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Introduction 

Estimates of holdings-based fund performance measures are viewed as predictive panel 

regressions. For each fund, the future excess returns of the stocks held are regressed on the lagged 

portfolio weights on the stocks. The panel regression coefficient for a fund measures its 

performance. An informed manager’s portfolio weights should predict the stock returns with a 

positive coefficient (Grinblatt and Titman, 1989a). Classical performance estimates implicitly use 

such panel regressions, and we show that being explicit about this provides several new insights. 

The returns and/or weights are benchmarked or demeaned in the classical measures and the special 

cases depend on how this is done. We study the portfolio change measure of Grinblatt and Titman 

(GT, 1993), the Characteristic Selectivity measure of Daniel, Grinblatt, Titman and Wermers 

(DGTW, 1997), the Conditional Weight Measure of Ferson and Khang (CWM, 2002) and the 

stochastic discount factor measure of Ferson and Mo (FM, 2016).  

 Understanding these “classical” measures as special cases of a panel regression allows us to 

apply various approaches to clustering, fixed effects and control variables. This is important 

because funds may deviate substantially from common assumptions in panel regression models, 

such as iid model innovations. Control variables produce characteristics-based versions of 

conditional performance evaluation (Ferson and Schadt, 1996), but instead of conditioning on 

macroeconomic factors, the panel naturally asks if the performance of a fund is driven by the 

charactersitcs of the stocks it holds. This is a central question in studies like Carhart (1997), 

Wermers (2003), Zheng (1999), Sapp and Tiwari (2004), Sheng, Simutin and Zhang (2019) and 

Matalin-Saez (2020). We illustrate using the stocks’ dividend yields as the control, and find that it 

removes a finding that high-yield funds perform better.  

 We examine the use of fixed effects in the panel regressions. Time fixed effects produce 
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measures of performance in excess of an equally-weighted portfolio, and a common intercept has 

the same effect. More interestingly, stock fixed effects decompose the performance measures into 

the dynamic, time-series information in funds’ portfolio weights and the average cross-sectional 

information. Time-series predictive ability (TSA) is defined as the average across stocks, of the 

covariances between the current portfolio weights and future stock returns. TSA reflects both 

factor timing and short-term security selection information. The Average Abnormal Return (AAR) 

is the fund abnormal return based on its average weights. The average weights are a proxy for the 

long term asset allocation policy (e.g., Brinson, Hood and Bebower (BHB, 1986) and Brinson, 

Singer and Beebower, 1991). Thus, the AAR is interpreted as a long-run measure of performance 

driven by fund policy or style. One of our insights is that the classical performance measures reflect 

both components of performance.  

 A fund with larger AAR on average overweights the high and underweights the low alpha 

stocks. Many “quant” portfolios have this feature, focusing the investment policy on cross-

sectional patterns in average abnormal returns such as size, book-to-market, momentum and 

“fundamental” security characteristics associated with alphas in the popular models. The AAR has 

received little attention in the literature. However, we find that the AAR is the largest component 

of the abnormal performance in some of the holdings-based measures (DGTW, FM). These 

measures pay more attention to funds’ long-term policy or style than to efforts to predict short term 

returns. For other measures (GT, CWM) the TSA is the dominant component, capturing mainly 

ability to predict returns in the short term. A panel regression view of the measures naturally 

isolates the TSA and AAR components.  

 The panel approach reveals a lagged stochastic regressor bias, similar to that described by 

Stambaugh (1999) and Hjalmarsson (2008), when there are stock fixed effects. We evaluate 
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alternative ways to address the bias using simulations, including estimators from Hjalmarsson 

(2008, 2010) and a differenced instrumental variables approach similar to Anderson and Hsiao 

(1981) and Wang (2015). We find that the differenced instrumental variables and Hjalmarsson 

(2010) estimators work well. The previous literature provides scant information about the 

statistical properties of holdings-based performance measures.2 

To illustrate AAR and TSA consider the expected stochastic discount factor alpha of a fund 

with portfolio weight vector wt and weight-based excess return rpt+1 = wt’rt+1, where rt+1 is the vector 

of securities’ returns in excess of a short-term Treasury. The scalar variable mt+1 is the stochastic 

discount factor and the unconditional expected alpha is αp = E{mt+1 rpt+1}. (See Farnsworth et. al. 

(2002) or Ferson and Lin (2014) for applications to fund performance.) This decomposes as: 

 

αp = Cov{wt’; mt+1 rt+1} + E{mt+1 rt+1}’ E{wt}.          (1) 

  

The notation Cov{x’;y} denotes the sum of the covariances across the elements of the vectors. The 

first term on the right hand side of Equation (1) is the time-series ability, or TSA. TSA reflects 

both short-term factor timing and selectivity ability, as explained below.3 The second term of 

Equation (1) is the AAR, equal to α’E(w), where α = E{mt+1 rt+1} is the vector of the securities’ 

alphas in the model. Both the TSA and the AAR depend on the model that defines the securities’ 

alphas.  

 If the vector of alphas was zero; that is, the benchmark was mean-variance efficient, the AAR 

would be zero. Some of the literature makes the assumption that the benchmark is efficient (e.g., 

                                                 
2 Kothari and Warner (2001) use simulations to examine the power of holdings-based event study measures. Jiang, Yao and Tong (2007) use 

simulations to study weight-based timing measures. Ferson and Khang (2002) examine conditional weight-based performance measures using the 

Generalized Method of Moments.  

3 Studies that measure timing and selectivity with holdings-based measures include DGTW (1997), Becker et al. (1999), Wermers (2000), Jiang 
et al. (2007), Kacperczyk, Nieuwerburgh and Veldkamp. (2014), FM and others.   
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Grinblatt and Titman, 1989a), in which case holdings-based measures capture only TSA. However, 

the benchmarks used in practice are not minimum variance efficient (Cremers, Petajisto and 

Zitzewitz, 2012) so there will generally be nonzero AAR. Modern portfolio management (e.g., 

Grinold and Kan, 1995) is based on the premise there are alphas for managers to exploit. Using 

fixed effects in the panel isolates the TSA and the AAR so they may be evaluated separately. 

 If a fund rebalances the portfolio to constant weights, its performance is pure AAR. Some 

writers advocate active rebalancing strategies, but passive strategies can also produce AAR. A 

phenomenon we call buy-and-hold drift generates AAR. Over any multiperiod evaluation, buy-

and-hold weights drift towards the stocks with higher returns during the evaluation period. Because 

of the high correlation between average returns and alphas, the weights drift toward higher alpha 

stocks. (In our sample, the correlations between stocks’ average returns and their unconditional 

alphas range from 71% to 84% across the models.) We construct a simple measure of this buy-

and-hold drift, starting from a fund’s initial weights, to isolate the passive component of AAR. We 

find that a fund’s AAR is in some but not all cases driven by the passive buy-and-hold drift, and a 

fund’s AAR is more strongly related to its tendency towards buy-and-hold trading than to its 

tendency towards momentum trading.   

 We measure the response of new money flows to the components of performance. We find 

that both TSA and AAR predict flows, so fund investors seem to respond to both long-term and 

short-term performance. However, there is no significant flow response to the passive buy-and-

hold drift component of AAR. This seems consistent with the argument of Berk and Green (2004) 

and Berk and vanBinsbergen (2015), where funds with capital in excess of the optimal amount are 

expected to passively index the excess capital. We examine the persistence of performance using 

the TSA and AAR components and we find that the long term AAR is the better predictor of future 
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performance. 

If the AAR component of performance reflects the long term policy of the fund, it is not likely 

to be related to active management. We examine of cross-sections of funds sorted by standard 

proxies for active management and find little relation to the AARs. We illustrate the use of control 

variables in the panel approach, where we use the stocks’ dividend yields as the control variable.  

   The rest of the paper is organized as follows. Section 2 introduces the holdings-based measures 

of performance. Section 3 shows how classical holdings-based measures of performance are panel 

regressions. We discuss fixed effects in the regressions and reduced-bias methods. Section 4 

describes the data. Section 5 presents simulation results and Section 6 presents empirical results 

for active US equity mutual funds. Section 7 concludes the paper. An Appendix presents ancillary 

results. An Internet Appendix is also available. 

 

2. Holdings-Based Performance Measures 

2.1 A review of the measures 

Denote the portfolio weights of a fund with N stocks at time t as wt = [w1
t,…wN

t]’ and the time-t 

stock returns in excess of a Treasury bill as rt = [r1
t,…rN

t]’. Holdings-based performance measures 

are usually described as versions of cov(wt’; rt+1) = ∑i cov(wi
t, r

i
t+1), the sum across stocks of the 

covariances between the current weights and the future stock returns. Work on holdings-based 

performance measures goes back to Cornell (1979) and Copeland and Mayers (1982). Grinblatt 

and Titman (1989a, Proposition 4) show that an agent with an informative signal about future 

returns and nonincreasing Rubinstein absolute risk aversion will display a positive covariance, 

summed across the holdings.  

    From the definition of covariance we can write: 
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          cov(wt’;rt+1) = E(wt’(rt+1 – E(rt+1)) = E((wt – E(wt))’ rt+1 ).                  (2) 

 

Thus, holdings-based measures can be computed by de-meaning the portfolio weights or the 

returns, or both. Versions of all three approaches appear in the literature. However, in place of the 

expected weight or return we typically find a benchmark weight or return. The variables are re-

centered using something other than the mean, which means that the empirical measures are not 

the covariances.  

    Holdings-based measures are estimated as versions of (1/T) Σi Σt w
i
t r

i
t+1, where either the 

weights wi
t and/or the returns ri

t+1 are measured net of a benchmark. We use the notation without 

specifying the benchmark to simplify our presentation. The actual measures we study are 

benchmark adjusted, as: 

                  .))((
1

= 1

1=








 ttt

T

tT
GT rww 


    (3a) 

                 ,))('(
1

= )(

11

1=

tD

ttt

T

tT
DGTW   rrw  (3b) 

 CWM = 
T

tT 1=

1
(wt - wbh,t)’(rt+1 - E(rt+1|Zt)),            (3c)     

                        FM = 
T

tT 1=

1
wt ’rt+1 (a-b’rBt+1),            (3d) 

Equation (3a) is the portfolio change measure of Grinblatt and Titman (1993). This is an example 

of benchmarking the weights. The weight of the fund periods before the current period proxies 

for the expected weight. In this measure a manager records performance when the current portfolio 

wt’rt+1, achieves higher average hypothetical returns than the past portfolio weights, tw , would 
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earn on the same returns. It is important to sum the covariances across the stocks because an 

informed manager may overweight some stocks and thus underweight others, such that the 

predictive ability may not be seen on subsets of stocks.  

   Grinblatt and Titman (1993) discuss the choice of the lag, τ. If is too small, the past weights 

might still contain information about the future stock returns, leading to an underestimation of the 

information in the current weights. If is too large, the portfolio’s risk might change between the 

two dates and the measure, because it involves no risk adjustment, might be biased. We adopt the 

same criteria as Grinblatt and Titman (1993). We use 4= with quarterly data and 12= with 

monthly data.  

   Equation (3b) is the Characteristic Selectivity measure of Daniel, Grinblatt, Titman and 

Wermers (DGTW, 1997). The benchmark return vector '],,[=
)(

1

)(
1
1

)(

1

t
N

D

t

tD

t

tD

t rr  r is matched to 

each stock’s size, book/market ratio and past momentum. Intuitively, an informed stock picker’s 

portfolio of stocks can beat its portfolio-weighted combination of the DGTW benchmark returns.4 

This is an example of re-centering the stock returns, in the sense that )( )(

11

tD

ttE   rr should be zero. 

In the data, of course, the mean of the recentered returns are not identically zero, and the mean of 

this difference is the vector of alphas. 

   Equation (3c) is the Ferson and Khang (2002) Conditional Weight-based Measure (CWM). 

This is an example of re-centering both the stock returns and the portfolio weights. The benchmark 

weight vector, wbht, is the actual weight from τ periods ago, updated with a buy-and-hold strategy: 

wi
bht =  w

i
t- τ Πj=1,…τ [R

i
 t-τ+j /Σi w

i
 t-τ+j-1 R

i
 t-τ+j )], where Ri

 t is the gross (one plus the rate of) return 

                                                 
4 The DGTW benchmark return for each stock is constructed as follows. First, stocks are ranked by firm size and divided into five size groups, 

with each group having the same number of stocks. Within each size group the stocks are ranked by their market-to-book values, and divided into 
five market-to-book groups. Finally, in each of the 25 groups, the stocks are sorted by their average returns during the past months (t-2 to t-12) 

before the current month t, and split into five groups according to their past average returns. This produces 125 stock groups, each containing the 

same number of stocks. The value-weighted returns of the stocks in each of the 125 groups become the DGTW benchmark returns. Each stock is 
assigned one of the 125 benchmarks based on the closest match to its size, book/market and past returns. 
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of stock i at the subscripted date. The stock returns are demeaned using E(rt+1|Zt), the conditional 

mean returns estimated using regressions of the returns on lagged instruments. Because the 

benchmarked returns are actually mean zero, the measure delivers the covariance, which is the 

TSA. We use the first four lagged instruments in Ferson and Khang (2002): a lagged market 

dividend yield, default spread, term spread and short term Treasury bill yield. 

   The assumption of the CWM is that an informed manager departs from a buy and hold strategy 

when she can predict returns better than if using the public information. A fund delivers 

performance in the CWM when the portfolio’s hypothetical unexpected return, based on the public 

information, exceeds that of the buy-and-hold benchmark. The CWM records zero performance, 

giving managers no credit for the mechanical use of the public information in Zt, consistent with 

semi-strong form efficient markets in the sense of Fama (1970). 

   Equation (3d) is the Ferson and Mo (FM, 2016) measure. This is a version of the SDF 

(unconditional) alpha, αp = E(mt+1 rpt+1), where rpt+1 = wt‘rt+1 is the fund’s hypothetical portfolio 

excess returns and mt+1 is the stochastic discount factor. Ferson and Mo assume a linear factor 

model for the SDF: 

                             mt+1 = (a-b’rBt+1),                                (4) 

 

where rBt+1 is a vector of K benchmark excess returns. The FM measure replaces ri
t+1 with the risk-

adjusted excess stock return, ri
t+1 (a-b’rBt+1). This is an example of re-centering the stock returns, 

as Et{mt+1 r
i
t+1} should be zero. In the data the mean of the re-centered returns is not identically 

zero and E{mt+1 r
i
t+1} is the vector of alphas.  

    A fund delivers abnormal performance in the FM measure by over-weighting stocks with 

subsequently high risk-adjusted returns. Ferson and Mo (2016) consider different choices for the 
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benchmark return vector, rBt+1, including the Carhart (1997) four factor model that we use here. 

We estimate the parameters (a,b) as discussed below, by requiring the model to correctly price the 

K factors rBt+1 and a Treasury bill return. 

    The holdings-based performance measures are hypothetical returns on a before-cost basis. 

They are not the returns to investors, who must bear funds’ turnover-related trading costs, expense 

ratios and other investor costs. As discussed in Grinblatt and Titman (1989b) we are more likely 

to find evidence of skill in the before-cost returns than in the after-cost returns of funds.  

 

2.2 TSA and AAR in holdings-based performance measures 

The classical holdings-based measures are versions of (1/T) Σi Σt w
i
t r

i
t+1, where the security level 

variables ri
t+1 and wi

t are recentered or benchmark adjusted, but not necessarily mean zero. The 

classical measures reflect both TSA and AAR. The expression of these components depends on 

whether a measure benchmark adjusts the returns or the weights.  

 In some cases only the returns are benchmark adjusted (DGTW, FM). Let the stock-specific 

benchmark be rB (with betas and traded factors, f, then rB = β f). Let α ≡ E[r- rB],. The expected 

performance measure is E{w’[r- rB]} = Cov{w’; [r- rB]} + E(w)’α. The first term is the TSA 

and the second is the AAR.  

  In some cases only the portfolio weights are adjusted (Cornell (1979), GT, Kacperczyk et. al, 

2014).5 The expected performance is E{[w- wB]’r} = Cov{[w- wB]’; r} + E[w- wB]’ E(r), where 

                                                 

5 Kothari and Warner (2001) advocate using trades, or changes in holdings. They use an event study 

approach, in which trade dummies appear in a panel regression for returns. Kacperczyk et al. (2014) 

benchmark the weights using market value weights: ∑i (wit-wmt) rit+1. With a factor model for the returns, 

rit+1 = αi +βi
’
 rBt+1 + uit+1, the measure decomposes into a timing and a stock picking term: ∑i (wit-wmt)(βi

’
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wB is the vector of benchmark weights. If E[w- wB] is not a vector of zeros, the measures have 

both TSA and AAR components. Both are measured relative to the benchmark weights. The 

AAR measures the return attributed to the average deviation from the benchmark weights. The 

average deviation from benchmark weights could be a policy decision of the fund. In the CWM 

both returns and weights are benchmarked, and the AAR is zero.  

 

3. Holdings-based Measures are Panel Regressions 

3.1. A Basic Panel Regression 

Many previous studies have employed panel regressions in mutual fund research. Typically, 

however, the left-hand side variables are measured at the fund level. For example, Ippolito (1992) 

and Sirri and Tufano (1998) regress the new money flows of mutual funds on past measures of 

fund performance. Other studies put measures of fund performance on the left hand side to 

investigate its relation to things like fund size (Ferreira, Keswani, Miguel and Ramos, 2013), fund 

and industry size (Pastor, Stambaugh and Taylor, (2015), Zhu (2018), Magkotsios, 2018) or other 

variables.  

    In the panel regression view of holdings-based performance measures the returns of the stocks 

held by a fund are on the left hand side and a fund’s holdings of the stocks are on the right hand 

side. There is a separate panel regression for each fund and a fund-specific performance measure. 

Starting with the simplest case, assume that a fund’s portfolio contains N stocks that exist for T 

periods. The panel regression is: 

 

                                                 
rBt+1) + ∑i (wit-wmt)(αi +uit+1). They find that funds vary their emphasis on the two terms over the business 

cycle. 
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t

i

t wr   , i=1,…,N; t=1,…T. (7) 

 

The slope coefficient β captures the ability of the fund’s weights to predict future excess stock 

returns. The pooled OLS slope coefficent estimator in the regression (7) is: 

 

                   ̂ = Σi (1/T)Σt (r
i
t+1 w

i
t) / Σi (1/T)Σt (w

i
t w

i
t’) (8)   

 

For comparison, consider the estimator of fund performance ,))('(
1

= )(

11

1=

tD

ttt

T

tT
DGTW   rrw  

which is a version of the numerator in Equation (8), where the benchmark adjusted returns replace 

the returns ri
t+1. The numerator of (8), Σi (1/T)Σt w

i
t r

i
t+1, also includes the other holdings-based 

measures as special cases.6 Using the weight change, wit - wit-τ, in place of wi
t we obtain the GT 

measure. Replacing wt with (wt - wbt) and ri
t+1with [ri

t+1- E(ri
t+1|Zt)], we obtain the CWM. Finally, 

replacing ri
t with ri

t (a-b’rBt+1) we obtain the FM measure. Tests of the hypothesis of zero 

performance ask if the coefficient β is zero. 

 

3.2 Fixed Effects 

Equation (7) is unrealistic for stock returns, because the mean values of the stock returns vary in 

the cross-section. The expected stock returns and the portfolio weights are both positive. Imposing 

a zero intercept like in (7) would produce a positive slope coefficient estimate even if there was 

no relation between between the returns and weights. Introducing stock fixed effects allows each 

                                                 
6 Note that both the numerator and denominator of (8) can be divided by N, but because the weights sum to 1.0, it is 

better not to. Assume that the expected value of the stock return ri is bounded on [rL,ru]. Because funds rarely sell 

short, the portfolio weights {wi} are all between 0 and 1 and they sum to 1.0. Therefore, E{Σiwiri} is bounded on 

[rL,ru], so E{(1/N) Σiwiri}≤ ru/N -> 0. The measures approach zero for large portfolios if divided by N.   
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stock to have its own mean and the regression slope captures the covariance of returns and weights. 

The panel regression model with stock fixed effects is: 

 

                           .= 11

i

t

i

t

ii

t war                              (9) 

 

The model is estimated by introducing N stock dummy variables, which take the value of one (for 

each date) if the return belongs to stock i and zero otherwise. The coefficient of the dummy 

variable for stock i is ia , the fixed effect of stock i. Under the null hypothesis ( 0= ), the fixed 

effect is the expected excess return of the stock. 

   The classical performance measures reflect both time-series and cross-sectional variation. 

Fixed effects separate these two dimensions. With stock fixed effects in the model, the Frisch–

Waugh (1933) theorem shows that the OLS slope coefficient estimator of the regression (9) in the 

same as that obtained by subtracting the time-series means from each of the variables and running 

the regression on the demeaned variables with no intercept. Thus, the numerator of the OLS slope 

estimator of (9) estimates the TSA: 

 

       numw,̂  = Σi (1/T) Σt [r
i
t+1 - (1/T)Σt r

i
t+1][w

i
t -(1/T)Σt w

i
t]                      (10) 

                = Cov(wt’;rt+1). 

 

It follows from (10) that: 

 

        Σi (1/T) Σt (r
i
t+1 w

i
t ) = numw,̂ + Σi [(1/T)Σt r

i
t+1] [(1/T)Σt w

i
t].                (11) 

                             



14 

 

Thus, the numerator of the classical performance measure on the left-hand side of (11) is equal to 

the numerator of the estimator with stock fixed effects, plus an AAR term. If ri
t+1 is replaced with 

a factor-adjusted return (in DGTW and FM) whose mean is αi, the second term of (11) is an 

estimate of α’E(w). Comparing the panel regressions with and without stock fixed effects, we 

decompose the classical measures into the TSA and the AAR.  

   The Internet Appendix discusses models with time fixed effects, both time and stock fixed 

effects, and a model with a common intercept. Because the portfolio weights sum to one, a 

regression with time dummies and a regression with a common intercept have the same effects on 

the slope coefficient. The numerator of the slope with time dummies differs from that of the basic 

panel regression with no dummies by the mean of an equally weighted portfolio return. Because 

the equally-weighted portfolio return should be similar across funds, the regressions with time 

dummies or a common intercept provide little additional insight about the structure of fund 

performance.7  

 

3.3 Scaling the Panel Regressions 

In order to test the null hypothesis of zero performance the panel regression can be used directly, 

as the slope coefficients are zero under the null hypothesis of no performance. Panel regressions 

are easily rescaled to recover the numerator of the slope coefficient, which may be more 

economically meaningful. For example, numerator in the FM panel regression is a certainty 

equivalent excess return for an agent with the SDF used in the model.  

                                                 
7 It might be natural to consider a single cross-sectional regression with an intercept for returns on lagged weights 

for each time period, as in Fama and MacBeth (1973). This delivers an OLS slope coefficient for period t whose 

numerator is equal to [rpt+1 - rEW,t+1], where rpt+1 = wt’rt+1 and rEW,t+1 is the equally weighted portfolio return. The time-

series average of the Fama-MacBeth slopes is a weighted average difference between the fund’s and the equally-

weighted portfolio’s returns.  
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    To illustrate the scaling let Let ur = Vec(rit+1-E(ri)), uw = Vec(wit-E(wi)), ux = Vec(xit-E(xi)). 

These have the same probability limits as the residuals from regressing r,w and x on stock 

dummies, according to the Frisch-Waugh (1933) theorem. We scale the TSA by regressing 

(uw’uw/T) ur on uw. The OLS slope is (uw’uw/T)-1 (uw’ur/T) (uw’uw/T), which converges in 

probability to Cov(wt’; rt+1). With the Hjalmarsson (2010) and DiffIV methods described below, 

we use instrumental variables instead of OLS. Giles (1984) shows that the Frisch Waugh (1933) 

theorem holds for instrumental variables estimation. We carry these scaling conventions to the 

simulations to evaluate the estimators’ statistical properties. 

     

3.4 Standard Errors 

Ferson and Khang (2002) use time-series GMM-derived asymptotic standard errors for their CWM, 

while this paper concentrates on a panel regression interpretation. Consider the pooled OLS 

estimate of the panel regression (7), where ̂ - β = [(1/T) Σi Σt (w
i
t w

i
t’)]

-1 (1/T) Σi Σt (ε
i
t+1 w

i
t) and 

E{( ̂ - β)( ̂ - β )’} ≈ [(1/T) Σi Σt (w
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Using the conventional assumption that [(1/T) Σi Σt (wi
t wi

t’)]
-1 converges in probability to a 

constant, (σx
2)-1, different ways of computing the central term, E{(1/T) Σi Σt (ε

i
t+1 w

i
t)}

2, correspond 

to different methods of clustering in the panel. Petersen (2009) focusses on panel standard errors 

under various models for the error terms. For example, clustering by time assumes no time series 

dependence, so E{(εi
t+1w

i
t) (ε
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This term is estimated with the fitted regression residuals. Keeping the stocks within the time 

cluster allows for dependence across the stocks. Clustering by stock we assume no cross-sectional 

dependence: E{ (ε
i
t+1 w
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t) (ε
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Keeping the times within the cluster for a stock allows for dependence over time.       
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   GT and DGTW use time-series methods to compute standard errors. For example, DGTW 

define CSt = Σi (r
i
t+1 w

i
t), where the returns are benchmark adjusted as explained above, but we 

keep the simpler notation ri
t+1 here. They define CS as the time-series average (1/T) Σt CSt. 

Plugging in the regression we express CSt = Σi ([βwi
t + εi

t+1] w
i
t’) = β Σi (w

i
t w

i
t’) + Σi w

i
t ε

i
t+1 and 

CS = β (1/T) Σt Σi (w
i
t w

i
t’) + (1/T) Σt Σi w

i
t ε

i
t+1. The first term is the “true” scaled slope coefficient 

and the second term is the sampling error in its estimate. DGTW use time series methods to 

estimate the variance of the sampling error. The calculation (1/T)ΣtCSt
2 – [(1/T)Σt CSt]

2 delivers 

the sample variance and corresponds to clustering by time in the pooled panel regression, because 

terms like (Σi w
i
t ε

i
t+1)

2 are kept within the time cluster. 

   Since monthly stock returns are cross-sectionally correlated at a point in time, but have little 

time-series correlation, we cluster the standard errors by time, following DGTW. When using 

recursively demeaned or differenced estimation as described below, we include Newey and West 

(1987) autocovariance terms to accommodate the serial dependence induced by overlapping data. 

In this case E{Σi Σt (ε
i
t+1 w

i
t)}

2 = E{Σt (Σi ε
i
t+1 w

i
t)

2} + E{Στ Σt≠τ K(|t-τ|) Σi (ε
i
t+1 w

i
t)(ε

i
τ+1 w

i
τ), where 

K(|t-τ|) is the Bartlett kernel. We use 30 lags to control the autocorrelation. 

 

 

3.5 Lagged Stochastic Regressor Bias 

Predictive panel regressions are affected by a bias due to lagged stochastic regressors, known as 

the “Stambaugh bias” in panels, related to the persistence of the portfolio weights and to the 

correlation of their future values with the innovations in the stock returns. The bias is examined in 

time-series regressions for stock market returns on dividend yields by Stambaugh (1999), Pastor 

and Stambaugh (2009), Amihud and Hurvich (2004) and Amihud ..alet (2008, 2010) and by Zhu 



17 

 

(2018) in panel regressions of fund performance on fund size. We examine several methods to 

address the bias. These include a parametric bias correction (Hjalmarsson, 2008), a recursively 

demeaned instrumental variables approach, (Hjalmarsson, 2010) and a differenced instrumental 

variables approach (DiffIV, Anderson and Hsiao (1981), Wang, 2015). 

     To capture the fact that the fund’s portfolio weights are highly autocorrelated, the parametric 

bias correction assumes that they follow a first-order autoregression: 

 

                      .= 11

i

t

i

t

ii

t vww       (12) 

 

We later discuss alternative models for the portfolio weights that depart from the AR(1) 

assumption of (12).  

    The lagged stochastic regressor bias in the panel regression with fixed effects may be 

understood as follows. Consider the numerator of the Within estimator, written without loss of 

generality with only the weights demeaned: 

 

                     numw,̂ = (1/T)Σi Σt  r
i
t+1 (w

i
t - (1/T)Σt w

i
t),                   (13) 

 

Substituting from Equation (9), on the assumption that the shocks to the stock returns, εi
t+1, are 

uncorrelated with lagged weights under the null hypothesis of no ability, yields: 

 

                 E( numw,̂ - βnum) = -E[(1/T)Σi Σt ε
i
t+1 (1/T)Στ≥t+1 w

i
τ].                 (14) 

 

Equation (14) shows that a bias arises if εi
t+1 is correlated with Στ≥t+1 w

i
τ. For example, we would 
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expect a positive correlation between εi
t+1 and future weights under a buy-and-hold portfolio 

strategy, as a positive return shock increases the portfolio weight. We expect a negative bias in the 

slope estimate. The larger is the serial correlation in the weights, the larger is the expected bias as 

the return shocks at time t+1 accumulate in the future weights, wi
τ, τ≥t+1. Hjalmarsson (2010) 

shows that the bias is a second order bias. Specifically, the estimator is consistent as both N and T 

become large. However, when T is finite and N becomes large, the bias remains because the 

number of fixed effects to be estimated expands with N.  

 

3.6. Additional Model Parameters 

For some of the classical performance measures parameters for risk adjustment must be estimated 

in addition to the panel regression coefficients. For example, in the FM measure the parameters 

(a,b) in the SDF mt+1 = a – b’rBt+1 must be estimated. Simultaneous estimation of these parameters 

is usually preferable. Consider a pooled generalized method of moments (GMM, Hansen, 1982)  

system with g=(1/NT)ΣiΣt git, where git is a K+2 vector when there are K traded excess return 

factors in rB and b is a K-vector of parameters. The first K elements of git are given by rBt+1(a-

b’rBt+1) and the K+1st element is RFt(a-b’rBt+1) - 1, where RFt is the gross risk-free rate. The K+2nd 

element of git is [ri
t+1(a-b’rBt+1) – βwi

t]w
i
t when Equation (7) is the panel regression, but we do not 

divide by N for this term because the weights sum to 1.0. With a four factor model for rB there are 

six parameters and six moment conditions and the GMM system is exactly identified. (The other 

models also produce exactly identified systems.) The GMM parameter estimates may be found by 

setting g=0. Simultaneous estimation of (a,b,β) produces the same point estimates as does a two-

step approach, where the parameters (a,b) are found in the first step, using the first K+1 elements 

of g, and the parameter β is found by estimating the panel regression using OLS, substituting in 
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the first step parameter estimates for risk adjustment. We take this two-step approach.  

The GMM standard errors for the two step and simultaneous approaches are not the same, as 

the standard errors for the OLS panel regression in the second step do not reflect the estimation 

error in the parameters (a,b). We compare the standard errors for the simultaneous estimation 

with those of the two-step calculation and find that they are smaller. Thus, the t-ratios with the 

standard errors from the two-step estimation will be smaller, a conservative bias. We explore the 

magnitudes of this bias with simulation and find it to be small.8 

               

4. Data  

We use quarterly holdings data for mutual funds from Thomson-Reuters for 1980 to 2012 and we 

apply several standard screens. We exclude data before 1984 in most of our analyses. Fama and 

French (2010) show that there is a selection bias in mutual fund data before 1984. Since most of 

the research papers using holdings data focus on US equity funds, we exclude other types of mutual 

funds. Evans (2010) discusses an incubation bias in fund performance measures, and following his 

suggestions, we exclude observations before the reported date of fund organization or when a fund 

first has total net asset value (TNA) of less than 15 million dollars. There are in total 3596 equity 

funds in this sample. We also collect the holdings for a sample of 201 index funds for 1994-2012, 

identified by either the CRSP index fund flag or by searching for the string “index” in the funds’ 

name. 

We use monthly prices and returns of individual stocks from the CRSP monthly stock file, 

                                                 
8 Partition the joint system as g=(g1’,g2’)’ and consider the form of the asymptotic covariance when the system is 

exactly identified. Its estimate in the full system is ACov(β) = Cov(g2)/δ2 – μ’A-1Cov(g1,g2) )/δ2, where δ = (1/T)ΣiΣt 

wi
t
2 , μ = - (1/T)Σt (Σi wi

t ri
t+1) rBt+1, and A= (1/NT)ΣiΣt (rBt+1 rBt+1’). The term μ’A-1 is the regression coefficient for 

the time-series regression of the funds’ hypothetical portfolio return on the benchmark excess returns. The two-step 

calculation uses a subset of the moment condition and delivers ACov(β) = Cov(g2)/δ2. If the subset moment 

conditions are uncorrelated, the two-step and joint estimation deliver the same standard errors. 
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including the delisting returns when firms leave the market. The sample contains stocks with at 

least one month of return data from 1970 to 2012. The DGTW benchmark returns are collected 

from Russ Wermers’ website, and are then combined with the monthly stock file. We select only 

stocks with non-missing values of the DGTW benchmark returns. According to Wermers (2006), 

the stocks selected for the DGTW benchmarks have at least two years of data on book values, 

returns and market capitalization. For some of our analyses we use daily stock returns and mutual 

fund returns from CRSP, available starting in 1999 for the mutual funds. We also use daily data 

on interest rates from the Federal Reserve Data base. 

We use holdings and stock prices to construct portfolio quarterly and monthly weights for 

the mutual funds. We first describe the quarterly weights. Let the holdings of the stocks (measured 

as the number of shares held) and stock prices at the t ’th quarter be th  and tp , where ht = 

[h1t,…,hNt]’ and pt = [p1t,…,pNt]’. The weights of the stocks in the fund portfolio are .
'

=
tt

ititi

t

ph
w

ph
 

The universe of stocks for a fund is the set of stocks ever held by a fund. Following GT and DGTW 

we not not measure holdings of bonds or cash, normalizing the weights in stocks to sum to 1.0. (In 

the Internet Appendix we incorporate cash holdings earnging at a risk-free rate and find similar 

results.) Since the weights for never-held stocks in a given quarter are zero, including any 

additional stocks in the universe would not change the performance measures.9  

    We construct monthly weights, assuming that for the months between consecutive reporting 

dates the funds keep holding the same number of shares, except that a fund reinvests any dividends 

in the same stock. Thus, the monthly portfolio weights are not interpolated, but updated with the 

                                                 
9 The buy-and-hold drift measures do depend on the universe of stocks. We conduct some experiments where we 

expand the universe for each fund to include 1,000 stocks ever held by any fund in the sample. When the buy-and-

hold drift strategy buys a new stock because some other stock leaves the sample, it chooses randomly from the 

1,000. The results are similar. 
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actual return data, on the assumption of a buy-and-hold strategy between the quarters. Filling out 

quarterly weights to monthly data like this follows DGTW (1997), Kacperczyk et al. (2005), Busse 

and Tong (2012) and others. The flow performance analysis below uses monthly flows, and for 

comparability with earlier studies and we use the monthly weights to form monthly performance 

measures. Elton, Gruber and Blake (2011) find that actual monthly weight data afford greater 

precision than quarterly, although the fund performance measures (alphas) have a correlation 

greater than 99%. This impact of this convention is that the quarterly measure is roughly the 

compounded value of the monthly measures.10 We find similar results using either the quarterly 

or the monthly measures, as shown in an Internet Appendix. 

 

4.1 Summary Statistics 

Summary statistics for the data are shown in Table 1. The sample period is from 1984 to 2012, and 

the number of funds is 3596. In panel A, for each fund in the sample we compute the time-series 

average of its total net assets (TNA) in millions of dollars, the average number of stocks held, the 

Return Gap from Kacperczyk, Sialm and Zheng (2006) and the Active Weight as in Doshi et al. 

(2015). We compute the sample standard deviations of the monthly reported fund returns, σ, and 

their R-squares in Carhart (1997) four-factor model regressions. We also compute the sample 

autocorrelations of the funds’ portfolio weights, ρj, averaged across the holdings, at various lags j, 

j=1,…5. The means, std, maximum and minimum are taken across the funds in the sample. Finally, 

for each fund we compute the correlation between the errors of the portfolio weight autoregression 

and the panel regression of future stock returns on the weights, averaged across the holdings. This 

                                                 
10 Let the weights of fund in securities i at the beginning of a quarter be W0i, and the gross returns of the securities 

over the next three months be R1i, R2i, and R3i. The quarterly measure is Σi W0i (R1i R2i R3i) -1. The weights after one 

month are W1i = W0i (R1i /Σi W0iR1i) and the weights at month two are W2i = W1i (R2i / Σi W1i R2i). Thus, the 

quarterly measure is [Σi W0i R1i] [Σi W1i R2i] [Σi W2i R3i] -1. 
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average correlation, denoted as Error Corr in the table, serves as Cov(εi,vi) in the bias-adjusted 

estimator of Hjalmarsson (2008). The maximum and minimum values are 0.24 and -0.19, 

respectively, which suggests that the Stambaugh bias can change signs for different funds.  

     The average fund has total assets of $684 million and holds 114 stocks. The average first 

order autocorrelation of the weights at the stock level is 0.90, and 0.94 at the fund level. The 

weights are persistent time-series, but as they are bounded on [0,1] they are likely stationary. We 

report simulations below that allow for trends in the weights and long strings of zero weights, like 

we find for some stocks. The first order autocorrelaiton is below the level where the simulation 

evidence in Ferson, Sarkissian and Simin (2003) indicates that spurious regression becomes a 

concern. However, the autocorrelation is high enough to make the lagged stochastic regressor bias 

a concern.  

For some of our simulations we assume a first order autoregressive process (AR(1)) for the 

weights. As a reality check we estimate the coefficients
j in the following monthly regressions: 

,= 111

i

t

i

jtj

ii

t ww     where j runs from 1 to 5.  If the weights follow an (1)AR  process, 

we should observe that .= 1

j

j   Panel A of Table 1 suggests this is a good approximation. For 

example, at the mean values, 0.815=2

1  and 0.813=2 , while ρ1
5 = 0.599 and ρ5 = 0.586. We 

also compute the autocorrelations for the quarterly weights data and report them in the internet 

appendix. In this case ρ1 = 0.83, ρ2 = 0.69 and ρ4 = 0.51, with ρ1
2 = 0.69 and ρ1

4 = 0.47.  

 

4.2 Active and Passive Components in AAR 

The AAR component of performance is the performance of the average, or policy weights of a 

fund. If a fund adopts a strategy of actively rebalancing to fixed policy weights, its portfolio 
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weights would vary little over time and all of its performance would be AAR. However, AAR also 

arises from passive strategies, such and buy-and-hold, where the portfolio weights drift. The 

portfolio weights of a buy-and-hold strategy drift over time towards the higher return and thus 

higher alpha stocks, which increases AAR. We call this effect the buy-and-hold drift and find that 

it is a substantial piece of some classical performance measures. Since it can be useful to separate 

active from passive components of performance, we extract the buy and hold drift component from 

the AAR. 

    Table 2 illustrates the AAR from two buy-and-hold strategies and shows that it can be 

substantial. Panel A starts in 1980, holding the stocks held by any mutual fund in our sample, with 

weights equal to the aggregate total net asset values. Panel B starts with the stocks in the Standard 

and Poors 500 (SP500) index, held with market capitalization weights. The share holdings are 

fixed until 2012, except that dividends are reinvested in the dividend-paying stocks. The weights 

thus evolve as a buy-and-hold strategy. If a stock leaves the index, the strategy sells the stock and 

puts the money in the entering stock(s). If a stock delists, the value after the delisting return is 

divided among the remaining stocks.  

  Table 2 shows that the weight in the 25 highest DGTW alpha stocks starts in 1980 at 2.71% 

and finishes in 2012 at 8.02%, after buying and holding. The average weights are higher for the 

high-alpha stocks. The differences between the high and low alpha average weights are 1.19% to 

2.74% across the models. The bottom rows of each panel show the AARs of the buy-and-hold 

strategies, which vary from 0.25% to 0.93% per year across models11 Table 2 establishes that a 

                                                 
11 It may seem puzzling that a buy-and-hold strategy can have positive AAR. The portfolio-weighted average of 

stocks’ alphas in a factor model regression must be zero when the weights correspond to those of the market or 

factor mimicking portfolios in the model, on the assumption that the weights are fixed or have no information about 

the future factor returns or factor model residuals. This suggests that the AARs of the market and factor mimicking 

portfolios should be zero or close to zero. A buy and hold strategy might be similar to the market portfolio. 

However, not all of the stocks in the market portfolio are held by the funds in our sample. We find 6961 stocks on 

CRSP for which holdings are never reported by any mutual fund during 1980-2012 (21,217 stocks are held at least 
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passive buy-and-hold strategy can generate AAR. Simulations reported in the Internet Appendix 

show that a stylized momentum strategy and a buy-and-hold strategy, where the weights depart 

from the AR(1) assumption and are calibrated to more realistically mimick a mutual fund, also 

produce positive AAR. 

 In the mutual funds we decompose the AAR in the classical performance measures to isolate 

the passive buy-and-hold drift component. Let wBH be the weights of a buy-and-hold strategy, 

starting with the initial holdings of a fund. The buy-and-hold weights evolve passively over time, 

and are adjusted to keep holdings below 5% as described in the Internet Appendix. A fund’s 

weights are w = wBH + (w - wBH) so that E(w)’α = E(wBH)’α + E(w-wBH)’α. The first term is the 

passive buy-and-hold drift and the second term is the active AAR net of the buy-and-hold drift.12 

When the performance measure benchmarks only the weights with benchmark wB we decompose 

the AAR as E(w-wB)’E(r) = E(w-wBH)’E(r) + E(wBH - wB)’E(r). The first term is the AAR in excess 

of buy-and-hold drift and the second term is the buy-and-hold drift.  

 

5. Simulation Results 

We evaluate various methods for correcting the lagged stochastic regressor bias. Two methods 

perform well in panels of the sizes in this paper, illustrated in Table 3. Our first approach to bias 

correction is a parametric approach from Hjalmarsson (2008) which is an extension of the approach 

of Stambaugh (1999) to panels. The second is a recursively demeaned approach from Hjalmarsson 

                                                 
once). The alphas of these never-held stocks are typically negative. For example the value-weighted DGTW alpha of 

these stocks is -1.89% per year. The equally weighted alphas are -1.55% under DGTW and -3.81% under the FM 

measure. Skripnik (2019) provides a detailed analysis of mutual funds’ stock screening decisions. 

 
12 The average alpha of the initial stock selection is removed when the AAR net of buy-and-hold drift examined, 

resulting in Covi(αi, E(wi)-E(wiBH)). Thus, in the net AAR we measure the cross sectional covariance between the 

average or policy weights and the stocks’ alphas, net of that for the passive buy-and-hold strategy. 
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(Haj10, 2010). The third is a differenced instrumental variables approach (DiffIV) similar to 

Anderson and Hsiao (1981) and Wang (2015). 

 

5.1 Bias Corrections 

We bootstrap versions of the predictive system (9) and (12) for various “true” values of the panel 

regression slope, β. We estimate the pooled panel model for β using the DiffIV method and sort 

funds based on the estimated slopes. We select five funds near the 5%, 10%, 50%, 90% and 95% 

cutoff values, and use the estimated β values and the holdings data of the five selected funds to 

calibrate the simulations. The data generating process features heterogeneous fixed effects across 

the stocks. The parameter ρ for the simulated weights is also allowed to differ across the stocks. 

For a given value of the slope β, the intercept for each stock is chosen to match the sample average 

benchmark adjusted returns. For a given value of ρ the intercepts in the weight’s VAR equations 

are fixed to match the average values of the actual weights for each stock. We boostrap the vector 

of returns and weight residuals from equations (9) and (12) together for all of the stocks, selecting 

months randomly from the data with replacement. We build up the simulated weight and return 

series recursively, using the calibrated values of β, ρ and the intercepts.  

    The simulations preserve the serial dependence in the weights, dependence across the stock 

returns, and importantly, thedependence between the returns and weight innovations. The number 

of months for each fund in the simulations is the same as the number of months where the fund 

exists in the real data. When a stock held by the fund has a missing return, the weight is set to zero. 

    Table 3 presents the results. The true values of the slopes are shown in the first column and 

the estimated values, averaged across 1000 simulation trials, are shown in the other columns. The 

regressions are scaled to deliver the numerator of the slope coefficient, measured as an excess 
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return per quarter. For comparison purposes we include results for the classical OLS estimator of 

Equation (7) with no fixed effect, OLS estimation with a common intercept, the classical Within 

estimator (OLS with stock dummies) and a first difference estimator (Diff). These comparison 

estimators have large biases as expected. The largest bias in the Diff IV estimator across the five 

experiments is only 0.03% per quarter. The winner is Haj10, where the largest bias is only 0.01% 

per quarter.  

    We use the difference between panel regression slopes with versus without fixed effects to 

estimate AAR, where the model with fixed effects is estimated using Haj10. Additional 

simulations in Panel B of Table 3 evaluate the accuracy to measure AAR.13 The estimated AAR 

for the various performance measures is averaged across 1,000 simulation trials. The evidence 

supports the validity of our approach to estimating AAR. The maximum difference between the 

true and expected estimated AAR is 0.08% per quarter and the average difference is less than 

0.04%. 

    The Internet Appendix presents simulations of hypothetical mutual fund strategies, including 

a style strategy based on momentum and a buy-and-hold strategy. These simulations do not rely 

on the AR(1) assumption for the portfolio weights, and they have realistic sequences of zero and 

nonzero weights. There is no TSA in these strategies, and the approach correctly infers this. Both 

strategies produce significant positive AAR estimates. The distributions of the t-ratios for the TSA 

estimates are well approximated by a unit normal distribution. 

 

                                                 
13 The “true” AAR in the data generating process of (9) and (12) differs across the measures. This is given by 

E(w)’E(r) = Σi ai E(wi) + β Σi E((wi)2), where the “true” parameters for this calculation come from an initial 

simulation that assumes all the stocks for the chosen fund exist each month. The second term is small and goes to 

zero as the number of stocks, N, gets large. For example, it is equal to β/N for an equally-weighted portfolio. 
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6. Empirical Results  

6.1 Cross-sectional Variation in Fund Performance  

We examine the classical holdings-based performance measures in cross-sections of individual 

funds. Our interest is to understand how and why the measured performance differs across funds; 

in particular to assess the influence of TSA and AAR.  

   We sort funds into five quintiles on the basis of each classical performance measure, estimated 

using the full sample of data for each fund. The averages for each quintile are shown as the left-

hand columns of numbers in Table 4. We also compute the Haj10 estimates of TSA for each fund. 

The difference between the original measure and the TSA is the AAR. In some cases the AAR is 

further decomposed into the buy-and-hold drift and the AAR in excess of buy and hold. The 

averages of the various components for each original-measure quintile are shown in the remaining 

columns of the table.    

    The bottom rows of each panel of Table 4 are the differences between the average 

performance measures for the top and bottom quintiles (HML), summarizing the cross-fund 

spreads. Sorts on the classical measures produce large HMLs of 7.69% per year for GT, 6.61% for 

DGTW, 6.05% for the CWM and 27.72% for FM.  

    The drivers of the spreads are different for the different measures. For GT the spread in TSA 

is large, with an HML of 6.48%, so the GT measure differences reflect mainly TSA differences. 

The GT measure and its TSA show positive skewness. The very best funds under GT are likely to 

have very high TSA. The AAR component of GT shows a small spread and we do not break it 

down further in Table 4.   

    Unlike the GT measure, a small portion of the cross-sectional variation in the DGTW measure 

is driven by TSA. The AAR is the main driver. Its HML is 5.21%, representing more than 80% of 
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the total spread in DGTW. The sample correlation across individual funds between their DGTW 

measures and the AAR component is 0.69. Sorting funds on their DGTW measures is a lot like 

sorting them on their AAR. Furthermore, more than 2/3 of the AAR spread is associated with the 

buy-and-hold drift. Thus, differences among funds’ DGTW performance measures, to a large 

extent, capture differences in the passive buy-and-hold drifts.14 

    Panel C of Table 4 presents an unbiased version of the conditional weight measure, CWM, 

estimated using the Haj10 approach. The CWM is 100% TSA. We use the DGTW benchmarks to 

break its TSA into timing, Cov(w-wBH’; rB - E(rB|Z)) and selection, Cov(w-wBH’; u-E(u|Z)). The 

buy-and-hold benchmark weights wBH look back 12 months, following Ferson and Khang (2002). 

The TSA performance generates an HML of 6.05% but the selection component’s HML is only 

0.77%. Most of the spread in TSA for the CWM is timing. Unfortunately however, only the top 

quintile shows positive timing ability. 

    Panel D of Table 4 presents results for the FM measure. Almost all of the FM spread is 

captured by differences in the AARs. At the fund level, the correlation between FM and its AAR 

is 0.94. Sorting funds on their FM measures is a lot like sorting them on their AAR. In turn, most 

of the AAR spread is associated with the passive buy-and-hold drift. 

    The third quintile in Table 4 contains the median fund sorted on each measure, illustrating 

the implications of the decomposition on average. The median performance is positive but small 

under the classical GT and DGTW measures. This is consistent with previoius holdings-based 

studies, reviewed by Wermers (2000). Decomposing the classical measures, the median AAR is 

positive for DGTW and FM. The median TSA is negative for every measure except GT. The 

AAR in excess of buy and hold is negative for the median fund under every measure. This says 

                                                 
14 In the internet Appendix we examine a sample of index mutual funds, 1992-2012 using DGTW. We find positive 

and significant AAR in excess of 1% per year, but this is almost entirely driven by the buy-and-hold drift. 
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that the total before cost performance of the median fund is negative if the passive buy-and-hold 

drift component, starting with the initial weights, is removed.  

    In summary, the results from sorting funds on their classical performance measures shows 

that variation across funds in the differrent measures reflect different abilities. Differences in the 

classical GT measure reflect mainly TSA. The CWM is 100% TSA, and dominated by timing as 

opposed to selectivity. Differences in the DGTW and the FM measures reflect mainly AAR, driven 

mainly by the buy-and-hold drift. The measures agree that the median active performance, net of 

the passive buy-and-hold drift, is negative. 

 The Appendix places our decomposition into the broader context of performance attribution 

and the Internet Appendix presents and empirical example. This shows that for the fund groups 

of Table 4, the abnormal returns are a small part of total fund returns and confirms that AAR is 

the larger component for the levels, compared with TSA. A “normal” return plus the AAR 

captures about 96% of the average return levels and 94% of the cross-sectional variation in fund 

average returns. The AAR is dominated by the buy-and-hold drift. The TSA is the sum of 

positive timing and negative selection abilities for each group, suggesting that timing ability 

might be better than previous studies find. TSA is the main driver of the GT measure, both in the 

levels and, as shown in Table 4, in the cross-section. The timing component is larger than the 

average selectivity component of TSA in the GT measure. By focussing on the TSA in the 

classical measures, timing ability seems more evident. This may be useful in future research. 

 

6.2 Multiple Comparisons  

Although Table 4 says that the median fund does not have significant before-cost performance, 

that does not mean that no funds have ability. Perhaps the extreme performers have true ability. 
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We address this question by examining the cross-sectional distribution of the performance 

measures, using simulation to account for the multiple hypothesis tests. To illustrate the issue, 

imagine that no fund has ability and that a test with a size of 5% is used. We then expect to find 

that 5% of our sample of 3596 funds, or about 180 funds, would present performance with t-ratios 

in excess of two. 

    We conduct simulations under the null hypothesis of no ability. To impose the null hypothesis 

that TSA is zero, we randomly scramble the returns for a given fund’s stocks through time, using 

the original porfolio weights to measure the performance. To remove an average cross-sectional 

relation between weights and stocks’ alphas, we randomly scramble the returns for a given fund-

month across the stocks held that month, and use the original portfolio weights to measure the 

performance.15 Each experiment generates a critical value for the performance measure, such that 

5% of the estimates under the null exceed the critical value. We are interested to see how often the 

measures in the original data exceed the critical values. We also use this information to estimate 

the fractions of funds in the population that have zero, positive or negative true performance.  

    To evaluate the statistical significance of the extreme performers we model an indicator 

variable for the event that a measure exceeds a bootstrapped critical value as a binomial random 

variable, taking the value one with 5% probability and the value zero with 95% probability. The 

test statistic is the fraction of actual funds whose performance exceeds the critical value. A t-ratio 

for the significance of this fraction is the difference between the fraction and 0.05, with a standard 

error of about 4.4%. Thus, significant performance is found when more than about 13.8% of the 

funds’ performance measures exceed the critical value.16  

                                                 
15 The null hypothesis is not that the AAR is zero, but that it is equal to the alpha of the average stock. The AAR is 

the average stock alpha plus N times the cross-sectional covariance between the average weights and the alphas. We 

test whether the covariance is zero.  
16 The fraction of the cases exceeding the critical value is f = (1/n) ∑i I(xi=1), where I(xi=1) is the indicator variable 
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We estimate the fractions of funds in the population with nonzero performance along the lines 

of Barras, Scaillet and Wermers (BSW, 2010). The approach starts with the empirical p-values 

for the t-ratios of the performance measures. For each fund, the empirical p-value is the fraction 

of funds with larger absolute t-ratios (for two-tailed tests) in the simulations under the null 

hypothesis. Let π0 be the fraction of zero-performance funds in the population. BSW estimate π0 

following Storey (2002), by choosing a large cutoff p-value, λ, found by minimizing the mean 

squared error around the smallest π0 value found for the various cutoff p-values. They find that 

the estimates are not very sensitive to the choice of λ, provided it is large enough, and get similar 

results to the optimized value if λ=0.5 or 0.6 is chosen. We try both 0.5 and 0.6 and find little 

difference in the results. We report result for λ=0.5. Using the cutoff p-value there is a fraction of 

funds, Fg(λ), for which the null is rejected in favor of good performance. There is also a fraction 

of funds, Fb(λ), for which the null is rejected in favor of bad performance.  The estimate of π0 is  

[1- (Fg(λ) + Fb(λ))]/(1-λ). Using this estimate, the fraction of good performing funds, πg, is then 

estimated as: πg = Fg(γ) - π0 (γ/2), where γ is a different cutoff significance level, also estimated 

by BSW with a MSE minimization by simulation. They find that similar results are obtained 

when γ = 0.35 or 0.45 is simply selected. We try different values and the results are little 

changed. We report results for γ = 0.35. 

    Table 5 summarizes the results of the multiple comparison analyses. The critical values are 

reasonably symmetric for the TSA measures, while the net AAR is left-tail skewed under the null 

hypothesis. The fractions of actual funds exceeding the critical values present evidence that some 

funds have nonzero performance. According to the GT measure there are some funds with 

                                                 
for the i-th measure exceeding the 5% critical value. Under the null the mean of f is 5% and its variance, accounting 

for the correlation across the tests, is .05(.95)[(1/n) + {(n-1)/n}ρ], where ρ is the average correlation of the tests 

across n funds. We use the estimates of Barras, Scaillet and Wermers (2010) and Chen and Ferson (2020), setting ρ 

= 0.04. 



32 

 

significant net AAR in each tail, some with significant negative TSA and some with significant 

negative TSA + net AAR, but there is no evidence of significant positive performance. The DGTW 

and FM measures present no evidence of significant performance in the tails. 

   The estimated fractions of funds with nonzero true performance are labelled “Fractions 

Nonzero.” Less than 11% of the funds are found to have positive performance by any measure, 

while 26-40% have negative true performance, depending on the measure. More than 50% of the 

funds are estimated to have zero true performance. The BSW estimate of the fraction π0 is known 

to be upwardly biased when the tests have low power (e.g. Storey (2002), Chen and Ferson (2020), 

Barras Scailett and Wermers, 2019). However, in our setting the fact that we re-use the original 

weights each period in the simulations biases the fractions of nonzero alphas upwards (Fama and 

French, 2010), and the two biases are offsetting. Future studies can use more refined techniques, 

beyond the scope of this paper, to improve on our estimates of these fractions. 

  

6.3 Fund flows 

Given the heterogeneity in the measures it is interesting to study the response of investor flows to 

the various classical measures and their components. The flow is measured following Sirri and 

Tufano (1998) as the change in total net assets in excess of that implied by a fund’s return. The 

first set of tests follow Berk and van Binsbergen (BvB, 2016), regressing the signs of annual new 

money flows on the signs of the performance measures over the past year. The performance 

measures are estimated and averaged over the past year, using the “up-to-t” version of the Haj10 

estimator that uses data no closer than 13 months prior to the flow date.  

     Table 6 reports slope coefficients and t-ratios for the panel flow-on-performance regressions, 

with or without a set of fund level control variables. We control for several fund characteristics, 
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including the fund expense ratios and turnover. These latter two are potentially important if 

investor flows respond to after-cost performance, while holdings-based measures reflect before-

cost performance. Similar to previous studies we find that for a given before cost performance, the 

flow response is less if the fund has a higher expense ratio or a higher turnover, both indicating 

lower after-cost returns to investors. However, these control variables have a small impact on the 

coefficients and are not shown in the table.17 We also report a transformation of the coefficients 

from BvB, which measures the probability that the signs of the abnormal returns and the 

subsequent flows match. Details are in the table header. To compare with the earlier studies we 

include the CAPM in these tests, which we implement as a version of the FM measure with only 

a single market factor.  

    In the first panel of Table 6 the original holdings-based measures are used. All of the 

coefficients have t-ratios larger than 4.5. The probabilities of matching signs are all in the 54-58% 

range. This is similar to BvB, who found a 57-63% range across a different set of models. Barber, 

Huang and Odean (BHO, 2016) also conclude that none of the models explain a large fraction of 

fund flows.  

    Del Guercio and Tkac (2002), BvB and BHO find that investor flows respond more strongly 

to relatively simple measures of fund performance. The CAPM is the simplest measure here, but 

it does not perform the best. All the models are close, but the CAPM beats GT, and the DGTW 

measure performs the best at predicting flows. The FM measure betas the CAPM but not DGTW. 

The FM, GT and DGTW measures are not directly examined by BvB or BHO. 

    Table 6 shows that the TSA components of the measures produce smaller flow responses than 

                                                 
17 The control variables in Table 6 that present t-ratios above two and their coefficient signs are: the fund expense 

ratio (<0), turnover (<0), a dummy variable for an aggressive growth style (>0), fund age (<0) and return volatility 

(<0). The signs all make sense, are consistent with previous research and are similar across the performance measures.  
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the original measures, with no t-ratio larger than 2.5 and all the fractions correct less than 53%.  

The AAR components elicit a greater response than the TSA component for GT and DGTW, but 

a smaller response than TSA for FM and CAPM, where it is not statistically significant.  

   The striking results appear when we remove the passive buy-and-hold drift from the AAR. The 

net AAR dominates the TSA for every model, and the t-ratios on net AAR are larger than 4.7 in 

every case. Even in the FM measure the net AAR performs about as well as GT or DGTW. The 

net AAR component of performance elicits a strong flow response. The bottom rows of Table 6 

show results for the buy and hold drift component of the measures. None of the coefficients are 

statistically signficant and they are all economically small. It seems that investor flows do not 

respond to the passive buy-and-hold drift.  

    The panel regressions in Table 6 capture both time-series and cross-fund variation in investor 

flows and fund performance. We estimate versions of this table including fun dummy variables, 

so that the coefficients focus on the time-series covariation between the flows and performance, 

averaged across funds. Most of the results are little changed, except that the four significant cases 

using the TSA performance fall out. We also estimate a version of the table with time dummy 

variables, so that the coefficients focus on the cross-sectional covariation between flows and 

performance, averaged through time. In this case the original measures appear to be even stronger 

flow predictors, especially the FM and CAPM which now sport t-ratios larger than ten and 

fractions correct larger than 60%. In no case does a TSA component of performance now deliver 

a t-ratio in excess of two. The AAR component is much stronger than before with t-ratios now 

larger than 4.5 even for the FM and CAPM. The results for the net AAR are quite similar to those 

in Table 6, although the buy and hold drift component becomes significant for the FM measure 

where it was not before. Overall, these results say that investor flows respond to the classical 
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measures, especially their differences across funds, and that very little of this has to do with the 

TSA component of performance. The AAR and especially the AAR net of the passive buy-and-

hold drift, are strong predictors of investor flows into mutul funds.  

    We also conduct a flow-performance analysis similar to Sirri and Tufano (1998). Each 

performance measure is used to form ranked performance within each of five performance 

quintiles. A piecewise linear regression allows for a different slope, measuring a different 

sensitivity of flows to the performance, in each performance range. We estimate models with and 

without controls for other fund characteristics and report the tables in the Internet Appendix. 

    Ippolito (1992) finds a negative flow response to below average performance and a positive 

response to above average performance. Sirri and Tufano (1998) find a weak negative or zero 

coefficient for the low performance quintile, mixed signs in the intermediate quintiles and strong 

positive slopes in the high performance quintiles under various measures of performance. Our 

findings using the classical holdings-based measures are roughly similar. Five of the 15 slopes for 

the three models (GT, DGTW and FM) and five quintiles have absolute t-ratios larger than two. 

Using the AARs as the performance measures nine of the 15 slope coefficients have t-ratios larger 

than two. The t-ratios for flow on performance in the top quintile of AARs is 4.86 for the DGTW 

measure.18 Using the AARs net of buy-and-hold drift, the results are even stronger and twelve of 

the 15 slopes have t-ratios above two. We conclude that the AARs net of the bias from buy-and-

hold drift elicit the strongest overall flow response.  

 

6.4 Control Variables 

This section illustrates the use of control variables in the panel regressions. The regression with a 

                                                 
18 We also examine regressions where the AAR is averaged over the previous three years, which produces similar 

but less statistically significant results.  
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control variable, Xi
t is: 

       ri
t+1 = ai + β wi

t + γ Xi
t + εi

t+1.          (18) 

  

The slope coefficient, β, is the conditional TSA given X, measuring the information in the 

weights about the future unexpected returns given the stock characteristics, Xi
t. The classical 

CWM is a conditional performance evaluation measure, but it conditions on macroeconomic 

information. We use the dividend yield of the stock as the control variable to illustrate. 

 The use of stock level control variables in the panel provides a simple way to ask if fund 

performance is “explained” by the characteristics of the stocks held by funds. This is a classic 

question in the literature. For example, Carhart (1997) and Wermers (2003) argue that much of 

the persistence in fund performance is explained by their holdings of momentum stocks. Zheng 

(1999) and Sapp and Tiwari (2004) argue that the “smart money” effect of Gruber (1996), where 

new money flows seem to earn higher returns in funds, is mainly due to the momentum effect in 

the stocks held. Sheng, Simutin and Zhang (2019) explain the relation between expense ratios and 

fund performance using the two new factors in the Fama and French (2015) five-factor model. 

Matalin-Saez (2020) argues that the relation of fund performance to their factor model R-squares 

(Amihud and Goyenko, 2013), is explained by the holdings of low R-square stocks. Table 7 joins 

this literature by showing that the fund level dividend yield relation to performance is 

significantly reduced by controlling for the dividend yields of the stocks held. 

 The Frisch-Waugh (1933) theorem applies to the estimation of Equation (18). We first 

demean the variables, accounting for the stock fixed effects. In the second step we regress the 

demeaned returns on the demeaned Xi
t and take the residuals, vri

t+1. We also regress the 

demeaned weights on the demeaned Xi
t and take the residuals, vwi

t. Let ur = Vec(ri
t+1-E(ri)), uw = 
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Vec(wi
t-E(wi)), ux = Vec(Xi

t-E(Xi)), where the expectations are estimated using the sample 

means. The second step regressions are ur = βr ux + vr and uw = βw ux + vw. The third step is to 

regress vr on vw to estimate the coefficient, β, in Equation (18). With scaling we regress 

(vw’vw/T) vr on vw. The OLS coefficient is (vw’vw/T)-1 (vw’vr/T) (vw’vw/T), which converges in 

probability to E((ur - βr ux )’(uw - βw ux )) = E(uw’ (ur - βr ux )) = Cov( w’; (r–E(r|X)).  

 With the Haj10 and DiffIV methods, we use instrumental variables instead of OLS, where 

the rolling demeaned variables are the instruments. Giles (1984) shows that the Frisch Waugh 

(1933) theorem holds for instrumental variables estimation. 

  Most of the earlier studies use a different approach. Factors are commonly formed from 

portfolios of characteristic-sorted stocks, the high minus low portfolio return differences are the 

new factors, and returns are adjusted using the new factors. For example, Carhart (1997) 

produces the famous four-factor model, where the new momentum factor is the return of high 

past return stocks less the return of low past return stocks.   

  A high-low portfolio is similar to a cross-sectional regression coefficient of returns on the 

characteristic (see Fama (1976), or Ferson, Sarkissian and Simin, 1999). Thus, the factor-

adjusted return is similar to a cross-sectional regression version of the second step above. 

Specifically, with OLS Fama-MacBeth (1973) style cross-sectional regressions, the factor 

adjusted return for characteristic Xi
t is rit+1 – (Σi rit+1 uxit)/(Σi uxit

2) Xi
t, and γt+1 = Σi rit+1 (uxit/Σi uxit

2) 

is the factor premium at time t+1. This is a portfolio of stock returns with weights equal to 

(uxit/Σi uxit
2). In the panel the adjusted return is rit+1 – (ΣtΣi rit+1 uxit)/(ΣtΣi uxit

2) Xi
t. The panel 

coefficient in (18) is γ = Σt γt+1 [ (Σi uxit
2)/(ΣtΣi uxit

2)], a weighted average of the Fama-MacBeth 

risk premiums over time. The weights are higher for months with greater cross-sectional variance 

in the Xi
t. Ferson and Harvey (1999) propose a similar weighting for improved efficiency in the 
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estimation of the average premium.      

    We use the dividend yield of a stock as the X variable in Table 7. The Brennan (1970) after-

tax CAPM predicts a positive premium associated with a stock’s dividend yield. The premium 

may not be captured by the factor models and therefore may appear in the stocks’ returns and risk-

adjusted returns.19 If there is a premium for dividend yield in the stock returns the models leaving 

it out could confuse the dividend premium with investment ability. We find correlations across the 

stocks in our sample, between their alphas and their dividend yields, of 0.074 in the DGTW model 

and 0.258 in the Carhart (1997) model. Controlling for the dividend yield, we measure 

performance that is not associated with a market premium for holding high yield stocks.   

    Table 7 shows that for the median dividend yield fund, controlling for stocks’ dividend yields 

has little influence on the slope coefficients, except in the DGTW measure where there is a large 

statistical impact. There is little impact on the DGTW TSA, so controlling for stocks’ dividend 

yields mainly reduces the AAR component of the DGTW measure. The right hand columns of the 

table, labelled HML, ask if there are differential effects of the control variable for the high versus 

low dividend yield funds. The dividend yield control reduces the GT measure more for the high-

yield funds. The dividend yield control variable also removes the superior performance of the high-

yield funds under the original FM and DGTW measures. 

 

5.6 Persistence 

Early studies of fund performance persistence (e.g., Carlson (1970), Hendricks, Patel and 

Zeckhauser, 1993) found evidence of “hot hands,” where past relatively good fund performance 

predicts good future performance. The early literature confronts the effects of data base biases 

                                                 
19 The empirical evidence on the cross-sectional relation between stock returns and dividend yields is mixed. See 

Chen, Grundy and Stambaugh (1990) for evidence and a review of earlier studies. 
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such as survival bias (Ross, Ibbottson, Goetzmann and Brown (1992), Hendricks, Patel and 

Zeckhauser (1997), Carpenter and Lynch, 1999). Carhart (1997) revisits performance persistence 

using an early version of the then newly-developed CRSP mutual fund data base; its premier 

feature being the attempt to include the dead funds, and thus control survivorship bias. Carhart 

argued that persistence is related to individual stock momentum in fund holdings, and found that 

controlling for a momentum factor removes most of the persistence in mutual funds’ reported 

return performance. The remaining persistence concentrates in the poorly performing funds (see 

also Brown and Goetzmann, 1995). The persistence of poor performance is also found in pension 

funds by Christopherson, Ferson and Glassman (1998) and in hedge funds by Agarwal and Naik 

(2000) and others.  

     The literature distinguishes short term from long term performance persistence. Most of 

the early studies describe persistence over one to five-year future horizons. Berk and van 

Binsbergen (2015) find persistence using decile-sorted gross-of-expense ratio alphas, multiplied 

by the assets under management (TNA), which they denote as value added. Bollen and Busse 

(2004) use daily fund return data to estimate timing and selectivity measures, and find short-term 

performance persistence in both measures. Sorting performance into deciles, the top performing 

decile generates just under 40 basis points of abnormal return over the next quarter, but the 

performance dissipates quickly in the future. 

     We examine persistence in performance in Table 8, where funds are sorted into deciles 

using the up-to-t versions of the holdings-based performance measures, their TSA and net-AAR 

components. We are curious as to which component is the better predictor. We examine the 

future performance of the portfolios measured by the DGTW gross alphas in Panel A. Carpenter 

and Lynch (1999) examine various statistics for measuring persistence using simulations and 
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find that the t-ratio for the extreme decile return differences, HML, is attractive on the basis of 

power and robustness. The time series averages of the decile HML portfolio excess returns are 

reported. The t-ratio for the mean is computed following Fama and MacBeth (1973), adjusted for 

autocorrelation as described previously. 

    Table 8 finds some persistence in performance when sorting on the original measures. The 

HMLs after sorting on the original measures are more than 1.6% per year for the first quarter, a 

similar magnitude as in Bollen and Busse (2004), dissipating over longer horizons, with few 

significant beyond the first year.  

    Table 8 shows that sorting on AAR produces similar results as sorting on the original 

measures. Sorting on the TSA component provides little evidence of persistence, suggesting that 

the information in TSA is short-lived, relative to the information in AAR. 

    We also examine future performance as the realized value added measure of Berk and van 

Binsbergen (2015). These are the DGTW alphas multiplied by the TNA each month, denoted Sit. 

The time series averages of the decile portfolio values, (1/T) Σi Sit are examined. The t-ratio for 

the mean is computed following Fama and MacBeth (1973), adjusted for autocorrelation. The 

results are shown in Panel B of Table 8 in millions of dollars. (We also examine constant dollars 

using a CPI deflator and the results are similar.) For the first quarter after sorting the HML 

difference in value added is 0.59 to 0.82 million dollars, but marginally significant only for the 

GT measure, and dissipating beyond the first quarter. Again, sorting on the AARs is about as 

informative as sorting on the original measures, and the TSA produces no information about the 

future performance.20    

                                                 
20 A caveat, most relevant here for the DGTW measure, is that sorting on and measuring the future performance 

with the same measure can induce spurious persistence if there is a persistent bias in the measure (e.g., a missing 

dividend yield factor). 
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6.6 Robustness 

This section briefly summarizes a number of robustness checks and additional analyses. More 

details are in the Internet Appendix. We ask if grouping funds by proxies for active fund 

management reveals differrences in their TSA, AAR or in their net AAR. Previous studies suggest 

several proxies for active management. We sort funds each month by the different active 

management measures, calculate performance for each fund for the next month like in Table 4 and 

average across the funds in each group. The sorts broadly suggest that active management is much 

more strongly associated with TSA than with AAR.  

     We examine how the performance measures are related to other fund characteristics, 

regressing the monthly measures on a set of lagged fund characteristics. The most striking finding 

is a strong negative relation of TSA to a measure of a fund’s tendency towards a buy-and-hold 

strategy. We also find a positive relation of performance to fund dividend yield. This appears for 

all of the measures, but is weaker in the TSA and in GT, indicating that the effect concentrates in 

the AAR component of performance. This motivates our use of dividend yield as the stock level 

control variable in Table 7.  

   We compare the ability of the various holdings-based performance measures and their 

embedded AARs to detect funds whose holdings pick stocks that will subsequently outperform. 

For these predictive exercises we estimate the measures for each month using an “up-to-t” 

version of the Haj10 estimator, so that the performance measure uses only data available before 

the forecast date. We find no evidence that any of the measures can predict the future stocks’ 

abnormal performance.  

    Many of the results use monthly stock returns and monthly weights constructed from 
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quarterly holdings data. We argued that the performance measures should be very similar using 

quarterly or monthly weights, when the monthly weights update the quarterly using returns data. 

Tables in the internet appendix confirm that this is the case.  

    Using quarterly data the same price appears in the weight and in the denominator of the future 

return calculation, so an error in the price might induce a spurious negative relation between the 

lagged weight and the future return. In momentum studies (e.g. Jegadeesh and Titman, 1993) it is 

common to skip a day between the formation period and the future return calculation interval to 

handle such concerns. In a similar spirit the Internet Appendix uses 29-day returns on the left hand 

side of the regressions, skipping a day relative to the price data in the weights. The DGTW 

measures are somewhat smaller using the 29-day returns, but otherwise the results are similar. 

     We also examine the impact of how the returns are demeaned in the Haj10 approach; in 

particular whether it matters if the fund is actually holding the stock during the period used to 

demean. In one case demeaning uses only stock-month returns where the fund holds the stock and 

in the other, the demeaning uses only stock-month returns where the fund does not hold the stock. 

The results are similar. 

 

7. Conclusions 

Holdings-based portfolio performance measures are panel regressions of future stock returns on 

lagged portfolio weights. We illustrate how clustered standard errors, fixed effects and control 

variables apply. The panel regression faces a lagged stochastic regressor bias, similar to that 

described by Stambaugh (1999) and Hjalmarsson (2008, 2010), when stock fixed effects are 

included. We evaluate several ways to address the bias using simulations, and find two bias 

correction methods that work well.  
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   Stock fixed effects in the model isolate the time-series predictive ability in portfolio weights 

(TSA) from the average ability (AAR). TSA is the ability of current portfolio weights to predict 

future returns. AAR appears when the long term asset allocation policy results in portfolio 

weights whose average values are higher for higher alpha stocks. Funds that use dynamic 

strategies, such as market timing funds, likely focus more on TSA performance. Quantitative 

portfolios with a policy of sorting on stocks’ characteristics at low cost may have greater AAR. 

Differences in the classical performance measures across stocks are mainly driven by the TSA 

for some measures and by the AAR for others, suggesting that in practice users may wish to 

focus on different measures for different types of funds. 

  We illustrate the use of control variables in the performance regressions. Stock level 

control variables provide a natural way to address a common question in the literature, as many 

studies ask to what extent fund performance is explained by the characteristics of the funds’ 

holdings (e.g., Carhart (1997), Sapp and Tiwari (2004) and others cited above). Our example 

joins this literature by showing that the fund level relation of performance to dividend yield is at 

least partially controlled by the dividend yields of the stocks held. 

 AAR contains an effect we call the buy-and-hold drift. Buy-and-hold weights drift towards 

the stocks with higher average returns during an evaluation period. Because average returns and 

alphas in the popular models are highly correlated across stocks, buy and hold weights drift 

towards the high alpha stocks, and this shows up as positive AAR. AAR appears in simulated 

buy-and-hold and momentum strategies, and also appears in index funds. We remove the passive 

buy-and-hold drift from the AAR component of the classical performance measures, and we find 

that the active net AAR elicits a stronger new money flow response from fund investors and 

better predicts future fund returns.  
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In addition to our methodological contributions, we contribute to the empirical evidence on 

performance using holdings-based performance measures. We find that the before cost TSA is 

not positive for the average equity fund. The net AAR, after adjustment for the passive buy-and-

hold drift, is also zero or negative.  

Future research can use our methods to refine the evidence based on holdings-based 

performance measures. For example, it should be interesting to study TSA and AAR in the 

performance of hedge funds, bond funds, international mutual funds, and other managed portfolios 

for which holdings data are available. The distinction between TSA and AAR provides a window 

into short term versus long term fund investment decisions. Future studies can use our insights to 

explore this and other issues.  
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Appendix 

A.1 Components of Performance 

Brinson, Hood and Bebower (BHB, 1986) provide a decomposition of pension fund returns using 

the asset classes stocks, bonds and cash. Each asset class i has a policy return, riB. For the equity 

style mutual funds examined here, it makes sense to interpret asset classes in terms of investment 

style, and we use the equity style boxes of DGTW. There are 125 value-weighted, and thus passive 

returns in the (5x5x5) styles. This can be represented as an N-vector, where each of the N stocks 

held by a fund is assigned one of the style benchmark returns, rBt+1 = rt+1
D. BHB describe the actual 

portfolio weights of a fund in style i, which we denote wait = Σjεi wjt, where wjt is the weight in 

stock j at time t, and the summation is over the stocks in style i. BHB describe a fund’s policy 

weight, wiB, for asset class i, as the constant full-sample (10-year) average weight of the fund’s 

actual weights in the class, wiB = (1/T)Σt wait, or in population wiB = E(wai). The policy return of 

the fund is then rBt+1 = Σi wiB riBt+1. The fund earns an actual (active) return in each asset class, rait+1 

= Σjεi wjt rjt+1 / Σjεi wjt, where we normalize the weights in the stocks in each class to sum to one. 

The other components of a fund’s performance in BHB are: 

 

                        Timing: Σi (wait - wiB) riBt+1 = Σi (wait – E(wai)) riBt+1   (A.1)                           

Selection: Σi wiB (rait+1 - riBt+1) 

 

The expected value of the BHB timing term is TSA applied at the asset class level, a version of 

benchmark or style timing. The expected value of the selection term corresponds to E(w)’α, or our 

AAR, at the asset class level. 

   BHB find that the normal or policy return, Σi E(wai) riBt+1, applying the average weights to the 
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passive policy returns, represents the lion’s share of fund portfolios’ average returns and variances 

of quarterly returns. However, Jahnke (1997) points out that the cross-sectional variance of the 

policy returns is much smaller than the cross-sectional variance of funds’ realized returns, so the 

policy return does not explain much of the cross-section of realized returns. Indeed from Brinson, 

Singer and Beebower (BSB 1991, Table III) the ratio of the cross-sectional variances of policy 

returns to total returns is only (0.49%/1.75%)2 = 7.8%. From BSB (Table 6) the ratio of the cross-

sectional variances of policy returns to total returns is only (0.22%/1.43%)2 = 2.4%. However, the 

sum of the policy return and the selection return does explain the lion’s share of the cross-sectional 

variance in fund returns. The timing component is relatively small. Again from BSB (Table III) 

the ratio of the cross-sectional variances of policy returns and selection returns to total returns is 

(1.66%/1.75%)2 = 89.9%. From BSB (Table 6) the ratio of the cross-sectional variances of policy 

returns plus selectivity returns to total returns is (1.33%/1.43%)2 = 86.5%.   

    In summary, the evidence of BHB, BSB and Janke (1997) suggests that the average 

magnitude of E(w’r) is close to E(w)’E(rB), the normal or policy return. Janke’s interpretation says 

that the cross sectional variation in E(w’r) is mostly captured by the cross-sectional variation in 

selection plus policy. The expected value of BHBs selection return corresponds to AAR at the 

asset class level.  

    In DGTW (1997) the holdings-based portfolio return, wt’rt+1, is decomposed into the sum of 

three terms, denoted as Characteristic Selectivity (CS), Average Style (AS) and Characteristic 

Timing (CT). We study the most popular CS term in our paper, denoting it as the DGTW measure. 

DGTW (1997) find little evidence that funds have nonzero CT. This section describes how our 

TSA and CSA are related to the three DGTW measures. Their definitions, using our notation, are: 
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 CSt = wt’(rt+1 - rt+1
D(t)), (A.2) 

      CTt = wt’rt+1
D(t) - wt-k’rt+1

D(t-k), 

                               ASt = wt-k’rt+1
D(t-k) 

 

where rt+1
D(j) is the vector of DGTW benchmark returns, when the benchmarks for the stocks are 

assigned at time j. The sum of the three components is wt’rt+1, and the time-series averages of the 

components are reported. 

 

A.2. Relation Among the Components 

The BHB and DGTW decompositions are similar but not identical. If we interpret the lagged 

weights and rt+1
D(t-k) in DGTW as proxies for the policy weight and return, then the BHB timing 

measure corresponds to the DGTW characteristic timing. Under that interpretation the DGTW AS 

measure corresponds to the policy return in BHB. 

     DGTW assume that the portfolio weights at time t-k are independent of returns at time t+1, 

where k=12 months. If we also assume that the assignment of a stock to one of the 125 benchmark 

portfolios is relatively stable from year to year, so that D(t) ≈ D(t-k), then from (A.2) we can write 

E(CT) = E(wt’rt+1
D(t)) - E(wt-k’rt+1

D(t-k)) = Cov(wt’; rt+1
D(t)) - Cov(wt-k’; rt+1

D(t-k)), as the two 

E(w)’E(rD) terms cancel. If the weights at t-k are unrelated to returns at t+1 the second covariance 

is zero, and we have E(CT) = Cov(wt’; rt+1
D(t)). This is a version of benchmark timing, and 

corresponds to the BHB timing return.  

     The selectivity components in the studies differ. The DGTW CS measure uses the actual 

fund weight while the BHB selectivity measure uses the expected weight. The expected value of 

the BHB selectivity measure is AAR at the asset class level. The difference between the expected 
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values of these two measure is a covariance between the actual weights and the future actual returns 

in excess of policy returns. This covariance is the TSA for the abnormal returns.  So, the DGTW 

CS measure includes TSA + AAR, while the BHB selectivity measure is all AAR.  
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Table 1:  Summary Statistics  

 

Panel A: Descriptive statistics at the fund level 

  

  Mean  Std  Max  Min 

TNA ($million) 684  2102  44496  1.03 

Number of stocks 114  198  3317  10 

Return Gap (%) 0.03  0.23  1.85  -2.60 

Active Weight      0.40  0.10  0.90  0.01 

Return σ 0.01        0.01  0.21  0.00 

R-squares 0.87     0.14  0.99  0.06 

  ρ1   0.94  0.04  1.00  0.20 

  ρ2   0.89  0.07  1.00  -0.03 

  ρ3     0.83  0.11  1.00  -0.53 

  ρ4       0.78  0.13  1.00  -0.52 

  ρ5              0.74  0.15  1.00  -0.52 

Error Corr 0.00  0.02  0.24  -0.19 

 

 

Panel B: AR coefficients of the weights at the stock level 
  

  Mean  Std  Max  Min 

  ρ1   0.90  0.04  1.00  0.26 

  ρ2   0.81  0.07  0.99  0.20 

  ρ3       0.73  0.09         0.99  -0.55 

  ρ4       0.66  0.10     0.99  -0.50 

  ρ5      0.59  0.12  0.99  -0.39 

      
In panel A, for each fund in the sample we compute the time-series average of its total net assets (TNA) in 

millions of dollars, the average number of stocks held, the return gap and the active weight. We compute 

the sample standard deviations of the monthly reported fund returns, σ, and the R-squares of monthly factor 

model regressions in the Carhart (1997) four-factor model.  We also compute the sample autocorrelations 

of the funds’ monthly portfolio weights, ρj, averaged across the holdings, at various lags j, j=1,…5. The 

means, std, max and min are taken across the funds in the sample. Error Corr is the correlation between the 

errors of the portfolio weight autocorrelation regression and the panel regression of future stock returns on 

the weights, averaged across the holdings. The sample period is from 1984 to 2012, and the number of 

funds is 3596. In Panel B, we compute the autoregression for the weights for each stock and average across 

the funds that hold the stock. The descriptive statistics are calculated at the stock level.   



56 

 

Table 2: Illustration of Buy-and-Hold Drift 

Panel A: Stocks held by Mutual Funds 

   DGTW   FM  CAPM  C4 

Beginning Weights:         

Highest Alphas  3.87  2.98  2.23  3.84 

Lowest Alphas  3.99  2.20  3.67  2.57 

          

Ending Weights:          

Highest Alphas   2.29  2.45  3.57  3.23 

Lowest Alphas  0.84  1.16  0.96  1.25 

 

Average Weights: 
        

Highest Alphas  2.54  3.06  3.15  3.67 

Lowest Alphas  1.62  0.91  0.95  0.93 

 
  AAR              0.28     0.42       0.95     0.93 

--------------------------------------------------------------------------------------------------------------------- 

Panel B: Stocks of the Standard and Poors 500 Index 

Beginning Weights:         

Highest Alphas  2.71  4.65  3.52  4.2 

Lowest Alphas  2.13  2.73  4.57  3.97 

          

Ending Weights:          

Highest Alphas   8.02  4.27  4.64  5.74 

Lowest Alphas  1.19  2.62  2.14  2.07 

 

Average Weights: 
        

Highest Alphas  3.32  5.29  5.03  5.58 

Lowest Alphas  2.13  2.95  3.71  3.64 

 
  AAR             0.25      0.36        0.90     0.89 

--------------------------------------------------------------------------------------------------------------------- 

This table records the portfolio weights on the 25 highest and lowest-alpha stocks for buy-and-hold 

strategies. In Panel A the strategy holds all stocks held by a sample of mutual funds, starting with aggregate 

total net asset value weights. In Panel B it starts with the stocks in the Standard and Poors 500 index, 

beginning with the market capitalization weights. The beginning date is January of 1980. The ending date 

is December of 2012. Different models for alpha are the columns, including models from Daniel, Grinblatt, 

Titman and Wermers (DGTW, 1997), the stochastic discount factor model of Ferson and Mo (FM, 2016), 

the Capital Asset Pricing Model of Sharpe (CAPM, 1964) and the four-factor model of Carhart (C4, 1997). 

The units are annual percent. AAR is E(w)’α for the buy-and-hold strategies. 
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Table 3: Simulations to Address Lagged Stochastic Regressor Bias 

 

--------------------------------------------------------------------------------------------------------------------- 
Panel A: Alternative Holdings-based Performance Estimators in Predictive Panels 

 

True OLS    OLS with intercept Haj2008 Within Diff Diff IV          Haj10 

-0.29 0.13 -0.16 -0.25 -0.37 -0.44 -0.30 -0.30 

-0.19 0.17 -0.01 -0.14 -0.32 -0.22 -0.22 -0.20 

0.06 0.08 0.04 0.17 -0.02 0.00 0.04 0.05 

0.40 0.48 0.39 0.42 0.37 0.35 0.40 0.41 

0.58 0.92 0.58 0.60 0.46 0.40 0.60 0.58 

 

Panel B: Accuracy in Estimating AAR 

 

 DGTW    DGTW FM FM GT GT           

 True AAR    Simulated True AAR Simulated True AAR Simulated           

 0.54 0.57 -0.31 -0.28 0.03 0.02  

 0.39 0.35 -0.14 -0.13 0.03 0.02  

 0.22 0.26 0.39 0.43 -0.02 0.01  

 0.21 0.17 0.46 0.49 -0.05 -0.02  

 0.47 0.40 0.76 0.84 -0.05 -0.04  

 

 
The table reports the average across 1000 simulation trials, of estimated holdings based performance measures. The 

units are percent excess return per quarter. True denotes the actual values of the measures used to calibrate the 

simulations, bootstrapping from versions of Equations (9) and (12). The OLS estimates are the slope coefficients in 

the baseline panel regression of (7), Diff IV is the differenced IV estimator, Diff is the classical difference estimator 

of the regression (9) with stock dummies and Within is the classical within-group (least squares with dummy 

variables) estimator. OLS with intercept is based on a model with a common intercept. Haj10 is the bias adjusted 

estimator of Hjalmarsson (2010) and Haj2008 is the bias adjusted estimator of Hjalmarsson (2008). GT is the weight 

change measure of Grinblatt and Titman (1993), DGTW is the measure of Grinblatt, Titman and Wermers (1997). 

CWM is the conditional weight measure of Ferson and Khang (2002). FM is the stochastic discount factor measure 

of Ferson and Mo (2016). In panel B the “true” parameter values are the estimates of AAR from single-fund 

simulations assuming all the stocks exist in each period. These are the differences between the OLS coefficients 

and the Haj2010 coefficients. The average of the AAR estimates from 1,000 bootstrap simulations, resampling from 

these data, are shown in each “simulated” column.  
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Table 4: Cross-sections of Holdings-based Performance Measures  

Panel A:  Grinblatt Titman Portfolio Change Measure 

 

Fund Quintile: GT TSA AAR 

Low -3.49 -2.34 -0.98 
2 -0.72 -0.71 -0.14 
Median 0.19 0.10 -0.07 
4 1.20 1.04 -0.08 
High 4.19 4.15 -0.23 
    
HML 7.69 6.48 0.74 

      

Panel B:  DGTW Characteristic Selectivity Measure 

 

Fund Quintile: DGTW TSA AAR BH Net AAR 

Low -3.65 -1.38 -2.27 -1.14 -1.13 
2 -0.80 -1.03 0.23 0.62 -0.38 
Median 0.04 -0.67 0.70 0.85 -0.14 
4 0.82 -0.64 1.46 1.29 0.17 
High 2.97 0.02 2.95 2.42 0.52 
      
HML 6.61 1.40 5.21 3.56 1.65 
      

 

                  Panel C:  Conditional Weight-based Measure 

 

Fund 

Quintile: 

TSA              DSel      Timing 

Low -2.93                      -0.07 -1.28   

2 -0.87 0.28 -0.56   

Median -0.07 0.19 -0.11   

4 0.63 0.50 -0.01   

High 3.13 0.70 0.79   

      

HML 6.05 0.77 2.07   
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Table 4, page 2 

 

Panel D:  Ferson and Mo Stochastic Discount Factor Measure 

  

Fund Quintile: FM TSA AAR BH Net AAR 

Low -19.36 -2.19 -17.18 -15.87 -1.31 

2 -5.29 -2.46 -2.83 -2.10 -0.73 

Median -1.30 -1.70 0.41 1.47 -1.07 

4 1.56 -1.33 2.89 3.76 -0.87 

High 8.36 -1.26 9.62 10.10 -0.47 

      

HML 27.72 0.92 26.80 25.97 0.83 

  

The various performance measures are estimated for each fund using a panel regression and 
its full sample. GT is the portfolio change measure, DGTW is the DGTW characteristic 
selectivity measure, FM is the Ferson and Mo SDF-based measure and CWM is the conditional 
weight based measure. Funds are sorted into five groups on the basis of the original measures, 
shown in the first column. The third quintile is the Median quintile. The second column, TSA, 
indicates an average of the estimates for the funds in that quintile with stock fixed effects in 
the panel regression and using the Hjalmarsson (2010) method. For the GT measure, this is 
followed by the components of TSA broken down with the DGTW benchmark as dynamic 
selection (DSel) and benchmark timing (Timing). The fifth column in Panel A and the third 
column in panels B and D is the AAR extracted with the fixed effects. BH is the buy-and-hold 
drift component of the AAR. The net AAR subtracts the buy-and-hold drift from the AAR. The 
units are percent per year. HML is the difference between the top and bottom quintile 
measures. The sample period is from 1980 to 2012, and the number of active funds is 3596.  
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Table 5: Multiple Comparisons   
 

Models          GT      DGTW        FM 

         Left tail  Right tail  Left tail  Right tail  Left tail  Right tail 

Original Measures: 

Critical value     -2.64   2.70   -3.35   5.87    -4.22   5.83 

Percent Exceeding   7%   7%   4%   1%    2%   1% 

Fractions Nonzero   2%   11%   5%   6%    6%   0% 

TSA: 

Critical value     -2.59   2.42   -3.29   3.51    -3.27   3.66 

Percent Exceeding   15%   7%   6%   2%    6%   2% 

Fractions Nonzero   5%   9%   32%   2%    33%   2% 

Net AAR: 

Critical value     -2.12   1.26   -5.15   4.05    -5.00   4.11 

Percent Exceeding   37%   53%   2%   3%    3%   3% 

Fractions Nonzero   15%   4%   15%   11%    26%   9% 

TSA + net AAR: 

Critical value     -2.60   2.18   -5.72   4.79    -5.88   4.60 

Percent Exceeding   19%   10%   1%   1%    1%   1% 

Fractions Nonzero   9%   9%   30%   3%    40%   1% 

 

This table imposes the null hypothesis that TSA is zero by randomly scrambling the returns for a given 

fund’s stocks through time, using the original porfolio weights to measure the performance. To remove 

the AAR relation between average weights and stocks’ alphas, we randomly scramble the returns for a 

given fund-month across the stocks held by the fund that month, using the original portfolio weights to 

measure the performance. Each experiment generates a critical value for the performance measure, such 

that 5% of the estimates under the null exceed the critical value. This table shows the critical values and 

the fractions of funds in the original data that exceed the critical values. The standard error of these 

fractions is about 4.4%. The rows labelled Fractions Nonzero present estimates of the fractions of funds 

with positive and negative performance using false discovery methods following Barras, Scaillet and 

Wermers (2010). 
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Table 6: Fund flows and Performance Measures  

Models        GT    DGTW    FM    FM-CAPM 

Controls?       N  Y   N  Y    N  Y   N  Y 

Original Measures: 

Slope βFε       8.61 8.25  16.02 15.56   13.27 11.78  10.28 9.69 

t-ratio        9.63 8.47  12.01 11.59   8.05 7.72  4.52 4.59  

Frac Correct      54.31 54.12  58.01 57.78   56.63 55.89  55.14 54.85 

TSA: 

Slope βFε       1.48 1.71  3.63 3.02   4.68 2.86  2.91 1.79 

t-ratio        0.81 1.29  2.33 2.43   2.04 2.01  1.35 1.33 

Frac Correct      50.74 50.86  51.81 51.51   52.34 51.43  51.45 50.89 

AAR: 

Slope βFε       4.58 4.60  7.32 6.96   3.23 1.94  1.08 0.22  

t-ratio        4.75 5.74  11.02  13.11  1.24 1.06  0.40 0.11 

Frac Correct      52.49 52.30  53.66 53.48   51.61 50.97  50.54 50.11 

Net AAR: 

Slope βFε       4.63 4.53  5.45 4.70   6.10 5.13  5.82 5.09 

t-ratio        6.03 6.67  6.65 7.08   4.77 5.73  5.22 6.43 

Frac Correct      52.32 52.26  52.72 52.35   53.05 52.26  52.91 52.54 

BH Drift: 

Slope βFε       0.79 0.91  0.70 1.42   0.06 -0.82  -0.93 -1.66 

t-ratio        0.66 0.99  0.80 1.85   0.02 -0.44  -0.36 -0.90 

Frac Correct      50.39 50.45  50.35 50.71   50.03 49.59  49.53 49.17 

 

The sign of new money flows is regressed in a panel on the sign of abnormal performance for various models and 

performance components. The coefficient on performance is βF . The original measures are calculated from the “up-

to-t” version of the Haj10 estimator and use data to month t-13 relative to the flows. The models and their 

components are defined in the previous tables. Frac Correct is (100 + βFε)/2, and indicates the probability that the 

signs of the flows and performance match.  
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Table 7: Controlling for Dividend Yield  

Models        Low D/P  Median    High D/P  HML   

D/P Controls?     N  Y   N  Y    N  Y   N  Y  

GT: 

Classical measure    0.13 0.12  0.09 0.06   0.16 0.05  0.03 -0.07 

t-ratio        2.17 2.91  2.29 2.47   3.82 1.53  0.64 -2.71  

TSA: 

Slope β        0.12 0.12  0.07 0.07   0.10 0.04  -0.02 -0.08 

t-ratio        2.40 2.68  1.86 2.34   2.75 1.67  -0.67 -2.90 
 

DGTW: 

Classical Measure    -0.05 -0.13  -0.01 -0.14   0.17 -0.09  0.22 0.04 

t-ratio        -1.36 -4.67  -0.46  -8.37   8.27 -8.49  5.06 1.28  

TSA: 

Slope β        -0.02 0.03  -0.03 -0.00   0.03 -0.01  0.05 -0.04 

t-ratio        -0.54 0.94  -1.01 -0.14   1.17 -0.70  1.66 -2.17 

 

FM: 

Classical Measure    -0.06 -0.09  0.05 -0.07   0.36 0.02  0.42 0.11 

t-ratio        -0.20 -0.56  0.18 -0.53   1.41 0.20  3.80 1.72  

TSA: 

Slope β        -0.10 0.02  -0.07 0.00   0.05 -0.00  0.15 -0.02 

t-ratio        -0.95 0.31  -1.03 0.00   0.77 -0.02  2.21 -0.64 
 

Holdings-based performance measures are estimated with or without a control variable in the panel regression. The 

control variable is the dividend/price ratio (D/P) of a stock, defined using the previous 12-months dividends per 

share. The coefficient on the lagged portfolio weight is shown with its t-ratio. Funds are sorted into quintiles on the 

basis of their fund level average D/P ratios and the averages for selected quintiles are show. HML is the high-low 

quintile spread. GT is the Grinblatt and Titman (1993) measure, DGTW is Daniel, Grinblatt, Titman and Wermers 

(1997) and FM is the Ferson and Mo (2016) measure.  
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Table 8: Persistence 
Panel A: Predicting DGWT performance 

 

  
AAR   TSA   

Original 
Measure 

 

  HML T  HML T  HML T 

 GT 1.56 (3.23)  -0.08 (-0.26)  1.63 (3.08) 
1Q DGTW 1.70 (2.37)  -0.17 (-0.66)  1.87 (2.16) 

 FM 1.42 (2.04)  -0.23 (-0.71)  1.61 (1.91) 
          

 GT 0.92 (2.26)  -0.02 (-0.06)  0.85 (2.01) 
1y DGTW 0.82 (1.60)  -0.03 (-0.15)  0.81 (1.48) 

 FM 0.60 (1.18)  -0.16 (-0.63)  0.69 (1.29) 
          

 GT 0.38 (1.53)  0.03 (0.11)  0.29 (1.03) 
2y DGTW 0.18 (0.69)  0.05 (0.26)  0.06 (0.18) 

 FM 0.19 (0.78)  -0.19 (-0.86)  0.02 (0.06) 
          

 GT 0.29 (1.74)  0.20 (1.11)  0.30 (1.64) 
5y DGTW 0.35 (2.19)  0.27 (1.94)  0.34 (1.23) 

 FM 0.14 (1.15)  0.12 (0.96)  0.12 (0.52) 
 
Panel B: Predicting BvB Value Added 

 

 GT 0.77 (1.93)  -0.14 (-0.48)  0.82 (1.83) 

1Q DGTW 0.73 (1.56)  -0.14 (-0.51)  0.59 (1.11) 

 FM 0.73 (1.55)  -0.10 (-0.33)  0.76 (1.30) 

          

 GT 0.20 (0.54)  -0.19 (-0.68)  0.21 (0.56) 

1y DGTW 0.16 (0.41)  -0.37 (-1.67)  0.27 (0.58) 

 FM 0.06 (0.15)  -0.26 (-1.13)  0.39 (0.72) 

          

 GT -0.05 (-0.21)  -0.24 (-0.93)  -0.11 (-0.46) 

2y DGTW -0.02 (-0.08)  -0.37 (-1.23)  -0.03 (-0.15) 

 FM -0.11 (-0.64)  -0.38 (-1.28)  0.01 (0.04) 

          

 GT 0.06 (0.51)  0.16 (1.20)  0.02 (0.11) 

5y DGTW 0.06 (0.40)  0.08 (0.61)  0.14 (0.84) 

 FM -0.05 (-0.34)  0.04 (0.28)  0.19 (0.77) 

          

This table sorts funds into deciles on their up-to-t versions of the performance measures, their AAR and their TSA 

components. Future DGTW performance is examined in Panel A and future Value Added, which is DGTW alpha 

multiplied by the total net assets. The future periods indicated in the rows. GT is the Grinblatt and Titman 

measure, DGTW is the Daniel, Grinblatt, Titman and Wermers measure and FM is the Ferson and Mo measure. 

The HML is the difference between the DGTW alphas of the top and bottom decile, and the t-ratios are computed 

from the monthly return differences as in Fama MacBeth (1973), adjusted for serial dependence. 




