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1 Introduction

In many settings, there is a dearth of instruments, which hampers economists' understanding

of causal relations (Ramey (2016); Stock and Watson (2016); Nakamura and Steinsson (2018);

Chodorow-Reich (2019)). We propose a new way to construct instruments. In the economies we

study, many decisions are taken by a few large actors, such as �rms, industries or countries, whose

idiosyncratic shocks (for instance, productivity shocks) a�ect the aggregate ones.1 These idiosyn-

cratic shocks at the �rm, industry, or country level are valid instruments for aggregate endogenous

variables such as prices. We present a method to extract those idiosyncratic shocks, which allows us

to construct \granular instrumental variables" (GIVs). The GIVs then allow us to estimate causal

relations in a wide variety of economic contexts.

We �rst illustrate the idea in a basic static setup with supply and demand (Section 2). It

is a classic setting, and we show how GIVs allow for a novel estimation procedure: they yield

an instrument that allows us to estimate the elasticities of both supply and demand. Indeed,

idiosyncratic demand shocks to large �rms or countries give a valid instrument for changes in

demand { and thus allow one to estimate the elasticity of supply. They also allow us to estimate

the elasticity of demand: the idiosyncratic demand shock of a large �rm impacts the price, which

changes the demand of other �rms. We formalize these ideas and present a way to extract and

optimally aggregate idiosyncratic shocks, thus constructing optimal GIVs. Once the ideas are in

place, we show in Section 4 how the procedure can be extended to handle various extensions. We

also discuss conditions under which GIVs provide powerful instruments.

As an illustration, we study sovereign yield spillovers in the Eurozone during the period from

2009 to 2018. If a country has an increase in its sovereign yield spread (i.e., the yield on its

government debt minus the comparable yield for German sovereign bonds), how much does that

\spill over" to other Eurozone countries? We use GIVs (based on the impact of idiosyncratic country

shocks on the aggregate Eurozone yields) to estimate that spillover.

Uses of GIVs GIVs allow to uncover instruments, especially in �nance and macroeconomics,

where it is generally challenging to discover valid instruments. Typically, �nding an instrument is

an ingenious a�air that depends detailed historical knowledge and applies only to a speci�c time

period. GIVs can provide a more systematic approach to constructing instruments that can provide

an alternative when other instruments are unavailable.

Several recent papers have already applied GIV procedures to identify key parameters and

elasticities of interest. Chodorow-Reich et al. (2021) study the multiplier of idiosyncratic shocks

to an insurer's asset portfolio on the insurer's equity valuation. Camanho et al. (2022) study the

1Hence, economies are \granular:" their shocks are made of incompressible \grains" of economic volatility, the
idiosyncratic shocks that occur at the level of �rms or industries. This theme is laid out in Gabaix (2011), and
developed in Acemoglu et al. (2012), di Giovanni and Levchenko (2012); di Giovanni et al. (2014), and Carvalho and
Grassi (2019).
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impact of currency ows on exchange rates, using idiosyncratic shocks to fund-level rebalancing.

Galaasen et al. (2021) use GIVs to study how idiosyncratic shocks to �rms impact banks, and how

this spills over to other (small, non-granular) �rms borrowing from the same bank. In Gabaix and

Koijen (2021), we apply the methodology in this paper to measure the elasticity of the aggregate

stock market using idiosyncratic demand shocks to large investors or investor sectors. Schubert et

al. (2022) study the impact of concentration on wages and use idiosyncratic �rm-level shocks to

instrument for concentration. Kundu and Vats (2021) estimate how idiosyncratic �rm-level shocks

in one state a�ect economic activity in other states via their transmission through the banking

system. Ma et al. (2021) estimate how lenders' expectations about a city a�ect GDP growth in

the same geography. Lin (2021) estimates how payouts by non-�nancial public �rms a�ect deposit

ows to the banking sector.

Related literature We relate to a number of literatures. We o�er some brief pointers here and

we provide a longer discussion in Section D. An active literature discusses identi�cation strategies

in macro (Ramey (2016); Nakamura and Steinsson (2018); Chodorow-Reich (2019)). We add to it

by proposing to use GIVs, which are quite ubiquitous. There are lots of idiosyncratic shocks, and

GIVs allow us to construct them quite systematically.

A growing literature �nds that a sizable amount of volatility is \granular" in nature|coming

from idiosyncratic shocks to �rms or industries (Long and Plosser (1983); Gabaix (2011); Acemoglu

et al. (2012); di Giovanni and Levchenko (2012); di Giovanni et al. (2014); Baqaee and Farhi (2019);

Carvalho and Grassi (2019); Gaubert and Itskhoki (2021)). We provide tools to isolate idiosyncratic

shocks in the presence of common factors. Datasets used in this literature can be revisited GIVs

can be constructed to investigate causal relations.

The idea of using idiosyncratic shocks as instruments to estimate spillover e�ects has been

explored in several creative papers, as we discuss in more detail in Section D, such as Leary and

Roberts (2014b), Amiti and Weinstein (2018), Amiti et al. (2019) and Sarto (2018). However,

the typical approach has been to use idiosyncratic shocks to variables that are excluded from the

main estimating equation to construct instruments. We instead use the idiosyncratic shocks in

the estimating equation directly. In addition, we allow for more exible exposures to unobserved

common shocks in extracting idiosyncratic shocks.

Outline Section 2 introduces the GIV framework, centered around a simple model of supply and

demand. Section 3 gives a practical user's guide. Section 4 presents a number of extensions and

robustness checks. Section 5 gives an empirical application. Section 6 concludes. Long proofs are

in Section C of the online appendix.

Notations For a vector X = (Xi)i=1:::N and a series of weights wi, we de�ne Xw =
P

iwiXi.

With relative weights Si that satisfy
PN

i=1 Si = 1, we de�ne XE := 1
N

PN
i=1Xi, XS :=

PN
i=1 SiXi so
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that XE is the equal-weighted average of the vector's elements, XS is their size-weighted average.

We also commonly use the notation ui for shocks that are uncorrelated and with variance �2ui .

Then, we will de�ne the \inverse variance weights" or \quasi-equal weights" (using that term to

highlight that they are a small variant of equal weights): ~Ei :=
1=�2uiP
j 1=�

2
uj

, which satisfy
P

i
~Ei = 1,

and are equal to ~Ei =
1
N
when all the �2ui are equal. Then X ~E :=

PN
i=1

~EiXi: We use the notation

xe for an estimator of a variable x, or as a \proxy" for variable x, meaning a variable close to x

but not exactly equal to it, even asymptotically { we will make the di�erence clear. We use ET

for the sample temporal mean, ET [Yt] :=
1
T

PT
t=1 Yt; Ct for a vector of controls; � for a vector of

1's, I for the identity matrix, both of the appropriate dimension given the context; V Y for the

variance-covariance matrix of vector Yt (so V
Y = E [YtY

0
t ] if Yt has mean zero). In Section A, we

summarize more specialized notations.

2 The basics of Granular Instrumental Variables

2.1 A benchmark model

For clarity, we lay out a concrete economic model of the equilibrium in, for instance, the oil market.

There is a succession of i.i.d. economies indexed by t. Demand by country i at date t is Dit =
�QSi (1 + yit), where �Q is the average total world production, yit is a demand shift term, and Si is

country i's share of demand, normalized to follow
PN

i=1 Si = 1: The demand shift yit is

yit = �dpt + �i�t + uit; �i�t =
rX

f=1

�fi �
f
t ; (1)

where pt =
Pt� �P

�P
is the proportional deviation from �P , which can be thought as the average price of

oil, �d is the elasticity of demand, �t is a vector of common shocks, vector �i is country i's sensitivity

to the common shocks, and uit is the idiosyncratic demand shock by country i.

All shocks are i.i.d. across dates. Then, total world demand is Dt =
P

iDit = �Q (1 + ySt),

where ySt :=
P

i Siyit is the size-weighted average demand disturbance. We suppose that supply is

Qt = �Q (1 + st), where the supply shift st is

st = �spt + "t; (2)

where �s is the elasticity of demand and "t is a supply shock.

Then, to equilibrate supply and demand (Dt = Qt), the price must adjust so that �Q (1 + ySt) =
�Q (1 + �spt + "t), i.e., ySt = st, which gives

pt =
uSt + �S�t � "t

�s � �d
= �uSt + "pt ; (3)
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where � := 1
�s��d is the price impact of a demand shock uSt, and "

p
t :=

�S�t�"t
�s��d is made of aggregate

shocks. The equilibrium quantity produced is given by:

st = ySt =
�suSt + �s�S�t � �d"t

�s � �d
=MuSt + "st ; (4)

where the multiplier M := �s

�s��d is quantity impact of a demand shock uSt, and "
s
t :=

�s�S�t��d"t
�s��d

is made of aggregate shocks. We want to estimate the elasticity of supply and demand, �s and �d,

and their related quantities, � and M . A 1% demand shock leads to a �% price increase and an

M% supply increase.

Throughout this paper we will make the mild assumption that all our variables (such as �t; "t; ut =

(uit)i=1:::N) have �nite second moments and have been normalized to have zero mean. We allow "t

and �t to be correlated.

2.2 Introducing the GIV

We center our discussion on the estimation of �s, the elasticity of supply, and discuss the other

parameters below. The classic problem is that we cannot estimate �s by OLS. Indeed, a direct

regression supply on the price (as suggested naively by (2)) would be biased as "t and pt are

typically correlated.

The idea of the GIV is to use idiosyncratic shocks, uit, as instruments. We assume that the uit

are idiosyncratic, that is, they are uncorrelated with the common shocks (�t; "t). That is, for all i,

E [uit (�t; "t)] = 0, or in vector form with ut = (uit)i=1:::N ,

E
�
ut (�t; "t)

0� = 0: (5)

Now �rst suppose that an oracle gives us the uit's. Then, we could use those to instrument for

the price (see (3)), which would allow us to estimate for instance the supply elasticity (see (2)). In

practice, we do not have an oracle, so we need to estimate the uit's, or to construct some proxy u
e
it

for them that can serve the same purpose as the unobserved idiosyncratic shocks.2 We now show

that this is feasible.

The simplest case is when the factor structure (1) is only a \time �xed e�ect:" �i�t = �t. This

is the case that we recommend keeping in mind to build intuition. To handle more general cases,

we develop the theory under Assumption 1 below. We maintain it in Sections 2 and 3. In later

sections, we consider further generalizations.

2For instance, take the simple model where the econometrician observes yit = �t+uit. We cannot exactly recover
uit, but by forming ueit := yit � yEt one can recover ueit = uit � uEt. We shall call ueit a \proxy" rather than an
\estimate" of uit. Likewise, �

e
t := yEt = �t + uEt will be a \proxy" for �t. Section C.5 details this for more general

structures.
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Assumption 1 (Parametric factors). We know characteristics Xi (with dimension 1� r) for each
entity i, and the loadings are linear functions of those characteristics: �i = Xi

_� for some matrix _�

of dimension r� r. We suppose that the vector of loadings include, as a �rst vector, � = (1; : : : ; 1)
0

,

which captures common shocks, i.e. Xi1 = 1 for all i's.

We study the parametric case, which covers many situations of interest. First, it covers the

basic \time �xed e�ect" case, where Xi is simply a vector of ones. Second, this modeling approach

is consistent with the practice in modern macro and �nance, in which exposures to risks align

with characteristics (see e.g. Fama and French (1993)). In this context, parametric approaches

are preferred as they are more stable than non-parametric approaches. Third, it is much simpler

analytically, so that we can concentrate on the key insights of the GIV. We call � = (�i)i=1:::N the

N�r matrix of loadings. Banafti and Lee (2022) extend our framework to the case of non-parametric
factor loadings that are estimated.

We construct the GIV as follows. Suppose that we have a set of weights � 2 RN orthogonal to

�, �0� = 0, and such that �0S 6= 0. In (12) we provide a concrete construction of �. Then the GIV

is de�ned as:

zt := �0yt =
NX
i=1

�iyit: (6)

The GIV is constructed from observables, yit. The key observation is that as �0� = �0� = 0,

zt := �0yt = �0
�
��dpt + ��t + ut

�
= �0ut, so

zt = �0ut: (7)

As a result, the GIV zt is a linear combination of idiosyncratic shocks. By (5), the GIV satis�es

the exogeneity condition

Exogeneity: E [(�t; "t) zt] = 0. (8)

Also, the relevance condition holds (because �0S 6= 0):

Relevance: E [ptzt] 6= 0.

Given that st � �spt = "t, per (2), and E [ut"t] = 0, per (5), we have:

E [(st � �spt) zt] = 0; (9)

which implies �s = E[stzt]
E[ptzt]

. The GIV can therefore be used to estimate �s. We now state a formal

proposition.3

3It holds under mild regularity conditions on the joint distribution of (uit; �t; "t) given that the data are i.i.d.
across dates.
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Proposition 1 (Consistency of the GIV estimator). Suppose that E [ut"t] = 0, although the uit can

have any arbitrary distribution with mean 0 and �nite variance. Form the GIV zt := �0yt =
P

i �iyit.

Then, zt identi�es the supply elasticity, by �s = E[stzt]
E[ptzt]

. For �xed N and as T ! 1, the GIV

estimator �s;eT :=
1
T

P
t stzt

1
T

P
t ptzt

is consistent for the price elasticity �s.

Proof. By the law of large numbers, as T ! 1, almost surely 1
T

P
t stzt ! E [stzt] and

1
T

P
t ptzt ! E [ptzt], so that �

s;e
T ! �s = E[stzt]

E[ptzt]
. �

For instance, in the \time �xed e�ect case", we take � = S � E (this is optimal, as we shall

soon see) that is, �i = Si � 1
N
, so that the GIV is:

zt := y�t = ySt � yEt: (10)

In this case, the GIV is the di�erence between the size-weighted average of consumption, ySt, and

its equal-weighted average, yEt. The structure implies that

zt = u�t = uSt � uEt

so that the GIV is the di�erence between the size-weighted average of idiosyncratic shocks, uSt, and

its equal-weighted average, uEt. The GIV puts a high weight on large countries. Intuitively, if China

has an idiosyncratic demand shock for oil, then it will change the world demand and total quantity

produced, which will allow us to estimate the elasticity of supply for oil. In the next section, we

discuss conditions under which this instrument is powerful.

2.3 Optimal GIV weights and the precision of the GIV estimator

We now explore under which conditions the GIV estimator is precise. Under a standard central limit

theorem, an appropriately scaled and centered version of the above GIV estimator is asymptotically

Gaussian for �xed N and as T !1:

p
T (�s;eT � �s)

d�! N �0; �2�s� ;
where �2�s is the asymptotic variance as derived in the next proposition. We can use this result to

derive the weights � that yield the highest precision, that is, the lowest �2�s (its proof is in Section

C). For this, we use the N � N projection matrix Q that is orthogonal to the factor loadings, i.e.

which satis�es Q� = 0:

Q := I � � (�0�)�1 �0 (11)

Proposition 2 (Optimal weights � for the GIV y�t). Assume that "t has variance �
2
" conditional

on the uit's. The asymptotic variance of the GIV estimator �s;eT in Proposition 1, which is �2�s =

7



limT!1 TE
h
(�s;eT � �s)2

i
, satis�es ��s (�) =

�"E[u2�t]
1=2

j�E[uStu�t]j . The GIV weights

��0 = S 0Q (12)

minimize the asymptotic variance, with ��s (�
�)2 = �2"

�2E[u2��t]
. This implies that for any other � that

is not collinear to ��, the asymptotic variance �2�s (�) is larger. Hence, the optimal GIV is

zt := ��0yt = S 0Qyt = S 0�ut (13)

with �ut := Qut. In other terms,

zt =
X
i

Si�uit; (14)

with �uit the residual from the regression of the cross-sectionally demeaned consumption deviations

�yit := yit � yEt on the demeaned factor loadings �i � �E = (0; ��i):

�yit := yit � yEt = ��i�
x
t + �uit; (15)

where �t = (�1t ; �
x
t ) with �

1
t 2 R and ��i; �

x
t 2 R

r�1. We therefore also obtain an estimate of the

aggregate shocks �xt .

Each country i a�ects the price proportionally to its size Si, see (3). Hence, the economically

appropriate weights are Si. Proposition 2 shows that those are also the statistically appropriate

weights. The intuition for (12) is that �� is the vector closest to S, while being orthogonal to the

factor loadings.

Simple example with an additive common shock We now go back to the \time �xed e�ect"

case, �i�t = �t. It allows us to develop the main intuition in a transparent way.

Proposition 3 (Precision of the GIV estimator in the time �xed e�ect case). In the \time �xed

e�ect" case where �i = 1, the optimal GIV estimator takes the form � = S�E, that is, �i = Si� 1
N
:

zt := y�t = ySt � yEt, so that zt = u�t = uSt � uEt. If "t is homoskedastic conditional on the uit's,

then the asymptotic standard deviation of the scaled and centered GIV estimator is ��s =
�"
��u�

with

�u� = h�u, so that

��s =
�"
�h�u

; (16)

where h is the excess Her�ndahl:

h :=

vuut� 1

N
+

NX
i=1

S2
i : (17)

The proposition highlights what it takes to obtain a precise estimate of �s and a powerful

instrument. We need some large units (in order to have a large excess Her�ndahl h) and we need

8



that idiosyncratic shocks are large compared to aggregate shocks (large �u=�"). In our demand-

supply model, we need at least one large country, with volatile idiosyncratic shocks relative to the

volatility of the supply shocks.

There is another way in which the GIV is optimal, as one can easily verify in the simplest case

where �i � 1. It is the optimally-weighted GMM estimator.4 This implies that other combinations

of idiosyncratic shocks (besides weighing by �) cannot increase the precision of the estimator.

Using GIVs to estimate the demand elasticity So far, we have focused on estimating �s;

the supply elasticity. We now show how GIVs can also be used to estimate the demand elasticity,

�d. The GIV has the useful technical property that:5

E [uEtu�t] = 0: (18)

This allows us to estimate �d. Indeed, from (1) we have: yEt � �dpt = �E�t + uEt, so that

E
��
yEt � �dpt

�
zt
�
= 0. This gives the demand elasticity �d,

�d =
E [yEtzt]

E [ptzt]
; (19)

and the estimator is �d;eT =
1
T

P
t yEtzt

1
T

P
t ptzt

.

Hence, the same instrument, the GIV zt, can be used to estimate both supply and demand

elasticities. Intuitively, an idiosyncratic shock to a large country a�ects both world prices and

quantities, so it allows us to estimate the elasticity of demand of the other countries.

2.4 Using GIVs to estimate the price impact and multiplier by OLS

So far, we used GIVs as instruments to estimate the supply and demand elasticities, �s and �d. In

this section, we show that we can use GIVs to directly estimate the price impact, � = 1
�s��d , and

the multiplier, M = �s

�s��d . Importantly, those parameters that are often of interest to economists

can be estimated using standard OLS. To this end, we need to make one normalization assumption.

Assumption 2 (Normalization of GIV) We assume that E[uStu�t]

E[u2�t]
= 1.

4Any moment ET [(st � �spt) (uit � uEt)] = 0 is a valid GMM moment to identify �s. It is easy to check that the
�rst-order condition of the e�cient GMM objective function involves size-weighting those moments, which is exactly
our GIV moment condition ET [(st � �spt) (uSt � uEt)] = 0.

5Indeed, recall that �0� = 0, and that the �rst column of � is made of ones: it is � = (1; : : : ; 1)
0
: So, we have

E = 1
N � = �e with e = 1

N (1; 0; 0; : : : )
0
. So �0E = �0�e = 0: Using E [utu

0
t] = �2uI,

E [u�tuEt] = E [(�0ut) (u0tE)] = �0E [utu0t]E = �2u�
0E = 0:

9



Assumption 2 is veri�ed for instance by the optimal GIV (12).6 Or this can be ensured by a

rescaling of zt. Indeed for a given value of �, such that E [uStu�t] 6= 0, we can multiply � by a scalar

to satisfy Assumption 2. This is useful, for instance, if we have data only on some of the i's.7

Proposition 4 (OLS using GIV) Consider the factor model above, when N is �xed and T !1,

and Assumption 2 holds. Suppose that we regress the price on the GIV,

pt = �zt + "p;OLSt ; (20)

or regress the total quantity change on the GIV,

st = ySt =Mzt + "s;OLSt : (21)

Then, the estimated � and M are unbiased and consistent estimators of � = 1
�s��d and M = �s

�s��d
respectively. Furthermore, the standard errors returned by OLS for � and M are correct.

This means that we can use the GIV via standard OLS under Assumption 2. The fact that the

standard errors are correct is a bit surprising at �rst as zt is a generated regressor. The reason is

that the GIV is directly obtained from an exact formula (zt := S 0Qyt as in (13)) and can thus be

constructed without error. For this, Assumption 1 is important. We relax it later in Section 4.4.

From � and M , we can recover the elasticities �s and �d. This is exactly the same estimate

as the IV estimators derived earlier.8 Indeed, one can view regression (20) as the \�rst stage"

regression of the price on the GIV, which yields the instrumented price pet := �ezt. The \second

stage" regresses supply on the instrumented price:

st = �spet + "s;2SLSt ; (22)

which gives an estimate of �s. To estimate the demand elasticity, we regress the equal-weighted

(not size-weighted) demand on the instrumented change in the price, pet , in the second stage:9

yEt = �dpet + "y;2SLSt .

GIVs and weak instruments For the parameters that can be estimated using OLS, that is, �

and M , the standard errors obtained via standard OLS inference are valid (as per Proposition 4).

When a ratio is implicitly performed, for instance to estimate �d or �s, the two-stage least square

(2SLS) procedure as in (22) will also give correct standard errors when the instrument is strong

6Indeed, E[u��uS ]
�2u

= ��0S = S0QS and, as Q = Q0 = Q2,
E[u2�� ]
�2u

= ��0�� = S0QQ0S = S0QS = E[uSu�� ]
�2u

.
7More concretely, suppose we observe demand data for n < N countries. Then we can still form the GIV based

on
Pn

i=1 Si�uit, where
Pn

i=1 Si < 1.
8Indeed, the OLS estimators are Me

T = ET [stzt]
ET [z2t ]

and �eT = ET [ptzt]
ET [z2t ]

. We have �s;eT =
Me

T

�e
T

= ET [stzt]
ET [ptzt]

, which is the

same as in Proposition 1.
9Here we used (18), which makes the OLS valid.
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enough. A traditional rule of thumb for the strength of the instrument (in the i.i.d., homoskedastic

case) is that the F statistic (which is the squared t-statistic on �) on the �rst stage (20) should be

greater than a threshold around 16 to 19, and this advice is being progressively enhanced in current

IV research (see Montiel Olea and Pueger (2013) and Andrews et al. (2019)).

2.5 Using common factors as controls to increase the precision of the

GIV

We now note how adding estimates of �t in the procedure enhances the precision of the estimates

as it \soaks up" some of the noise. We assumed that �i = Xi
_� and, after a rotation of the �t, we

can assume that _� = I. We estimate �t using OLS as in (15) to obtain �et .
10 For �nite N , which is

the case that we consider in this paper, it is not exactly �t, but a quantity close to it that su�ces

for our purposes (as in Footnote 2). In addition, the residuals ueit from the regressions are �ut = Qut,

with Q in (11).

Proposition 5 (Results with a control for recovered factors �et ). The results of Propositions 1,

2, and 4 also hold when we control for the estimated factors, �et .
11 For instance, in the context of

Proposition 1, we use the moments E [(st � �spt � ��et ) (zt; �
e
t )] = 0, which allow for estimating �s

and �. Likewise, the standard error in Proposition 2 is the same, except that �" is replaced by �"?,

where "? is the residual of the regression "pt = �"�et + "p;?t .

3 A user's guide to GIV

We summarize the above arguments in the form of a user's guide. We outline the baseline algo-

rithm in Section 3.1, and we discuss robustness checks and ways to examine potential sources of

misspeci�cation in Section 3.2. In Section 4, we discuss extensions of the model presented so far to

cover other empirically relevant settings. We provide extensions to the user's guide in Appendix B.

3.1 The baseline GIV algorithm

The model can be summarized by

yit = �dpt +myCy
it + �i�t + uit; �i�t =

rX
f=1

�fi �
f
t ;

st = �spt +msCs
t + "t;

10Note that �et has dimension r � 1, while �t has dimension r. This is because the loading on the �rst factor � is
�dpt + �1t + uEt, so that we cannot recover �1t as ex ante we do not know �d.

11This is, run the regressions pt = �zt + �p�et + _"pt and st =Mzt + �s�et + _"st .

11



where �i = Xi
_� and, after a rotation of the �t, we can assume that _� = I. We assume that

Xi = (1; xi) and we write �t = (�1t ; �
x
t ) corresponding to the loadings of 1 and xi, respectively.

12

Cy
it and C

s
t are observable controls, including constants and entity �xed e�ects. The shocks ut are

idiosyncratic, so uncorrelated with "t, �t, C
y
t and Cs

t . We determine the equilibrium price and

quantities as before by imposing market clearing, ySt = st.

We then implement the following algorithm to estimate the relevant parameters. Proposition 6

below justi�es this algorithm.

1. Panel regression: Estimate a panel regression for yit with a time �xed e�ect, bt, and the

observable controls in the demand equation:

yit = bt +myCy
it + �yit: (23)

The regression yield estimates of bt;m
y, and residuals �yeit.

2. Factor estimation: Estimate the factors using period-by-period cross-sectional regressions of

�yeit on the demeaned characteristics �xi := xi � xE as in (15):

�yeit = �xi�
x
t + �uit: (24)

The regression yields estimates of �xt , which we call �
e
t , and residuals �uit. We use �et as controls

in the subsequent steps to tighten the standard errors (see Proposition 5).

3. OLS estimation using GIVs: Form Zt := ySt � yEt and run the regression of pt (respectively

st) on Zt, and controls Cy
St; C

s
t ; �

e
t :

pt = �Zt + �p;yCy
St + �p;sCs

t + �p;��et + "p;OLSt ; (25)

st =MZt + �s;yCy
St + �s;sCs

t + �s;��et + "s;OLSt : (26)

The regression yields estimates of �, M , and the unimportant ancillary parameters �.

4. IV estimation using GIVs: We estimate the elasticity �d using the instrumental variables

regression

yEt = �dpt +myCy
Et + �y�et + "y;IVt ; (27)

where Zt is an instrument for pt and with Cy
Et and �et as controls. The regression yields

estimates of �d, my and �y. For the supply elasticity, we use the instrumental variables

regression

st = �spt +msCs
t + �s�et + "s;IVt ; (28)

12To clarify the dimensions, it holds that Xi 2 Rr, xi 2 Rr�1, �1t 2 R, and �xt 2 Rr�1.
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where Zt is an instrument for pt and with Cy
Et and �et as controls. The regression yields

estimates of �s, ms and �s.

We used the following useful equivalence. Provided that we add �et as controls, one can either use

the puri�ed GIV zt =
P

i Si�uit or, equivalently, the simple GIV Zt := ySt � yEt = zt + (�S � �E) �t

as the instrument. Zt is easier to use than zt when comparing the stability of estimates as we vary

the number of components.

Proposition 6 The procedure outlined just above gives consistent estimators of
�
�;M; �d; �s

�
. Fur-

thermore, the standard errors returned by OLS for � and M are correct.

After estimating the parameters of interest using GIV, we recommend exploring the diagnostics

for misspeci�cation as discussed in the next section.

3.2 Robustness to misspeci�cation and threats to identi�cation

Before discussing the limitations of GIVs and diagnostics for misspeci�cation, we highlights the

forms of misspeci�cation to which GIVs are robust.

Forms of misspeci�cation to which GIVs are robust First, it is possible to construct GIVs

based on a subset of entities, It, that is, zt =
P

i2It Si�u
e
it (with �ueit = uit� uEt). In practice this can

be useful as we can select the top K entities, the entities for which we have data, or to omit entities

for which the data may contain measurement error. In this case, all results go through, although

a rescaling may be required to ensure that Assumption 2 holds.13 The estimator is still valid, just

not the optimal GIV estimator.

Second, suppose that we misspecify the vector S of size weights, for example, by de�ning zt =P
i S

�
i �u

e
it using a wrong vector S�. Then, the parameters estimated using IV are still consistently

estimated, but the parameters estimated using OLS can be biased.14 After all, we still have (9),

that is, E [(st � �spt) zt] = 0, so that the IV procedure in Proposition 1 still works.

Third, if we assume that the elasticities are homogeneous across actors (of demand in our demand

and supply example), while they are actually heterogeneous, then the IV estimates are correct and

so are the OLS estimates, assuming that �t was well-estimated in the cross-section. In this case,

the parameters that we estimate are equal-weighted averages of coe�cients. For instance, the IV

estimates yield �s and �dE, and the OLS coe�cients are those corresponding to the interpretation

that the elasticity of demand is �dE rather that �dS. Section H.3 provides the derivations.

13For instance, we still have uSt = zt + "uSt with zt ? "uSt . Section H.7 gives for a formal analysis.
14Calling  = E[ztuSt]

E[z2t ]
(which is 1 when S� = S), then the OLS above gives the estimates (in expectation) �e = � 

and Me = M . For some selection procedures (e.g. selecting the shocks to some pre-speci�ed entities as we
discussed), we still have that  = 1, so that OLS is still valid.
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The limits of GIVs and diagnostics for misspeci�cation We now discuss the main limits

to the applicability of GIVs and some diagnostics for misspeci�cation.

First, the GIV may not be su�ciently volatile and have low power. In case of the OLS estimators,

this simply manifests itself as large standard errors, while in case of the IV estimators, we can

encounter weak instruments problems. Propositions 2 and 3 show that we have a precise estimator

if there is high concentration and if the idiosyncratic shocks are volatile.

Hence, before conducting a large-scale study and large-scale data collection e�ort, we recommend

doing an ex ante power analysis. Recall that in the most basic case, the standard error of the

estimator is s:e: (�s;eT ) = �"
�h�u

p
T
(see Proposition 3). To get a quick sense of the power of GIVs, we

recommend estimating �" using the volatility of the left-hand side variable as order of magnitude,

�u using ��yi so that a simple common factor is removed as well as the component that depends

on prices, and the average excess Her�ndhal h. These inputs can be used to calibrate an order of

magnitude for ��s;eT , given the researcher's prior view on �. This gives a sense of the t-statistics

t = �s

�
�
s;e
T

that can be obtained with T periods. Hence, before re�ning the empirical model and

perhaps collecting additional data, one has a sense of whether the GIV will be su�ciently powerful.

We also recommend reporting the results of such a power analysis alongside the �nal estimates. We

illustrate this procedure in our empirical example, Section 5.4.

Assuming that GIVs are su�ciently powerful, the most important threat to identi�cation is that

we do not control properly for common factors. Indeed, zt = u�t+���t��e��et , so there is a danger
that, even after controlling for �et in the regression we will not completely eliminate the ���t��e��et
error.15 This danger is greater when j��j is greater, that is, when loadings are correlated with size.

Indeed, omitting factors for which �� = 0 is inconsequential. This is a small sample problem as

we measure �t and � accurately when N and T are su�ciently large. We provide three concrete

suggestions to mitigate this concern.

First, we can use a \narratively checked" GIV, as we do in our empirical application below. If

one checks the top, say, 10 events, and see if they they pass the narrative check, and construct the

GIV based only on those narrative events.16

Second, we can omit key dates that may be exceptional and that can give rise to \sporadic

factors," that is, a factor �t that a�ects many entities in unusual ways. For instance, there may be

an important policy announcement in the sample. If this happens once in the sample, it is hard to

detect using standard factor models.

Third, we can do an overidenti�cation test. For instance, one could construct two GIV based on

two types of entities, z1t (respectively z2t) based on the size-weighted sum of idiosyncratic shocks of

15As we do control for �et in the regression, the bias is due to the residual of ���t � �e��
e
t after controlling for �

e
t .

16This is roughly what the \narrative" approach in the literature (see, for instance, Caldara et al. (2019)) does.
But the GIV procedure does help researchers even in the narrative context, since it automates the \pre-selection" of
the top K (perhaps K = 15) shocks, by selecting the events with the largest K values in Si j�uitj. Hence, researchers
don't need to know the whole history before selecting their main events { the GIV gives them the most promising
candidate events, and the detailed historical search is simply restricted to K events. In addition, the factor analysis
in the GIV gives controls �et that are usable when running regressions, which increases the precision of estimators.
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e.g. poor (respectively rich) countries, and see if the multipliers that they lead to are statistically

indistinguishable. Such a test is obviously only meaningful if it is powerful. If the two estimates

are signi�cantly di�erent, it can mean that the factor model is misspeci�ed.

A related concern is that the factor loadings are unstable. In this case, it is possible to use more

advanced methods to extract factors, for instance when �it = Xit
_�, as we discuss in Section 4.4.

What is an idiosyncratic shock? Mathematically, an idiosyncratic shock is plainly a random

variable uit such that Et�1 [~�tuit] = 0, where ~�t := (�t; "t) includes all the common shocks. But

it may be useful to discuss di�erent types of economic settings that map into that de�nition. In

some cases it is quite clear { for example, a random productivity or demand shock. But there

are more subtle types of idiosyncratic shocks. One is an \unexpected change in the loading on

a common shock." For instance, if China decreases oil consumption by more than anticipated in

response to a global economic downturn, then it is an idiosyncratic shock. Formally, if demand

is yit = �dpt +
�
�i + ~�it

�
�t + vit, with Et�1

h
(1; ~�t) ~�it

i
= 0, then uit := ~�it�t + vit is a bona �de

idiosyncratic shock.

The volatility of idiosyncratic shocks can depend on the common shocks. For instance, suppose

that uit = �tvit where �t and ~�t could be correlated (for instance, �t could increase when j~�tj is
high), but Et�1 [~�t�tvit] = 0 (a su�cient condition is that vit independent of �t~�t); then, uit is an

idiosyncratic shock in the sense that Et�1 [~�tuit] = 0.

4 Extensions

We now present a succession of extensions of the basic GIV procedure that cover a range of cases

that one may encounter empirically. For expositional clarity, we continue with our supply and

demand example, although this can be vastly generalized, see Section G of the Online Appendix.

We provide extensions to the user's guide in Appendix B.

4.1 Time-varying size weights

We �rst consider the case in which the size weights vary over time, Si;t�1, so that demand by

country i at date t is Dit = �QSi;t�1 (1 + yit) In that case, the aggregate demand disturbance isP
i Si;t�1 (1 + yit). The assumption required for identi�cation then changes to E

�
uit (�t; "t)

0 (1; Si;t�1)
�
=

0. If this condition is satis�ed, all our derivations go through by replacing Si by Si;t�1.

4.2 Heterogeneous demand elasticities

We have assumed so far that demand elasticities are constant across entities. We now extend the

model so that the elasticities are linear in the characteristics Xi (an r-dimensional vector, with r in
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practice a small number, and the �rst entry being 1), so that they can be expressed as:17

�di = Xi
_�d =

kX
`=1

Xi`
_�d` ; (29)

for some _�d =
�
_�d`

�
`=1:::k

to be determined. With X the N � k matrix of characteristics, this is

saying that we assume the parametric forms �d = X _�d and � = X _� where _�d and _� have dimension

k�1 and k� r, recalling that �t has dimension r�1. For expositional simplicity, we take k = r but

with more notations one could similarly handle the case k 6= r. The following proposition describes

how we can consistently estimate �s and _�d.

Proposition 7 (Estimation of heterogeneous parametric elasticities). Consider the model with

heterogeneous elasticities following (29). De�ne R := (X 0X)�1X 0, Q := I �XR, _yt := Ryt (which

has dimension k), �ut := Qyt, and zt :=
P

i Si�uit. We then identify �s and _�d using the IV moments:

E [(st � �spt) zt] = 0 and E
h�

_y`t � _�d`pt

�
zt

i
= 0 for ` = 1 : : : k.

The concrete procedure is that for each date t we run the cross-sectional regression of yit on Xi:

yit = Xi _yt + �uit =
kX
`=1

Xi` _y`t + �uit; (30)

which yields regression slopes _yt = ( _y`t)`=1:::k and residuals �uit. Then, we form the GIV zt :=P
i Si�uit, and �nally use the moment conditions in Proposition 7 to recover the elasticities.

4.3 Heteroskedasticity

We now discuss the case where the uit are heteroskedastic. We call V u their variance-covariance

matrix. We assume for now that this is known, at least up to a factor of proportionality.

Proposition 8 (GIV with heteroskedastic idiosyncratic shocks) Consider the case where the uit are

heteroskedastic with variance-covariance matrix V u. De�ne W = (V u)�1 as the inverse variance-

covariance matrix of the idiosyncratic shocks uit, and de�ne two matrices, with respective dimensions

and N �N and r �N :

Q�;W := I � �R�;W ; R�;W := (�0W�)
�1
�0W: (31)

so that Q�;W is a projection on the space orthogonal to � and R�;W is a projection on �.18

17Section H.4 considers a non-parametric version, which is more involved.
18They have a number of good properties that we record here (dropping the superscripts for simplicity):

Q� = 0; R� = I; Q0W� = 0; (I �Q)W�1Q0 = 0; (I �Q0)WQ = 0; Q2 = Q; RW�1Q0 = 0: (32)
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Then Propositions 1-7 hold provided that we replace the orthogonality condition �0� = 0 by its

weighted version �0W� = 0, replace Q, and R by Q�;W and R�;W (e.g., we have ��0 = S 0Q�;W in

(12), (18), (19)), replace E by the quasi-equal weights ~E := W�
�0W�

where � is a vector of ones (e.g. in

(10), (18)), and that cross-sectional regressions use GLS with weights W instead of OLS (e.g. in

(15), (24), (30)).

When idiosyncratic shocks are homoskedastic, ~Ei = 1
N
; while if they are uncorrelated but

heteroskedastic (i.e. W = Diag
�
1=�2ui

�
), we have ~Ei :=

1=�2uiP
j 1=�

2
uj

, so that ~E may be called the

\precision-weighted quasi-equal" weights.19,20

4.4 PCA and IPCA

We assumed so far that common factors can be modeled as ��t =
Pr

f=1 �
f�ft with � = X _� 2 RN�r,

X 2 RN�k, _� 2 Rk�r, �t 2 Rr�1, and r = k, and provide proofs for the case. We now discuss three

extensions. While we do not provide proofs for these cases, we explore the most general case (PCA)

in simulations in Section F.

First, we can allow for characteristics that change over time, Xt instead of X. In this case, we

can form Qt = I � Xt(X
0
tXt)

�1X 0
t, and compute the residuals as �ut = Qtyt. We then proceed as

before with one exception. If we add �et as a control, which is not needed but adds precision, we

need to add XEt�
e
t or XSt�

e
t as controls instead of only �et .

Second, we can consider the case in which k > r, implying that we can model the loadings more

exibly as a function of a larger number of characteristics. Kelly et al. (2020) refer to this model

as Instrumented Principal Components Analysis (IPCA) and they develop the asymptotic theory.

Third, we can consider the case where we impose no structure on the loadings and we use

PCA to estimate the loadings and the factor realizations. The asymptotic theory for PCA has

been developed in Bai (2003) and in the context of GIV by Banafti and Lee (2022). To compute

standard errors, we can use the bootstrap and we explore this procedure in simulations in Section

F. We provide a detailed discussion in Appendix B as part of the user's guide.

It is also possible to �rst extract factors using loadings that depend on observed characteristics,

�x;et , and then estimate additional factors using PCA on the residuals, �PCA;et . We then use the �nal

residuals in constructing the GIV and use �et =
�
�x;et ; �PCA;et

�
as factors.

19If we misspecify the variance of the uit (but keeping them uncorrelated), the impact on the estimates is typically

small: as uE = Op

�
1p
N

�
, we do not need E [u�tuEt] = 0 to hold exactly, as the term E [u�tuEt] will still be small,

of order O
�

1p
N

�
, and will vanish for large N .

20Generically, �� 6= 0. But in cases where the variance is inversely proportional to size, we would have �� = 0 and
the GIV would fail (and this would be detected in practice via extremely large standard errors). Indeed, we would

then have V uS = a� for some scalar a, so that S0Q�;(V u)�1 = 0. Fortunately, in most contexts, variance may decay
a bit with size Si, but less violently than in 1=Si (see e.g. Lee et al. (1998) and the discussion in Gabaix (2011)).
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When using more exible factor models, one can estimate the required number of common factors

(Bai and Ng (2002); Onatski (2009)). In addition, a missing factor may be detected by testing the

stability of estimates across GIVs as we add more factors. As is common practice in the weak

factors literature, one can verify the stability of the estimates by adding one or two factors beyond

what is estimated by formal procedures for the number of factors. We do this in our empirical

example below.

4.5 Fat-tailed shocks and outliers

We have discussed in Section 2.3 how the precision of the GIV estimator increases in the volatility of

idiosyncratic shocks. Hence, large idiosyncratic shocks are generally bene�cial to GIVs. That said,

when the idiosyncratic shocks are fat-tailed or there are large outliers, it can a�ect the estimation

of the common factors, and this can lead to noisier estimates. We can adapt standard methods that

have been developed for the robust estimation of covariance matrices by Fan et al. (2019) and Fan

et al. (2021), such as estimating means using the Huber loss function and winsorizing data, to our

setting.

We provide a detailed discussion in Appendix B as part of the user's guide. We implement those

procedures in the simulations in Section F, and we show how fat-tailed idiosyncratic shocks are

helpful in obtaining more accurate estimates using GIVs compared to the case where the shocks are

thin-tailed. Hence, when handled with care, fat-tailed idiosyncratic shocks are a blessing for GIVs.

4.6 Evidence from simulations

All our results up to and including Section 4.3 are rigorously proven. We now explore some of the

extensions in this section, for which we do not provide proofs, using simulations. Speci�cally, we

explore a model with non-parametric factors (Section 4.4), fat-tailed idiosyncratic shocks (Section

4.5), and heteroskedastic shocks with unknown volatilities that need to be estimated (Section 4.3).

In the implementation, we follow the user's guide in B. While the simulations indicate that GIVs

work in these settings, we leave formal proofs to future research.

The results in Section F show that when shocks are normally distributed yet the loadings

are unknown, the baseline GIV algorithm works well. When shocks are fat-tailed, the standard

procedure is unbiased but leads to large standard errors. Intuitively, the estimated factor loadings

are noisy, which adds to the estimation error. However, when we follow the robust procedure in

B, the standard errors are in fact smaller compared to the case with thin-tailed Gaussian shocks.

The reason is that the procedure removes the impact of outliers in estimating the factors, and takes

advantage of the large idiosyncratic shocks in estimating the parameters of interest.

We also show that when we estimate the volatilities of the idiosyncratic shocks, even though

the shocks are homoskedastic, the estimates are hardly a�ected. Hence, in our simulations, it does

not hurt to use a procedure that takes into account potential heteroskedasticity. If the shocks
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are heteroskedastic, and we do not account for this, the estimates are biased. However, in the

presence of fat-tailed shocks and in particular when we estimate the volatilities, the estimator is

again unbiased. These examples illustrate the performance of the GIV estimator in realistic settings

and how the generalized procedure in Section B can be used to estimate the model's parameters.

4.7 Generalization of the GIV to other setups

While we focus on the demand and supply setup for our main analysis, one can extend the GIV

idea to many settings and generalizations.

Multidimensional GIV One can handle multidimensional \outcomes" yit and shocks uit, for

instance, a �rm i could have two-dimensional shocks uit to both productivity and labor demand.

We show how GIVs can be used in this setting in Section H.1.

Beyond supply and demand for one good One can study equilibrium models that are sig-

ni�cantly richer than with just supply and demand for one good, see Section G, which features

multiple general equilibrium channels.

GIV with a more complex matrix of inuences The GIV can also be extended to non-

homogeneous inuences in the context of networks. Consider a model yit = 
P

j Gijyjt + �i�t + uit

with a known network structure Gij, and we would like to estimate the inuence factor . Section

H.16 shows formally how this is possible| we again use the idiosyncratic shocks as instruments.

Hence, GIV generalizes to \spatial" models with common shocks, which are often omitted in spa-

tial models.21 Similarly, GIVs allow a way to identify the inuence parameter  in the \reection

problem" (Manski (1993)).22 The traditional literature on the reection problem does not use

idiosyncratic shocks in its identi�cation strategies. Hence a GIV approach can be useful to comple-

ment existing approaches. Section H.17 develops this.23

Estimating structural vector autoregressions with GIVs One can do vector autoregressions

and impulse responses with GIVs: if Yt = AYt�1 + Xt, one can use the GIV zt to instrument for

some of the shocks to the innovations Xt, and achieve partial or full identi�cation. The GIV is

then an \external instrument", and one can follow the methods spelled out in Stock and Watson

(2018).24 One can also do Jord�a (2005) style local projections, regressing Et [Yt+h] = �hXt, and

21See Brownlees and Mesters (2021) for a potential way to extend this approach when G is unknown.
22In the simplest case where Gij = Sj , this is identifying  in a model yit = ySt + �i�t + uit. This model is a

special case of our supply and demand model, replacing �dpt by ySt, i.e. setting st = pt := ySt, �
s = 1, "t = 0,

�d = . Hence our results show how the GIV identi�es .
23Somewhat related, Graham (2008) explores the identi�cation of peer e�ects using conditional variance restrictions

on the outcomes by exploiting di�erences in the sizes of the peer group. Intuitively, smaller peer group sizes lead to
a larger contribution of each individual peer on the peer component.

24See Plagborg-M�ller and Wolf (2021) for a recent development in this area.
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instrumenting some of the regressors Xt by a GIV. This shows how GIVs can be used to identify

parameters in structural VARs, complementing an active literature that uses sign restrictions, as

in Uhlig (2005), or narrative restrictions combined with sign restrictions, as in Antol��n-D��az and

Rubio-Ram��rez (2018) and Ludvigson et al. (2020).

Comparison with Bartik instruments Bartik (1991) instruments are widely used in economics

and we discuss the link between Bartik and GIV in Online Appendix H.5, and clarify the di�erence

in identifying assumptions using the econometric framework of Borusyak et al. (2022).25 Here we

briey highlight some points in that discussion. First, in a number of cases where a cross-section is

used (e.g. Autor et al. (2013)), Bartik applies, but GIV does not apply, for instance because there

is no large idiosyncratic shock that one can use. On the other hand, in a number of cases (such that

the ones we have discussed in this paper), GIV applies naturally, particularly when there are large

idiosyncratic shocks that a�ect the aggregates. Hence GIVs complement the toolkit of economists,

and depending on the setting, Bartik instruments or GIVs are more appropriate.

When aggregate shocks are at least partially made of idiosyncratic shocks GIVs extend

to economies where aggregate shocks �t are themselves at least partially made of idiosyncratic

shocks uit, as in Long and Plosser (1983); Gabaix (2011); Acemoglu et al. (2012); Carvalho and

Gabaix (2013); Carvalho and Grassi (2019)) { provided some suitable modi�cations of our basic

assumption (5). We develop this in Sections H.13{H.16. These sections show that we can identify

important parameters even if we have only crude proxies for the primitive shocks such as TFP.

5 Empirical application: Estimating sovereign yield spillovers

We study spillovers in sovereign yield markets in the Euro area as an application of GIV. We

are interested in the transmission and ampli�cation of idiosyncratic shocks during the European

sovereign debt crisis.

5.1 An empirical model of sovereign yield spillovers

Section E provides a microfounded economic model of sovereign yield spillovers, and we summarize

its empirical implications here. In that model, governments may default on their debt, and losses in

one country will be partially shared with other countries, implying that shocks to sovereign yields

in one country spill over to other countries.

We index countries by i. We de�ne the yield spread, yit, as the yield in country i relative to

Germany's yield. Note that yit is not the demand shifter in our initial example. The economic model

25Also known as shift-share estimators, they have been the study of much recent econometric work, see also
Goldsmith-Pinkham et al. (2020); Adao et al. (2019); Borusyak et al. (2022).
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implies that relative changes in yield spreads, rit :=
�yit
yi;t�1

, should satisfy the following empirical

model

rit = ai + rSt + �0i�t + uit; (33)

where  is a contagion parameter that we wish to estimate, �t are aggregate shocks, uit idiosyncratic

shocks, and the size weights are, with Bit the outstanding government debt of country i:

Si;t�1 =
Bi;t�1yi;t�1P
j Bj;t�1yj;t�1

: (34)

This structural model brings two lessons to the empirics. First, the proper \size" of country i

here is its \debt at risk," Bi;t�1yi;t�1, the expected euro loss on its debt.26 Second, the spillover

impact is such that �yit
yi;t�1

, rather than �yit, depends linearly on rSt. This means that a country

with almost no default risk (yi;t�1 ' 0) should have almost no sensitivity of its yield �yit, as there

is no risk in the �rst place. This intuition is likely to hold in alternative models, and those models

will then imply a similar functional form.27 It is essential to control for common factors �t, as we

do below. It is well understood, see for instance Forbes and Rigobon (2002), that omitted factors

and endogeneity impact measures of spillovers and contagion.28

5.2 Data

We use daily data on 10-year zero coupon yields from Bloomberg. We discuss the data in detail in

Appendix E.4. We use data on general government gross debt for each country from Eurostat. The

full sample is from July 1, 2009 to May 31, 2018, and the multiplier is estimated from September

1, 2009 to May 31, 2018. The earlier period is used to estimate the volatility of yield changes as

we discuss below. The countries included are Austria, Belgium, Finland, France, Germany, Greece,

Ireland, Italy, Netherlands, Portugal, Slovenia, and Spain. As spreads are computed relative to

Germany, we have 11 countries in the main analysis.

5.3 Estimation procedure

We estimate the model using the standard GIV procedure, accounting for heteroskedasticity. Em-

pirically, we use rit =
�yit

0:01+yi;t�1
to avoid problems when spreads, yi;t�1, get close to zero.

1. We compute the rolling standard deviation of relative changes in yield spreads using the 60

most recent observations, including the current date. We refer to this estimate as �t (rit). We

26This is under the risk-neutral measure, i.e. adjusting for the price of risk.
27Spillovers in sovereign bond markets may also operate via intermediaries. For instance, if losses in one country

impact the intermediaries' constraints, then this can impact the pricing of bonds in other countries in which the
intermediaries are active. We strongly suspect that a functional form like (33) would still hold in such a model.

28Caporin et al. (2018) study spillovers in European sovereign debt markets and show that quantile regressions
can be used to test for contagion if contagion is de�ned as a change in interlinkages. Our de�nition of contagion
(captured by a nonzero  in equation (33)) is di�erent from theirs.
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then de�ne �it = max (�t (rit) ;mt), where mt = mediani (�t (rjt)), that is, the cross-sectional

median at time t. We de�ne the quasi-equal weights as usual as ~Ei;t�1 =
1=�2itP
i 1=�

2
it
: We apply

the max operator in the construction of �it to avoid that the quasi-equal weights ~E put too

much weight on a single country if yield spreads for that country happen to be stable and

close to zero. The main objective of adjusting for heteroskedasticity is to put less weight on

extremely volatile countries.29

2. We compute �rit := rit � r ~Et = �ai + ��0i�t + �uit, where r ~Et =
P

i
~Ei;t�1rit. We select our main

sample (September 1, 2009 to May 31, 2018) and estimate the factors, �t, by solving

min
(�ai;��i;�t)

X
i;t

�
�rit � �ai � ��0i�t

�it

�2

;

using alternating least squares.30 Speci�cally, solving the �rst-order conditions implies:

�ai =

P
t

�
�rit � ��0i�t

�
=�2itP

t 1=�
2
it

;

��i =

 X
t

�t�
0
t=�

2
it

!�1X
t

�t (�rit � �ai) =�
2
it;

�t =

 X
i

��i��
0
i=�

2
it

!�1X
i

��i (�rit � �ai) =�
2
it;

which we solve recursively until convergence.31 We refer to the estimated factors as �et .

3. We estimate the multiplier M = 1
1� via the regression (with ~�t = St�1 � ~Et�1;so r~�t =

rSt � r ~Et�1
)

rSt = k +Mr~�t + �0S�
e
t + et: (35)

To identify the largest shocks and to verify narratively that the shocks are truly idiosyncratic, we

regress r~�t on the factors, r~�t = c + �0�et + ueSt, and we analyze the days with the largest jueStj in
detail in Table 2.

5.4 Empirical results

We plot the dynamics of spreads, yit, in the left panel, and size weights, using the de�nition in (34),

in the right panel of Figure 1 for France, Greece, Ireland, Italy, Portugal, and Spain. The sample

29The results are quantitatively very similar when using �it = max (�t (rit) ; �mt), with � = 0:75.
30We initialize the algorithm by running PCA on �rit=�it to get starting values for ��i and �t.
31In each step, we normalize �� as it is identi�ed only up to a rotation. Concretely, we compute ��0�� = LL0, where

L is a lower triangular matrix, after updating ��i for all i. We then replace �� by �� (L0)�1 before estimating �t.
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Figure 1: Dynamics of sovereign yield spreads and size weights. The �gure reports the yield spreads,
relative to Germany, for Italy, Spain, Greece, Ireland, Portugal, and France in the left panel from
September 1, 2009 to May 31, 2018. The spreads are based on 10-year government yields and are
constructed using data from Bloomberg. The right panel displays the size weights based on the
de�nition in (34) for the same countries and the same sample period.
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is from September 1, 2009 to May 31, 2018. We distinguish three broad periods. First, from 2010

to 2012, the yield spread dynamics are driven by the European sovereign debt crisis. During 2015,

yield spreads in Greece widen once again, but the low-frequency dynamics in other countries are

more muted and spreads tighten in most countries. This period is characterized by political turmoil

in Greece related in part to negotiations of a bailout deal. During the last months of our sample,

there is a jump in Italian yields due to political uncertainty regarding budget plans following the

general election. We will revisit these episodes in more detail when analyzing the largest and most

inuential idiosyncratic shocks in Table 2.

Before conducting a large scale analysis (or collecting much data), it is useful to do a rough ex

ante power analysis to see if the standard errors can be hoped to be tight enough (see p.14). We

illustrate that here. If there are no common factors, �t = 0, and in the absence of heteroskedasticity,

we can approximate the standard errors by

s:e:(M) ' �(rSt)

h�(�rit)
p
T
=

0:020

0:38� 0:015�p2283 = 0:072;

where h =
pP

i
�S2
i � 1=N , �Si =

1
T

P
t Sit. This number is likely a conservative estimate as we

assume that �rit is homoskedastic, which is not the case empirically. This power calculation suggests

that there will be enough power to obtain su�ciently accurate estimates of M to be economically

informative.
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Table 1: Multiplier estimates of sovereign yield spillovers. The table reports the estimates of the
multiplier in (35). The �rst to the third column include zero to two principal components (see the
�kt rows) to isolate idiosyncratic shocks. In the fourth column, we set uSt to zero for all periods,
except for the 10 days on which juStj is largest. In Table 2, we provide a narrative analysis of those
10 shocks. In the �fth column, we also set the shock on November 11, 2011 to zero, as the shock
on this date may be a sporadic common shock. In the �nal column, we re-run the analysis, but
excluding Greece. The model is estimated using daily data from September 2009 until May 2018.
Standard errors are in parentheses.

Narratively-checked shocks

Baseline Top 10 shocks Excluding sporadic factors Excluding Greece

M 1.641 1.492 1.417 1.457 1.479 1.595

(0.0225) (0.0367) (0.0362) (0.0896) (0.0917) (0.0402)

�1t 0.0828 0.1255 0.5944 0.5940 0.0590

(0.0162) (0.0157) (0.0111) (0.0112) (0.0178)

�2t -0.202 -0.252 -0.256 -0.029

(0.0103) (0.0128) (0.0128) (0.0090)

T 2283 2283 2283 2283 2283 2283

R2 70% 70% 75% 62% 62% 74%

Table 1 reports the estimates of the multiplier, M . The �rst column regresses rSt on Zt = r~�t.

The second and third column add principal components. The multiplier estimate drops after adding

the �rst principal component from 1.64 to 1.49, but adding the second principal component does

not change the multiplier much. Given the small cross-section (there are only 11 countries), we

cannot include additional factors beyond a time �xed e�ect and two principal components.

The high R-squared in the �rst column does not estimate the fraction of the variation in ag-

gregate yield spread changes that is due to idiosyncratic shocks, as r~�t is correlated with �et . To

estimate the importance of idiosyncratic shocks, we regress rSt on u
e
St, which provides exactly the

same point estimate of the multiplier as in the �nal column of Table 1. The R-squared of this

regression is 17%, implying that 17% of the variation in aggregate yield spread changes is due to

idiosyncratic shocks.

To further inspect the variation that the GIVs are exploiting to estimate the multiplier, we

narratively check the largest shocks in Table 2. In particular, we order the dates based on the size

of jueStj. In Panel A of Table 2, we report rit for each of the countries. In Panel B, we provide the

narratives. If we inspect some of the largest shocks in Table 2, then is is clear that most of them

are plausibly idiosyncratic shocks. Examples include the decision by Greece to close all banks or

the outcome of the referendum. That said, it is obviously challenging to remove aggregate shocks

during times of �nancial turmoil. For instance, the shock on November 11, 2011 is harder to assign

to a single country and may be best interpreted as a sporadic common shock as several spreads
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Table 2: Summary of the largest idiosyncratic shocks and narratives. The table reports relative
yield changes, rit =

�yit
0:01+yi;t�1

in Panel A. In Panel B, we provide narratives associated with these
events.

Panel A: Main shocks

Date Austria Belgium Finland France Greece Ireland Italy Netherlands Portugal Slovenia Spain

12-Mar-2012 1.9% 1.6% 0.8% 2.5% -31.7% 0.0% 2.8% 0.9% 0.5% -0.9% 2.2%

29-Jun-2015 3.8% 5.0% 2.8% 5.1% 33.4% 6.9% 16.6% 3.1% 17.4% 4.7% 16.6%

10-Jul-2015 -3.0% -3.5% -2.2% -3.7% -22.1% -5.0% -8.8% -3.0% -7.6% -9.1% -9.0%

16-Jan-2012 -1.6% -1.3% -3.5% -1.9% -0.8% 1.0% -0.2% -4.2% 14.3% -1.1% -0.5%

29-May-2018 5.2% 2.7% 2.3% 2.9% 7.2% 5.1% 14.6% 2.3% 7.3% 4.7% 7.7%

06-Jul-2015 1.8% 2.5% 0.7% 2.0% 18.9% 3.3% 6.8% 1.2% 8.6% 1.1% 7.7%

08-Aug-2011 -1.9% -3.1% 0.2% 4.4% 0.1% 0.6% -14.4% -0.3% -1.2% -4.0% -15.9%

03-Feb-2015 -1.2% -0.7% -0.7% -0.1% -11.5% -1.2% -3.0% -0.7% -3.7% -2.9% -2.0%

13-Jul-2015 -0.5% 1.0% -0.2% 1.1% -9.6% 0.1% 1.0% 0.3% -0.9% -0.5% 1.1%

11-Nov-2011 -3.5% -3.9% -0.7% -7.4% 0.2% -2.3% -8.6% 0.4% -0.4% 3.5% -2.5%

Panel B: Narrative analysis

Date Event

12-Mar-2012 Greece Bailout Package Signed O� by EU Leaders

29-Jun-2015 Greece closes banks

10-Jul-2015 The Greek government submitted its highly anticipated plan for the country's economic overhaul to bailout authorities

16-Jan-2012 Portugal is downgraded to junk status by Standard and Poor's before the weekend

29-May-2018 Italian political turmoil (snap election plus new budget plan) cause largest 1-day decline in Italian bonds in 25 years

06-Jul-2015 Greece bailout referendum on July 5th where voters reject austerity package

08-Aug-2011 ECB decides to start buying Italian and Spanish bonds as part of the Securities Markets Program

03-Feb-2015 Greek government said to retreat from a demand for a debt writedown

13-Jul-2015 Greek PM Alexis Tsipras conceded to a further swathe of austerity measures and economic reforms

11-Nov-2011 Positive news about Italy's government and/or ECB purchase program (see main text)

move at the same time.32 In the absence of a clear narrative, the prudent approach may be to

explore the sensitivity of the results to that observation as we do below.

In the fourth column of Table 1, we regress rSt on uSt and two principal components, but we

only use the 10 largest values of uSt and set all others to zero. This leads to a multiplier of 1.46 with

a standard error of 0.09. While this estimate is less precise, the estimate is still informative. As the

shock on November 11, 2011 may be a sporadic common shock, we re-run the analysis once more

and now setting uSt also to zero on November 11, 2011. In this case uSt is non-zero on nine days

only, and all of those shocks are narratively veri�ed in Table 2. The estimated multiplier equals

1.48 with a standard error of 0.09. As a �nal robustness check, we repeat the analysis omitting

Greece. The results are presented in the �nal column. Using the shocks from other countries leads

to a similar multiplier at 1.6.

32Media narratives discuss increased con�dence in Italy's government by voting in favor of austerity measures
and due to the growing support for Monti to take over from Berlusconi as prime minister. This would be a valid
idiosyncratic shock. However, there are also news reports discussing the potentially important role of the ECB's
asset purchase program (the SMP) in supporting bond prices. This would be would a sporadic common shock.

25



5.5 Interpretation of the coe�cients

We �nd a multiplier M = 1
1� ' 1:5 and hence a spillover parameter  ' 1

3
. The interpretation

is as follows:33 suppose that Italy su�ers a bad shock that makes its debt likelier to default, so

that the market value of Italy's debt falls by 1 billion euros. The multiplier M ' 1:5 means that

the aggregate debt of all European governments falls by 1.5 billion euros { the spillover consists of

an extra 0.5 billion euros in expected losses in European sovereign debt markets.34 Note that the

expectation is under the risk-neutral measure, so could correspond to a higher likelihood of default,

or a higher price of risk for that default.35

6 Conclusion

We developed granular instrumental variables (GIVs). The generative insight is that idiosyncratic

shocks o�er a rich source of instruments. We lay out econometric procedures to extract them from

panel data and optimally aggregate them to obtain the most powerful instruments. We provided

an empirical application to illustrate the implementation of GIVs.

We discuss various econometric extensions that might be useful to explore in future research.

We hope that GIVs will aid identi�cation in new settings and help researchers investigate and

understand causal relationships in the economy.
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A Appendix: Notations

d, s : Indicates demand and supply. E.g., �d; �s are the elasticities of demand and supply.

"t, �t: Aggregate shocks.
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"xt , _"
x
t , "

x;OLS
t ;etc.: Aggregate shocks a�ecting variable x (e.g., supply if x = s). Depending on the

speci�cation, this variable can have 0, 1 or more dots. The superscript OLS means that it is the

error arising in OLS.

�: Factor loadings.

ut: Idiosyncratic shocks.

�ut := Qut: Idiosyncratic shocks residualized by a projection matrix Q.

zt = �yt = �ut: GIV.

Zt = ySt � yEt: Di�erence between size- and equal-weighted average of the outcome variable yit.

B Appendix: Extensions to the user's guide

In this section, we provide extensions to the user's guide presented in Section 3 to cover extensions to

the basic model as discussed in Section 4. In Section F, we use simulations to show the performance

of these extensions in the presence of non-parametric factors, heteroskedasticity, and fat-tailed

idiosyncratic shocks. We also discuss how bootstrap methods can be used to construct con�dence

intervals around the estimates.

Heteroskedasticity If the idiosyncratic shocks are heteroskedastic, �i = �(ui), then we stop the

baseline algorithm after Step 2. We then estimate (�ei )
2 = 1

T

P
t �u

2
it.

36 We return to Step 1, and

estimate Step 1 and Step 2 with 1
(�ei )

2 as regression weights. Analogously, in Step 3, we replace yEt

by y ~Et =
P

i
~Eiyit with ~Ei :=

(�ei )
�2

P
j(�

e
j )
�2 :

As the regression weights are estimated, it is useful in practice to explore the sensitivity of the

estimates to winsorizing large values of the regression weights, 1
(�ei )

2 , to avoid that one entity gets

too much weight in estimating the factors if the estimated �ei happens to be relatively low.

Robustness to large idiosyncratic shocks Fat-tailed idiosyncratic shocks are helpful in con-

structing GIVs as they increase the volatility of the instrument. At the same time, fat-tailed shocks

or outliers can distort the estimation of the factors and �xed e�ects. We now discuss how to ad-

just the algorithm, so we can take advantage of the fat-tailed shocks without distorting the factor

estimates. Section C.11 provides an analysis justifying this procedure (in particular Proposition

11).

We start from the model in Section 3.1 and write it as

yit = ai + bt + ��i�t + �uit;

where we simplify the controlsmyCy
it to an entity �xed e�ect ai. As before, we estimate (ai; bt;

��i; �t),

36See Section H.10 for a more re�ned estimation of �i.
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which allows us to compute �uit by minimizing a loss function

min
(ai;bt;��i;�t)

X
i;t

L

�
yit � ai � bt � ��i�t

�i

�
(36)

where the loss function L is such that L0 (x) = x+ r (x), for a (intuitively, small) residual r (x). For

the loss function, we select the Huber (1964) loss function, LHuber (x; �) = x2

2
1jxj��+

�jxj � �
2

�
�1jxj>�,

where the tails (i.e., jxj > �) have less inuence than with a quadratic loss function LGaussian (x) = x2

2

(which corresponds to � ! 1).37 For the GIV procedure in Section 3.1, we use a quadratic loss

function, rGaussian(x) = 0. In case of fat-tailed idiosyncratic shocks, we use the Huber loss function,

see also Fan et al. (2019). In this case, we set

rHuber (x; �) = �max (jxj � �; 0) sign (x) ; (37)

where we specify � below. This adjustment limits the impact of extreme observations.

We follow the same baseline GIV procedure while adjusting the loss function. We initialize the

algorithm from (a
(0)
i ; b

(0)
t ; ��

(0)
i ; �

(0)
t ), and we provide a recommendation for these starting values after

outlining the algorithm. The steps of the generalized algorithm are as follows, which recursively

solve the �rst-order conditions of the loss function with respect to (ai; bt; ��i; �t):

1. In case of the Huber loss function, compute r
(n)
it = rHuber(yit � a

(n)
i � b

(n)
t � ��

(n)
i �

(n)
t ; �

(n)
i ). For

the quadratic loss function, set r
(n)
it = 0. We de�ne y

w;(n)
it := yit + r

(n)
it ; where the w alludes to

a form of w insorization, provided by the term r
(n)
it .

2. b
(n+1)
t : The FOC for the time �xed e�ect is solved by

b
(n+1)
t =

P
i(y

w;(n)
it � a

(n)
i � ��

(n)
i �

(n)
t )��2iP

i �
�2
i

: (38)

3. a
(n+1)
i : The FOC for the entity �xed e�ect is solved by

a
(n+1)
i =

1

T

TX
t=1

(y
w;(n)
it � b

(n+1)
t � ��

(n)
i �

(n)
t ): (39)

4. (��
(n+1)
i ; �

(n+1)
t ): De�ne �ywit :=

y
w;(n)
it �a(n+1)

i �b(n+1)
t

�i
. We run PCA (uncentered) �ywi =

��
(n+1)0
i

�i
�
(n+1)
t +

uit
�i
, and recover (��

(n+1)
i ; �

(n+1)
t ).

37One interpretation is the following. Suppose that uit
�i

has a density ke�L(
u
� ) for a constant k. Then (36) is the

maximum likelihood estimator of the various parameters. With the Huber loss function, that density has fatter tails
than a Gaussian.
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5. �
(n+1)
i : We set it equal to the 90%-th percentile of the distribution of

���yit � a
(n+1)
i � b

(n+1)
t � ��

(n+1)
i �

(n+1)
t

���
by entity i.38

Upon convergence of the algorithm, we form Zt = ySt� b(1)
t and estimate for instance M in (26) as

st =MZt + c+ �s;��et + "s;OLSt :

The estimates of �, �d, and �s follow analogously.

In case of heteroskedasticity, we �rst run the homoskedastic procedure until convergence. We

then compute the residuals, ueit = yit � a
(1)
i � b

(1)
t � ��

(1)
i �

(1)
t . We re-estimate the variance, for

instance, �e;2i = 1
T

P
t u

e;2
it . We then run the procedure once again until convergence, which provides

the �nal estimates.

We complete this extension by discussing how we initialize the algorithm:

1. We set b
(0)
t = median(yit), the median across i, and a

(0)
i = median(yit � b

(0)
t ), the median

across t. We then run the PCA algorithm on yit � a
(0)
i � b

(0)
t to initialize ��

(0)
i and �

(0)
t .

2. We initialize the variance weights with �e;2i = var(yit). Even in the homoskedastic case, we

allow �2i to di�er by entity to allow for some small misspeci�cation.

3. We initialize �
(0)
i = ��1(0:95)�ei , where �

�1(0:95) ' 1:64.

Missing data Missing data is generally not a problem for GIV estimation. If the panel is un-

balanced, we can estimate the relevant parameters using the data available. For instance, us-

ing the equivalence between PCA estimation and alternating least squares,39 we simply minimizeP
i;t(yit � �i�t)

2 in estimating the simple factor model yit = �0i�t + uit, summing only over the

non-missing values. The same reasoning can be applied to any other step.40

38We can allow for asymmetric cuto� points if the distribution of uit is skewed.
39In alternating least squares estimation of yit = �0i�t + uit, we alternate between OLS estimation of �t given �i,

and of �i given �t.
40In practice, one can �ll in the missing data with the predicted value ��

(n)
i ��

(n)
t in the n-th iteration. Upon

convergence, the predicted value equals the imputed data, which is equivalent to omitting the observation from
the summation. The advantage is that each iteration can typically be computed very quickly using standard PCA
algorithms.
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C Proofs omitted in the paper

C.1 Variance facts

We will repeatedly use a number of facts that we record here.

For two vectors of dimensions n� 1, de�ning uX := X 0u and uY := Y 0u, we have

E [uXuY ] = E [(X 0u) (Y 0u)] = X 0
E [uu0]Y = X 0V uY (40)

Suppose now that (ui)i=1:::N is a series of uncorrelated random variables with mean 0 and

common variance �2u, then V
u = �2uI and

E [uXuY ] = X 0Y �2u (41)

and with � = S � E (with Ei =
1
N
) we have

E [u�uE] = 0; E
�
u2�
�
= E [uSu�] = h2�2u; (42)
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with h =
qPN

i=1 S
2
i � 1

N
. Indeed, �0E = 1

N

P
i (Si � Ei) = 0, and

�0� =
NX
i=1

�
Si � 1

N

�2

=
NX
i=1

�
S2
i �

2

N
Si +

1

N2

�
=

NX
i=1

S2
i �

2

N

NX
i=1

Si +
1

N
=

NX
i=1

S2
i �

1

N
= h2:

In the general heteroskedastic case for V u, the quasi-equal weight vector is ~E = (V u)�1�

�(V u)�1�
: Then,

for any � such that �0� = 0, we have:

E [u�u ~E] = 0: (43)

Indeed, as ~E = k (V u)�1 � for k = 1
�(V u)�1�

, we have

E [u�u ~E] =
~E 0
E [uu0] � = ~E 0V u� = k�0 (V u)�1 V u� = k�0� = 0:

C.2 Proof of Proposition 1

It is proven in the main text.

C.3 Proof of Proposition 2

Derivation of asymptotic variance This part is elementary, and uses well-known ingredients.

We have

�s;eT � �s =
ET [stzt]

ET [ptzt]
� �s =

ET [(st � �spt) zt]

ET [ptzt]
=
ET ["tu�t]

ET [ptu�t]
=
AT
DT

:

Next, the law of large number gives:

DT = ET [ptu�t]!a:s: D;

with, using pt = �uSt + "pt (see (3)):

D = E [ptu�t] = E [(�uSt + "pt )u�t] = �E [uStu�t] :

For the numerator, the central limit theorem gives the convergence in distribution:

p
TAT !d N �0; �2A� ;

where:

�2A = E
�
"2tu

2
�t

�
= E

�
"2t
�
E
�
u2�t
�
= �2"�

2
u�
;

so that
�A
D

=
�"�u�

�E [uStu�t]
=: ��s (�) :
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which is the announced expression for ��s (�). We showed that
p
T (�s;eT � �s)

d�! N �0; �2�s� :
Optimal GIV weights � Next, we solve for the optimal �, which minimizes ��s (�) subject

to �0� = 0. Slightly more intuitively, we want to maximize the squared correlation C (�) :=

corr (uSt; u�t)
2:

max
�

corr (uSt; u�t)
2 subject to �0� = 0: (44)

We next solve this problem. By (41), we have E [uStu�t] = �2u�
0S, hence:

C (�)2 =
E [uStu�t]

2

var (uS) var (u�t)
=

(�0S)2

(S 0S) (�0�)
:

The problem is invariant to changing � into �� for a non-zero �. So, we can �x say S 0� at some

value. Given this, we want the minimum value of �0�. So, we minimize over � the Lagrangian

L =
1

2
�0�� �0�b� c�0S (45)

with some Lagrange multipliers b (of dimension r � 1), and c (a scalar). The �rst order condition

in �0 is: 0 = �� �b� cS, i.e.

� = cS + �b: (46)

We next use the projection operator Q = I � � (�0�)�1 �0 (see (11)) which satis�es Q� = 0. As

�0� = 0;we have Q� = �. So

� = Q� = cQS +Q�b = cQS (47)

The factor c doesn't a�ect the results, (as � and c� give the same estimator �s;eT ), so we may choose

c = 1, and conclude � = QS:

Regression interpretation. The procedure (15) collects residuals �ut = Qyt. This means that the

�ut are the residual of the regression of yt on the factors, gathered in the matrix �. So, zt = �0ut =

S 0Qut = S 0�ut. This shows (14).

C.4 Proof of Proposition 3

In this example � = �, where � is an N -dimensional vector of ones. So, with E = �
N
(a vector with

entries equal to 1
N
)

Q = I � � (�0�)�1 �0 = I � ��0

N
= I � �E 0

so that for a vector u, �u := Qu = u � �uE, which means �uit = uit � uEt. So, zt =
P

i Si�uit =P
i Si (uit � uEt) = uSt � uEt. Finally, �u� = h�u comes from (42).
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Generalization For instance, if �i = (1; xi) with xE = 0, the variance of the GIV is �2u� = �2uS
0QS

i.e.

�2u� = �2u

�
h2 � 1

N

x2S
�2xi

�
: (48)

This illustrates how controlling for more factors reduces the standard deviation of the GIV, hence

(as in Proposition 3) a lower precision of the estimator, especially if x2S is large and N is small. An

advantage of having lots of small �rms (large N) is that they make the estimation of the common

shocks �t easier, and hence increase the precision of the GIV estimator (that is, increase �2u� by

shrinking the last term in (48), 1
N

x2S
�2xi

).

To derive (48), �rst note that �0� =

 
N 0

0
P

k x
2
k

!
, so that

1

N
�0� =

 
1 0

0 �2xi

!

where �2xi =
P

k x
2
k

N
. We let 
 = � (�0�)�1 �0 so that Q = I � 
. Simple calculations show that,

with X = (xi)i=1:::N ;


 =
1

N
��0 +

XX 0

N�2xi

This implies:

S 0QS = S 0S � S 0
S = S 0S � 1

N
� (S 0X)2

N�2xi
= h2 � x2S

N�2xi
;

in which h2 = S 0S �N�1; xS = S 0X. So

�2u�
�2u

= S 0QS = h2 � x2S
N�2xi

:

C.5 A canonical decomposition

We derive a \canonical representation" that, at the cost of some overhead and concepts and nota-

tions, will make the identi�ability reasoning very crisp, and will be useful starting at the proof of

Proposition 4.

C.5.1 Position of the problem: a motivating example

To illustrate the issue, consider the very simple factor model (with i = 1; : : : ; N)

yit = �t + uit (49)
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where the aggregate shock �t is uncorrelated with the idiosyncratic shocks uit, which are i.i.d.

E [�tuit] = 0 (50)

We are given the yit, for a given t.

With �nite N , one cannot estimate �t exactly. But this is not a real problem for our GIV

purpose, which can proceed with �nite N . The \trick" is the following. De�ne

��t := �t + uEt; �uit := uit � uEt (51)

Then, we trivially have

yit = ��t + �uit (52)

But in addition we can recover ��t and �uit, via

��t = yEt; �uit = yit � yEt (53)

In addition, we have41

E [��t�uit] = 0: (54)

Hence, ��t and �uit have properties \almost as good" as �t and uit |compare (50) and (54). But ��t

and �uit easier to work with, as they can be exactly recovered from data (i.e., from yit). The next

subsection ampli�es this idea to more general factor model, and shows a Proposition 9 that is useful

in GIV analysis.

C.5.2 Canonical representation

Using (1) and (3), the model can be written as:

yt = ��t + � ((M � 1)uSt + "yt ) + ut; pt = �uSt + "pt (55)

where "pt , "
y
t := �d"pt and �t are generically correlated, but are uncorrelated with ut. We take the

constant � case to alleviate notation, but we could have a time-varying �t. We use the Q and R

matrices of (31), reproduced here, and with respective dimensions N � r and N �N :

R�;W := (�0W�)
�1
�0W; Q�;W := I � �R�;W

41Indeed,

E [��t�uit] = E [(�t + uEt) (uit � uEt)] = E [uEt (uit � uEt)] = E [uEtuit]� E
�
u2Et

�
=
�2u
N

� �2u
N

= 0:
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where W will be kept implicit here to alleviate notations. In the homoskedastic case, W = I,

and the reader is encouraged to think about this case �rst. In the heteroskedastic case, we take

W = c (V u)�1 for some c > 0.

We decompose � =
�
� : ��

�
, where �� = Q�� is orthogonal to � |using the scalar product

modulated by W , hA;Bi = A0WB for two vectors A, B: for instance, h�; ��i = 0 by (32). Recall

that the dimensions of �, �, �� are respectively N � r, N �1, N � (r � 1). This allows to decompose

the space 
 = R
N into three orthogonal components, 
 = 
� � 


�� � 
?, where 
�� (resp. 
�) is

the subspace generated by the �� (resp. �), and 
? is the subspace orthogonal to �. Indeed, Q� is

the projection on the space 

���
?, the set of vectors orthogonal to �, Q� is the projection on 
?,

the vector space orthogonal to �.

We also decompose �t = (�1t; �
0
2t)

0 where �t; �1t; �2t have dimensions r, 1, and r � 1.

This gives the following decomposition.

Proposition 9 (Canonical representation)When W = c (V u)�1 for some constant c > 0, we de�ne

� = �� :=
�
Q�
�0
S, and we have the following \canonical representation"

yt = ����t + �yEt + �ut; yEt = (M � 1)u�t + _"yt ; pt = �u�t + _"pt (56)

with

��t = R
��yt; �ut = Q�yt = Q�ut; yEt = R�yt; u�t = S 0�ut (57)

where R and Q are the projection matrices de�ned in (31). Hence, we can recover ��t and �ut

without error, by simple projections. Importantly, ��t; _"
y
t ; _"

p
t can be correlated between themselves

but they are uncorrelated with �ut and u�t; and ��, � and �ut are all orthogonal (using the scalar

product hA;Bi = A0WB with W = (V u)�1). Finally we have the following ancillary relations, with

"ut := R�ut (with dimensions r � 1), which is uncorrelated with �ut; u�t:

_�t := �t + "ut = ( _�1t; ��
0
t)
0
; _"yt := "yt + (M � 1)�S"

u
t + _�1t; _"pt := "pt + ��S"

u
t (58)

Variables �t, _�t, _�1t, and ��t have dimensions r, r, 1 and r � 1 respectively.

One important message of Proposition 9 is that ��t and �ut can be recovered without any error,

even though �t and ut can never be recovered exactly with our maintained assumption of �xed N .

This is why the analysis is cleaner and easier in that space of ��t and �ut. All this holds with the

maintained assumption of parametric factors. We suspect that in future non-parametric analyses

of the problem, this decomposition could still be useful.

In the main text, we use the term �et for ��t, to signify that this is the estimated part of ��t and

to avoid the too burdensome notation ��et .
42

42In the simplest example of Section C.5.1, with �d = 0, �t and ��t have dimension 1. In the more general case
with �d 6= 0, one can recover only a ��t with dimension equal to that of �t, minus 1.
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Proof of Proposition 9. In the proof, for simplicity we call R = R�;W and Q = Q�;W ;unless we

explicitly state otherwise. We decompose ut = Qut + (I �Q)ut, so:

ut = �ut + �"ut ; "ut := Rut (59)

Taking W = c (V u)�1 has the useful consequence that �ut (an N dimensional vector) and "ut (a r

dimensional vector) are uncorrelated. Indeed:

E [�ut"
u0
t ] = E

�
(Qut) (Rut)

0� = E [Qutu
0
tR

0] = QE [utu
0
t]R

0 = QV uR0 = c�1QW�1R0 = 0

using (32). This is a generalization of our basic case that assumed uniform loadings on the aggregate

shock, R�ut = uEt, we had that uEt and �ut were uncorrelated. We have

uSt = S 0ut = S 0Qut + S 0�"ut = u�t + �S"
u
t

We start from (55):

pt = �uSt + "pt = � (u�t + �S"
u
t ) + "pt = �u�t + _"pt

with _"pt = "pt + ��S"
u
t .

In the same way, (55) gives

yt = ��t + � ((M � 1)uSt + "yt ) + ut

= ��t + � [(M � 1) (u�t + �S"
u
t ) + "yt ] + �ut + �"ut

= � _�t + � [(M � 1) (u�t + �S"
u
t ) + "yt ] + �ut with _�t := �t + "ut

= ����t + � [(M � 1) (u�t + �S"
u
t ) + "yt + _�1t] + �ut as � _�t = � _�1t + ����t

= ����t + �yEt + �ut

by observing that yEt = R�yt, so that

yEt = (M � 1)u�t + _"yt ; _"yt := (M � 1)�S"
u
t + "yt + _�1t

�

C.6 Proof of Proposition 4

Estimation of � We distinguish between the � in this proposition (a general non-zero vector �

satisfying �0� = 0), and the optimal �� :=
�
Q�
�0
S from Proposition 9. That proposition showed

that we have pt = �u��t + _"pt , with _"pt uncorrelated with �ut, hence with u��t = S 0�ut. Hence, when

� = ��;the assumptions of OLS in (20) are satis�ed, so that the estimator of � is consistent,

unbiased, and the OLS standard errors are correct.
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For a more general � (satisfying �0� = 0, which in turns implies �0Q = �0), we observe �rst that

u�t = �0ut = �0Qut = �0�ut (60)

Next, we can also project

u��t = �u�t + �t

for a regression coe�cient � = E[u��tu�t]

E[u2�t]
and a random variable �t uncorrelated with u�t:

E [u�t�t] = 0:

We next show that

� = 1:

Indeed, from Proposition 9 we have uSt = u��t + �S"
u
t , so

E [u��tu�t] = E [(uSt � �S"
u
t )u�t] = E [uStu�t]� �SE ["

u
t u�t] = E [uStu�t]

because "ut is uncorrelated with �ut, hence with u�t = �0�ut, which implies E ["ut u�t] = 0. We record

E [u��tu�t] = E [uStu�t] (61)

Hence, thanks to Assumption 2, � = E[u��tu�t]

E[u2�t]
= E[uStu�t]

E[u2�t]
= 1.

So, we have pt = �u��t + _"pt so

pt = �u�t + (��t + _"pt ) (62)

We have E [u�t�t] = 0. Also, as �� = 0; we have �0 = �0Q, so u�t = �0ut = �0Qut = �0�ut and as �ut

is uncorrelated with _"pt (from Proposition 9), we have E [u�t _"
p
t ] = 0. So, E [u�t (��t + _"pt )] = 0, and

and the assumption of OLS are satis�ed in (62). So that as above, the estimator of � is consistent,

unbiased, and the OLS standard errors are correct.

Estimation of M Relation (56) implies that we can write st = ySt = Mu��t + _"st with _"st :=
��S ��t + _"yt uncorrelated with �ut. So, the arguments are the same as for the estimation of �.

C.7 Proof of Proposition 5

Most of the proof is straightforward, given the work done before. We have

st = �spt + "t (63)
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We can project "t = ��et + "?t for some �; and by Proposition 9, �et is uncorrelated with �ut. Hence

"?t is uncorrelated with �et and with �ut, hence with zt = �0ut = �0 �ut (see (60)). So we have:

st = �spt + ��et + "?t ; (64)

with "?t uncorrelated with zt. So, we have: E [(st � �spt � ��et ) (zt; �
e
t )] = 0. This validates the

generalization of Proposition 1 to the case with controls for �et .

The proof of Proposition 2 extends to the case with controls, to show that �2�s (�) =
�2
"?
E[u2�t]

�2E[u��tu�t]
2 ,

for �� the optimal weight.43 Then, by Cauchy-Schwarz,
E[u2�t]E[u2��t]
E[u��tu�t]

2 � 1, and the minimum is

reached for � = ��. This proves that � = �� achieves the maximum precision.

Finally, for the generalization of Proposition 4 to controlling for �et , we repeat the same argu-

ments, replacing (63) by (64).

C.8 Proof of Proposition 6

The earlier results proved the proposition in the case where there are no controls Citm and zero

mean values (so that m and the mean values do not have to be estimated).

We treat the case where there are controls Cy
it: A very similar argument applies when there

are other controls and additive constants (so that terms do not need to have a zero mean) in all

equations.

We �rst treat the case where we use zt as an instrument (rather than Zt):We call �yt = Q�;Wyt, i.e.

�yit = yit�y ~Et is the cross-sectionally demeaned value with quasi-equal weights ~E (here we anticipate

the generalization to heteroskedastic weights of Proposition 8). We use notations and concepts

from Section C.5. Preparing the terrain for the heteroskedastic case of Proposition 8, we consider

weighted regressions with weights W , see the notations of Proposition 8. The homoskedastic case

corresponds to W = I.

Given a candidate value m, we construct ��t (m) := R
�� (yt � Cy

tm) and the associated GIV

zt (m) := S 0Q� (yt � Cy
tm), as we do in Section 3.1. De�ne � to be (m;M; �) and �e to be the GMM

estimator of � associated with the following moments:

E
��
�yt � �xt��t (m)� �Cy

tm
�
W �Cy

t

�
= E [g1 (m)] = 0; (65)

E [(pt � �zt (m)� �p��t (m)) (zt (m) ; ��t (m))] = E [g2 (�)] = 0 (66)

E [(st �Mzt (m)� �s��t (m)) (zt (m) ; ��t (m))] = E [g3 (�)] = 0: (67)

Under the regularity conditions we assumed,
p
T (�e � �) converges in distribution a normal dis-

tribution with mean 0. Now, we notice that E
h
@g2(�)
@m

i
= E

h
@g3(�)
@m

i
= 0 (as @��t(m)

@m
and @zt(m)

@m
are

proportional to Cy
t ). Then, by Theorem 6.1 of Newey and McFadden (1994), the standard errors

43Note also that E [u��tu�t] = E [uStu�t] by (61), so this is the same problem as in the proof of Proposition 2.
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on �;M are the same as if we did not have to estimate m. This is precisely the case we worked out

above, which proved that the standard errors on � and M returned by OLS in this procedure are

valid when we do not have estimate m (or equivalently that m was known so that all Citm terms

were removed). So this proves that this claim (that the standard errors on � and M returned by

OLS in this procedure are valid) holds even when m needs to be estimated.44

All this holds when using zt. When using Zt := ySt � y ~Et = zt + (�S � � ~E) �t = zt +

(�S � � ~E) (0; ��t), the same holds with a slight rede�nition of �y and �p (subtracting (�S � � ~E)

times respectively M and �).

C.9 Proof of Proposition 7

In vector notation, yt = �dpt + ��t + ut, i.e.

yt = X
�
_�dpt + _��t

�
+ ut:

Hence, we have �ut := Qyt = Qut and

_yt := Ryt = _�dpt + _��t

We identify �s using

E [(st � �spt) zt] = 0; (68)

which is valid for any weighing matrix W (here we provide the proof both in the homoskedastic

case and also in the heteroskedastic case, anticipating Proposition 8). Next, we suppose that we

have W = c (V u)�1 for some constant c. Then we can also estimate _�d using the moment (which is

k-dimensional):

E

h�
_yt � _�dpt

�
zt

i
= 0: (69)

To see this, we form Ryt = _�dpt + _��t +Rut, and we have E [(Rut) �u
0
t] = 0, per Proposition 9.45

C.10 Proof of Proposition 8

The decomposition of Proposition 9 already considered the heteroskedastic case. It shows how

to revise all the arguments above, with heteroskedasticity. To generalize the optimality of �� in

Proposition 2, the arguments just repeat the Cauchy-Schwarz arguments of the proof of Proposition

5 for the optimality of ��.

44Note that the estimation of m need not be e�cient: it is enough for the argument that the estimator of m be
consistent.

45If we take W as the identity rather than the \ideal" W above, the error in (69) is typically quite moderate: for
instance, with X = �, it is only of order 1

N .
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C.11 Dealing with fat tails: Justi�cation of the procedure in Appendix

B

Here we provide a justi�cation of the procedure in Appendix B to dampen the inuence of out-

liers.For clarity, we consider the following problem �rst | our main problem is just a more complex

variant. Suppose that we want to estimate � in a regression:

yi = �xi + ui (70)

with xi independent of ui, and the ui's are i.i.d. with density p (u) with mean 0. Suppose that there

are outliers, e.g. fat-tailed ui. What to do?

Background: Traditional winsorization yields biased estimates With outliers, a common

procedure is to winsorize yi, e.g. replace yi by

yWi := sign (yi)min (jyij; �) ; (71)

a winsorization at � for some � � 0. This can be equivalently rewritten as:

yWi := yi + r (yi) (72)

with

r (u) := r� (u) = �max (juj � �; 0) sign (u) : (73)

While common, there are di�culties with this procedure. The OLS estimator is biased, as in general

E
��
yWi � �xi

�
xi
� 6= 0 (74)

In addition, there is no clear micro foundation of this procedure, e.g. via MLE.

Winsorization of the residual, not of outcome variables Instead, we use a simple variant

that solves both those di�culties, following Huber (1964) and e.g. Sun et al. (2020). It uses the

following \winsorization of the residual", by de�ning:

ywi := yi + r (yi � �xi) (75)

instead of the traditional (72), and then to run OLS of ywi = �xi + "i.

This is a �xed point problem, which leads following algorithm. We initialize �(0), e.g. setting it

to the plain OLS value. The two steps are as follows:

1. De�ne y
w;(n)
i := yi + r

�
yi � �(n)xi

�
.
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2. Run the OLS of

y
w;(n)
i = �xi + "i: (76)

which yields an update �(n+1), and we iterate until convergence.

We next justify this. De�ne L (u) = � ln p (u), the log likelihood of y is
P

i L (yi � �xi), so the

maximum likelihood estimator is

min
�

X
i

L (yi � �xi) (77)

whose �rst order condition is X
i

L0 (yi � �xi)xi = 0 (78)

If the residuals ui are Gaussian distributed, we have L (u) = 1
2
ku2+ k0 for some constants k and

k0, so L0 (u) = ku, and we obtain the familiar OLS estimator. But otherwise, we have a nonlinear

equation, which is a bit painful to solve. In general, we express:

L0 (u) = k (u+ r (u)) (79)

where intuitively the residual term r (u) is \small". For instance, for the log density

LHuber (u) =
u2

2
1jxj�� +

�
juj � �

2

�
�1juj>� (80)

then we have LHuber0 (u) = u+ r (u) with r (u) exactly as in (73). This is why we take this value of

r (u) in practice. But we continue the discussion for a general r (u).

Then, the FOC (78) becomesX
i

(yi � �xi + r (yi � �xi))xi = 0 (81)

To get more intuition, we de�ne ywi := yi + r (yi � �xi) as in (75), which has the interpretation of

sort of \winsorized" yi, hence the w superscript. Then FOC isX
i

(ywi � �xi)xi = 0 (82)

Hence, we can estimate � by OLS, once we have an estimate of ywi .

We next state a simple proposition.

Proposition 10 Suppose that E [r (ui)xi] = 0, for instance, because ui and xi are independent,

and E [r (ui)] = 0. Then, at the correct value � we have

E [(ywi � �xi)xi] = 0 (83)
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with ywi = �xi + r (yi � �xi) :

The proof is almost a tautology: the statement is equivalent to saying that E [r (ui)xi] = 0,

which is which exactly the main assumption of the proposition. But the advantage is that it lays

out a simple procedure to \winsorize" outliers: run the OLS (76), ywi = �xi + "i . If ui is e.g. non-

symmetric, it shows a simple criterion for other residual functions, E [r (u)] = 0, e.g. by choosing a

function r (u) that is non-symmetric.

Link with the procedure in Appendix B. With the more complex factor model of Appendix

B, the arguments are exactly the same. We can state the following proposition, and prove it exactly

the same way. Hence moment conditions used in Appendix B are valid.

Proposition 11 Suppose that E [r (ui) (�i; ai; �t; bt)] = 0. Then at the correct values, the following

moments hold

E [(ywit � (ai + bt + �i�t)) (�i; ai; �t; bt)] = 0

where ywit = yit + r (yit � (ai + bt + �i�t)).

D Detailed links with previous literature

Procedures containing elements of GIVs A few papers have explored the idea of using id-

iosyncratic shocks as instruments to estimate spillover e�ects, such as Leary and Roberts (2014b)

in the context of �rms' capital structure choice and Amiti et al. (2019) in the context of �rms' price

setting decisions. The structure of the estimating equations in these papers is similar to the model

that we consider here:46

yt = �ywt +mCt + ut;

where ywt = w0yt can be equally-weighted (Leary and Roberts (2014b)) or size-weighted (Amiti et

al. (2019)), depending on the weights w. Both papers use industry and/or year �xed e�ects, which

can be viewed as a choice of controls or exogenous factors, �t; to which all �rms in a given industry

have the same exposure.

There are two main di�erences compared to GIV. First, both papers use idiosyncratic shocks

to another variable than yt, say gt; to construct an instrument for ywt. Leary and Roberts (2014b)

use idiosyncratic stock returns and Amiti et al. (2019) use shocks to competitors' marginal cost,

exchange rates, or export prices. We, instead, propose to use idiosyncratic shocks to yt rather than

another instrument (this way requiring fewer times series). Second, and related, we control for

heterogeneous exposures to common factors to extract the idiosyncratic shocks, which is important

in asymptotic theory and in practice in realistic samples (see Section F).

46Amiti et al. (2019) study the price setting decision of �rms. In their model, the pricing equation features two
endogenous variables, namely the same �rm's marginal cost and the size-weighted average of competitors' prices. We
focus on the spillover e�ects of competitors' prices in our discussion in this section.
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A third di�erence is speci�c to Leary and Roberts (2014b). GIVs crucially depend on the

di�erence between size- and equal-weighted averages of variables. If the estimating equation depends

on equal-weighted averages, GIV cannot be applied. In most models, however, not all competitors

receive equal weight and larger �rms, or perhaps �rms that are closer in product space, receive a

larger weight.

Lastly, the use of model-based idiosyncratic shocks has some similarities with Amiti and Wein-

stein (2018), who extract bank supply shocks from Japanese data using a panel of �xed e�ects, and

then estimate the sensitivity of aggregate investment to these shocks. However, unlike our model,

Amiti and Weinstein (2018) assume a uniform sensitivity to the aggregate shocks (�i�t with �i = 1

for all i), and do not allow for general equilibrium e�ects: shocks to banks a�ect aggregate invest-

ment, but aggregate investment does not circle back around to a�ect individual bank behavior.

This is the key source of endogeneity in many of the models we consider, and by tackling it we are

able to estimate a richer set of parameters.

In a tangentially related recent paper, Sarto (2018) uses factor analysis to extract values of

�t (much as we do when we \recover" a factor �t). Take the basic example in our paper. Then,

Sarto does not identify �s: even if �t (the aggregate shock to demand) were perfectly identi�ed,

that would not allow to estimate pt. In the supply and demand example, Sarto's approach would

identify the demand elasticity �d, but not the supply elasticity �s.

Other methods to estimate aggregate elasticities Rigobon (2003) introduces another method

that can be used to estimate spillover e�ects and aggregate multipliers using time-variation in sec-

ond moments. If shocks are heteroskedastic and the structural parameters are stable across regimes,

then the di�erent volatility regimes add additional equations to the system so that the structural

parameters can be identi�ed. GIV does not require heteroskedasticity, but can accommodate it,

and is therefore complementary to identi�cation methods that rely on heteroskedasticity.

Inuence and the \reection problem" The \reection problem" (Manski (1993); Kline and

Tamer (2020)) studies a related form of contagion. The traditional literature does not use idiosyn-

cratic shocks in its identi�cation strategies. Hence a GIV approach can be useful to complement

existing approaches. Section H.17 develops this.47

Spatial econometrics In some applications of GIVs we have considered separately, growth in a

region a�ects that of the other regions. So there is a similarity between our setup and that of spatial

econometrics (e.g. Kelejian and Prucha (1999)). However, the estimators are quite di�erent. The

reason is that spatial econometrics studies the \local" inuence (e.g. of neighboring cities on a city),

while GIVs study the global inuence. Hence, the sources of variation, identi�ability conditions and

47Somewhat related, Graham (2008) explores the identi�cation of peer e�ects using conditional variance restrictions
on the outcomes by exploiting di�erences in the sizes of the peer group. Intuitively, smaller peer group sizes lead to
a larger contribution of each individual peer on the peer component.

47



methods are quite di�erent. Certainly, the spatial literature has not identi�ed, as we do, the GIVs

as a simple way to estimate elasticities in contexts such as supply and demand problems, and

models with general equilibrium e�ects as opposed to local e�ects. Still, some of the sophisticated

techniques of the spatial literature might be used one day to enrich a GIV-type analysis.

Quasi-experimental instruments and identi�cation by functional form A large literature

explores identi�cation by functional form, where consistency of the estimator depends on functional

form or distributional assumptions. Classic examples include the Heckman (1978) selection model,

identi�cation via heteroskedasticity, as in Rigobon (2003) and Lewbel (2012), and Arellano and

Bond (1991) and Blundell and Bond (1998) in the context of dynamic panel data models. The

typical concern with these approaches, compared to quasi-experimental instruments that are outside

of the model, is that the estimators are inconsistent when the model is misspeci�ed.

In the case of GIVs, we generally start from a structural model that motivates the estimating

equation, as in our empirical example. This prescribes the de�nition of the size vector S and, in

some cases, the characteristics that determine the exposures xit. To extract idiosyncratic shocks,

we rely on statistical factor models.48

Instead of viewing this last step as a merely statistical exercise that is hard to validate externally,

GIVs provide an empirical strategy to understand the economic drivers of the instrument by screen-

ing the top shocks narratively. By understanding the nature of the shock based on news coverage

(as in the narrative examination we just discussed), for instance, we can ensure that the shocks are

truly idiosyncratic and interpretable. For instance, a large negative return associated with a failed

stress test of a bank in the context of doom loops, a negative supply shock in Kuwait and Iraq

during the First Gulf War, or a positive demand shock in China in the early 2000s in the context

crude oil markets, are all valid instruments. While alternative identi�cation methods might rely on

functional form assumptions only, GIVs, by being able to screen the shocks economically, provide

a systematic way to construct instruments more in the spirit of quasi-experimental instruments.

E Microfoundations for the model of sovereign spillovers

We provide a microfounded model for the empirical application of Section 5. In this model, spillovers

happens because debt defaults are partially mutualized. This is a stand-in for potentially much

richer economics. For instance, contagion might work via GDP spillovers, or the limited risk capacity

of specialized �nanciers. Still, the speci�cation that this model delivers might be broadly similar,

as we shall see.

48We discuss the robustness of GIVs to various forms of misspeci�cation in Section 3.2.
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E.1 Model setup

We make a number of simplifying assumptions. The safe interest rate is normalized to 0, and pricing

is risk neutral. Time is continuous in [0; T ]. We neglect the O (dt) terms, which are irrelevant for

the regression analysis we are interested in, i.e. will write df (Xt) = f 0 (Xt) dXt.
49;50

Payo�s are realized at a date T , which should be thought about as faraway. In particular,

countries can default at date T only. Country i's outstanding debt is Bi, and the value of the debt

(per unit of face value) is thus:

Qit = Et

�
1� L+

iT

�
= e�(T�t)yit ; (84)

where x+ := max (x; 0), yit is the yield spread over the safe interest rate (which we normalized to

0), and LiT is the relative \vulnerability" of the government's bonds, de�ned as

LiT =
FiT
Bi

; (85)

where FiT is the value of potential losses from government default (in euros). We assume that FiT

follows:

FiT =  iTGiT ; (86)

where  iT 2 [0; 1] is a propensity to pass on raw government �scal losses GiT to bondholders. A

�nancially virtuous country (say Germany) has  iT close to 0, and a laxer country has a high  iT .

To gain intuition, it is useful to think that most variation in yield spreads comes from the political

willingness to not pay bondholders,  iT .

This raw position GiT is in turn:

GiT = ViT � �F+
iT + �miFT ; (87)

where ViT is a stochastic \latent loss", and the total amount lost on bonds is:

FT =
X
i

F+
iT : (88)

Debts are partially mutualized with intensity � 2 [0; 1]: a fraction � of the loss F+
it is passed on to

other countries, with a share mi to country i (
P

imi = 1, mi � 0). This mutualization creates the

sovereign yield spillovers.

49Formally, we write all the di�erential expressions dYt = atdZt modulo an equivalence by terms btdt (or, to be
pedantic, we quotient by the ring of expressions of the type btdt where bt is an adapted function). So, df (Xt) =
f 0 (Xt) dXt modulo dt, where we keep the \modulo dt" implicit.

50We only care, for the regressions, about the \dZt" terms, that depends on innovations to underlying Brownian
shocks dZt, as those are the loadings detected by the regressions.
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To simplify the analysis, we assume that ViT is strictly positive with probability 1, so that FiT ,

GiT and LiT are all strictly positive with probability 1. This is less restrictive that it may appear:

losses could be very small. This is simply to make the analysis very tractable.

E.2 Model solution

Solving the model,

LiT =
 iT
Bi

(ViT � �FiT + �miFT )

=
 iT
Bi

(ViT � �BiLiT + �miBLT ) ;

with B =
P

iBi and LT = FT
B
, i.e.

LT =
X
i

Bi

B
LiT : (89)

We call �i =
mi

Bi=B
, the ratio between country i's mutualization share mi and its debt share.51;52.

This leads to:

LiT =
 iT

1 + � iT

�
ViT
Bi

+ �
mi

Bi
BLT

�
:

So, if we de�ne

	iT =
 iT

1 + � iT
; (90)

we have:

LiT = 	iT

�
ViT
Bi

+ ��iLT

�
: (91)

This shows the \contagion" in the space of vulnerabilities, LiT .

To move to yields, we do a Taylor expansion for small yield spreads, so that (84) gives:

yit = atEt [LiT ] ; (92)

where

at =
1

T � t
(93)

is a slowly-varying parameter (as T is far from the interval of times t under study { so we'll take the

approximation dat ' 0). We de�ne 	it = Et [	iT ], vit = atEt

h
ViT
Bi

i
. Also, we place ourselves in the

51The ECB's capital key, which de�nes the equity shares of member states in the ECB, is de�ned using 50% of
GDP shares and 50% of population shares. However, we do not focus exclusively on spillovers that operate via the
ECB and there may be other e�ects via trade linkages, demand shocks from investors, et cetera. We maintain the
assumption that the losses, or exposures, to Eurozone-wide losses are proportional to GDP. Alternatively, we could
change the measure mi to be a function of both population and GDP shares.

52One can imagine �i ' 1 as a simple baseline where most variations come from the political willingness  it.
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\quasi-static" regime, where all noises are small|see Section E.3 for details. Hence, (91) becomes,

in yield space:

yit = 	it (vit + ��iySt) ; (94)

where

ySt =

P
iBiyit
B

: (95)

This shows that the yield spread depends on a country-speci�c fundamental vit and a \spillover"

proportional to �. At the same time, for a very �nancially virtuous country with 	it ' 0, the yield

spread is close to 0, so that yield contagion is close to 0: as the country is quite safe anyway, external

disruptions cannot move the yield much away from 0.

We have

dyit
yit

=
d	it

	it
+

dvit
vit + ��iySt

+
��iySt

vit + ��iySt

dySt
ySt

;

hence
dyit
yit

= dwit + it
dySt
ySt

(96)

for dwit :=
d	it

	it
+ dvit

vit+��iySt
and for a coe�cient it :=

��iySt
vit+��iySt

2 [0; 1]. In the simple benchmark

where all countries have a similar vit (fundamental government �nances) but di�er mostly in 	it

(the propensity to absorb the shocks rather than pass it on to debt holders by defaulting) and

�i = 1, we have it =
�ySt

vt+�ySt
.

Written another way, call

~yit := ln yit: (97)

Then, we have

d~yit = dwit + itd~y ~St; (98)

where
~Sit =

BiyitP
j Bjyjt

; (99)

d~y ~St =
X
i

~Sitd~yit =
X
i

Biyit
dyit
yitP

j Bjyjt
=
dySt
ySt

: (100)

Hence, if we reason in \log yield spread" space, the proper weights are proportional to Biyit, i.e.

debt value times yield spread. This is the formulation that motivates our empirical speci�cation

(33). In particular, if 	it = 0, then the change is always dyit = 0. The importance of the spillovers

is given by
P

j Bjdyjt, the change in the yield weighted by debt value, summed over all countries.
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E.3 Quasi-static regime of stochastic processes

Suppose a stochastic process, governed by some noise size �, as in dYt = � (Yt) dt + �v (Yt) dBt,

where Bt is a Brownian motion. The \quasi-static" regime is the one where � is very close to 0.

Then, things are much simpler to analyze, especially for non-linear processes, provided we accept

O (�2) approximations.

Indeed, consider that vector-valued process Yt (for t � T )

Xt = Et [F (YT )] (101)

where F is a C2 function. Then, in the quasi-static regime, we can write

Xt = F (Et [YT ]) +O
�
�2
�

(102)

i.e. we swap Et and F .
53 So, assume now that Yt is a martingale,

Xt = F (Yt) +O
�
�2
�

(103)

and

dXt = F 0 (Yt) dYt +O
�
�2
�

(104)

or, more informally (as we do in the economic part of this section),

dXt ' F 0 (Yt) dYt: (105)

To work out a concrete example, take Yt = �Bt; and Xt = Et

�
eYT
�
. The exact values are:

Xt = eYt+
�2

2
(T�t); dXt = XtdYt (106)

and the quasi-static approximation gives

Xt = eYt +O
�
�2
�
; dXt = eYtdYt +O

�
�2
�
: (107)

E.4 Details on the data

We use data on general government gross debt for each country from Eurostat (series identi�er:

teina225 ). The tickers that we use for di�erent countries, and the countries included, are the

ones used by European Insurance and Occupational Pensions Authority (EIOPA) to construct the

regulatory yield curves of insurance companies and pension funds (EIOPA (2017)). We use their

53We do not formally prove this, as this is purely mathematical as opposed to economic. One could do it, e.g.
using the Clark-Ocone formula from the Malliavin calculus.
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Table E.3: Bloomberg identi�ers of countries included in the sovereign yield model.

Country Government bond ticker ID Country Government bond ticker ID

Austria G0063Z 10Y BLC2 Curncy Ireland G0062Z 10Y BLC2 Curncy

Belgium G0006Z 10Y BLC2 Curncy Italy G0040Z 10Y BLC2 Curncy

Finland G0081Z 10Y BLC2 Curncy Netherlands G0020Z 10Y BLC2 Curncy

France G0014Z 10Y BLC2 Curncy Portugal G0084Z 10Y BLC2 Curncy

Germany G0016Z 10Y BLC2 Curncy Slovenia G0259Z 10Y BLC2 Curncy

Greece G0156Z 10Y BLC2 Curncy Spain G0061Z 10Y BLC2 Curncy

government bond ticker ID (see their Table 1). We select the EZ13 Eurozone, which was established

in 2007, before the 2008 �nancial crisis.Table E.3 describes the tickers of the yields that we use in

our empirical analysis. We use Bloomberg's price variable PX LAST.

F Simulations

We use simulations to illustrate the extended GIV algorithm in Section B that can handle (i)

non-parametric factors, (ii) heteroskedasticity, and (iii) fat-tailed idiosyncratic shocks.

We describe the data generating process in Section F.1. In Section F.2, we discuss bootstrap

methods to compute con�dence intervals and coverage rates. We then conclude this section by

presenting the results in Section F.3.

F.1 Data generating process

We consider the following data generating process, which is a special case of the model in Section

2:

yit = ySt + �i�t + uit;

�t � N(0; 1);

uit � D(0; 1);

�i=c � U [0; 1]:

where D (0; 1) is a distribution with zero mean and unit variance that we will specify soon | it is

either Gaussian or fat-tailed. We choose c so that the share of variance in ySt due to idiosyncratic

shocks is equal to � in each run,

� =
S 0S

c2�2S + S 0S
; (108)
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and thus

c =

s
(��1 � 1)

S 0S
�2S

:

We vary h =
p
S 0S � 1=N 2 f0:2; 0:5g and � 2 f0:2; 0:4g. To explore the impact of fat-tailed

idiosyncratic shocks, we vary the distribution of uit. We start from uit � N(0; 1). We then also

consider uit =
q

��2
�
�it with �it � t� and select � = 3. We assume that there are 50 entities and

T = 100 time periods. For each set of parameters, we use 10,000 replications in the simulations and

we start from the same seed for each of the parameter con�gurations.

Heteroskedasticity We also explore the impact of heteroskedastic shocks. In this case, we

multiply uit by �i, where �
2
i is speci�ed as

�2i = b exp(�0:3 lnSi);

where b is chosen to ensure that S 0diag(�2)S = S 0S and thus

b =
S 0S

S 0diag(exp(�0:3 lnS))S ; (109)

which makes sure that (108) is satis�ed for the same c.

F.2 Bootstrap methods

To compute con�dence intervals and coverage rates, we consider two algorithms, the non-parametric

bootstrap and the wild bootstrap, by adjusting methods discussed in Goncalves and Perron (2014)

and Horowitz (2019) to our setting.

F.2.1 Non-parametric bootstrap

In case of the non-parametric bootstrap (i.e., the basic bootstrap), we resample the vector yt from

the original sample with replacement. We consider 1,000 bootstrap samples.

F.2.2 Wild bootstrap

Given an estimate M e, we compute the structural parameter e, e = Me�1
Me . In rare cases where

jej > 1, we ensure that the estimated parameter is in [�1; 1] to ensure that the model is stable by
setting e = max(min(M

e�1
Me ; 1);�1). We then construct the bootstrap samples using the following

procedure:

1. Compute ~yit = yit � eySt = �i�t + uit.
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2. Winsorize ~yit at the 2.5% and 97.5% level to mitigate the impact of outliers, and refer to the

winsorized data as ~yW;0:05it .54

3. Compute time �xed e�ect bet =
1
N

P
i ~y

W;0:05
it , and the entity �xed e�ect aei =

1
T

P
t

�
~yW;0:05it � bet

�
.

4. Run PCA on ~yW;0:05it � aei � bet and call the estimated factor �et and loadings �ei .

5. Recover the residuals as ueit = ~yit � aei � bet � �ei�
e
t .

6. Construct the n-th bootstrap sample y
(n)
it = (I � e�S 0)�1 (�ei�

e
t + aei + bet + �itu

e
it), where �it

are independently drawn from a standard normal distribution, vit � N(0; 1). This last step is

the essence of the wild bootstrap.

F.2.3 Con�dence intervals and coverage rates

The con�dence interval and coverage rate are computed following the procedure outlined in Horowitz

(2019).55

1. Let ŝ be the OLS standard error of M̂ estimated from the regression in the �nal step of the

GIV algorithm

ySt =MZt + c+ ��et + �t:

2. Obtain the estimates M̂ (n) and ŝ(n) for each bootstrapped sample of sample size T indexed

by n.

3. Compute the pivotal statistic t(n) =
p
T M̂(n)�M̂

ŝ(n)
.

4. Across all bootstrapped samples, compute z1�� as the 1 � � quantile of the distribution of

jt(n)j.

5. The 1� � con�dence interval for M is computed as (M̂ � 1p
T
ŝz1��; M̂ + 1p

T
ŝz1��).

6. The 1�� coverage rate is de�ned as the probability of true M falling in the 1�� con�dence

interval across simulations.

54We winsorize the data in this step to mitigate the impact of outliers in case of fat-tailed idiosyncratic shocks. As
an alternative, we can use the Huber loss function to estimate (ai; bt; �; �t), but this is computationally slower than
the procedure outlined here.

55The intuitive justi�cation is the following. Suppose that the standard error ŝ on M is underestimated by a
factor of 2, for some reason like a small sample bias. Then t(n) and z1�� are doubled, and nicely the standard error
1p
T
ŝz1�� is then corrected by the procedure.
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F.3 Simulation results

We present the baseline results in Table F.4. In Panel A of the table, we present the results for

homoskedastic shocks and we use the homoskedastic GIV algorithms. In Panel B, we simulate het-

eroskedastic idiosyncratic shocks and use GIV algorithms that adjust for (unknown) heteroskedas-

ticity, as discussed in Section B.

In each panel, there are four sets of results. In the top part of the panel (\Baseline GIV

algorithm"), we use the Gaussian loss function. In the bottom part of the panel (\Huber GIV

algorithm"), we use the Huber loss function that is robust to fat-tailed idiosyncratic shocks. In the

left part of each panel (the �rst 13 columns), we simulate idiosyncratic shocks that are thin-tailed

and normally distributed. In the right part of each panel (the last 11 columns), we simulate the

idiosyncratic shocks are drawn from a t3-distribution.

The true value of M = 2 in all simulations. Focusing on the top-left segment of Panel A,

we see that the baseline GIV algorithm is unbiased and that the standard errors decrease when

concentration increases. In this case, the OLS standard errors are close to the simulated standard

errors, which is not directly obvious as we estimate the factor loadings using PCA. As a result, the

OLS coverage rates are close to 95%, also for both bootstrap methods.

Turning to the top-right segment of Panel A, where we simulate fat-tailed shocks, we see that

the Baseline GIV algorithm remains close to unbiased, but the OLS standard errors overstate the

precision of the estimator. The reason is that the factor estimates are severely distorted by the

outliers, which is missed by the OLS standard errors. The bootstrap standard errors are close to

the simulated standard errors and the boostrapped coverage rates are close to 95%.

If we turn to the bottom segments of Panel A, where we use the Huber GIV algorithm, we �rst

note that the performance is virtually identical to the Baseline GIV algorithm when shocks are thin-

tailed (bottom-left segment). Most importantly, in the presence of fat-tailed shocks (bottom-right

segment), the Huber GIV algorithm produces tight simulated standard and OLS standard errors

are reliable. Interestingly, when comparing the top-left and bottom-right segments of the table, we

see that the Huber GIV algorithm yields smaller standard errors in the presence of fat-tailed shocks

than the Baseline GIV algorithm in the presence of thin-tailed shocks. This implies that the GIV

procedure bene�ts from fat-tailed shocks and that the Huber GIV algorithm avoids distortions in

estimating the factors.

In Panel B, we repeat the analysis but now we simulate heteroskedastic shocks and use GIV

algorithms that estimate the shocks' heteroskedasticity. By comparing the top-left segments of Panel

A and Panel B, we see that estimating the volatilities of the shocks increases the standard errors,

even though the algorithm is close to unbiased. OLS standard errors are too tight in this case

and the bootstrap procedures improve the coverage rates, and in particular the non-parametric

bootstrap. Using the Baseline GIV algorithm in the presence of fat-tailed shocks leads to large

standard errors (top-right segment), but, as before, the Huber GIV algorithm results in unbiased

estimates and fairly tight standard errors. The coverage rates of the bootstrap procedure are also
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close to 95% when using the Huber GIV algorithm.

We conclude that the Huber GIV algorithm performs well in the presence of non-parametric

factors, heteroskedasticity, and outliers.

We extend the simulation results in Table F.5 by exploring the robustness to misspeci�cation. In

Panel A of the table, we present the results for homoskedastic shocks and we use the heteroskedastic

GIV algorithms as discussed in Section B. In Panel B, we simulate heteroskedastic idiosyncratic

shocks and use GIV algorithms that do not adjust for heteroskedasticity. In each panel, there are

four sets of results. In the top part of the panel (\Baseline GIV algorithm"), we use the Gaussian

loss function. In the bottom part of the panel (\Huber GIV algorithm"), we use the Huber loss

function that is robust to fat-tailed idiosyncratic shocks. In the left part of each panel (the �rst

13 columns), we simulate idiosyncratic shocks that are thin-tailed and normally distributed. In the

right part of each panel (the last 11 columns), we simulate the idiosyncratic shocks are drawn from

a t3-distribution.

By comparing Panel A of Table F.5 to Panel A of Table F.4, we �nd that the results are very

comparable. In fact, for the Baseline GIV algorithm and in the presence of fat-tailed shocks (the top-

right segment of Panel A), the procedure that adjusts for heteroskedasticity produces somewhat

smaller standard errors as it limits the impact of outliers. The important practical takeaway is

that using algorithms that adjust for heteroskedasticity do not lead to worse estimates when the

underlying data are homoskedastic.

Panel B of Table F.5 shows, however, that estimating the model using homoskedastic procedures

when the underlying data are heteroskedastic can lead to biased estimates. This e�ect is more

pronounced for the Baseline GIV algorithm compared to the Huber GIV algorithm, as the latter is

close to unbiased (bottom segments of Panel B).

These results strengthen our earlier conclusion that the Huber GIV algorithm performs well in

the presence of non-parametric factors, heteroskedasticity, and outliers.

G General setup and multipliers

We now propose a more general setup with potentially several factors and rich heterogeneity.

G.1 Framework

Consider the following model of outcome variables yit (such as employment, investment, TFP shocks,

returns, and so on)for \actor" i (e.g., a �rm or industry i in a closed-economy setting, or a country

i in an international setting):

yit =
X
f

�fitF
f
t + uit + Cy

itm; (110)
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where each F f
t is a factor, �fit is factor loading, uit is an idiosyncratic shock, and Cy

it is a vector of

controls that may include lagged demands and other characteristics. We could also add constants,

but we omit them for notational simplicity. Factor f follows:

F f
t = �fySt + �ft + Cf

t m
f : (111)

It depends on an exogenous shock �ft , and potentially on the mean action ySt, and on a set of controls

Cf
t (potentially di�erent from Cy

it). Those controls may include, for instance, lagged values. We

assume that the \size" weights have been normalized to add to one,
P

i Si = 1.

We use the structure (110)-(111) because many economic models of interest follow this structure,

at least after linearization, so that the GIV allows to estimate some of their parameters.

We partition the factors into \exogenous factors", where we know �f = 0, and \endogenous"

factors where �f may be non-zero. As in the rest of the paper, we make the mild assumption that

all our variables (e.g. �ft ; ut) have �nite second moments

In the baseline case here we study the parametric case. We have some characteristics xit of

actors: for instance, depending on the application we know that the loading is an a�ne function of

log market capitalization, or the stock market beta of a bank, or OPEC membership. We also have

a priori knowledge that for some parameter _�f to be estimated we have:

�fit =
_�f0 +

_�f1x
f
it; (112)

This is consistent with the practice in modern �nance in which risk exposures (betas) align with

characteristics (see e.g. Fama and French (1993)), so that parametric approaches are preferred, in

particular because they are more stable than non-parametric approaches.

We make the following identifying assumptions. For all f , i, the shocks uit are idiosyncratic:

E

h
uit

�
�ft ; C

y
t ; C

f
t ; x

f
t

�i
= 0; (113)

but the �ft may be correlated across f 's, and �ft may be correlated with the controls, Cy
t and Cf

t .

The uit may have some correlation across i's and can be heteroskedastic, as we discuss later. For

expositional simplicity we assume that all dates are i.i.d.

We rewrite model (110) in vector form:

yt = �tFt + ut + Cy
tm; F f

t = �fySt + �ft + Cf
t m

f ; (114)

with �t a N � r matrix, Ft a r� 1 vector, Cy
t an N � c matrix, m is c� 1, where c is the dimension

of the controls.56

56Our initial examples are particular cases of the general procedure.
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G.2 Multipliers

Solving the model gives ySt = �StFt+ uSt+Cy
Stm, that is, ySt = �St�ySt+ uSt+ "yt ; where � is the

vector stacking the �f 's and "yt satis�es "
y
t ? ut. So, we can solve for the aggregate outcome ySt as

ySt =
uSt+"

y
t

1��St� , that is,

ySt =Mt (uSt + "yt ) ; (115)

where the multiplier Mt measures the total impact of shocks, after going through all general equi-

librium e�ects (where we assume that the denominator is not 0):

Mt =
1

1� �St�
=

1

1�Pf �
f
St�

f
: (116)

Hence, an idiosyncratic shock has an impact on the aggregate action ySt that is Mt times bigger

than its direct e�ect. Also, the total impact of an idiosyncratic shock on factor f is:

F f
t =Mt�

fuSt + "ft ; (117)

where it again holds that "ft ? uSt. This shows intuitively, and we will prove formally below, that

our regressions will allow to identify Mt and Mt�
f .

In some cases, we may not observe all endogenous factors, F f
t . In this case, we still recover the

correct multiplier, Mt, and it should be interpreted as accounting for all general equilibrium e�ects

in the economy, including those operating via the unobservable, endogenous factors. However, we

can obviously not estimate �f for those unobserved factors.

G.3 A formal identi�ability result

We provide here formal conditions for identi�cation, completing the simpler case of Section 2. We

study the parametric case. Section H.4 develops the full non-parametric version, estimating the

factors. We don't have a priori information about the �t, nor their variance V
�:

Assumption 3 (Condition for identi�cation with GIV) The vector V uS is not spanned by the

factors loadings �f (where V u is the covariance matrix of ut).

Assumption 3 ensures that the GIV is not identically 0 (as zt := S 0Q�;(V u)�1

ut, as in (??) and

(31)). Economically, this assumption seems like a mild restriction. It is generically satis�ed.57;58

For simplicity, we shall make here a strong further Assumption 4, which can be relaxed.

Assumption 4 (Known form of the variance matrix of the idiosyncratic shocks) The uit's are

homoskedastic, or, more generally, the econometrician knows the matrix V u up to a proportionality

57See Footnote 20.
58This also suggest that to control for size, one wants to use log size, but not absolute size.
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factor. In addition, V u is invertible.

Though this would be easy to relax, we assume that all shocks are i.i.d. over time, that �St is

constant, so thatMt is constant. We assume that second moments are �nite for all random variables�
�t; uit; �

f
t ; C

y
it; C

f
t ; xit

�
.

We next state a formal identi�cation result, which is proven by method very similar to those

of Section C.8. The complete proof is in Section C.5 of the NBER Working Paper version of this

paper.

Proposition 12 (Su�cient condition for identi�cation with GIV) Consider the factor model above,

when N is �xed but T !1, and make Assumption 3 and 4. We assume the parametric case, where

we know the actor (e.g., �rm or country) characteristics Xit. Then, we can identify �f and M by

GIV. Furthermore, the standard errors on M and �fM returned by OLS (using the GIV) in this

procedure are valid.

Proposition 12 shows identi�cation in the case with parametric factors. We conjecture that it

also holds for the case of non-parametric factors. As a partial substitute, we provide numerical

simulations that support the view that the procedure also works in the latter case. But given the

complexity of that case, we defer it to future research as one of the several interesting extensions

of the GIV.

H Complements

H.1 Multi-dimensional actions

Suppose now that the outcome or action yit and idiosyncratic noise uit are q�dimensional, for some
q � 1. For instance, yit's components might be the growth rate and the labor share of �rm i, and

then q = 2. Then, the general GIV procedure extends well, as we shall now see.

We call a 2 f1; : : : ; qg (as in action) a component of y. We consider the model

yaSat =
X
f

�aSa;fF
f + uaSat;

F f
t = �ft +

X
a

�fay
a
Sa;t;

Here uit is q dimensional, � is a r � q dimensional matrix, and �S is a q � r dimensional matrix.

We can also estimate M (hence
P

f �
f�f ), the �f . Indeed, for "t a composite of aggregate

shocks,

ySt = HySt + uSt + "t;
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where

H = �A =
X
f

�f�f ;

with �af = �aSa;f and Afa = �fa matrices with dimensions q � r and r� q respectively, so that H is

q � q, and

uSt = (uaSat)a=1;:::;q :

This implies

ySt =M (uSt + "t) ; (118)

where the multiplier M is now a q � q matrix:

M = (I �H)�1 :

We will form a GIV:

zt = u�t;

which is q�dimensional: u� = (ua�a)a=1;:::;q : We want, with Ea = Sa � �a,

E [uEtu
0
�t] = 0

i.e., for all a; b, 
ab = 0, where


ab := E
�
uaEatu

b
�bt

�
:

Let us focus on the case where uit; ujt are uncorrelated for i 6= j, but for a given i, uait; u
b
it can be

correlated. (If a �rm has an investment boom, it will likely hire more labor, so that the components

of its idiosyncratic shock in yit 2 Rq will be correlated.)
We have:


ab =
X
i

Ea
i �

b
iv
ab
i ; vabi := E

�
uaitu

b
it

�
: (119)

For simplicity, we will suppose that that there are vab and �2i such that

vabi = �2i v
ab: (120)

Hence, we can simply take Ei =
k
�2i

with k = 1P
j 1=�

2
j
and set, for all a, Ea

i = Ei and �a = Sa � Ea.

Then,


ab =
X
i

k

�2i
�bi�

2
i v

ab = kvab
X
i

�bi = 0;

so that we have achieved our goal that E [uEtu
0
�t] = 0. In the more general case, other �ai can

probably be found.
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Given (118), we have

ySt =M (uSt + "t) =M (u�t + uEt + "t) ;

so

E [yStz
0
t] =ME [ztz

0
t] ;

hence our estimator is

M = E [yStz
0
t]E [ztz

0
t]
�1
: (121)

Finally, we can also estimate �fM by regressing on zt:

F f
t = �ft +

X
a

�fay
a
Sa;t = �ft + �fySt = �ft + �fM (u�t + uEt + "t) ;

so �f = �fM (a row vector) obtains by simply regressing

F f
t = �fzt + "ft ;

and get �f = �fM , �f = E

h
F f
t z

0
t

i
E [ztz

0
t]
�1.

Extension: causal estimation of the actor-speci�c multiplier The following is a re�nement.

We can also identify causally �i := �i� =
P

f �
f
i �

f . Indeed, use

u�t;�i := u�t � Sui uit; (122)

which is the granular shock purged of a correlation with uit. Then, a shock uSt creates an impact
dFt
duSt

=M�, hence an impact
dyit
duSt

= �iM�:

Hence, we can identify �i, by regression

yit = �iMu�t;�i + �iCt+"yit; (123)

with some noise "yit. This is the average impact of a causal impact of idiosyncratic shocks of the

other entities on entity i:

H.2 Nonlinear GIV

We imagine a nonlinear GIV. Suppose that instead of the simple st = �spt + "t (equation (2)) we

have a more complex

st = �(pt; �
s) + "t (124)

64



for � a nonlinear function. We can use the moment:

E [(st � � (pt; �
s)) zt] = 0 (125)

and can still identify a one-dimensional �s. For a higher-dimensional �s, we might add z2t as

instrument, though the instrument becomes weaker.

H.3 When the researcher assumes too much homogeneity

Take the supply and demand example, and imagine that the econometrician assumes a homogeneous

elasticity of demand �d, even though there are in fact heterogeneous elasticities �di . What happens

then?

The model (1)-(2) becomes, for the demand:

yit = �di pt + �i�t + uit;

and for the supply

st = �spt + "t:

As supply equals demand, ySt = st; which gives the price

pt =
uSt + �S�t � "t

�s � �dS
: (126)

In this thought experiment, the econometrician assumes identical elasticities of demand across

countries, �di = �d. He runs a panel model for yit � yEt, and we assume that it's large enough that

he can extract �t successfully.
59 The GIV (we use the notation Zt rather than zt to denote the GIV

before controls by �t) is then

Zt := y�t = �d�pt + ���t + u�t =

�
1 +

�d�
�s � �dS

�
u�t + �Z ~�t =

1

 
u�t + �Z ~�t;

so

Zt =
1

 
u�t + �Z ~�t;

1

 
=
�s � �dE
�s � �dS

; (127)

where 1
 
= 1 in the homogeneous-elasticity case, ~�t = (�t; "t; uEt) gathers the common shocks, and

�Z is a vector of loadings.

Hence, when we run the �rst stage

pt = bpZt + �p�t + "pt ;

59One of the factors, formally, will be pt. We assume that it is not included in the vector of factors �t.
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we will gather

bp =
1

�s � �dE
:

If we run

st = bsZt + �s�t + "st ;

we will estimate

bs =
�s

�s � �dE
:

The ratio of the two coe�cients still gives �s. Likewise, the IV on the elasticity of demand will give

�dE.

In the polar opposite case where �t cannot be estimated or controlled for, then the simple

procedure becomes biased, however, as (127) shows. To �x it, one can estimate the model with

non-parametric coe�cients (Section H.4).

H.4 Heterogeneous demand elasticities: Non-parametric extension

Non-parametric version for �d We present a variant of the procedure in Section 4.2, but now

with non-parametric heterogeneous demand elasticities �di . The model is

yt = �dpt + ��t + ut; (128)

We still assume parametric loading of unobserved factors �.

We propose two procedures to estimate �d.

H.4.1 First procedure for the nonparametric estimation of heterogeneous demand

elasticities

Recall the model (128). We replace �d by � for simplicity:

yt = �pt + ��t + ut; (129)

Unlike earlier, we now do not assume parametric knowledge of �. We propose the following proce-

dure.

1. Guess a candidate for �, called �c, and W = (V u)�1 (initially, as it's enough to know all those

up to a multiplicative factor, we might take �c = �, and W = I, or W = Diag (1=var (yit))).

We de�ne Q� := Q�c;W , keeping W implicit in this step and the next. If �c = �, then

Q�yt =
�
Q��

�
�t +Q�ut (130)

2. We can apply the \singular factor analysis" procedure of Section H.11 to Q�yt (so, in the
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notation of that section, G = Q�). This returns: �� := Q��, �et , V
u, �ut = Q

��;�ut. We form

zt := S 0�ut, and � :=
�
Q

��;�
�0
S.

3. We estimate the vector of sensitivities �. We use a speci�c instrument zit for each entity i.

We proceed as follows:

(a) We de�ne the debiasing vector ai. As �ut = Qut, we have V
�u = QV uQ0, and we de�ne

aij :=
V �u
ij

V �u
ii

(131)

(b) We de�ne the instrument for entity i,

zit := S 0
�
�uet � ai�ueit

�
(132)

Morally, it's the size weighted sum idiosyncratic shocks of the entities di�erent from i.60

(c) We use the following moment to identify �i:

E [(yit � �ipt � �i�
e
t ) zit] = 0 (135)

4. Given this new estimates of � and V u, we go back to step 1-3, and loop until convergence.

This algorithm also applies to the parametric case where we know that �it = Xi
_� (Section 4.2), but

keep the loadings � non-parametric. Then, in steps 1-2 we replace � by X, and in the last step we

replace � by X _� and estimate _�.

Proposition 13 (Moment conditions to identify non-parametric elasticities). De�ne �ut = Q
��;�ut

in the notations above, and the entity-i speci�c GIV zit de�ned in (132). Then the moment condition

(135) holds.

Proof of Proposition 13. De�nition (131), together with �ut = Qut and V
�u = QV uQ0, implies

aij =
E [�ujt�uit]

E [�u2it]
(136)

60Indeed, if we had no common shocks, we'd have

aij = 1i=j (133)

so that zit =
P

j 6=i Sj �u
e
jt is a \leave one out" estimator. In the general case, zit is in some sense a re�ned quasi-leave

one out estimator, re�ned so that (137) holds. In the simple case of Section 2.3 with an additive shock (�i � 1), we
just have �uit = uit � uEt, i.e. Qij = 1i=j � 1

N and

aij :=
1i=j � 1

N

1� 1
N

: (134)

This may be useful as a starting point numerically.
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so that

E [zit�uit] = E
�
S 0
�
�ut � ai�uit

�
�uit
�
= 0 (137)

As zit is also uncorrelated with �et , moment (135) holds. �

H.4.2 Second procedure for the nonparametric estimation of heterogeneous demand

elasticities

We premultiply (128) by Q = Q� and set �xt := Qxt. So �yt = ��dpt + �ut: With � = Q0S, we have

y�t = �d�pt + u�t. To ease on notations, we call  := �d�. Given a candidate estimate  c of  we

form the associated GIV: zt ( 
c) := y�t �  cpt.

If we have the correct zt, the following moments hold
61;62, with bp = 1

�s��dS
the coe�cient of the

�rst stage regression (20), pt = bpzt + "pt ;

E
��
yt � �dpt

�
zt
�

= V u�; E [(pt � bpzt) zt] = 0 (140)

E

��
�yit � ��di pt

�2�
= V �u

ii ; E
�
z2t
�
= �0V u� (141)

which potentially allow to estimate, respectively, �d, bp (hence �s), V u
ii and �

d
�. Indeed, if we know

zt, we know �d and bp.63

We examine in more detail how to estimate  := �d�. Calling the true value zt ( ) = u�t, we have

E [z2t ] = �2u� , where �
2
u�

= �0V u� is the theoretical variance of zt given in (141). So, we solve for

 c (a candidate answer for  ) so that the empirical variance of the GIV is equal to its theoretical

variance:

E
�
zt ( 

c)2
�� �2u� = 0

i.e. E [p2t ] ( 
c)2 � 2E [y�tpt] 

c + E [y2�t]� �2u� = 0. This is a quadratic equation in  c; which yields

two roots:64 a good (i.e. correct) root,  G =  , and a bad root,  B =  + 2
E[z�t pt]

E[p2t ]
. Fortunately,

61Indeed, we should have E
��
yt � �dpt

�
zt
�
= E [utzt] = E [ut (u

0
t�)] = V u�. Also, as �u = �y� ��p, and V �u = QV uQ0.

62As a variant, we decompose into the equal weighted version, which gives �E (we premultiply by ~E0):

E [(y ~Et � � ~Ept) zt] = 0 (138)

and the deviation from the mean, which gives ��i via:

E
��
�yit � ��ipt

�
zt
�
= (QV u�)i (139)

63We recommend starting from the parametric estimates of Section 4.2, which gives potentially good starting
values for �d; zt and V

u.
64Indeed, calling  � :=  c �  the error, we have

0 = E

h
zt ( 

c)
2
i
� �2u� = E

h�
z�t �  �pt

�2i� E �z�2t � = �2 �
E [z�t pt] +

�
 �

�2
E
�
p2t
�
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there is an economic way to determine which is the correct root. Calling G (resp. B) the estimation

with the good (resp. bad) root, one can show that:

bp;B = �bp;G; (142)

Hence, if we have a prior on the sign of of the �rst stage coe�cient bp (e.g. we know that bp > 0

in a demand and supply model), we can choose the correct root as the one yielding a positive bp in

the �rst stage.

Justi�cation of the proposed procedure Consider an econometrician who would use the bad

root:

zBt = y�t � �B� pt = u�t + ��pt � �B� pt = zt � �pt; � = 2
E [ztpt]

E [p2t ]

This bad root satis�es E
�
zBt pt

�
= E [(zt � �pt) pt] = �E [ztpt], so:

E
�
zBt pt

�
= �E [ztpt] ; E

h�
zBt
�2i

= E
�
z2t
�

(143)

Hence, when estimating bp in the \�rst stage" via E [(pt � bpzt) zt] = 0, the econometrician will

�nd:

bp;B =
E
�
ptz

B
t

�
E

h
(zBt )

2
i = �E [ptzt]

E [z2t ]
= �bp;eG (144)

Hence, the coe�cient in the �rst stage will have the wrong sign. This allows to �nd the correct

root.

A more general argument We show how even with other procedures there are two roots for

a nonparametric model with heterogeneous elasticities, and that fortunately (as in our outlined

procedure) there is a simple economic way to identify the correct root. The model is, in vector

form:

yt = ��t + �pt + ut; pt = �ySt + _"t

with � = 1
�s
, and we use notation _"t as we wish to keep the simpler notation "t for later. So solving

for ySt = M (�S�t + �S _"t + uSt), M = 1
1��S� , we get, for a properly de�ned �"t (an unimportant

linear combination of _"t and �t), pt = �MuSt + �"t, hence:

yt = ��t + ��"t + �M�uSt + ut; pt = �"t + �MuSt

We wish to estimate � and �M:

We consider the vector Yt = (y0t; pt)
0 stacking together yt and pt. Then, with Ut = (u0t; 0)

0,

� = (�0; 1)0, � = (�0; 0)0, and adding a weight \0" to the last component of the vector S (extended
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here to have 1 more component, with a mild abuse of notations) we have65

Yt = ��t + ��"t + �M�uSt + Ut (145)

i.e., with 	 := �M�, and "t :=
1
�M

�"t,

Yt = ��t +	"t +	uSt + Ut = ��t +	"t + (I +	S 0)Ut (146)

All the information is in V Y = E [YtY
0
t ]:

V Y = �2���
0 + �2"		

0 + ��" (�	
0 +	�0) + (I +	S 0)V U (I + S	0) (147)

= �2���
0 + 		0 +	b0 + b	0 + V U (148)

b = ��"� + V US (149)

 = �2" + S 0V US (150)

The idea for the multiplicity of roots in 	 is that we have a second degree equation in 	, so

that we can have multiple roots { like in the one-dimensional case. Let us next calculate the roots,

which will lead to a procedure to identify the correct root. Forming the vector a = �1

b, we have

(	� a) (	� a)0 = C :=
1



�
V Y � V U � �2���

0�+ aa0 (151)

Suppose that we have estimated all the parameters, and it remains to estimate 	, i.e. solve for 	c

(as in a candidate value for 	) the equation:

(	c � a) (	c � a)0 = C

We know that this identity holds under the correct root, so that C = (	� a) (	� a)0. Now, there

are two solutions to the equation XX 0 = DD0, with X the unknown vector and D a known vector:

X = D and X = �D. Hence, the two solutions are 	c � a = 	� a and 	c � a = � (	� a). The

�rst one is the good root, 	G = 	, and the second one is the bad root:

	B = 2a�	 (152)

Now, because �p and Sp (i.e., the component of those vectors on the last coordinate, corresponding

to p) are both 0, we have bp = 0 (see 149) and thus ap = 0. So the component of the bad root on

the price is 	B
p = 2ap �	p = �	p:

	B
p = �	p (153)

65This idea of stacking together then yt and pt, with a \size 0" for the innovations to the price, could be fruitfully
used more generally.
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This allows to distinguish between the two roots, as the right one has 	p = �M and the other one

has 	p = ��M . Hence, if economic reasoning tells us the sign of �M (e.g., it is positive in a supply

and demand context), we can pick the good root by inspecting the sign of 	p.

H.5 Relation between Bartik instruments and GIVs

H.5.1 Relating the Bartik setup to the GIV setup

Bartik instruments are widely used to estimate parameters of interest. In this appendix, we compare

the assumptions under which Bartik instruments are valid to those under which GIVs are valid.

This comparison is useful also to highlight settings in which GIVs can and cannot be used (and

vice versa for Bartik).

As a general matter, in a number of cases where a cross-section is used (e.g. Autor et al. (2013)),

Bartik applies, but GIV does not apply, for instance because there is no large idiosyncratic shock

that one can use.

Next, to study the di�erence between GIV and Bartik more analytically, we start from the setup

in Borusyak et al. (2022), and then map it to our model.66 Their model can be summarized as

yl = �xl + �l;

where we omit observable controls, w0l. In this speci�cation, l corresponds to locations. The

endogeneity concern is that E[xl�l] 6= 0. The endogenous variable can be written in terms of

industry-location shares, where industries are indexed by n,

xl =
X
n

slngln;

and
P

n sln = 1. To connect Bartik instruments to GIV, we assume a simple factor model in gln,

gln = gn + ~gln;

that is, the loadings on the common factor, gn, are equal to one. In Bartik applications, a concern is

typically that E[~gln�l] 6= 0, for instance, when local economic conditions in location l are correlated

with the idiosyncratic growth rate of industry n in location l.

To express the identifying assumption in Borusyak et al. (2022), they write the model at the

industry level

�yn = � + ��xn + ��n; (154)

where �bn =
P

l slnblP
l sln

; for some variable bl. The shares, sln, are assumed to be non-stochastic, and the

main identifying assumption is that E[gn��n] = 0:

66We are grateful to a referee for suggesting this connection.
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H.5.2 De�ning and comparing the Bartik and GIV instruments

The Bartik instrument is de�ned as

zBartikn =
1

L

X
l

gln:

The GIV is de�ned as

zGIVn =
X
l

~slngln � 1

L

X
l

gln;

where ~sln is the location share of industry n so that
P

l ~sln = 1. Hence, we have limL!1 zBartikn = gn

and limL!1 zGIVn = limL!1
P

l ~sln~gln = ~g ~Sn. In the remainder of this section, we work with the

large L version of the instruments to simplify the exposition.

For Bartik instruments to be valid in (154), we need E[gn��n] = 0: For the GIV to be valid, we

need E[
P

l ~sln~gln��n] = E[
P

l ~sln~gln
P

l sln�lP
l sln

] = 0: As E[~gln�l] may not be zero in cross-sectional settings,

as discussed before, GIV is not the most natural instrument in those circumstances.

By the same logic, the identifying assumption of the Bartik instrument may be less appealing in

settings where the identifying assumption of the GIV is more plausible. To connect the Borusyak et

al. (2022) setup to the one we consider in this paper, we relabel l to i = 1; :::; N and n to t = 1; :::; T .

In addition, we set �i = 1, gln to yit, gn to �t, ~gln to uit, which implies yit = �t + uit. For simplicity,

we assume that the shares do not vary across time (and thus across n in the Bartik setup). We use

Si, with Sit = Si, to denote the relative size such that
P

i Si = 1.

We rede�ne the Bartik instrument and the GIV using these de�nitions:

zBartikt =
1

N

X
i

git = gEt;

and

zGIVt =
X
i

Sigit � 1

N

X
i

git:

Hence, we have limN!1 zBartikt = �t and limN!1 zGIVt = uSt. As before, we work with the large N

version of the instruments to simplify the exposition. To provide a simple example where the Bartik

instrument may be less appealing, we consider a trivial version of our baseline model in Section 2

(with �d = 0)

yit = �t + uit;

st = �spt + �t;

where pSt = (�t + uSt � �t)=�
s. If we average the model in the cross-section (again using the limit

72



when N !1)

yEt = �t;

st = �spt + �t;

To estimate �S, we can use two instruments. First, we can use GIV, which requires

E [�tuSt] = 0:

Alternatively, we can use the Bartik instrument and assume

E [�t�t] = 0:

In this example, the Bartik instrument requires assumptions that are too strong in models in which

�t and �t are correlated. These are the settings that we focus on in this paper, and GIV is well

suited to estimate the parameters of interest.

H.6 Complements to the general procedure

The procedure can be simpli�ed in some cases. When we have a long time-series. Recall

that

ySt =
X
f

�fStF
f
t + uSt: (155)

Hence, if all factors with �fSt possibly non-zero are observables and exogenous, we can measure the

�fSt by OLS with the regression above, and get uSt to be the residual. This is useful when we have

high-frequency data (e.g. daily �nancial returns), which can give an acceptably small error.67

We can aggregate entities into categories . For this discussion, we replace \entity" by \�rm".

We could aggregate the �rms into K > 1 sub-categories (e.g. industries { or even an arbitrary

categorization like \blue �rms" and \red �rms") | then the above works, but interpreting the

partition i as \aggregate �rm category i" rather than \�rm i". Indeed, (110) aggregates without

problem: if aggregate k is made of �rm i 2 Ik, we just de�ne the aggregate size of category k as

S[k] :=
P

i2Ik Si, the relative weight of �rm i in category k as ![k]i =
Si1i2Ik
S[k]

, and the action factor

loading as value-weighted averages (y[k];t =
P

i ![k]i;tyit, �
f
[k] =

P
i ![k]i�

f
i ). Then, the model works,

using those aggregated categories. What we do need is that categories have non-trivial idiosyncratic

shock (so that a \very small �rms" category would not be valid, as it would have var (uit) ' 0).

67Indeed, this time-series regressions gives an O
�

1p
T

�
error, which is good enough for large T . Using the cross

section, as in the basic procedure, gives an O
�

1p
TN

�
error.
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H.7 When only some shocks are kept in the GIV

If we truncate the residuals, i.e. use

zt =
X
i

� (Si (uit � uEt))

for the hard thresholding function

� (x) = x1jxj�b

for some b > 0, then everything works too. Indeed, we have that �uit := uit � uEt is orthogonal

to uEt. Let us assume that it is independent. In our basic example of Section 2.1, we still have

E [(pt � �ySt) zt] = 0, so that the IV procedure of Proposition 1 still works.

Furthermore, the OLS estimates still hold. The key is that we can write:

u�t = zt + z<t ;

where z<t =
P

i �
< (Si�uit), using �

< (x) = x1jxj<b, so that zt ? z<t . Hence, regressing u�t on this

truncated zt gives a coe�cient of 1, and all the analysis goes through.

H.8 Sporadic factors

A potential issue is that of a \sporadic factor", i.e. a factor �t that a�ects a few actors special

ways, but is not recurrent. An example would be a one-o� policy announcement by the European

Central Bank that they will buy both Italian and Spanish bonds, so that the truth is not that Italy

is a�ecting Spain or vice-versa, but rather the ECB a�ecting both.

One solution, besides the narrative check that we just detailed, would be to �lter out days with

a high \sporadicity statistic" St that we now propose. Suppose that for each date we �lter out

the idiosyncratic shocks �uit. For each date and actor i we form bit =
�u2it

�2ui;t�1
, where a high bit is

an indicator of extra activity, and �2ui;t�1 is a predictor of the volatility of uit. We may allow that

one entity has a large idiosyncratic shock, but if two (or more) do, this is suspicious, and possibly

the sign of a sporadic factor. So, calling b(2)t the activity of the second more active actor, we form

St = b(2)t.
68 Over the entire sample, we might remove the days with anomalously high sporadicity

statistics, e.g. in the top 5% by that metric.

H.9 GIV for di�erentiated product demand systems

We develop the basic ideas for the logit demand model and extend these ideas to the random-

coe�cients logit model as in Berry et al. (1995a) in the next subsection.69

68We could also sum over the most active K entities, excluding the most active one.
69We thank Robin Lee, Alex MacKay, and Ariel Pakes for very helpful feedback on this section.
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H.9.1 Logit demand

The utility that household h derives from product i; for i = 0; :::; N; is given by70

Uhit = �it + ehit;

�it = �pit + �0xit + �i + �it;

where ehit follows a Type-1 extreme-value distribution, pit denotes the log price, xit observable

characteristics, and E [�it] = 0. We refer to i = 0 as the outside option and normalize �0t = 0. This

model implies that the market share sit is the probability that a given household selects product i,

meaning that sit = P (Uhit > maxj 6=i Uhjt), and can be expressed as

sit =
exp(�it)PN
j=0 exp(�jt)

:

Firms set prices to maximize pro�ts and we assume that each product is produced by a single �rm,

which solves

max
Pit

Qit (Pit � Cit) ;

where Cit equals marginal cost and Qit = sitQt with Qt the total size of the market. The �rm

optimally sets the price to

Pit =

�
1� 1

�it

��1
Cit;

where �it = �@ ln sit
@pit

, that is, the negative of the price elasticity of demand. The goal is to estimate

� = (�; ).

It is convenient to rewrite the model as

log

�
sit
s0t

�
= �pit + �0xit + �i + �it:

To identify �, it is commonly assumed that E [xit�it] = 0 and we maintain this assumption. However,

as prices respond to demand shocks, �it; we cannot assume E [pit�it] = 0. There are three common

approaches to create instrumental variables in the demand estimation literature. First, variables

that capture variation in marginal cost, Cit, that is unrelated to demand shocks. Second, Berry et

al. (1995a) suggest to use the average of characteristics of other �rms

zBLPit =
1

N � 1

X
j;j 6=i

xjt;

which results in valid instruments under some assumptions (see Nevo (2000) and the references

70We use the log price, pit, instead of the price, Pit, in the formulation of �it to simplify some of the expressions,
but the basic logic extends to the case where �it depends on Pit.
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therein).71 The resulting moment is E
�
zBLPit �it

�
= 0.72 Third, one can use panel data for the

same �rm that operates in di�erent locations. Under the assumption that demand shocks are

uncorrelated across locations, prices in other locations of the same �rm will be valid instruments.

The intuition is that prices across locations share the same marginal cost but the demand shocks

are, by assumption, uncorrelated, see Nevo (2001).

GIV provides an alternative by exploiting exogenous variation in markups due to idiosyncratic

demand shocks to large �rms. We assume that demand shocks follow a factor model,

�it = �t + uit; (156)

which can be extended to allow for heterogeneous exposures, i.e. replacing �t by �i�t =
P

k �
k
i �

k
t .

Also, we assume for simplicity that �t and uit are i.i.d. over time, but the logic in this section can

be extended to persistent demand shocks (see also Sweeting (2013)).

We propose to use the GIV instrument as the weighted sum of idiosyncratic demand shocks of

the competitors:

zit =
X
j:j 6=i

�sj;t�1ujt; (157)

where �sj;t�1 is the average market share for product j up to time t � 1. This allows us to add a

moment condition

E [zit�it] = 0; (158)

which identi�es . Remember that we use E [xit�it] = 0 to identify �.

The intuition for why zit is a meaningful instrument is the following: if there is a high idiosyn-

cratic shock for Tesla cars (high ujt, with j being Tesla), this leads Ford (�rm i) to reduce the price

of its cars (in this particular model, this is because the positive shock for Tesla cars reduces the

demand for Ford, which sees its market share sit fall, so that it wants to lower its price pit).

Generalizing this intuition, we sum over all the demand shocks of the competitors, zit =P
j:j 6=i �sj;t�1ujt, weighing them by size, i.e. market share. As in our general GIV, even a single

shock ujt is a valid instrument (for j 6= i). The size-weighted sum is simply a typically useful way

to pool those idiosyncratic shocks. It is optimal in our basic GIV, and is likely to be reasonably

close to optimal in this IO context. The same idea generalizes: e.g. using a weighted sum of the

idiosyncratic cost shocks, rather than demand shocks, of the competitors would also be a valid GIV

instrument.

A motivation for the weighting in (157) is as follows. Recall that in this simple model the

demand elasticity is

�it = (1� sit);

71For other recent advances to construct instruments, see Sweeting (2013) and MacKay and Miller (2019).
72If a �rm o�ers multiple products, the average of characteristics of other products produced by the same �rm can

be used as well.
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and also that @ log sit
@�jt

= �sjt, so that @ log sit
@ujt

= �sjt (controlling for the price pjt). This implies that
the direct impact of all idiosyncratic demand shocks to other companies on sit, and hence �it; isX

j:j 6=i

@ log sit
@ujt

ujt = �
X
j:j 6=i

sjtujt: (159)

Hence, shocks to companies with larger market shares have a larger impact.

H.9.2 Random coe�cients logit as in BLP

Berry, Levinsohn and Pakes (1995a) extend the standard logit model by allowing for random vari-

ation in the preference parameters

�h = � + �h;

where �h =
�
��h ; �


h

�
and �h � F� (�; �), for some vector of parameters �. The market share

equation modi�es to

sit =

Z
�

shitdF� (�; �) ;

where

shit =
exp

�
�it � �hpit + ��0h xit

�
PN

j=0 exp
�
�jt � �hpjt + ��0h xjt

� :
To estimate the model, Berry (1994) suggests to recover �it from the market shares using a contrac-

tion mapping (see Nevo (2000) for an introduction). With �it in hand, we form moment conditions

as before to estimate (�;�).

To construct a GIV instrument in this model, one can also use (157) as an instrument.

One can also re�ne it. For instance, we can recompute the total impact of idiosyncratic shocks

to other �rms on the demand elasticity, which is now slightly more involved. The negative of the

demand elasticity, which enters into the pricing equation via the markup, is given by

�it =

Z
�

�h
shit
sit

(1� shit) dF� (�; �) :

An approximation of the model around �h = � yields the same weights as before, although it is

feasible to numerically calculate the optimal weights by computing

X
j;j 6=i

@�it
@ujt

ujt:

This suggests forming

zit :=
X
j:j 6=i

sij;t�1ujt; (160)
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where sij;t is

sij;t := �@ log sit
@ujt

: (161)

Indeed, in the homogeneous elasticity case, sij;t = sjt. This generalization to heterogeneous elasticity

allows to capture that if �rms i and j tend to serve the same consumers (e.g., both sell family cars),

then the sij;t will be high, and ujt receives a high weight in the �rm-i speci�c GIV zit.

H.10 When the variance-covariance matrix of the u's is estimated

H.10.1 Main message

To determine V u, we propose the following procedure. We �rst pick some W (e.g. the identity).

Then we use the N moments to identify V u (they come from V �u = QV uQ0):73

E
�
�u2ii
�
= (QV uQ0)ii :

Now that we have V u, we form W = (V u)�1, and use the associated Q = QX;W and R, we form a

new GIV zt := S 0QX;Wyt, and use those to identify _�d via (69).

We now discuss re�nements of that basic theme.

H.10.2 Identi�cation of the variance-covariance matrix

In some cases, we'll want to identify the matrix V u. We discuss this in Section B. We add some

thoughts on extensions here.

A simple su�cient condition is the following.

Assumption 5 (Restriction on the admissible variance-covariance matrix of residual ut) (a) The

variance-covariance on ut is diagonal. (b) The function V 7! QV Q0 from the space of diagonal

matrices is injective.

Assumption 5(a) could be relaxed in number of ways.74 Other su�cient condition for identi�-

cation might be that V u is k�sparse, e.g. has at most k non-zero o�-diagonal elements, for some

k, e.g. N � r2 (see also Zou et al. (2006)). Another is to allow for some correlation that depends

on the distance between entities i and j, perhaps via Gaussian processes (Rasmussen and Williams

(2005)). We conjecture that this proposition could be generalized in a number of ways, including in

the large T;N domain, using material such as Bai and Ng (2006). Doing this would however take

us too far a�eld.

73We assume that V u can be characterized by N moments, e.g. that V u is diagonal. In the more general version
we would use more moments from the identity E [�ut�u

0
t] = QV uQ0, and not just its diagonal terms.

74However, relaxations of Assumption 5 will still need to ensure some restrictions on the space of variance-
covariances allowed.
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Assumption 5(b) is equivalent to saying that knowing the variance-covariance matrix of the

residuals �ut = Qut allows to get the variance of the ui's. We have explored su�cient conditions on

the X for that to hold, but they are not particularly enlightening.75;76 We now show how to do that

in the most basic (and useful) case.

H.10.3 When the ui are uncorrelated (but heteroskedastic) and only ui � uE is mea-

sured

We suppose that the u0is are uncorrelated, with variance �2i = var (uit). We only measure �uit =

uit � uEt. Here's a bit of algebra to recover �
2
i .

We de�ne �2E := 1
N

P
i �

2
i . We have:

var (uE) =
�2E
N
; var (�uit) = �2i

�
1� 2

N

�
+
�2E
N

(162)

which implies:

�2�u;E :=
1

N

X
i

var (�uit) = �2E

�
1� 1

N

�
(163)

So, we can recover

�2i =
var (�uit)� �2�u;E

N�1
1� 2

N

(164)

H.10.4 A simple recovery procedure

More generally, suppose that we have �ut = Qut for a known square matrix Q (e.g. that in (31)).

Suppose that that V u is diagonal, and we know V �u. Call D and �D the vectors with the diagonal

elements of V u and V �u, respectively, so that Di = var (ui) and �Di = var (�ui). Then with the matrix

Hij := Q2
ij, we have:

77

�D = HD (165)

75If we estimate V u via V �u, we need: 1
2 (N � r) (N � r + 1) � N as the projection Q on a space of dimensions

N � r leaves only 1
2 (N � r) (N � r + 1) degrees of freedom. So in some cases with very small N one may want

another procedure to estimate V u, perhaps simply using the whole of V y.
76Note that a necessary (and often su�cient) conditions is that the number of parameters to be estimated is not

too big. Take the problem where we mostly are interested in estimating multiplier M , and have no extraneous
observable factors. Matrix V y gives 1

2N (N + 1) parameters. We want to estimate: the number of unknowns in V u,
nV u (equal to N if we assume a diagonal matrix V u, equal to 1 is we assume homoskedasticity), parameter M , and
matrix V � (which has 1

2r (r + 1) degrees of freedom). If the factor model is parametric with Xit a r�dimensional
vector, then we need: 1

2N (N + 1) � 1 + 1
2r (r + 1) + nV u .

77Proof: Calling ei the vector with 1 at coordinate i and 0 elsewhere, we have V u =
P

j eje
0
jDj . As V

�u = QV uQ0,

�Di = e0iV
�uei = e0iQV

uQ0ei =
X
j

e0iQeje
0
jQ

0eiDj =
X
j

Q2
ijDj =

X
j

HijDj :
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Hence, when H is invertible (which is typically true), we can recover the variance of �2ui = Di by

D = H�1 �D:78 One disadvantage of this procedure is that it does not guaranty that Di is positive

(indeed, in (164), the right-hand side is not necessarily positive).

H.10.5 An MLE-based recovery procedure

Here is another procedure, which guaranties to recover positive �2ui . We suppose that we know

�ut = Qut for a known matrix Q (e.g. that in (31), but not necessarily), do not know the underlying

ut. We want to recover V u, assumed to be diagonal. The dimensions of ut and �ut are respectively

n and m, with potentially m 6= n. So Q has dimensions m� n.

We do a singular value decomposition of Q. We call its rank k. We can write:

Q = UDV � (166)

where U and V are unitary matrixes with dimensions m � m and n � n respectively, and D is

rectangular diagonal with dimensions m � n, and V � is the conjugate transpose. We order the

diagonal elements of D, di, so that the �rst d1; : : : ; dk are non-zero, while the remaining di's are

zero. We set � :=
�
Ik�k 0k�(m�k)

�
and set B := �U�, both with dimension k �m. We de�ne

�ut := B�ut (167)

which is a k dimensional vector that gathers the useful k degrees of freedom in �ut. While V �u was

singular, typically V �u has full rank. So, �ut =Mut with M = BQ.

To recap, we have �ut =Mut with M a k � n matrix of rank k � n. So, V �u =MV uM 0. We call

W �u = (V �u)�1 the theoretical inverse variance, V �u;e = 1
T

PT
t=1 �u

0
t�ut the variance of �ut. We assumed

that V u = Diag
�
�2u1 ; : : : ; �

2
un

�
. We assume that

1

2
k (k + 1) � n

The left-hand side is the number of degrees of freedom in V �u: it should be higher than the number

of parameters n we want to estimate for V u.

The log likelihood l is (we omit some constants in 2�, and use the notation jW �uj for the deter-
78Numerically, within �nite samples, we can get negative �2ui (see (164)). So, one can imagine variants that

guaranty positivity, e.g. adding a winsorization step, Di := max (Di; � �median (D)) for a low � such as � = 0:5.
Another procedure is to do

min
D

 �D �HD
2 subject to minDi � � �median(D)

or another constraint, e.g. Di � � �Di. Yet another variant is to minimize kV �u �QDiag (Di)Q
0k2, subject to the

same constraints.
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minant of W �u),

` :=
2L

T
= �ET [tr (�u0tW �u�ut)] + ln jW �uj = � tr (ET [�ut�u

0
t]W

�u) + ln jW �uj
` = � tr (V �u;eW �u) + ln jW �uj (168)

We recover V u by numerically maximizing ` over the �2ui > 0.

H.11 Singular Factor Analysis

We propose a tool useful in the advanced parts of this project: A way to do factor analysis with

singular matrices.

Suppose that we have an underlying factor model:

Y �
t = ���t + ut;

where Y �
t and ut have dimension N , and �t dimension r, but we only observe:

Yt = GY �
t

for a known matrix G such that G2 = G (e.g. G could be a Q matrix as in (31)). But potentially

G has less than full rank, so that V Y is singular. We present a procedure to estimate V u (assuming

that it has some structure, here that it is diagonal), and also recover � := G�� and a proxy for the

�t.

Projecting Yt into a lower-dimensional yt We do an eigendecomposition of G. Calling K the

rank of G, we can write:

G = A�1DA (169)
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where D =

 
IK 0

0 0

!
, and A�1 is the matrix whose columns are the corresponding eigenvectors of

G.79;80 We introduce � :=
�
IK 0

�
and set B := �A, both with dimension K �N . We have81

D = �0�; �D = �; B = �A; BG = B; A�1�0B = G (170)

We call

yt := BYt (171)

which is a K dimensional vector that gathers the useful K degrees of freedom in Yt. While V Y was

singular, typically V y has full rank. With � := B� (dimension: K � r) and vt := BGut = But

(dimension: K � 1) we have:

yt = ��t + vt (172)

Doing PCA on yt We have

V y = �V ��0 + V v;

The �rst PCs in a PCA of V y will not be �, unless V v is proportional to the identity matrix.82

Ideally, we'd like then to estimate the PCA on Lyt = L��t + Lvt, for L = k (V v)�1=2 (with k a

constant) because then the covariance of residuals Lvt will be proportional to identity, and the PCA

will correctly recover L�. But we do not know V v: we need to estimate it.

This motivates the following algorithm. For an invertible matrix V of dimensions K �K, call83

J(V ) := V �1=2
r
jtr (V )j
K

(173)

79We order the columns of A�1 with �rst the eigenvectors with eigenvalue 1, then those with eigenvalue 0.
80We found that Matlab could get lost, and return complex eigenvectors, even though G2 = G ensures that the

eigenvalues are 0 and 1, and all eigenvectors are real. One �x to this numerical implementation issue is the following.
We observe that in practice the G = Q�;W come from (31). Calling H = W�1=2; then ~G = H�1GH is a symmetric
matrix, so that Matlab recognizes that the eigenvectors should all be real (to be numerically safe, we entered it as�
~G+ ~G0

�
=2). Then, if e is an eigenvector of ~G with eigenvalue k, He is an eigenvector of G with the same eigenvalue

k. This way, we recover real eigenvectors of G.
81Indeed, BG = (�A)

�
A�1DA

�
= �DA = �A = B, and

A�1�0B = A�1�0�AG = A�1DAG = GG = G:

82Indeed, if V v is proportional to the identity matrix, then V y� is proportional to �, so that the column vectors
of � are eigenvectors of V y (and PCA, which extracts the eigenvectors, will successfully recover �). But this is not
the case if V v is not proportional to the identity matrix.

83Given a positive de�nite matrix V , and � a scalar, V � is de�ned as follows. Do an eigendecomposition V =
P�P�1, where the columns of P are the eigenvectors of V , and � = Diag (�i) is the diagonal matrix with V 's
eigenvalues. Then, we de�ne V � = PDiag (��

i )P
�1. We apply this to � = � 1

2 .
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The trace (tr) factor is there so that the transformation V 7! J (V )V J (V ) keeps the \size" of V

(as measured by its trace) �xed:

tr (J (V )V J (V )) = tr (V ) (174)

Also, if V is proportional to the identity matrix I, then J (V ) = I.

So we can envisage the following scheme: We start with L0 = IK .

1. We do a PCA on ynt := Lnyt, so do ynt = Ln���t + _vnt and get the residuals _vnt.

2. We de�ne �ut := A�1�0L�1n _vnt. We note that _vnt = QLn�;IKLnvt and vt = But, so that

�unt = qnut with matrix qn := A�1�0L�1n QLn�;IKLnB. As the rank of � is r, matrix qn as

dimension N � N but only rank K � r. From V �un we obtain V u
n , using the procedure in

Section H.10.4, observing that �unt = qnut.

(a) We can use the procedure in Section H.10.4, but it does not guaranty that �2ui is always

positive. (Then, some winsorization can impose �2ui > 0).

(b) Alternatively, we can use the MLE procedure of Section H.10.5 which does guaranty that

�2ui is positive.
84

3. Set Ln+1 := J (V v
n ), with V

v
n := BV u

n B
0:

4. Iterate steps 1-4 until convergence (e.g.
L�1n+1Ln � I

 < 0:01). As a check, we note that

at convergence, V Lnvt = LnV
v
nLn should be close to proportional to the identity matrix

(
 LnV v

n Ln
tr(LnV v

n Ln)=K
� I
 should be small).

The procedure returns V u;e = V u
n . It also returns the factors ��t (up to a rotation, as usual). We

also obtain an estimator of �:

�e = A�1�0L�1n (Ln�) (175)

where Ln� is estimated from the PCA in Step 1.85

H.12 Full recovery when di�erent factors have di�erent \size" weights

In the basic model, we can identify �f ; M = 1
1�Pf �

f�f
, but not �f .

We give some conditions under which we can actually also identify the �f (in addition to �f

and M). We show here that this is the case if we assume that the size Sf di�ers across all factors

f , and this knowledge is given to us (from a model).

84We can alternatively use the same procedure to _vnt = QLn�;IKLnBut as the observed vector, rather than going
through the higher-dimensional �ut as the measured vector.

85Indeed, at convergence �e = A�1�0� = A�1�0B� = G� = GG�� = G�� = �, by (170).
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Here we take the basic set up as in Section G.1, in the simpli�ed case where �fi = �f for all

\endogenous" factors, i.e. for the factors f such that �f 6= 0, the other exogenous factors � all have

an impact of 1:

yit = uit +
X
f

�fF f
t + �yt ; (176)

F f
t = �fySf ;t + �ft : (177)

This implies

yt = ut + �
X
f

�fF f
t + ��yt = ut + �

X
f

�f
�
�ft + �fSf

0

yt

�
+ ��yt :

With \"k" denoting some combination of the various �'s, and as usual M = 1
1�Pf �

f�f
;

yt =

 
I � �

X
f

�f�fSf
0

!�1 �
ut + �"1t

�
=

 
I +M�

X
f

�f�fSf
0

!�
ut + �"1t

�
yt = ut +M�

X
f

�f�fuSf ;t + �"yt ; (178)

i.e., since F f
t = �ft + �fySf ;t this gives:

F f
t = �f

 
uSf ;t +M

X
g

�g�guSg ;t

!
+ "ft : (179)

Hence, suppose that we extracted the �uit = uit� uEt (following our usual procedure). Then, we
form

z�f t := Sf
0

�ut = uSf t � uEt: (180)

Then, regressing F f
t on the various z�gt

F f
t =

X
g

bfgz�gt + "f;1t (181)

(for "f1 some residual noise) yields a regression coe�cient:

bfg = �f (1f=g +M�g�g) : (182)
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This allows to recover everything, and with several overidentifying restrictions. Indeed,

bf :=
X
g

bfg = �f

 
1 +M

X
g

�g�g

!
= �fM;

which identi�es �fM . Next, for f 6= g,
bfg
bf

= �g�g;

which gives �g�g (and should be equal for all f), thus M . Hence, we obtained �fM , M and �g�g

| therefore all quantities: �f ; �f ;M .

H.13 When aggregate shocks are made of idiosyncratic shocks

GIVs extend to economies where aggregate shocks �t are themselves made of idiosyncratic shocks

uit. We summarize the situation here.

Take the basic supply and demand model of Section 2.1. We achieved identi�cation provided that

u�t ? "t; we did not need u�t ? �t, so aggregate demand shocks can be inuenced by idiosyncratic

shocks, but not aggregate supply shocks. If aggregate supply shocks are a�ected by idiosyncratic

shocks, the elementary strategy does not work, but a variant does work, with a slightly di�erent

identi�cation assumption. We suppose disaggregated supply and demand data (for the commodity

in question, e.g. oil) is available, at least for large countries. We model country i's supply and

demand with the following factor model:

ykit = �kpt + �ki �
k
t + ukit; (183)

where k = s; d indicates supply or demand, respectively. We allow E
�
usitu

d
it

�
to be nonzero: for

instance, if the US has a positive \fracking shock" that a�ects both supply and demand, it will be

captured by a positive usit and u
d
it for i = USA: This is a concrete case in which supply and demand

shocks are correlated: this happens via the correlations in country-level shocks. At the same time,

we impose that the ukit are uncorrelated with the aggregate shocks �k
0

t for k; k0 2 fs; dg. Then,

Section H.14 shows how to identify the elasticities of supply and demand.

One can also consider an economy as a network (Long and Plosser (1983); Gabaix (2011);

Acemoglu et al. (2012); Carvalho and Gabaix (2013); Carvalho and Grassi (2019)). Under some

assumptions, one can obviate the network structure, for instance via aggregation theorems such

as Hulten's theorem. This is developed in Section H.15. It shows that we can identify important

multipliers even if we have only crude proxies for the primitive shocks such as TFP. The GIV for a

general network is a rich topic, potentially for another paper { Section H.16 lays out some of the

basics.

In conclusion, one can often handle cases where aggregate shocks are made of idiosyncratic
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shocks: then, some more disaggregated data and economic reasoning allows to use a GIV to estimate

macro parameters of interest.

H.14 When we have disaggregated data for both the demand and the

supply side

To estimate supply and demand elasticities, it is enough to have idiosyncratic shocks to one side

of the market | demand in our basic example (Proposition 4). We complete our examination of

supply and demand, with disaggregated data for both the demand and the supply side.

We posit that demand and supply disturbances follow:

ykit = �kpt + �ki �
k
t + ukit; (184)

for type k = s; d for supply and demand. Total quantity demanded or supplied in side k of the

market is (as a disturbance from the average), ykSkt :=
P

i S
k
i y

k
it, where S

d
i (resp. S

s
i ) is the average

fraction of demand (resp. supply) accounted by country i) The price pt adjusts so that supply

equals demand, ysSst = ydSdt , i.e.

pt =
udSd � usSs + �dSd�

d
t � �sSs�

s
t

�sSs � �d
Sd

(185)

So, the aggregate supply that was st = �spt + "t (see (2)) in the aggregated model is now

st = ysSst = �dpt + �sSs�
s
t + usSst

so that the supply shock is

"t = �sSs�
s
t + usSst:

We allow E
�
usitu

d
it

�
to be nonzero: for instance, if the US has a \fracking shock" that a�ects both

supply and demand, it will be captured by both usit and u
d
it for i = USA: Then, the initial exclusion

restriction E [uit"t] = 0 (see (5)) fails. A fracking shock in the US both increases idiosyncratic US

demand (as the US is richer) and also world supplies (as the US supplies more oil via its fracking

technology).

But the situation is not so bleak. We make the following assumption

E

h
ukit�

k0

t

i
= 0 for all k; k0 2 fs; dg : (186)

For instance, when k = d and k0 = s, (186) means that idiosyncratic demand shocks are uncorrelated

with the aggregate supply shocks �t | once we control for idiosyncratic supply shocks (i.e. they

may be correlated with "t but not with �
s
t ). For simplicity, we discuss the homoskedastic case (where
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the
�
udit; u

s
it

�
are i.i.d. across i, t).

Then, we can still identify the elasticity of supply and demand. Indeed, we can form two GIVs,

based on supply and demand respectively:

zkt := �k0ykt = uk�kt; (187)

for k = s; d (with �k = Q�k0Sk in the general case and �k = Sk � Ek in the simple case �k = �, as

in Proposition 3).

Then we have

E

h
zkt �

k0

t

i
= 0 for all k; k0 2 fs; dg :

and one can easily see (as in the main paper) that the following identi�cation moments hold, for

k; k0 2 fs; dg
E

h�
ykEt � �kpt

�
zk

0

t

i
= 0: (188)

So, we can estimate the demand and supply elasticities.86
087.

Proposition 14 (Identi�cation with disaggregated supply and demand data). Suppose that we

have disaggregated supply and demand data following (184). Suppose that the shock are idiosyncratic

in the sense of (186), and that we have i.i.d.
�
udit; u

s
it

�
across i, t. Then, the GIVs zdt , z

s
t in (187)

identify �d and �s, via moments (188).

In summary, in that example, the GIV fails if aggregate shocks ("t) are importantly made of

idiosyncratic shocks. However, in the same example, having more disaggregated data (on both the

demand and supply side), together with a slightly di�erent exclusion restriction, allow estimation

of both elasticities by GIV.

H.15 Identi�cation of the TFP to GDP multiplier in a production net-

work economy

Suppose a two-period model with a production network, as in Long and Plosser (1983); Gabaix

(2011); Acemoglu et al. (2012); Carvalho and Gabaix (2013); Carvalho and Grassi (2019). There

are both idiosyncratic TFP shocks �̂it and a government reform that creates correlated shocks �t

to TFP and change in labor supply L̂t. Utility is Ct � e�
L
t L

1+1=�
t , so that � is the Frisch elasticity

of labor supply. We call �t total TFP, which depends on the industry TFPs �it. So, as Ct = �tLt,

86The optimal instrument is zt = zdt � zst , as this is the most correlated with the price (185) (this generalizes the
reasoning of Proposition 2).

87One could imagine variants. For instance, if we assume only that E
�
z`t�

k
t

�
= 0 for a given (k; `), we can identify

�k via E
��
ykEt � �kpt

�
z`t
�
= 0.
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labor supply is L̂t = �
�
�̂t � �Lt

�
,88 and GDP is Ŷt = L̂t + �̂t, i.e.

Ŷt = m�̂t � ��Lt ; m = 1 + � (189)

We seek to �nd the \GDP multiplier" m = 1+�, so that a TFP increase of 1 percent translates

into a GDP increase of m percent.89

This is potentially a complicated problem, as for instance, in the Long and Plosser (1983) case

with input-output matrix A, output changes are Ŷt = (I � A)�1 �̂t + L̂t, so that output changes

are correlated in complicated ways. However, one can sidestep using this disaggregated production

data. We assume that TFP change in industry i is:

�̂it = �i�
�
t + uit: (190)

In the neoclassical equilibrium, TFP follows Hulten's theorem, so is �̂t =
P

i si�̂it where si is the

Domar weight (sales of industry i over GDP).

We can identify the multiplier m if we have disaggregated TFP data. In the simplest case, we

assume that industry-level productivities are available, and we get the residuals ueit. Then, we can

identify the multiplier m by GIV.

We can identify the multiplier m if we have even crude proxies for disaggregated TFP. The

same procedure works (with less e�ciency) if our data is made of proxies for productivity growth
~̂
�it (where the tilde indicates that we deal with a proxy). An example could be growth of sales per

employee, or even the growth rate of sales. We assume a factor model

~̂
�it = ~�i~�

�
t + ~uit: (191)

The proxy is of better quality when the proxy's idiosyncratic shock ~uit has a high correlation with

the true idiosyncratic shock uit. Then, we extract the ~u
e
it from a factor model, form zt = ~ueSt � ~ueEt

(with Si =
siP
j sj

), and use the moment E
h�
Ŷt �m�̂t

�
zt

i
= 0, which identi�es the TFP to GDP

multiplier m.

Using more general models (e.g. taking into account imperfections as in Baqaee and Farhi

(2020)) would be very interesting, but would be a new paper by itself. Indeed, even in that case

zt is likely to be a useful instrument, even though it won't be the optimal one. In any case, those

examples show how GIV, with some economic reasoning, translate to more complex economies

where aggregate shocks can be made of idiosyncratic shocks.

88The problem is maxLt �tLt�e�
L
t L

1+1=�
t , which leads to

�
1 + 1

�

�
L
1=�
t = �te

��Lt ; hence the announced expression.
89If more than one factor changes, m has the broader interpretation of a multiplier between TFP and GDP.
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H.16 When the inuence matrix is not proportional to size

H.16.1 Position of the problem

Suppose a model

yit = 
X
j

Gijyjt + �i�t + uit; (192)

i.e.

yt = Gyt + ��t + ut; (193)

with a given \inuence" matrix G. For instance, if we have an \industrial similarity" matrix H

with entries Hij (for instance Hij = 1 i� i and j are in the same industry, and 0 otherwise) we

might set

Gij =
HijSjP
kHikSk

:

In our basic setup G = �S 0. We'd like to identify .

H.16.2 A simple approach

We study the model (193), where the factor loading � (an N � r matrix) is not necessarily equal

to � (but we keep imposing that the � spans �, i.e. there is a q such that � = �q). As before, �t is

a low-dimensional vector of factors.

First, we suppose that we have a �rst estimate of , which we call e. We will later iterate on

it. Then, we form:

~yt (
e) := (I � eG) yt: (194)

If e = , then ~yt () = ��t + ut: Hence, we run a factor analysis on ~yt (
e), which recovers � and

W u = (V u)�1. We introduce Q as in (31) so that Q� = 0 and set

�ue := Q~yt (
e) ;

so that at e = , �uet = Qut: We observe that Gyt = G (I � G)�1 ut + B�t for some B. This

suggests the following procedure.

We de�ne the GIV zt as a vector (with dimension N):

zt := G (1� eG)�1 �uet = G (1� eG)�1Q (I � eG) yt: (195)

Indeed that zt will imitate the movements of the idiosyncratic shocks on yt.
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Our key moment is:90

E
�
(yt � Gyt)

0W uzt
�
= �; (197)

where � is a discrepancy term

� := tr
�
QG (1� G)�1

�
: (198)

This yields an estimate of .91

The discrepancy term � is often 0. For instance, in our basic example, G = �S 0 and Q� = 0; so

we have � = 0: the discrepancy was 0. Hence, (197) generalizes our basic GIV. Likewise, take the

case of a block-diagonal Gij = S
(k)
j if i and j belong to industry k, and Gij = 0 otherwise, where

S
(k)
j is the relative size of �rm j in industry k (so

P
j2k S

(k)
j = 1). Also, assume that the vector of

characteristics have industry dummies. Then, QG = 0, and again � = 0.

H.17 Identi�cation of social interactions and the reection problem

Super�cially, there seems to be a contradiction between Section 4.7's �nding that we do achieve

identi�cation, and Manski (1993)'s Proposition 2 and Bramoull�e et al. (2009)'s Proposition 1,

which seem also to state the impossibility of identi�cation. Bramoull�e et al. (2009) analyze social

interactions of the type:

yt = �Gyt + xt + �Gxt + "t (199)

with E ["tjxt] = 0. In their main result, they conclude that if the matrices I;G;G2 are not linearly

independent, then the system is not identi�ed. However, in our setup G = �S 0 (where � is a vector

of 1's) so that G2 = G and we satisfy Bramoull�e et al. (2009)'s condition that seems to guarantee

the impossibility of identi�cation. However, we can identify the parameters, as we saw in Section

4.7. How do we solve that seeming contradiction?

The short answer is that Manski (1993) and Bramoull�e et al. (2009) do not consider anything like

a GIV, as they immediately reason on averages based on observables, eschewing any exploration of

the noise. In contrast, GIVs are all about exploring some structure in the noise | the idiosyncratic

shocks of large entities. For instance Manski (1993) considers something akin to:

E [ytjxt] = �GE [ytjxt] + xt + �Gxt; (200)

90Here is the proof. At the right estimator  = e,

zt = G (1� G)
�1
Q (I � G) yt = G (1� G)

�1
Qut = Hut; (196)

for H = G (1� G)
�1
Q. We also have yt � Gyt = ��t + ut: This implies that

E
�
(yt � Gyt)

0
Wuzt

�
= E

�
(��t + ut)

0
WuHut

�
= E [tr (u0tW

uHut)] = E [tr (WuHutu
0
t)] ;

= tr (WuHV u) = tr (HV uWu) = tr (H) :

91We have a �xed point: an initial e gives an estimate of ; that's then the new estimate e, and we re-iterate
the process, until convergence.
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where all the noise has been averaged out.

Indeed, we do impose some structure, namely:

"it = �t + uit; uit i.i.d., orthogonal to �t; (201)

We could generalize to richer factor models, like in the body of the paper.

Second, we can generalize to the case where G2 = G (the case where G2 is a linear combination

of G and I is similar92), which seems to lead to the impossibility of identi�cation in Bramoull�e et

al. (2009). This is formalized here.

Proposition 15 (Identi�cation achieved in the Bramoull�e et al. (2009) setup). Suppose that

G2 = G, which is satis�ed in our basic setup, but leads to the impossibility of identi�cation in

the Bramoull�e et al. (2009) setup without further assumptions. Suppose also the \simple noise

structure" assumption (201). Suppose also the existence of two n-dimensional vectors S and �

satisfying

G0S = S; G0� = 0; �0S 6= 0; �0S 6= 0: (202)

Then GIV is possible in that setup, i.e. with the GIV zt = �0yt, we can identify the coe�cients

(�; ; �).

In our basic setup, we had Si the relative sizes, and G = �S 0, � = S � �
N
. Hence (202) is an

abstract generalization of our concrete conditions.

Hence, in many situations of interest we can be quite con�dent that condition (202) is satis�ed.93

There could be another way to analyze social inuence with a matrix of inuence, like in Section

H.16.

In conclusion: our GIV approach gives some renewed hope for identi�cation in the context of

social inuence and reection problems. Indeed, it provides a way to achieve identi�cation where

it seemed impossible. Informally, this is by exploiting the idiosyncratic noise of \large players".

Formally, and less intuitively, it is by exploiting a little bit of structure in the noise (so that there

is a low-dimensional common noise). Future research might pro�tably �rm up the exact necessary

and su�cient conditions for this.

Proof of Proposition 15 The identi�cation goes as follows. By rescaling S, we impose �0S = 1.

De�ne E := S � � (which is 1
N
� in our framework), and form

yEt = E 0yt; ySt := S 0yt;

92It can be reduced to that case by rescaling H = b0 + b1G with the right coe�cient, with H2 = H.
93As G2 = G, one can always �nd vectors �; S satisfying the �rst 3 conditions (provided n is big enough and G is

not the identity nor 0), and the last one is rather \generically" easy to satisfy.
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which are our generalized \equal weighted" and \value weighted" averages { for more abstract

setting. Then, premultiplying (199) by �0 gives:

zt := �0yt = �x�t + u�t:

Hence, estimating this equation by OLS we can obtain �, u�t, and var (u�t), so that we obtain also

�2u. Next,

yE = �yS + xE + �xS + � + uE;

so that

E [(yEt � �ySt � xEt � �xSt) (zt; xSt)] = (EuEtu�t; 0) : (203)

The right-hand side is known, as EuEtu�t = E 0��2u. So, we have two unknowns �,  and two

equations: we can solve the system. The condition �0S 6= 0 ensures that E [uStu�t] 6= 0. �

H.18 Identi�cation of the elasticity of substitution between capital and

labor / Elasticity of demand in partially segmented labor markets

Here we show how GIVs can estimate the elasticity of substitution between capital and labor; and

how to estimate the elasticity of demand in partially segmented markets. The �rst problem uses

the second one.

As a motivation, imagine that industry i has the CES production function94

Qit = Bit

�
K

�i�1

�i
it + A

1
�i
it L

�i�1

�i
it

� �i
�i�1

(204)

The �rst order condition of the problem maxKit;Lit Qit�RtKt�WitLit is A
1
�i
it

�
Lit
Kit

�� 1
�i = Wit

Rt
;i.e.

a demanded labor / capital ratio:

Lit
Kit

= Ait

�
Wit

Rt

���i
(205)

We'd like to estimate the elasticity of substitution �i between capital and labor. This is the wage

elasticity of demand. GIVs allow to estimate that, as we shall see.

Let us use our general notations, and de�ne ydit = lnLit, pit = lnWit, Cit = lnKit, and �
d
i = ��i

(as this is the elasticity of labor demand). Then, we can write (205) as:

ydit = �di pit + Cit + �di �t + udit (206)

where Cit is a control, and as usual vector �t is a common shock, and udit is a demand shock (those

in turn come from the productivity Ait). For notational simplicity we will drop Cit, but this is not

94We thank Julieta Caunedo for prompting us to think about this identi�cation problem.
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important.

Now, log labor supply is modeled as:

ysit = �sipit �  ipSt + �si�t + usit (207)

It is increasing in wage pit in industry i, and decreasing in the wage in the other industries (pSt).

One could imagine replacing  ipSt by a di�erent average for each industry, and we will examine

that in an extension. But for now we keep the simple structure.

As supply equals demand in each market (ydit = ysit), we obtain the price of labor in each market

i:

pit =
 ipSt + udit � usit +

�
�di � �si

�
�t

�si � �di
(208)

i.e.

pit = ipSt + vit + �pi �it (209)

when we de�ne i =
 i

�si��di
, vit =

udit�usit
�si��di

, �pi =
�di��si
�si��di

.

Problem (209) is a standard GIV. In the general case, we can estimate i as in Section (H.4).95

So, we obtain i and veit (the proxy for vit) in (209). We also form zit = S 0 (vet � aiveit) as in

(132). This is the GIV formed of the idiosyncratic shock of all industries but industry i. We will

use the shock to those other industries, and their impact on the outside wage, as an instrument to

estimate labor demand. Indeed, we go back to the labor demand equation (206), and instrument

for pit using the zit

pit = bizit + "pit (210)

we estimate bi, and de�ne p
e
it = bizit as the price in industry i instrumented by the changes in other

industries. We use the estimated �et as controls, and run

ydit = �di p
e
it + Cit + �di �

e
t + udit (211)

which yields a consistent estimate �di of the labor demand.

Extension We can extend (207) to

ysit = �sipit �  i
X
j

Gijpjt + �si�t + usit (212)

where the \inuence" matrix Gij captures the inuence of the price in market j on market i. This

might be proxied by various measures of distance between the market. We can then use the material

in Sections 4 and H.16 to handle this case.

95This procedure is much simpli�ed if the i and �pi are assumed to be constant. Then, we can just de�ne

zt := p�t = pSt � pEt, so that zt = v�t and as pSt =
vSt+�

p�st
1� , regressing pSt = bzt + "pt yields b =

1
1� .
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