
NBER WORKING PAPER SERIES

INFERENCE ON RISK PREMIA IN CONTINUOUS-TIME ASSET PRICING MODELS

Yacine Aït-Sahalia
Jean Jacod

Dacheng Xiu

Working Paper 28140
http://www.nber.org/papers/w28140

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
November 2020

The views expressed herein are those of the authors and do not necessarily reflect the views of the 
National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2020 by Yacine Aït-Sahalia, Jean Jacod, and Dacheng Xiu. All rights reserved. Short sections 
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that 
full credit, including © notice, is given to the source.



Inference on Risk Premia in Continuous-Time Asset Pricing Models
Yacine Aït-Sahalia, Jean Jacod, and Dacheng Xiu
NBER Working Paper No. 28140
November 2020
JEL No. C51,C52,C58,G12

ABSTRACT

We develop and implement asymptotic theory to conduct inference on continuous-time asset 
pricing models using individual equity returns sampled at high frequencies over an increasing 
time horizon. We study the identification and estimation of risk premia for the continuous and 
jump components of risks. Our results generalize the Fama-MacBeth two-pass regression 
approach from the classical discrete-time factor setting to a continuous-time factor model with 
general dynamics for the factors, idiosyncratic components and factor loadings, while accounting 
for the fact that the inputs of the second-pass regression are themselves estimated in the first pass.

Yacine Aït-Sahalia
Department of Economics
Bendheim Center for Finance
Princeton University
Princeton, NJ 08540
and NBER
yacine@princeton.edu

Jean Jacod
Institut de Mathématiques de Jussieu
CNRS UMR 7586
Université P. et M. Curie (Paris-6)
jean.jacod@gmail.com

Dacheng Xiu
Booth School of Business
University of Chicago
5807 South Woodlaswn Avenue
Chicago, IL 60637
dachxiu@chicagobooth.edu



1 Introduction

Factor models have been extensively employed to represent the cross-section of equity

returns since the beginning of the empirical asset pricing literature. The two-pass re-

gression approach of Fama and MacBeth (1973) is the standard inference method for

such models. The first pass estimates individual factor loadings by regressing the time

series of their returns onto the factors. In the second pass, the cross-section of average

returns is regressed on the previously estimated loadings in order to estimate each factor’s

risk premium. While many refinements have been implemented over the years, the basic

structure of the inference procedure for factor models remains largely unchanged.

Nonetheless, a simple discrete-time factor model is inadequate in two important ways.

First, economic factors have complex dynamics, such as stochastic volatility and jumps,

and moreover individual equity returns respond to these factors with time-varying risk

exposures (or “betas”). Second, it is natural to expect that risk exposures to these dis-

similar risk components are rewarded differently: for instance, investors can be expected

to demand different premia for bearing the tail risks of systemic factors, see, e.g., mo-

mentum crashes in Daniel and Moskowitz (2016). Standard discrete-time factor models

do not capture this finer structure of factor dynamics, risk exposures, and consequently

of risk premia.1

Continuous-time models with high frequency observations are well understood by now

to be useful in addressing the first issue, namely estimating factor loadings in richer

models.2 However, the second issue, estimating risk premia, requires an expansive time

1The literature has long been aware of the fact that individual equity returns feature time-varying
risk exposures and rewards, dating back to as early as Rosenberg (1974), which prompted extensions
of the baseline unconditional factor model to a conditional version. Gagliardini, Ossola, and Scaillet
(2016) uses one characteristic and two common time-series variables to model these risk exposures and
premia. Kelly, Pruitt, and Su (2019) investigate a list of 36 characteristics and provide evidence that these
asset characteristics proxy for time-varying exposures to unobservable risk factors. Gu, Kelly, and Xiu
(2019) model these risk exposures as nonlinear neural network functions of almost 100 characteristics. All
these papers tackle the curse of dimensionality by imposing additional parametric assumptions. Raponi,
Robotti, and Zaffaroni (2019) estimate risk premia in a linear factor model on a sequence of moving
windows. Their asymptotic analysis allows for a small (and fixed) time window, but requires an increasing
cross-section.

2The first pass regression is a continuous-time regression model, which can be estimated using a
realized beta estimator, as the ratio of realized covariance to realized variance (see Barndorff-Nielsen and
Shephard (2004) and Andersen, Bollerslev, Diebold, and Wu (2005)). These papers do not allow for
jumps, and the implicit regression model has constant betas over the time interval considered. Todorov
and Bollerslev (2010) also investigate a univariate model, but allow the continuous and jump betas to
differ. Li, Todorov, and Tauchen (2017) study a regression model but focus only on the jump components.
Aı̈t-Sahalia and Xiu (2017) estimate a latent factor model for a large cross-section of equity returns (see
also, Pelger (2019)), and use it to construct a large covariance matrix. In contrast to all these models
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span, and consequently different tools. Although the two forms of asymptotics have been

employed jointly in other contexts, such as estimating diffusion models (see Bandi and

Phillips (2003)), they have not been combined to analyze two-pass regressions. Yet, such

a combination is essential if we are to estimate risk premia in a model where factors

have dynamics that possibly include stochastic volatility and jumps and where factor

sensitivities are themselves stochastic.

So we develop in this paper a two-pass inference procedure for continuous-time factor

models in a general setting, relying on both an increasing sampling frequency and an

increasing time span. This development requires new assumptions and asymptotic results

that have not yet been employed in the literature. The results we provide generalize

the Fama-MacBeth two-pass regression approach to a continuous-time factor model with

general dynamics for the factors, idiosyncratic components and factor loadings, including

a proper accounting of the fact that the inputs of the second-pass regression are themselves

estimated in the first pass.

The importance of the latter point was originally made in the classical discrete-time

setting by Shanken (1992), who provided the first rigorous analysis of the asymptotic be-

havior of the two-pass regression for unconditional discrete-time factor models, when tak-

ing into account the first pass estimation error in the betas of test assets. In a continuous-

time setting, Bollerslev, Li, and Todorov (2016) compute risk premia with respect to both

the continuous and the jump components of market risk as a single factor, using cross-

sectional regressions of high frequency beta estimates, but does so as if the betas were

perfectly observed. By contrast, we provide inference for the risk premia in the second-

pass regressions, while also allowing for multiple factors and stochastic betas in the first

stage, and treat the betas in the second pass as components that were estimated in the

first pass. Ang and Kristensen (2012) and Chang, Choi, Kim, and Park (2016) develop

tests of alphas using nonparametric and parametric time-series regressions, respectively.

Their tests cannot be used to distinguish different components of risk premia, however,

and are only applicable to tradable factors. In addition, their model specification does not

allow for jumps, and requires restrictive assumptions such as the existence of a specific

time change that homogenizes the diffusion processes. Our approach is therefore the first

that assume a constant beta, Mykland and Zhang (2006) show how to perform ANOVA for a univariate
regression model with a time-varying coefficient, and Aı̈t-Sahalia, Kalnina, and Xiu (2020) estimate a
multivariate regression model with time-varying continuous and jump betas, see also Li, Todorov, and
Tauchen (2016). Reiß, Todorov, and Tauchen (2015) propose a nonparametric test for the null hypothesis
of constant beta in a bivariate setting. All these papers rely on high frequency asymptotics only, in which
an increasing number of observations is sampled within a fixed sample period.
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complete counterpart to the Fama-MacBeth two-pass approach, in a general continuous-

time model, combining high frequency and long span asymptotics, and one that is robust

to the Shanken (1992) critique.

When we implement our approach on a large universe of intraday individual stock

returns, we find that a statistically and economically significant part of the market equity

premia are earned because of exposures to the market’s jump risk component, that various

jump risks in Fama-French and momentum factors supersede their continuous counter-

parts as the primary pricing factors, and that augmenting Fama-French factor models

with jump risks increases the explanatory portion of the cross-section of expected returns

in the second pass.

The paper is organized as follows. Section 2 formulates the general continuous-time

factor model we will seek to estimate. Section 3 constructs the estimators and derives their

properties. Section 4 examines their small sample properties. We estimate empirically the

model on a large cross-section of U.S. equities in Section 5. Section 6 concludes. Proofs

are in the Appendix.

2 A Continuous-Time Factor Model

We have an economy with a risk free asset and M risky assets, which are each driven by

K common factors and an idiosyncratic component. All factors and prices are stochastic

processes defined on some filtered probability space (Ω,F , (Ft)t≥0,P). We letMp,q denote

the set of all p × q matrices and M+
p the class of all symmetric nonnegative elements of

Mp,p. For any matrix A ∈Mp,q we denote as Aᵀ its transpose and ‖A‖ its operator norm.

When A ∈ M+
p , we denote as ζ(A) its smallest eigenvalue, so A is invertible if and only

ζ(A) > 0, in which case ‖A−1‖ = 1/ζ(A). The p× p identity matrix is denoted by Ip. We

write xn � yn for two sequences of positive numbers if both sequences xn/yn and yn/xn

are bounded.

2.1 Factors

The factors are driven by a K–dimensional Brownian motion W F and a Poisson random

measure p=
F on R+×E (for some Polish space E, which can be for example E = RK) with

intensity (or, compensating) measure q=(dt, dz) = dt⊗ ν(dz) with ν a σ-finite measure on

E. The model is set up as usual in terms of log-prices and log-factors. The dynamics of
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the vector of log-factors F = (F 1, . . . , FK) are as follows:3

Ft = F0 +

∫ t

0

µFs ds+ FC
t + F J

t , (1)

FC
t =

∫ t

0

σFs dW
F
s , F J

t =

∫ t

0

∫
E

δF (s, z) p=
F (ds, dz). (2)

The M log-prices are driven by the factors above, plus (possibly) some idiosyncratic

part, according to the model described in the next section. However, it is useful to specify

right away that we are interested in the risk premia, which are a kind of assessment of the

global exposure of all prices to the various “risks” associated with the factors, which we

now discuss. For any factor F k the risks are of two types: the “continuous risk” associated

with the continuous part FC,k
t , and the “jump risk” associated with the jumps of F k, with

itself a priori two components: the times at which those jumps occur, and their sizes. So

one might say that we have a jump risk (repeatedly occurring at some random times) for

each possible jump size x.

With this interpretation, and unless the set of possible jump sizes is finite (a very

special model, most likely to be empirically inadequate) the number of distinct risks is

infinite, and evaluating the risk premia is of course an impossible task for two main

reasons: first one has a large but finite number M of prices from which one typically

cannot deduce an infinite number of risk premia; second, the data over a finite time span

[0, T ] give no information about the risk premia corresponding to jump sizes of F k that

did not occur within [0, T ], although such jump sizes could occur after time T , so that

the predictive value of our inference is absent in this case.

One way to overcome this problem is to introduce a finite partition Bk
0 , . . . , B

k
Lk

of R,

with each Bk
j a non-empty interval and with either Bk

0 = R (so Lk = 0) or Bk
0 = [−ak, ak]

for a nonnegative real ak (so Lk ≥ 1). We define the partial jump processes

F J,k,l
t =

∑
s≤t

∆F k
s 1Bk

l
(∆F k

s ), hence F J,k
t =

Lk∑
l=0

F J,k,l
t (3)

with the usual notation ∆F k
t = F k

t − F k
t− for the jump size of F k at time t. Then, with

F k, we associate Lk + 1 distinct factors of risk which are F J,k,l for l = 1, . . . , Lk and F̃ k

3Here, F0 is F0–measurable, µF = µFs (ω) is optional RK–valued, σF = σFs (ω) is optional MK,K–
valued, δF = δF (ω, s, z) is predictable RK–valued. Those coefficients satisfy Assumption 1 below, which
in particular ensures that the various integrals above are meaningful.
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given by:

F̃ k = FC + F J,k,0. (4)

This approach allows for some flexibility. Considering a given factor F k, on one end

of the spectrum, if Lk = 0, one considers the whole of F k as a “single” risk factor. On

the other end, if Lk ≥ 1 and ak = 0 the risk factors are the continuous one FC,k and

the purely discontinuous ones F J,k,l. In the middle, if Lk ≥ 1 and ak > 0, the risk factor

F̃ k contains the continuous part of F and its “small” jumps, to which the prices respond

in the same way (i.e., the same beta), whereas the response of prices to the risk factors

F J,k,l for 1 ≤ l ≤ Lk are (possibly) different. Put another way, we can consider that, with

H =
∑K

k=1 Lk, we really have K+H risk factors, namely the F̃ k’s and the F J,k,l’s, to each

of which individual assets are exposed. It is therefore convenient to stack all pure jump

factors in a single H-dimensional vector F t. Specifically, we stack F t and the associated

Bk
l according to the following rule (with an empty sum taken to be 0 below):

F
h

= F J,k(h),l(h), B
h

= B
k(h)
l(h)

where k(h) = j, l(h) = h−
j−1∑
i=1

Li when
j−1∑
i=1

Li < h ≤
j∑
i=1

Li.
(5)

We should emphasize that what is observable is the K-dimensional log-factor process

F , whereas the risk factors, which are the components of F̃ and F as given above, are

typically not separately observable and our econometric procedure will account for this.

2.2 Asset Prices

For the log-prices, we assume a factor model: each log-price is the sum of a linear response4

to each of the risk factors specified above, plus an idiosyncratic part. The dynamics of

the log-prices vector P = (P 1, . . . , PM) is then, in matrix notation,

Pt = P0 +

∫ t

0

βCs dF̃s +

∫ t

0

βJs dF s + P I
t , (6)

where βCt and βJt are predictable processes, with values inMM,K andMM,H , respectively

(quite often in the literature these processes are assumed to be simply constants), and

4The linear relationship between the price and the factors in a continuous-time factor model is only
local or instantaneous — unlike discrete-time models, Pt can be a highly nonlinear function of F̃t, F t and
P It .
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the idiosyncratic part P I is

P I
t =

∫ t

0

µIs ds+

∫ t

0

σIs dW
I
s +

∫ t

0

∫
E

δI(s, z) p=
I(ds, dz), (7)

with W I an M–dimensional Brownian motion and p=
I a Poisson random measure with the

same intensity q= as is (1) (the latter is not a restriction). To ensure that this is really

an idiosyncratic part we assume that (W I , p=
I) and (W F , p=

F ) are independent.5 In the

sequel, it is convenient to stack the two matrices βCt and βJt into a single M × (K + H)

matrix by setting

βt =
(
βCt , β

J
t

)
. (8)

Moreover, the risk free asset (whose log-price P 0
t is not included into the vector Pt

above) satisfies, with rt an optional process:

P 0
t =

∫ t

0

rs ds. (9)

A critical matter which is largely irrelevant in a high frequency setting with a finite

time span, but becomes essential over a long time horizon, is the issue of survivorship:

existing individual stocks typically have a finite lifetime for reasons such as bankruptcy,

mergers, acquisitions, etc., while new stocks appear after the beginning of the sample as

well. Stocks are not necessarily active over the whole interval of observation [0, Tn], unlike

the common factors which are present at all times. We model this as follows. We do not

require that the initial observation P0 in (6) be F0-measurable. Stock m enters the market

at some (possibly random) finite time ζm (with the convention ζm = 0 if it is present at

time 0) and disappears at another random time θm > ζm, which may be before or after

Tn. The time interval in which the stock is “active” is Lm = (ζm, θm). In our empirical

application below, for over three quarters of the stocks the interval Lm is strictly included

in [0, Tn].

As a result, (6) for a particular component m describes the dynamics of the log-price

Pm over the time interval [ζm, θm] only. Equivalently, writing this equation component-

wise, we have

Pm
t = Pm

ζm
+

K∑
k=1

∫ t
0
βC,m,ks dF̃ k

s +
H∑
h=1

∫ t
0
βJ,m,hs dF

h

s + P I,m
t ,

P I,m
t =

∫ t
0
µI,ms ds+

M∑
m′=1

∫ t
0
σI,m,m

′
s dW I,m′

s +
∫ t

0

∫
E
δI,m(s, z) p=

I(ds, dz),

(10)

5As above, µI is optional R-valued, σI is optional MM,M–valued and δI is predictable RM–valued.
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with βC,m,ks = βJ,m,hs = µI,ms = σI,m,m
′

s = δI,m(s, z) = 0 for all s /∈ Lm, and where ζm, θm

are stopping times and Pm
ζm

is Fζm-measurable. Thus Pm
t equals Pm

ζm
for t ≤ ζm and Pm

θm

for t ≥ θm, but those are spurious prices added for mathematical convenience and not

used in the estimation procedure below.

2.3 Risk Premia

Risk premia are associated with the structure of the drifts of the log-price processes Pm,

or rather their excess drift from which we have subtracted rt. Note that µI in (10) is not

the true drift of P , which is the process µt such that Pt −
∫ t

0
µs ds is a martingale. The

true drift process µ is connected with µI and the various coefficients in (1) and (10) as

follows:

µmt = µI,mt +
K∑
k=1

∫
E

βC,m,kt δF,k(t, z)1Bk
0
(δF,k(t, z)) ν(dz)

+
K∑
k=1

Lk∑
l=1

βJ,m,lt δF,k(t, z)1Bk
l
(δF,k(t, z)) ν(dz). (11)

What is commonly called risk premia is in connection with a no-arbitrage property,

when the prices have no idiosyncratic part (except for a possible drift, see Ross (1976)),

and in the case of ζm = 0 and θm = ∞ for all m for simplicity. Consider a portfolio

with actualized value Yt =
∑M

m=1

∫ t
0
φms (dPm

s − dP 0
s ) at time t, with φt a predictable M -

dimensional process. Upon using the compensated risk factors F̃ ∗ and F
∗

(meaning, for

example, that F̃ ∗ is a martingale and F̃ − F̃ ∗ is continuous with locally finite variation),

we then have

Yt =
M∑
m=1

(∫ t

0

φms (µms − rs) ds+
K∑
k=1

∫ t

0

φms β
C,m,k
s dF̃ ∗ks +

H∑
h=1

∫ t

0

φms β
J,m,h
s dF

∗h
s

)
.

Then, an arbitrage is possible if we can find a process φ such that all martingale terms

above vanish, but the drift part does not. A contrario, the no-arbitrage property implies

the following (for Lebesgue-almost all t, hence for all t if we use a proper version for µt

and rt), in matrix notation (recall (8)) and with rt the M -dimensional vector with all

components equal to rt:

φᵀ
tβt = 0 =⇒ φᵀ

t (µt − rt) = 0,

8



which in turn implies that µt− rt is equal to βtλt for some K +H-dimensional vector λt,

which is the vector of risk premia.

Now, we come back to our situation, where each Pm may have an idiosyncratic part,

and also non necessarily trivial birth and death times ζm and θm. In this case, if for all

m we have

t ∈ Lm =⇒ µmt − rt =
K∑
k=1

βC,m,kt λC,kt +
H∑
h=1

βJ,m,ht λJ,ht + λI,mt , (12)

then the (real-valued) process λC,kt is called the risk premium process relative to the risk

factor F̃ k, and λJ,ht is analogously relative to the risk factor F
h
, and λI,mt is relative to the

idiosyncratic risk (with the convention λI,mt = 0 when t /∈ Lm).6

It will be convenient again to use matrix notation and stack the risk premia λC,k and

λJ,h as a single (K +H)-dimensional process λ with components:

λlt =

{
λC,lt if 1 ≤ l ≤ K

λJ,l−kt if K < l ≤ K +H,
(13)

whereas λIt is the vector process with components λI,mt , and (12) becomes

µt − rt = βtλt + λIt , where rmt = rt 1Lm(t). (14)

Our main aim in this paper is to estimate the risk premia, on the basis of observations

on the factors and prices at times i∆n for i = 0, 1, . . . , n, plus the introduction times ζm,

and drop-out times θm when they are smaller than the horizon Tn = n∆n.

2.4 Identification

The discretization problem being addressed in the high-frequency setting ∆n → 0, we

suppose for a while that the processes F̃ and F and all Pm and r are fully observed on

the time interval [0, Tn], and determine first what we can identify about the risk premia.

This question presents several aspects.

First, only long term time-averages can be estimated. Let us consider the case M =

K = 1 with the simplistic model (with W a Brownian motion and β a known positive

6Of course, λI,mt is relevant only when the idiosyncratic part of Pm does not reduces to a pure drift.
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constant):

Ft = Wt, Pt = P0 +

∫ t

0

µs ds+ βFt, rt = 0,

so λIt = 0 because P has no idiosyncratic part. Then (14) gives λt = µt/β. We fully

observe Pt over [0, Tn], but there is no consistent estimator for µt. On the other hand,
1
Tn
PTn is an estimator for the average 1

Tn

∫ Tn
0
βλt dt, with an N (0, 1/Tn) estimation error.

So in this case only the time-average of λt over an interval [0, Tn] with Tn → ∞ can

be consistently estimated. This is typical for the situation at hand: the risk premia

being effectively linear functions of the drifts, only time-averages of them can (at best)

be estimated. Therefore, with the notation

ΛC
T =

1

T

∫ T

0

λCt dt, ΛJ
T =

1

T

∫ T

0

λJt dt, ΛT =
1

T

∫ T

0

λt dt, (15)

we focus our attention to the behavior of those averages for T = Tn → ∞, whereas

pointwise estimation of λt or its components for any fixed t is out of the question.

Next, let us return to the definition of the risk premia at time t, as given by (14).

A natural question is then whether the knowledge of µt, rt, βt yields the risk premia λt

and λIt , and the answer is no: indeed, if we choose arbitrarily the vector λt, this equation

trivially gives the vector λIt (no surprise here, since (14) is a system of M linear equations

with M +K +H unknowns). However, at least when the eigenvalues of the idiosyncratic

diffusion matrix σIt are bounded (independently of M) and M is large, diversification

arguments suggest that λIt vanishes, or at least that its average ΛI
T is negligible as T →∞.

In the first case, (14) is the no-arbitrage condition discussed at the beginning of the section,

while in the second case it still is a form of asymptotic no-arbitrage condition, which will

be more precisely stated as Assumption 5 in the next section.

Finally, going back again to (14), and since λIt will be negligible, in order to evaluate

ΛT we need to estimate βt as a preliminary step, the first pass regression. Recalling (10)

and (8), it turns out that βCt can be estimated at any time t by using the truncated

realized covariation process between each Pm and F k.

For βJt , it is another matter. Indeed, considering for simplicity that H = 1, we

have ∆Pm
t = βJ,mt ∆F t, which (since the jumps of the observed processes are also fairly

accurately estimated at high frequency) gives us a good estimate of βJ,mt at any jump

time t of F . On the other hand, we have simply no way of estimating βJ,mt for the other

values of t at which points no jumps occur. Assuming that t 7→ βJ,mt is smooth does not

help because the jump times are isolated points. And, unfortunately, to compute ΛJ
T we
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need to know (or, have good estimators for) λJt for all t ∈ [0, T ].

The only way to resolve this problem seems to impose an identification restriction on

the jump beta’s: namely, that each βJ,m,ht does not depend on t on the set Lm (recall that

by convention this quantity is 0 when t /∈ Lm). So we have

βJ,m,ht = β
J,m,h

1Lm(t), (16)

where β
J,m,h

is a constant.7

2.5 Assumptions

We now state and discuss the various assumptions that will be imposed. Toward this aim,

we first introduce the following property for a (possibly multidimensional) optional process

Yt and a random interval L = (R,R′] ∩ (0,∞), with R < R′ two stopping times: there is

a constant C such that for all s ≥ 0 and all finite stopping times S with R < S ≤ R′ we

have ∥∥E(Y(S+s)∧R′ − YS | FS)
∥∥ ≤ Cs, E

(
‖Y(S+s)∧R′ − YS‖2 | FS

)
≤ Cs. (17)

This holds for example for L = (0,∞) (soR = 0 andR′ =∞) and Y an Itô semimartingale

with bounded spot characteristics and bounded jumps. Note that, apart from the constant

C itself, (17) does not depend on the chosen norm, and it holds for a multidimensional

process as soon as it holds for each of its components.

We first make assumptions on the coefficients of the equations defining the factors,

the idiosyncratic components, and the risk free asset:

Assumption 1. (i) The processes µFt and σFt are optional and bounded, and cFt = σFt (σFt )ᵀ

is invertible, with a bounded inverse (equivalently, ζ(cFt ) is bounded away from 0).

(ii) The function δF on Ω×R+×E is predictable and there are a Borel bounded function

Υ on E and a number α ∈ [0, 1) such that ‖δF (ω, t, z)‖ ≤ Υ(z) and
∫
E

Υ(z)α ν(dz) <∞.

Assumption 2. (i) For some ε > 0 and each m the times ζm and (θm − ε) ∨ ζm are

stopping times.

(ii) The processes µIt and σIt are optional and bounded and vanishing for t /∈ Lm, the

function δI is predictable vanishing for t /∈ Lm and ‖δI(ω, t, z)‖ ≤ Υ(z), with Υ as in

Assumption 1.

(iii) The process rt is optional, bounded, and satisfies (17) on R+.

7It could be, more generally, measurable with respect to Fζm , but at this stage assuming that it is a
constant is not a substantial additional restriction.

11



These assumptions are standard, except for the uniform boundedness of the coeffi-

cients, instead of the more usual local boundedness. The boundedness is required here

since the usual localization procedure does not apply when the time horizon goes to in-

finity, in the absence of an ergodicity condition. Note also that, instead of the usual

ν-integrability of the function Υ∧ 1 we impose that Υα is ν-integrable and bounded: this

implies that the jump of F are bounded and, since α < 1, they are (locally) summable.

(i) of Assumption 2 means that the drop-out time θm can be exactly predicted ε ahead of

time, which does not seem too strong a restriction in practice.

Next, we need hypotheses on the factor loadings, and also on the splitting of each F J,k

according to (3), (4) and (5). For any two reals χ, χ′ > 0 and with ∂B
h

denoting the

boundary of B
h

we set

B
h
(χ, χ′) =

{
x ∈ Bh

: χ ≤ |x| ≤ χ′, d(x, ∂B
h
) ≤ χ′

}
. (18)

For each m = 1, . . . ,M and t > 0 and ρ′ > 4ρ > 0, we put

A(ρ, ρ′)mt = (ζm, θm)
⋂( ⋃

1≤h≤H
{s ∈ (0, t] : ∆F

h

s ∈ B
h
(2ρ, ρ′/2)}

)
N(ρ, ρ′)mt = #(A(ρ, ρ′)mt ),

R(m, ρ, ρ′, t) is the N(ρ, ρ′)mt ×H-matrix with entries

R(m, ρ, ρ′, t)s,h = ∆F
h

s for s ∈ A(ρ, ρ′)mt , 1 ≤ h ≤ H.

(19)

With this notation, in addition to Assumptions 1 and 2 we assume the following:

Assumption 3. In the case H ≥ 1 we have P
(
ζ(R(m, ρ, ρ′, t)ᵀR(m, ρ, ρ′, t)) ≥ ε

)
→ 1 as

t→∞, for each m and some ε, ρ, ρ′ > 0 (implying P(N(ρ, ρ′)mt ≥ H)→ 1 as t→∞).

The implication of this assumption is basically that the linear space spanned by all

jump vectors ∆F s for s ∈ [0, t] ∩ Lm is the whole of RH with a probability going to 1 as

t→∞: this is clearly necessary if we want the βJ,m,h’s to be uniquely determined by the

jumps of Pm and F . Note that this assumption becomes weaker if ρ decreases and/or ρ′

increases.

The assumptions on the factor loadings are:

Assumption 4. (i) The process βCt is optional and bounded, and for each m, k the com-

ponent βC,m,kt vanishes outside Lm and satisfies (17) on the interval Lm.

(ii) The process βJt is given by (16), with each β
J,m,h

being a constant.

(iii) With the notation (8), the M+
K+H-valued process bt = βᵀ

t βt is invertible, with a

bounded inverse (this implies, in particular, that M ≥ K +H).
12



Finally, the no-arbitrage condition is:

Assumption 5. We have (14), and
√
T ΛI,m

T

P−→ 0 (convergence in probability) as T →
∞, for all m = 1, . . . ,M , where ΛI

T = 1
T

∫ T
0
λIt dt.

One may think that Assumption 5 is very mild, or even always satisfied, since any stock

will at the end have a finite lifetime θm, whereas λI,mt = 0 for t > θm, so
∫∞

0
λI,mt dt <∞.

The assumption requires that the integral
∫ Tn

0
λIt dt is negligible in front of

√
Tn, a property

that is in principle testable. Of course, if idiosyncratic risk is unpriced (λIt = 0, as often

assumed in financial models in the setting of Ross (1976)) the assumption will be satisfied,

but this strong restriction is not required under Assumption 5.

3 Estimators

As already mentioned, throughout we assume ∆n → 0 and Tn → ∞, and suppose that

the observations are not contaminated by noise, so in empirical applications ∆n should

probably not be smaller than 1 or perhaps 5 minutes. The ith time interval and the ith

return of any process X at stage n are denoted as

Ini = ((i− 1)∆n, i∆n], ∆n
iX = Xi∆n −X(i−1)∆n .

We now construct in stages estimators for the various components of ΛTn , see (15).

Note that ΛTn is a “moving” target, which converges to a limit Λ∞ under appropriate

conditions such as a form of ergodicity; but even if this is the case, since the observations

available say nothing about what happens after time Tn, the only way to estimate Λ∞

when it exists is really to estimate ΛTn and then make additional assumptions about how

fast this converges to Λ∞. We avoid this extra step here, which permits substantially

weaker assumptions.

We start with some heuristic considerations explaining the construction of the estima-

tors. This is effectively the Fama-MacBeth two-pass regression procedure adapted to this

(substantially more general) setting. First, as already seen, we have the decomposition

Pt = P0 +

∫ t

0

µs ds+ PMart
t , with PMart a martingale. (20)

Besides cFt = σFt (σFt )ᵀ and bt = βᵀ
t βt we define the processes

γt = βCt c
F
t , ηt = b−1

t βᵀ
t . (21)

13



Note that the matrix bt is invertible by Assumption 4. We have cFt ∈M+
K and γt ∈MM,K

and bt, b
−1
t ∈ M+

K+H and ηt ∈ MK+H,M . (14) and (20) allow one to write the following

key formula:

ΛT = UT − U ′T − U ′′T − 1
T
UT , where UT = 1

T

∫ T
0
ηs dPs,

U ′T = 1
T

∫ T
0
ηsrs ds, U ′′T = 1

T

∫ T
0
ηsλ

I
s ds, U t =

∫ t
0
ηs dP

Mart
s .

(22)

In the above decomposition, UTn and U ′Tn will be estimated and U ′′Tn will turn out to be

negligible. The variable UTn cannot be estimated, because we do not observe the process

PMart
t . However, one can use a central limit theorem for the local martingale U t as t→∞,

for which its quadratic variation process V plays a central role. The components of this

quadratic variation are

V j,j′

t =
M∑

m,m′=1

∫ t

0

ηj,ms ηj
′,m′

s d[Pm, Pm′ ]s. (23)

Hence we need to estimate UTn , U ′Tn and VTn , and the procedure requires a number of

steps. Before starting, we emphasize once more that the estimators may depend on F, P, r,

but not on F̃ or F .

To construct the estimators, we will need three sequences of tuning parameters: two

sequences un and vn of positive reals, and a sequence qn of positive integers, subject to

un � ∆$
n , qn � ∆−$

′

n , vn � log(1/(Tn∆n)), (24)

and for some $,$′ > 0 to be specified later. qn dictates the length of local windows,

within which we estimates β; un, as usual in the literature, helps separate jumps from

continuous components of returns; and finally, vn is introduced to censor exploding matrix

inverses for better finite sample performance.

The procedure is split into a number of steps, and we start by an estimation of the

spot quantities occurring in (21), and will indeed estimate those at the times iqn∆n for

i = 0, . . . , n/qn − 2 only, denoting for example η̂n,i the estimator for ηiqn∆n .

3.1 Estimation of Jump Loadings

Since βJ only occurs when H ≥ 1, we assume this in this part. For any given m we first

make a global estimation of the constants (β
J,m,h

)1≤h≤H , on the basis of the observation

within [0, Tn] ∩ Lm. We choose two numbers ρ, ρ′ > 0 (typically ρ is very small and ρ′ is

14



very large), such that Assumption 3 holds with those ρ, ρ′ and some ε > 0. Set

In = {1, . . . , n}, Imn = {i ∈ In : ζm ≤ (i− 1)∆n ≤ θm − 2∆n}, (25)

and, recalling the notation (18), define theMn,H–valued R̂n,m, theM+
H–valued R̂′n,m, and

the MH,n–valued R̂′′n,m, as follows:

R̂i,h
n,m = ∆n

i F
k(h) 1

B
h

(ρ,ρ′)
(∆n

i F
k(h)) 1Imn (i)

R̂′n,m = (R̂n,m)ᵀ R̂n,m, R̂′′n,m =

{
(R̂′n,m)−1 (R̂n,m)ᵀ if ζ(R̂′n,m) ≥ vn

0 otherwise.

(26)

The estimator β̂Jn,i for βJiqn∆n
of equation (16) is then defined, component-wise for stock

m and risk factor h, as

β̂J,m,hn,i =


∑
j∈Imn

R̂′′h,jn,m ∆n
jP

m if iqn∆n ∈ Lm

0 otherwise.

3.2 Estimation of Continuous Loadings

The processes cFt and γt are spot volatilities or covolatilities, easily estimated by consid-

ering qn successive returns after time t. Upon truncating for the jumps by using un, we

estimate the components of cFiqn∆n
by

ĉF,k,k
′

n,i =
1

qn∆n

qn∑
j=1

∆n
iqn+jF

k ∆n
iqn+jF

k′ 1{|∆n
iqn+jF

k|≤un, |∆n
iqn+jF

k′ |≤un}. (27)

For γiqn∆n , being aware of the birth and death times of the stocks, we construct the

estimator as, component-wise,

γ̂m,kn,i =


1

qn∆n

qn∑
j=1

∆n
iqn+jP

m ∆n
iqn+jF

k

×1{|∆n
iqn+jF

k|≤un, |∆n
iqn+jP

m|≤un}

if ζm < iqn∆n ≤ θm − qn∆n

0 otherwise.

(28)

Since βCt = (cFt )−1γt one can in principle deduce from the above an estimator for βCt .

However, although cFt is invertible with a bounded inverse, the estimator ĉFn,i, although

belonging to M+
K by construction, might be not invertible or might have an unbounded

inverse. This is why we introduce some additional truncation procedure, based on the
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sequence vn and, recalling that ζ(A) is the smallest eigenvalue of a nonnegative semi-

definite matrix A, we estimate βCiqn∆n
by

β̂Cn,i =

{
γ̂n,i (ĉ

F
n,i)
−1 if ζ(ĉFn,i) > 1/vn

0 otherwise.
(29)

Estimation of η. In view of what precedes, plus (8), the estimator for the MM,K+H-

valued βiqn∆n and the M+
K+H-valued biqn∆n are naturally given by

β̂n,i =
(
β̂Cn,i, β̂

J
n,i

)
, b̂n,i = (β̂n,i)

ᵀβ̂n,i, (30)

and the one for ηiqn∆n by

b̂−1
n,i =

{
(̂bn,i)

−1 if ζ (̂bn,i) > 1/vn

0 otherwise,
η̂n,i = b̂−1

n,i (β̂n,i)
ᵀ. (31)

3.3 Estimation of Risk Premia

We are now ready to construct the estimators of ΛTn and VTn . Recalling that, since ζm and

θm are observed, the process rt is observed at each time t = i∆n, they are, respectively,

and still in matrix notation:

Λ̂n = Ûn − Û ′n, where


Ûn = 1

Tn

[n/qn]−2∑
i=0

η̂n,i (P(i+2)qn∆n − P(i+1)qn∆n)

Û ′n = qn∆n

Tn

[n/qn]−2∑
i=0

η̂n,i riqn∆n ,

(32)

V̂n =

[n/qn]−2∑
i=0

η̂n,i (P(i+2)qn∆n − P(i+1)qn∆n) (P(i+2)qn∆n − P(i+1)qn∆n)ᵀ (η̂n,i)
ᵀ. (33)

In light of equation (21), the estimator (32) is reminiscent of the classical Fama-

MacBeth procedure, in that we first regress excess returns P(i+2)qn∆n − P(i+1)qn∆n −
qn∆nr̄iqn∆n onto the betas estimated over the previous time window ((i− 1)qn∆n, iqn∆n],

and then aggregate the estimated “local risk premia” to construct the final estimator.

3.4 Asymptotics for Risk Premia

We can now state the main result, which characterizes the asymptotic distribution of the

risk premia estimators. We need to first specify conditions on the relative asymptotic

behavior of the two sequences ∆n → 0 and Tn → ∞ (or equivalently ∆n and n), and
16



on the values of $,$′ in (31). Depending on whether H = 0 (corresponding to the case

where the factors are continuous, or may be discontinuous but the beta’s are the same for

the continuous and discontinuous parts), or H ≥ 1 (in which case we need more stringent

conditions), we require the following:{
Tn∆τ

n → 0

Tn∆τ ′
n →∞

for some τ, τ ′ with

{
0 < τ

2
< τ ′ < τ < 1 if H = 0

0 < τ ′ < τ < 2
11

if H ≥ 1.
(34)

The main theorem has two parts. In part (a), the assumptions of Section 2.5 only

ensure that the estimators Λ̂n converge at rate
√
Tn, as should be expected since we need

to estimate various drift components. An additional assumption, given in part (b) below,

allows us to get a proper, and importantly feasible, central limit theorem for the risk

premia:

Theorem 1. Suppose that Assumptions 1, 2, 3, 4 and 5, plus (34), hold true and choose

the tuning parameters $,$′ in (24) as follows:{
τ
2

∨
(1−τ ′) < $′ < 1− τ

2
, 0< 1

2
−$ < 1−α

64−2α
if H = 0

(5τ)
∨

(1−τ ′) < $′ < 1− τ
2
, 0< 1

2
−$ < 1−α

64−2α

∨
($′−5τ)

∨
1−$′

6
if H ≥ 1

. (35)

a) The sequence
√
Tn(Λ̂n − ΛTn) is bounded in probability.

b) If we additionally suppose that as t → ∞, the variables (1/t)Vt converge in prob-

ability to a limit V∞, there is a sequence Ωn of subsets of Ω such that P(Ωn) → 1, V̂n is

invertible on Ωn, and the variables

Zn =

{
TnV̂

−1/2
n (Λ̂n − ΛTn) on Ωn.

0 on Ω\Ωn

(36)

converge in law to N (0, IK+H). Further, the sequences T
1/2
n V̂

−1/2
n 1Ωn and T

−1/2
n V̂

1/2
n 1Ωn

are bounded in probability.

Part (a) above tells us that the rate of convergence is at least
√
Tn, and (b) that

√
Tn

is indeed the genuine rate. Importantly, the result in part (b) is feasible, in the sense that

it directly allows for constructing asymptotic variance estimators and confidence regions,

for example. Note that throughout the target ΛTn is random and moving with n. And V̂n

is not necessarily invertible everywhere so we need the dummy value 0 on Ω\Ωn to define

Zn properly. However, when V̂n is invertible, the matrix V̂
−1/2
n is well defined because V̂n

belongs to M+
K by construction, and this happens on the set Ωn whose probability goes
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to 1, so the dummy value has no impact on the asymptotic theory. The limit V∞ in part

(b) is of course M+
M+K–valued, and the other assumptions imply that it is necessarily

invertible. When it is assumed we can as well assume that the variables ΛTn converge in

probability to some limiting variable Λ∞ (this, however, does not tell us at which rate

this convergence takes place, so in the theorem we cannot replace ΛTn by Λ∞). It also

implies, because the limit of (1/Tn)VTn is non-degenerate, that there are at least K + H

stocks that have an infinite lifetime. This is due to our formulation of the problem, where

we have M stocks and do not care about whether they will be alive after the time horizon

Tn.8

4 Monte Carlo Simulations

This section investigates the finite sample performance of the estimators.

4.1 Data Generating Process

We simulate the cross-section of stock returns using a K(= 3)-dimensional vector of log-

factors F . To do so, it is convenient to directly simulate the martingale components

of these factors and the idiosyncratic components, i.e., F̃ ∗ and F
∗
, and then construct

the “genuine” drift terms of individual stocks from simulated risk premia using (14).

Specifically, the volatility of the martingale component of factors FC in (1) is driven by

three CIR processes, for i = 1, 2, and 3:

d(σF
i

t )2 = κσ(θσ − (σF
i

t )2)dt+ γσσF
i

t dW
σ,i
t ,

where W σ,is are independent Brownian motions. The correlation between W σ,i and W F i

in (1), ρi, is set to be negative, which contributes to the leverage effect.9

With respect to the jumps, we simulate a compound Poisson process for each F i,

8If we introduced an ergodic requirement for the model (which is what the additional assumption
on the convergence of (1/t)Vt in part (b) partially does), we could consider a model with potentially
infinitely many stocks, of which Mt are alive at time t, and with the condition that K + H ≤ Mt ≤ M
for all t and some finite bound M .

9Note that our assumptions need bounded volatility processes and their inverse, so the actual volatil-
ities we use are truncated versions of the simulated σF

i

t s above (we recycle the same notation for conve-

nience), i.e., σF
i

t s will be truncated at C−1 or C, for some predetermined C, if they go beyond the range
of [C−1, C]. In practice, we use a large value for C. The same procedure is adopted for all bounded
processes throughout the simulations.
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Parameters Description Value or Distribution
Tn sampling span 5; 10
∆n sampling interval 1/(252× 78); 1/(252× 26)
M number of stocks 1,000
K number of factors 3
H number of jump factors 3× 2
qn size of local window 936; 1,872; 6,552
vn eigenvalue bound 100× log(1/(Tn∆n))
σI,m idiosyncratic variance U (0.05, 0.15)

κσ,k CIR parameter for (σF
k

)2 3

θσ,k CIR parameter for (σF
k

)2 0.06

γσ,k CIR parameter for (σF
k

)2 0.3
ρ correlation of factor and volatility -0.5
κλ,l OU parameter for λl 1
g distribution parameter for θλ,l 0.05
γλ,l OU parameter for λl 0.1
κβ,k OU parameter for βC,m,k 2
θβ,k OU parameter for βC,m,k 1 for k = 1, and 0 otherwise
γβ,k OU parameter for βC,m,k 0.5
νF jump intensity of F 63

a distribution parameter for δF
i

0.02
Bk,l partitions of large jumps [−a,−a/2], [a/2, a]
B0 the partition of small jumps [−a/2, a/2]
β̄J,m,h jump betas U(1− b, 1 + b) for h = 1, 2

U(−b, b) for h = 3, 4, 5, 6
b distribution parameter for β̄J,m,h 0.5
νm jump intensity of P I U(2νF /3, 4νF /3)
aI,m distribution parameter for δI,m U(2a/3, 4a/3)

Table 1: Parameter Values in Monte Carlo Simulations

Note: This table reports the parameter values used in the data generating process of the Monte Carlo
simulations.

i = 1, 2, 3, with a constant intensity νF and a uniform distribution for their jump sizes:

δF
i ∼ U(−a, a).

Next, we decompose each jump process into three components according to their realized

jump sizes. Jumps with respective sizes in [−a,−a/2] and [a/2, a] are deemed separate

risk factors with their respective betas, whereas the remaining jumps with sizes realized

in (−a/2, a/2) will share the same beta with their corresponding continuous component.

As a result, we have Li = 2 for each i = 1, 2, 3, K = 3, and H = 6. All these risk factors

are compensated to form martingales.

Next, we simulate risk premia, (13), for continuous and jump risks from Ornstein-
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Uhlenbeck (OU) processes:

dλlt = κλ,l(θλ,l − λlt)dt+ γλdW λ,l
t , l = 1, 2, . . . , K +H, (37)

where W λ’s are independent Brownian motions. For continuous risks, we draw their cor-

responding θλ,ls from U(−g, g), U(−g, 0) for positive jump risks, and U(0, g) for negative

jumps. There are no risk premia for the idiosyncratic components: λI,mt = 0.

As for the betas, we simulate βC,m,kt driven by OU processes, for k = 1, 2, 3, and

m = 1, 2, . . . ,M :

dβC,m,kt = κβ(θβ − βC,m,kt )dt+ γβdW β,m,k
t , (38)

where W β,m,ks are independent Brownian motions. With respect to βJ,m,ht given by (16),

we draw the constants β
J,m,h

once from a uniform distribution U(c− b, c+ b) and fix them

afterwards. For the first two factors, which are market risk related, we fix c = 1; otherwise

c = 0. To finalize the drift part of individual stocks, we set rt to zero, and simulate µt

using (14).

Finally, the martingale component of the idiosyncratic part in (4), P I , features con-

stant idiosyncratic volatilities σI,ms and compensated Poisson jump processes with inten-

sities νI,ms. These jumps are independent, and their sizes follow independent uniform

distributions:

δI,m ∼ U(−aI,m, aI,m).

Across m = 1, 2, . . . ,M , νI,m and aI,m are constants drawn randomly from an exponential

distribution.

Throughout we choose a sample of M = 1, 000 stocks spanning T = 5 or 10 years with

sampling frequencies ∆n = 5 and 15 minutes. To simulate the births and deaths of stocks,

we randomly allocate stock m to one of four groups: Lm = [0, T ], [ζm, T ], [0, θm], and

[ζm, θm], where the first group accounts for 70% of all stocks and the other three groups

contain 10% each. θm and ζm are randomly drawn from [0, T ]. All other parameter values

are summarized in Table 1.

To construct the estimators, we need three tuning parameters: un, vn and qn, subject

to (24) and (35). We set un = a∆b
n(ÎV t)

1/2, where we choose a = 3 and b = 0.47: see, e.g.,

Aı̈t-Sahalia and Jacod (2014). ÎV t is a pilot estimate of the daily annualized variation.

For qn, to improve the finite sample performance, we choose the divisor of n that is

closest to 1/(∆nT
0.5
n ). Finally, we choose vn to be an arbitrary large number relative to

log(1/(Tn∆n)), say, 100 × log(1/(Tn∆n)) such that 1/vn gives a reasonable lower bound
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for the minimum eigenvalue of the spot covariance estimates.

4.2 Simulation Results

We report the biases and root-mean-squared errors (RMSEs) in Table 2 for a variety

of settings, including cases with a lower sampling frequency (∆n = 15 minutes) and a

shorter time span (Tn = 5 years). A few patterns emerge. First, estimating risk premia

is a challenging problem. Even with a time span of 10 years, the estimates remain noisy

relative to the magnitude of the signal. Second, the reported numbers in Columns “Bias”,

“Stdev”, and “RMSE” do not deteriorate much as the sampling frequency drops from 5

minutes (top panel) to 15 minutes (middle panel), whereas they become worse as the time

span drops from 10 years (top panel) to 5 years (bottom panel). This suggests that it

is the time span that plays a critical role in determining the precision and accuracy of

the risk premia estimates, rather than the sampling frequency (at least once sampling is

sufficiently frequent to establish reasonably accurate first pass estimates of the loadings).

Third, the choices of qns roughly match the size of a biweekly, monthly, and quarterly local

window, respectively, among which a monthly window is most commonly employed in the

empirical asset pricing literature. The results exhibit the usual bias-variance trade-off:

larger qns lead to a bigger bias and a smaller variance.

Finally, Figure 1 reports histograms of the standardized risk premia estimates, Λ̂n, for

continuous and positive/negative jump components. These histograms match the stan-

dard normal density, suggesting that the asymptotic theory in Theorem 1 approximates

the finite sample performance of the estimators well.

5 Risk Premia of U.S. Equities

We next conduct a large-scale stock-level analysis of risk premia of various factors that

are known to be possible determinants of the cross-section of stock returns. By combining

high frequency data and long span estimation of risk premia, our results provide a new

perspective on the pricing of Brownian and jump risks.

We collect data the entire cross-section of individual stocks at the 15-minute frequency

from the constituents of the S&P 500 (LargeCap), 400 (MidCap), and 600 (SmallCap)

indices for a long sample spanning from January 1, 1996 to May 31, 2020. The number of

tickers is about 1,500 per day, which, after filtering by share codes and exchange codes, is

reduced to a minimum of 1,300 stocks per day. Our sample covers several business cycles,

21



Tn = 10 yrs ∆n = 5 mins
qn = 936 (12 days) qn = 1,638 (21 days) qn = 4,914 (63 days)

Truth Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

Λ̂C,1 2.16 -0.08 7.74 7.73 -0.10 7.54 7.54 -0.28 6.76 6.76

Λ̂C,2 5.75 -0.75 7.17 7.21 -0.93 6.94 7.00 -1.88 5.74 6.04

Λ̂C,3 -5.63 0.43 7.17 7.18 0.67 6.95 6.98 1.78 5.67 5.93

Λ̂J,1 3.18 0.11 2.31 2.31 0.13 2.32 2.33 0.21 2.39 2.40

Λ̂J,2 -4.55 0.08 2.39 2.39 0.17 2.40 2.40 0.56 2.46 2.52

Λ̂J,3 0.48 -0.01 2.33 2.33 0.00 2.32 2.32 0.08 2.29 2.29

Λ̂J,4 -3.06 -0.26 2.36 2.37 -0.24 2.36 2.37 -0.19 2.35 2.36

Λ̂J,5 1.43 0.04 2.43 2.43 0.04 2.44 2.43 0.02 2.43 2.42

Λ̂J,6 -3.91 -0.24 2.51 2.52 -0.23 2.50 2.51 -0.18 2.48 2.49

Tn = 10 yrs ∆n = 15 mins
qn = 312 (12 days) qn = 546 (21 days) qn = 4,914 (63 days)

Truth Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

Λ̂C,1 2.20 0.00 7.78 7.77 0.06 7.81 7.80 -0.22 7.03 7.03

Λ̂C,2 5.84 -0.59 7.49 7.51 -0.68 7.46 7.49 -1.71 6.29 6.52

Λ̂C,3 -5.76 0.59 7.42 7.44 0.63 7.27 7.30 1.50 6.05 6.23

Λ̂J,1 3.03 0.28 2.27 2.28 0.25 2.25 2.26 0.35 2.32 2.35

Λ̂J,2 -4.59 -0.01 2.22 2.22 0.02 2.22 2.22 0.43 2.27 2.31

Λ̂J,3 0.49 0.14 2.52 2.53 0.16 2.48 2.48 0.28 2.45 2.46

Λ̂J,4 -2.90 -0.21 2.39 2.39 -0.19 2.36 2.37 -0.08 2.33 2.33

Λ̂J,5 1.23 0.17 2.49 2.50 0.17 2.46 2.47 0.15 2.43 2.43

Λ̂J,6 -3.84 0.02 2.47 2.47 0.04 2.46 2.46 0.06 2.39 2.39

Tn = 5 yrs ∆n = 5 mins
qn = 936 (12 days) qn = 1,638 (21 days) qn = 4,914 (63 days)

Truth Bias Stdev RMSE Bias Stdev RMSE Bias Stdev RMSE

Λ̂C,1 1.51 0.49 10.54 10.54 0.45 10.36 10.36 0.18 9.07 9.07

Λ̂C,2 6.57 -0.74 10.36 10.38 -1.07 10.00 10.05 -2.53 8.18 8.56

Λ̂C,3 -6.52 0.78 10.72 10.74 1.05 10.31 10.36 2.39 8.61 8.93

Λ̂J,1 2.44 0.27 3.10 3.11 0.30 3.11 3.13 0.40 3.21 3.24

Λ̂J,2 -6.19 0.05 3.22 3.21 0.20 3.23 3.23 0.89 3.31 3.42

Λ̂J,3 0.00 0.10 3.45 3.45 0.13 3.45 3.45 0.29 3.43 3.44

Λ̂J,4 -2.92 -0.14 3.41 3.41 -0.13 3.41 3.41 0.03 3.37 3.36

Λ̂J,5 0.95 -0.14 3.44 3.44 -0.14 3.42 3.42 -0.16 3.38 3.39

Λ̂J,6 -3.62 -0.21 3.55 3.55 -0.17 3.54 3.54 -0.02 3.47 3.47

Table 2: Simulation Results

Note: This table reports simulation results for various scenarios of Tn and ∆n for different choices of qn.
Column “Truth” provides the average of Λ̂T over 1,000 Monte Carlo samples. Columns “Bias”, “Stdev”,
and “RMSE” provide the bias, the standard deviation, and the root-mean-squared-error of each of the 9
components of Λ̂T − ΛT . All numbers in this table are multiplied by 100.
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Figure 1: Standardized Estimates of Λ̂n

Note: In this figure, we report the standardized estimates for the risk premia estimator Λ̂n. The first
row plots the estimates for the continuous components, the second row risk premia estimates for negative
jump factors, and the bottom for positive jump factors. The first, second, and third columns correspond
to F 1, F 2, and F 3, respectively. The span is 10 years long and the sampling frequency is every 5 minutes.
The local window size qn is fixed at 1,638 (21 days).

including the dot-com bubble, the financial crisis, and the recent and ongoing covid-19

pandemic.

To preprocess the data downloaded from NYSE TAQ, we follow standard procedure.

We remove trades and quotes with condition codes Z, B, U, T, L, G, W, K, J, and the

corresponding odd lot trades with an additional letter I, as well as those with non-empty

suffix codes for preferred shares. We identify the opening and closing trades with their

unique identifiers, and remove all trades beyond this window. We only keep trades with

correction indicator 00 or 01. We then construct the national best bid and offer (NBBO)

data using quotes from all exchanges every second, with which we match the trades and

eliminator, among them, that are outside the range of NBBOs. Finally, we remove all

trades from TAQ whose prices exceed the daily minimum and maximum prices from

CRSP.

23



2000 2005 2010 2015 2020

-0.1

0

0.1
MKT

2000 2005 2010 2015 2020

-0.02

0

0.02

SMB

2000 2005 2010 2015 2020

-0.02

0

0.02

0.04

HML

2000 2005 2010 2015 2020

-0.02

0

0.02
RMW

2000 2005 2010 2015 2020

-0.02

0

0.02

CMA

2000 2005 2010 2015 2020

-0.04

-0.02

0

0.02

MOM

Figure 2: 15-minute Factor Returns

Note: In this figure, we plot the time series of 15-minute returns for the Fama-French five factors (MKT,
SMB, HML, RMW, CMA) plus momentum (MOM) from January 1, 1996 to May 31, 2020.

We employ 15-minute snapshots of the Fama-French five factors (Fama and French

(2015)) plus momentum (MOM), which were constructed at high frequency by Aı̈t-

Sahalia, Kalnina, and Xiu (2020). The five factors are the market return (MKT), and

mimicking portfolios for size (SMB, small minus big), value (HML, high minus low), prof-

itability (RMW, robust minus weak) and investment (CMA, conservative minus aggres-

sive). The mimicking portfolio for MOM is UMD (up minus down). The high-frequency

factor returns are plotted in Figure 2.10 Large returns, or possibly jumps, are clearly

present for all factors, particularly in earlier sample periods. Figure 3 plots time series of

factor jumps while Figure 4 compares their magnitudes.

We estimate augmented versions of the CAPM, Fama-French three-factor (FF3),

10“MKT” denotes market return in excess of the one-month T-bill rate, which serves as the proxy for
risk free rate in our model.
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CAPM FF3 FF4 FF5 FF6
MKT Cont. + Small Jumps 4.73 (1.55) 2.24 (0.96) 2.48 (1.22) 3.70 (1.83) 3.41 (1.81)

Large Neg. Jumps 9.02 (2.96) 9.22 (3.78) 8.78 (4.00) 8.18 (3.75) 8.66 (4.13)
Large Pos. Jumps -2.36 (−1.05) 0.70 (0.32) 5.11 (2.64) 2.35 (1.07) 4.11 (2.02)

SMB Continuous 3.12 (2.16) 3.53 (2.62) 2.31 (1.65) 3.03 (2.31)
Jumps -0.79 (−0.86) -1.83 (−2.00) -0.76 (−0.82) -1.42 (−1.55)

HML Continuous 0.43 (0.28) 0.99 (0.76) 0.08 (0.06) 0.91 (0.73)
Jumps -5.63 (−3.44) -5.55 (−3.47) -7.02 (−4.53) -5.54 (−3.64)

RMW Continuous 0.52 (0.48) 0.62 (0.60)
Jumps 1.74 (1.58) -0.33 (−0.29)

CMA Continuous -0.22 (−0.24) 0.31 (0.37)
Jumps -3.13 (−2.43) -3.59 (−2.87)

MOM Continuous -2.37 (−0.98) -2.48 (−1.06)
Jumps 14.57 (6.75) 14.27 (6.05)

R2 (%) 18.21 21.57 22.89 23.21 24.14

Table 3: Estimation Results using High Frequency/Long Horizon Data

Note: This table reports the estimated risk premia for a variety of models. “CAPM” includes only
MKT and its jumps as factors, “FF3” adds to that HML, SMB and their jumps, “FF4” further adds
MOM to “FF3”, “FF5” adds RMW and CMA to “FF3”, and finally “FF6” includes all six portfolios
and their jumps. For MKT, we separately estimate the premia of its large positive and large negative
jump components, whereas for other factors we estimate their continuous and jump risk premia. Large
jumps are those whose sizes exceed 1%. The risk premia estimates are multiplied by 100. All t-statistics
are reported in parentheses. The reported R2 is the time series average of the cross-sectional R2s. The
individual stock returns are sampled every 15 minutes from January 1, 1996 to May 31, 2020.

CAPM FF3 FF4 FF5 FF6
MKT 7.00 (1.99) 7.45 (2.23) 7.44 (2.23) 7.59 (2.28) 7.44 (2.23)
SMB 0.30 (0.28) 0.44 (0.42) 0.32 (0.31) 0.38 (0.36)
HML -0.76 (−0.57) -0.82 (−0.62) -0.84 (−0.63) -1.00 (−0.76)
RMW -0.84 (−0.63) -0.81 (−0.61)
CMA -0.20 (−0.15) -0.17 (−0.13)
MOM 0.73 (0.35) 0.67 (0.32)
R2 (%) 14.33 16.09 16.75 16.94 17.40

Table 4: Estimation Results using Low Frequency Data and the Fama-McBeth
Two-Pass Procedure

Note: This table reports the estimated risk premia for a variety of models. “CAPM” includes only the
MKT factor, “FF3” adds HML and SMB, “FF4” further adds MOM to “FF3”, “FF5” adds RMW and
CMA to “FF3”, and finally “FF6” includes all six portfolios. The risk premia are estimated by the
standard Fama-MacBeth procedure in which betas are estimated on a monthly rolling window. The
estimated risk premia are multiplied by 100. All t-statistics are reported in parentheses. The reported
R2 is the time series average of the cross-sectional R2s. The individual stock returns are sampled daily
from January 1, 1996 to May 31, 2020.

25



Figure 3: 15-minute Factor Jumps

Note: In this figure, we plot the time series of 15-minute return jumps for Fama-French five factors (MKT,
SMB, HML, RMW, CMA) plus momentum (MOM) from January 1, 1996 to May 31, 2020. We set the

threshold for jump truncation as un = 3∆0.47
n (ÎV t)

1/2, where ÎV t is a pilot estimate of daily volatility
based on 15-minute returns.

four-factor (FF4, i.e., FF3 +MOM), five-factor (FF5), and six-factor models (FF6, i.e.,

FF5+MOM), in which we employ three factors for MKT (large positive jumps, large neg-

ative jumps, continuous component plus small jumps) and two factors for all other factors

(continuous components and jumps) for parsimony and ease of interpretation; the theory

allows for versatile choices of risk factors. For comparison with the discrete-time low

frequency approach, we follow Lewellen and Nagel (2006) and implement Fama-MacBeth

regressions on a monthly rolling window for each model with daily data, which yields

estimates of the total risk premia (the validity of this approach requires much stronger

assumptions on the data generating process, such as constancy of factor loadings, absence

of jumps, etc., than what we have assumed).

Table 3 provides the estimates based on high frequency data, and Table 4 for daily

data. We summarize the main findings as follows. First, the negative jumps of MKT are

significantly priced with positive premia (12.5% per year), whereas its continuous compo-
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Figure 4: Histograms of 15-minute Factor Jumps

Note: In this figure, we plot the histograms of 15-minute return jumps for Fama-French five factors
(MKT, SMB, HML, RMW, CMA) plus momentum (MOM) from January 1, 1996 to May 31, 2020. We

set the threshold for jump truncation as un = 3∆0.47
n (ÎV t)

1/2, where ÎV t is a pilot estimate of daily
volatility based on 15-minute returns.

nent and smaller jumps are statistically and economically insignificant. Our results seem

to suggest that negative market jump beta is a stronger proxy for market risk, regardless

of the choice of the benchmark model. Second, the continuous component of SMB, the

jump components of HML, CMA, and MOM are also significant with economically mean-

ingful magnitudes, and robustly so across different models. Neither the continuous part

nor the jumps of RMW appear significant. In contrast, the results based on low frequency

Fama-MacBeth regressions are insignificant throughout. This is not surprising given the

potential model misspecification and generally low signal-to-noise ratio in individual stock

returns. Third, the time series average of cross-sectional R2s increases from 18.21% to

24.14%, as the model expands. By contrast, the low frequency R2s are substantially lower

– the largest model’s R2 is smaller than 18%.
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CAPM FF3 FF4 FF5 FF6
MKT Cont. + Small Jumps 6.87 (1.99) 3.00 (1.02) 4.34 (1.68) 4.09 (1.58) 4.01 (1.66)

Large Neg. Jumps 4.22 (1.24) 6.30 (2.21) 6.94 (2.65) 7.07 (2.59) 7.92 (3.04)
Large Pos. Jumps -2.13 (−0.69) 5.04 (1.76) 6.39 (2.36) 4.16 (1.53) 5.47 (2.11)

SMB Continuous 3.08 (1.9) 3.35 (2.21) 3.14 (1.99) 3.78 (2.56)
Jumps -5.17 (−4.04) -5.31 (−4.16) -5.38 (−4.27) -5.52 (−4.4)

HML Continuous 0.16 (0.09) 1.58 (0.98) 0.82 (0.45) 2.19 (1.32)
Jumps -7.12 (−4.61) -4.91 (−3.55) -7.51 (−4.76) -5.17 (−3.73)

RMW Continuous 1.17 (1.02) 1.22 (1.10)
Jumps 2.19 (2.45) -0.40 (−0.44)

CMA Continuous -0.90 (−0.85) -0.06 (−0.06)
Jumps -4.10 (−3.38) -4.05 (−3.31)

MOM Continuous -2.88 (−0.98) -3.16 (−1.08)
Jumps 16.96 (6.56) 18.29 (6.57)

R2 (%) 19.88 22.95 24.31 24.75 25.76

Table 5: Robustness Check: Alternative Sampling Period

Note: The content of this table is comparable to Table 3, except that the sample period in this case starts
from January 1, 2004.

CAPM FF3 FF4 FF5 FF6
MKT Cont. + Small Jumps 4.73 (1.55) 5.02 (1.87) 5.62 (2.24) 7.19 (2.41) 7.32 (2.48)

Large Neg. Jumps 9.02 (2.96) 10.02 (4.27) 8.36 (4.02) 9.68 (4.06) 9.83 (4.4)
Large Pos. Jumps -2.36 (−1.05) -2.45 (−1.16) 0.95 (0.5) -2.88 (−1.24) -1.73 (−0.78)

SMB Cont. + Small Jumps 3.46 (2.29) 2.90 (1.98) 2.14 (1.45) 2.25 (1.56)
Large Neg. Jumps -0.09 (−0.18) 0.12 (0.27) 0.57 (0.87) 0.30 (0.46)
Large Pos. Jumps -1.19 (−2.18) -1.02 (−1.94) -0.66 (−1.12) -0.47 (−0.81)

HML Cont. + Small Jumps -1.49 (−0.92) -1.04 (−0.72) -2.0 (−1.19) -1.34 (−0.84)
Large Neg. Jumps -1.67 (−1.52) -2.48 (−2.41) -2.78 (−2.62) -2.55 (−2.46)
Large Pos. Jumps -1.62 (−1.67) -1.41 (−1.5) -1.10 (−1.11) -0.78 (−0.83)

RMW Cont. + Small Jumps 0.66 (0.51) 0.48 (0.39)
Large Neg. Jumps -1.06 (−1.51) -1.36 (−1.98)
Large Pos. Jumps -0.21 (−0.71) -0.16 (−0.54)

CMA Cont. + Small Jumps -0.57 (−0.52) -0.27 (−0.27)
Large Neg. Jumps -1.12 (−1.57) -1.28 (−1.88)
Large Pos. Jumps 0.70 (1.10) 0.20 (0.33)

MOM Cont. + Small Jumps -1.41 (−0.56) -1.55 (−0.58)
Large Neg. Jumps 3.36 (2.85) 4.33 (3.15)
Large Pos. Jumps 3.62 (3.05) 3.59 (2.29)

R2 (%) 18.21 21.35 22.61 22.60 23.49

Table 6: Robustness Check: Alternative Specification of Risk Factors

Note: The content of this table is comparable to Table 3, except that all factors’ large positive and
negative jumps are treated as separate risk factors.
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CAPM FF3 FF4 FF5 FF6
MKT Cont. + Small Jumps 4.39 (1.44) 1.89 (0.82) 1.78 (0.88) 3.33 (1.68) 2.97 (1.60)

Large Neg. Jumps 7.44 (2.40) 8.55 (3.4) 8.04 (3.52) 7.43 (3.28) 8.12 (3.71)
Large Pos. Jumps -0.44 (−0.18) 1.85 (0.78) 6.96 (3.27) 3.75 (1.57) 5.70 (2.59)

SMB Continuous 3.13 (2.16) 3.76 (2.79) 2.50 (1.79) 3.25 (2.50)
Jumps -0.84 (−0.91) -2.31 (−2.46) -1.19 (−1.25) -1.90 (−2.00)

HML Continuous 0.48 (0.32) 1.11 (0.85) 0.02 (0.01) 0.87 (0.70)
Jumps -5.76 (−3.47) -5.59 (−3.42) -7.07 (−4.52) -5.44 (−3.55)

RMW Continuous 0.54 (0.50) 0.63 (0.61)
Jumps 2.02 (1.80) -0.10 (−0.09)

CMA Continuous -0.24 (−0.26) 0.31 (0.37)
Jumps -3.07 (−2.38) -3.57 (−2.87)

MOM Continuous -2.44 (−1.01) -2.49 (−1.06)
Jumps 15.19 (6.91) 14.84 (6.22)

Cross-Sectional R2 (%) 18.2 21.59 22.93 23.24 24.17

Table 7: Robustness Check: Alternative Threshold for “Large” Jumps

Note: The content of this table is comparable to Table 3, except that the threshold for “large” jumps in
the MKT factor is set at 0.5%.

We finally conduct a battery of robustness checks. In light of the potential concern on

the presence of microstructure noise, we provide results in Table 5 with a smaller sample

excluding the period of 1996 - 2003, during which microstructure noise may be prevalent

in small- and mid-cap stocks even at 15-minute frequencies. In addition, we consider an

alternative specification of jump factors in Table 6, and a different threshold for “large”

jumps in Table 7. These results are consistent with the primary findings summarized

above.

6 Conclusions

High frequency econometrics has made much progress over the years characterizing asset

returns dynamics, with a particular emphasis on functions of second order “moments”

in the form of quadratic (co)variations. The empirical asset pricing literature, however,

retains an important focus on first order “moments”, corresponding to the drift compo-

nents in semimartingales. This paper provides new econometric techniques for inference

on this drift component, allowing standard asset pricing models to be estimated using a

generalization to continuous-time factor models of the Fama-MacBeth two-pass regression

procedure that combines high frequency and long horizon methods. These techniques can

be employed in future work to test the specification of the canonical asset pricing factor

model, estimate individual alphas, conduct event studies, all of which are standard issues

in empirical asset pricing that have not yet been fully investigated in a continuous-time

setting.
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Annals of Statistics, 34, 1931–1963.

Pelger, M. (2019): “Large-dimensional factor modeling based on high-frequency obser-

vations,” Journal of Econometrics, 208(1), 23–42.

Raponi, V., C. Robotti, and P. Zaffaroni (2019): “Testing Beta-Pricing Models

Using Large Cross-Sections,” Review of Financial Studies, forthcoming.

Reiß, M., V. Todorov, and G. E. Tauchen (2015): “Nonparametric Test for a Con-
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Appendix: Proofs

Throughout the Appendix, we suppose that all assumptions 1–5 hold, and C denotes a

constant which may change from line to line and may depend on the bounds in our assumptions,

but not on n or the component indices k, h,m or the index i when we use Ini or ∆n
i X for example;

when it depends on an extra parameter p we call it Cp. The integers k, h,m used below are

always supposed to belong to {1, , . . . ,K} or {1, . . . ,H} or {1, . . . ,M}, respectively. We use the

simplifying notation Eni for the conditional expectation with respect to Fi∆n , and recall that

In = {1, . . . , n}.
Since we look at asymptotic properties, without loss of generality and in view of assumption

2, we always assume

∆n < 1, θm − 2∆n is a stopping time for all m. (A.1)

A.1 Preliminaries

Let us first state a few – more or less well known – facts about matrices, starting with the

following trivial estimate (on matrices with the proper dimensions):

‖(A+B)(A′ +B′)−AA′‖ ≤ ‖A‖ ‖B′‖+ ‖B‖ ‖A′‖+ ‖B‖ ‖B′‖. (A.2)

Next, we have:

Lemma 1. Let A,A′ ∈M+
d and B = A′ −A, suppose that ζ(A) ≥ 1/a for some a ≥ 1, and let

v ≥ 2a. The matrix A equal to A′−1 if ζ(A′) > 1/v and to 0 otherwise satisfies:

‖A−A−1‖ ≤ 3av ‖B‖, ‖A−A−1 −A−1BA−1‖ ≤ 7a2v ‖B‖2. (A.3)

Proof. We write C = A−A−1 and D = C −A−1BA−1, and single out three cases.

Suppose first that ζ(A′) ≤ 1/v, so there is a unit vector x in Rq with ‖A′x‖ ≤ 1/2a,

whereas ‖Ax‖ ≥ 1/a by hypothesis, so ‖Bx‖ ≥ 1/2a and thus ‖B‖ ≥ 1/2a ≥ 1/v. Therefore

‖A−1‖ ≤ a ≤ av‖B‖ ≤ 2a2v‖B‖2 and ‖A−1BA−1‖ ≤ a2‖B‖ ≤ a2v‖B‖2 and, since A = 0, (A.3)

holds.

Next, suppose that ζ(A′) > 1/v and ‖A−1B‖ > 1/2. We have ‖B‖ > 1/2a ≥ 1/v and ‖A‖ =

‖A′−1‖ < v ≤ 2av‖B‖ ≤ 4a2v‖B‖2 and ‖A−1‖ ≤ a ≤ av‖B‖ ≤ 2a2v‖B‖2 and ‖A−1BA−1‖ ≤
a2‖B‖ ≤ a2v‖B‖2, which clearly imply (A.3).

Finally, suppose that ζ(A′) > 1/v and ‖A−1B‖ ≤ 1/2. The matrix G =
∑

j≥0(A−1B)jA−1

is then well defined, with ‖G‖ ≤ a, and with I the q × q identity matrix and since A = A′−1
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now, we have

C =
(
(I +A−1B)−1 − I

)
A−1 = A−1BG, D = C −A−1BA−1 = (A−1B)2G.

Therefore ‖C‖ ≤ a2‖B‖ ≤ av‖B‖/2v and ‖D‖ ≤ a3‖B‖2 ≤ a2v‖B‖2/2, and again (A.3)

holds.

Next, we state some properties connected with (17):

Lemma 2. If Yt is a bounded adapted Mp,q–valued process satisfying (17) on some interval L
and f is a C2 function on Mp,q, then the process f(Yt) also satisfies (17) on L. In particular:

(a) If p = q and Y −1
t exists and is also bounded on L, it satisfies (17) on L as well.

(b) If Y ′t is Mp,q–valued and satisfies the same conditions as Yt, then Yt + Y ′t satisfies (17)

on L.

(c) If Y ′t is Mq,r–valued and satisfies the same conditions as Yt, then YtY
′
t satisfies (17) on

L.

Proof. (a) follows from the first claim because for any α > 1 there is a C2 function f on Mp,p

such that f(x) = x−1 on the set of all x ∈ Mp,p such that ‖x‖, ‖x−1‖ ≤ α. Since as soon as

two processes Yt and Y ′t satisfy (17) the same holds for the pair (Yt, Y
′
t ), (b) and (c) also follow

from the first claim, with the function f(x, y) = x + y on (Mp,q)
2 for (b), and f(x, y) = xy on

Mp,q ×Mq,r for (c).

For the first claim, we can suppose without restriction that f is one-dimensional and also

bounded, as well as its partial derivatives of order 1 and 2, because Yt takes its values in a

compact subset of Mp,q. We have

|f(Yt+s − f(Yt)| ≤ C‖Yt+s − Yt‖, |f(Yt+s − f(Yt)−∇f(Yt)(Yt+s − Yt)| ≤ C‖Yt+s − Yt‖2.

Then the claim is obvious, upon using the fact that ∇f(Yt) is Ft–measurable.

In the next lemma, we consider a possibly multi-dimensional Itô semimartingale X of the

form

Xt = X0 +

∫ t

0
as ds+

∫ t

0
bs dWs +

∫ t

0

∫
E
δ(s, z) p=(ds, dz),

where W is a Brownian motion and p= a Poisson measure with compensator q= , and where at, bt

are bounded and ‖δ(t, z)‖ ≤ Υ(z), with Υ as in Assumption 1. With ψ ∈
(
0, 1

2

)
and ϕ > 0 we

set

X(ψ,ϕ)nt = Xt −
∑
s≤t

∆Xs 1{‖∆Xt‖>wn}, where wn =

{
0 if α = 0

∆
ψ+ϕ/2α
n otherwise,

(A.4)
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Lemma 3. In the previous setting there is a constant Γ (depending on the bounds on at, bt and

on Υ and ψ, η) such that, if An = {t > 0 : ‖∆Xt‖ > wn}, we have

P(Ωn
i ) ≤ Γ∆2−2αψ−ϕ

n , where Ωn
i =

{
#(An ∩ Ini ) ≥ 2

}⋃{
‖∆n

i X(ψ,ϕ)n‖ > ∆ψ
n

}
.

Proof. One has the decomposition X(ψ,ϕ) = X0 +XC +X ′n, where

XC
t =

∫ t

0
as ds+

∫ t

0
bs dWs, X ′nt =

∑
s≤t

∆Xs 1{‖∆Xs‖≤wn}.

The boundedness of at, bt yields E(‖∆n
i X

C‖p) ≤ Cp∆
p/2
n for any p > 0, so by Markov

inequality and upon taking p > 4
1−2ψ we have

P
(
‖∆n

i X
C‖ > 1

2
∆ψ
n

)
≤ 2pCp

∆pψ
n

∆p/2
n ≤ C∆2

n.

On the other hand, X ′n ≡ 0 when α = 0, and otherwise by (2.1.41) of Jacod and Protter (2012)

we have for any p ≥ 1:

E(‖∆n
i X
′n‖p) ≤ Cp

(
∆n

∫
E

Υ(z)p 1{Υ(z)≤wn} ν(dz) + ∆p
n

)
≤ Cp

(
∆1+(p−α)(ψ+ϕ/2α)
n + ∆p

n

)
,

and by Markov’s inequality again we deduce, upon taking p large enough:

P
(
‖∆n

i X
′n‖ > 1

2
∆ψ
n

)
≤ Cp

(
∆1+(p−α)(ψ+ϕ/2α)−pψ
n + ∆p(1−ψ)

n

)
≤ C∆2

n.

Therefore Ω′ni = {‖∆n
i X(ψ,ϕ)n‖ > ∆ψ

n} satisfies P(Ω′ni ) ≤ C∆2
n.

Finally, any jump of X with size bigger than wn occurs at a jump time of the process

p=
(
(0, t]]×{z : Υ(z) > wn}

)
, which is a Poisson process with parameter χn = ν({z : Υ(z) > wn}).

By Markov’s inequality once more, we have χn ≤ Cw−αn because Υα is ν-integrable, so

P
(
{#(An ∩ Ini ) ≥ 2}

)
≤ (χn∆n)2 ≤ C∆2−2αψ−ϕ

n ,

and the claim follows.

A.2 The case where H ≥ 1

In this subsection we prove a number of results that are specifically needed in the case H ≥ 1.

We begin with the following one, with ψ,ϕ as in (A.4):

Lemma 4. As soon as Tn∆1−2ψ−ϕ
n → 0 we have

P
(

supi∈In ‖β̂
J
n,i − βJiqn∆n

‖ ≤ v2
nT

3/2
n ∆ψ

n

)
→ 1.
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Proof. 1) Since β̂J,m,hn,i = 0 by construction and βJ,m,hiqn∆n
= 0 by hypothesis when iqn∆n /∈ Lm,

whereas vn →∞, it is enough to prove that for all m,h there is a constant C such that

P(Ωm,h
n )→ 1, where Ωm,h

n =
{
|Y m,h
n − βJ,m,h| ≤ CvnT 3/2

n ∆ψ
n

}
, Y m,h

n =
∑
j∈Imn

R̂′′h,jn,m ∆Pmj .

Therefore, below we fix m,h and basically drop them from our notation. We apply Lemma

3 with the K + 1-dimensional process X = (F, Pm) and the associated sets Ωn
i , to get that the

set Ωn,1 = ∩ni=1(Ωn
i )c satisfies

P((Ωn,1)c) ≤
n∑
i=1

P(Ωn
i ) ≤ CTn∆1−2ψ−ϕ

n → 0.

Next, for χ, χ′ > 0 let Dn(χ, χ′) be the (random) set of all times in (ζm, θm] ∩ (0, Tn]

at which at least one of the components F
h

has a jump with size in B
h
(χ, χ′), and write

Nn(χ, χ′) = #(Dn(χ, χ′)). The set Dn(χ, χ′) is included into the set of jump times of the Poisson

process Yt = p=([0, t] × {z : Υ(z) ≥ χ}), whose parameter (depending on χ) is finite, hence for

some constant Cχ we have P(YTn > CχTn) → 0 as n → ∞ and also P(YS+2∆n > YS) ≤ Cχ∆n

for any finite stopping time S. This with χ = ρ/2, and since ζm ∧ Tn and (θm − 2∆n) ∧ Tn are

stopping times (recall (A.1)), yields

j = 2, 3, 4⇒ P(Ωn,j)→ 1, where


Ωn,2 = {Nn(ρ/2, 2ρ′) ≤ Cρ/2Tn}

Ωn,3 = {Dn(ρ/2, ρ′) ∩ (ζm, ζm + ∆n] = ∅}

Ωn,4 = {Dn(ρ/2, ρ′) ∩ (θm − 2∆n, θm] = ∅}.

Moreover, Assumption 3 with ε, ρ, ρ′ yields

P(Ωn,5)→ 1, where Ωn,5 = {ζ(R(m, ρ, ρ′, Tn)ᵀR(m, ρ, ρ′, Tn)) ≥ ε},

hence the set Ω′n = ∩5
j=1 Ωn,j satisfies P(Ω′n)→ 1, and we are left to proving that Ωn ⊂ Ωm,h

n .

2) For proving Ωn ⊂ Ωm,h
n we argue ω-wise, with n fixed and ω fixed inside Ωn. Without

loss of generality we may also assume ∆ψ
n < ρ/2, hence a fortiori wn < ρ/2 with wn as in (A.4).

Coming back to (26), we let A be the set of all j ∈ In for which the vector (R̂j,hn,m)1≤h≤H is not

vanishing, and A′ = In\A. Since ω ∈ (Ωn
j )c for each j ∈ In and wn < ρ/2, we see that A ⊂ Inm

and

j ∈ A ⇒ Inj ∩Dn(ρ/2, 2ρ′) = {ti}, ‖∆n
j F −∆F ti‖+

∣∣∆n
j P

m −
H∑
h′=1

β
J,m,h′

∆F
h′

tj

∣∣ ≤ ∆ψ
n

j ∈ A′ ⇒ Inj ∩Dn(2ρ, ρ′/2) = ∅,
(A.5)

and below we define the n × H matrix R by Rj,h
′

= ∆F
h′

tj if j ∈ A and Rj,h = 0 if j ∈ A′.
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With the notation (19), we have Dn(2ρ, ρ′/2) = A(ρ, ρ′)mTn , hence Nn(2ρ, ρ′/2) = N(ρ, ρ′)mTn ,

which is not bigger that Nn(ρ/2, 2ρ′), and the second part of (A.5) implies that each col-

umn of the matrix R(m, ρ, ρ′, Tn) is also a column of the matrix R. Thus ζ(RᵀR) ≥
ζ(R(m, ρ, ρ′, Tn)ᵀR(m, ρ, ρ′, Tn)) ≥ ε (recall ω ∈ Ωn,5), implying ‖(RᵀR)−1‖ ≤ 1/ε.

Set R′ = RᵀR and R′′ = (R′)−1Rᵀ. Observing that R has at most Nn(ρ/2, 2ρ′) ≤ Cρ/2Tn non

vanishing columns and that each entry Ri,h is smaller than 2ρ′, we easily check that ‖R‖ ≤ C
√
Tn

and ‖Rᵀ‖ ≤ C
√
Tn, so ‖R′‖ ≤ CTn. The same argument using the first part of (A.5) yields

‖R̂n,m − R‖ ≤ C
√
Tn ∆ψ

n and ‖R̂ᵀ
n,m − Rᵀ‖ ≤ C

√
Tn ∆ψ

n , hence (A.2) gives us ‖R̂′n,m − R′‖ ≤
ΓTn∆ψ

n for some constant Γ. Since ζ(R′) ≥ ε we then deduce from (A.3) with a = 1/ε and

v = vn as given by (24) and once more (A.2) that ‖R̂′′n,m −R′′‖ ≤ CvnT
3/2
n ∆ψ

n .

Since Rj,h
′

= R̂j,h
′

n,m = 0 for j ∈ A′, the jth column of R′′ and R̂′′n,m are vanishing for j ∈ A′

and thus

Y m,h
n =

∑
j∈A

R̂′′h,jn,m ∆n
j P

m, β
J,m,h

=
∑
j∈A

R′′h,j
H∑
h′=1

β
J,m,h′

∆F
h′

tj ,

where we have used ∆F
h′

tj = Rj,h
′

for j ∈ A and the definition of R′′ for the second equality

above. Then, an application of (A.5) yields

|Y m,h
n − βJ,m,h| ≤ ‖R̂′′n,m‖∆ψ

n +
∣∣∣∑
j∈A

(
(R̂′′n,m)h,j −R′′h,j

) H∑
h′=1

β
J,m,h′

∆F
h′

tj

∣∣∣.
Observe that ‖R′′‖ ≤ C

√
Tn, because ‖R′−1‖ ≤ 1/ε and ‖Rᵀ‖ ≤ C

√
Tn. Then ‖R̂′′n,m − R′′‖ ≤

CvnT
3/2
n ∆ψ

n implies ‖R̂′′n,m‖ ≤ C
√
Tn as well, and we deduce |Y m,h

n − βJ,m,h| ≤ CvnT
3/2
n ∆ψ

n . In

other words, we have proved that ω ∈ Ωm,h
n , and the proof is complete.

A crucial remark is in order here: whereas β̂Cn,i is by construction measurable with respect

to F(i+1)qn∆n
, this is not the case of β̂Jn,i. This induces some difficulties because the analysis of

the limiting behavior of Ûn, for example, strongly uses the fact that it is a kind of “discrete”

stochastic integral with respect to the Itô semimartingale P , and having a non adapted integrand

makes the analysis almost impossible to do. This is why we replace η̂n,i by Fn(i+1)qn
–measurable

variables η̂∗n,i, according to the following procedure:

β∗n,i = (β̂Cn,i, β
J
iqn∆n

), b∗n,i = (β∗n,i)
ᵀ β∗n,i

(b−1)∗n,i =

{
(b∗n,i)

−1 if ζ(b∗n,i) > 1/vn

0 otherwise,
η∗n,i = (b−1)∗n,i (β∗n,i)

ᵀ.
(A.6)

With Yt being any of the processes βt, bt, b
−1
t , ηt, we have the genuine estimators Ŷn,i as
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given by (30) and (31), and the “fake” ones Y ∗n,i as given by (A.6). We set

E(Y )∗n,i = Ŷn,i − Y ∗n,i, E(Y )n,i = Y ∗n,i − Yiqn∆n , (A.7)

and will now study the “error” E(η)∗n,i. To this effect, since we assume H ≥ 1 here we have the

second parts of (34) and (35) and we define ψ ∈ (0, 1/2) and choose some ϕ > 0 as follows:

ψ =
1

2
− $′

10
, 0 < ϕ < 1− 2ψ − τ.

As easily checked, these imply for any p > 0:

Tn∆1−2ψ−ϕ
n → 0, vpnT

3
n∆2ψ

n → 0, vpnT
4
n

(u8
n∆2ψ−5

n

qn
+ u12

n ∆2ψ−6
n

)
→ 0. (A.8)

Lemma 5. In restriction to the set Ωn = {supi∈In ‖β̂
J
n,i − βJiqn∆n

‖ ≤ v2
nT

3/2
n ∆ψ

n}, we have

‖E(η)∗n,i‖ ≤ Czn, with zn = v6
nT

3/2
n u4

n∆ψ−2
n .

Proof. For Yt being any of βt, bt, b
−1
t , ηt, we consider the following property, for some sequence

zn:

P∗zn : ‖E(Y )∗n,i‖ ≤ Czn, ∀n ≥ 1, i ∈ In, ω ∈ Ωn.

Below, we argue ω-wise and fix ω ∈ Ωn.

By the very definition of β∗n,i the process βt satisfies P∗zn,1
with zn,1 = v2

nT
3/2
n ∆ψ

n .

Next, |γ̂m,kn,i | ≤ u2
n/∆n by construction, so (29) yields ‖β̂Cn,i‖ ≤ Cvnu

2
n/∆n, hence ‖β∗n,i‖ ≤

Cvnu
2
n/∆n as well because u2

n/∆n ≥ 1 and βJt is bounded. Using (A.2), we deduce that bt

satisfies (P∗zn,2
) with zn,2 = vnu

2
nzn,1/∆n + z2

n,1, smaller than Cvnu
2
nzn,1/∆n by (A.8).

If ζ(b∗n,i) > 1/vn, Lemma 1 with A = b∗n,i and A′ = b̂n,i and the property (P∗zn,2
) for bt yield

‖E(b−1)n,i‖ ≤ zn,3 = 3v2
nzn,2. If ζ (̂bn,i) > 1/vn we get the same inequality by exchanging b∗n,i

and b̂n,i, whereas if both ζ(b∗n,i) ≤ 1/vn and ζ (̂bn,i) ≤ 1/vn we obviously have E(b−1)n,i = 0.

Therefore b−1
t satisfies (P∗zn,3

), and we have zn,3 ≤ Cv3
nu

2
nzn,1/∆n.

Finally, using again (A.2) and since by construction ‖(b−1)∗n,i‖ ≤ vn, we deduce that ηt

satisfies (P∗z′n) with z′n = vnzn,1 + vnu
2
nzn,3/∆n+ zn,1zn,3, smaller than Cv4

nu
4
nzn,1/∆

2
n, hence the

claim.
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With the variables η∗n,i we associate the processes

U∗n = 1
Tn

[n/qn]−2∑
i=0

η∗n,i (P(i+2)qn∆n
− P(i+1)qn∆n

)

U ′∗n = qn∆n

Tn

[n/qn]−2∑
i=0

η∗n,i riqn∆n

V ∗n =
[n/qn]−2∑
i=0

η∗n,i (P(i+2)qn∆n
− P(i+1)qn∆n

) (P(i+2)qn∆n
− P(i+1)qn∆n

)ᵀ (η∗n,i)
ᵀ.

(A.9)

Lemma 6. We have√
Tn ‖Ûn − U∗n‖

P−→ 0,
√
Tn ‖Û ′n − U ′∗n ‖

P−→ 0,
1√
Tn
‖V̂n − V ∗n ‖

P−→ 0.

Proof. First, we have

an :=
√
Tn (Ûn − U∗n) =

1√
Tn

[n/qn]−2∑
i=0

ζni , ζni = E(η)∗n,i ρ
n
i , ρni = P(i+2)qn∆n

− P(i+1)qn∆n
.

Then in restriction to the set Ωn the previous lemma yields

‖an‖ ≤ C
zn√
Tn

[n/qn]−2∑
i=0

‖ρni ‖.

Since P is an Itô semimartingale with bounded spot characteristics and bounded jumps, we have

E(‖ρni ‖2) ≤ Cqn∆n. Therefore

E
(
‖an‖ 1Ωn

)
≤ C zn√

Tn

n

qn

√
qn∆n ≤ C

zn
√
Tn√

qn∆n
.

Secondly, we have

a′n :=
1√
Tn

(Ûn − U ′∗n ) =
1√
Tn

[n/qn]−2∑
i=0

ζ ′ni , ζ ′ni = E(η)∗n,i ρ
′n
i , ρ′ni = qn∆nriqn∆n .

Since rt is bounded, using the previous lemma yields

E
(
‖a′n‖ 1Ωn

)
≤ C zn√

Tn

n

qn
qn∆n ≤ C zn

√
Tn.

Thirdly, we have

a′′n :=
1√
Tn

(V̂n − V ∗n ) =
1√
Tn

[n/qn]−2∑
i=0

(
ζni (ζni )ᵀ + η∗n,iρ

n
i (ζni )ᵀ + ζni (ρni )ᵀ(η∗n,i)

ᵀ).
Recall ‖β∗n,i‖ ≤ Cvnu2

n/∆n from the previous proof, so ‖η∗n,i‖ ≤ Cv2
nu

2
n/∆n and we thus have in
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restriction to the set Ωn:

‖a′′n‖ ≤ C
z2
n + znv

2
nu

2
n∆−1

n√
Tn

[n/qn]−2∑
i=0

‖ρni ‖2,

implying

E
(
‖a′′n‖ 1Ωn

)
≤ C z2

n + znv
2
nu

2
n∆−1

n√
Tn

n

qn
qn∆n ≤ C

(
z2
n + znv

2
nu

2
n∆−1

n

)√
Tn.

Now, we apply (A.8). First, together with Lemma 4, it implies P(Ωn) → 1. Second, it also

implies

z2
nTn

( 1

qn∆n
+ 1 + z2

n +
v4
nu

4
n

∆2
n

)
→ 0.

Therefore the three sequences an, a
′
n, a
′′
n go to 0 in probability.

A.3 Properties of U ∗n, U
′∗
n and V ∗n

From now on we no longer require H ≥ 1. Then we have the first parts of (34) and (35) (which

are in any case weaker than their second parts), and we easily see that, for any p ≥ 0,

with ρn = qn∆n +
1

qn
: vpn

(
ρ2
nTn +

1

qn∆nTn

)
→ 0. (A.10)

By virtue of Lemma 2, the processes ηt and ηtrt satisfy (17), a property which will be

essential in the sequel, on any interval L on which both βt and rt satisfy (17) themselves. With

ε > 0 such that each (θm − ε)+ is a stopping time, we introduce the (predictable) sets, with

(a, a′] = ∅ when a ≥ a′:

Dm = (0, ζm] ∪ (ζm + ε, θm − ε] ∪ (θm,∞), D = ∩1≤m≤M Dm.

Since D is, for each ω, the union of at most 3M disjoint intervals of R, separated by intervals of

size less than Mε, there is an increasing sequence (τj)0≤1≤J of stopping times with τ0 = 0 and

τJ =∞ and τj < τj+1 if τj <∞ for some (non random) integer J ≤ 3M , such that:

D =
⋃J
j=1 L(j), where L(j) = (τj−1, τj ] ∩ R+

R+\D is the union of at most 3M intervals of length not bigger than ε

Any L(j) is contained, for all m, in either (0, ζm] or (ζm + ε, θm − ε] or (θm,∞).

(A.11)

Then, by the last property above, plus (P-1), Lemma 2 and the definition (14) for rt, we have

that the processes

cFt , γt, βt, rt, ηt, ηtrt satisfy (17) on each L′(j) = (τj−1, τj + 2qn∆n], (A.12)
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and the estimation errors are easily tracked only when the integer i belongs to the random set

Bn given by

Bn =
J⋃
j=1

Bj
n, Bj

n =
{
i : 1 ≤ i ≤ [n/qn]− 2, iqn∆n ∈ L(j)

}
. (A.13)

We use the notation E(Y )n,i of (A.6) for Yt being one of the processes βt, bt, (bt)
−1, ηt, and

also when Yt is cFt or γt or βCt , so by convention we write (cF )∗n,i = ĉFn,i and γ∗n,i = γ̂n,i and

(βC)∗n,i = β̂Cn,i. Then E(β)m,ln,i = E(βC)m,ln,i if 1 ≤ l ≤ K, and E(β)m,ln,i = 0 if K < l ≤ K +H.

Lemma 7. We have

i ∈ Bn ⇒ ‖Eniqn(E(η)n,i)‖ ≤ C ρnv4
n, Eniqn

(
‖E(η)n,i‖2

)
≤ Cp ρnv8

n, (A.14)

Eniqn(‖η∗n,i‖6) ≤ Cv12
n . (A.15)

Proof. Since ρn → 0, we can and will assume below ρn ≤ 1.

1) In a first step, we consider the K +M–dimensional Itô semimartingale Z = (F, P ) whose

spot volatility is denoted by ct, and its continuous part by Xt = Zt −
∑

s≤t ∆Zs. We set

ĉl,l
′

n,i = 1
qn∆n

qn∑
j=1

∆n
iqn+jZ

l ∆n
iqn+jZ

l′ 1{|∆n
iqn+jZ

l|≤un, |∆n
iqn+jZ

l′ |≤un}

ĉ′l,l
′

n,i = 1
qn∆n

qn∑
j=1

∆n
iqn+jX

l ∆n
iqn+jX

l′ .

Those are estimators for cl,l
′

iqn∆n
, although the second one is not feasible becauseX is not observed,

and only serves us as a technical tool.

By Lemma B.5 of Aı̈t-Sahalia and Jacod (2014) and α < 1 and since 1−2$ < 1−α
32−α by (35),

for p ∈ [1, 16] and any l, l′, we have

Eniqn
(
|ĉl,l

′

i,n − ĉ
′l,l′
i,n |

p
)
≤ Cp∆(2p−α)$−p+1

n ≤ Cp
√

∆n. (A.16)

2) Here, we estimate the difference ĉ′l,l
′

n,i −c
l,l′

iqn∆n
. Let i ≥ 0 and l, l′ be fixed, and for simplicity

write t = iqn∆n and often omit the index n. We have

ĉ′l,l
′

n,i − c
l,l′

iqn∆n
=

1

qn∆n

qn∑
j=1

ζj , ζj = ∆n
iqn+jX

l∆n
iqn+jX

l′ −∆nc
l,l′

t .

Itô’s formula yields ζj = ζj + ζ̃j , where, with Ij = (t+ (j − 1)∆n, t+ j∆n],

ζj =

∫
Ij

(X l
s −X l

t+(j−1)∆n
) dX l′

s +

∫
Ij

(X l′
t −X l′

t+(j−1)∆n
) dX l

s, ζ̃j =

∫
Ij

(cl,l
′

s − c
l,l′

t ) ds,
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hence

ĉ′l,l
′

n,i − c
l,l′

iqn∆n
= A+ Ã, A =

1

qn∆n

qn∑
j=1

ζj , Ã =
1

qn∆n

qn∑
j=1

ζj =
1

qn∆n

∫ t+qn∆n

t
(cl,l

′
s − c

l,l′

t ) ds.

On the one hand, standard computations using Burkholder-Davis-Gundy inequality and the

boundedness of ct and of the drift of X yield for any p > 0:∣∣Eniqn+j−1(ζj)
∣∣ ≤ C∆2

n, Eniqn+j−1

(
|ζj |p

)
≤ Cp∆p

n,

and by another classical martingale argument, we deduce∣∣Eniqn(A)
∣∣ ≤ C∆n, Eniqn

(
|A|p

)
≤ Cp(∆p/2

n + q−p/2n ) ≤ Cp/qn.

On the other hand, observe that if 1 ≤ l′ ≤ K the variable cl,l
′

t is cF,l,l
′

t if 1 ≤ l ≤ K and

γl−K,l
′

t if K < l ≤ K + M . Therefore, if l′ ≤ K, the process cl,l
′

t satisfies (17) on each interval

L′(j) by (A.12). This, the boundedness of ct and the Fniqn–measurability of the set {i ∈ Bn}
yield for any p ≥ 2:

on the set {i ∈ Bn}, if l′ ≤ K:
∣∣Eniqn(Ã)

∣∣ ≤ Cqn∆n, Eniqn
(
|Ã|p

)
≤ Cpqn∆n.

Putting together the estimates for A and Ã, plus (A.16), we deduce as soon as l′ ≤ K and

p ∈ [2, 16]:

on the set {i ∈ Bn}:
∣∣Eniqn(ĉl,l

′

n,i − c
l,l′

iqn∆n
)
∣∣ ≤ Cρn, Eniqn

(
|ĉl,l

′

n,i − c
l,l′

iqn∆n
|p
)
≤ Cpρn. (A.17)

3) At this stage, the proof of (A.14) follows the same route as the proof of Lemma 5. For

a process Y such as those described after (A.13) and any sequences zn, zn ≥ 1 and p ≥ 2, we

consider the property

(Pzn,zn,p) :

{
on the set {i ∈ Bn} and for all p′ ∈ [2, p] we have

‖Eniqn(E(Y )n,i)‖ ≤ C ρnzn, Eniqn
(
‖E(Y )n,i‖p

′) ≤ Cp′ ρnzp′n .
Upon using (A.2) and (A.3), we easily see the following: Let Y and Y ′ be two adapted bounded

matrix–valued processes with the proper dimensions, satisfying (Pzn,zn,p) and (Pz′n,z′n,p′) respec-

tively, and Y ∗n,i and Y ′∗n,i are estimators of Yiqn∆n and Y ′iqn∆n
; we use below (Y Y ′∗)i,n = Y ∗n,iY

′∗
n,i

for estimating the product (Y Y )′iqn∆n
; in the second case below Y isM+

d –valued with a bounded

inverse, and we use (Y −1)∗i,n = (Y ∗n,i)
−1 1{ζ(Y ∗n,i≥1/vn} for estimating the inverse Y −1

iqn∆n
; then we

have the following: If p∧p′ ≥ 4, the process Y Y ′ satisfies (Pz′′n,z′′n,p′′) with z′′n = max(zn, z
′
n, znz

′
n)

and z′′n = znz
′
n and p′′ = p∧p′

2 . And the process Y −1 satisfies (Pz′′n,z′′n,p′′) with z′′n = max(zn, vnz
2
n)

and z′′n = vnzn and p′′ = p.
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We have (cF,k,k
′
)∗n,i = ĉk,k

′

n,i and (γm,k)∗n,i = ĉK+m,k
n,i and (A.17) tells us that the two processes

cFt and γt satisfy (Pzn,zn,p) with p = 16 and zn = zn = 1. Then, what precedes shows us,

successively, the following properties (for the second one, the property is obvious for βCt , and it

extends to β by virtue of the fact stated after (A.13)): (cFt )−1 satisfies (Pvn,vn,16 ); βt satisfies

(Pvn,vn,8); bt satisfies (Pv2n,v2n,4); (bt)
−1 satisfies (Pv3n,v3n,4); ηt satisfies (Pv4n,v4n,2). The last property

above is exactly (A.14).

4) It remains to show (A.15). Since cFt and γt are bounded, (A.17) with p = 6 yields

Eiqn(‖ĉFn,i‖6 + ‖γ̂n,i‖6) ≤ C. Thus (29) implies that Eniqn(‖β̂Cn,i‖6) ≤ Cv6
n, and the same holds for

β∗n,i because βJt is bounded, and by (A.6) we readily deduce the claim.

Lemma 8. We have
√
Tn ‖U∗n − UTn‖

P−→ 0.

Proof. Recalling (A.13), we set B′n = {0, 1, . . . , [n/qn] − 2}\Bn. We have
√
Tn(U∗n − UTn) =∑5

l=1G
l
n, where

ζni = E(η)n,i(P(i+2)qn∆n
− P(i+1)qn∆n

), G1
n = 1√

Tn

∑
i∈Bn

ζni , G2
n = 1√

Tn

∑
i∈B′n

ζni

ξni =
∫ (i+2)qn∆n

(i+1)qn∆n

(
ηiqn∆n − ηs

)
dPs, G3

n = 1√
Tn

∑
i∈Bn

ξni , G4
n = 1√

Tn

∑
i∈B′n

ξni

An =
(
([n/qn]− 2)qn∆n, Tn], G5

n = − 1√
Tn

∫
An
ηs dPs.

The set Bn is random, but {i ∈ Bn} ∈ Fniqn , hence E(η)n,i 1{i∈Bn} is Fn(i+1)qn
–measurable.

Therefore, taking advantage of (P-1) and (A.14), we have

‖Eniqn(ζni )‖ ≤ C ρnv4
nqn∆n, Eniqn(‖ζni ‖2) ≤ C ρnv8

nqn∆n on the set {i ∈ Bn}. (A.18)

Using the F(i+2)qn∆n
–measurability of ζni 1Bn(i) and decomposing G1

n into the sum for all i even

and the sum for all i odd, plus the fact that #(Bn) ≤ n/qn, we deduce by a classical martingale

argument and (24), plus (A.10), that

E(‖G1
n‖) ≤

C√
Tn

( n
qn
ρnv

4
nqn∆n +

√
n

qn

√
ρnv8

nqn∆n

)
≤ Cv4

n

(
ρn
√
Tn +

√
ρn
)
→ 0.

Next, (A.15) and {i ∈ B′n} ∈ Fniqn , plus the property En(i+1)qn

(
‖P(i+2)qn∆n

−P(i+1)qn∆n
‖2
)
≤

Cqn∆n, imply by successive conditioning and the Cauchy-Schwarz inequality that

E(‖ζni ‖ 1B′n(i)) ≤ C v2
n

√
qn∆n P(i ∈ B′n). (A.19)

By (A.11) we have #(B′n) ≤ 3Mε/qn∆n, hence we have by (24) and (A.10) again:

E
(
‖G2

n‖
)
≤ C v2

n

√
qn∆n√
Tn

E
(∑
i≥0

1B′n(i)
)
≤ C v2

n√
qn∆nTn

→ 0.
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For G3
n, we recall (A.12) and observe that, on the Fniqn–measurable set {i ∈ Bj

n}, the interval

((i+1)qn∆n, (i+2)qn∆n] is contained in L′(j). Upon writing P as in (20) and since the predictable

quadratic variation V t of any component of PMart is such that at − V t is increasing, for some

constant a, we easily get

‖Eniqn(ξni )‖+ Eniqn(‖ξni ‖2) ≤ C(qn∆n)2

on each set {i ∈ Bj
n}, hence on the set {i ∈ Bn} as well. Then, exactly as for G1

n above, by a

martingale argument we deduce

E(‖G3
n‖) ≤ C

(
qn∆n

√
Tn +

√
qn∆n

)
→ 0. (A.20)

Next, using only the boundedness of ηt, for any p ≥ 2 we have Eniqn(‖ξni ‖) ≤ C
√
qn∆n. Then,

exactly as for G2
n, we obtain

E(‖G4
n‖) ≤ C

1√
qn∆nTn

→ 0. (A.21)

Finally, An being a non random interval with length smaller than 3qn∆n, so

E(‖G5
n‖) ≤ C

√
qn∆n√
Tn

→ 0 (A.22)

by the boundedness of ηt again. This completes the proof.

Lemma 9. We have
√
Tn ‖U ′∗n − U ′Tn‖

P−→ 0.

Proof. We have
√
Tn(Û ′n −U ′Tn) =

∑5
j=1G

′j
n , where (with B′n and An as in the previous proof):

ζ ′ni = qn∆nE(η)n,i riqn∆n , G′1n = 1√
Tn

∑
i∈Bn

ζ ′ni , G′2n = 1√
Tn

∑
i∈B′n

ζ ′ni

ξ′ni =
∫ (i+2)qn∆n

(i+1)qn∆n

(
ηiqn∆nriqn∆n − ηsrs

)
ds, G′3n = 1√

Tn

∑
i∈Bn

ξ′ni ,

G′4n = 1√
Tn

∑
i∈B′n

ξ′ni , G′5n = − 1√
Tn

∫
An
ηsrs ds.

This is exactly the same as the decomposition
√
Tn(Ûn − UTn) =

∑5
j=1G

j
n of the previous

proof, except that we replace ηt by ηtrt and E(η)n,i by E(η)n,iriqn∆n , and the M–dimensional

semimartingale P by the one-dimensional “process” t which is again a (continuous) Itô semi-

martingale with bounded spot characteristics.

Since riqn∆n is Fniqn–measurable and bounded, the variables ζ ′ni satisfy (A.18) and (A.19)

(actually, much sharper bounds would be available in this case). Then, one can reproduce word

for word the previous proof, to get the same bounds for the expectations E(‖G′jn‖), and the

claim follows.

Lemma 10. We have 1√
Tn
‖V ∗n − VTn‖

P−→ 0.
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Proof. It suffices to show that, for any fixed l, l′ ∈ {1, . . . ,K +H} and m,m′ ∈ {1, . . . ,M}, we

have

V n := 1√
Tn

[n/qn]−2∑
i=0

η∗l,mn,i η
∗l′,m′
n,i Pn,mi Pn,m

′

i − 1√
Tn

∫ Tn
0 ηl,mt ηl

′,m′

t d[Pm, Pm
′
]t

P−→0

where Pn,mi = Pm(i+2)qn∆n
− Pm(i+1)qn∆n

.

We have the decomposition V n =
∑5

l=1G
l
n, where (with B′n and An as in the proof of Lemma

8):

ζ
n
i =

(
E(η)l,mn,i E(η)l

′,m′

n,i + E(η)l,mn,i η
l′,m′

iqn∆n
+ ηl,miqn∆n

E(η)l
′,m′

n,i

)
Pn,mi Pn,m

′

i

G
1
n = 1√

Tn

∑
i∈Bn

ζ
n
i , G

2
n = 1√

Tn

∑
i∈B′n

ζ
n
i

ξ
n
i =

∫ (i+2)qn∆n

(i+1)qn∆n

(
ηl,miqn∆n

ηl
′,m′

iqn∆n
− ηl,ms ηl

′,m′
s

)
d[Pm, Pm

′
]s, G

3
n = 1√

Tn

∑
i∈Bn

ξ
n
i

G
4
n = 1√

Tn

∑
i∈B′n

ξ
n
i , G

5
n = − 1

Tn

∫
An
ηl,ms ηk

′,m′
s d[Pm, Pm

′
]s.

Here again, this decomposition is the same as
√
Tn(U∗n − UTn) =

∑5
j=1G

j
n in the proof of

Lemma 8, with the following changes:

- First, for G
1
n and G

2
n: we replace ζni by ζ

n
i . Combining (A.14) and (A.15), we see that on

the set {i ∈ Bn}:

Eniqn
(
‖E(η)n,i‖4

)
≤
√

Eniqn
(
‖E(η)n,i‖2

)
Eniqn

(
‖E(η)n,i‖6

)
≤ Cv10

n

√
ρn.

Since En(i+1)qn
(|Pn,mi |p) ≤ Cqn∆n for p = 2, 4, by successive conditioning and again (A.14) and

(A.15) we see that (A.18) and (A.19) should be replaced with E
(
|ζni | 1B′n(i)

)
≤ Cv4

nqn∆n P(i ∈
B′n), and on the set {i ∈ Bn}: {

|Eniqn(ζ
n
i )| ≤ Cv8

nqn∆nρn

Eniqn(|ζni |2) ≤ Cv10
n qn∆n

√
ρn.

Then, exactly the same proof as in Lemma 8 gives, under (24):

E(|G1
n|) ≤ Cv8

n

(
ρn
√
Tn + ρ1/4

n

)
→ 0, E

(
|G2

n|
)
≤ C v4

n√
qn∆nTn

→ 0.

- Second, for G
3
n, G

4
n and G

5
n: we replace ηt by ηk,mt ηk

′,m′

t and P by Y = [Pm, Pm
′
], which is a

process of (locally) finite variation. We have E
( ∫ t+s

t |dYs|
)
≤ Cs, so G

4
n and G

5
n enjoy the bound

(A.21) and (A.22) (indeed, sharper estimates are available here). Since further Yt = Mt+
∫ t

0 as ds

for some bounded process at and a martingale Mt such that a′t−〈M,M〉t is increasing for some

constant a′, we also obtain that G
3
n satisfies (A.20), and the proof is complete.
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A.4 Proof of Theorem 1

Recalling (22), we readily deduce from Assumption 5 and the boundedness of ηt, plus Lemmas

6, 8 and 9, that √
Tn(Λ̂n − ΛTn)− 1√

Tn
UTn

P−→0, (A.23)

as n→∞. Note also that our assumptions imply that the martingale U t has bounded jumps and

that its quadratic variation process V given component-wise by (23) satisfies, for some constant

C0 > 1:
t

C0
≤ ζ(Vt) ≤ ‖Vt‖, E(‖Vt‖) ≤ C0t. (A.24)

This implies in particular that E
(

1
Tn
U

2
Tn

)
≤ C0, yielding that the sequence 1√

Tn
UTn is bounded

in probability. Then (a) of Theorem 1 follows from (A.23).

Let us now turn to (b). The additional assumption that the variables (1/t)Vt converge in

probability to a limit V∞ and (A.24) imply that all hypotheses of Corollary 2.3 of Crimaldi and

Pratelli (2005) are satisfied (with at = (1/
√
t) IK+H and A = Ω in this corollary), so we have

the following multivariate CLT:

(VTn)−1/2 UTn converges in law to N (0, IK+H). (A.25)

Therefore, it is enough to show the existence of subsets Ωn ⊂ Ω satisfying P(Ωn)→ 1,

(i) (V̂n)−1 exists on Ωn

(ii) Tn(V̂n)−1 1Ωn and 1
Tn
V̂n 1Ωn are bounded in probability

(iii) Gn := (V̂n)−1/2(VTn)1/2 converges in probability to IK+H , in restriction to Ωn.

Without loss of generality, we can and will suppose Tn ≥ 1. By Lemmas 6 and 10, the

sequence ξn = 1√
Tn
‖V̂n − VTn‖ goes to 0 in probability, implying that the set Ωn = {ξn ≤

1/2C0} satisfies P(Ωn) → 1. Observing that for any two matrices A,B in M+
K+H we have

ζ(A) ≥ ζ(B)− ‖A−B‖, and in view of (A.24) we see that, on the set Ωn,

ζ(V̂n) ≥ ζ(VTn)−
√
Tn

2C0
≥ Tn

2C0
.

Thus on Ωn the inverse (V̂n)−1 exists and Tn‖(V̂n)−1‖ ≤ 2C0, whereas 1
Tn

E
(
‖V̂n‖ 1Ωn

)
≤ C0 + 1

by (A.24) again. We thus have (i) and (ii) above.

Finally, for any A ∈ M+
K+H with ζ(A) ≥ 1/2C0 we have A−1/2 = f(A) and A1/2 = g(A)

for some continuous M+
K+H–valued functions f and g on M+

K+H , so on Ωn we have Gn =

f(V̂n/Tn)g(VTn/Tn). Since V̂n/Tn − VTn/Tn
P−→ 0 and VTn/Tn is bounded in probability, we

deduce (iii), and the proof of Theorem 1 is complete.
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