies opt-in to D by x2. An analogous

argument establishes that a symmetric property holds for x1 > D and x2 ∈ (D,x1). Furthermore,

4(D,x, ρ) inherits continuity from V . Thus, the opt-in set is a closed interval with indifference at

the boundaries (whenever they are interior to X) and strict preference on the interior. @

Lemma 2. Qλ (D, θ) is continuous in D and converges uniformly to Q(D, θ) as λ→ 0.

Proof. Continuity of Qλ follows from the continuity of V and G. For subsequent reference, define

v11 = maxx∈X,ρ∈[ρ,ρ] V11(x, x, ρ). Because X× [ρ, ρ] is compact and V11 is continuous, the maximum

is well-defined. Adding the fact that V11(x, x, ρ) < 0 for all (x, ρ) ∈ X × [ρ, ρ], we see that v11 < 0.

Further, using Taylor’s theorem, we know there is some x̃(D,x, ρ) ∈ [min{D,x},max{D,x}] such

that

∆(D,x, ρ) = −1

2
V11(x̃(D,x, ρ), x, ρ)(D − x)2

It will then be convenient to define

d(D,x, ρ) ≡ −1

2
V11(x̃(D,x, ρ), x, ρ).
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We note for subsequent reference that, trivially, x̃(D,D, ρ) = D, which implies d(D,D, ρ) ≡
−1

2V11(D,D, ρ).

The proof of uniform convergence proceeds in a series of steps. The arguments reference the

opt-in window, S(D, θ, λ) ≡ [xl(D, θ, λ), xh(D, θ, λ)], identified in Lemma 1. Throughout, we use

the symbol ⇒ to denote uniform convergence.

Step 1: For each λ > 0, there exists ν(λ) > 0 with limλ→0 ν(λ) = 0 such that, for all D ∈ X,

θ ∈ Θ, and x ∈ S(D, θ, λ), we have |D − x| ≤ ν(λ).

We establish the claim by constructing the requisite function:

ν(λ) ≡ max
(D,θ)∈X×Θ, x∈S(D,θ,λ)

|D − x|

Because the objective function is continuous and the contraint set is compact, the maximum exists.

To complete Step 1, we must prove that limλ→0 ν(λ) = 0. Our strategy is to show that, for

all ε > 0, there exists λ∗(ε) such that λ < λ∗(ε) implies |D − x| < ε for all (D, θ) ∈ X × Θ and

x ∈ S(D, θ, λ). For such λ, it must then be the case that ν(λ) < ε.

For any ε > 0, we define Ψ(ε) ≡
{

(D,x, ρ) ∈ X2 ×
[
ρ, ρ
]∣∣ |D − x| = ε} and σ(ε) ≡ min(D,x,ρ)∈Ψ(ε) ∆(D,x, ρ).

Existence of σ(ε) follows from continuity of the objective function and compactness of the constraint

set. Because we have assumed that ∆(D,x, ρ) > 0 whenever D 6= x, we know that σ(ε) > 0. Let

λ∗(ε) ≡ βσ(ε)

η > 0. For λ < λ∗(ε), any x ∈ S(D, θ, λ) satisfies ∆(D,x, ρ) ≤ λη
β < λ∗(ε)η

β = σ(ε). But

then we must have (D,x, ρ) /∈ Ψ(ε), which means |D − x| < ε, as desired.

Step 2: There exists a function δ(λ) with limλ→0 δ(λ) = 0 such that for all D ∈ X, θ ∈ Θ , and

x ∈ S(D, θ, λ), we have

|f(D | θ)− f(x | θ)| < δ(λ) (10)

and

|d(D,D, ρ)− d(D,x, ρ)| < δ(λ). (11)

First consider f . Because F is twice-continuously differentiable and X and Θ are compact, f is

Lipschitz-continuous on X ×Θ. Accordingly, there exists Mf > 0 such that |f(D | θ)− f(x | θ)| <
Mf |D − x|. In Step 1, we showed that |D − x| ≤ ν(λ) for all D ∈ X, θ ∈ Θ, and x ∈ S(D, θ, λ).

Therefore |f(D | θ)− f(x | θ)| < Mfν(λ) for all D ∈ X, θ ∈ Θ, and x ∈ S(D, θ, λ).

Now consider d. Because V has continuous third derivatives and X and Θ are compact,

V11(D,x, ρ) is Lipschitz-continuous on X2 ×Θ. It follows that there exists M1 > 0 for which

|V11(y, x, ρ)− V11(x, x, ρ)| < M1 |y − x| . (12)

as well as M2 > 0 for which

|V11(x, y, ρ)− V11(x, x, ρ)| < M2 |y − x| . (13)
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Consequently,

|d(D,D, ρ)− d(D,x, ρ)| = 1
2 |V11(x̃(D,x, ρ), x, ρ)− V11(D,D, ρ)|

= 1
2 |V11(x̃(D,x, ρ), x, ρ)− V11(D,x, ρ) + V11(D,x, ρ)− V11(D,D, ρ)|

≤ 1
2 |V11(x̃(D,x, ρ), x, ρ)− V11(D,x, ρ)|+ 1

2 |V11(D,x, ρ)− V11(D,D, ρ)|
< M1 |x̃(D,x, ρ)− x|+M2 |D − x|
≤ (M1 +M2) |D − x| ,

(14)

where the second inequality follows from (12) and (13), and the final inequality follows from the

fact that x̃(D,x, ρ) ∈ [min{D,x},max{D,x}]. In Step 1, we showed that |D − x| ≤ ν(λ) for

x ∈ S(D, θ, λ). Substituting into (14), we obtain |d(D,D, ρ)− d(D,x, ρ)| < (M1 +M2) ν(λ) for

x ∈ S(D, θ, λ).

To complete Step 2, we simply define δ(λ) ≡ max {Mf , (M1 +M2)} · ν(λ).

Step 3: Proof of the lemma.

From Step 2, we know that for all x ∈ S(D, θ, λ), we have

d(D,D, ρ)− δ(λ) < d(D,x, ρ) < d(D,D, ρ) + δ(λ)

Because d(D,D, ρ) ≥ −v11
2 > 0 and limλ→0 δ(λ) = 0, there exists λc such that λ < λc implies

d(D,D, ρ)− δ(λ) > 0 for all D ∈ X, ρ ∈
[
ρ, ρ
]
. It follows that, for λ < λc and all x ∈ S(D, θ, λ),

0 < (d(D,D, ρ)− δ(λ)) (D − x)2 < ∆(D,x, ρ) < (d(D,D, ρ) + δ(λ)) (D − x)2

Accordingly, ∆(D,x, ρ) ≤ λη
β (i.e., x ∈ S(D, θ, λ)) implies (D − x)2 <

(
λη
β

)
1

d(D,D,ρ)−δ(λ) , and

∆(D,x, ρ) > λη
β (i.e., x /∈ S(D, θ, λ)) implies (D − x)2 >

(
λη
β

)
1

d(D,D,ρ)+δ(λ) . Thus,

S(D, θ, λ) ⊂

(
D −

((
λη

β

)
1

d(D,D, ρ)− δ(λ)

) 1
2

, D +

((
λη

β

)
1

d(D,D, ρ)− δ(λ)

) 1
2

)
(15)

S(D, θ, λ) ⊃

(
D −

((
λη

β

)
1

d(D,D, ρ) + δ(λ)

) 1
2

, D +

((
λη

β

)
1

d(D,D, ρ) + δ(λ)

) 1
2

)
(16)

Using these inclusion relations and along with the fact that f(D | θ)− δ(λ) < f(x | θ) < f(D |
θ) + δ(λ) for all x ∈ S(D, θ, λ), we then have

2 (f(D | θ) + δ(λ))
((

λη
β

)
1

d(D,D,ρ)−δ(λ)

) 1
2

> Pr
[
∆(D,x, ρ) ≤ λη

β

∣∣∣ θ]
> 2 (f(D | θ)− δ(λ))

((
λη
β

)
1

d(D,D,ρ)+δ(λ)

) 1
2

It thus follows that
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(f(D | θ) + δ(λ))
((

η
β

)
1

− 1
2
V11(D,D,ρ)−δ(λ)

) 1
2

> Qλ(D, θ)

> (f(D | θ)− δ(γ))
((

η
β

)
1

− 1
2
V11(D,D,ρ)+2δ(λ)

) 1
2

As λ → 0, both sides converge to the same value: f(D | θ)
((

η
β

)
1

− 1
2
V11(D,D,ρ)

) 1
2

= Q(D, θ).

Therefore we know that Qλ(D, θ) converges pointwise to Q(D, θ).

To show that convergence is uniform, notice first that, by construction, Q(D, θ) lies within the

same bounds. We consider the difference between the upper and lower bounds on Qλ(D, θ) and

Q(D, θ):

ξ(D, θ, λ) = (f(D | θ) + δ(λ))
((

η
β

)
1

− 1
2
V11(D,D,ρ)−δ(λ)

) 1
2

−(f(D | θ)− δ(γ))
((

η
β

)
1

− 1
2
V11(D,D,ρ)+δ(λ)

) 1
2

> 0

Notice that this expression is increasing in f(D) and η, and decreasing in −V11(D,D, ρ) and β.

Because we have assumed that f is continuous, it obtains a maximum, fmax, on the compact set

X ×Θ. Thus,

ξ(D, θ, λ) <

(
η

β

) 1
2

(fmax + δ(λ))

(
1

−1
2v11 − δ(λ)

) 1
2

− (fmax − δ(λ))

(
1

−1
2v11 + δ(λ)

) 1
2

 ≡ ξ̄(λ)

The right-hand side of this expression converges to 0 as λ→ 0, and does not depend upon D or θ.

Therefore, we have Qλ(D, θ)⇒ Q(D, θ). @

Proof of Proposition 1 We claim that Ωλ(D)⇒ Ω(D). To prove the claim, we write:

|Ωλ(D)− Ω(D)| ≤
ˆ
θ
η

∣∣∣∣1− 1

3β

∣∣∣∣ |Qλ(D, θ)−Q(D, θ)| dG(θ)

≤ η̄φξ̄(λ)

where φ ≡ max
{∣∣∣1− 1

3β

∣∣∣ , ∣∣∣1− 1
3β

∣∣∣}, and ξ̄(λ) is defined in the proof of Lemma 2. Uniform

convergence follows from the fact that ξ̄(λ) → 0 as λ → 0. Because Ωλ(D) ⇒ Ω(D) and Ω(D)

is bounded on X,27 we know that the maximizers of Ωλ(D) converge to the maximizer of Ω(D).

Proposition 1 follows. @

Our next result concerns the limiting behavior of the following function:

Zλ(D, θ) ≡
E
[
∆(D,x, ρ) | θ,∆(D,x, ρ) ≤ λη

β

]
λ

27This claim follows from the fact that f and η are bounded above, while V11 and β are bounded away from zero.
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Lemma 3. Zλ(D, θ) converges uniformly to η
3β as λ→ 0.

Proof. Because 0 < E
[

∆(D,x, ρ)| θ,∆(D,x, ρ) ≤ λη
β

]
< λη

β for all λ, we know that Zλ(D, θ) is

bounded between 0 and η
β . Observe that:

Zλ(D, θ) =
E
[

∆(D,x, ρ)| θ,∆(D,x, ρ) ≤ λη
β

]
λ

=

E
[
∆(D,x, ρ)1

∆(D,x,ρ)≤λη
β
| θ
]

λPr
[
∆(D,x, ρ) ≤ λη

β | θ
] (17)

The denominator equals 2Qλ(D, θ)λ
3
2 .

Defining δ(λ) and λc as in the proof of Lemma 2, Step 3, as long as λ < λc (i.e., so that

d(D,D, ρ)− δ(λ) > 0 for all D ∈ D, ρ ∈
[
ρ, ρ
]
), the numerator of (17) is bounded above by:

E
[
∆(D,x, ρ)1

∆(D,x,ρ)≤λη
β
| θ
]
≤

D+
((

λη
β

)
1

d(D,D,ρ)−δ(λ)

) 1
2ˆ

D−
((

λη
β

)
1

d(D,D,ρ)−δ(λ)

) 1
2

(d(D,D, ρ) + δ(λ)) (D − x)2 (f(D | θ) + δ(λ)) dx

=
1

3
(f(D | θ) + δ(λ))(d(D,D, ρ) + δ(λ))

(
λη

β

) 3
2

(
2

(d(D,D, ρ)− δ(λ))
3
2

)

=
2

3
Q(D, θ)

(
1 +

δ(λ)

f(D | θ)

)(
1 +

δ(λ)

d(D,D, ρ)

)
λ

3
2

(
η

β

)(
1− δ(λ)

d(D,D, ρ)

)− 3
2

where the inequality in the first line follows from (10), (11), and (15) (given that the integrand is

strictly positive). It then follows from (17) that

Zλ(D, θ) ≤ 1

3

(
Q(D, θ)

Qλ(D, θ)

)(
1 +

δ(λ)

f(D | θ)

)(
1 +

δ(λ)

d(D,D, ρ)

)(
η

β

)(
1− δ(λ)

d(D,D, ρ)

)− 3
2

≡ Zλ(D, θ)

With f(D | θ) and d(D,D, ρ) bounded below by fmin > 0 and −1
2v11 > 0, respectively, it is

immediate that 1 + δ(λ)
f(D|θ) ⇒ 1, 1 + δ(λ)

d(D,D,ρ) ⇒ 1, and 1 − δ(λ)
d(D,D,ρ) ⇒ 1 as λ → 0. From Lemma

2, we also know that Qλ(D, θ) ⇒ Q(D, θ). Because V11 is continuous, V11(D,D, ρ) achieves a

minimum, call it v11, on the compact set X ×
[
ρ, ρ
]
. Thus, 0 < fmin

(
η

β

) 1
2
(

1
− 1

2
v11

) 1
2 ≤ Q(D, θ) ≤

fmax
(
η
β

) 1
2
(

1
− 1

2
v11

) 1
2
. In light of these bounds, it is straightforward to check that Q(D,θ)

Qλ(D,θ) ⇒ 1 as

λ→ 0. Putting these observations together, we have Zλ(D,λ)⇒ η
3β as λ→ 0.

We use a similar strategy to derive a lower bound on Zλ(D, θ). Because limλ→0 δ(λ) = 0, there
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exists λf such that λ < λf implies fmin > δ(λ). As long as λ < λf (which ensures f(D | θ)−δ(λ) >

0 for all D ∈ X), the numerator of (17) is bounded below by:

E
[
∆(D,x, ρ)1

∆(D,x,ρ)≤λη
β
| θ
]
≥

D+
((

λη
β

)
1

d(D,D,ρ)+δ(λ)

) 1
2ˆ

D−
((

λη
β

)
1

d(D,D,ρ)+δ(λ)

) 1
2

(d(D,D, ρ)− δ(λ)) (D − x)2 (f(D | θ)− δ(λ)) dx

A parallel argument then implies that

Zλ(D, θ) ≥ 1

3

(
Q(D, θ)

Qλ(D, θ)

)(
1− δ(λ)

f(D | θ)

)(
1− δ(λ)

d(D,D, ρ)

)(
η

β

)(
1 +

δ(λ)

d(D,D, ρ)

)− 3
2

≡ Zλ(D, θ)

Reasoning as for the upper bound, we have Zλ(D, θ)⇒ η
3β as λ→ 0.

Because the upper and lower bounds both converge uniformly to η
3β , we can infer that Zλ(D, θ)⇒

η
3β as λ→ 0. @

Proof of Proposition 2 Notice that we can rewrite the function Wλ(D), which we defined in

Section 3.1, as follows:

Wλ(D) ≡
ˆ

θ

Qλ(D, θ) [η − Zλ(D, θ)] dG(θ)

It follows that

Wλ(D)− Ωλ(D) =

ˆ

θ

Qλ(D, θ)

(
η

3β
− Zλ(D, θ)

)
dG(θ),

Choosing λ sufficiently small so as to insure δ(λ) < min
{
−1

4v11, f
max
}

, we have

0 < Qλ(D, θ) < (f(D | θ) + δ(λ))

(
η

β

) 1
2
(

1

d(D,D, ρ)− δ(λ)

) 1
2

< 4fmax
(
η

β

) 1
2
(

1

−v11

) 1
2

≡ C

Consequently,

|Wλ(D)− Ωλ(D)| ≤
ˆ

θ

C

∣∣∣∣Zλ(D, θ)− η

3β

∣∣∣∣ dG(θ).
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According to Lemma 3, Zλ(D, θ) ⇒ η
3β , which means that for any ε > 0, there exists λε > 0 such

that
∣∣∣Zλ(D, θ)− η

3β

∣∣∣ < ε for all λ < λε. But then we have

|Wλ(D)− Ωλ(D)| ≤
ˆ

θ

CεdG(θ) = Cε.

It follows that Wλ(D) − Ωλ(D) ⇒ 0 as λ → 0. Because Ωλ(D) ⇒ Ω(D), we then have Wλ(D) ⇒

Ω(D). Because Ω(D) is bounded onX (see the proof of Proposition 1), we know that the maximizers

of Wλ(D) converge to the maximizer of Ω(D). Proposition 1 follows. @

Proof of Proposition 5 In light of (4), we can write the total loss associated with any value of

γ and policy (D,K,B) as follows:

L(D, γ,K,B) =

xh

(
D, γ−K

β

)
ˆ

xl

(
D, γ−K

β

) [∆(D,x)−B +K] dF (x) +

ˆ

x/∈
(
xl

(
D, γ−K

β

)
,xh

(
D, γ−K

β

)) [γ −B] dF (x).

From equation (3), we know that B =
´ xu
xl
KdF (x). It follows immediately that

L

(
D, γ,K,

ˆ xu

xl

KdF (x)

)
=

xh

(
D, γ−K

β

)
ˆ

xl

(
D, γ−K

β

) [∆(D,x)− γ] dF (x) + γ.

Notice that the integrand is strictly negative for x ∈ (xl (D, γ) , xh (D, γ)) and strictly positive

for x /∈ [xl (D, γ) , xh (D, γ)]. It follows immediately that the optimum for any D involves setting

K = (1− β)γ, as claimed. @

Proof of Proposition 6 Define the opt-in set for given D, θ, λ.

S(D, θ, λ) ≡
{
y ∈ Y | ∆(D, y, ρ) ≤ λη

β

}
Because we have not assumed single-crossing, we cannot guarantee that S(D, θ, λ) is an interval.

However, we can still begin with essentially the same step as in the proof of Lemma 2.

Step 1: For each λ > 0, there exists ν(λ) > 0 with limλ→0 ν(λ) = 0 such that, for all D ∈ X,

θ ∈ Θ, and y ∈ S(D, θ, λ), we have |D − x∗(y)| ≤ ν(λ).

We establish the claim by constructing the requisite function:

ν(λ) ≡ max
(D,θ)∈X×Θ, y∈S(D,θ,λ)

|D − x∗(y)|
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Because the objective function is continuous and the contraint set is easily shown to be compact,

the maximum exists.

To complete Step 1, we must prove that limλ→0 ν(λ) = 0. Our strategy is to show that, for all

ε > 0, there exists λ∗(ε) such that λ < λ∗(ε) implies |D − x∗(y)| < ε for all (D, θ) ∈ X × Θ and

y ∈ S(D, θ, λ). For such λ, it must then be the case that ν(λ) < ε.

For any ε > 0, we define Ψ(ε) ≡
{

(D, y, ρ) ∈ X × Y ×
[
ρ, ρ
]∣∣ |D − x∗(y)| = ε

}
and σ(ε) ≡

min(D,y,ρ)∈Ψ(ε) ∆(D, y, ρ). Existence of σ(ε) follows from continuity of the objective function and

compactness of the constraint set. Because we have assumed that ∆(D, y, ρ) > 0 whenever D 6=
x∗(y), we know that σ(ε) > 0. Let λ∗(ε) ≡ βσ(ε)

η > 0. For λ < λ∗(ε), any y ∈ S(D, θ, λ)

satisfies ∆(D, y, ρ) ≤ λη
β < λ∗(ε)η

β = σ(ε). But then we must have (D,x, ρ) /∈ Ψ(ε), which means

|D − x∗(y)| < ε, as desired.

Throughout the remaining steps of this proof, we will focus on λ sufficiently small so that, for

all z, z′ ∈ Z, [z − ν(λ), z + ν(λ)] ∩ [z′ − ν(λ), z′ + ν(λ)] = Ø. (This is possible because Z is a finite

set.) For any such λ, we will define Zν(λ) ≡ ∪z∈Z [z − ν(λ), z + ν(λ)] and Xν(λ) ≡ X \ Zν(λ).

Step 2: limλ→0DΩ̂(λ)→ z∗.

Recalling our assumption that the derivative of x∗(y) is uniformly bounded away from zero

outside Y0, we know there exists δ > 0 such that dx∗(y)
dy > δ for y ∈ Y \ Y0. Using Step 1, we then

have:

Ω̂λ(D) ≤

ηfmax
2ν(λ)
δ if D ∈ Xν(λ)

Ω̂(z) + ηfmax 2ν(λ)
δ if D ∈ [z − ν(λ), z + ν(λ)] for some z ∈ Z

Let

ε∗ =
1

2

[
Ω̂(z∗)− max

z∈Z\z∗
Ω̂(z)

]
> 0.

We know there exists λ∗ such that, for all λ < λ∗,

ν(λ) <
δε∗

2ηfmax
.

For such λ, we have

Ω̂λ(D) ≤

ε∗ if D ∈ Xν(λ)

Ω̂(z) + ε∗ if D ∈ [z − ν(λ), z + ν(λ)] for some z ∈ Z \ z∗

Now we claim that if D ∈ [z − ν(λ), z + ν(λ)] for some z ∈ Z \ z∗, then Ω̂λ(D) ≤ Ω̂λ(z∗)− ε∗.
By the definition of ε∗, we have Ω̂(z∗) ≥ Ω̂(z) + 2ε∗ for z ∈ Z \ z∗. From the definitions of Ω̂ and

Ω̂λ, we know that Ω̂λ(z∗) ≥ Ω̂(z∗). Combining these inequalities, we have Ω̂λ(z∗)− ε∗ ≥ Ω̂(z) + ε∗.

But we have just shown that, for such D, we have Ω̂(z) + ε∗ ≥ Ω̂λ(D). Combining the last two

inequalities yields the desired conclusion.

Next we claim that if D ∈ Xν(λ), then Ω̂λ(D) < Ω̂λ(z∗). We know from the last claim
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that, for z ∈ Z \ z∗, we have Ω̂λ(z) ≤ Ω̂λ(z∗) − ε∗. Furthermore, Ω̂λ(z) > 0. It follows that

Ω̂λ(z∗) ≥ Ω̂λ(z) + ε∗ > ε∗ ≥ Ω̂λ(D) for such D.

Putting these two claims together, we conclude that, for λ < λ∗, we must have

DΩ̂(λ) ∈ [z∗ − ν(λ), z∗ + ν(λ)]

(because we have shown that any other D yields a lower value of the objective function than z∗).

Letting λ→ 0, we see that DΩ̂(λ)→ z∗.

Step 3: limλ→0WΩ̂(λ)→ z∗.

Equation (9) tells us that

Ŵλ(D) = Ω̂λ(D)−
´
θ Pr

(
∆(D,x∗(y), ρ) ≤ λη

β

∣∣∣ θ)
×
[

1
λE
(

∆(D,x∗(y), ρ) | ∆(D,x∗(y), ρ) ≤ λη
β

∣∣∣ θ)] dG(θ),

from which it follows immediately that Ŵλ(D) ≤ Ω̂λ(D) for all D ∈ X.

We now claim that limλ→∞ Ŵλ(z∗) = Ω̂(z∗). Because the probability term in the integrand is

bounded between 0 and 1, we can demonstrate this claim by showing that the bracketed term in

the integrand converges uniformly to zero. Using the fact that

E

(
∆(z∗, x∗(y), ρ) | ∆(z∗, x∗(y), ρ) ≤ λη

β

∣∣∣∣ θ) ≤ λη

β
≤ λη

β
,

we have

1
λE
(

∆(z∗, x∗(y), ρ) | ∆(z∗, x∗(y), ρ) ≤ λη
β

∣∣∣ θ) ≤ 1
λ

0×Pr(∆(z∗,x∗(y),ρ)= 0|θ)+
(
λη
β

)
Pr
(

0<∆(z∗,x∗(y),ρ)≤ λη
β

∣∣∣θ)
Pr
(

∆(z∗,x∗(y),ρ)≤ λη
β

∣∣∣θ)
< 2ηfmaxν(λ)

δβ Pr(x∗(y)=z∗|θ) ,

which implies the desired convergence property.

The preceding argument implies that there is some λ0 ∈ (0, λ∗) such that, for λ > λ0, we have

Ŵλ(z∗) ≥ Ω̂λ(z∗)− ε∗. It follows that, for all D 6= [z∗ − ν(λ), z∗ + ν(λ)], we have

Ŵλ(D) ≤ Ω̂λ(D) < Ω̂λ(z∗)− ε∗ ≤ Ŵλ(z∗).

We then have, for λ < λ0,

DŴ (λ) ∈ [z∗ − ν(λ), z∗ + ν(λ)] .

Letting λ→ 0, we see that DŴ (λ)→ z∗. @

Proof of Proposition 7 Under Condition 2 (specifically, the translation portion), Assumption

1 (specifically, single crossing) implies v11(w, ρ) < 0 for all feasible z. Because v11 is continuous

(also Assumption 1), we have
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vmax11 ≡ max
(x,x∗ρ)∈X2×[ρ,ρ]

v11(x− x∗, ρ) < 0

By definition,

v(w, ρ) = v(0, ρ)− λη

β

Because v(w, ρ) is strictly concave in w and maximized at w = 0, for sufficiently small λ there are

two solutions, wl(λ, θ) < 0 and wh(λ, θ) > 0. Furthermore, Taylor’s Theorem implies that

v(w, ρ) ≤ v(0, ρ) + w2vmax11

It follows that

max {wh(λ, θ), |wl(λ, θ)|} ≤
(
− λη

βvmax11

) 1
2

Because β, η > 0 and η is finite, we know that wh(λ, θ) and wl(λ, θ) converge to zero uniformly

over θ as λ→ 0.

Under Condition 2 (in particular, the translation assumption), we can write the opt-in interval

for any given θ as [max{x,D + wl(λ, θ)},min {x,D + wh(λ, θ)}], where wl(λ, θ) < 0 and wh(λ, θ) >

0 are independent of D. Due to the uniform convergence property notied above, there is some λ′

such that, for λ < λ′, we have D+wl(λ, θ) > x and D+wl(λ, θ) < x for all θ, which means we can

write the opt-in interval more simply as [D + wl(λ, θ), D + wh(λ, θ)] for all D.

Lemma 4. Let

A(θ) =

(
−2η

βv11(0, ρ)

)1/2

> 0

and

B(θ) =
ηv111(0, ρ)

3β[v11(0, ρ)]2
.

For λ > 0, we have

wh(λ, θ) = A(θ)λ1/2 +B(θ)λ+ Ch(λ, θ)λ3/2

and

wl(λ, θ) = −A(θ)λ1/2 +B(θ)λ+ Cl(λ, θ)λ
3/2,

where Ch(θ, λ) and Cl(θ, λ) have finite upper and lower bounds.

Proof. For any ` > 0, let wθ(`) be either the positive or the negative solutions to

v(w, ρ) = v(0, ρ)− `2η

β

Note that wθ(`) equals either wl(`
2, θ) or wh(`2, θ), depending on whether we consider the positive

or negative solutions. With this change of variables, we can obtain exact second-order Taylor series

53



expansions of wl(`
2, θ) and wh(`2, θ) in terms of ` around ` = 0.28

From the preceding expression, it follows from implicit differentiation that

w′θ(`) = − 2`η

βV1(wθ(`), ρ)

When ` = 0, the numerator and denominator are both zero. Applying L’Hopital’s Rule, we have:

lim`→0w
′
θ(`) = lim`→0

−2`η
βv1(wθ(`),ρ)

= lim`→0
−2η

βv11(wθ(`),ρ)w′θ(`)

= −2η
βv11(0,ρ) lim`→0 w

′
θ(`)

Solving for lim`→0w
′
θ(`), we then have

lim
`→0

w′θ(`) = ±A(θ)

Whether the limit is positive or negative depends on whether one focuses on the positive or negative

solutions (in other words, on wl(λ, θ) or wh(λ, θ)). Under our assumptions, for any finite `, w′θ(`)

is continuous in ` and θ on the compact set [0,`] × Θ (where we interpret w′θ(0) as lim`→0w
′
θ(`)).

Consequently, it has finite upper and lower bounds.

We obtain the second-order term for the Taylor’s expansion around ` = 0 by computing the

second derivative and then taking the limit as `→ 0. For the second derivative, we have

w′′θ (`) = − d
d`

[
2`η

βv1(wθ(`),ρ)

]
= − 2η

βv1(wθ(`),ρ) + 2`η

β[v1(wθ(`),ρ)]2
v11(wθ(`), ρ)w′θ(`)

= − 2η
βv1(wθ(`),ρ) − [w′θ(`)]

2 v11(wθ(`),ρ)
v1(wθ(`),ρ)

= − 1
v1(wθ(`),ρ)

[
2η
β + [w′θ(`)]

2 v11(wθ(`), ρ)
]

When ` = 0, the denominator, v1(wθ(`), ρ), is zero, but so is the numerator. (To see this point,

substitute our expression for lim`→0w
′
θ(`).) So as with the first derivative, we use L’Hopital’s rule

to evaluate the second derivative:

lim`→0w
′′
θ (`) = − lim`→0

2w′θ(`)w′′θ (`)v11(wθ(`),ρ)+[w′θ(`)]
3
v111(wθ(`),ρ)

v11(wθ(`),ρ)wθ′(`)

= −2 lim`→0w
′′
θ (`)− [lim`→0w

′
θ(`)]

2 v111(0,ρ)
v11(0,ρ)

28We use an expansion in ` rather than λ because the derivatives of w with respect to λ at λ = 0 are infinite.
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Solving for lim`→0w
′′
θ (`), we then have

lim
`→0

w′′(`) = 2B(θ)

Under our assumptions, for any finite `, w′′θ (`) is continuous in ` and θ on the compact set [0,`]×Θ

(where we interpret w′′θ (0) as lim`→0w
′′
θ (`)). Consequently, it has finite upper and lower bounds.

We likewise obtain the third-order term for the Taylor’s expansion around ` = 0 by computing

the third derivative and then taking the limit as `→ 0. For the third derivative, we have

w′′′θ (`) = − d
d`

[
1

v1(wθ(`),ρ)

[
2η
β + [w′θ(`)]

2 v11(wθ(`), ρ)
]]

= −
w′θ(`)

[
3w′′θ (`)v11(wθ(`),ρ)+[w′θ(`)]

2
v111(wθ(`),ρ)

]
v1(wθ(`),ρ)

When ` = 0, the denominator, v1(wθ(`), ρ), is zero, but so is the numerator. (To see this point,

substitute our expressions for lim`→0w
′
θ(`) and lim`→0w

′′
θ (`).) So as with the first and second

derivatives, we use L’Hopital’s rule to evaluate the third derivative:

lim`→0w
′′′
θ (`) = − lim`→0

[
3w′θ(`)w

′′′
θ (`)v11(wθ(`), ρ) + 3 [w′′θ (`)]2 v11(wθ(`), ρ)

+6 [w′θ(`)]
2w′′θ (`)v111(wθ(`), ρ) + [w′θ(`)]

3 v1111(wθ(`), ρ)
]
/v11(wθ(`), ρ)w′θ(`)

= −3 lim`→0w
′′′
θ (`)− lim`→0

[
3 [w′′θ (`)]2 v11(wθ(`), ρ) + 6 [w′θ(`)]

2w′′θ (`)v111(wθ(`), ρ)

+ [w′θ(`)]
3 v1111(wθ(`), ρ)

]
/v11(w′′θ (`), ρ)w′θ(`)

Solving for lim`→0w
′′′
θ (`), we then have

lim
`→0

w′′′θ (`) = −1

4

3 [w′′θ (0)]2 v11(0, ρ) + 6 [w′θ(0)]2w′′θ (0)v111(0, ρ) + [w′θ(0)]3 v1111(0, ρ)

v11(0, ρ)w′θ(0)

Under our assumptions, for any finite `, w′′′θ (`) is continuous in ` and θ on the compact set [0,`]×Θ

(where we interpret w′′′θ (0) as lim`→0w
′′′
θ (`)). Consequently, it has finite upper and lower bounds.

According to Taylor’s Theorem, the positive solution for w(`) satisfies

w+
θ (`) = A(θ)`+B(θ)`2 +

1

6
w′′′θ (ςh(`, θ))`3

some ςh(`) ∈ [0, `] (where w′′′θ (ςh(`)) is evaluated using the positive solutions), while the negative

solution satisfies

w−θ (`) = −A(θ)`+B(θ)`2 +
1

6
w′′′θ (ςl(`, θ))`

3

for some ςl(`, θ), ςh(`, θ) ∈ [0, `] (where w′′′θ (ςh(`)) is evaluated using the negative solutions). Sub-
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stituting
√
λ for ` in these equations, defining Ck(λ, θ) = 1

6w
′′′
θ (ςk(`)) for k = h, `, and defining

ξk(λ, θ) =
√
ςk(`, θ) for k = h, ` establishes the lemma. @

Now observe that we can write Jλ(D) as

Jλ(D) =

ˆ
θ
Kλ(D)dG(θ)

where

Kλ(D, θ) =
σ

2λ
3
2

[ˆ
∆(D,x∗,ρ)≤λη

β

(D − x∗)f(x∗)dx∗

]
Lemma 5. As λ→ 0, Kλ(D, θ) converges uniformly to −σv′′′(0)Λ2(θ)f(D)−σΛ3(θ)f ′(D), where

Λ2(θ) =
2

1
2 η

3
2

3β
3
2 [−v11(0, ρ)]

5
2

> 0

and

Λ3(θ) =
1

3

[
−2η

βv11(0, ρ)

]3

> 0

Proof. Define

w0
h(λ, θ) = A(θ)λ1/2 +B(θ)λ

and

w0
l (λ, θ) = −A(θ)λ1/2 +B(θ)λ

In light of the assumed bounds on η, β, v11, and v111, there is some λ′′ > 0 with λ′′ < λ′ such that,

for λ < λ′′, we have w0
h(λ, θ) > 0 and w0

l (λ, θ) < 0 for all θ (because the λ1/2 terms dominate).

Henceforth, we will confine attention to such λ.

To approximate Kλ(D, θ), we will consider the following function:

K0
λ(D, θ) =

σ

2λ
3
2

[ˆ D+w0
h(λ,θ)

D+w0
l (λ,θ)

(D − x∗)f(x∗)dx∗

]
We will focus on values of ρ for which v111(0, ρ) ≤ 0, so that

∣∣w0
l (λ, θ)

∣∣ ≥ wh(λ, θ) (a left-skewed

approximate opt-in window); for the case of v111(0, ρ) > 0 (i.e.,
∣∣w0

l (λ, θ)
∣∣ < w0

h(λ, θ)), the proof

requires small modifications. With this focus, we can write

K0
λ(D, θ) = KS

λ (D, θ) +KA
λ (D, θ),

where KS
λ (D, θ) is the symmetric part of the approximate opt-in window,

KS
λ (D, θ) ≡ σ

2λ
3
2

[ˆ D+w0
h(λ,θ)

D−w0
h(λ,θ)

(D − x∗)f(x∗)dx∗

]
,
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and KA
λ (D, θ) is the asymmetric part,

KA
λ (D, θ) ≡ σ

2λ
3
2

[ˆ D−w0
h(λ,θ)

D+w0
l (λ,θ)

(D − x∗)f(x∗)dx∗

]
.

Step 1: KS
λ (D, θ) converges uniformly to −σΛ3(θ)f ′(D).

By Taylor’s Theorem, there exists ξ1(x∗) between x∗ and D s.t.

KS
λ (D, θ) = σ

2λ
3
2

[´ D+w0
h(λ,θ)

D+w0
h(λ,θ)

(D − x∗)
[
f(D) + f ′(D)(x∗ −D) + 1

2f
′′(ξ1(x∗))(x∗ −D)2

]
dx∗
]

= σ

2λ
3
2

[
−f(D)

2 (x∗ −D)2 − f ′(D)
3 (D − x∗)3

]D+w0
h(λ,θ)

D−w0
h(λ,θ)

− σ

4λ
3
2

´ D+w0
h(λ,θ)

D−w0
h(λ,θ)

f ′′(ξ1(x∗))(x∗ −D)3dx∗

For the first term, we have

σ

2λ
3
2

[
−f(D)

2
(x∗ −D)2 − f ′(D)

3
(x∗ −D)3

]D+w0
h(λ,θ)

D−w0
h(λ,θ)

= −σ
3
f ′(D)

[
A(θ) +B(θ)λ

1
2

]3

In light of the assumed bounds on η, β, v11, v111, and f ′, this term converges uniformly as λ → 0

to σ
3 f
′(D) [A(θ)]3.

Let f
′′
abs = maxx∈X |f ′′(x)|. Note that, under our assumptions, f

′′
abs is finite. Then, for the

second term, we have∣∣∣ σ

4λ
3
2

´ D+w0
h(λ,θ)

D−w0
h(λ,θ)

f ′′(ξ1(x∗))(x∗ −D)3dx∗
∣∣∣ ≤ σ

4λ
3
2

´ D+w0
h(λ,θ)

D−w0
h(λ,θ)

|f ′′(ξ1(x∗))| |x∗ −D|3 dx∗

< σ

4λ
3
2

´ D+w0
h(λ,θ)

D−w0
h(λ,θ)

f ′′abs
[
w0
h(λ, θ)

]3
dx∗

= σ
2 f
′′
abs

[
A(θ)λ

1
8 +B(θ)λ

5
8

]4

In light of the assumed bounds on η, β, v11, and v111,, this term converges uniformly to 0 as λ→ 0

.

Combining these conclusions, we see that KS
λ (D, θ) converges uniformly to

−σ
3
f ′(D)

[
−2η

βv11(0, ρ)

]3

The desired conclusions for Step 1 follows immediately.

Step 2: KA
λ (D, θ) converges uniformly to −σv111(0, ρ)Λ2(θ)f(D).

By Taylor’s Theorem, there exists ξ2(x∗) between x∗ and D s.t.
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KA
λ (D, θ) = σ

2λ
3
2

[´ D−w0
h(λ,θ)

D+w0
l (λ,θ)

(D − x∗) [f(D) + f ′(ξ2(x∗))(x∗ −D)] dx∗
]

= σ

2λ
3
2

[
−f(D)

2 (x∗ −D)2
]D−w0

h(λ,θ)

D+w0
l (λ,θ)

− σ

2λ
3
2

´ D−w0
h(λ,θ)

D+w0
l (λ,θ)

f ′(ξ2(x∗))(x∗ −D)2dx∗

For the first term, we have

σ

2λ
3
2

[
−f(D)

2
(x∗ −D)2

]D−w0
h(λ,θ)

D+w0
l (λ,θ)

= −σf(D)A(θ)B(θ)

Let f
′
abs = maxx∈X |f ′(x)|. Note that, under our assumptions, f

′
abs is finite. Then, for the

second term, we have∣∣∣ σ

2λ
3
2

´ D−w0
h(λ,θ)

D+w0
l (λ,θ)

f ′(ξ2(x∗))(x∗ −D)2dx∗
∣∣∣ ≤ σ

2λ
3
2

´ D−w0
h(λ,θ)

D+w0
l (λ,θ)

|f ′(ξ2(x∗))| |x∗ −D|2 dx∗

< σ

4λ
3
2

´ D−w0
h(λ,θ)

D+w0
l (λ,θ)

f ′abs
∣∣w0

l (λ, θ)
∣∣2 dx∗

= − σ

4λ
3
2
f ′abs

∣∣w0
l (λ, θ)

∣∣2 (w0
h(λ, θ) + w0

l (λ, θ)
)

= − σ

4λ
3
2
f ′abs

∣∣∣−A(θ) +B(θ)λ
1
2

∣∣∣2 2B(θ)λ
1
2

In light of the assumed bounds on η, β, v11, and v111, this term converges uniformly to 0 as λ→ 0

.

Combining these conclusions, we see that KA
λ (D, θ) converges uniformly to

−σf(D)

[
2

1
2 η

3
2

3β
3
2 [−v11(0, ρ)]

5
2

]
v111(0, ρ)

The desired conclusion for Step 2 follows immediately.

Step 3: Kλ(D, θ)−K0
λ(D, θ) converges uniformly to 0.

The formulas for Kλ(D, θ) and K0
λ(D, θ) differ only with respect to the limits of integration: for

the lower limit, w0
l (λ, θ) may differ from wl(λ, θ), and for the upper limit, w0

h(λ, θ) may differ from

wh(λ, θ). We will bound the difference between Kλ(D, θ) and K0
λ(D, θ) resulting from a discrepancy

between w0
h(λ, θ) and wh(λ, θ) when w0

h(λ, θ) < wh(λ, θ). Parallel arguments apply to the case of

w0
h(λ, θ) > wh(λ, θ), as well as to the lower limits of integration.

Using the same Taylor’s expansion as in Step 2, we know there exists ξ2(x∗) between x∗ and D

s.t.
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σ

2λ
3
2

[´ D+w0
h(λ,θ)

D+wh(λ,θ) (D − x∗)f(x∗)dx∗
]

= σ

2λ
3
2

[´ D+w0
h(λ,θ)

D+wh(λ,θ) (D − x∗) [f(D) + f ′(ξ2(x∗))(x∗ −D)] dx∗
]

= σ

2λ
3
2

[
−f(D)

2 (x∗ −D)2
]D+w0

h(λ,θ)

D+wh(λ,θ)

− σ

2λ
3
2

´ D+w0
h(λ,θ))

D+wh(λ,θ) f ′(ξ2(x∗))(x∗ −D)2dx∗

Using Lemma 4, we can rewrite the first term as

σ

2λ
3
2

[
−f(D)

2 (x∗ −D)2
]D+w0

h(λ,θ)

D+wh(λ,θ)
= −1

4σf(D)
[
(Ch(λ, θ)− Cl(λ, θ))

(
A(θ)λ

1
2 −B(θ)λ

)
+
(

[Ch(λ, θ)]2 − [Cl(λ, θ)]
2
)
λ

3
2

Because all of the terms in this expression are bounded, it converges to 0 uniformly over D and θ

as λ→ 0.

For the second term, we have∣∣∣ σ

2λ
3
2

´ D+w0
h(λ,θ)

D+wh(λ,θ) f
′(ξ2(x∗))(x∗ −D)2dx∗

∣∣∣ ≤ σ

2λ
3
2

´ D+w0
h(λ,θ)

D+wh(λ,θ) |f
′(ξ2(x∗))| |x∗ −D|2 dx∗

< σ

2λ
3
2

´ D+w0
h(λ,θ)

D+wh(λ,θ) f
′
abs

∣∣w0
h(λ, θ)

∣∣2 dx∗
= σ

4λ
3
2
f ′abs

∣∣w0
h(λ, θ)

∣∣2 (w0
h(λ, θ)− wh(λ, θ)

)
= σ

4 f
′
abs

∣∣∣A(θ)λ
1
2 +B(θ)λ

∣∣∣2Ch(λ, θ)

(where the final step follows from Lemma 4). Because all of the terms in this expression are

bounded, it converges to 0 uniformly over D and θ as λ→ 0.

The desired conclusion for Step 3 follows immediately.

The lemma follows from the combination of Steps 1 through 3. @

From Lemma 2, it follows that Jλ(D) converges uniformly to the following function:

´
θK(D, θ)dG(θ) = −

´
θ [σv111(0, ρ)Λ2(θ)f(D) + σΛ3(θ)f ′(D)] dG(θ)

= −σv111(0, ρ)Ψ2f(D)− σΨ3f
′(D)

where Ψk =
´
θ Λk(θ)dG(θ) for k = 2, 3.

In the proof of Proposition 2, we showed that W λ(D) converges uniformly to Ω(D). Further-

more, in demonstrating Proposition 4, we showed that Ω(D) = Ψ1f(D) under Condition 2, where

Ψ1 is defined in Section 3.2. It follows that W λ(D) converges uniformly to Ψ1f(D).

Combining these conclusions proves the proposition. @
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Proof of Proposition 8. Under the stated assumptions, Ψ1 > 0, Ψ2 ≤ 0, and Ψ3 > 0, so in the

asymptotic objective function, the total weight on f(D) is strictly positive while the total weight

on f ′(D) is negative.

For any D < xm, we have f(D) < f(xm) and f ′(D) > 0 = f ′(xm). Therefore, the value of the

objective function is strictly greater at xm than at D. For any D > xh, we have f(D) > f(xh) and

f ′(D) > f ′(xh). Therefore, the value of the objective function is strictly greater at xh than at D.

It follows that any maximizer lies within [xm, xh].

Because [xm, xh] is interior to X, a maximizer must satisfy the first-order condition,

[Ψ1 − σv111(0, ρ)Ψ2] f ′(D) = σΨ3f
′′(D)

Within [xm, xh], the left-hand side of the first-order condition is decreasing in D, while the right-

hand side is increasing (given that f ′′′(x) > 0 for x ∈ (xm, xh)), so the maximizer, D
∗
, is necessarily

unique. The asymptotic optimality of D
∗

then follows from Proposition 7.

Because the objective function exhibits increasing differences in D and σ (the cross-partial

derivative being −Ψ3f
′′(D) > 0 on [xm, xh)), D

∗
is increasing in σ by Topkis’s Theorem. Suppose

v111(0, ρ) = 0. Let R(x) = maxx∈[xm,x′]
Ψ1f ′(x)
Ψ3f ′′(x) . Because (i) f ′ and f ′′ are continuous, (ii) f ′(x) < 0

and f ′′(x) < 0 for x ∈ [xm, x
′], and (iii) [xm, x

′] is compact, it follows that R(x) is well-defined and

strictly positive. Consider any x′ < xh. For σ > R(x′), no x ∈ [xm, xh] can satisfy the first-order

condition. We therefore have D
∗ ∈ (x′, xh). It follows immediately that limσ→∞D

∗
= xh. @

Additional simulations

The table below replicates the simulation results of Table 2 for unweighted (rather than weighted)

opt-out minimization. In other words, instead of finding the weighted opt-out minimizing default

DΩ(λ), we find the unweighted opt-out minimizing default DU
Ω(λ) for a given combination of the

cost scaling factor λ and the specified utility function, distribution of x∗, and individual cost and

bias parameters η and β. The table reports the absolute value of the difference between the welfare-

maximizing and (unweighted) opt-out-minimizing defaults, i.e., |DL(λ)−DU
Ω(λ)|. We also calculate

the welfare gain achieved by the unweighted opt-out minimizing policy relative to the same baseline

as before: Lλ (DΩ(λ)) − Lλ(0). We then define ∆U
L (λ) as the ratio of the second welfare gain to

the first, expressed as a percentage: ∆U
L (λ) = 100%

Lλ(DUΩ (λ))−Lλ(0)

Lλ(DL(λ))−Lλ(0) .

60



(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

(1
2)

(1
3)

H
et

er
og

en
ei

ty
95

%
op

t-
ou

t
90

%
op

t-
ou

t
75

%
op

t-
ou

t
40

%
op

t-
ou

t
η

β
In

te
rd

ep
.

U
ti

li
ty

F
u
n
c.

D
is

tr
ib

u
ti

on
||D

L
−
D
U Ω
||

∆
U L

%
||D

L
−
D
U Ω
||

∆
U L

%
||D

L
−
D
U Ω
||

∆
U L

%
||D

L
−
D
U Ω
||

∆
U L

%

A
X

X
X

Q
u
ad

ra
ti

c
R

ig
h
t-

p
ea

ke
d

0.
00

74
6

98
.7

4
0.

01
63

7
98

.5
5

0.
05

20
9

97
.8

4
0.

15
23

95
.9

1
Q

u
ad

ra
ti

c
B

im
o
d
al

4e
-0

5
>

99
.9

9
0.

00
01

6
>

99
.9

9
0.

00
15

7
>

99
.9

9
0.

38
68

8
80

.2
4

L
in

.-
E

x
p
.

T
ru

n
c.

N
or

m
al

0.
00

02
8

>
99

.9
9

0.
00

11
1

>
99

.9
9

0.
00

70
6

>
99

.9
9

0.
04

87
1

99
.8

9
L

in
.-

E
x
p
.

R
ig

h
t-

p
ea

k
ed

0.
00

73
8

98
.7

6
0.

01
59

5
98

.6
0

0.
04

75
5

98
.0

3
0.

17
39

1
95

.7
9

L
in

.-
E

x
p
.

B
im

o
d
al

9e
-0

5
>

99
.9

9
0.

00
03

7
>

99
.9

9
0.

00
32

2
99

.9
9

0.
43

69
4

79
.5

6

B
X

X
X

Q
u
ad

ra
ti

c
R

ig
h
t-

p
ea

ke
d

0.
01

05
99

.0
4

0.
02

42
9

98
.7

8
0.

08
87

3
97

.6
4

0.
36

89
8

93
.3

1
Q

u
ad

ra
ti

c
B

im
o
d
al

4e
-0

5
>

99
.9

9
0.

00
01

6
>

99
.9

9
0.

00
15

1
>

99
.9

9
0.

24
80

5
92

.9
6

L
in

.-
E

x
p
.

T
ru

n
c.

N
or

m
al

0.
00

02
7

>
99

.9
9

0.
00

11
3

>
99

.9
9

0.
00

71
7

>
99

.9
9

0.
04

47
1

99
.9

1
L

in
.-

E
x
p
.

R
ig

h
t-

p
ea

k
ed

0.
01

03
5

99
.0

6
0.

02
34

4
98

.8
3

0.
07

89
5

97
.9

1
0.

06
88

4
99

.6
0

L
in

.-
E

x
p
.

B
im

o
d
al

9e
-0

5
>

99
.9

9
0.

00
03

6
>

99
.9

9
0.

00
28

6
99

.9
9

0.
30

14
8

92
.1

4

C
X

X
X

Q
u
ad

ra
ti

c
R

ig
h
t-

p
ea

ke
d

0.
02

49
8

93
.9

0
0.

05
07

3
93

.3
2

0.
14

21
91

.2
3

0.
35

87
1

86
.0

8
Q

u
ad

ra
ti

c
B

im
o
d
al

6e
-0

5
>

99
.9

9
0.

00
02

5
>

99
.9

9
0.

00
21

2
99

.9
9

0.
39

22
76

.8
4

L
in

.-
E

x
p
.

T
ru

n
c.

N
or

m
al

0.
00

05
1

>
99

.9
9

0.
00

18
8

>
99

.9
9

0.
01

19
3

99
.9

9
0.

07
06

3
99

.7
5

L
in

.-
E

x
p
.

R
ig

h
t-

p
ea

k
ed

0.
02

39
1

94
.0

2
0.

04
92

3
93

.5
5

0.
12

87
2

92
.0

3
0.

16
04

1
96

.4
0

L
in

.-
E

x
p
.

B
im

o
d
al

0.
00

01
4

>
99

.9
9

0.
00

06
>

99
.9

9
0.

00
42

1
99

.9
7

0.
44

21
3

75
.8

0

D
X

X
X

Q
u
ad

ra
ti

c
R

ig
h
t-

p
ea

ke
d

0.
03

73
7

95
.1

1
0.

07
88

3
94

.2
1

0.
10

34
6

97
.1

6
0.

23
63

96
.1

2
Q

u
ad

ra
ti

c
B

im
o
d
al

7e
-0

5
>

99
.9

9
0.

00
02

9
>

99
.9

9
0.

00
21

8
99

.9
9

0.
25

03
7

91
.7

6
L

in
.-

E
x
p
.

T
ru

n
c.

N
or

m
al

0.
00

05
9

>
99

.9
9

0.
00

23
1

>
99

.9
9

0.
01

39
5

99
.9

9
0.

06
53

8
99

.7
9

L
in

.-
E

x
p
.

R
ig

h
t-

p
ea

k
ed

0.
03

67
4

95
.2

1
0.

07
57

4
94

.4
7

0.
09

27
8

97
.4

6
0.

23
70

5
96

.1
7

L
in

.-
E

x
p
.

B
im

o
d
al

0.
00

01
8

>
99

.9
9

0.
00

06
8

>
99

.9
9

0.
00

39
5

99
.9

8
0.

31
66

1
90

.2
0

E
X

X
X

Q
u
ad

ra
ti

c
R

ig
h
t-

p
ea

ke
d

0.
01

17
9

99
.0

7
0.

02
73

5
98

.7
8

0.
10

45
8

97
.4

3
0.

23
07

2
98

.6
2

Q
u
ad

ra
ti

c
B

im
o
d
al

3e
-0

5
>

99
.9

9
0.

00
01

5
>

99
.9

9
0.

00
14

9
>

99
.9

9
0.

28
48

2
90

.1
0

L
in

.-
E

x
p
.

T
ru

n
c.

N
or

m
al

0.
00

02
8

>
99

.9
9

0.
00

11
1

>
99

.9
9

0.
00

70
1

>
99

.9
9

0.
01

95
2

99
.9

9
L

in
.-

E
x
p
.

R
ig

h
t-

p
ea

k
ed

0.
01

16
99

.0
9

0.
02

60
6

98
.8

4
0.

09
19

3
97

.7
5

0.
04

47
1

99
.9

4
L

in
.-

E
x
p
.

B
im

o
d
al

9e
-0

5
>

99
.9

9
0.

00
03

6
>

99
.9

9
0.

00
28

9
99

.9
9

0.
34

17
88

.4
2

F
X

X
X

Q
u
ad

ra
ti

c
R

ig
h
t-

p
ea

ke
d

0.
02

49
9

95
.3

6
0.

05
24

3
94

.7
6

0.
14

59
8

92
.6

8
0.

15
55

3
96

.2
4

Q
u
ad

ra
ti

c
B

im
o
d
al

5e
-0

5
>

99
.9

9
0.

00
02

3
>

99
.9

9
0.

00
19

7
99

.9
9

0.
39

31
8

77
.6

5
L

in
.-

E
x
p
.

T
ru

n
c.

N
or

m
al

0.
00

04
1

>
99

.9
9

0.
00

17
1

>
99

.9
9

0.
01

07
3

99
.9

9
0.

16
54

5
98

.5
0

L
in

.-
E

x
p
.

R
ig

h
t-

p
ea

k
ed

0.
02

46
8

95
.4

4
0.

05
01

6
94

.9
6

0.
13

19
8

93
.3

7
0.

16
33

7
96

.5
5

L
in

.-
E

x
p
.

B
im

o
d
al

0.
00

01
4

>
99

.9
9

0.
00

05
3

>
99

.9
9

0.
00

39
9

99
.9

8
0.

44
29

1
76

.7
2

G
X

X
X

Q
u
ad

ra
ti

c
R

ig
h
t-

p
ea

ke
d

0.
03

93
3

95
.8

4
0.

08
32

7
94

.9
0

0.
10

96
2

97
.2

5
0.

24
54

4
96

.9
0

Q
u
ad

ra
ti

c
B

im
o
d
al

7e
-0

5
>

99
.9

9
0.

00
02

6
>

99
.9

9
0.

00
20

8
99

.9
9

0.
27

15
4

89
.8

3
L

in
.-

E
x
p
.

T
ru

n
c.

N
or

m
al

0.
00

05
3

>
99

.9
9

0.
00

20
7

>
99

.9
9

0.
01

28
4

99
.9

9
0.

05
79

1
99

.8
7

L
in

.-
E

x
p
.

R
ig

h
t-

p
ea

k
ed

0.
03

86
1

95
.9

3
0.

07
87

3
95

.1
6

0.
09

74
8

97
.5

6
0.

05
64

7
99

.8
4

L
in

.-
E

x
p
.

B
im

o
d
al

0.
00

01
6

>
99

.9
9

0.
00

06
2

>
99

.9
9

0.
00

38
2

99
.9

8
0.

33
80

3
88

.0
2

T
ab

le
3:

O
v
er

v
ie

w
o
f

S
im

u
la

ti
o
n

R
es

u
lt

s
fo

r
U
n
w
ei
gh
te
d

O
p
t-

O
u
t

M
in

im
iz

a
ti

o
n
.

V
a
lu

es
o
f
λ

ch
o
se

n
to

a
ch

ie
v
e

th
e

o
p
t-

o
u
t

fr
eq

u
en

ci
es

in
d
ic

a
te

d
a
t

th
e

to
p
s

o
f

co
lu

m
n
s

(6
)-

(1
1
).

C
h
ec

k
m

a
rk

s
in

co
lu

m
n
s

(1
)-

(3
)

in
d
ic

a
te

w
h
et

h
er

th
e

si
m

u
la

ti
o
n

in
cl

u
d
es

fo
rm

s
o
f

h
et

er
o
g
en

ei
ty

(i
n
η
,
β

,
a
n
d

in
te

rd
ep

en
d
en

ce
,

re
sp

ec
ti

v
el

y
).

C
o
lu

m
n
s

(4
)

a
n
d

(5
)

id
en

ti
fy

th
e

sp
ec

ifi
ca

ti
o
n
s

o
f

th
e

u
ti

li
ty

fu
n
ct

io
n

a
n
d

id
ea

l-
p

o
in

t
d
is

tr
ib

u
ti

o
n
.

C
o
lu

m
n
s

(6
),

(8
),

(1
0
),

a
n
d

(1
2
)

d
is

p
la

y
th

e
a
b
so

lu
te

d
is

ta
n
ce

b
et

w
ee

n
th

e
w

el
fa

re
m

a
x
im

iz
in

g
d
ef

a
u
lt
D
L

a
n
d

th
e

u
n
w

ei
g
h
te

d
o
p
t-

o
u
t

m
in

im
iz

in
g

d
ef

a
u
lt
D

Ω
.

C
o
lu

m
n
s

(7
),

(9
),

(1
1
),

a
n
d

(1
3
)

d
is

p
la

y
th

e
p

er
ce

n
ta

g
e

o
f

p
o
te

n
ti

a
l

w
el

fa
re

g
a
in

s
a
ch

iv
ed

b
y

u
n
w

ei
g
h
te

d
o
p
t-

o
u
t

m
in

im
iz

a
ti

o
n
;

va
lu

es
th

a
t

ro
u
n
d

to
1
0
0
.0

0
a
p
p

ea
r

a
s
≥

9
9
.9

9
.

61


	Introduction
	The baseline model
	Workers
	The employer

	The basic results
	The asymptotic optimality of weighted opt-out minimization
	The asymptotic optimality of unweighted opt-out minimization
	Accommodating normative ambiguity
	Relation to existing results

	Optimal defaults with bunching and sparse menus 
	Bunching
	Sparse menus

	Optimal defaults with divergent objectives
	Numerical simulations
	Parametrizations
	Simulation results

	Practical implications
	Conclusion

