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Abstract

Combining satellite imagery with machine learning (SIML) has the potential to address
global challenges by remotely estimating socioeconomic and environmental conditions in data-
poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that
a single encoding of satellite imagery can generalize across diverse prediction tasks (e.g. forest
cover, house price, road length). Our method achieves accuracy competitive with deep neural
networks at orders of magnitude lower computational cost, scales globally, delivers label super-
resolution predictions, and facilitates characterizations of uncertainty. Since image encodings
are shared across tasks, they can be centrally computed and distributed to unlimited researchers,
who need only fit a linear regression to their own ground truth data in order to achieve state-
of-the-art SIML performance.

1 Introduction

Addressing complex global challenges—such as managing global climate changes, population move-
ments, ecosystem transformations, or economic development—requires that many different re-
searchers and decision-makers (hereafter users) have access to reliable, large-scale observations
of many variables simultaneously. Planet-scale ground-based monitoring systems are generally
prohibitively costly for this purpose, but satellite imagery presents a viable alternative for gather-
ing globally comprehensive data, with over 700 earth observation satellites currently in orbit [1].
Further, application of machine learning is proving to be an effective approach for transforming
these vast quantities of unstructured imagery data into structured estimates of ground conditions.
For example, combining satellite imagery and machine learning (SIML) has enabled better char-
acterization of forest cover [2], land use [3], poverty rates [4] and population densities [5], thereby
supporting research and decision-making. We refer to such predictions of an individual variable as
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a single task. Demand for SIML-based estimates is growing, as indicated by the large number of
private service-providers specializing in predicting one or a small number of these tasks.

The resource requirements for deploying SIML technologies, however, limit their accessibility and
usage. Satellite-based measurements are particularly under-utilized in low-income contexts, where
the technical capacity to implement SIML may be low, but where such measurements would likely
convey the greatest benefit [6, 7]. For example, government agencies in low-income settings might
want to understand local waterway pollution, illegal land uses, or mass migrations. SIML, however,
remains largely out of reach to these and other potential users because current approaches require
a major resource-intensive enterprise, involving a combination of task-specific domain knowledge,
remote sensing and engineering expertise, access to imagery, customization and tuning of sophisti-
cated machine learning architectures, and large computational resources.

To remove many of these barriers, we develop a new approach to SIML that enables non-experts to
obtain state-of-the-art performance without manipulating imagery, using specialized computational
resources, or developing a complex prediction procedure. We design a one-time, task-agnostic
encoding that transforms each satellite image into a vector of variables (hereafter features). We
then show that these features (x) perform well at predicting ground conditions (y) across diverse
tasks, using only a linear regression implemented on a personal computer. Prior work has similarly
sought an unsupervised encoding of satellite imagery [8, 9, 10, 11]; however, to the best of our our
knowledge, we are the first to demonstrate that a single set of features both achieves performance
competitive with deep-learning methods across a variety of tasks and scales globally.

We focus here on the problem of predicting properties of small regions (e.g. average house price),
using high-resolution daytime satellite imagery as the only input. We develop a simple yet high-
performing system that is tailored to address the challenges and opportunities specific to SIML
applications, taking a fundamentally different approach from leading designs. We achieve large
computational gains in model training and testing, relative to leading deep neural networks, through
algorithmic simplifications that take advantage of the fact that satellite images are collected from a
fixed distance and viewing angle and capture repeating patterns and objects. This contrasts with
deep-learning approaches to SIML that use techniques originally developed for natural images (e.g.
photos taken from handheld cameras), where inconsistency in many key factors, such as subject or
camera perspective, require complex solutions that our results suggest are mostly unnecessary for
SIML applications.

A key contribution of our analysis is the demonstration that a single set of general purpose features
can encode rich information in satellite images. We utilize an unsupervised learning methodology,
which separates feature construction from model-fitting. This approach dramatically increases
computational speed for any given researcher and delivers large computational gains at the research-
system level by reorganizing how imagery is processed and distributed. Traditionally, hundreds or
thousands of researchers use the same images to solve different and unrelated tasks (e.g. Fig. 1A).
Our approach allows common sources of imagery to be converted into one centralized set of features
that can be accessed by many researchers, each solving different tasks. This isolates future users
from the costly steps of obtaining, storing, manipulating, and processing imagery themselves. The
magnitude of the resulting benefits grow with the size of the expanding SIML user community and
the scale of global imagery data, which currently increases by more than 80TB/day [12].
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Figure 1: A generalizable approach to combining satellite imagery with machine learning (SIML)
without users handling images. MOSAIKS is designed to solve an unlimited number of tasks at planet-scale
quickly. After a one-time unsupervised image featurization using random convolutional features, MOSAIKS centrally
stores and distributes task-agnostic features to users, each of whom generates predictions in a new context. (A)
Satellite imagery is shared across multiple potential tasks. For example, nine images from the US sample are ordered
based on population density and forest cover, both of which have distinct identifying features that are observable in
each image. (B) Schematic of the MOSAIKS process. N images are transformed using random convolutional features
into a compressed and highly descriptive K-dimensional feature vector before labels are known. Once features are
computed, they can be stored in tabular form (matrix X) and used for unlimited tasks without recomputation. Users
interested in a new task (s) merge their own labels (ys) to features for training. Here, User 1 has forest cover labels
for locations p+ 1 to N and User 2 has population density labels for locations 1 to q. Each user then solves a single
linear regression for βs. Linear prediction using βs and the full sample of MOSAIKS features X then generates SIML
estimates for label values at all locations. Generalizability allows different users to solve different tasks using an
identical procedure and the same table of features—differing only in the user-supplied label data for training. Each
task can be solved by a user on a desktop computer in minutes without users ever manipulating the imagery. (C)
Illustration of the one-time unsupervised computation of random convolutional features (Supplementary Materials
Sections S.1 and S.3.3). K patches are randomly sampled from across the N images. Each patch is convolved over
each image, generating a nonlinear activation map for each patch. Activation maps are averaged over pixels to
generate a single K-dimensional feature vector for each image.
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2 Multi-task Observation using Satellite Imagery & Kitchen Sinks

Our objective is to enable any user with basic resources to predict ground conditions using only
satellite imagery and a limited sample of task-specific ground truth data which they possess. Our
SIML system, “Multi-task Observation using Satellite Imagery and Kitchen Sinks” (MOSAIKS,
see Supplementary Materials S.1), makes SIML accessible and generalizable by separating the
prediction procedure into two independent steps: a fixed “featurization step” which translates
satellite imagery into succinct vector representations (images→ x), and a “regression step” which
learns task-specific coefficients that map these features to outcomes for a given task (x→ y). The
unsupervised featurizaton step can be centrally executed once, producing one set of outputs that are
used to solve many different tasks through repeated application of the regression step by multiple
independent users (Fig. 1B). Because the regression step is computationally efficient, MOSAIKS
scales nearly costlessly across unlimited users and tasks.

The accessibility of our approach stems from the simplicity and computational efficiency of the
regression step for potential users, given features which are already computed once and stored
centrally (Fig. 1B). To generate SIML predictions, a user of MOSAIKS (i) queries these tabular
data for a vector of K features for each of their N locations of interest; (ii) merges these features
x with label data y, i.e. the user’s independently collected ground truth data; (iii) implements
a linear regression of y on x to obtain coefficients β – below, we use ridge regression; (iv) uses
coefficients β and and features x to predict labels ŷ in new locations where imagery and features
are available but ground truth data are not.

The generalizability of our approach means that a single mathematical summary of satellite imagery
(x) performs well across many prediction tasks (y1, y2, ...) without any task-specific modification to
the procedure. The success of this generalizability relies on how images are encoded as features. We
design a featurization function by building on the theoretically grounded machine learning concept
of “random kitchen sinks” [13], which we apply to satellite imagery by constructing “random
convolutional features” (RCFs) (Fig. 1C, Supplementary Materials S.1). RCFs are suitable for the
structure of satellite imagery and have established performance encoding genetic sequences [14],
classifying photographs [15], and predicting solar flares[16] (see Supplementary Materials Section
S.3.3). RCFs capture a flexible measure of similarity between every sub-image across every pair
of images without using contextual or task-specific information. The regression step in MOSAIKS
then treats these features x as an overcomplete basis for predicting any y, which may be a nonlinear
function of image elements (see Supplementary Materials Section S.1).

In contrast to many recent alternative approaches to SIML, MOSAIKS does not require training or
using the output of a deep neural network and encoding images into unsupervised features requires
no labels. Nonetheless, MOSAIKS achieves competitive performance at a large computational
advantage that grows linearly with the number of SIML users and tasks, due to shared computation
and storage. In principle, any unsupervised featurization would enable these computational gains.
However, to date, a single set of unsupervised features has neither achieved accuracy competitive
with supervised CNN-based approaches across many SIML tasks, nor at the scale that we study.
Below, we show that MOSAIKS achieves a practical level of generalization in real world contexts.
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3 Results

We design a battery of experiments to test whether and under what settings MOSAIKS can provide
access to high-performing, computationally-efficient, global-scale SIML predictions. Specifically,
we 1) demonstrate generalization across tasks, and compare MOSAIKS’s performance and cost
to existing state-of-the-art SIML models; 2) assess its performance when data are limited and
when predicting far from observed labels; 3) scale the analysis to make global predictions and try
recreating the results of a national survey; and 4) detail additional properties of MOSAIKS, such
as the ability to make predictions at finer resolution than the provided labels.

3.1 Generalization across tasks

We first test whether MOSAIKS achieves a practical level of generalization by applying it to a
diverse set of pre-selected tasks in the United States (US). While many applications of interest for
SIML are in remote and/or data-limited environments where ground-truth may be unavailable or
inaccurate, systematic evaluation and validation of SIML methods are most reliable in well-observed
and data-rich environments [17].

3.1.1 Multi-task performance of MOSAIKS in the US

We sample daytime images from across the continental US (N = 100, 000), each covering∼1km×1km
(256-by-256 pixels) (Supplementary Materials Sections S.3.1-S.3.2). We first implement the fea-
turization step, passing these images through MOSAIKS’ feature extraction algorithm to produce
K = 8, 192 features per image (Supplementary Materials Section S.3.3). Using only the result-
ing matrix of features (X), we then repeatedly implement the regression step by solving a cross-
validated ridge regression for each task and predict forest cover (R2 = 0.91), elevation (R2 = 0.68),
population density (R2 = 0.72), nighttime lights (R2 = 0.85), average income (R2 = 0.45), total
road length (R2 = 0.53), and average house price (R2 = 0.52)1 in a holdout test sample (Fig. 2,
Table S2, Supplementary Materials Sections S.3.4-S.3.6). Computing the feature matrix X from
imagery took less than 2 hours on a cloud computing node (Amazon EC2 p3.2xlarge instance, Tesla
V100 GPU). Subsequently, solving a cross-validated ridge regression for each task took 6.8 minutes
to compute on a local workstation with ten cores (Intel Xeon CPU E5-2630) (Supplementary Ma-
terials Section S.4.2). These seven outcomes are not strongly correlated with one another (Fig. S2)
and no attempted tasks in this experiment are omitted. These results indicate that MOSAIKS is
skillful for a wide range of possible applications without changing the procedure or features and
without task-specific expertise.

3.1.2 Comparison to state-of-the-art SIML approaches

We contextualize this performance by comparing MOSAIKS to existing deep-learning based SIML
approaches. First, we retrain end-to-end a commonly-used deep convolutional neural network
(CNN) architecture[18] (ResNet-18) using identical imagery and labels for the seven tasks above.
This training took 7.9 hours per task on a cloud computing node (Amazon EC2 p3.xlarge instance,

1Performance observed for housing using our published data will be higher (R2 = 0.60) because privacy concerns
mandate the withholding of a subset of this data (see Supplementary Materials Section S.2).
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Figure 2: 1km × 1km resolution prediction of many tasks across the continental US using daytime
images processed once, before tasks were chosen. 100,000 daytime images were each converted to 8,192
features and stored. Seven tasks were then selected based on coverage and diversity and predictions were generated
for each task using the same procedure. Left maps: 80,000 observations used for training and validation, aggregated
up to 20km×20km cells for display. Right maps: concatenated validation set estimates from 5-fold cross-validation
for the same 80,000 grid cells (observations are never used to generate their own prediction), identically aggregated
for display. Scatters: Validation set estimates (vertical axis) vs. ground-truth (horizontal axis); each point is a
∼1km×1km grid cell. Black line is at 45◦. Test set and validation set performance are essentially identical (Table
S2); validation set values are shown for display purposes only, as there are more observations. The tasks in the
top three rows are uniformly sampled across space, the tasks in the bottom four rows are sampled using population
weights (Supplementary Materials Section S.3.1); grey areas were not sampled in the experiment.
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Tesla V100 GPU). We find that MOSAIKS exhibits predictive accuracy competitive with the CNN
for all seven tasks (mean R2

CNN − R2
MOSAIKS = 0.04; smallest R2

CNN − R2
MOSAIKS = −0.03 for

housing; largest R2
CNN −R2

MOSAIKS = 0.12 for elevation) in addition to being approximately 250
to 10, 000× faster to train, depending on whether the regression step is performed on a laptop
(2018 Macbook Pro) or on the same cloud computing node used to train the CNN (Fig. 3A,
Supplementary Materials Section S.4.1 and Table S5).

Second, we apply “transfer learning” [19] using the ResNet-152 CNN pre-trained on natural images
to featurize the same satellite images. We then apply ridge regression to the CNN-derived features.
The speed of this approach is similar to MOSAIKS, but its performance is dramatically lower on
all seven tasks (Fig. 3A, Supplementary Materials Section S.4.1).

Third, we compare MOSAIKS to an approach from prior studies[4, 20, 21] where a deep CNN
(VGG16 [22] pretrained on the ImageNet dataset) is trained end-to-end on night lights and then
each task is solved via transfer learning (Supplementary Materials Section S.4.1). We apply
MOSAIKS to the imagery from Rwanda, Haiti, and Nepal used in ref. [21] to solve all eleven
development-oriented tasks they analyze. We find MOSAIKS matches prior performance across
tasks in Rwanda and Haiti, and has slightly lower performance (average ∆R2 = 0.08) on tasks
in Nepal (Fig. S17). The regression step of this transfer learning approach and MOSAIKS are
similarly fast, but the transfer learning approach requires country-specific retraining of the CNN,
limiting its accessibility and reducing its generalizability.

Together, these three experiments illustrate that with a single set of task-independent features,
MOSAIKS predicts outcomes across a diverse set of tasks, with performance and speed that favor-
ably compare to existing SIML approaches. However, throughout this set of experiments, we find
that some sources of variation in labels are not recovered by MOSAIKS. For example, extremely
high elevations (>3,000m) are not reliably distinguished from high elevations (2,400-3,000m) that
appear visually similar (Fig. S9). Additionally, roughly half the variation in incomes and housing
prices is unresolved, presumably because they depend on factors not observable from orbit, such as
tax policies or school districts (Fig. 2). We also show that patterns of predictability across tasks
are strikingly similar across MOSAIKS and alternative SIML approaches (Figs. S16 and S17). To-
gether, these findings are consistent with the hypothesis that there exists some performance ceiling
for each task, due to some factors not being observable from satellite imagery.

3.2 Evaluation of model sensitivity

There is growing recognition that understanding the accuracy, precision, and limits of SIML pre-
dictions is important, since consequential decisions increasingly depend on these outputs, such as
which households should receive financial assistance [23, 17]. However, historically, the high costs of
training deep-learning models have generally prevented the stress-testing and bench-marking that
would ensure accuracy and constrain uncertainty. To characterize the performance of MOSAIKS
we test its sensitivity to the number of features (K) and training observations (N), as well as the
extent of spatial extrapolation.

3.2.1 Changes to training data

Unlike some featurization methods, these is no measure of “importance” for individual features in
MOSAIKS so the computational complexity of the regression step can be manipulated by simply
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Figure 3: Prediction accuracy relative to a convolutional neural network and transfer learning, using
smaller K and N , and over large contiguous regions with no ground truth data. (A) Task-specific
MOSAIKS test-set performance (dark bars) in contrast to: an 18-layer variant of the ResNet Architecture (ResNet-
18) trained end-to-end for each task (middle bars); and an unsupervised featurization using the last hidden layer
of a 152-layer ResNet variant pre-trained on natural imagery and applied using ridge regression (lightest bars). See
Supplementary Materials Section S.4.1 for details. (B) Validation set R2 performance for all seven tasks while varying
the number of random convolutional features K and holding N = 64, 000 (left) and while varying N and holding
K = 8, 192 (right). Shaded bands indicate the range of predictive skill across 5 folds. Lines indicate average accuracy
across folds. (C) Evaluation of performance over regions of increasing size that that are excluded from training
sample. Data are split using a “checkerboard” partition, where the width and height of each square is δ (measured
in degrees). Example partitions with δ = 0.5◦, 8◦, 16◦ are shown in maps. For a given δ, training occurs using data
sampled from “black squares” and performance is evaluated in “white squares.” Plots show colored lines representing
average performance of MOSAIKS in the US across δ values for each task. Benchmark performance from Fig. 2 are
indicated as circles at δ = 0. Grey dashed lines indicate corresponding performance using only spatial interpolation
with an optimized radial basis function kernel instead of MOSAIKS (Supplementary Materials Section S.3.8). To
moderate the influence of the exact placement of square edges, training and test sets are resampled four times for
each δ with the checkerboard position re-initialized using offset vertices (see Supplementary Materials Section S.3.8
and Fig. S10). The ranges of performance are plotted as colored or grey bands.
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including more or fewer features. Repeatedly re-solving the linear regression step in MOSAIKS
with a varied number of features indicates that increasing K above 1,000 features provides minor
predictive gains (Fig. 3B). A majority of the observable signal in the baseline experiment using K =
8, 192 is recovered usingK = 200 (min 55% for income, max 89% for nighttime lights), reducing each
65,536-pixel tri-band image to just 200 features (∼ 250× data compression). Similarly, re-solving
MOSAIKS predictions with a different number of training observations demonstrates that models
trained with fewer samples may still exhibit high accuracy (Fig. 3B). A majority of the available
signal is recovered for many outcomes using only N = 500 (55% for road length to 87% for forest
cover), with the exception of income (28%) and housing price (26%) tasks, which require larger
samples. Together, these experiments suggest that users with computational, data acquisition, or
data storage constraints can easily tailor MOSAIKS to match available resources and can reliably
estimate the performance impact of these alterations (Supplementary Material Section S.3.7).

3.2.2 Spatial cross-validation

To systematically evaluate the ability of MOSAIKS to make accurate predictions in large con-
tiguous areas where labels are not available, we conduct a spatial cross-validation experiment by
partitioning the US into a checkerboard pattern (Fig. 3C), training on the “black squares” and
testing on the “white squares” (Supplementary Materials Section S.3.8). Increasing the width of
squares (δ) in the checkerboard increases the average distances between train and test observa-
tions, simulating increasingly large spatial extrapolations. We find that for three of seven tasks
(forest cover, population density, and nighttime lights), performance declines minimally regardless
of distance (maximum R2 decline of 10% at δ = 16◦ for population density). For income, road
length, and housing price, performance falls moderately at small degrees of spatial extrapolation
(19%, 33%, and 35% decline at δ = 4◦, respectively), but largely stabilizes thereafter. Note that
the poor performance of road length predictions is possibly due to missing labels and data quality
(Supplementary Materials Section S.2 and Fig. S1). Finally, elevation exhibits steady decline with
increasing distances between training and testing data (49% decline at δ = 16◦).

To contextualize this performance, we compare MOSAIKS to spatial interpolation of observations,
a widely used approach to fill in regions of missing data (Supplementary Materials Section S.3.8).
Using the same samples, MOSAIKS substantially outperforms spatial interpolation (Fig. 3C, grey
dashed lines) across all tasks except for elevation, where interpolation performs almost perfectly over
small ranges (δ = 0.5◦ : R2 = 0.95), and housing price, where interpolation slightly outperforms
MOSAIKS at small ranges. For both, interpolation performance converges to that of MOSAIKS
over larger distances. Thus, in addition to generalizing across tasks, MOSAIKS generalizes out-of-
sample across space, outperforming spatial interpolation of ground-truth in 5 of 7 tasks.

The above sensitivity tests are enabled by the speed and simplicity of training MOSAIKS. These
computational gains also enable quantification of uncertainty in model performance within each
diagnostic test. As demonstrated by the shaded bands in Figs. 3B-C, uncertainty in MOSAIKS
performance due to variation in splits of training-validation data remains modest under most con-
ditions.
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3.3 Applications

Having evaluated MOSAIKS systematically in the data-rich US, we test its performance at plane-
tary scale and its ability to recreate results from a national survey.

3.3.1 Global observation

We test the ability of MOSAIKS to scale globally using the four tasks for which global labels are
readily available. Using a random sub-sample of global land locations (training and validation: N =
338,781, test: N = 84,692; Supplementary Materials Section S.3.10), we construct the first planet-
scale, multi-task estimates using a single set of label-independent features (K = 2048, Fig. 4A),
predicting the distribution of forest cover (R2 = 0.85), elevation (R2 = 0.45), population density
(R2 = 0.62), and nighttime lights (R2 = 0.49). Note that inconsistent image and label quality
across the globe are likely partially responsible for lowering performance relative to the US-only
experiments above (Supplementary Materials Section S.3.10).

3.3.2 National survey “field test”

It has been widely suggested that SIML could be used by resource-constrained governments to
reduce the cost of surveying their citizens [4, 21, 24, 25, 26]. To demonstrate MOSAIKS’s per-
formance in this theoretical use-case, we simulate a ‘field test’ with the goal of recreating results
from an existing nationally representative survey. Using the pre-computed features from the first
US experiment above, we generate predictions for 12 pre-selected questions in the 2015 American
Community Survey (ACS) conducted by the US Census Bureau [27]. We obtain R2 values ranging
from 0.06 (percent household income spent on rent, an outlier) to 0.52 (building age), with an aver-
age R2 of 0.34 across 12 tasks (Fig. 4B). Compared to a baseline of “no ground survey,” or a costly
survey extension, these results suggest that MOSAIKS predictions could provide useful information
to a decision-maker for almost all tasks at low cost; noting that, in contrast, the ACS costs > $200
million to deploy annually [28]. However, some variables (e.g. percent household income spent on
rent) may continue to be retrievable only via ground survey.

3.4 Extensions

The design of MOSAIKS naturally provides two additional useful properties.

3.4.1 Incorporating multiple sensors

Available satellites exhibit a diversity of properties (e.g. wavelength, timing of sampling) that
can be used to improve SIML predictions [29]. While most SIML approaches, including the above
analysis, use a single sensor, the design of MOSAIKS allows seamless integration of data from
additional satellites because the regression step is linear in the features. To demonstrate this, we
include nighttime lights as a second data source in the analysis of survey data from Rwanda, Haiti,
and Nepal discussed above (Supplementary Materials S.4.1). In all 36 tasks, predictions either
improved or were unchanged when nighttime imagery was added to daytime imagery in the model
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Figure 4: A single featurization of imagery predicts multiple variables at planet-scale, predicts results
from a national survey, and achieves label super-resolution. (A) Training data (left maps) and estimates
using a single featurization of daytime imagery (right maps). Insets (far right) marked by black squares in global
maps. Training sample is a uniform random sampling of 1,000,000 land grid cells, 498,063 for which imagery were
available and could be matched to task labels. Out-of-sample predictions are constructed using 5-fold cross-validation.
For display purposes only, maps depict ∼50km × 50km average values (ground truth and predictions at ∼1km ×
1km). (B) Test-set performance in the US shown for 12 variables from the 2015 American Community Survey (ACS)
conducted by the US Census Bureau [27]. Income per household (in purple) is also shown in Figs. 2 and 3, and was
selected as an outcome for the analysis in these figures before this ACS experiment was run. (C) Both labels and
features in MOSAIKS are linear combinations of sub-image ground-level conditions, allowing optimized regression
weights to be applied to imagery of any spatial extent (Supplementary Materials Section S.3.9). MOSAIKS thus
achieves label super-resolution by generating skillful estimates at spatial resolutions finer than the labels used for
training. Shown are example label super-resolution estimates at 2 × 2, 4 × 4, 8 × 8, and 16 × 16 the original 1 × 1
label resolution (See Fig. S12 for additional examples). Systematic evaluation of within-image R2 across the entire
sample is reported in Supplementary Materials Section S.3.9 for the forest cover task.
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(average ∆R2 = 0.03). This approach naturally optimizes how data from all sensors are used
without requiring that users possess expertise on each technology.

3.4.2 Predicting at sub-image resolution

Many use cases would benefit from SIML predictions at finer resolution than is available in training
data [29, 30]. Here we show that MOSAIKS can estimate the relative contribution of sub-regions
within an image to overall image-level labels, even though only aggregated image-level labels are
used in training (See Fig. 4C and Fig. S12). Such “label super-resolution” prediction follows from
the functional form of the featurization and linear regression steps in MOSAIKS, allowing it to be
analytically derived for labels that represent nearly linear combinations of ground-level conditions
(Supplementary Materials Section S.3.9 and Fig. S11). We numerically assess label super-resolution
predictions of MOSAIKS for the forest cover task, since raw label data are available at much finer
resolution than our image labels. Provided only a single label per image, MOSAIKS recovers
substantial within-image signal when predicting forest cover in 4 to 1,024 sub-labels per label
(within-image R2 = 0.54-0.32, see Fig. S13 and Supplementary Materials Section S.3.9).

4 Discussion

We develop a new approach to SIML that achieves practical generalization across tasks while ex-
hibiting performance that is competitive with deep learning models optimized for a single task.
Crucial to planet-scale analyses, MOSAIKS requires orders of magnitude less computation time to
solve a new task than CNN-based approaches and it allows 1km-by-1km image data to be com-
pressed ∼6-500 times before storage/transmission (Supplementary Materials Section S.1). Such
compression is a deterministic operation that could theoretically be implemented in satellite hard-
ware. We hope these computational gains, paired with the relative simplicity of using MOSAIKS,
will democratize access to global-scale SIML technology and accelerate its application to solving
pressing global challenges. We hypothesize that there exist hundreds of variables observable from
orbit whose application could improve human well-being if measurements were made accessible.

While we have shown that in many cases MOSAIKS is a faster and simpler alternative to existing
deep learning methods, there remain contexts in which custom-designed SIML pipelines will con-
tinue to play a key role in research and decision-making. Existing ground-based surveys will also
remain important. In both cases we expect MOSAIKS can complement these systems, especially
in resource constrained settings. For example, MOSAIKS can provide fast assessments to guide
slower SIML systems or extend the range and resolution of ground-based surveys.

As real-world policy actions increasingly depend on SIML predictions, it is crucial to understand
the accuracy, precision and sensitivity of these measurements. The low cost and high speed of re-
training MOSAIKS enables unprecedented stress tests that can support robust SIML-based decision
systems. Here, we tested the sensitivity of MOSAIKS to model parameters, number of training
points, and degree of spatial extrapolation, and expect that many more tests can be developed and
implemented to analyze model performance and prediction accuracies in context. To aid systematic
bench-marking and comparison of SIML architectures, the labels and features used in this study
are made publicly available; to our knowledge this represents the largest multi-label benchmark
dataset for SIML regression tasks. The high performance of RCF, a relatively simple featurization,
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suggests that developing and benchmarking other unsupervised SIML methods across tasks at scale
may be a rich area for future research.

By distilling SIML to a pipeline with simple and mathematically interpretable components, MO-
SAIKS facilitates development of methodologies for additional SIML use cases and enhanced per-
formance. For example, the ability of MOSAIKS to achieve label super-resolution is easily derived
analytically (Supplementary Materials Section S.3.9). Furthermore, while we have focused here on
tri-band daytime imagery, we showed that MOSAIKS can seamlessly integrate data from multiple
sensors through simple concatenation, extracting useful information from each source to maximize
performance. We conjecture that integrating new diverse data, from both satellite and non-satellite
sources, may substantially increase predictive accuracy for tasks not entirely resolved by daytime
imagery alone.

We hope that MOSAIKS lays the foundation for an accessible and democratized system of global
information sharing, where imagery from all available global sensors is continuously encoded as
features and stored in a single table of data, which is then distributed and used planet-wide. As
a step in this direction, we make a global cross-section of features publicly available using 2019
imagery from Planet Labs, Inc. Such a unified global system may enhance our collective ability to
observe and understand the world, a necessary condition for tackling pressing global challenges.
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Supplementary Materials Appendix

The primary goal of our analysis is to develop, evaluate and contextualize the performance of
MOSAIKS. In the following four supplementary sections we first summarize the methods used
in this evaluation and then describe the data, the experiments conducted, and how MOSAIKS
compares to other approaches in the literature in greater depth. We also describe the intuition
behind and the mechanics of MOSAIKS’s algorithms in greater detail.
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S.1 Methods summary

Here we provide additional information on our implementation of MOSAIKS and experimental
procedures, as well as a description of the theoretical foundation underlying MOSAIKS. Full details
on the methodology behind MOSAIKS can be found throughout Section S.3.
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Implementation of MOSAIKS

We begin with a set of images {I`}N`=1, each of which is centered at locations indexed by ` =
{1, . . . , N}. MOSAIKS generates task-agnostic feature vectors x(I`) for each satellite image I` by
convolving an M ×M × S “patch”, Pk, across the entire image. M is the width and height of the
patch in units of pixels and S is number of spectral bands. In each step of the convolution, the
inner product of the patch and an M ×M × S sub-image region is taken, and a ReLU activation
function with bias bk = 1 is applied. Each patch is a randomly sampled sub-image from the set of
training images {I`}N`=1 (Fig. S5). In our main analysis, we use patches of width and height M = 3
(Fig. S6) and S = 3 bands (red, green, and blue). To create a single summary metric for the
image-patch pair, these inner product values are then averaged across the entire image, generating
the kth feature xk(I`), derived from patch Pk. The dimension of the resulting feature space is
equal to K, the number of patches used, and in all of our main analyses we employ K = 8, 192
(i.e. 213). Both images and patches are whitened according to a standard image preprocessing
procedure before convolution (Section S.3.3).

In practice, this one-time featurization can be centrally computed and then features xk(I`) dis-
tributed to users in tabular form. A user need only (i) obtain and link the subset of these features
that match spatially with their own labels and then (ii) solve linear regressions of the labels on
the features to learn nonlinear mappings from the original image pixel values to the labels (the
nonlinearity of the mapping between image pixels and labels stems from the nonlinearity of the
ReLU activation function). We show strong performance across seven different tasks using ridge
regression to train the relationship between labels y` and features xk(I`) in this second step, al-
though future work may demonstrate that other fitting procedures yield similar or better results
for particular tasks.

Implementation of this one-time unsupervised featurization takes about the same time to compute
as a single forward pass of a CNN. With K = 8, 912 features, featurization results in a roughly 6
to 1 compression of stored and transmitted imagery data in the cases we study.2 Notably, storage
and computational cost can be traded off with performance by using more or fewer features from
each image (Fig. 3B). Since features are random, there is no natural value for K that is specifically
preferable.

Experimental procedures

Task selection and data Tasks were selected based on diversity and data availability, with the
goal of evaluating the generalizability of MOSAIKS (Section S.2). Results for all tasks evaluated are
reported in the paper. We align image and label data by projecting imagery and label information
onto a ∼1km × 1km grid, which was designed to ensure zero spatial overlap between observations
(Sections S.3.1 and S.3.2). [2, 31, 32, 33, 27, 34, 35]. Details on data are described in Table S1
and Section S.2.

US experiments From this grid we sample 20,000 hold-out test cells and 80,000 training and
validation cells from within the continental US (Section S.3.4). To span meaningful variation in

2This is calculated as: (256 ∗ 256 ∗ 3)/(8192 ∗ 4) = 6× compression, where 256 * 256 * 3 integer values per image
are compressed into 8192 float32 features, each of which takes 4× the storage of an integer. Using 100 features gives
a 500× compression.
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all seven tasks, we generate two of these 100,000-sample data sets according to different sampling
methods. First, we sample uniformly at random across space for the forest cover, elevation, and
population density, tasks which exhibit rich variation across the US. Second, we sample via a
population-weighted scheme for nighttime lights, income, road length, and housing price, tasks for
which meaningful variation lies within populated areas of the US. Some sample sizes are slightly
reduced due to missing label data (N = 91, 377 for income, 80, 420 for housing price, and 67, 968
for population density). We model labels whose distribution is approximately log-normal using a
log transformation (Section S.3.5 and Table S3).

Because fitting a linear model is computationally cheap, relative to many other SIML approaches,
it is feasible to conduct numerous sensitivity tests of predictive skill. We present cross-validation
results from a random sample, while also systematically evaluating the behavior of the model
with respect to: (a) geographic distance between training and testing samples, i.e. spatial cross-
validation, (b) the dimension K of the feature space, and (c) the size N of the training set (Fig. 3,
Sections S.3.7 and S.3.8). We represent uncertainty in each sensitivity test by showing variance
in predictive performance across different training and validation sets. We also benchmark model
performance and computational expense against an 18-layer variant of the ResNet Architecture,
a common deep network architecture that has been used in satellite based learning tasks [36],
trained end-to-end for each task and a transfer learning approach [19] utilizing an unsupervised
featurization based on the last hidden layer of a 152-layer ResNet variant pre-trained on natural
imagery and applied using ridge regression (Sections S.4.1 and S.4.2).

Global experiment To demonstrate performance at scale, we apply the same approach used
within the data-rich US context to global imagery and labels. We employ a target sample of
N = 1, 000, 000, which drops to a realized sample of N = 423, 476 due to missing imagery and label
data outside the US (Fig. 4). We generate predictions for all tasks with labels that are available
globally (forest cover, elevation, population density, and nighttime lights) (Section S.3.10).

Label super-resolution experiment Predictions at label super-resolution (i.e. higher resolu-
tion than that of the labels used to train the model), shown in Fig. 4B, are generated for forest
cover and population density by multiplying the trained ridge regression weights by the un-pooled
feature values for each sub-image and applying a Gaussian filter to smooth the resulting predictions
(Section S.3.9). Additional examples of label super-resolution performance are shown in Fig. S12.
We quantitatively assess label super-resolution performance (Fig. S13) using forest cover, as raw
forest cover data are available at substantially finer resolution than our common ∼1km x 1km grid.
Performance is evaluated by computing the fraction of variance (R2) within each image that is
captured by MOSAIKS, across the entire sample.

Theoretical foundations

MOSAIKS is motivated by the goal of enabling generalizable and skillful SIML predictions. It
achieves this by embedding images in a basis that is both descriptive (i.e. models trained using
this single basis achieve high skill across diverse labels) and efficient (i.e. such skill is achieved
using a relatively low-dimensional basis). The approach for this embedding relies on the theory of
“random kitchen sinks” [13], a method for feature generation that enables the linear approximation
of arbitrary well-behaved functions. This is akin to the use of polynomial features or discrete
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Fourier transforms for function approximation generally, such as functions of one dimension. When
users apply these features in linear regression, they identify linear weightings of these basis vectors
important for predicting a specific set of labels. With inputs of high dimension, such as the satellite
images we consider, it has been shown experimentally [14, 15, 16] and theoretically [37] that a
randomly selected subspace of the basis often performs as well as the entire basis for prediction
problems.

Convolutional random kitchen sinks Random kitchen sinks approximate arbitrary functions
by creating a finite series of features generated by passing the input variables z through a set of
K nonlinear functions g(z; Θk), each paramaterized by draws of a random vector Θ. The realized
vectors Θk are drawn independently from a pre-specified distributions for each of k = 1...K features.
Given an expressive enough function g and infinite K, such a featurization would be a universal
function approximator [37]. In our case, such a function g would encode interactions between all
subsets of pixels in an image. Unfortunately, for an image of size 256×256×3, there are 2256×256×3

such subsets. Therefore, the fully-expressive approach is inefficient in generating predictive skill
with reasonably concise K because each feature encodes more pixel interactions than are empirically
useful.

To adapt random kitchen sinks for satellite imagery, we use convolutional random features, making
the simplifying assumption that most information contained within satellite imagery is represented
in local image structure. Random convolutional features have been shown to provide good predictive
performance across a variety of tasks from predicting DNA binding sites [14] and solar flares [16] to
clustering photographs [15] (kitchen sinks have also been used in a non-convolutional approach to
classify individual pixels of hyper-spectral satellite data [38]). Applied to satellite images, random
convolutional features reduce the number of effective parameters in the function by considering only
local spatial relationships between pixels. This results in a highly expressive, yet computationally
tractable, model for prediction.

Specifically, we create each Θk by extracting a small sub-image patch from a randomly selected
image within our image set, as described above. These patches are selected independently, and in
advance, of any of the label data. The convolution of each patch across the satellite image being
featurized captures information from the entire R256×256×3 image using only 3∗M2 free parameters
for each k. Creating and subsequently averaging over the activation map (after a ReLU nonlinearity)
defines our instantiation of the kitchen sinks function g(z; Θk) as g(I`; Pk, bk) = xk(I`), where bk is
a scalar bias term. Our choice of this functional form is guided by both the structural properties
of satellite imagery and the nature of common SIML prediction tasks, and it is validated by the
performance demonstrated across tasks.

Relevant structural properties of satellite imagery and SIML tasks Three particular
properties provide the the motivation for our choice of a convolution and average-pool mapping to
define g.

First, we hypothesize that convolutions of small patches will be sufficient to capture nearly all
of the relevant spatial information encoded in images because objects of interest (e.g. a car or a
tree) tend to be contained in a small sub-region of the image. This is particularly true in satellite
imagery, which has a much lower spatial resolution that most natural imagery (Fig. S6).

Second, we expect a single layer of convolutions to perform well because satellite images are taken
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from a constant perspective (from above the subject) at a constant distance and are (often) or-
thorectified to remove the effects of image perspective and terrain. Together, these characteristics
mean that a given object will tend to appear the same when captured in different images. This
allows for MOSAIKS’s relatively simple, translation invariant featurization scheme to achieve high
performance, and avoids the need for more complex architectures designed to provide robustness
to variation in object size and orientation.

Third, we average-pool the convolution outputs because most labels in the types of problems we
study can be approximately decomposed into a sum of sub-image characteristics. For example,
forest cover is measured by the percent of total image area covered in forest, which can equivalently
be measured by averaging the percent forest cover across sub-regions of the image. Labels that are
strictly averages, totals, or counts of sub-image values (such as forest cover, road length, population
density, elevation, and night lights) will all exhibit this decomposition. While this is not strictly true
of all SIML tasks, for example income and average housing price, we demonstrate that MOSAIKS
still recovers strong predictive skill on these tasks. This suggests that some components of the
observed variance in these labels may still be decomposable in this way, likely because they are
well-approximated by functions of sums of observable objects.

Additional interpretations The full MOSAIKS platform, encompassing both featurization and
linear prediction, bears similarity to a few related approaches. Namely, it can be interpreted as a
computationally feasible approximation of kernel ridge regression for a fully convolutional kernel or,
alternatively, as a two-layer CNN with an incredibly wide hidden layer generated with untrained
filters. A discussion of these interpretations and how they can help to understand MOSAIKS’s
predictive skill can be found in Section S.3.3.

S.2 Data

This section describes the datasets we use to construct our ground truth labels across all seven of
our tasks: forest cover, elevation, population density, nighttime lights, income, road length, and
housing price. In Section S.3.2 we detail our method for linking the labeled data for each outcome
to the imagery (Fig. S4).

In evaluating the ability of MOSAIKS to generalize, we are interested in its ability to recover
different types of variables, including: (i) variables that are averages of sub-image properties,
(ii) variables that not directly observable through daytime imagery but are a function of visible
objects in the image, such as nighttime lights, and (iii) variables that are an underlying factor
that determines what material appears in the image, such as elevation. Labels may also be a
combinations of (i)-(iii), such as housing price or household income. An advantage of MOSAIKS
is that it solves all these cases without any alteration of method. In the main text, we use the the
same set of image features to predict all seven outcomes and, in principle, this set of features can
be used to predict an unlimited number of outcomes (Section S.3.3, so long as the outcomes and
the images are aligned as described in Section S.3.2).

For each task, we obtain an up-to-date and geographically complete publicly available datasource
to match with the images. Most of these data are based on measurements from 2010 - 2015, though
our data on population density draws from sources that date back as far as 2005 in order to achieve
global coverage.
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Task Units Native resolution Data source

Forest cover % forest cover ∼30m × 30m [2]
Elevation meters ∼611.5m × 611.5m [31]
Population density people per sq. km. ∼1km × 1km [32]
Nighttime lights nanoWatts/cm2/sr ∼500m × 500m [33]
Income USD per household census block group [27]
Road length meters polyline [34]
Housing price USD per sq. ft. geocoded point data [35]

Table S1: Data sources for all tasks. Note that for all raster data sets (forest cover, eleva-
tion, population density, and nighttime lights) stated resolutions apply to grid cells located at the
equator; raster size in Euclidean distance will vary with latitude.

Labels

Tasks were chosen to represent outcomes of classes (i)-(iii) above subject to the condition that
high resolution and up-to-date label data is available across the US. Below we describe these data
sources. See Section S.3.2 and Fig. S4 for a description of how we assign raw label data to images.

Forest cover To measure forest cover, we use globally comprehensive raster data from ref. [2],
which is designed to accurately measure forest cover in 2010. This dataset is commonly used to
measure forest cover when ground-based measurements are not available [39, 40]. Forest in these
data is defined as vegetation greater than 5m in height, and measurements of forest cover are given
at a raw resolution of roughly 30m by 30m. These estimates of annual maximum forest cover are
derived from a model based on Landsat imagery captured during the growing season. Specifically,
the authors train a pixel-level bagged decision tree using three types of features: “(i) reflectance
values representing maximum, minimum and selected percentile values (10, 25, 50, 75 and 90%
percentiles); (ii) mean reflectance values for observations between selected percentiles (for the max-
10%, 10-25%, 25-50%, 50-75%, 75-90%, 90%-max, min-max, 10-90%, and 25-75% intervals); and
(iii) slope of linear regression of band reflectance value versus image date.” These estimates of
forest cover were derived using different spectral bands than we observe in our imagery, and using
information about how surface reflectance changes over the growing season, which we did not
observe. This gives us confidence that we are indeed learning to map visual, static, high-resolution
imagery to forest cover, rather than simply recovering the model used in ref. [2].3

Elevation We use data on elevation provided by Mapzen, and accessed via the Amazon Web
Services (AWS) Terrain Tile service. These Mapzen terrain tiles provide global elevation coverage
in raster format. The underlying data behind the Mapzen tiles comes from the Shuttle Radar
Topography Mission (SRTM) at NASA’s Jet Propulsion Laboratory (JPL), in addition to other
open data projects.

These data can be accessed through AWS at different zoom levels, which range from 1 to 14 and,
along with latitude, determine the resolution of the resulting raster. To align with the resolution

3These data can be accessed at:
https://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php.
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of our satellite imagery, we use zoom level 8, which leads to a raw resolution of 611.5 meters at the
equator.4

Population density We use data on population density from the Gridded Population of the
World (GPW) dataset [32]. The GPW data estimates population on a global 30 arc-second (roughly
1 km at the equator) grid using population census tables and geographic boundaries. It compiles,
grids, and temporally extrapolates population data from 13.5 million administrative units. It draws
primarily from the 2010 Population and Housing Censuses, which collected data between 2005 and
2014. GPW data in the US comes from the 2010 census.5

Nighttime lights We use luminosity data generated from nighttime satellite imagery, which is
provided by the Earth Observations Group at the National Oceanic and Atmospheric Administra-
tion (NOAA) and the National Geogphysical Data Center (NGDC). The values we use are Version
1.3 annual composites representing the average radiance captured from satellite images taken at
night by the Visible Infrared Imaging Radiometer Suite (VIIRS). We use values from 2015, the
most recent annual composite available.

This composite is created after the Day/Night VIIRS band is filtered to remove the effects of stray
light, lightening, lunar illumination, lights from aurora, fires, boats, and background light. Cloud
cover is removed using the VIIRS Cloud Mask product. These values are provided across the globe
from a latitude of 75N to 65S at a resolution of 15 arc-seconds. The radiance units are nW cm−2

sr−1 (nanowatts per square centimeter per steradian).

Like forest cover, these labels are themselves derived from satellite imagery. However, because
they capture luminosity at night, while our satellite imagery is taken during the day, the labels for
luminosity and the imagery used to predict luminosity represent independent data sources. Our
ability to predict nighttime lights depends on how well objects visible during the day are indicative
of light emissions at night.6

Income We use the American Community Survey (ACS) 5-year estimates of median annual
household income in 2015. These data are publicly available at the census block group level, of
which there are 211,267 in the US, including Puerto Rico. On average, block groups are around 38
km2, though block groups are smaller in more densely populated areas.7

Road length We use road network data from the United States Geological Survey (USGS)
National Transportation Dataset, which is based on TIGER/Line data provided by US Census
Bureau in 2016. Shapefiles for each state provide the road locations and types, including highways,
local neighborhood roads, rural roads, city streets, unpaved dirt trails, ramps, service drives, and
private roads. Road types are indicated by a 5-digit code Feature Class Code which is assigned by

4We accessed these data via the R function get aws terrain from the elevatr package. Code and documentation
can be found here: https://www.github.com/jhollist/elevatr.

5These data can be accessed at http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
6These data can be accessed at https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html#NTL_

2015.
7These data are accessible using the acs package in R [41], table number B19013.
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A B

Figure S1: Quality of ground truth road data varies by region. (A) Private roads in
the northern Midwest recorded in the USGS National Transportation Dataset. The conspicuous
lack of recorded private roads in Indiana and sections of Ohio suggests that road data quality in
certain regions may be lacking. (B) Overlaying recorded roads of all types (shown in white) over a
single satellite image in Indiana, demonstrates that some roads that are easily visible from satellite
imagery are missing in the available data that we use to construct labels.

the Census Bureau.8 The variable we predict is road length (in meters), which is computed as the
total length of all types of roads that are recorded in a given grid cell.

The Census Bureau database is created and corrected via a combination of partner supplied data,
aerial images, and fieldwork. The spatial accuracy of linear features of roads and coordinates vary
by source materials used. The accuracy also differs by region, causing cases in which some regions
lack recordings of certain road types, the most common one being private roads and dirt trails. For
example, private roads are rarely recorded in Indiana and some regions in Ohio (Fig. S1A), despite
satellite images that suggest they are present (Fig S1B).9

Housing price We estimate housing price per square foot using sale price and assessed square
footage values for residential buildings. Data are provided by Zillow through the Zlllow Transac-
tion and Assessment Dataset (ZTRAX). This dataset aggregates transaction and assessment data
across the United States, combining reported values from states and counties with widely varying
regulations and standards. Thus, significant data cleaning is required. Furthermore, because some
states do not require mandatory disclosure of the sale price, we currently have limited data for
the following states: Idaho, Indiana, Kansas, Mississippi, Missouri, Montana, New Mexico, North
Dakota, South Dakota, Texas, Utah, and Wyoming. To address data quality issues, we develop a
quality assurance and quality control (QA/QC) approach that is based on approaches employed in
previous work [42, 43, 44] but adapted for our case.

8https://www.census.gov/geo/reference/mtfcc.html
9The data can be accessed at: https://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Tran/

Shape/

26

https://www.census.gov/geo/reference/mtfcc.html
https://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Tran/Shape/
https://prd-tnm.s3.amazonaws.com/index.html?prefix=StagedProducts/Tran/Shape/


Figure S2: Correlation of labels across tasks. Each figure shows a scatter plot of labeled
outcomes for one of our seven tasks against another. All points come from a population-weighted
random sampling of grid cells (as described in Section S.3.1) across the US. Scatters and R2 values
are shown across approximately 100,000 grid cell labels, depending on the data availability for each
task.

ZTRAX contains data on the majority of buildings in the United States, initially comprising 374
million detailed records of transactions across more than 2,750 counties. The data is organized into
two components - transaction data and assessment data. These two datasets are linked, allowing
us to merge the latest sale price of a property to the latest assessment data. To minimize the effect
of nation-wide trends in housing price that would be unobservable from our cross-sectional satellite
imagery, we limit our dataset to sales occurring in 2010 or later. Further, we restrict our analysis
to buildings coded as “residential” or “residential income - multi-family” and drop any sale that
was coded as an intra-family transfer. To obtain a square footage value, we follow the example
in Zillow Research’s GitHub repository [45] and take the maximum reported square footage for a
given improvement, and then sum over all improvements on a given property.

To reduce the number of potentially miscoded outliers at the bottom end of the distribution of sale
price and property size, we drop any remaining sales that fall under $10,000 USD, any properties
that fall under 100 sq. ft., and any $/sq. ft. values under $10. To address outliers on the high end
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Figure S3: Test set performance when restricting the dataset of mean housing price
labels. Curve shows the R2 obtained in the test set for the housing price task in our main
prediction experiment (Table S2), when removing data with low numbers of valid, recent sales of
buildings within the associated grid cell. The dashed line indicates the restriction applied to the
publicly available dataset.

of the distribution, we take this restricted sample and further cut our dataset at the 99th percentile
of $/sq. ft. by state. Afterwards, we select the most recent recorded sale price for each property
(divided by the most recent assessed square footage). We then average across all of the remaining
units within each grid cell to comprise our final dataset of housing price per square foot.

To protect potentially identifiable information, our public data release contains housing price labels
only for grid cells that contain 30 or more sales meeting the aforementioned criteria. This reduces
the size of the dataset from N = 80, 420 to N = 52, 355 and makes the model performance
obtainable by users better than that stated in the main text. For example, the public dataset
will yield a test set R2 of 0.60, rather than 0.52 (Table S2). This could be due to the fact that
the average housing price label we train on is noisier when estimated in a grid cell with few valid
sales prices. It could also be because the average housing price of areas with few recent sales may
be inherently harder to predict via satellite imagery than that of areas with a greater number of
recent sales. Fig. S3 empirically demonstrates the performance effect of removing grid cells with
few recent sales.

Correlation of outcomes across tasks The seven tasks described above were selected in order
to evaluate the performance of MOSAIKS across many diverse contexts. Figure S2 evaluates the
extent to which this was achieved, by plotting label values against one another. A few of the labels
are moderately correlated, most notably population density and nighttime lights, but in general
there is substantial orthogonal variation across these seven tasks.
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S.3 Methods

This section describes the methods that we use to define samples (Section S.3.1), to construct
labels (Section S.3.2), and to construct features (Section S.3.3) for each image. It then describes
how we separate data for training and evaluation (Section S.3.4), train models (Section S.3.5),
test predictive skill (Section S.3.6), test sensitivity to the dataset size (Section S.3.7) and test
model extrapolation performance (Section S.3.8). Next, we describe tests of model performance at
sub-label or “super” resolution as well as at the global scale (Sections S.3.9 and S.3.10).

S.3.1 Grid definition and sampling strategy

Grid definition: To evaluate the generalizability of MOSAIKS performance across tasks we
need a standardized unit of observation to link raw labels for all tasks and imagery. To do this, we
construct a single global grid onto which we project both satellite imagery and labeled data. We
design the grid to match our source of satellite imagery to ensure adjacent images do not overlap.
Each element of the grid, i.e. each “grid cell,” was designed to be a square in physical space.
Because the earth is a sphere, the angular extent of grid cells changes across latitudes.10

Sampling strategy: For our primary experiment in the continental US we subsample sets of
100,000 observations, roughly 1.25% of the grid cells in the continental US, using two distinct
sampling strategies.11 First, we sample uniformly-at-random (UAR) from all grid cells within the
continental US. This sampling strategy is most appropriate for tasks like forest cover, where there is
meaningful variation in most regions of the country. Second, we implement a population-weighted
(POP) sampling strategy. To generate this sample, each grid cell is weighted by population density
values taken from Version 4 of the Gridded Population of the World dataset, which provides a
raster of population density estimates for the year 2015.12 This weighted sampling strategy is most
applicable to tasks like housing price, where the most meaningful variation lies in more populated
regions of the US. We use the UAR grid when sampling population density to avoid any issues that
might arise from sampling a task using the same variable as sampling weights. In both the UAR
and POP samples, we randomly sample just once; all results in the paper are displayed using the
same two subsets of the full grid. Note that these sub-sampled grid cells, by construction, are each
covered by exactly one satellite image without having to process data over the entire US.

In our main results, we use the UAR sample for the forest cover, elevation, and population density
tasks. We use the POP sample for nighttime lights, income, road length, and housing price. See
Section S.3.10 for a discussion of how we extend this grid and sampling procedure to the global
scale.

10For the continental US (spanning 25 to 50 degrees latitude and -125 to -66 longitude), the grid cells are 0.0138
degrees in width (1.39 km) at the southern edge of the grid, and 0.0138 degrees in width (0.98 km) at the northern
edge of the grid. The grid cells are 0.012 degrees in height (1.39 km) at the southern edge of the grid, and 0.0089
degrees in height (.98 km) at the northern edge of the grid.

11We discard marine grid cells, but do not discard grid cells that are composed only of lakes or smaller inland
bodies of water.

12These data are available at http://sedac.ciesin.columbia.edu/data/collection/gpw-v4/sets/bro
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Figure S4: Calculation of grid cell labels from raw data. We calculate labels by spatially
overlaying our grid cells and raw labeled data. We calculate labels as the average of raw label
values that fall within the grid cell, except for roads where we calculate the label as the sum of
road length within the grid cell.

S.3.2 Assigning labeled data to sampled imagery

To assign labels to each grid cell, we spatially overlay our raw labeled data and our custom grid. The
native format and spatial resolution of the labeled data vary across the tasks studied, necessitating
different aggregation or disaggregation procedures for each task. Here, we describe the approach
taken in each task (Fig. S4).

The raw forest cover, elevation, population density and nighttime lights data are provided natively
as rasters with higher spatial resolution than our custom grid. For these tasks, we perform aggre-
gation by calculating the mean of all labeled pixels with centroids that fall within the imagery grid
cell. The resulting labels indicate mean forest cover, mean elevation, mean population density, and
mean nighttime lights across the image grid cell.

Our road length data are provided as high-resolution spatial line segments. To aggregate these
data to the image grid cell, we calculate the sum of road length segments within each image. The
resulting labels indicate the total length of recorded roads that fall within an image grid cell.

Our housing price data are available as individual geocoded house sales. We aggregate these
geocoded prices to the image grid cell by taking the average housing price per square foot across
all sale prices that fall within the extent of the image. The resulting labels indicate the average
housing price per square foot across all observed houses within a grid cell.

Our income data are provided at the block-group level (see Section S.2 for details). In some parts
of the U.S., these block-groups are larger in total area than our image grid cells. However, in other
regions, block-groups are smaller than our image grid cells. To treat both cases consistently, we
aggregate incomes to the grid cell level by taking the weighted average of block-group incomes,
where the weights are the area of intersection between the image grid cell and the block-group
polygons. These weights are normalized to unity for each grid cell. The resulting labels indicate
the area-weighted average median income across the grid cell.
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Figure S5: MOSAIKS process from featurization to multi-task prediction. Given a large
sample of N satellite images (A), a random sample of K patches (B) are drawn. (C) These K
random patches Pk are convolved over each image I� and (D) passed through a nonlinear function
φ(·) to generate K activation maps. (E) Pixel-specific activations are pooled across each image
to generate one set of N ×K features that are stored and distributed to all users. (F) The same
random feature vector x is used in cross-validated ridge regression across many distinct tasks, after
labeled and geo-referenced data y� is matched to features from each image I� (as shown in Fig.
1B of the main text). (G) Models trained via ridge regression can be used to generate predictions
across unrestricted tasks for any location with satellite imagery.

Future users of a production-scale version of MOSAIKS would employ label data of arbitrary format
and resolution. The above approaches provide guidelines for how to match various forms of label
data to the pre-computed image feature grid, but other methods may be used. In the simplest case,
for example, sparse point data could be directly matched to the nearest grid cell centroid.

S.3.3 Featurization of satellite imagery

Notation In our context, the input variable z is a set of satellite images I, each corresponding
to a physical location, �. We use brackets to denote indexing into images, with colons denoting
sub-regions of images (e.g. I�[i, j] is the (i, j)th pixel of image I�, I�[i : i + M, j : j + M ] is the
square sub-image of size M ×M starting at pixel (i, j).) Because images have a third dimension
(spectral bands), a colon I�[i, j, :] denotes all bands at pixel (i, j). Indexing into non-image objects
is denoted with subscripts (e.g. the kth element of vector x is denoted as xk and the kth patch in a
set of patches P is denoted as Pk). We denote inner products with angular brackets 〈·, ·〉 and the
convolution operator with ∗.

Connection to the kitchen sinks framework The random kitchen sink featurization used
in MOSAIKS relies on a nonlinear mapping g(z; Θk), where z is an input variable and Θk is a
randomly drawn vector. Here, we describe the implementation details of this featurization in the
context of satellite imagery. Connecting our implementation and notation to the framework of
random kitchen sinks, the random variables Θk are instantiated as the values of a random patch
Pk and the bias bk. The input variable z is an image I�, and g(z; Θk) represents the convolution
of the patch over the image, followed by addition of the bias bk and application of a element-wise
ReLU function and an average pool, as described in the Methods of the main article and detailed
below.
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Methodological Details Fig. S5 depicts our featurization process. As described in Section S.2
and S.3.1, we begin with two sets (uniform and population-weighted samples) of N = 100, 000
satellite images, each of which measures 640 × 640 × 3 pixels (the third dimension represents the
visible red, green, and blue spectral bands). We then coarsen the images to 256× 256× 3 pixels to
reduce computation. Next, we draw K/2 = 4, 096 small sub-image “patches” of size M ×M × 3
uniformly at random from the 80,000 images that comprise our training and validation set, and
calculate the negative of each patch to get another 4, 096 patches (Fig. S5A, S5B). Our chosen
specification sets M = 3, so that each patch Pk is of dimension 3×3×3 (see Fig. S6 for performance
in experiments using different patch sizes).

We then “whiten” each patch by zero components analysis (ZCA), a common pre-processing routine
in image processing [46]. ZCA whitening pre-multiplies each patch by a transformation such that
the resulting empirical covariance matrix of the whitened patches is the identity matrix. We then
convolve each patch Pk over each of the N images (Fig. S5C) to obtain a set of 254× 254× 1 pixel
matrices for each image I`

13.During the convolutions each 3×3×3 sub-image I`[i : i+M, j : j+M, :]
is also whitened according to the same whitening matrix as is applied to the patches.14 We then
apply a pixel-wise nonlinearity operator Φ to each resulting matrix to obtain K nonlinear activation
maps Ak(I`) = Φ(Pk ∗ I` + bk) for each image I` (Fig. S5D) so that the (i, j)th pixel of the kth

activation map is defined as

Ak(I`)[i, j] = Φ(〈I`[i : i+M, j : j +M, :],Pk〉+ bk),

where bk is a bias term from the constant bias matrix bk, in which every element is equal to bk = 1.
We use Φ(I`; Pk,bk) = ReLU(Pk ∗ I` + bk) := max{Pk ∗ I` + bk, 0} as the nonlinear operator. We
then aggregate across the image by taking the average of the nonlinear activation maps (Fig. S5E).
The combination of the nonlinear operator Φ(·) and average pooling composes the function g(·)
above, and creates a scalar value for each patch k and image ` pair:

xk(I`) =
1

2542

254∑
i=1

254∑
j=1

Ak(I`)[i, j] (1)

Stacking these scalars across all K patches provides the resulting K-dimensional feature vector,
x(I`) :=

[
x1(I`) x2(I`) ... xK(I`)

]
∈ RK . This featurization thus embeds the original image I`

into a K-dimensional feature space, which can then be mapped to many different outcomes using
task-specific models (s) implemented by researchers (r): ys,r` = x(I`)β

s,r + εs,r` , as illustrated in
Fig. S5F. This linear relationship between labels and features may express a relationship between
labels and image pixels that is highly nonlinear because the features themselves are nonlinear with
respect to the images.

Patch size and sampling We approximate the idealized complete convolutional basis, which
contains features for all patch sizes, with the simpler truncated basis where we use only a single
patch size. Throughout our main analysis, we use a 3×3×3 patch size for Pk. While larger patches
may, in principle, enable the detection of image features with larger spatial structure, we find that,

13To improve efficiency of the featurization process, our implementation calculates the inner product of patch and
image only for the original K/2 patches. We then create an additional K/2 values equal to the negative of each of
the original inner products.

14In practice, we apply the whitening operator as a right multiplication to the original 8192 × 27 whitened patch
matrix in order to reduce computation.
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Figure S6: Performance by patch size. Featurization in MOSAIKS relies on convolving an
M ×M × 3 patch Pk across satellite images. M indicates the width in pixels of each sub-image
patch, and the third dimension indexes the 3 spectral bands used throughout the analysis in this
paper (an analogous approach can be applied to hyperspectral data). This figure shows, for each
task, test set R2 for patch sizes M = 1, 2, 3, 6, 12 and 24, using K = 2, 048 features for each M .
The dotted gray line indicates the benchmark model used throughout the paper, with M = 3.

in practice, patch size M = 3 performs best across all seven tasks (Fig. S6). This finding suggests
that most information contained within satellite imagery of this resolution can be represented by
local-level image structure, and that the inclusion of “non-local” relationships reduces the efficiency
of the function approximator by introducing more degrees of freedom. This empirical finding is
consistent with previous applications of kitchen sink features [22].

We draw patches randomly from the empirical distribution of M ×M ×3 patches from our training
data set of satellite images. Drawing patches from the empirical distribution, rather than generating
them randomly, allows us to sample efficiently from the distribution of sub-images we will encounter
in the sample. This patch selection process is almost identical to the filter selection methods
described in refs. [47, 48, 49]. It may be valuable for future research to explore whether MOSAIKS
performance and computational efficiency could be improved through patch selection algorithms.
For example, one goal in selecting patches-based features is to promote relative sparsity in the
resulting patch-based features, as in ref. [8]. However, any attempt to tailor patch selection or
featurization to a particular task of interest requires sacrificing the generalizability of this task-
agnostic featurization. It remains an open question whether a non-randomly selected set of basis
patches could potentially achieve similar (or greater) performance than what we present here when
applied to arbitrary new tasks.

Alternative interpretations relating MOSAIKS to kernels and CNNs The methods sum-
mary describes how MOSAIKS’s convolutional random features enable nonparametric approxima-
tions of nonlinear functions through an embedding in a rich basis that expresses local spatial
relationships. Here, we provide two alternative interpretations of the approach, the first relating
to kernel methods and the second relating to convolutional neural networks. We believe these in-
terpretations can provide useful lenses to consider why MOSAIKS works, and may also be helpful
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to researchers thinking about related problems.

First, one could interpret the design of MOSAIKS as if we were attempting to design a computation-
ally tractable approximation to implementing a ridge regression using a convolutional kernel and
the kernel trick. Under this interpretation, one could arrive at the same design of MOSAIKS using
the following logic: (i) Design a kernel that allows us to describe the “similarity” of every image to
every other image in the sample. (ii) For any new task, we want to use a kernel regression to pre-
dict the unobserved labels of new images based on their similarity to all other images—specifically,
predicted labels would be a weighted sum of all observed labels using weights determined by this
kernel-based measure of image similarity, i.e. the kernel trick. (iii) Unfortunately, calculating such
a kernel exactly would be computationally intractable on a data set as large as the one we use,
so instead use convolutional kitchen sinks (i.e. the featurization in MOSAIKS) to approximate
the desired kernel regression. This last step follows from prior work demonstrating two concepts.
First, random features can approximate the lifted feature space induced by well-known kernels [50]
as the number of random features increases. Second, convolutions of random patches drawn from
joint Gaussian distributions has been proven to approximate, in the limit, a kernel in which every
sub-image from one image is compared with every sub-image from another using an arc-cosine
distance function [51]. Thus, convolutions with random patches should, in the the limit, approxi-
mate a kernel that compares every sub-image with every other sub-image in the sample. However,
because our distribution of patches is drawn from training imagery, rather than from Gaussian
distributions, there is not an analytical expression that is known for the kernel being approximated
by MOSAIKS in the limit.

The above logic would arrive at a design essentially the same as MOSAIKS, although it is not our
preferred motivation or interpretation of why MOSAIKS works because it is a more complicated
rationale than is needed. Ref. [13] showed that the existence of an associated kernel is not necessary
for performance using kitchen sinks. Rather, it is simply the embedding of an input in a descriptive
basis that provides the predictive skill, the insight that motivates our preferred—and we think
simpler—interpretation presented in the main text. Nevertheless, the interpretation of MOSAIKS
in the context of kernels motivates one way to understand the mechanism through which MOSAIKS
achieves predictive skill at low computational cost. Namely, it enables the approximation of a
nonparametric kernel regression, using some (unknown) fully convolutional kernel that is sufficiently
rich to represent meaningful similarity between images but costly enough to prohibit a direct
application of the kernel trick.

An additional way to contextualize MOSAIKS is in terms of its computational elements. In par-
ticular, MOSAIKS uses image convolutions and nonlinear activation operations common to con-
volutional neural networks (CNNs) [52]. Indeed, MOSAIKS is mathematically identical to the
architecture one would arrive at if one designed a very shallow and very wide CNN without us-
ing backpropogation and instead using random filters. Specifically, MOSAIKS could be viewed
as a two-layer CNN that has an 8,192-neuron wide hidden layer with untrained weights that are
randomly initialized by drawing from sub-images in the sample, and that uses an average-pool
over the entire image. In contrast to the conventional CNN approach of optimizing weights (via
backpropogation), the random initialization with no subsequent optimization significantly reduces
training time and avoids numerical challenges associated with non-convex optimization procedures
(such as vanishing gradients). Thus, in the main text, we do not frame MOSAIKS as a CNN
because MOSAIKS does not exploit the primary benefits of a deep CNN, since MOSAIKS lacks
intermediate layers and does not implement backpropogation. Nonetheless, some readers may find
this description more intuitive, and, as mentioned in the main article, we believe that the high
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performance of MOSAIKS might motivate the design of CNN architectures that share some of
these computational elements.

Because deep CNNs are a state-of-the-art tool for SIML tasks, we provide further comparisons of
MOSAIKS performance and cost relative to this benchmark in Sections S.4.1 and S.4.2, respectively.

S.3.4 Data separation practices and cross-validation

We split our data into a 20% holdout test sample and an 80% training and validation sample.
Within the training and validation sample, we perform 5-fold cross validation in our primary
analysis, splitting the training and validation sample into 5 sets of 80% training data (64% of full
sample) and 20% validation data (16% of full sample), such that the validation sets are disjoint.

Creating the holdout test set Before any of the label data are touched, we remove a hold-
out test set that is chosen uniformly at random from the entire sample, consisting of 20% of the
original data. The analysis and diagnostic procedures that follow use only the remaining 80% of
the observations. The held-out test set is only used once, for the purposes of comparison to the
validation set performance in Table S2. It is important to keep these data untouched until this
point to ensure that our final performance results do not suffer from over-fitting.

Tuning hyperparameters We choose the optimal λ in Eq. (3) for each outcome through 5-
fold cross-validation over the training and validation sample. Specifically, λ is chosen to maximize
average performance (R2) across 5 folds, from a list of candidate values.15 For tasks with the same
sampling scheme (i.e. UAR versus population-weighted sampling), the folds are consistent across
tasks, so that each of the five folds comprises the same set of locations across the tasks.

Using cross-validation to measure model robustness In addition to being a principled way
of selecting hyperparameters, cross-validation gives us a notion of how robust our model is to
changes in the training and validation samples. Since each of the 5 validation sets is disjoint and
randomly selected, the empirical spread of performance across folds gives us a notion of the vari-
ability of our model when applied to new data sets from the same distribution. Understanding this
variation is one way of understanding the performance of our model; it gives us a notion of variance
of aggregated performance (e.g. R2 over the entire sample, for a given set of hyperparameters). A
useful aspect of MOSAIKS’s low computational cost of model training, however, is that it enables
researchers to calculate the variance of individual predictions by bootstrapping.

S.3.5 Training and testing the model

In our primary model (results shown in Fig. 2 of the main text) we solve for grid cell labels
as a linear function of random convolutional features using a ridge regression model and a cross-
validation procedure. To obtain training and validation sets, we follow the data separation practices
outlined in Sec. S.3.4, and drop any observations with missing values. The resulting combined
training and validation set sizes are N = 80,000 for forest cover, 80,000 for elevation, 54,375 for

15We choose these candidate values so as to ensure the chosen optimal λ is not the minimum or maximum of all
λs supplied.
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population density, 80,000 for nighttime lights, 73,102 for income, 80,000 for road length, and
80,420 for housing price.

Population density, nighttime lights, and housing price have label distributions that are approxi-
mately log-normal (Fig. S7), so we take a log transformation of the labels. We add 1 before logging
to avoid dropping labels with an initial value of zero (see Section S.3.6 for performance in logs and
levels for all tasks).16

With these labels and features in hand, we regress each outcome ys` for each task s on features x`
as follows:

ys` = x(I`)β
s + εs` (2)

We solve for βs by minimizing the sum of squared errors plus an l2 regularization term:

min
βs

1

2
||ys` − x(I`)β

s||22 +
λs

2
||βs||22 (3)

We use ridge regression across all outcomes to demonstrate the generalizability of using a single set
of image features across many simple regression models. Further, this standardized methodology
facilitates comparison of performance and sensitivity across tasks. We note that other modeling
choices could potentially improve fit (e.g. using a hurdle model for zero-inflated outcome distribu-
tions such as road length); we leave such task-specific explorations for future research.

In visual display of results and calculation of performance metrics such as R2, we clip our predictions
for each task at the minimum and maximum values observed in the labeled data.

The resulting weights (i.e. regression coefficients) β̂s obtained from estimation of Eq. (2) indicate,
along with the variance of the features, which features k (derived from random patch Pk) cap-
ture meaningful information for prediction in each task. Fig. S8 demonstrates that the recovered
weights are stable across cross-validation folds within a task. The first two columns show stan-
dardized weights that are estimated from disjoint training and validation splits for the same task.17

Values corresponding to each axis are the regression weights estimated when the corresponding fold
composes the training set. High R2 values indicate a strong correlation between regression weights
from different folds within a single task (forest cover, elevation, and population density are shown),
demonstrating that similar linear combinations of features are selected by the regression model,
even when the sample of training images changes. This suggests that specific sets of patches con-
sistently contain valuable information in predicting outcomes for a specific task. However, different
combinations of patches are useful for different tasks, and we find no correlation in the weights
recovered between tasks. For example, in the last column of the figure, we show that regression
weights that are recovered for forest cover and elevation (top right) are essentially orthogonal as
are regression weights recovered for forest cover and population (lower right). In these two plots,
regression weights are shown for the same training and validation sets, but for two distinct tasks.
Sets of features that are relevant for prediction in one task appear to be irrelevant for another, as
there is virtually no correlation in regression weights.

16Since housing price per square foot is always positive, for that variable we use just a log transformation.
17For consistency across comparisons, R2 is calculated on standardized regression weights, which have been de-

meaned and divided by their standard deviations. The number of random features is set to K = 1, 024 for visual
display purposes.
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Figure S7: Distribution of outcome variables in levels and logs. Histograms show the
distribution of each outcome variable over all sampled image grid cells (approximately 100,000
observations, depending on data availability). Forest cover, elevation, and population density are
sampled uniform at random across the continental US, while all other variables are randomly
sampled with population weighting. The first column shows the distribution in levels, and the
second in logs. For elevation, population density, nighttime lights, and road length, logs were taken
after adding 1 to the raw values, given the propensity of zero values in these outcomes.

Intuition The consistency of weights recovered in MOSAIKS across folds within a task, and
the orthogonality of weights recovered within a fold but across tasks, provides some intuition for
why MOSAIKS provides consistent results and generalizes across a very large (potentially infite)
number of potential tasks. The rich featurization x(I`) locates image I` in a very high-dimensional
(K-dimensional) feature space. Solving for βs in Eq. (2) then identifies the K-dimensional vector
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Figure S8: Regression weights across folds within a task vs. across tasks within a fold.
All scatterplots indicate regression weights for forest cover, elevation and/or population density.
Each point depicts estimated coefficent values for the kth feature (βsk) when trained on either
different samples or different labels. In the across-fold examples (first two columns), we learn
weights for disjoint training and validation splits for the same task via cross-validation in which
one fold acts as the training set and the other as the validation set. Values corresponding to each
axis are the regression weights when that fold is the training set (e.g. the top left scatter shows

{βforest1k ,βforest0k }), and indicate a strong correlation across regression weights from different folds.
In the across-task examples (last column), regression weights are shown for the same training and

validation sets for two distinct tasks (e.g. the top right scatter shows {βelevation0k ,βforest0k }). We
see that there is virtually no correlation in regression weights across tasks, demonstrating that
predictions across tasks lie in orthogonal subspaces of the feature space. Across all examples here,
we set the number of random features to K = 1, 024.

βs that points in the direction of most rapid ascent (the gradient vector) for labels ys, when the
position of images x(I`) are projected onto this vector. Because the feature space is so large — our
baseline model has an 8,192-dimensional feature space — there are a vast number of orthogonal
gradient vectors that can be drawn through this space along which images can be organized for
different tasks. The left and center panels of Fig. S8 illustrate that similar K-dimensional gradient
vectors βs are selected when solving for the same task but using different samples (each point
depicts an element of the vector βs). The right panels shows that for different tasks, the gradient
vectors are orthogonal and point in completely unrelated directions in the feature space. This
orthogonality means that predictions ŷs for different tasks will be independent of one another, even
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though both are constructed as linear combinations of the same set of features.

S.3.6 Primary model test set performance, robustness to functional form, and
spatial distribution of errors

Here, we describe how we test for overfitting to the training and validation set in our primary model,
test for primary model performance robustness to alternative functional forms, and characterize
the spatial distribution of primary model error.

Performance in a holdout test set To test for overfitting, we evaluate the performance of
our primary model on a randomly sampled 20% holdout set. These data were never used for
model selection and were only touched at the end of our analysis to check for overfitting. To
conduct this test, for each outcome, we use cross-validation within the training set to determine
the outcome-specific optimal λ. We then retrain the model on the full training set using this
optimal λ, and evaluate this model on the holdout test set. We find that performance in the test
set is nearly identical to that of the validation set (Table S2), which indicates that our models
were not overfit to the data. For some performance metrics, such as the maps in the main text,
we present validation set performance (instead of the test set) because the sample is larger and the
performance is unchanged.

Cross-validation Test set
Task R2 R2

Forest cover 0.91 0.91
Elevation 0.68 0.68
Population density 0.73 0.72
Nighttime lights 0.85 0.85
Income 0.45 0.45
Road length 0.52 0.53
Housing price 0.50 0.52

Table S2: Model performance in the hold out test set. For each outcome, we use 5-fold
cross-validation within the training/validation set using 80% of our labeled data to optimally select
task-specific hyperparameters in ridge regression (i.e. λ). We then retrain each model on the full
training set using this optimal λ. Performance on the validation set (column 1) is compared to that
of the held out test set (column 2).

Robustness of model to alternative functional forms Throughout the main text, we report
primary model performance in each task from a model estimated with labels that are either logged
(e.g. population density), or in levels (e.g. forest cover). The decision regarding functional form for
each task was made based on the underlying distribution of labels across our image grid cells. Many
outcomes, such as housing prices, display exceptionally skewed distributions that approximate log-
normality (see Fig. S7). For these outcomes, we take the natural log of the image grid cell values
in model training and testing. Table S3 shows model performance for all tasks under both the
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levels and logs functional forms.18 Tasks with highly skewed distributions, such as population
density, housing price per square foot, and nighttime lights have substantially higher performance
(R2 increases by 10-64%) after being logged. Tasks whose labels display much less skew in levels,
such as road length, income, and elevation show small to modestly reduced performance (4-21%)
when their outcomes are modeled in logs.

Log model Levels model
Task R2 R2

Forest cover 0.90 0.91
Elevation 0.58 0.68
Population density 0.73 0.56
Nighttime lights 0.85 0.77
Income 0.43 0.45
Road length 0.41 0.52
Housing price 0.50 0.44

Table S3: Model performance across tasks and functional forms. All R2 values indicate
performance using the optimal hyperparameter λ after 5-fold cross-validation. In the log model,
the outcome variable is defined as the natural logarithm of the original labeled data (e.g. natural
log of the average forest cover over an image gridcell). In the levels model, the outcome variable
is simply the level of the aggregated labeled data, as defined in Section S.3.2. Values in bold are
reported in the main text.

Spatial distribution of errors Fig. S9 shows the distribution of errors over space, for the model
predictions presented in Fig. 2. The model systematically over-predicts low values and under-
predicts high values across all tasks. This is likely due to our choice of ridge regression, which
favors predictions that tend toward the mean due to the `2 penalty. The structured correlation
of errors across space suggests that there is substantial room for model improvement, potentially
from including task specific knowledge. For example, our models of housing price and elevation
could likely, respectively, be improved by adding in information about school districts –to address
clustering of house price error in parts of big cities – or location – to help identify large areas of
high elevation such as the Rocky Mountains. We recognize that there exists substantial room for
task-specific model performance, which we leave for future research. Further, discontinuities in
the error structure over political boundaries can help identify inconsistency in label quality. For
example, the sharp increase in road length prediction error moving across the border from Louisiana
to Texas suggests that the raw data labeling in these two states may differ methodologically, which
introduces error into the label, and in turn, the model.

18In tasks where negative values or zeros are present (e.g. forest cover, elevation, and nighttime lights), we drop
negative values and add one to zero values before taking logs for this test.
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Figure S9: Labels and prediction errors over space for each task. Left maps: ∼80,000
observations used for training and validation, aggregated up to 20km x 20km cells for display
(precise number of observations varies by task based on data availability; see Section S.3.5). Right
maps: prediction errors from concatenated validation set estimates from 5-fold cross-validation for
the same ∼80,000 grid cells, identically aggregated for display.
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S.3.7 Altering the number of features and training set size

To better understand factors that could improve the primary model, we test the sensitivity of
its performance to the number of features and the training set size (results shown in Fig. 3 in
the main text). Understanding the returns to additional features and observations enables better
optimization of model performance given cost constraints.

Since features in MOSAIKS are generated randomly, there is no theoretical reason to select a
specific number of features. To test the sensitivity of the primary model performance to the number
of features, we train a model identically to our primary specification (Section S.3.5) except that
we vary the number of features across the values {100, 200, 500, 1000, 2000, 4096, 8192} (Fig. 3A).
For each set of features and each task, we conduct 5-fold cross-validation to recover the optimal
hyperparameter λ.

Notably, using only 100 features recovers a substantial amount of the variation across tasks. Of the
tasks, the least variation is recovered for income (R2 using 100 features is 81% of R2 using 8,192
features) and the most variation is retained in nighttime lights (R2 using 100 features is 96% of R2

using 8,192 features). This suggests that in computation or memory-limited settings, fewer features
could be used with only minor losses in performance. On the other hand, even with 8,192 features,
performance does not fully flatten out (on a logarithmic scale). This suggests that performance
could be improved further by increasing the number of features past K = 8, 192. At the limit of
our testing, a doubling of K from 4, 096 to 8, 192 led to a largest performance increase of 0.026 R2

for income and a smallest of 0.010 R2 for forest cover.

To test the sensitivity of primary model performance to the number of training samples, we train
a model identical to our primary specification (with 8,192 features) except with a varying size of
training set (from 500 to 64,000 images) (Fig. 3A).19 In cases where the training set has fewer than
64,000 total observations due to missing data (e.g. population density, income, road length and
housing price), we use the full training data set to construct our largest training sample.

Similarly to increasing the number of features, increasing the training set size increases model
performance with diminishing marginal returns. Notably, models trained on only 500 observations
recover at minimum 56% (road length) of performance relative to N = 64, 000 and at maximum
87% (forest cover), excluding income and housing price, which require larger samples to attain
performance. This suggests that, for all but the most difficult SIML tasks, MOSAIKS may be
useful even when label collection is very costly. For the tasks with the best R2 performance
(forest cover, nighttime lights), performance plateaus out as the number of training observations
approaches 64, 000. However, for the remaining five tasks, these results show that more training data
could substantially increase performance further. The range of performance gain from increasing
N = 32, 000 to 64, 000 is bounded below by forest cover (.005 R2) and above by road length
(.027 R2).

S.3.8 Testing generalizability across space and comparison to kernel-based in-
terpolation.

To understand the ability of our model to predict outcomes in large contiguous regions with no
ground truth, we design an experiment where we evaluate models using training and validation sets

19The same per-fold validation sets are used for each iteration of this analysis as well as for the primary analysis
and for the test of model performance sensitivity to the number of features.
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Figure S10: Illustration of the procedure to systematically shift train and validation sets
in space when assessing the performance of MOSAIKSover regions with no ground-
truth data. To assess the ability of MOSAIKS to generate meaningful predictions when extrapo-
lating across large spatial distances, we conduct a “checkerboard” experiment (Section S.3.8, Fig.
3B-C of the main text) in which the training set (“black squares”) and validation set (“white
squares”) are separated by increasingly large distances. The length of a square in each experiment
is δ, measured in degrees. This figure demonstrates the four different train/validation splits that
are created by shifting a given spatial checkerboard (split 1) by δ/2 to the right (split 2), δ/2 up
(split 3), and both simultaneously (split 4).

that are increasingly far away from each other in space. Specifically, we iteratively create a grid over
the US with a side length of δ degrees and then use this grid to divide the training and validation
dataset (N = 80, 000) into spatially disjoint sets of roughly equal size. We create these disjoint sets
by assigning observations that lie in every other box within the grid to the train set and test set,
respectively, creating a checkerboard pattern with the train set and test set, as shown in Fig. 3B. We
vary the width δ of each square in the grid range across the values of {0.5, 1.5, 2, 4, 6, 8, 10, 12, 14, 16}
degrees (roughly 40 to 1400 km) in sequential runs of the experiment. As δ increases, validation
set observations become on average farther away from the training set points. This distance makes
prediction on the validation set more difficult, because observations in the validation set are now
likely to be less similar to those in the training set. We learn the model on the training set using
ridge regression. To assess the stability of this performance, we offset the checkerboard and re-run
the above analysis four times – once in the original location and then three more times – shifting
the grid up, right, and both up and right by half the width of the grid (see Fig. S10). The `2
regularization term, λ, is selected to maximize average performance in the four validation sets, as
we would select in in a standard cross-validation procedure.

The performance plotted in Fig. 3C is the performance on the the resulting validation sets. We
find that across most tasks, performance degrades only slightly as the distance between training
observations and testing observations increases. This suggests that MOSAIKS is indeed learning
image-label mappings that transfer across spatial regions.
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Comparison of MOSAIKS to kernel-based spatial interpolation In these experiments
we demonstrate that MOSAIKS outperforms spatial interpolation (or extrapolation, depending on
geometry) – a commonly used simple technique to fill in missing data (Fig. 3C). This suggests that
MOSAIKS, and SIML generally, exploits the spectral and structural content of information within
an image to generate predictions at national scale that extend beyond what can be captured by
geographic location alone.

We compare MOSAIKSto kernel-based spatial interpolation using a Gaussian Radial Basis Function
(RBF) kernel, a simple and general widely used approach. In this approach, the value for a point
in the validation set at location `v ∈ R2 is predicted to be a weighted sum of the values of all the
points in the training set `t, as follows:

ŷsv =

∑
`t∈[Train]

ystw(`t, `v)∑
`t∈[Train]

w(`t, `v)
; w(`t, `v) = e−

1
2σ2
‖`t−`v‖2

Here, w is the weight assigned to each observation in the training set based on kernel values that
are indexed to distance, such that w decreases as the distance between the point being predicted
and the point in the training set increases. We select σ – the parameter that determines the rate at
which w degrades with distance – to maximize average performance on the validation set across all
four spatially-offset runs, similar to how we tune λ in the spatial extrapolation experiment described
above. The optimal value of the bandwidth parameter σ will depend on the task at hand, as well
as the average distance from points in the validation set to points in the training set. To ensure
comparability, spatial interpolation based predictions and performance are computed for the exact
same samples as used for MOSAIKS in each checkerboard partition.

S.3.9 Label super-resolution

As discussed in the methods summary, the featurization method in MOSAIKS exploits the fact that
many image-level outcomes of interest are linearly decomposable across sub-image regions. This
is done by creating image-level features that are averages of statistics from all sub-image regions.
Because these features are ultimately used in linear regression, a natural property of this approach
is that weights estimated in this linear regression can be used not only to generate predictions of
outcome variables at the image-scale, but also at the scale of any sub-image region. As satellite
imagery are available at increasingly high spatial resolution, this “label super-resolution” property is
both practical and powerful, enabling researchers to generate novel predictions at higher resolution
than available ground truth data.

This section gives mathematical justification for a simple method to use MOSAIKS to predict
outcomes of interest at a finer resolution than available labeled data. We display the label super-
resolution properties of MOSAIKS visually, and quantitatively document the empirical performance
of this label super-resolution approach.

Why MOSAIKS naturally achieves super-resolution for label predictions Given an
image-label pair {I`, ys`}, the goal of label super-resolution is to resolve which sub-regions of the
image I` contribute to high or low values of ys` . Recall that for image I`, feature vector x(I`) is a K
dimensional vector, where each scalar element xk(I`) of x(I`) is an average across the pixels of the
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image of the values obtained by convolving sub-regions of the image with patch Pk. As in Section
S.3.3, denote by X the full random feature matrix in RN×K , so that X`k denotes the kth element
of the feature vector describing image I`. By Eq. (1), we can decompose the feature elements as:

X`k := xk(I`) =
1

2542

254∑
i=1

254∑
j=1

Ak(I`)[i, j]

where Ak is the activation map associated with patch Pk. Since we are using a linear model to
form predicted values, we can trace these values back to subregions of the original image. When we
perform a linear regression for task s, the resulting regression weights are a vector β̂s ∈ RK such
that the scalar β̂sk describes the relative weight of feature k in the image-scale predictions. The
prediction of outcome s using image I` thus decomposes as:

ŷs` = X`β̂
s

=
K∑
k=1

X`k · β̂sk

=
K∑
k=1

 1

2542

254∑
i=1

254∑
j=1

Ak(I`)[i, j]

 · β̂sk
=

1

2542

254∑
i=1

254∑
j=1

(
K∑
k=1

β̂sk · (Ak(I`)[i, j])

)
︸ ︷︷ ︸
super-resolution prediction

where the third line follows from substituting X`k according to Eq. (1). Therefore, we can associate
with each pixel indexed by (i, j) a predicted super-resolution value:

ŷs`,(i,j) =
K∑
k=1

β̂sk · (Ak(I`)[i, j]) (4)

which is that pixel’s predicted label value, and thus its contribution to the overall predicted image-
level label value ŷ` for I`. We use a Gaussian filter to smooth these per-pixel predictions to enforce
spatial consistency and reduce variance of the high-resolution predictions, using a kernel bandwidth
of σ = 16 pixels. These smoothed pixel-level predictions can be average-pooled to larger sub-image
scales as shown in Fig. 4B. The procedure to construct label super-resolution predictions, and a
comparison of it to the precedure to construct image-level predictions, is illustrated in Fig. S11.

Fig. S12 demonstrates empirical performance of Eq. (4) using ten examples of this approach at
label super-resolutions on both the forest cover and population density outcomes. The ten images
were randomly selected from the union of observations with forest cover > 10% and population
density > 100 people/km2 to ensure that all images considered had a non-negligible value for each
variable.20

In our formulation, super-resolution label predictions are easily estimable during featurization.
Consider again the per-pixel contributions of Eq. (4). An alternative way to express this is

ŷs`,(i,j) =

(
K∑
k=1

β̂sk ·Ak(I`)

)
[i, j]

20To ensure that weights decomposed as a sum, as in Eq. (4), we used level values (i.e. not log-transformed) for
population density labels in Fig. S12.
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That is, label super-resolution estimates are just a linear combination of the activation maps Ak(I`)
weighted by β̂sk (see Fig. S11). Every time we featurize a new image I′`, we must perform the step of
computing the K activation maps {Ak(I

′
`)}Kk=1 (Fig. S5 D). Therefore, if we already have a suitable

regression weight vector β̂s for task s, for any new images I′` that we featurize, we can compute

the super-resolution label predictions
∑K

k=1 β̂
s
k ·Ak(I`) as weighted combinations of the activation

maps at negligible additional cost, prior to pooling, in the existing featurization pipeline.
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A     Training regression weights and predicting at image scale
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Figure S11: Illustration of the procedure to construct predictions at image resolution
and label super-resolution. Panel A illustrates the standard MOSAIKS prediction pipeline. Af-
ter convolution with random patches, nonlinear activation maps Ak(I`) are averaged across images
to construct a set of image-level features xk(I`) used in linear regression to generate predictions at
image-scale (Section S.3.3). Panel B illustrates how the weights trained using labels and features
at image-scale in panel A can be used to generate predictions at resolutions higher than the images
and labeled data, achieving predictions at label super-resolution. The scalar product of the entire
activation map Ak(I`) and the estimated weights vector β̂ generates label super-resolution predic-
tions at any desired sub-image scale larger than pixel-level. The last column of panel B illustrates
the fact that label super-resolution predictions, when averaged across an image, are identical to
predictions generated from the standard process in panel A.
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Figure S13: Systematic evaluation of within-image R2 recovered in the forest cover task.

Evaluating label super-resolution performance

To systematically evaluate the ability of MOSAIKS to accurately predict outcome labels at super-
resolution, we evaluate the within-image label variation that MOSAIKS’s label super-resolution
predictions accurately explain. We use forest cover for this test because the raw label resolution
is substantially finer than the grid cell used to construct labels (see Section S.3.1 and Fig. S4), so
we are able to attach “true” labels to super-resolution predictions within each image. In our main
analysis, we construct grid cell forest cover labels by averaging fine-resolution raw forest cover data
(see Section S.3.2). Here we leverage the fine resolution of the raw data to compare label super-
resolution performance of a model trained on aggregated labels but tested on high-resolution raw
forest cover data.

Specifically, we learn regression weights β̂s using a ridge regression applied to image-level labels
from the full U.S. UAR sample (N = 100, 000). We do so for multiple regularization parameters,
λ, then make label super-resolution predictions on a “validation” set of 1,000 images21. We use the
R2 score for 32x downscaled predictions (32x32 predictions per image) to choose optimal values for
λ and σ (the Gaussian filter length scale).22 Next, we use the weights derived from our image-level
ridge regression, along with the corresponding optimal λ and σ, to make label super-resolution
predictions for 16,000 additional images drawn randomly from the full set of 100,000 (excluding
the 1,000 used for choosing hyperparameters). Lastly, we aggregate these pixel-level predictions to
coarser sub-image scales, where increasing aggregation (lower label super-resolution factor) reduces
noise in the predictions at the cost of lower resolution.

We assess the performance of label super-resolution at a variety of scales by calculating the percent
of the variance of the raw within-image forest cover labels that can be explained by the super-
resolution label predictions at each scale. For example, to assess the performance of 2×2 label super-
resolution predictions, we average predictions from the 254× 254 label super-resolution predictions
by quadrants, resulting in four predicted values (twice the original resolution).23 We perform the
same per-quadrant average for the raw fine-resolution forest cover labels. We demean both the

21Note that none of the pixel-level values in this validation set are used in the ridge regression, but the corresponding
image-level labels are in-sample.

22The optimal λ = 1e5 is higher than that chosen to optimize image-level predictions (Fig. 2), likely due to increased
noise in sub-image predictions.

23For the analysis, we clip the images and predictions to 224 x 224 pixels so they are evenly divisible by a 32x
super-resolution factor.
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within-image predictions and labels to eliminate across-image variation, thereby focusing this test
on the ability of the predictions to explain residual within-image variation. We then concatenate
these within-image predictions and labels across the N = 16, 000 images, so that the resulting R2

value reported is the percent of super-resolution label variance explained by label super-resolution
predictions, across 64, 000 = 16, 000 · 22 label-prediction pairs.

The resulting performance of label super-resolution predictions at different scales is shown in
Fig. S13 for width scales of 2 × 2, 4 × 4, 8 × 8, 16 × 16, and 32 × 32. We test up to w = 32
because the native width of the forest cover labels (∼ 30m) is just under 1/32 the width of the
original image (∼ 1km). Label super-resolution predictions are trained only on the aggregate la-
bel at the image-level. Nonetheless, as Fig. S13 shows, we are able to explain over 50% of the
within-image label variations at 2× 2 super-resolution, and over 30% of the variation using 32× 32
super-resolution grids.

Comparisons to other within-image prediction algorithms The derivation leading to Eq. (4)
has a very similar form to the derivation of class activation mapping in [53]. Similar to our goal of
label super-resolution, class activation mapping identifies image sub-regions that contribute to the
overall prediction for that image. Class activation mapping usually refers to finding discriminative
regions of an image that help explain a binary classification decision; we differ from this in our
objective of predicting regression values at finer-resolution than the image-sized labels. We use the
term “label super-resolution” (also used in [30]) to further distinguish our approach from image
super-resolution methods in image processing and microscopy, which increase the resolution of the
image itself, rather than the associated labels.

A approach to MOSAIKS’s label super-resolution predictions are methods specifically designed
for pixel-level classification, or semantic labelling of satellite imagery [54, 55]. However, these
approaches make use of sub-image labels for training, as opposed to our setting, where only one
label per image (per task) is provided. For example, [30] studies the case of weakly supervised
image segmentation, predicting land cover at finer resolution than the provided labels, which are
already at sub-image resolution. Some such semantic labelling approaches use a downsample-then-
upsample approach inspired by auto-encoders [56] to learn lower-dimensional latent representations
which are then up sampled to image-size prediction maps from which per-pixel classifications can be
made. The upsampling procedure introduces more parameters to be tuned during model training,
as well as additional computational cost in producing predictions. We again contrast this complex
machinery with the simplicity of MOSAIKS ’s approach, which calculates label super-resolution
predictions as a weighted sum of activation maps.

Conditions where label super-resolution is most easily interpretable The linear decompo-
sition of Eq. (4) holds when using labels that represent the average or sum of values within a grid
cell, such as forest cover, elevation, population density, nighttime lights, income, or road length.
However, it does not hold exactly when values are transformed nonlinearly after aggregation (e.g.
log(

∑
y) 6=

∑
log(y)).24 In these cases, the interpretation of label super-resolution estimates re-

quires care. Another case in which the interpretation of the sub-image predictions is difficult is
when an image-level characteristic is not directly the sum of sub-image parcels. For instance, when
predicting mean housing price in a grid cell, a manicured park might contribute to a higher value,
yet that component of the image does not, in itself, have any associated housing price. In this case,
we we would interpret the sub-image predictions as “contributions to grid cell mean housing price”

24This issue could be addressed – in the case of logged variables – if one obtained a geometric mean image-level
outcome rather than an arithmetic mean.
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Figure S14: Continent samples used to solve four tasks at global scale. MOSAIKS predic-
tions at global scale are generated from six separate cross-validated ridge regressions using random
convolutional features. Each continent model is trained on 80% of the sample size shown (N).

(similar to the class activation maps of [53]) rather than the more natural interpretation as simply
“a finer resolution prediction of housing price.”

S.3.10 Global model

For our global analysis, we create a global grid, composed of roughly 420 million cells just over
1km2 in size, using an identical structure to that described in Section S.3.1 for the US. To obtain
observations for our global analysis, we sub-sample 1,000,000 cells from this grid, sampling UAR
from non-marine grid cells. This relatively sparse sampling of global data is due to the cost of
obtaining imagery data.

One of the difficulties in sub-sampling from the global grid is that there are many grid cells where
we do not have images available (there are negligibly few missing images in the US grid). After
discarding grid cells with missing imagery from our original sample of 1,000,000 observations, we are
left with N = 498, 063 valid observations. After removing observations for which labeled data are
missing for any of the tasks we analyze at global scale (forest cover, elevation, population density,
and nighttime lights), we are left with N = 423, 476 observations, which we use to train/validate
(80%, N = 338, 781) and test (20% N = 84, 692) the model.

When generating features (K = 2, 048) for our global model, we conduct featurization as described
in Section S.3.3. Note that to create the global features we use patches drawn randomly from the
global sample of images, not just from within the US.

When training the global model, we follow the approach outlined in Sec. S.3.5, solving for grid
cell labels as a linear function of the random convolutional features using ridge regression and
cross-validation to tune the regularization parameter λ. However, recovered regression weights are
likely to differ across regions of the globe due to heterogeneity in image quality and in visual signal
of task labels or their derivatives. Therefore, we divide our global sample into six continental
regions before solving each task. The continents (and sample sizes used for training and testing
each continent-specific model) are shown in Fig. S14.

Modeling heterogeneity using the continents shown in Figure S14 leads to meaningful gains in
performance over ignoring continent effects. As shown in the main text, the approach accounting
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for heterogeneity generates R2 values of 0.85, 0.45, 0.62, and 0.49, for forest cover, elevation,
population density, and nighttime lights, respectively (Fig. 4). In contrast, a global model that
pools all observations across the globe and solves for a single linear function of random convolutional
features generates R2 values of 0.80, 0.26, 0.48, and 0.41, for the same tasks.

S.3.11 Generalizing to other ACS variables

Here we demonstrate the ability of MOSAIKS to generalize rapidly across a range of new variables
by replicating our primary analysis (i.e. that in Fig. 2) for 12 variables from the American
Community Survey, the source we use in the main text to measure income across the continental
US. This survey is conducted annually across the US, tracking a diverse range of socioeconomic
outcomes, from housing information to income and education. For this exercise, we select variables
from the ACS that span a range of diverse outcomes and which seem likely to have at least some
visible signal in daytime satellite imagery. We report performance for all tested variables.

We calculate grid cell level labels from census block group level ACS data using the the same method
used for ACS income label construction outlined in Sec. S.3.2. The resulting labels represent the
area-weighted average value of the outcome across the grid cell. The ACS variables we predict are
listed and described in Table S4.

Patterns in performance across tasks could be explained by the hypothesis that some outcomes
exhibit more visible features, such as age and value of housing, while other outcomes exhibit less
clear visible signal, such as the percent of household income dedicated to rent.

This exercise shows the ease of generalizing MOSAIKS to new contexts. In total, training these
twelve predictive models took less than 45 minutes on a workstation with ten cores (IntelXeon
CPU E5-263) (Table S5). Given the similarity in performance between MOSAIKS and other state
of the art approaches documented in Sec. S.4.1, MOSAIKS offers a relatively quick and easy way
to determine how predictable a variable might be from high resolution visible satellite imagery.

S.4 Comparisons to other models

Here, we compare the predictive performance and computational cost of MOSAIKS to other ap-
proaches in the literature.

S.4.1 Benchmarking performance

Convolutional neural networks (CNNs) have become the default “gold standard” in many image
recognition tasks [58], and are increasingly used in remote sensing applications [4, 55, 59, 36, 5,
10, 11, 60, 61, 62]. Simultaneously, alternative generalizable and computationally efficient pipelines
have been developed that incorporate unsupervised featurization and/or a classification or regres-
sion algorithm [63, 9, 10, 3, 38]. MOSAIKS is low-cost and generalizable like these latter models;
however, unlike these other models, it offers accuracies for regression problems competitive with
that of leading CNN architectures. Here we quantitatively assess the predictive performance of
MOSAIKS relative to (a) a CNN trained end-to-end with the outcomes of interest, (b) a similarly
cheap, unsupervised featurization used in place of random convolutional features in the MOSAIKS
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Name Code Description
Travel time to work B08303 “Travel time (minutes) to work refers to the total number of

minutes that it usually took the worker to get from home to
work during the reference week. The elapsed time includes time
spent waiting for public transportation, picking up passengers in
carpools, and time spent in other activities related to getting to
work.”

Percent Bachelor’s
Degree

B15003 Calculated as the number of people over 25 with only bache-
lor’s degrees (i.e. not masters or doctorate) divided by the total
number of people over 25.

Median Household
Income

B19013 Median household income in the past 12 Months (2015 inflation-
adjusted dollars)

Per Capita Income B19301 Per capita income in the Past 12 Months (2015 inflation-adjusted
dollars)

Percent below
poverty level

C17002 Calculated as the number of people 15 years or older whose in-
come fell below the poverty level divided by the total number of
people 15 years or older.

Percent food
stamp/snap

B22010 Percent household received food stamps/snap in the past 12
months.

Median income B25071 Gross rent as a percentage of household income in the past 12
months (dollars)

Number of housing
units

B25001 “A housing unit may be a house, an apartment, a mobile home,
a group of rooms or a single room that is occupied (or, if vacant,
intended for occupancy) as separate living quarters. Separate
living quarters are those in which the occupants live separately
from any other individuals in the building and which have direct
access from outside the building or through a common hall. Both
occupied and vacant housing units are included in the housing
unit inventory. Boats, recreational vehicles (RVs), vans, tents,
railroad cars, and the like are included only if they are occupied
as someone’s current place of residence.”

Percent vacant B25002 “A housing unit is vacant if no one is living in it at the time of
interview.”

Structure age B25035 Data reported is the median year structure built. We calculate
structure age as 2015 – median year structure built.

Number of rooms B25017 “For each unit, rooms include living rooms, dining rooms,
kitchens, bedrooms, finished recreation rooms, enclosed porches
suitable for year-round use, and lodger’s rooms. Excluded are
strip or pullman kitchens, bathrooms, open porches, balconies,
halls or foyers, half-rooms, utility rooms, unfinished attics or
basements, or other unfinished space used for storage.”

Median house value B25077 For owner-occupied housing units.

Table S4: Description of variables from the American Community Survey (ACS) used in the analysis
(Fig. 4). Quoted descriptions of variables are from: https://censusreporter.org/topics/table-codes/.
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Figure S15: Comparison of out-of-sample performance across feature extraction tech-
niques as a function of sample size. Mean Average Precision is shown for the out-of-sample
prediction of housing price class (low, medium, high) for all single-family home sales after 2010 in
Arizona, as a function of training sample size. Three feature extraction techniques are compared:
MOSAIKS(blue), a pre-trained CNN (VGG, purple), and the GIST descriptor (orange). Figure
reproduced from [57].

infrastructure and (c) a transfer learning approach. For (b), we use the features generated by the
last hidden layer of a pre-trained variant of the CNN (trained on natural imagery). This common
approach is unsupervised in that the weights of the CNN are not trained using the labels of the
outcome of interest, and such an approach has been shown to have better predictive performance
than many other unsupervised featurization algorithms (e.g. GIST, SIFT, Bag of Visual Words) on
satellite image tasks [63]. Previous analyses show through direct comparison that our methodology
significantly outperforms ridge regression models using GIST features [57]. Fig S15 (reproduced
from [57]) demonstrates this comparison, describing out-of-sample performance for the prediction
of housing price class for homes in Arizona.

These exercises compare MOSAIKS performance to that of models suited to the data availability of
different prediction domains (abundant within the U.S., and relatively scarce at dispersed locations
globally). A fine tuned CNN is expected to perform well in the United States, where data are
relatively high quality and the sample size is large (nearly a hundred thousand observations);
whereas the transfer learning approach is designed to perform well in regions where the training
data are more coarse and the sample sizes are smaller (hundreds of observations). The ability of
MOSAIKS to perform on par with these approaches in each setting demonstrates its generalizability.

Comparison to a deep convolutional neural network and an alternative unsupervised
featurization First, we compare the performance of MOSAIKS to that of a tuned Residual
Network (ResNet)[18] – a common, versatile deep network architecture used in recent satellite-
based learning tasks [36]. We train this network end to end to predict outcomes in all seven tasks
across the continental US, using as input the same imagery used by MOSAIKS.
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Specifically, we train an 18-layer variant of the ResNet Architecture pre-trained on ImageNet using
stochastic gradient descent to minimize the mean squared error (MSE) between the predictions
and labels with an initial learning rate of 0.001 with a single decay milestone at 10 epochs, and
momentum parameter of 0.9. We train the model for 50 epochs, at which point performance
approaches an asymptote. The optimal values for learning rates were tuned on a validation set
for the task of predicting population density. We employ a standard train/test split of 80%/20%,
matching our approach when evaluating MOSAIKS.

Second, we compare MOSAIKS performance to a similarly cheap, unsupervised featurization gen-
erated by the last hidden layer of a pre-trained variant of the CNN used above, trained on natural
imagery. To execute this comparison, we use the features from the last layer of a 152-layer variant
of the ResNet Architecture, and then run ridge regression on these features for each task.

Fig. 3A in the main text compares the holdout accuracy of MOSAIKS to both alternative ap-
proaches, demonstrating that MOSAIKS (dark bars) achieves performance competitive with ResNet
(middle bars) across all seven tasks, while providing substantially greater performance than ridge
regression run on features from the pre-trained CNN (lightest bars).

Comparison to a transfer learning approach We also compare the performance of MOSAIKS
to that of a transfer learning approach in which nighttime lights observations are used to tune a CNN
that was pre-trained on ImageNet. The tuned CNN is then used to extract features from the satellite
images and a linear model is trained to predict the outcome of interest. This approach leverages
a large number of nighttime lights observations to better learn how to extract information from
satellite imagery that is meaningful to tasks that may be reflected in nighttime lights (e.g. wealth).
Comparing the performance of MOSAIKS to that of transfer learning tests the value of learning
these features from nighttime lights, relative to the unsupervised featurization of MOSAIKS.

We compare the performance of MOSAIKS to the transfer learning approach by replicating a
subset of the analyses in [4] and [21]. Using MOSAIKS, we predict wealth, electricity, mobile
phone ownership, education, bed net count, female body mass index, water access, and hemoglobin
level in Haiti, Nepal and Rwanda; we additionally predict child weight percentile, child height
percentile and child weight for height percentile in Rwanda. These variables are recorded at geo-
located “cluster” locations by the Demographic and Health Survey (DHS); the survey methodology
is detailed in [4]. The variables and countries we provide performance metrics for were chosen based
on the facility of obtaining and matching images and labels from the original authors and their
replication code bases. We report performance for all tested variables and countries.

In this analysis, we use two MOSAIKS-based models to predict the DHS cluster labels. First,
we use only the MOSAIKS random convolutional features (indicated as RCF), which we calculate
for each image as detailed in Sec. S.3.3, and then average over the 100 images associated with
each DHS cluster (see [4] and [21] for details on matching images to clusters; we use the same
matching approach as the original authors). In a second model, denoted MOSAIKS-NL below, we
use the MOSAIKS random convolutional features along with features based on nighttime lights.
The nighttime light features for each cluster are counts of the number of nightlight values that
fall within a set of 19 bins, as well as the minimum, mean and maximum of the values within
the image. Bins were evenly spaced on a log scale from a luminosity of 0.1 to 500 (in units of
nanoWatts/cm2/sr). We average nighttime light features for all 100 images associated with each
DHS cluster, as we do for RCF.
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Figure S16: Comparison of predictions and prediction errors between MOSAIKS and
the ResNet-18 CNN. The left column shows the relationship between predictions generated by
MOSAIKS (x-axis) and predictions generated by the ResNet-18 CNN (y-axis). The right column
shows the relationship between prediction errors from MOSAIKS (x-axis) and prediction errors
from the CNN (y-axis). In both plots, each point indicates one grid cell (∼1km×1km) in the
holdout test set; the test set sample size is approximately 20,000 for each task, although sample
sizes vary somewhat due to data availability across tasks (Section S.3.5).

We show results for the MOSAIKS-nighttime lights model for two reasons. First, it presents the
most fair comparison to the transfer learning approach, which also leverages both nighttime lights
and daytime imagery. Second, it demonstrates the ability of MOSAIKS to seamlessly combine
information from different sensors – by appending their features in a linear model – to make
predictions.
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Training a model that uses features from multiple sensors A key benefit of the MOSAIKS
approach is that it can easily combine information from multiple sensors. Recall that to train a
model when using only the RCF from visual imagery we regress the outcome ys` for each task s on
features x` as follows:

ys` = x(I`)β
s + εs`

And solve for βs by minimizing the sum of squared errors plus an l2 regularization term:

min
βs

1

2
||ys` − x(I`)β

s||22 +
λs

2
||βs||22

To include features from an additional sensor, S`, such as nighttime lights, one simply generates
a new set of features, z(S`), – using the RCF algorithm or any other unsupervised featurization
approach – and includes the features in the regression model, giving:

ys` = x(I`)β
s + z(S`)γ

s + εs`

Then, one solves for βs and γs by minimizing the sum of squared errors plus individual regulariza-
tion terms for each sensor:

min
βs,γs

1

2
||ys` − x(I`)β

s − z(S`)γ
s||22 +

λs1
2
||βs||22 +

λs2
2
||γs||22

Regularizing the features from each sensor separately enables the model to treat features from
individual sensors differently, which we found improves model performance. We implement a model
that combines RCF and features from nighttime lights in Fig. S17. Features from additional sensors
could be added to the model in a similar way.

Interpretation of test accuracy comparisons Note that the performance of these models
represents a reasonable lower bound on potential performance; some task-specific enhancements
could be used to improve predictive power for each of these methods. For example, more layers
could be added to ResNet or alternative architectures could be tested for specific tasks. In the case
of MOSAIKS and the pre-trained ResNet features, more flexible regression models could be used
to estimate the relationship between features and labels, such as increasing K, using a nonlinear
model, or leveraging a hurdle model in tasks with a large number of zero observations. While these
task-specific changes may marginally improve performance of any of these approaches, prior research
on similar image recognition tasks suggests further gains for the ResNet are likely to be minimal
[64]. While the similarity of performance in Fig. 3A is perhaps surprising, it is also encouraging for
further research. This comparison suggests that wide, shallow networks using local-level features
(analogous to random convolutional features) are as descriptive as more complex, highly optimized
CNN architectures for satellite remote sensing, across many tasks.

The similarity in performance of MOSAIKS and ResNet across tasks (Fig. 3A) is consistent with
a hypothesis that both approaches are reaching the limit of information that is provided by satel-
lite imagery for predicting the outcomes we test. Fig. S16 provides further evidence of such a
hypothesis, as the test set predictions and prediction errors are highly correlated across ResNet
and MOSAIKS in all tasks studied. A human prediction baseline has not been established, but
could provide insight into whether there is substantial room for improvement in skill for each of
these tasks, although we suspect many of these tasks will be difficult for non-expert humans (e.g.
nightlights or house prices).
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Figure S17: Comparison of accuracy between MOSAIKS and a transfer learning model. Box plots (left)
show task-specific performance of MOSAIKS models (RCF in blue and RCF + nighttime lights in green) in contrast
to a transfer learning model (black). Box and whiskers show the performance over the 5 cross-validation folds. Scatter
plots (right) show the performance of MOSAIKS models, as well as a nighttime lights-only model (orange) versus the
transfer learning model performance. Each point in the scatter is the average R2 over the 5 cross-validation folds,
while whiskers indicate the full range of performance across folds.
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ResNet MOSAIKS
Component Time (GPU) Time

Training set featurization (N = 80k)

∼ 7.9 hours

∼ 1.2 hours (GPU)
Model training ∼ 2.8 seconds (GPU)

∼ 50 seconds (10 cores)
∼ 1.8 minutes (laptop)

Holdout set featurization (N = 20k)

∼ 40 seconds

∼18 minutes (GPU)
Holdout set prediction < 0.01 seconds (GPU)

∼ 0.1 seconds (10 cores)
∼ 0.7 seconds (laptop)

Total cost to ecosystem ∼ 7.9 hours ∼ 1.5 hours (GPU)
Total cost to user ∼ 7.9 hours ∼ 2.8 seconds (GPU)

∼ 50.1 seconds (10 cores)
∼ 1.8 minutes (laptop)

Table S5: Wall-clock times of components of MOSAIKS compared with a fine-tuned
CNN. Bold times are those that a practitioner using each method would incur (assuming MO-
SAIKS users have access to a standard laptop only). Model training time includes training after
tuning for a single task for both ResNet and MOSAIKS. MOSAIKS was run using K=8,192 fea-
tures. ResNet operations were run on an Amazon EC2 p3.2xlarge instance with a Tesla V100 GPU
and 60GB of onboard RAM. Cost of computation on this machine is roughly $3/hr. MOSAIKS
operations are shown for runs on this same GPU, a local workstation with ten cores (Intel Xeon
CPU E5-263), and a standard laptop (MacBook Pro).

S.4.2 Comparing costs

In practice, high computational costs can limit the use of SIML methods – especially when resources
are scarce, such as in government agencies of low-income countries [7] or research teams and NGOs
with limited budgets. Specifically designed to address this challenge, MOSAIKS scales across many
research tasks by decoupling featurization from task selection, model-fitting, and prediction. The
computationally costly step of featurization is done centrally on a fast computer with a graphics
processing unit (GPU); individual practitioners need only download the pre-computed features,
merge on labels for the task they select, and run regressions. Because features are created and stored
by a central entity, the research community makes use of a cached set of computations, reducing the
overall computational burden of widespread SIML and any external social costs generated by these
computations [65]. Additionally, this decoupling of task-agnostic computations from task-specific
computations allows practitioners to run more diagnostic analyses on their tasks, such as those
presented in Fig. 3 of the main text.

From the perspective of a user who can access pre-computed MOSAIKS features to train and
validate a new task, we find that MOSAIKS is ∼ 250× to 10, 000× faster than a state-of-the-
art neural net architecture (ResNet), depending on the computational resources available to a
MOSAIKS user (Table S5). Moreover, MOSAIKS performance is competitive with the ResNet on
all tasks we have studied (Fig 3A). From the perspective of the entire computational ecosystem,
which bears the cost of image featurization in addition to model training and testing, we find
that MOSAIKS is 5.3× faster than the ResNet when solving a single task. The relative efficiency
of MOSAIKS grows with the number of tasks studied because MOSAIKS features can be reused
across tasks. For the ResNet, the times in Table S5 reflect our wall-clock time on a single Amazon
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EC2 instance for a single task, so that the time costs are similar to that of introducing a single new
domain ex post. For MOSAIKS, Table S5 includes wall-clock times on three different computational
platforms, as users may have access to different resources. We show times using the same GPU as
we use for the ResNet comparisons, times on a local workstation with ten cores (Intel Xeon CPU E5-
263), and times on a standard laptop (MacBook Pro). For both ResNet and MOSAIKS, we report
in Table S5 model training time after using cross-validation to select optimal hyperparameters.
For MOSAIKS, model training time on the local workstation with 10 cores is ∼6.8 minutes when
including cross-validation to select penalization parameters in ridge regression. The ecosystem-
wide costs of featurization per task shown in Table S5 decline as MOSAIKS becomes more widely
adopted, because features can be cached centrally and distributed without modification to multiple
users who are training and/or testing SIML in common locations.

We considered only one CNN architecture, which we chose because of its use in previous remote
sensing applications [4]. We did not attempt to innovate in neural net architectural design or
algorithms. While one could pursue targeted innovations in neural networks for remote sensing,
such as in ref. [60], we emphasize that our method is currently orders of magnitude faster for the
user than off-the-shelf fine-tuned CNN methods (Table S5), does not require a GPU for prediction,
and achieves competitive prediction performance (Fig. 3A). There is recent work that aims to train
networks to learn a “common representation” that can generalize across tasks, but this is a subject
of ongoing research [66], requires the tasks to be known in advance, and has yet to be demonstrated
or evaluated at scale.
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