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1. Introduction
Suppose that Anthony, a 6th-grade student, does not regularly complete his mathematics

homework and performs poorly on exams. Seeing this, one might conclude that Anthony’s
preferences are at fault: he either lacks motivation for math study or places low value on
academic achievement. If so, it may be possible to improve Anthony’s outcome by providing
incentives or information on the returns from schooling to him or his parents. However, low
motivation is not the only possible explanation for Anthony’s observed choices and outcomes.
He may be very willing to put in work, but if he lacks foundational skills, adequate study
support, or high-quality school instruction, then spending even large amounts of time on
math may be inadequate to raise his grades. Thus, Anthony may rationally withdraw from
study activity, despite a basic willingness to work. In this case, a very different intervention
is needed, and merely nudging Anthony’s beliefs or incentives would be ineffective.

The challenge for policymakers, educators, and researchers stems from inferring whether
low-performing students lack motivation—willingness to allocate a fixed quantity of time to
study—or whether they struggle with academic productivity—ability to convert time inputs
into completed assignments or improved exam scores. Typical observational datasets focus on
outcomes (e.g., grades/exam scores), but include only coarse student time inputs or none at
all, meaning both explanations—low motivation and low productivity—are observationally
equivalent.1 Moreover, observational data cannot identify a mapping between day-to-day
learning activity and incremental skill gains. These inferential problems are a formidable
barrier to understanding student outcomes, both at the individual and group level.

To overcome these challenges, we execute a structurally-motivated field experiment involv-
ing 1,676 adolescent math students in partnership with their schools, teachers, and parents.2

The setting of a natural field experiment with automated tracking of web-based learning
activities allows us to observe (i) how study effort responds to incentives, (ii) how effectively
students convert time inputs into completed assignments, and (iii) how learning activity
maps into measurable skill gains. We directly quantify structural labor-supply elasticity and
study-time productivity for each individual student, shedding new light on the root causes
of low academic performance, and its link to a learner’s rational day-to-day choices. Fur-
thermore, by running the experiment across a diverse set of students and school districts,
we can explore how motivation and productivity are influenced by contextual factors such
as prior math skill, demographics, and school quality. Our field experiment produces a rich
set of student-level variables and varying incentives that are well-tailored to solve various
empirical confounds present in observational data from educational settings.

1The most closely related papers are Cunha, Heckman, and Schennach (2010) and Agostinelli and Wiswall (2022), which use
NLSY data at two-year intervals, and Del Boca, Flinn, Verriest, and Wiswall (2019), which uses PSID data including child
time-use variables. Neither dataset (or any others we know of) includes time-use data and exogenous incentive variation needed
to directly quantify children’s labor-supply elasticities.
2This study adhered to strict standards of research ethics; see Section 3.2 for further discussion.
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To analyze our field-experimental data, we propose a novel quantitative framework for day-
to-day labor-supply choice by learners. Leveraging the psychology literature (e.g., Carroll
(1963); Eccles and Wigfield (2002)), we model each student as having two idiosyncratic
characteristics that govern productivity and the opportunity cost of time. A child’s utility
costs of spending study time are convex, meaning that she becomes increasingly less willing
to continue work as her total time allotment to studying grows. This model feature admits
various natural interpretations, including physical/mental exhaustion, or marginal value of
non-study time rising as other activities become increasingly crowded out.

A central implication of this framework is that design of academic compensation schemes
drive learner behavior in important ways. Virtually all incentives tied to learning are “piece-
rate,” where individuals are rewarded for outputs rather than for time inputs. Continuing
the thought experiment, if Anthony and Joseph both earn an “A” in a math course, they
both see the same improvement in their chances for job/college applications, even if Joseph
required only a fraction of Anthony’s study time. Within our model, while a child’s motiva-
tion characteristic alone determines willingness to spend an hour studying, under piece-rate
incentives his productivity characteristic will also play a central role in his decision of whether
to spend enough time to achieve at a high level. A child with high motivation (i.e., low cost
of studying an extra hour) may still choose to complete few assignments if an hour of his
study time is sufficiently unproductive for reaping the rewards of achievement.

Our approach to empirically modeling education is novel for two important reasons.
First, we focus on aspects of adolescent human capital—day-to-day rational leisure-study
choice—that have not been thoroughly studied in the literature. Second, we depart from
typical methods and models because our novel data collection procedure opens a window
into learner behavior not previously possible with observational data. A comparison to other
empirical work on childhood skill development is informative for understanding our contri-
bution. A branch of this literature focuses on parental investment in child human capital
and/or policy interventions such as financial resources or incentives for parents; e.g., Cunha
et al. (2010) Del Boca, Flinn, and Wiswall (2014), Fryer, Levitt, and List (2015), Chetty,
Hendren, and Katz (2016), Del Boca et al. (2019), Agostinelli and Wiswall (2022), Gayle,
Golan, and Soytas (2022). Another branch of the literature focuses on the importance of
schooling-input quality/quantity; e.g., Hanushek (2020), Dobbie and Fryer (2011), Cullen,
Levitt, Robertson, and Sadoff (2013), Chetty, Friedman, and Rockoff (2014), Fryer (2017),
Guryan et al. (2021), Ahn, Aucejo, and James (2022), Fryer, Levitt, List, and Sadoff (2022),
Luccioni (2023)). These are important topics deserving of scientific attention, but parents
and schools are only part of the parent-child-school partnership that shapes adolescent hu-
man capital development.

Much less is known about how a child’s own decisions affect skill development. Indeed, one
could argue that learner choices are the one truly indispensable input. Low school quality
may be offset by intensive parental inputs, while many public programs are geared toward
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partially offsetting low parental inputs in a child’s education—e.g., universal pre-K, free and
reduced-price lunch, and after-school programs. If parental and school educational inputs
are both lacking, personal effort of the learner may even substitute for both. Prominent
historical examples include Alexander Hamilton, Frederick Douglass, and Abraham Lincoln,
while contemporary examples include authors Jeanette Walls (2017) and Tara Westover
(2018). However, if the learner himself/herself is unwilling or incapacitated from contributing
to the parent-school-child partnership, it is difficult to imagine a viable compensating factor
in human capital production. Our research is designed to provide a novel and detailed focus
on the learner’s rational decision process of self-investment.

A newer branch of the literature experimentally studies children’s responses to incentives
as a means of spurring academic improvement; e.g., Fryer (2011), Fryer (2016) Levitt, List,
and Sadoff (2016), Burgess, Metcalfe, and Sadoff (2016), and C. Cotton, Hickman, and Price
(2022). While compelling as a growing body of evidence, Fryer (2011) articulated the limi-
tation of this standard approach: “we urge the reader to interpret any results as specific to
these [experimentally tested] incentive schemes and refrain from drawing more general conclu-
sions.” Furthermore, with the sole exception of C. Cotton et al. (2022), these studies do not
produce real-time data on children’s day-to-day behavior changes in response to incentives,
or data on how these altered behaviors map into incremental academic improvement.

Our study and primary research questions are geared toward developing generalizable
insights on student choices, rather than just the impact of a specific incentive scheme or pol-
icy. How responsive are a child’s labor-supply choices to a given level of enticement toward
math work? How productive is their time when they do spend it studying? How hetero-
geneous are adolescents in their study-time productivity and willingness to substitute time
from their outside options toward schoolwork? What portion of this variation is attributable
to observable external differences (e.g., family background, outside time-use options, school
quality, socioeconomics, etc.) versus heterogeneity that is idiosyncratic to the child? How
does this heterogeneity shape adolescent skill-production technology, and what role(s) does
school quality play? And finally, how do a child’s motivation and productivity traits interact
to produce choices and outcomes, under piece-rate compensation schemes?

We find strong evidence that a large fraction of struggling students are not less motivated
than their high-performing peers, but rather, they find difficulty in converting time inputs
into success. We also document surprisingly large productivity heterogeneity among aca-
demic high-achievers. Our structural model also points to labor-supply cost convexity as
a significant factor in driving student choices. For the median student, we estimate that a
doubling of the child’s daily time commitment to math study causes monetized utility costs
to rise by a factor of more than three.

We also investigate the extent to which contextual factors can explain productivity and
motivation differentials across students. While much of this heterogenetiy appears idiosyn-
cratic to the child—56% for productivity and 71% for motivation—in both cases, we are able
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to identify predictors that play a meaningful role in enhancing (or detracting from) a child’s
academic traits. Due to the pooled-cohorts design of our field experiment, we can measure
the year-on-year change in academic productivity and motivation: 5th-graders require more
time inputs to solve homework problems by 30% of a standard deviation, relative to 6th-
graders, while both age groups are comparably willing to allocate time to math and away
from outside uses. One of our main empirical findings is that school quality is a substantial
factor for augmenting academic productivity (i.e., rate of progress through homework tasks),
sometimes having an effect larger than the age-cohort difference.

Turning to an investigation of skill production technology, we find that between overall
study time and (quality-controlled) learning assignment completion, the latter is the primary
driver of incremental skill gains. Student productivity traits not only spur higher assignment
completion, but more productive students tend to also convert a fixed volume of math
learning tasks into permanent skill gains as well. Estimates also point toward a decreasing
returns-to-scale learning technology: math score gains of a fixed margin become harder to
accomplish as a child’s baseline proficiency rises. We also find evidence that school quality
plays a significant role in shaping human capital production technology through two channels:
it augments TFP and also increases the rate at which a fixed volume of completed learning
tasks are converted into permanent math skill gains.

Our work combines two literatures on estimation of skill formation technology (e.g., Cunha
et al. (2010); Agostinelli and Wiswall (2022)) and school value-added (e.g., Koedel, Mihaly,
and Rockoff (2015); Abdulkadiroglu, Pathak, Schellenberg, and Walters (2020)). Our ex-
perimental data enable us to produce novel contributions to the value-added literature in
several ways. First, an important advantage of our research design is that identification of
the structural model does not require information on typical endogenous observables like
exam scores or school assignment. Instead, we pin down mutli-dimensional unobserved stu-
dent traits with a combination of real-time data on home-study activity and experimental
incentive variation. This facilitates secondary analyses, based on our structural estimates,
where we can directly control for the canonical problem of selection on unobservables when
estimating school effects on skill formation technology. Second, the previous literature on
school value-added has typically conceptualized latent student ability as a single index (see
survey by Koedel et al. (2015)), whereas our experimental design enables us to quantify two
distinct, outcome-relevant dimensions of student ability—productivity and motivation—with
distinct impacts on the process of skill formation.3 Third, and related to the second, our
experimental observables, which include multiple test scores and fine-grained data on interim
home-study activity, allow us to expand upon traditional measures of value-added to explore
mechanisms through which school quality may operate. Specifically, we allow for the possi-
bility that better schools improve outcomes (i) by augmenting a child’s study productivity,

3These traits are similar in spirit to the cognitive and non-cognitive skills studied by Cunha et al. (2010).
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(ii) by augmenting motivation, (iii) by augmenting skill production “TFP,” (i.e., skill gains
arising independently of home study), and (iv) by increasing the rate at which homework
accomplishment translates into permanent skill gains. Our estimates suggest that three of
these four channels ((i), (iii), and (iv)) play a meaningful role in shaping adolescent aca-
demic choices and outcomes. We also find evidence suggestive of a final, indirect value-added
channel. More productive learners not only choose to do more homework, but they tend to
glean more permanent skill gains from a fixed volume of homework; to the extent that school
quality strengthens productivity, it may also strengthen this mechanism as well.

Our study highlights the importance of one’s learning environment in shaping both rational
academic choices and outcomes. Even when controlling for various individual and family
characteristics, we find that those who attend schools in more affluent districts have higher
learning productivity and are better able to convert study effort into measured skill gains.
Even highly-motivated and productive students tend to perform significantly better, all else
equal, when they attend a high-performing school than a low-performing school. Moreover,
decreasing returns-to-scale skill production technology suggests the social value of investing
in learning environments is highest among students who lack quality educational resources.

Our paper is structured as follows. Section 2 outlines the theoretical framework that
underpins our research design. Section 3 describes the field experiment and Section 4 presents
identification and estimation of the structural primitives. Section 5 decomposes structural
student type parameters by a host of observable factors. Section 6 performs secondary
analyses on math skill production functions and Section 7 concludes. An Online Appendix
contains additional technical details, graphs, tables, and details of our methodology.

2. A Theoretical Framework for Learner Self-Investment

We propose a quantitative model of rational learner choice in the spirit of qualitative frame-
works from psychology known as “mastery theory” (e.g., Carroll, 1963) and “expectancy-value
theory” (e.g., Eccles et al., 1983; Wigfield, 1994; Eccles & Wigfield, 2002; Wang & Degol,
2013). The psychology literature frames skill acquisition as a sequence of learning tasks: an
algebra student attends class, is assigned homework problems, chooses how much of each as-
signment to complete, and then iterates the process each day. At the end of the course, the
child’s measured algebra competency is determined by the cumulative volume of learning
assignments he completed. Thus, human capital attainment hinges on a series of high-
frequency decisions made by a child on a day-to-day basis, over a course of weeks or months.
Our goal is to formally quantify the structural elements of this decision process. Core model
primitives include a 2-dimensional vector of learner traits that shape the mapping between
effort and rewards. While unobserved heterogeneity and leisure-study decicions are the core
of our empirical exercise and the sole focus of the first half of the paper, Sections 5 and
6 show how the model we develop can open additional avenues for policy-relevant analysis,



6 MOTIVATION VS PRODUCTIVITY IN HUMAN CAPITAL

such as decomposing environmental and idiosyncratic factors that drive education outcomes,
and solving endogeneity problems that plague estimation of school value added.

2.1. A Formal Model of Study-Leisure Choice. Learning choices depend on (i) how
easily/quickly a child can complete learning tasks, and (ii) her perceived value of success
relative to the cost of effort. We refer to these components of incentives as study-time
productivity and motivation. For each child, indexed by i, let Ai ∈ N denote the number
of learning tasks that i completes within a fixed period of time. The precise definition
of a “time period” is not crucial, provided it is short enough that a child’s decision-relevant
characteristics can be thought of as fixed and stable within a period—e.g., a week, a month, or
a semester. Our model is one of within-period decisions, with opportunity costs of allocating
a certain fraction of a finite time endowment to math study.

Each individual task, chronologically indexed by ai=1, 2, . . . , Ai, is a discrete unit of work;
e.g., a single math problem, a block of problems, or an entire assignment. Completion of
these learning activities builds skill proficiency, which is of ultimate interest to policy-makers.
We study the mapping between cumulative work and measured proficiency gains in Section
6, but at present we focus solely on within-period rational study-time choice, Ti(Ai).

Definition 2.1. (Inverse) Study-time productivity, denoted θpi>0, governs the rate at which
child i is able to complete learning tasks.

Study-time productivity is inversely proportional to θp, but for ease of discussion we refer
to it simply as “productivity”.4 The mapping Ti(Ai) :N → R+. is stochastic, with total time
commitment being an aggregate of study times across individual completed learning tasks:

Ti(Ai) ≡
Ai∑

ai=1

τi(ai; θpi); τi(ai; θpi) ≡ θpi×τ0×τ
1(ai=1)
1 ×a−φ

i ×Uai , τ0, τ1, Uai > 0. (1)

Here, τi(a; θpi) is the time required for i to complete her ath learning task. τ0 is mean
completion time across all students, τ1 is a “startup cost,” on the first task of the period, and
the productivity fixed effect θpi scales mean completion time up or down. The term a−φ

i is a
standard “experience curve” (Wright (1936)) whereby a student’s rate of progress may grow
(if φ>0) or decay (if φ<0) with in-period task volume. The experience curve term allows
for short-run gains in productivity, despite θpi being fixed within-period. One concern is over
the assumption that student productivity types are fixed within a period. Could students’
productivity be updating in real-time as they traverse learning tasks? Ultimately this is an
empirical question of the time frame over which one can appropriately apply a short-run
model with stable latent types. However, including the learning curve term a−φ

i serves as a
robustness check by allowing for short-run productivity growth (or decay). As a preview, we
estimate very small short-run experience effects—a 5% time reduction after doubling output,
or τi(2ai;θpi)

τi(ai;θpi)
≈0.95—but large year-on-year shifts in θpi across 5th- and 6th-graders.

4In Section 6 we also allow for θpi to influence the rate at which work volume (Ti, Ai) is converted into permanent skill gains.
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The transitory shock, Uai , is iid across tasks and represents unpredictable fluctuations in
difficulty, mental state, distractions, etc. The element of randomness provides a realistic rep-
resentation of the data: we observe substantial variation of within-student completion times
across learning tasks (see Table 1). It also squares well with common academic experience:
sometimes a dreaded math problem turns out to be easier than expected, and other times a
learner’s initial optimism melts away as a given exercise drags on. We use upper-case U to
denote random outcomes and lower-case u for specific realizations. Subscripted “F ” denotes
exogenous distributions, while subscripted “G” indicates a distribution of some endogenous
object. We assume the shock distribution is well-behaved in the following sense:

Assumption 1. The production-time shock Uai follows (heteroskedastic) distribution Fu(uai|θpi)
with continuous density fu that is bounded away from zero on nonempty support [u, u] ⊂ R+.

For our empirical study we focus specifically on math learning, though the model ad-
mits various interpretations about what Ai and Ti represent. They could represent general
schoolwork, in which case the outside option for time encompases all non-scholastic activity
(e.g., sleep, chores, socializing, recreation, etc.). Alternatively, they could represent subject-
specific inputs (e.g., math), in which case the set of outside options for time includes work
on all other school subjects and non-school activities. In this case, a child faces outside
incentives for all activities, including science homework, and diverting time towards math
makes it more difficult to attain rewards for science achievement. Thus, we model the cost for
individual students to substitute time away from the most profitable outside use (including
homework in English, Science, etc.), and toward math learning instead.

Definition 2.2. (Inverse) Motivation, denoted θmi > 0, indexes idiosyncratic labor-supply
costs, or i’s willingness to substitute a fixed quantity of time toward math activity.

Although willingness to spend time studying is inversely related to θm, for ease of discussion
we often refer to it simply as “motivation.” Student i’s cost of spending Ti hours learning
math is multiplicatively separable in her motivation type and a common labor-supply cost
function: Ci(Ti; θmi) ≡ θmic (Ti). The separability assumption allows for a broad degree
of flexibility in the form of the cost function, while aiding identification by imposing a
homogeneity condition that Bodoh-Creed, Hickman, List, Muir, and Sun (2023) refer to as
“rank-stability:” if agent i’s effort level is at the pth percentile under one incentive scheme,
then i will remain at the pth percentile under any affine incentive shift. Assumption 2
establishes regularity conditions that ensure a well-behaved leisure-study decision problem.

Assumption 2. Costs are twice differentiable, c′(t)>0, and c′′(t)>0 ∀t∈R+; marginal costs
c′(t) are unbounded, and we adopt normalizations c(0)=0 and c′(0)=1.

Intuitively, the cost of allocating time to study rises as a child spends more time working.
Likewise, i’s cost levels and marginal costs for any t>0 are increasing in the inverse motiva-
tion parameter: high θmi means that child i incurs relatively more dis-utility from an hour of
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study. Cost convexity (positive second derivative) has an intuitive interpretation: marginal
disutility of sacrificing outside options rises with one’s total math-work time. That is, each
additional hour studying math is more costly than the previous one, because either marginal
utility of outside options rises as their consumption is increasingly crowded out, or because
the direct marginal psychic cost of math effort is rising, or both.5

Our specification of costs does not derive from an explicit model of a child’s complete
time-allocation decisions on sleep/grooming/eating, school time, regular study, leisure, social
time, scheduled extracurricular activities, chores, extracurricular website activity, etc. The
advantages of this approach are two-fold. First, it provides a simple and tractable model of
how a child trades off external incentives to study math versus utility from optimal outside
time usage. Second, this approach has the potential to allow for some generality, as our
specification of the cost function need not pre-suppose a specific model of all student time
allocation choice.6 Given that our cost function C(t; θmi) = θmic(t) does not derive from an
explicit model, we interpret the parameter θmi as a “reduced-form” estimate.7 In Section 5 we
draw upon a wealth of student-level observables to empirically tease apart observable factors
that contribute to student types. However, for the purpose of the structural model, θmi may
encompass either intrinsic costs of effort, opportunity costs of time, innate characteristics of
child i, environmental factors, or some mixture of these. A similar statement applies to θpi
as well: in the common language of regression analysis, (θpi, θmi) is a two-dimensional fixed
effect encompassing all factors of i or her life circumstances that are stable over the short
run, and govern rate-of-progress and leisure-study tradeoffs, respectively.

Assumption 3. An increasing piece-rate payoff function Πi(A) governs external incentives.
Payoffs are bounded: there exists π<∞ such that Πi(A)−Πi(A−1)≤π, ∀A≥ 2.

Intuitively, piece-rate incentive schemes may encompass all external “carrots” and “sticks”
presented to child i by her home, school, and community. Parents may inculcate in her a
positive intrinsic value of achievement, or they may offer tangible rewards or punishments for
completion or non-completion of work and achievement benchmarks. A child’s school rewards
her for homework completion with grades, and may further motivate her regular coursework
via pre-announced exams, with cumulative grades determining her future education and
career prospects. Additionally, businesses, organizations, and colleges may offer merit-based
admissions, internships, or scholarships that improve expected flows of future monetary and
psychic income from a desirable career (Becker (1993)).

5Unbounded marginal costs ensures finite study choices. E.g., if a period is a week, and t is hours, then one might naturally
assume c′(t) → ∞ as t → 168. This limiting choice would entail 7 full days of uninterrupted math study, requiring extreme and
physically dangerous levels of sleep and food deprivation.
6Agostinelli and Wiswall (2022) used a similar strategy to model parental investment in adolescent HC.
7One child may have more valuable outside uses of her time available, such as a new gaming system or a prolific friend
network. Child i may simply incur larger psychic costs of exerting effort solving math problems, relative to j. Alternatively,
j’s home/school may engender different norms regarding the value of work.
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2.1.1. Optimal Choices. In choosing optimal work (Ti, Ai), child i solves an optimal stopping
problem by recursively comparing costs and benefits of an additional completed assignment,
while accounting for randomness.8 Given (ai−1) completed assignments, a student optimally
determines the maximum time, t∗ai , she is willing to devote to the athi task. Equation (1) im-
plies success probability on task ai, given t units of time input, is Fs(t; ai, θpi) ≡ Pr

[
τi(ai; θpi)≤ t|ai

]
= Pr

[
Uai ≤ t

θpiτ0τ
1(ai=1)
1 a−φ

i

]
= Fu

(
t

θpiτ0τ
1(ai=1)
1 a−φ

i

∣∣∣θpi), with first derivative denoted by fs(t;ai, θpi). A

learner’s decision problem is defined by the Bellman equation,

V
(
ai−1, Ti(ai−1)

)
= max

t≥0

{
Fs(t; ai, θpi)

[(
Πi(ai)−Πi(ai−1)

)
+ V

(
ai, Ti(ai−1) + t

)]
− θmi

[
c
(
Ti(ai−1) + t

)
−c

(
Ti(ai−1)

)]}
. (2)

The first term inside the curly brackets is payoffs from work, being success probability times
the sum of immediate incremental payoffs (Πi(ai)− Πi(ai−1)) and continuation value

V(ai, Ti(ai)) ≡ maxt̃

{
E
[
Ã|t̃, ai, θpi

] (
Π(Ã)− Πi(ai)

)
− θmi

[
c(Ti(ai) + t̃)−c(Ti(ai))

]}
, (3)

where Ã and t̃ are future tasks completed and future time worked after completing the athi
learning task. Note that a student retains the opportunity to reap rewards from future work
only if she does not walk away during the ath task attempt. This is an innocuous assumption,
given that ai merely represents a chronological index on work i chooses to complete. The
last term inside the brackets is incremental costs from work time on the current task ai.

Thus, optimal choice t∗a is implicitly defined by the first-order condition9

fs(t
∗
ai
; ai, θpi)

([
Πi(ai)−Πi(ai−1)

]
+ V

(
ai, Ti(ai−1)+t∗ai

))
+ Fs(t

∗
ai
; ai, θpi)V2

(
ai, Ti(ai−1)+t∗ai

)
= θmic

′ (Ti(ai−1)+t∗ai
)
. (4)

Intuitively, if she completes the athi assignment in time t < t∗ai , then she pauses and re-
optimizes the updated Bellman equation (2) for the (ai+1)th learning task. Otherwise, if
devoting time t< t∗ai does not complete assignment ai, she continues to work and her stop-
ping time t∗ai balances the expected marginal benefit of continuing work (including retention
of future payoff opportunities) against the deterministic marginal cost. If she reaches t∗ai
without realizing her athi success, she discontinues work for the remainder of the period, and
(Ti(Ai), Ai) are determined by her recursive optimal stopping point, where Ai=(ai−1).

In reality, Ai=Ai

(
θpi, θmi,Πi, {uai}

Ai+1
ai=1

)
and Ti=Ti

(
θpi, θmi,Πi, {uai}

Ai+1
ai=1

)
both depend not

only on a child’s characteristics and incentives, but also on a specific realized history of
shocks U encountered along the way to her stopping point. For notational compactness we
suppress this dependence, but note that conditional on a given (θpi, θmi,Πi) triple, there is
a non-degenerate distribution of final within-period choices, Gta(Ti, Ai|θpi, θmi,Πi).

Two key model predictions are relevant to model identification. First, if a child continues
on to the (ai+1)th task there is an important shift in her decision problem: previously her ac-
crued cost baseline was Ti(ai−1), while now it is Ti(ai)>Ti(ai−1). Thus, cost convexity implies
8We use the term “optimal stopping problem” in the sense of the statistical decision theory literature pioneered by Wald (1945),
Arrow, Blackwell, and Girshick (1949), Snell (1952), and Chow and Robbins (1963).
9In equation (4), if the left-hand side is less than the right-hand side given ai=0 and Ti = 0, then a corner solution obtains.
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elevated marginal costs of continuing, and bounded marginal payoffs (Πi(ai+1)−Πi(ai)≤π)
imply her maximal willingness to work eventually declines, or t∗ai+1<t∗ai . Second, the model
predicts a monotone relationship between student types and actions. More precisely, the
stochastic mapping from unobserved θmi to observed Ai, conditional on fixed θpi, exhibits
a monotone likelihood ratio: reductions in labor-supply costs lead to first-order dominance
shifts in a child’s distribution of work volume, or θm < θ′m ⇒ Ga(a|θp, θm) ≤ Ga(a|θp, θ′m).
Likewise, a similar monotone-likelihood-ratio property holds for the relationship between θpi
and Ai (conditional on fixed θmi): θp<θ′p ⇒ Ga(a|θp, θm)≤Ga(a|θ′p, θm), a∈N.
2.2. The Significance of Piece-Rate Incentives. Piece-rate compensation—that is, Πi(·)
is a function of completed tasks, Ai, rather than time inputs, Ti—is the dominant form of
incentive provision in academic settings. If two students, Tabby and Jane, both complete
9 out of 10 math assignments, and score 95% on the final exam, academic rewards do not
distinguish between Jane’s 40-hour math commitment versus Tabby’s 20 hours. Both chil-
dren receive the same grade as a result of their identical performance record and the same
improved prospects for their desired college seat, scholarship, job, etc. This modelling choice
is not only empirically relevant, but it also has profound implications for how incentives
interact with a child’s unobserved traits. If we consider a switch to time-based incentives,
say Π̃i(t), then (2) reduces to a simpler decision problem where a child’s productivity θpi
is irrelevant to their optimal study-leisure choice. By contrast, in the piece-rate decision
problem (2), rational choice of time commitment depends not only on how averse a child is
to spending an hour on math (i.e., θmi), but also on how productive an hour of her time will
be (i.e., θpi) for reaping output-contingent rewards of work.

Our model of adolescent time-allocation therefore immediately calls into question prevail-
ing wisdom behind labels that are often applied based on observed behaviors. For example,
if Jane turns in only 50% of her assignments while Tabby completes all of them, many
practitioners and researchers simply conclude that Jane is “unmotivated” for math study,
while Tabby appears “well-motivated.” While the model allows for this as a plausible inter-
pretation, it is also equally plausible that Jane turns in less homework despite being more
motivated than Tabby (θm,Tabby≥θm,Jane) if she is sufficiently less productive (θp,Tabby<θp,Jane).
Thus, both explanations are observationally equivalent given the single raw data point of
Tabby’s and Jane’s study choices or academic outcome.

The model also calls into question various common and incorrect usages of the term “effort.”
In the example above many would say that Tabby put forth more “effort” since she completed
more work. However, if Tabby is more than twice as productive as Jane, then Jane actually
spent more time working on math to produce half as much output, and can be said to have
exerted greater “effort” than Tabby. Our model highlights how multiple dimensions of agent
unobserved heterogeneity may imply that there does not exist a one-to-one mapping between
typically unobserved measures of true effort (e.g., time spent, personal costs incurred, etc.)
and observable output (e.g., grades, homework, etc.).
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2.3. Discussion on Modelling Choices. Before moving on, we briefly discuss some as-
pects of our modelling approach. First, our goal is to study short-run adolescent decision
processes, so there are no formal “future periods” in the model, aside from the chronological
indexing, “a,” of learning tasks. However, cost convexity essentially performs the role of “dis-
counting” expected utility on later units of work (i.e., a′i >ai), since the baseline marginal
cost of zero additional effort on the next unit (ai+1) rises with time spent on task ai.

On a related note, the decision model is a non-stationary dynamic program because of
cost convexity combined with history-dependence of the state variables (ai−1, Ti(ai−1)).
The continuation value argmax in (4) updates continuously as time accrues on assignment
ai, and the distribution of payoffs on future work ã > ai is not known until the student
finally completes task ai.10 The model is computationally taxing for the researcher, but it
has several advantages, the most important being that it requires only simplistic thinking
on the part of the adolescent decision-maker. The optimal stopping model merely assumes a
child comprehends three basic pieces of information at each point in time: (i) her marginal
incentives to complete another task, (ii) the variability of completion times for current and
future tasks, and (iii) how taxed/exhausted she feels from previous work. In short, a child
need only be aware of her current feeling and of her ability to continue productively.

An alternate model where children make a one-shot decision on achievement target Ai

would be computationally simpler, but requires much stronger assumptions: learners must
plan ahead and rigidly stick to their ex-ante study plan, regardless of whether they experience
a string of especially good study-time shocks along the path to Ai. In contrast, if a child
completes Ai assignments unexpectedly quickly, she would have incentive to work beyond
the target Ai: her marginal cost c′(Ti(Ai)) would still be relatively low, allowing her to reap
expected marginal profits. Similarly, a particularly bad string of shocks would motivate her
to abandon work prematurely. Therefore, the simpler one-shot decision model would require
student behavior that is not always ex-post rational. Thus, we adopt the optimal stopping
model as a more defensible empirical framework for real-time leisure-study trade-offs.

3. A Field Experiment to Identify Student Motivation and Productivity

Observational equivalence between opposing explanations for observed behaviors means
that the model of adolescent study-leisure choice is not identified from standard education
data. This fact motivates our field-experimental design, carefully crafted to include multi-
ple dimensions of student observables and exogenous variation unavailable in observational
data. Our research design forms part of a nascent literature that employs field experimental
methods for identifying structural primitives of an economic model, rather than to directly
test hypotheses about how people respond to some treatment (e.g., Augenblick, Niederle,
and Sprenger (2015), Rao (2019), DellaVigna, List, Malmendier, and Rao (2022), Hedblom,
Hickman, and List (2022), Bodoh-Creed et al. (2023)).

10Buchholz, Shum, and Xu (2023) use a similar non-stationary stopping model for taxi-driver labor supply.
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Our experiment was not designed to test the impact of paying students a certain amount of
money to study (e.g., as in Levitt et al. (2016)). Rather, we adopt the student choice model
as a basis for an econometric framework under general incentives. Our strategy uses natural
field experiments to shape a data-generating process with requisite observables and variation
to identify structural parameters governing individual motivation, productivity, and labor-
supply costs. Given the alternate methodological focus, our study differs somewhat from
common experimental designs. We need not specify a control group as an empirical baseline,
but instead structural identification simply requires multiple treatment groups exposed to
exogenously differing incentives. Thus, our experiment is similar in spirit to A/B testing
methods commonly used in marketing and user-experience optimization.
3.1. Identification Strategy. Our approach combines standard panel-data methods with
recent econometric theory developed for using discrete instruments to quantify continuously
varying unobserved heterogeneity (Torgovitsky (2015) and D’Haultfoeuille and Février (2015,
2020)). For intuition on pinning down unobserved student traits, consider a hypothetical
“ideal” experiment involving students, Tabby and Jane. The researcher obtains two identical
clones, call them Tabby∗ and Jane∗, and during summer break places each of the 4 students
into individual observation rooms for a period of two weeks. Inside each room is a desk
with a notepad, pencil, and age-appropriate math textbook. There is also a couch with
a web-enabled smart-TV and video gaming system for leisure options. Upon entering the
observation room, the researcher makes constant piece-rate wage offers—π to Tabby and
Jane and π∗ > π to Tabby∗ and Jane∗—for working through math textbook assignments,
with completion defined by some quality criterion. The researcher explains that the children
are free to allocate their time in any way they wish, with piece-rate payments to be delivered
for the number of exercises successfully completed at the end of two weeks.

Suppose Tabby and Jane complete 5 and 10 math assignments, respectively, while Tabby∗

and Jane∗ complete 7 and 13. The research team records per-unit study times across com-
pleted math assignments for each child, and can infer θp,Tabby and θp,Jane as panel-data fixed
effects. These imply different mean hourly wage rates: say Tabby works fast enough to earn
$15/hour on average, while Jane can garner only $12/hour on average. All observed differ-
ences between Jane and Jane∗ are due solely to their piece-rate offers π<π∗, since they are
identical and have the same type (θp,Jane, θm,Jane). Since Jane (Jane∗) did more work than
her same-offer counterpart Tabby (Tabby∗) despite lower hourly compensation, Jane must
be more willing to allocate time toward math than Tabby (i.e., θm,Jane<θm,Tabby).

The piece-rate shift from π to π∗ identifies individual labor-supply elasticities. Moreover,
since θm,Tabby and θm,Jane both interact with a common cost schedule, c(t), differences across
the children’s choices and labor-supply elasticities can be used to make inference about the
shape of c(t), independent of idiosyncratic traits. Tabby’s output increased by 40% while
Jane’s output under the same proportional wage increase rose by only 30%, so marginal costs
must be higher from Jane’s baseline output of 10 assignments, relative to Tabby’s baseline of
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5. Inferences about the form of the common cost schedule become richer as the experiment
is repeated with a large set of Tabby’s classmates, Clark, Anna, etc. With a complete
picture of the shape of the common cost schedule, c(t), the researcher can reverse-engineer
each child’s motivation type, {θm,Tabby, θm,Jane, θm,Clark, θm,Anna, . . .}, from the solution of the
optimal stopping problem (2), given their observed, optimal choices.

Much is obviously infeasible or unethical about this hypothetical “ideal” experiment. How-
ever, one can capture the essential elements with field experimental methods and web-based
technologies. Groups of students may be “cloned” through individual-level randomization.
While no identical copies of the same child exist, the group-level distributions of observed
and unobserved characteristics will be the same. Similarly, rather than sealing students into
observation rooms, a web-based learning setup has two considerable advantages. First, a
web server can meticulously record time-stamped activities in a non-invasive way that would
be impossible otherwise. Second, it allows students to make choices surrounded by the
myriad outside options for their time—sports, clubs, music, socializing with friends, chores,
etc.—that form a natural part of their regular routine.11

3.1.1. Caveats and Challenges. Since the researcher cannot observe a student’s regular edu-
cational activities (e.g., class instruction and graded homework), a question arises: how do
we interpret experimentally observed (extracurricular) math activity, given that concurrent,
formal coursework and its baseline incentives are unobserved? A major challenge to empir-
ical modelling in many contexts is that the full payoff function encompassing all “carrots”
and “sticks” is often difficult to quantify, due to data limitations. Our field experimental de-
sign solves this problem by placing many different children on the same footing with known
external incentive variation dictated by the researcher. Moreover, structural identification
requires only that the distribution of formal coursework activity is uncorrelated with ex-
perimental incentives. Thus, individual randomization is crucial to ensure that they are
independent of a child’s teacher, school, and unobserved external incentives provided by
parents/schools/communities. The other central design element is that experimental math
activities must be comparable to learning tasks encountered in formal coursework.

Provided the above two criteria are met, concurrent formal coursework and its unobserved
external incentives merely changes the interpretation of the motivation parameter somewhat.
In the hypothetical, “ideal” experiment, a child’s willingness to allocate time toward math
activity is judged relative to the baseline of zero activity, while in our web-based experiment
θmi represents marginal willingness to allocate extra time above and beyond their regular
schoolwork. Therefore, structural model estimates remain informative for policy analyses fo-
cused on improving academic outcomes relative to the status quo. Notwithstanding, note that
the interpretation of experimentally inferred productivity, θp, hinges only on the similarity
between extracurricular incentivized math tasks and formal coursework.
11Our web-based research design also provides a proof of concept for powerful new diagnostic tools cheaply available to educators
at scale, given recent shifts toward K-12 learning materials being housed online.
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Despite this caveat, rich data (discussed in Section 5 and Appendix A) may allow the
researcher to move beyond the basic extracurricular interpretation of experimentally inferred
θm. Recall that (θpi, θmi) represents a fixed effect encompassing all external and internal
factors—including default formal coursework commitment—relevant to i’s productivity and
motivation that are stable over the short-run. Thus, we can project a wealth of student
observables (e.g., outside time-use data) on type estimates to study how productivity and
motivation are impacted by formal coursework commitments, outside leisure opportunities,
demographics, etc. Moreover, structural estimates of unobserved student traits and observed
extracurricular math activity may be projected onto exam scores to gain quantitative insights
into the “black box” of the learning process, a theme we explore in Section 6.

Two final potential hazards are worthy of note. First, a possible threat to structural
identification would arise if students responded to extracurricular incentives by neglecting
regular schoolwork. We do not access childrens’ academic records due to privacy concerns,
but in multiple conversations with our administrator and teacher partners, they universally
reported no perceptible reduction in homework completion rates during the sample period.
We find strong evidence in our survey data consistent with their reports (see Section 3.3
below). Finally, the thought experiment above glosses over extensive margin choice: what
if Tabby spent no time on math under incentive π, while Tabby∗ did some math work under
π∗? Holding piece-rate incentives fixed, there may be a region of student-type space where
either θm or θp (or both) are prohibitively large to rationalize positive effort. Some group of
children may feel that they are too inefficient or too averse to extra work (or both) to respond
with positive labor supply. For such students, we cannot point-estimate their 2-dimensional
type with a revealed preference approach, but using the whole sample population as a guide,
informative bounds can be derived. Our main structural estimator requires only exogenous
incentive variation for identification, but our later analyses deal with this challenge via
standard Tobit Maximum Likelihood methods (see Sections 5 and 6).

3.2. Experimental Design Details. Our field experiment included 1,676 5th and 6th grade
students across three demographically distinct school districts in the greater Chicago area.
We developed a website with age-appropriate learning tasks professionally designed by ex-
perts in mathematics pedagogy. School administrators and teachers from the three districts
cooperated with the research team for this study, and served as the primary interface with
student test subjects. The research team prepared all relevant research materials, which
were distributed and collected to/from students by their math teachers. Participation was
on an opt-out basis, meaning that (after prior notification) students in each math class were
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included in the study unless the child or his/her parent declined.12 This setup carefully bal-
anced scientific needs (a large, representative sample of the local student population), with
ethical imperatives of clearly articulating study procedures and community members’ rights,
and providing ample opportunity to decline participation. A small fraction of students were
opted out (< 5%), but teachers and parents generally welcomed our study enthusiastically
as a supplemental learning opportunity for their students. While data analyses focus solely
on children in non-special-needs classes, some parents of special-needs students contacted us
to request website/incentive participation by their child; we were happy to oblige.

3.2.1. Study Sample. We partnered with three public school districts in the greater Chicago
area for the 2013-2014 academic year. A total of 1,676 5thand 6thgrade students participated,
with 46% from District 1, and 27% each from District 2 and District 3.13 Although school
traits do not directly enter our analyses we summarize them for context in Table OS.3 of the
Online Appendix. Relative to the State of Illinois, the state most demographically represen-
tative of the U.S. national population at the time of the study, District 1 was above-average
on financial resources per student, faculty compensation, teacher qualifications, fraction of
budget spent on instruction, and student performance. District 2 was remarkably close to
the state averages on most dimensions. District 3 lagged considerably behind the other
two on various dimensions, including percent of revenues from local property tax, average
teacher qualifications, and student outcomes. District 3 had a relatively high operating bud-
get per-pupil, but this number alone is somewhat misleading. Like many districts serving
less affluent communities, it receives additional state funding for factors such as social work-
ers, meal subsidies, and non-instructional support programs.14 District 3 must also devote
significant resources to teaching English as a second language for the 24% of its students
who are limited English proficient, in addition to core curriculum subjects.

The local populations these districts serve are similarly ordered by socioeconomic traits.
District 1 students are substantially more affluent by income and wealth, with District 2
being closest to state means, and District 3 lagging far behind. The other striking difference
is racial sorting of the communities each district serves (see Table 8), which is typical of
many US population centers. District 2 has a racially diverse student body, while District 1
serves mostly Whites and Asians, and District 3 serves mostly Blacks and Hispanics.
12Experimental procedures underwent stringent ethical vetting by multiple IRBs (at UChicago, UMiami, and BYU). Prior to
the study, a parental assent form was emailed to parents, and hard copies went home with students. This form described the
study, gave contact information for the research team, and described strict data-security measures it would follow. The assent
form also allowed parents to opt their child out of the study. On the first day of the study, students received an additional child
consent form with similar information stated in age-appropriate language. This form emphasized that participation was optional
and would not affect their academic standing; it also gave each child an opportunity to opt out on their own volition. Language
on both assent forms was scrutinized by three research ethics boards. Parents and students recieved multiple notifications—
before and after data collection—of their right to withdraw from the study. The research team deleted data tied to any child
who was opted out of the study.
13Our data exclude children in special education, though all who wished were permitted to participate in the incentives program.
14In one District 3 school the research team visited, after covering mission critical needs, financial resources to employ full
janitorial staff were lacking, so teaching faculty and administrators took turns cleaning the cafeteria room during lunch periods.
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3.2.2. Test Subject Interactions. We worked closely with 5thand 6thgrade math teachers
across the three participating school districts to implement the field experiment. A pri-
mary feature of the study was a website on which students could complete up to 80 math
learning tasks, each comprised of six practice problems, across five math sub-topics. Stu-
dents had access to the website for 10 days and could complete as many of the activities
as they chose. Our web server monitored students’ website use and tallied successful com-
pletions.15 We measured math proficiency using in-class assessments before and after the
website was made available. Given our focus on structural identification in this section, we
defer discussion on exams and student survey data to Sections 5 and 6, and Appendix A.
3.2.3. Mathematics Pedagogical Materials. Proficiency assessments and website content were
comprised of professionally developed, age-appropriate math materials. We obtained copies
of 46 standardized exams used by various U.S. states over the preceding decade, of which
30 were developed for 5thgraders and 16 were developed for 6thgraders.16 We split these
materials into a bank of 370 unique grade-5 problems and 302 unique grade-6 problems.
Finally, we used Common Core Math Standards definitions to categorize each problem into
five subject sub-categories: (i) equations and algebraic thinking, (ii) fractions, proportions,
and ratios, (iii) geometry, (iv) measurement and probability, and (v) number system.17 We
further categorized each math problem by high, medium, and low difficulty, with generous
consulting support by pedagogy experts at the UChicago School Math Project.

All 672 problems were pooled to expose 5thand 6thgraders to the same materials. Pooling
served multiple purposes. First, it provided a wide swathe of content for studying a diverse
student population with considerable pre-existing proficiency heterogeneity. The goal was to
achieve a mix of challenging and basic material. Second, it gave us a larger pool of learning
materials from which to draw. Third, it facilitated a comparison between age groups, allowing
us to cleanly estimate the effect of an additional year of schooling on skill formation.

Of course, this comes at the risk of overwhelming less advanced 5thgraders, and/or failing
to sufficiently challenge advanced 6thgraders. Concerns about pooling of students across two
age cohorts are mitigated somewhat by the striking similarities in curricula and common-
core sample problems across cohorts: grade-6 math curriculum focuses on incremental steps
forward from, or applications of, grade-5 curriculum concepts. Online Appendix B.1 and
Table OS.1 explain Common Core focus areas by grade, and present a side-by-side harmo-
nization of grade-specific math topics that went into each of our 5 merged sub-categories.
Ultimately, the pooling issue boils down to an empirical question: were the offered incentives
15Intuitive login credentials were based on the child’s first name, last name, grade level, and/or teacher’s name. The research
team maintained a 24/7 tech-support email to quickly resolve any login problems.
16These included CA Standards Test (2009), IL Standards Achievement Test (2003, 2006-2011, 2013), MN Comprehensive
Assessments-Series III, NY State Testing Program (2005-2010), OH Achievement Test (2005), State of TX Assessments
of Academic Readiness (2011, 2013), TX Assessment of Knowledge and Skills (2009), and WI Knowledge and Concepts
Examinations Criterion-Referenced Test (2005).
17Common Core subject definitions for 5th/6thgrades (https://learning.ccsso.org/wp-content/uploads/2022/11/Math_Standards1.pdf accessed July 2024)
differ slightly; our 5-subject classification is a merging of the two (see Appendix B.1).
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and pedagogical materials sufficient to attract non-trivial participation from all segments of
our sample population? If not, then poor experimental design would be manifest in the form
of low statistical power within descriptive analyses and structural estimates. To the contrary,
results discussed in Sections 3.3 (esp. Figure 1), 4.3, and 6 (esp. Table 5) demonstrate that
there were no undue scientific drawbacks to cohort pooling.

3.2.4. Website Structure. Our website was accessible through an individual login credential
for each student. The web server automatically tracked and recorded site activity for each
child without affecting user experience in any perceivable way. The website provided 80 learn-
ing tasks, each consisting of 6 multiple-choice questions from our bank of math problems.
Six problems per task were chosen based on feedback from adolescent pilot-study subjects.
The passing criterion for completion of each task was at least 5 out of 6 questions answered
correctly. Each student was allowed unlimited attempts at a given task, but for each new
attempt the ordering of the questions and answer choices were randomly perturbed. Adoles-
cent pilot-study participants universally reported that these measures were enough to make
attempts at gaming the system (i.e., repeatedly guessing in rapid succession) unprofitable.

Website learning tasks were organized into 55 general-topic tasks with balanced portfolios
of the 5 math topics and 25 topic-specific tasks (5 per topic). Aside from balancing on
topical content, questions were selected at random from our bank of math problems, so
that relative difficulty was impossible to predict from one activity to the next. After each
attempt, an interactive feature provided optional feedback, which the student could choose
to skip through or learn from.18 The web server tracked time by recording a timestamp for
each unique page view. Since only one math problem appears per page view within each
learning task, we get a high-frequency log of work times for each child.19 The website logged
successful completions into a database, and reported completed tasks, piece-rate incentives,
and current earnings to the user. Thus, we can obtain data on total website time Ti, task
accomplishment Ai, and a rich panel of within-child, task-specific, work times {τai}

Ai
ai=1.

The website was designed to be mobile-device friendly to accommodate children with vari-
ous types of internet connections at home. Roughly 3/4 of pageload requests originated from
computers (including laptops), about 1/5 were from tablets, and about 1/20 of pageloads
were from smartphones. One potential concern is that limited internet access may have
unduly influenced our results by inhibiting participation for some students. Although 7% of
students reported not having a regular internet connection at home, they were not statisti-
cally less likely to participate on the website than others, suggesting they had other ways of

18There was also an instructive component built from math textbook glossaries (by the University of Chicago School Math
Project, ucsmp.uchicago.edu) and interactive example problems. This instructive component was clearly marked as non-paid,
but it provided an option for students to invest in their income generation capability. Less than 2% of overall page-view time
was logged on the instructive portion of the website.
19One technical concern was a small number of spurious page-view times that result when a child closed her web browser in the
middle of a task without logging off. We replace these with student-sub-category-problem mean work times, using a procedure
proposed by (C. Cotton et al., 2022, Online Appendix).
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accessing the internet.20 Having a regular internet connection at home was not a statistically
significant predictor of website task completion, after controlling for school district, socioe-
conomic status, regular homework time, math attitude, and incentives (see Online Appendix
B.2). These results strongly suggest that internet access was not a major concern, due to
our mobile-friendly website design, the network of 11 public libraries serving our sample
population, and various other available options (extended family, school library, etc.).

3.2.5. Incentives and Randomization. We offered linear incentives (constant piece-rate) sim-
ple enough for adolescents to easily understand: Πi(ai) = (πi

0+πi
1ai)1(ai ≥ 2). To ensure a

within-student panel of data, we informed students that they must complete at least 2 web-
site learning tasks to receive any payment. Each child was individually randomized to one of
three contracts, (π01, π11)=($15, $0.75), (π02, π12)=($10, $1.00), and (π03, π13)=($5, $1.25),
thus ensuring treatment variation within schools, grades, and classrooms.21 Moving forward,
we use superscripts to denote student i’s contract assignment, while subscripts denote the
fixed payment parameters for each contract; in other words, the statement (πi

0, π
i
1)=(π0j, π1j)

indicates that student i operated under contract-j incentives. Our website achieved incentive
salience by prominently advertising piece-rates to users on the home page, as well as total
accrued earnings (with real-time updates), and remaining potential earnings. Adequate sub-
ject motivation depends on the ratio of payoffs to work for each learning task. Partitioning
them into small units (6 problems) encouraged participation and facilitated precise panel-
data inference on θpi. Note that our three offers vary significantly in proportional terms:
contracts 2 and 3 had piece-rate raises of 33% and 66.7%, respectively, over contract 1.

Our block randomization separated students into race-gender-school-grade bins. Within
each, we ordered students by pre-test scores and randomly assigned consecutive blocks of
3 students to contract groups 1, 2, or 3, individually. The algorithm repeated this process
50,000 times, and selected the candidate assignment that minimized correlations between
treatment and balance variables. Table OS.4 (Online Appendix) shows that our treatment
assignment was independent of all balancing variables. On the Monday following the pre-
test, each participant received a personalized letter in a sealed envelope containing login
credentials, website instructions, and their individual piece-rate incentive offer.22 Letters also
promised prompt delivery of payments within 2 weeks following the end of the experiment.

20The 95% confidence interval for participation rate among students without a regular home internet connection, [0.318, 0.495],
contains the participation rate for the overall sample of 0.447. Among this group, computer-based pageloads were 14% lower
and smartphone pageloads were higher by a similar margin.
21Base payments varied inversely with marginal wage to mitigate concerns of fairness by participants.
22A potential concern is whether students shared their login credentials with others. While impossible for us to fully verify,
various factors suggest not. First, > 95% students in a grade cohort received login credentials, so they would not likely have
been willing to do work for someone else if they could do the same work for themselves for pay. Second, roughly 1/2 of sampled
students declined any math work on the website, ruling out widespread login sharing which would have inflated work volumes
recorded by the web server. Third, we see a strong and statistically significant relationship between completed website learning
tasks and gains in math proficiency (see Tables 8 and 7). This relationship persists after controlling for a wealth of student
observables, and suggests that completed website tasks reflect their own work, and not someone else’s.
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The design of our website and incentives had several advantages. First, we incentivized suc-
cessful completion of learning tasks rather than time spent on these tasks. This is consistent
with typical academic settings where students are rewarded or punished (by schools/parents)
based on whether they complete homework assignments. Our focus on short-run, at-home
math practice (analogous to a short homework assignment) rather than long-term outcomes
like semester-end grades, made student decisions in our sample consistent with their day-to-
day choices on homework completion. Second, our small window of effort—in terms of size
of incentivized tasks and payment timeline—minimized the temporal gap between effort and
reward in order to maximize salience. Recent research (e.g., Bettinger (2012) and Levitt et
al. (2016)) has shown that incentives are more effective when rewards closely follow actions.
Third, as in many contemporary web-based homework platforms used by professional K-12
educators, we allow students multiple attempts at passing each learning task. This is consis-
tent with our model of stochastic completion times: a rational student clicks “submit” on an
attempt only if she believes she may pass, but she doesn’t know how much additional time
it will take until the website reports that her last attempt was successful.

3.2.6. Experiment Timeline. The experiment proceded as follows. (1) Teachers disseminated
parental information sheets and assent forms two weeks prior to the pre-test. (2) Students
received their own assent form, and took an in-class pre-test and survey administered by their
teachers. (3) Students were randomly assigned incentives and provided with information
about the experiment, website, and their earnings potential. (4) For a 10-day period, students
had access to the website to complete learning tasks, success on which was compensated
according to their assigned offer. (5) Teachers administered a post-test and survey in class.
(6) Payments were mailed out within two weeks of the post-test.

3.2.7. Classroom Tests and Surveys. In addition to website activity logs, we collected student
test-score and survey data. These are not needed for structural identification, but they
enable secondary analyses in Sections 5 and 6 where we enhance interpretability of structural
parameters by decomposing student type estimates, (θp, θm), and investigate production of
durable skills. Teachers in participating classrooms proctored standardized math assessments
based on common-core-classified sample problems as pre- and post-tests for the experiment.
Exam content was drawn from the same sources as website materials, as described in Section
3.2.3 above. Each exam contained 36 questions, chosen to balance 5th- and 6th-grade content,
sub-topics, and difficulty level. All students were given 35 minutes to complete as many of
the 36 problems as possible. Students also completed surveys, which collected information on
a myriad of individual factors, including attitudes, extracurricular activities, regular study
time, availability of homework support, and more. We also gathered socioeconomic indicators
from the American Community Survey for each of the roughly 160 US Census block groups
where our participants resided. Full details on in-class assessments and surveys, including
descriptive statistics, are provided in Section 5, Section 6, and Appendix A.1.
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3.3. Descriptive Analyses of Website Activity. Table 1 displays descriptive statistics of
math website activity. It will be useful to define “active students” as the 44.7% who completed
at least two website learning tasks, “marginal students” as the 5.6% who completed one task
but not a second, and “inactive students” as the remaining 49.7% who did not complete
any tasks. Within the active group, the median student completed 12 learning tasks, while
4% completed all 80. Distributions of learning task completion, website time, and rate of
progress illustrate striking heterogeneity: they all have medians well below the means, and
standard deviations near or above the means. Overall, we observe 749 active students who
completed 16,740 learning tasks (i.e., 84,000–100,000 math problems correctly solved) across
roughly 30,000 attempts and 2,000 child-hours during our 10-day sample period.

To place these numbers into perspective, first recall that website activity was extracurric-
ular, being separate from a child’s regular schoolwork regimen. For a basis of comparison,
we compiled survey data on school homework time per day (across all school subjects): on
the pre-survey we asked students about their homework time during a “typical week”, and
on the post-survey we repeated the same question but referring specifically to the sample
period. One possible threat to identification would be if students responded to the extracur-
ricular financial incentives by neglecting schoolwork in proportion to their website activity.
In conversations with participating administrators and teachers, they universally reported a
firm impression that students did not reduce the amount of turned-in homework assignments
during the sample period. Our survey data corroborate this claim: among active students,
mean homework time reports across the pre-survey and post-survey differed only by a small
margin (3.97%), and the difference was statistically insignificant (p-value=0.156). Table 1
reports homework time numbers averaged across pre- and post-survey reports.

Aside from acting as a robustness check, this result contextualizes the magnitude of ob-
served website activity. Assuming mathematics accounted for 25%–50% of daily homework
time implies the average (median) website math time per day among active students would
have represented an increase of 37%–74% (24%–48%) in daily math activity.23 Active stu-
dents reported 22.1% more daily homework time than marginals/inactives, and a two-sample
t-test rejects the null hypothesis of active vs. marginal/inactive mean equality (p-value
3.5×10−38). Other indicators in our data also point to a strong positive relationship between
daily homework times and willingness to engage in extracurricular math. We find positive
Spearman rank correlations between daily homework time and three different measures of
website activity: (binary) active status, 0.229 (p-value 1.8×10−21); task accomplishment,
Ai, 0.238 (p-value 4.6×10−23); and time spent, Ti, 0.223 (p-value 2.5×10−20). Finally, stu-
dents were asked on our surveys to rate how often they miss homework assignment deadlines
at school; their responses have a statistically significant negative relationship with choices

23For an alternate benchmark, we discussed our findings with a math education consultant employed by a Midwestern US state.
The consultant opined that 72 extra math problems within a 10 days (the active student median) would be an increase of
50%–100% in homework volume for a typical 5th/6thgrade student.
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Table 1. WEBSITE MATH ACTIVITY & DAILY HOMEWORK TIME

Contract Contract Contract
Sample Sample Sample Group 1 Group 2 Group 3

Variable Mean Median Std. Dev. N Mean Mean Mean

MASSES AT DIFFERENT WEBSITE ACTIVITY LEVELS

Active Students 1(Ai≥2) 0.447 0 0.497 1,676 0.422 0.453 0.466
Marginal Students 1(Ai=1) 0.056 0 0.230 1,676 0.072 0.043 0.054
Inactive Students 1(Ai=0) 0.497 0 0.500 1,676 0.506 0.504 0.480

EXTRACURRICULAR MATH ACTIVITY, CONDITIONAL ON Ai≥2

Learning Tasks Completed 22.35 12 24.29 749 17.72 22.91 25.98
Math Problems Solved 134.11 72 145.75 749 106.31 137.48 155.89
Website Time (min.) 157.05 102.85 152.45 749 122.74 160.13 184.96
Within-Child Avg. Time

Per Comp. Task (min.) 10.33 7.84 7.38 749 — — —
Within-Child Computer

Pageload Fraction 0.768 1 0.376 749 — — —
Within-Child Tablet

Pageload Fraction 0.185 0 0.348 749 — — —
Within-Child Smartphone

Pageload Fraction 0.048 0 0.172 749 — — —
Total Pay $33.05 $21.75 $25.77 749 $28.29 $32.91 $37.48
Avg. Piece-Rate Wage/Hr $8.52 $7.42 $5.45 749 $6.37 $8.39 $10.59

SELF-REPORTED AVG. DAILY HOMEWORK TIME ACROSS ALL ACADEMIC SUBJECTS

All Students (hrs) 1.248 1.214 0.681 1,676 — — —
Active Only (hrs) 1.422 1.429 0.646 749 — — —
(95% Conf. Int.) (1.38,1.47)
Marg./Inactive (hrs) 1.108 1.071 0.677 927 — — —
(95% Conf. Int.) (1.06,1.15)

of time spent on our math website, with a Spearman rank correlation of -0.265 (p-value
2.6×10−26). These results suggest a meaningful link between our website data and unob-
servable differences across students that drive disparate choices and outcomes over time.

Figure 1. Website Choices and Performance

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

SUCCESS RATIO = COMPLETIONS/MINUTES ACTIVE

0

10

20

30

40

50

60

70

80

T
O

T
. 
T

A
S

K
 C

O
M

P
L

E
T

E
D

ACTIVE GRADE 5

ACTIVE GRADE 6

Tot Tasks Comp Median

Success Ratio Median



22 MOTIVATION VS PRODUCTIVITY IN HUMAN CAPITAL

Figure 1 provides preliminary insights into unobserved student heterogeneity, based on
field-experimental observables. The horizontal axis is number of website learning tasks com-
pleted, Ai, and can be thought of as analogous to measures typically available in observational
data (e.g., assignment completions, GPA, exam scores). The horizontal axis is success ratios,
or task completions per unit of learning time, Ai/Ti, and is typically not available in obser-
vational education data. Both measures illustrate vast heterogeneity, and while 6thgraders
(circles) are more efficient than 5thgraders (triangles), on average, both groups have signifi-
cant representation across a common support, providing further assurance that our pooling
the two age cohorts within the experiment was reasonable.

The scatter-plot provides intriguing reduced-form evidence on unobserved study produc-
tivity and motivation. First, the northwest quadrant—low success ratio but high work
volume—and the southeast quadrant—high success ratio but low work volume—are both
well populated. While the rank correlation between success ratio and task completion is
(unsurprisingly) high at 0.551 (p-value 1.4×10−60), the rank correlation between success
ratio and website time choice is surprisingly low, at 0.067 (p-value 0.067). If we focus on
students who completed at or above the median output Ai plus one standard deviation, that
gives us a cutoff of 36 completed tasks on the vertical axis. Among this high-achiever group,
which is often labelled as “gifted” or “talented” based on traditional observables, a striking
feature of the plot is vast conditional productivity heterogeneity. This reduced-form finding
from our field experiment provides a new window into the “black box” of academic success.

A key prediction of our model is that sufficient strength on either trait, θp or θm, is enough
to drive high observed achievement. A very inefficient child (i.e., high θp) may still produce
high work volume with sufficiently high motivation (i.e., low θm), and vice versa. Figure
1 is strongly consistent with this idea, and two 6th-grade data-points in the scatter-plot,
call them child 1 (0.057, 36) and child 2 (0.353, 37), vividly illustrate. Conventional wisdom
would label child 2 as “slightly more motivated” for having exceeded child 1 ’s apparent effort
level by a margin of one more completed learning task. Our model and field-experimental
data paint a very different picture. Despite requiring over six-fold more time to achieve each
incentivized success, child 1 nearly matched child 2 ’s output, and is therefore vastly more
motivated. Moreover, this begs the question of how different child 1 ’s life might be under
some intervention that narrowed the productivity gap between him/her and child 2.

4. Identification and Estimation of the Student Choice Model

The primary structural primitives of the study-leisure model are idiosyncratic productiv-
ity (θpi) and motivation (θmi) parameters, and the cost function c(t). Additional structural
parameters include τ0, τ1, φ, and work-time shock CDFs Fu(uai |θpi). We now discuss iden-
tification and sketch out a two-stage GMM estimator to implement our empirical strategy.

4.1. Stage-1 Estimation: Productivity and Work-Time Shocks. Our approach fol-
lows standard methods using the within-child panel structure of work-time data, {τai}

Ai
ai=1.
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Log transforming equation (1) produces a linear-in-parameters regression equation, log(τai) =
log(τ0) + log(τ1)1(ai =1) + log(θpi) − φ log(ai) + log(uai), ai =1, . . . , Ai,

{
i
∣∣Ai≥1

}
, where

θpi enters as a student fixed-effect, and (τ0, τ1, φ) enter as intercept and slope terms. We
estimate these parameters and fixed effects through a standard differencing approach.

For estimation of heteroskedastic study-time shock CDFs Fu(u|θp), we first compute fitted
residuals, ûai =τai/(τ̂0τ̂

1(ai=1)
1 θ̂pia

−φ̂
i ), ai=1, . . . , Ai, {i|Ai≥1}, and we partition the support of θ̂pi

into 5 sub-intervals of equal length, Ipj , j=1, . . . , 5.24 Then, we split fitted residuals into 5
sub-samples {{ûai}

Ai
ai=1}{i|θ̂pi∈Ipj }, j=1, . . . , 5, and we smooth the corresponding empirical CDFs

using a flexible cubic B-spline form F̂u(u|Ipj ;γuj)=
∑7

k=1 γujkBujk(u), j=1, . . . , 5.25 Estimates are
consistent with heteroskedastic shocks: students who take longer to solve math problems
also have larger work-time variances than their more efficient counterparts.

Stage-1 model components can be separately pre-estimated under the assumption,
Assumption 4. Study-time shocks Uai are conditionally independent of motivation, Θmi,
given child i’s productivity type θpi.
Intuitively, this means that a child’s motivation parameter θmi operates only on her decision
to devote time to math or the outside option. Conditional on allocating time to math, she
invests full cognitive resources into the incentivized task and operates at her production
possibility frontier, modulo random, unpredictable shocks. Under this assumption, stage-1
parameters including {θ̂pi}{i|θ̂pi∈Ipj }, τ̂0, τ̂1, φ̂, and F̂u(u|Ipj ; γ̂uj), j=1, . . . , 5, can be treated as
known (and fixed) during stage-2 estimation. This provides needed tractability by drastically
reducing parameter-space dimension and computational burden.

One challenge is that individual fixed-effect estimates have differing variances due to the
unbalanced panel: Ai varies across active students, and higher values lead to more precisely
measured θ̂pi.26 In our secondary analyses in Section 5 we use inverse-variance weighting, and
in Section 6 we implement Feasible Generalized Least Squares methods and robust standard
errors to address any heteroskedasticity issues that arise from unbalanced panel estimation
in Stages 1 and 2. A final challenge is that student fixed effects can only be point-identified
for active students. This problem plays only a minor role in our stage-2 structural estimator,
based on exogenous incentive variation, and is straightforward to deal with in our secondary
analyses in Section 5 by use of a standard Tobit Maximum Likelihood approach.

4.2. Stage-2 Estimation: Labor-Supply. Formal identification of idiosyncratic student
labor-supply elasticities builds on ideas developed by Torgovitsky (2015) and D’Haultfoeuille
and Février (2015, 2020). These papers explore conditions under which discrete instruments
24Specifically, Ipj ≡

[
min(θ̂pi) + (j − 1)h,min(θ̂pi) + jh

]
, h = (max(θ̂pi)−min(θ̂pi))/5, j = 1, . . . , 5. A finer partition of 10

sub-intervals of θp made little difference in following stages of estimation.
25Basis functions Bujk are determined by the Cox-de Boor formula and a pre-specified knot vector spanning supp(Fu). We
chose 4 knots, uniformly spaced in quantile ranks. After constraining the endpoints this left 5 free parameters, which achieved
a remarkably tight model fit depicted in Figure OS.1 (online appendix).
26Cross-student variation in panel length is central to identification in Stage 2, and the unbalanced panel problem exists
independently of whether stage-1 objects are pre-estimated or not.
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are sufficient to nonparametrically identify a continuum of unobserved heterogeneity (θmi

in our case) without a priori functional form restrictions on the cost function c(t). Stage-2
identification relies on exogenous variation in observable choices, which our experimental
design achieves via randomized incentives (π0j, π1j) across groups of adolescents, j=1, 2, 3,
who otherwise have identical distributions of unobserved traits. Table 1 and Figure 2 show
descriptive evidence of the exogenous variation on which our identification strategy is based.
The final three columns in the table depict a steady increase of activity level, learning task
completion, and time spent on the website between contract groups 1, 2, and 3.

There are two basic tasks the Stage-2 structural estimator must accomplish: (i) pin down
idiosyncratic labor-supply elasticities determined by θmi, and (ii) trace out the curvature
of the labor-supply cost function c(t). Conditional CDFs of Ai, plotted in Figure 2, are
primary data moments relevant to these two tasks. Two artifacts of the figure are especially
illustrative for identification. First, the three CDFs follow a stochastic dominance ordering
that the model predicts, given the progression of our piece-rate incentives across contracts.
A formal nonparametric stochastic dominance test proposed by Barrett and Donald (2003)
reveals that the null hypotheses of pairwise equality among the three CDFs are rejected in
favor of first-order dominance. For accomplishing task (i), randomization combined with
monotonicity in the mapping between θmi and Ai (holding θpi fixed) implies that individual
labor-supply responses to incentive shifts can be pinned down by quantile differences across
the three conditional CDFs. A child at the median output level under contract 1 would,
on average, attain the median output level under contracts 2 or 3 as well, since the three
contract groups have the same underlying distribution of unobserved types (Θm,Θp).

Figure 2. Math Website Output by Contract Group
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Second, Figure 2 depicts two unequal stochastic shifts, despite the marginal wage difference
($0.25 per completed task) between contracts 1 and 2 being the same as the difference be-
tween contracts 2 and 3. This fact helps with task (ii): cost curvature (i.e., c′′(t)>0, ∀t) im-
plies a model prediction that quantile differences in work volume when shifting from contract
1 to contract 2 should be larger than when shifting from contract 2 to contract 3. Raw data
confirm this prediction: the first integrated quantile difference,

∫ 1

0

[
Ĝ−1

a (r|π12)−Ĝ−1
a (r|π11)

]
dr,
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is 5.77 additional learning tasks, on average, while the difference for the other two contracts,∫ 1

0

[
Ĝ−1

a (r|π13)−Ĝ−1
a (r|π12)

]
dr, implies an average of 3.82 additional learning tasks, or a 33%

reduction in labor-supply response. This double difference helps pin down cost curvature.27

4.2.1. Simulated GMM Estimator Overview. Our estimator is built on functional represen-
tations of these counterfactual quantile comparisons. We use a flexible cubic B-Spline spec-
ification of costs, ĉ(t;γc)=

∑kC+3
k=1 γckBck(t), with knot vector κc={κc1, κc2, . . . , κc,K+1}.28 For any

fixed shape of the cost function (conforming to Assumption 2), the researcher can employ
techniques in the spirit of Hotz and Miller (1993) and Guerre, Perrigne, and Vuong (2000)
to reverse-engineer a child’s motivation type θmi from her observable choices (Ti, Ai), us-
ing equations (2) and (4). Consider child i, whose learning-task volume Ai was at quantile
rank ri in Contract Group 1. We can repeatedly simulate sequences of work-time shocks
from Fu(u|θpi), and associated work times using (known) θpi, τ0, τ1, and φ. Then, holding
fixed the cost-function parameters γc and child i’s actual incentives, denoted (πi

0, π
i
1), we

find θmi such that the distribution of her optimal choices imply mean stopping time equal
to i’s observed Ti.29 When solving for optimal stopping choices, we employ a new method
recently proposed by Hamilton, Hickman, and Mohie (2024) for tractable computation of
non-stationary dynamic programming problems with history dependence.

Observed choices are also informative of cost curvature. First, Ai contributes to the empir-
ical CDF of work volume under i’s actual contract-1 assignment, Ĝa(a|π11)=

∑N
i=1

1[Ai≤a & πi
1=π11]∑N

i=1 1[πi
1=π11]

.

Second, we can also simulate a sequence of counterfactual work-volume choices, {Ãi2s}Ss=1

under contract 2, and {Ãi3s}Ss=1 under contract 3. These depend on Fu(u|θpi), θpi, τ0, τ1,
and φ (known and fixed), and on the shape of the cost function ĉ(·;γc) through equations
(1)–(4). Simulated counterfactuals pin down model-generated CDFs of work volume under
assignment to contracts 2 and 3 through the following: G̃a(a|π1j;γc)=

∑N
i=1

∑S
s=1

1[Ãijs≤a & πi
1 ̸=π1j]∑N

i=1 1[πi
1 ̸=π1j]×S

,
j = 2, 3. Thus, i’s observed choices (Ti, Ai) contribute to the empirical CDF of her actual
group, Ĝa(a|π11), and they also contribute to the model-generated CDFs G̃a(a|π12;γc) and
G̃a(a|π13;γc). Of course, there is nothing special about i being in Contract Group 1, and
similar logic can be applied to all active students.

All CDF values are linearly interpolated on a grid {a1, a2, . . . , aL}⊂ [2, 80], and the cost
parameter estimator γ̂c minimizes the distance between empirical CDFs Ĝa(·|π1j), j=1, 2, 3,

27Torgovitsky (2015) and D’Haultfoeuille and Février (2015, 2020) show that rich utility curvature information is encoded
within the curvature of a single quantile difference, G−1

a (r|π1j)−G−1
a (r|π1j′ ), as well.

28We chose a knot vector with Kc=7 sub-intervals, or 8 knots spaced uniformly in quantile-ranks of T in order to evenly spread
the influence of data over the various parameters γc. After imposing Assumption 2, this left 8 free parameters characterizing
labor-supply costs. While B-splines may produce a semi-nonparametric sieve estimator—if one allows Kc to grow with N—
asymptotic properties of such an approach are an open question due to the non-nested nature of successive B-spline models.
Thus, we instead view our 10-parameter B-spline cost function as a flexible but fixed parametric form.
29In a slight shift in notation, here we use Ti to denote i’s total work time through all completed learning tasks, net of any time
spent on unfinished work tasks. While this choice leaves a small amount of empirical information on the table, it lends a great
deal of computational tractability to the problem by drastically reducing the number of continuation value function evaluations
during when simulating the model.
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and their model-generated counterparts, G̃a(·|π1j;γc), j=1, 2, 3:

γ̂c=argmin

{∑L
l=1

∑3
j=1

(
Ĝa(al|π1j)− G̃a(al|π1j;γc)

)2

+ω0×
(
Ĝ

90

a (al|π1j)− G̃a(al|π1j;γc)
)2

×1
[
Ĝ

90

a (al|π1j) < G̃a(al|π1j;γc)
]

+ω0×
(
Ĝ90

a (al|π1j)− G̃a(al|π1j;γc)
)2

×1
[
Ĝ90

a (al|π1j) > G̃a(al|π1j;γc)
]}

s.t. γc1 = 0; γc2 = (κc2 − κc1)/3; γck − γc,k−1 > 0, k = 2, . . . , Kc + 3,; γc,k+1−γck
κc,k+1−κck

− γck−γc,k−1

κck−κc,k−1
> 0 k = 2, . . . Kc + 2.

(5)

The first line of the objective is the primary least squares moment conditions, and the last two
lines are “guardrail” moment conditions for numerical stability. Ĝ

90

a (al|π1j) and Ĝ90

a (al|π1j)

are the (interpolated) point-wise 90% confidence bounds of the empirical CDFs, and ω0 is
a penalty parameter. Guardrail conditions help the solver to avoid becoming stuck at local
optima in γc-space by imposing a quadratic penalty in regions where the model-generated
CDFs G̃a differ from the empirical analogs by more than the 90% confidence bounds. Other-
wise, they play no role. Constraints enforce boundary value (c(0)=0), boundary derivative
(c′(0)=1), monotonicity (c′(t)>0), and convexity (c′′(t)>0), respectively.

4.2.2. Correcting for Sample Selection. There are two minor complications regarding mass
points at the extremes of the sample. First, a small mass of students achieve full output
Ai=80 on the website. This issue is straightforward to deal with: since their productivity
types θp are known, we compute multiple hypothetical θm values for each using values of A
drawn from an extrapolated upper tail of the distribution Ga(a|π1j). Details are discussed
in Appendix B.3.1 (see also Figure OS.2).

The other minor challenge relates to non-active students who completed fewer than 2
learning tasks Ai ≤ 1 (i.e., upper tail of the (Θp,Θm) distribution). This is not a threat to
structural identification, which relies only on exogenous incentive variation across comparable
samples of students. Recall from Table 1 that masses of active students, Mact

j ≡ Nact
j /Nj

in Contract Groups j = 1, 2, 3 were ordered as follows: Mact
1 <Mact

2 <Mact
3 . Thus, within

the first two groups there were fractions Mact
3 −Mact

1

Mact
3

and Mact
3 −Mact

2

Mact
3

of students who would have
entered active status (Ai ≥ 2) under contract-3 incentive π13. For contract groups 1 and 2
we compute simulated counterfactual choices for marginal students (i.e., Ai = 1), and we
assign weight ωj ≡ Mact

3 −Mact
1

Mact
3

· Nact
j

Nmrg
j

, j = 1, 2, to their simulated counterfactual choices when
computing the model-generated CDFs. This coping strategy ensures that the lower tails
of empirical CDFs, Ĝa(A|π1j), and their model-generated counterfactual analogs, G̃a(a|π1j),
a≥2, are based on underlying sets of students with comparable unobserved types.

4.3. Structural Estimates. Structural parameter estimates and bootstrapped confidence
intervals are in Table 10 in Appendix A.3. These include B-Spline weights {γc1, γc2, . . . , γc10},
the first two of which, γc1 and γc2, are pinned down by the boundary conditions and therefore
have zero sampling variance. The most interpretable structural primitive is φ̂=0.0788, the
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Figure 3. Time Supply Cost & Marginal Cost Esti-
mates
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experience-curve parameter. This estimate is statistically significant, but implies only minor
short-term productivity gains: for a baseline of current work ai, mean per-unit completion
time on the (2ai)

th task (i.e., doubling volume) drops by only 5.32%.
Figure OS.1 in the online supplement presents estimated densities of heteroskedastic pro-

duction time shocks. We find that productivity shock distributions for less productive (i.e.,
higher θp) students are roughly mean-preserving spreads of the corresponding shocks for their
more productive (lower θp) counterparts. For the middle quintile of θp types, the 90-10 inter-
val of U is [0.558, 1.893] with a median of roughly 1, meaning that typical task completion
times range between 44% below and 89% above median completion time.

4.3.1. Cost Schedule. Figure 3 plots the estimated cost function C(t; θ̂m, γ̂c), scaled to the
median value of θmi among active students. Costs are precisely estimated for relatively low
values of time commitment, while bootstrapped confidence bands widen for higher values
where time-choice data are sparse. Figure OS.3 (online appendix) depicts goodness of fit
of our flexible structural model by comparing empirical CDFs and model-predicted CDFs
of work volume by contract group. Overall, the structural model does remarkably well
at matching patterns in the data, especially for contract group 2 where the richest set of
counterfactual comparisons are available (i.e., with both higher and lower incentives).

We estimate a high degree of curvature in the cost function c (t; γ̂c). Figure 3 labels
cost levels at regular intervals to illustrate this point. The child whose cost schedule is
depicted chose a total time commitment to our offered extracurricular math activities of
151.1 minutes, or just over 15 extra minutes per day over our sample period. At this level
of sustained additional math activity, this median child would have incurred a daily utility
cost of just over $1.11 per day. A doubling of this marginal math-time allocation roughly
triples costs, and an increase up to 1 hour/day raises utility costs by an order of magnitude.

These numbers mask subtle agency issues within educational contexts. Labeled cost levels
are monetary transfers that exactly offset costs associated with a certain commitment to
marginal math activity beyond status-quo schoolwork. A principal who can force this median
student into an hour of extra math study per day to reach competency standards, could
make the child whole again (i.e., zero surplus) with a daily transfer of $10.08. However, this
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Figure 4. Motivation/Productivity Heterogeneity
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hypothetical assumes access to the child’s private information and a means of compelling
him/her to some level of effort increase. Otherwise, the principal must offer incentives and
allow the child to optimize, in which case he/she will choose an optimal stopping time
that ensures positive surplus. The depicted child in Figure 3 was in contract group 3, and
completed 28 learning tasks in 15.1 minutes/day, resulting in a surplus of $28. In that sense,
cost levels depicted are actually deceptively low: for the median student to rationally choose
an hour of extra daily math under private information and limited commitment, the principal
would have to offer incentives far exceeding $10.08 daily.

4.3.2. Motivation and Productivity Heterogeneity. The left panel of Figure 4 illustrates cost
variation across students. The figure depicts cost schedules scaled to θm types at the 10th

percentile (i.e., highly motivated), median, and 90th percentile (i.e., less motivated) of active
students, where we have log-transformed costs to facilitate a graphical comparison. We find
dramatic heterogeneity in willingness to supply time to learning activity: the 10-90 range
(conditional on active status) entails a 25-fold increase in labor-supply costs for a fixed time
commitment t. This striking variation only adds to the challenges of the information- and
commitment-constrained principal described above: not knowing who is highly motivated
and who is not, offering sufficient uniform incentives to entice the 90th-percentile θm type to
study more will elicit large and costly responses by students who are much more motivated.
Alternatively, providing lower uniform incentives that are only sufficient to entice the 10th-
percentile types will evoke little or no labor-supply response from the rest of the population.
Of course, under piece-rate academic incentives, motivation is only one piece of the puzzle of
student choice. The right panel of Figure 4 depicts productivity differences: the 10-90 range
entails more than a 4-fold change in mean task completion time, and in turn, an equivalent
4-fold range of hourly compensation, holding piece-rate incentives fixed.

5. EXTERNAL INFLUENCES ON MOTIVATION AND PRODUCTIVITY

In this section and the next, we use a series of secondary analyses to show how structural
type estimates (θ̂pi, θ̂mi) open a new window into what differentiates individuals’ learning
processes. Motivation heterogeneity may be driven by internal psychic costs of working
on math, or by external factors (e.g., quality and variety of leisure activities) which shape
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opportunity costs of foregone time. Similarly, productivity differentials may reflect various
internal factors (e.g., cognitive differences or baseline math skill), and external factors (e.g.,
instructional quality, family support, or home learning resources). This begs the question
of, how much variation in productivity/motivation is explainable by external factors, and is
there a role for education policy to influence the type of learner a child becomes?

We model θp and θm as comprising internal and external components as follows:

log(θpi) = Xpiβp + ηpi, and log(θmi) = Xmiβm + ηmi. (6)

Here, Xpi and Xmi are vectors of student-level covariates, while (ηpi, ηmi) represent the truly
idiosyncratic component of student i’s unobserved traits (θpi, θmi). One obstacle to overcome
is truncation of the outcome variable: while data on (Xpi,Xmi) is available for all i, the left-
hand variables (log(θpi), log(θmi)) are known precisely only for active students (Ai≥2). For
marginal/inactive students (Ai<2), structural estimates from Section 4.3 allow us to bound
their (θp, θm) types using known contract-specific selection thresholds, Θm(θp; π0j, π1j, γ̂c) and
Θp(θm; π0j, π1j, γ̂c), where Θp(θm; π0j, π1j, γ̂c)=Θ−1

m (θm; π0j, π1j, γ̂c), j=1, 2, 3.30 Intuitively,
Θm(θp; π0j, π1j, γ̂c) is the marginal motivation type willing to complete at least 2 website
tasks, given productivity θp and incentives from contract j. The thresholds imply

log(θpi) ≥ log
(
Θp(Xpiβp + ηpi; π

i
0, π

i
1, γ̂c)

)
, and

log(θmi) ≥ log
(
Θm(Xmiβm + ηmi; π

i
0, π

i
1, γ̂c)

) (7)

for marginal/inactive students. We solve the truncated dependent variable issue by a stan-
dard approach: adopting a parametric assumption on the joint distribution of errors.
Assumption 5. Residual productivity and motivation are normal, (ηpi, ηmi)∼BVN(0,Σi),

with variance-covariance structure being a function of race and gender: Σi=

[
σ2
pi σpmi

σpmi σ2
mi

]
,

σji=σj0 + σj1femi + σj2blacki + σj3hispanici, j=p,m, pm.

Assumption 5 with equations (6) and (7) facilitate a bivariate Tobit Maximum Likelihood
estimator, defined as the argmax of the following log-likelihood function:[

β̂p, β̂m, Σ̂
]
=argmax

{∑N
i=1 1(Ai ≥ 2)ωdi log

(
fηp,ηm

(
Xpiβp,Xpiβp;Σi

))
+1(Ai < 2)ωdi log

(
Pr

[
log(θm) > log [Θm(θp; bi, π1i, γ̂c)]

∣∣∣Xpi,Xmi;βp,βm,Σi

])}
,

(8)

where the ω’s are inverse-variance weights: ωdi=
1

V ar(θ̂pi)
if Ai≥2, and ωdi=min{ωdj|Aj ≥2}

if Ai<2. For tractability, we compute the selection probability above by simulation.31

30Thresholds can be estimated as the northeast boundary of the convex hull of (θ̂pi, θ̂mi), given Ai≥2.
31More concretely, we begin by simulating a 1,000×2 matrix Z of independent standard normal shocks. For each mar-
ginal/inactive student i, and for each guess k of the parameters (βpk,βmk,Σk), we transform the shocks by (η̃pki, η̃mki)=V ′

iZ,
where V i is the (upper) Cholesky decomposition of Σki, to impose the BV N correlation structure. We add the mean-
shifters Xjiβjk, j = p,m, to get a 1,000×2 sample of simulated types (θ̃pki, θ̃mki) (see equation (6)), and we use it to
compute selection probability in the second line of (8). A simple way of doing so would be a sample mean of indicator
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In order to attach a causal interpretation to estimates of the parameters in equation (6),
we require the following additional assumption on the error structure:

Assumption 6. E[X⊤
jiηji] = 0, j = p,m.

After presenting results we return to a discussion on the plausibility of this assumption in
Section 5.1.7 below. In our main specification, Xpi contains an intercept and the following:
indicators for gender, race, grade (age cohort), and school district ; two variables for #adult
academic helpers and #peer academic helpers, defined as people who regularly assist child
i with schoolwork; and two socioeconomic proxies for i’s neighborhood of residence: mean
household income and fraction minors with no health insurance. These last two variables are
measured at the neighborhood (Census Block Group) level, of which there are 161 across
our 3 school districts. They serve as proxies for affluence and developmental resource depri-
vation, respectively, but since they are not measured individually they may also proxy for
neighborhood-level influences (e.g., peer/adult social networks). Xpi also includes three con-
trols for access to education resources: a dummy for no home internet, and two continuous
variables mobilefrac and tabletfrac, being fractions of website page-loads from a smartphone
or tablet device (desktop computer is the omitted category). They give us a window into
how kids cope with learning activity under resource constraints. Finally, as a robustness
check we will add four additional controls (described below) from a parent survey.

Covariates for motivation Xmi comprise the same variables plus 13 more. The idea is that
θmi represents a child’s willingness to shift time away from the best outside use, a function
of both direct costs and opportunity costs. Although our focus in this section is on external
forces acting on child learning, the first four additional motivation controls measure internal
attitudes toward math specifically—indicators for whether the child reported math as their
favorite academic subject or least favorite—and attitudes toward effort or work in general—
two survey-elicited indices for extrinsic motivation and intrinsic motivation. The remaining
nine controls measure variety and quality of a child’s non-math time uses: indicators for
enrollment in organized sports, music, or clubs ; fraction supervised leisure time or how much
of a child’s leisure is spent in adult-supervised activity; #video gaming systems at i’s home; a
dummy for parental permission for gaming on weekdays ; mean weekday recreational internet
time; mean daily recreational screen time; and mean daily regular schoolwork time.

functions, Pr
[
θm>Θm(θp; bi, π1i, γ̂c)

∣∣∣Xpi,Xmi;βp,βm,Σi

]
=
∑1,000

s=1 1

(
θ̃mkis ≥ Θm(θ̃pkis;π

i
0, π

i
1, γ̂c)

)
/1,000, but this basic approach

would hamper numerical optimization by introducing discontinuities into the Tobit objective function. Thus, we instead compute

smoothed selection probabilities as
∑1,000

s=1 K

(
θ̃mkis−Θm(θ̃pkis;π

i
0,π

i
1,γ̂c)

h

)
/1,000, where K(·) is a triweight kernel CDF (w/density

levels/slopes equalling zero at the support bounds), and bandwidth h is chosen by Silverman’s rule of thumb applied to the sam-
ple of identified θ̂m types for active students: h=1.06(2.978)ŜtDev(θm|A≥2)

(∑N
i=1 1(Ai≥2)

)−1/5
. Tobit ML and simulation-based

M-estimators are known to exhibit problems of local optima, so we also employ a numerical solution strategy that combines
various quasi-Newton and derivative-free solvers, along with an extensive array of multiple re-starts, to ensure convergence to
a global optimum. Details on our numerical approach are in Online Appendix B.4. Computation time averaged 12-36 hours
per Tobit specification on a Windows computer with a 12th generation Intel processor (18 physical cores, 24 logical) and 64GB
RAM, running MATLAB version 2022b.
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These variables are summarized in Table 8 (Appendix A.3). For some of our survey
covariates we have small fractions of observations missing, between 5% and 9% depending
on which variable (see Table 8). To cope with this problem, we apply standard techniques
for “Regression with missing X’s,” as surveyed by (Little, 1992), which essentially amount
to imputation of missing regressor values using projections based on available regressors.32

Finally, as a robustness check on our primary Tobit specification, we add a final set of
covariates derived from a parent survey. These include Involved Parent, a dummy for
whether self-reported average time spent with the child on daily schoolwork weakly exceeds
2 hours; BigFamily, a dummy for 3 children or more living in the household; and two
birth-order covariates, Middle Child (i.e., at least one younger and one older sibling), and
Y oungest Child (i.e., at least one older and no younger siblings); the omitted category is
oldest child status (including only children). The main shortcoming of the parent survey
data are that they are only available for roughly 20% of the sample (see Table 9, Appendix
A.3). When incorporating these variables, we use the same imputation techniques to replace
missing values for the rest of the sample. Assuming that data are essentially missing at
random, conditional on all other available covariates, this approach limits the statistical
power of the parent survey variables—the larger the sub-sample where they are available,
the more power—rather than introducing bias.

5.1. Empirical Results: Student Type Decomposition. Tables 2 and 3 report results
from Tobit regressions of student types on covariates. Recall that both equations for log(θp)
and log(θm) are jointly estimated, which is why the log-likelihood function values for similarly
numbered specifications across Tables 2 and 3 are the same. Specification (1) includes only
gender, race, age, and neighborhood-SES controls, while (2) introduces school effects, and
the remaining columns add increasing sets of additional variables. Specification (4) includes
all controls that are available for the full sample, and (5) provides a final robustness check
by adding the parent survey controls which were available for a 20% sub-sample.

5.1.1. Mean Shifter Results. Table 3 speaks to external validity of our motivation index θm
derived from revealed preference under our experimental incentives. Recall that a potential
limitation of our approach is that it may measure only willingness to allocate extra time to
math learning, beyond regular schoolwork. Do raw θ̂m estimates represent deeper motiva-
tional differences across students, or do they reflect differences in baseline coursework load
and differing levels of academic burnout? Our student survey data allow us to directly test
this hypothesis: if it is true then the coefficient on Reg Study Time in Table 3 should be
positive. This would be consistent with the idea that students with low measured motivation

32To fix ideas, suppose that the set of covariates includes X={1, X1i, X2i, X3i}Ni=1, but the value of X1i is missing for some
i. Imputation proceeds in two steps. First, we form data matrices X̃ = {1, X2j , X3j}Jj=1 and Ỹ = {X1j}Jj=1, where J is the
maximal number of observations for which the values of all three regressors are available. Second, we project Ỹ onto X̃ to get
X̂1i=[1, X2i, X3i]ρ̂ for each i with (only) X1i missing.
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Table 2. TOBIT REGRESSION RESULTS: PRODUCTIVITY

DEP VAR: (1) (2) (3) (4) (5)

log (θp) Estimate SD Effect Estimate SD Effect Estimate SD Effect Estimate SD Effect Estimate SD Effect

Female 0.233*** 0.240 0.222*** 0.229 0.132*** 0.158 0.170*** 0.211 0.233*** 0.303
(std. err.) (0.012) (0.009) (0.017) (0.036) (0.032)
Black 0.894*** 0.917 0.721*** 0.742 0.817*** 0.982 0.767*** 0.950 0.753*** 0.979
(std. err.) (0.018) (0.015) (0.040) (0.073) (0.040)
Hispanic 0.805*** 0.826 0.612*** 0.630 0.517*** 0.622 0.560*** 0.694 0.525*** 0.683
(std. err.) (0.019) (0.023) (0.041) (0.080) (0.054)
Grade 5 0.272*** 0.279 0.290*** 0.299 0.269*** 0.324 0.268*** 0.332 0.233*** 0.302
(std. err.) (0.010) (0.007) (0.014) (0.025) (0.024)
Constant 0.064*** — -0.067*** — -0.261*** — -0.310*** — -0.500*** —
(std. err.) (0.017) (0.019) (0.027) (0.069) (0.032)

School Fixed Effects (District 1 Omitted)
Joint Exclusion P-Value (df=2): <10−16 <10−16 2.2×10−14 <10−16

District 2 — — 0.206*** 0.212 0.150*** 0.180 0.153*** 0.190 0.091** 0.118
(std. err.) (0.009) (0.027) (0.055) (0.036)
District 3 — — 0.610*** 0.628 0.577*** 0.694 0.503*** 0.624 0.500*** 0.650
(std. err.) (0.018) (0.044) (0.066) (0.061)

Nbhd-SES Cntrls (2) YES*** YES YES*** YES*** YES***
Home Acad Support (2) no no YES*** YES*** YES***
Home Connectivity (3) no no no YES*** YES***
Prnt Survey Cntrls (4)† no no no no YES***

N 1,676 1,676 1,676 1,676 1,676
log-L -3,455.7 -3,444.5 -3,358.7 -3,336.0 -3,310.0
Pseudo-R2 (log(θp)) 0.356 0.349 0.419 0.442 0.444

Notes: Higher dependent variable values log(θp) imply lower study-time productivity. SD Effect is the change in
standard deviation units of log (θp) of switching a binary regressor value from 0 to 1; bold font indicates significance a the
90% level or higher. Significance of coefficient estimates at the 90%, 95%, and 99% levels are denoted by “∗,” “∗∗,” and “∗ ∗ ∗,”
respectively. Stars on YES/no entries indicate joint statistical significance level for all variables within that group (via a Wald
test). Pseudo-R2 is 1− E[V ar(η̂pi)]/

(
V ar(Xpiβ̂p) + E[V ar(η̂pi)]

)
.

(i.e., high log(θm)) are merely those who are more committed for regular coursework duties.33

However, the coefficient on regular study time is actually negative and statistically indistin-
guishable from zero. This result lends credibility to our experimental/structural approach
as tapping into latent factors that drive academic choices in students’ everyday lives.

Although our model is primarily one of short-term choices, our pooling of 5thand 6thgraders
within the field experiment allows us to measure year-on-year evolution of types within
the sample population. Coefficients on the Grade-5 dummy in Tables 2 and 3 indicate
that 5th-graders and 6th-graders are on average indistinguishable in their motivation for
engaging in math activity, but 5th-graders are less productive by 30% of a standard deviation,
after controlling for the full set of student covariates. This estimate is quite stable across
specifications in the productivity equation.
5.1.2. School District Effects. We now consider the role of school quality in shaping ado-
lescent productivity and motivation. In particular, we wish to address two questions: after
controlling for other contextual factors, (i) do school quality differentials make some kids
33Methodologically, even if this were the case, the researcher could remove the spurious apparent motivation from structural
estimates by computing residual motivation, net of observed study time.
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Table 3. TOBIT REGRESSION RESULTS: MOTIVATION

DEP VAR: (1) (2) (3) (4) (5)

log (θm) Estimate SD Effect Estimate SD Effect Estimate SD Effect Estimate SD Effect Estimate SD Effect

Female -1.304*** -0.781 -1.275*** -0.774 -0.800*** -0.390 -0.770 -0.379 -0.861*** -0.425
(std. err.) (0.085) (0.102) (0.230) (0.810) (0.287)
Black -0.907*** -0.543 -0.883*** -0.536 -1.720* -0.838 -1.336 -0.658 -1.274 -0.629
(std. err.) (0.166) (0.216) (0.929) (0.925) (0.842)
Hispanic -0.093 -0.056 -0.101 -0.061 -0.296 -0.144 -0.460 -0.227 -0.376 -0.186
(std. err.) (0.242) (0.874) (0.953) (0.988) (1.143)
Grade 5 -0.145** -0.087 -0.161** -0.098 -0.079 -0.038 -0.152 -0.075 -0.047 -0.023
(std. err.) (0.070) (0.074) (0.226) (0.753) (0.345)
Math Favorite — — — — -0.316 -0.154 -0.348 -0.172 -0.332 -0.164
(std. err.) (0.221) (0.835) (0.301)
Math Least Favorite — — — — 0.326 0.159 0.299 0.147 0.318 0.157
(std. err.) (0.434) (0.885) (0.411)
Intrinsic Score — — — — -0.884*** -0.431 -0.815* -0.360 -0.833*** -0.369
(std. err.) (0.196) (0.476) (0.192)
Extrinsic Score — — — — -0.959*** -0.468 -1.001** -0.413 -0.984*** -0.407
(std. err.) (0.263) (0.451) (0.215)
Reg Study Time — — — — — — -0.210 -0.070 -0.177 -0.059
(std. err.) (0.529) (0.278)
Recr Screen Time — — — — — — 0.193 0.116 0.180 0.108
(std. err.) (0.180) (0.181)
Constant -4.102*** — -4.111*** — -1.482* — -1.508 — -1.426 —
(std. err.) (0.089) (0.278) (0.847) (1.058) (0.998)

School Fixed Effects (District 1 Omitted)
Joint Exclusion P-Value (df=2): 0.984 0.929 0.976 0.892
District 2 — — 0.018 0.011 0.275 0.134 0.157 0.077 0.273 0.135
(std. err.) (0.155) (0.724) (0.870) (0.604)
District 3 — — -0.002 -0.001 0.018 0.009 0.135 0.066 0.177 0.087
(std. err.) (0.350) (0.908) (0.978) (1.187)

Nbhd-SES Cntrls (2) YES YES YES YES YES
Home Acad Support (2) no no YES YES YES
Extracurriculars (4) no no no YES YES
Gaming/Surfing (3) no no no YES YES
Home Connectivity (3) no no no YES YES
Prnt Survey Cntrls (4)† no no no no YES

N 1,676 1,676 1,676 1,676 1,676
log-L -3,455.7 -3,444.5 -3,358.7 -3,336.0 -3,310.0
Pseudo-R2 (log(θm)) 0.207 0.202 0.302 0.298 0.293

Notes: Higher log(θm) values imply lower willingness to substitute time toward math activity and away from the best
outside option. SD Effect is the change in standard deviations of log (θm) of switching a binary regressor value from 0 to 1,
or from increasing a continuous regressor value by one standard deviation; bold font indicates significance at the 90% level or
higher. Significance of coefficient estimates at the 90%, 95%, and 99% levels are denoted by “∗,” “∗∗,” and “∗ ∗ ∗,” respectively.
Stars on YES/no entries indicate joint statistical significance level for all variables within that group (via a Wald test).
Pseudo-R2 is 1− E[V ar(η̂mi)]/

(
V ar(Xmiβ̂m) + E[V ar(η̂mi)]

)
.

more productive learners, and (ii) do they make some kids more motivated learners? In
specification (4) of Table 2, after controlling for all student covariates, one’s school enroll-
ment predicts significant shifts in time required to complete learning tasks. From descrip-
tive evidence in Table OS.3, one might guess that District 1’s inputs—higher funding per
student, larger fraction of budget devoted to instruction, more qualified and better paid
faculty/administrators—are more advantageous to the student than District 2’s and District
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3’s. Indeed, this expectation plays out in school value-added estimates in Table 2: switching
from District 1 to District 2 or District 3 induces a reduction in a child’s study-time produc-
tivity by 0.12 SD and 0.65 SD, respectively. School effects are highly jointly significant in
both specifications (4) and (5), with individual school effects being statistically significant
at the 5% level or less. They are also economically significant: the District-3 effect (relative
to District 1) is roughly twice the gap between grade-5 and grade 6-students. Coefficient
estimate magnitudes are remarkably stable across all four specifications where they appear,
suggesting robustness of this result to inclusion of a rich set of other childhood contextual
factors. On the other hand, estimated magnitudes of school effects on log(θm) are much
smaller, and not statistically different from zero, suggesting that school quality differentials
play little role in driving motivation heterogeneity.

Our Tobit results speak to a classic question of whether better outcomes at higher-
performing schools are due to treatment by more advantageous school inputs, or due to
selection of more academically adept students onto their rolls. We find evidence for both ex-
planations: while higher-performing schools benefit from significant advantageous selection
on observables (Xpiβp,Xmiβm) and on unobservables (θp, θm) (see Figure 11, Appendix A.3),
they also appear to exert their own influence on productivity differentials as well. In Section
6 we investigate further channels through which school quality may operate, by shaping skill
production technology, or the mapping between home study and durable skill gains.

5.1.3. Racial differences. In Tables 2 and 3 we see substantial correlations between both pro-
ductivity and race within specification (1). Many well-meaning researchers and practitioners
believe that many minority students from less affluent backgrounds, who often have worse
academic outcomes, primarily struggle with a lack of motivation or engagement in academics.
Our data rebut this idea; Tobit point estimates actually suggest the opposite, that Black and
Hispanic students in our sample may be more conditionally motivated, though these effects
are noisy and not statistically different from zero (race terms have a joint p-value of 0.30
in specification (5)). The idea of Black/Hispanic students being academically as motivated
or more is also supported by patterns in our raw data: they are more likely to report math
as their favorite subject than Whites/Asians (43.5% vs 30.2%, p-value 3.9×10−8), and also
exhibit higher levels of intrinsic motivation, on average (p-value 0.005).

Rather, in our data the main difference which could explain achievement gaps is a large
racial productivity differential. It arises primarily because: (i) Black/Hispanic student enroll-
ment is concentrated in Districts 2 and 3 (whereas White/Asian enrollment is concentrated
in Districts 1 and 2), and (ii) there are residual factors proxied for by race, which persist after
controlling for gender, school district, family structure, peer/adult support, neighborhood-
SES, and home learning resources.34 The conditional race gap in productivity is substantial,

34Other primary factors driving the productivity race gap are home learning resources—no home internet and mobilefrac
(Blacks/Hispanics are 3.9× more likely to be without home internet, and logged 76% more page views from smartphones)—as
well as middle child status, a proxy for parental resource scarcity.
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with log(θp) being nearly a full SD higher for Black students and 2/3 SD higher for Hispanics.
This productivity gap dominates the estimated motivation advantage for Blacks/Hispanics,
which explains why they completed fewer website tasks (Figure 9, Appendix A.3).

5.1.4. Gender differences. Figure 8 (Appendix A.3) suggests a moderate female advantage
in motivation and a moderate female disadvantage in study-time productivity. In the final
two specifications of Table 2, we find that learning productivity (i.e., rate of progress through
learning tasks) is between 21% (spec. (4)) and 30% (spec. (5)) SD lower for females, relative
to males. Although smaller than the racial gap, this is a non-negligible difference: the gender
gap in learning productivity is between 2/3 and 100% of the gap associated with an extra
year of schooling. In ongoing work, Cotton, et.al. (2024) present evidence to help explain
the gender productivity gap: adolescent girls exhibit a systematically different approach to
math problem solving, preferring more concrete, hand-written notes, relative to boys. On
the other hand, in Table 3, we find that female adolescent students are also more motivated,
with willingness to spend time on math study being 43% SD higher, on average, relative to
males. In terms of total learning activity, the latter effect dominates, explaining why females
complete more website learning tasks (see Figure 9 in Appendix A.3).

5.1.5. Other considerations. Psychic costs of effort have long been theorized within the ed-
ucation literature. We find suggestive evidence that (self-reported) preferences for math as
a favorite subject raise motivation by 0.16 SD, while having math as one’s least favorite
reduces motivation by 0.16 SD. These estimates are somewhat noisy (joint p-value on sub-
ject preference parameters is 0.208), but the large magnitudes suggest a non-trivial role for
psychic costs in children’s self-investment choices. Perhaps our strongest result from Table 3
is that being either more extrinsically minded or more intrinsically minded are both strong
indicators of responsiveness to external incentives for math study.35 This forms part of a
recent body of empirical work finding evidence of a synergistic role for intrinsic and extrinsic
incentives (e.g., Kremer, Miguel, & Thornton, 2009; Hedblom et al., 2022), rather than a
conflicting role as previously thought (e.g., Gneezy & Rustichini, 2000; Bénabou & Tirole,
2003; Leuven, Oosterbeek, & van der Klaauw, 2010). This result also contributes to the
literature by directly quantifying another aspect of direct psychic costs: a one SD increase
in intrinsic mindset score raises motivation by more than 1/3 SD, and is more than enough
to overcome aversion to math as one’s least favorite subject.

5.1.6. Variances/Covariances of Productivity & Motivation Traits. One advantage of the
Tobit estimator is that it allows us to gauge the correlation between productivity and moti-
vation for the population at large, including both active students (i.e., Ai≥2 on our website),

35For intrinsic/Extrinsic mindset scores, two questions each on the pre- and post-survey asked about a child’s most salient
motivation for completing school-related work. Two external motivation choices were listed with two intrinsic choices, and a
fifth “none of the above” option. We counted the number of corresponding responses (up to four per category) and standardized
the resulting motivation scores. The presence of the fifth option means a student may be coded as exhibiting extrinsic mindset,
intrinsic mindset, both, or neither.
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Table 4. TOBIT STANDARD DEVIATIONS AND CORRELATIONS

TOBIT SPECIFICATION (4) TOBIT SPECIFICATION (5)

Xpiβp Xmiβm ηpi ηmi log(θpi) log(θmi) Xpiβp Xmiβm ηpi ηmi log(θpi) log(θmi)

ŜtDev 0.532 1.108 0.598 1.708 0.800 2.036 0.509 1.096 0.569 1.710 0.763 2.031
(StdErr) (0.020) (0.306) (0.025) (0.170) (0.019) (0.289) (0.013) (0.178) (0.018) (0.139) (0.011) (0.177)

̂Correl. -0.171 -0.082 -0.113 -0.077 -0.033 -0.048
(StdErr) (0.123) (0.184) (0.131) (0.130) (0.129) (0.115)
95% CI [-0.39,0.05] [-0.45,0.27] [-0.37,0.13] [-0.32,0.16] [-0.28,0.19] [-0.27,0.15]
P-value 0.164 0.657 0.388 0.554 0.800 0.675

and inactive students (Ai<2). Table 4 presents estimated standard deviations and correla-
tions of log-learning types, (log(θp), log(θm)), for Tobit specifications (4) and (5). The table
also presents correlations broken down by the predictable component, (Xpiβp,Xmiβm), and
the idiosyncratic component, (ηpi, ηmi), of student types. The striking result from Table 4 is
that in both specifications (4) and (5) the average type correlations are small and statisti-
cally indistinguishable from zero. Taking sampling variability into account, we can rule out
moderate or large positive correlations between adolescent learners’ productivity/motivation
indices, and in fact, point estimates suggest a small to moderate negative correlation.

To put this result in context, our sample, which contains many high-achieving students,
includes relatively few individuals who are both highly productive (i.e., low θp) and highly
motivated (i.e., low θm) for math study. It is actually slightly more common for high achievers
to be either highly productive or highly motivated, but not both. This result challenges
common labels we use for high-achievers as “gifted” or “talented”: indeed, many such students
are not particularly gifted with an ability to quicly progress through learning tasks, but
instead are exceptionally hard working. This novel result provides reason for optimism
among educators and policy makers struggling with the task of providing education services
to a heterogeneous population: a child need not have it all to attain to a high degree of
academic success. On the other hand, it also highlights salient challenges as well, suggesting
that one-size-fits-all solutions may be ineffective when developing students who struggle
primarily with low motivation vs. low productivity.

5.1.7. Threats to Causal Interpretation of School Effect Estimates. Our identification strat-
egy for school value-added (VA) based on field-experimental data differs significantly from
existing approaches. A typical study on school VA would use observational data with a large
sample of schools, and outcomes (e.g., exam scores) often aggregated to the classroom or
school level (e.g., see (Ahn et al., 2022), (Luccioni, 2023)). Some studies use a similar many-
schools approach in combination with some source of plausibly exogenous variation to tease
apart selection on unobserved student traits from school VA; e.g., Dale and Krueger (2002)
and Mountjoy and Hickman (2020). Other recent work by Abdulkadiroglu et al. (2020)
combines standard VA methods with equilibrium theory to tease apart causal VA from pref-
erences in a school-choice setting involving over 400 high schools in a major US city. In our
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case, we have a small set of school districts but novel student-level observables—real-time
tracking of home-study activity and behavioral responses to experimental incentives—that
facilitate identification of unobserved student traits, independently of school assignment.
This, in turn, facilitates analysis of several forms of school VA in Sections 5 and 6.

To understand our VA identification strategy, it will be useful to contrast it with standard
VA methods, such as those surveyed by Koedel et al. (2015). A typical approach would
postulate some variant of a linear VA model like

Yist = β0 + Yist−1β1 +Xistβ2 + ϵist, ϵist=ξi + ζs + eist, (9)

where Yist is an academic outcome (e.g., test score) for student i in school s and period t,
Xist is a vector of student characteristics, and the unobserved error is expandable to include
ξi and ζs, which represent the impacts of student ability and school VA on the outcome
Yist. The canonical problem for causal VA identification is one of selection: equilibrium
residential sorting patterns imply that students with more advantageous traits congregate at
schools with more advantageous traits, creating correlation between unobserved ξi and school
assignment. Importantly though, the economic interpretations of residuals in equations (6)
and (9) differ: ξi is the effect of unobserved student ability on academic outcome Yist, while
residuals (ηp, ηm) are unexplained components of unobserved student ability itself.

Thus, the primary considerations in attaching a causal interpretation to school effect es-
timates in Tables 2 and 3 are two-fold: (i) controlling for factors that drive residential sort-
ing patterns and also affect productivity/motivation, and (ii) controlling for other relevant
sources of omitted variable bias. For (i), regressors that control most directly for school-
related residential sorting are our two neighborhood-SES controls, though other potentially
relevant controls include #adult helpers, involved parent, the 3 extracurricular enrollment
dummies, and fraction supervised leisure time. These last 6 variables proxy for the pos-
sibility that more invested parents may cluster at higher VA schools. In related research,
Rothstein (2006) and Abdulkadiroglu et al. (2020) both find evidence that parents’ residen-
tial sorting and school choices appear to be based on factors like local peer quality rather
than school VA. These results are consistent with the idea that neighborhood-SES controls
included in specifications (1)–(5) are adequately proxying for parents’ residential sorting
choices, and could explain why school effect estimates in Tables 2 and 3 are so robust to
inclusion of additional covariates in specifications (3)–(5).

As for concern (ii)—general sources of omitted variable bias—as in the rest of the literature
there is no way to completely rule this possibility out. Like other studies, the best we can
do is control for what we believe are the most important sources of omitted variable bias
as thoroughly as possible. This involved designing our data collection measures to gather
as much relevant information as possible, given time and attention constraints involved in
surveying adolescents during the math period of their school day. In order for the estimated
school-district VA effects in Table 2 to be largely or mostly attributable to omitted variable
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Table 5. DESCRIPTIVE STATISTICS: MATH EXAM SCORES BY SUB-SAMPLE

SUB-SAMPLE: ALL FEMALE MALE BLACK HISPANIC WHITE/
ASIAN

SIZE/FRACTION: 1,676 0.5078 0.4922 0.2691 0.1915 0.5394

Pre-Test Score, S: 13.40 12.71 14.11 7.93 7.94 18.07
(sample std. dev.) (8.96) (8.23) (9.62) (6.13) (6.10) (8.35)

∆Score (All): 1.55 1.94 1.14 0.88 0.49 2.20
(sample std. dev.) (5.00) (5.03) (4.94) (5.01) (4.89) (4.94)
(p-value, H0 :No Change) 7.0×10−37 2.4×10−29 3.5×10−11 1.9×10−4 0.073 7.6×10−41

∆Score (Active Only): 2.67
(sample std. dev.) (4.87)
(p-value, H0 :No Change) 8.0×10−51

∆Score
(Marg./Inactive Only): 0.51
(sample std. dev.) (4.90)
(p-value, H0 :No Change) 0.0015

Notes: italicized numbers in parentheses represent sample standard deviations. The null hypothesis that website
activity did not result in learning gains, or H0 : E[∆Score|Active] = E[∆Score|Marg./Inactive], is rejected by a
two-sample t-test (p-value= 1.2×10−17). 5th-graders are 47.3% of the sample, with 6thgraders comprising the other
52.7%. Sub-sample proportions are close to that ratio for all gender and race groups.

bias, there would have to exist some aspect of student productivity that is both strongly
correlated with school assignment, and also not well proxied for by a combination of race,
gender, age, neighborhood socioeconomics, family/friend academic support, home learning
resources, parental academic involvement, family size, and birth order.

6. EXPLORING THE DETERMINANTS OF MATH SKILL

This section uses structurally estimated student traits as a key input to recover the pro-
duction technology of new math skill. Our approach highlights the inferential power to be
had from directly quantifying latent motivation and productivity with field experimental
data: they allow us to explicitly control for selection on unobserved student ability. We use
student test scores from classroom pre- and post-tests to measure math skill (see Section
3.2.7). Let Si denote i’s initial math proficiency measured by pre-test score. Skill gains are
thus changes in post-test scores at the end of the 3-week sample period, denoted ∆Si. We
allow student traits to not only determine short-term work choices, but also to influence
the mapping between (Ti, Ai) and ∆Si. This opens two additional channels through which
school quality may operate: by altering “TFP”—i.e., by impacting skill formation that is
(log-)separable from home-study—and by altering the rate at which child i converts a fixed
volume of study activity into durable proficiency gains.

Table 5 shows descriptive statistics on average pre-test scores and proficiency gains by
sub-group (see also Figures 7–8, Appendix A.3). Our data highlight a substantial race
gap in exam scores, consistent with evidence from other studies (e.g. Clotfelter, Ladd, &
Vigdor, 2009; Hanushek & Rivkin, 2006, 2009; NAEP, 2019). On the pre-test, White/Asian
students correctly answered nearly 10 additional questions (1.13 SD), on average, relative
to Black/Hispanic students. The gender gap is relatively smaller, with the average male
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correctly answering 1.4 more exam questions than the average female, or a 0.16 SD difference.
The table also highlights how extracurricular math activity on our website during the sample
period contributed to measured proficiency gains. Active students saw mean increases of 2.67
exam questions solved, while marginal/inactive students improved scores by only 0.51 points.
Both changes are statistically significant at the 1% level.

6.1. Determinants of mathematics proficiency. Although our ultimate interest is in
how home study activity (Ti, Ai) maps into math skill gains (∆Si), we begin with a prelimi-
nary investigation of initial proficiency (Si), which we model as a Cobb-Douglass production
function with student traits θpi and θmi as the primary inputs. Production shares and total
factor productivity (TFP) terms are allowed to vary by individual i:36

Si = TFP i × θ
αpi

pi × θαmi
mi × ϵi, TFPi > 0, αpi < 0, αmi < 0. (10)

More specifically, TFPi and production shares (αpi, αmi) are functions of covariates

log(TFP i) = Wiα0, αpi = Wiαp, and αmi = Wiαm, (11)

with Wi, including various student-level contextual factors. The error term ϵi is an idiosyn-
cratic shock that accounts for cumulative impacts of transitory shocks to HC production,
and noise in the exam instrument used to measure math skill.

A student’s pre-test score, S, provides a baseline measure of skill stock, while produc-
tivity, θp, governs the rate at which learning tasks are traversed during the process of aug-
menting skill stock. While the two concepts are related, they are not the same. Initial
proficiency stock S is a measure of a child’s ability to correctly solve math problems in a
controlled, timed, classroom environment, without any real-time feedback or access to exter-
nal aids. Productivity θp measures the time needed to correctly solve math problems in an
un-structured homework setting, given real-time feedback on incorrect answers, and access
to textbooks, examples, notes, and assistance from friends or family.

6.1.1. Estimating the model. Substituting (11) into (10), the initial proficiency model is
equivalent to a regression of log(Si) on log(θpi), log(θmi), and W i, with pair-wise interactions:

log(Si) = Wiα0 +Wiαp log(θpi) +Wiαm log(θmi) + log(ϵi). (12)

In our full specification, the covariate vector Wi contains a constant and the following vari-
ables: indicators for gender, race, grade level, and school district ; two neighborhood-SES
variables; total #academic helpers in a child’s social network; home resource proxies (no
home internet, mobilefrac, tabletfrac); and parent survey controls (Involved Parent, BigFam,
MiddleChild, and YoungestChild). Note that each of these factors may have a direct impact
(through the TFP terms Wiα0), and an indirect impact (through the slope terms Wiαp and
Wiαm). In order to interpret school effects causally, we require the following:
36Recall that θp and θm are both inversely related to efficiency and motivation. Therefore, when a production share is larger
in the negative direction, that is a good thing for skill development.
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Assumption 7. E[W⊤
i log(ϵi)|θpi, θmi] = 0.

Assumption 7 highlights the advantages of our school VA approach based on structural
type estimates. Among our analyses in Sections 5 and 6, the initial proficiency model (12)
is most comparable to the standard VA framework (equation (9)), but with three important
changes. First, can bring student ability ξi out of the error term and explicitly control
for its influence on the outcome when measuring impacts of school dummies (contained in
Wi). Second, we need not assume latent ability is a single index; rather, we can model
it as ξi = (θpi, θmi), with different student traits potentially having distinct effects on the
outcome. Third, we can capture the direct impact of school quality through its contribution
to the Wiα0 (TFP) term, while allowing for interactions between school quality and student
quality through its contributions to the Wiαp and Wiαm (production share) terms.

There are three implementation challenges to overcome. First, we only have structural
point estimates of (θpi, θmi) for active students (Ai ≥ 2), so we have a missing variables
problem in equation (12). This is straightforward to address using Tobit projections from the
previous section: for marginal/inactive students (Ai<2) we use conditional expectations,37(

̂log(θ)pi, ̂log(θ)mi

)
= E

[(
log(θp), log(θm)

)∣∣∣Xpi, Xmi, Ai<2, π1i; β̂p, β̂m, Σ̂i

]
.

Specifications (1)–(4) in Table 6 are based on projections from Tobit specification (4). Spe-
icification (5) in Table 6, which adds parent survey variables, is based on projections from
Tobit specification (5), which also included parent survey information.

The second challenge is an errors-in-variables problem stemming from sampling variability
in student fixed-effect estimates. We compute Empirical Bayes (EB) estimates of (θp, θm)
to reduce attenuation bias by shrinking each fixed effect toward the mean in proportion to
the individual noise in each estimated fixed effect. This approach has a long history in the
literatures on school quality (e.g. Kane & Staiger, 2002) and teacher value-added (e.g. Jacob
& Lefgren, 2008). One standard procedure (e.g. Morrix, 1983; Abdulkadiroglu et al., 2020)
is to assume a normal prior over the true fixed effect, log(θji), and the estimation residual, rji
for j=p,m. This implies a shrinkage factor of λji=ν2

j

/(
ν2
j + ν2

rji

)
, where ν2

j is the estimated
variance of true log(θji), and ν2

rji is the estimated sampling residual variance on ̂log(θji) for
individual i’s trait j = p,m.38 This results in the following EB estimates for student traits
to be used as regressors in (12): log(θji)EB=λji

̂log(θji) + (1− λji)
∑N

i=1
̂log(θji)

N
, j=p,m.

Third, our unbalanced panel data implies that the error terms in equation (12) may exhibit
heteroskedasticity. Formal tests reveal that the null hypothesis of homoskedastic errors is
indeed rejected in all specifications. Therefore, we estimate the production parameters via
feasible generalized least squares in the familiar way, as outlined in Wooldridge (2016), and
we use heteroskedasticity-robust standard errors for inference.
37This in the spirit of standard methods for regression with missing regressors (see survey by Little (1992)).
38An alternative approach is to restrict the shrinkage forecast of log(θji), given ̂log(θji), to linear projections (e.g. Chetty et
al., 2014), which implies the same shrinkage factor λji.
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Table 6. INITIAL MATH PROFICIENCY (Cobb-Douglas)

SPEC: (1) (2) (3) (4) (5)
DEP VAR: log (S1) (Mean; SD) (Mean; SD) (Mean; SD) (Mean; SD) (Mean; SD)

( ̂log(TFPi)) (3.207; 0) (3.076; 0.183) (3.033; 0.205) (3.011; 0.233) (3.023; 0.263)

θp Production Share (α̂pi) (−0.397; 0) (−0.305; 0.120) (−0.269; 0.112) (−0.262; 0.116) (−0.248; 0.133)

θm Production Share (α̂mi) (−0.024; 0) (−0.027; 0.008) (−0.033; 0.019) (−0.037; 0.026) (−0.032; 0.030)

Avg SD Effect Avg SD Effect Avg SD Effect Avg SD Effect Avg SD Effect

log(TFP ) N/A 0.4348*** 0.4869*** 0.5551*** 0.6269***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

) (
<10−16

)
log(θp) -0.6676*** -0.5124*** -0.4516*** -0.4399*** -0.4043***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

) (
<10−16

) (
<10−16

)
log(θm) -0.0693*** -0.0788*** -0.0966*** -0.1077*** -0.1063***
(joint p-value)

(
1 .5×10−4

) (
1 .6×10−5

) (
1 .4×10−8

) (
1 .5×10−4

) (
3 .3×10−8

)
INDIVIDUAL CONTROL VARIABLES:
Grade 5 (α̂03, α̂p3, α̂m3) — — -0.2188*** -0.2028*** -0.2260***
(joint p-value)

(
3 .0×10−10

) (
4 .4×10−9

) (
7 .2×10−10

)
Female (α̂04, α̂p4, α̂m4) — — -0.0549*** -0.0889*** -0.1846***
(joint p-value)

(
1 .5×10−4

)
(0.001)

(
6 .2×10−5

)
Black (α̂05, α̂p5, α̂m5) — — -0.1468*** -0.1222*** -0.1122***
(joint p-value) (0.007) (0.007) (0.009)

Hispanic (α̂06, α̂p6, α̂m6) — — 0.0229* 0.0114** 0.1136***
(joint p-value) (0.073) (0.021) (0.003)

SCHOOL EFFECTS (District 1 omitted):
Joint P-Value, All Terms (df = 6):

(
<10−16

) (
3 .1×10−16

) (
4 .1×10−5

) (
6 .3×10−6

)
Joint P-Value, TFP Only (df = 2):

(
8 .8×10−10

) (
9 .7×10−7

)
(0.136) (0.222)

Joint P-Value, Slopes Only (df = 4):
(
6 .2×10−15

)
(0.122) (0.728) (0.454)

District 2 (α̂01, α̂p1, α̂m1) — -0.3138*** -0.3111*** -0.2390*** -0.1105**
(joint p-value)

(
<10−16

) (
1 .3×10−8

)
(0.002) (0.047)

District 3 (α̂02, α̂p2, α̂m2) — -0.6747*** -0.7343*** -0.6505*** -0.6897***
(joint p-value)

(
<10−16

) (
3 .2×10−11

) (
4 .4×10−5

) (
1 .4×10−5

)
Nbhd-SES Cntrls (6) no no no YES* YES***
Home Acad Support (3) no no no YES* YES***
Home Connectivity (9) no no no YES* YES***
Prnt Survey Cntrls (12) no no no no YES***

#Parameters 3 9 21 39 51
N 1, 676 1, 676 1, 676 1, 676 1, 676
R2 0.423 0.494 0.516 0.523 0.535

Notes: Avg SD Effect measures total impact of a variable through both TFP and production shares. It is the mean impact,
in standard deviations of log(S1), of switching a binary variable value from 0 to 1 (all else fixed), or increasing a continuous
variable value by one standard deviation (all else fixed). Reported joint p-values are for the joint exclusion of all terms
involving a given control from the model. Significance at the 99%, 95% and 90% levels are denoted by ***, **, and *,
respectively. Stars on “YES/no” entries indicate joint significance.

6.1.2. Empirical Results. Table 6 presents estimates of equation (12). For ease of interpre-
tation given numerous variable interactions, the table reports Average SD Effects, defined
as mean induced shift in standard deviations of log(S) from an increase in a continuous
control variable of one standard deviation, or a 0-to-1 change for binary controls. SD effects
encapsulate influence through all channels, both direct and indirect.

Table 6 results produce several interesting insights. First, both θp and θm are significant
determinants of initial math skill, but productivity θp plays a clearly dominant role between
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Figure 5. Student Productivity and Motivation by Pre-Test Tercile
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Notes: For active students (Ai≥2), plotted points are EB forecasts of student traits based on observed choices. For

marginal/inactive students (Ai<2), plotted points are conditional means of (log(θp), log(θm)), given covariates and Tobit

parameters (Tables 2 and 3 specification (5)). Large bolded shapes are within-group means.

the two with a SD effect that is 4.1–3.8 times as big in specifications (4) and (5). Figure
5, a scatter-plot of (log(θpi), log(θmi)), further illustrates this point. The figure separates
students by pre-test score terciles—triangles for the lower tercile, circles for the middle, and
stars for the upper—and we include large shaded shapes to mark the average motivation and
productivity values within each performance tercile.

Structural fixed-effect estimates depict wide variation in productivity-motivation pairs
across students, but a comparison of the means reveals little difference in average motivation
across the three terciles. Both results support the same conclusion: lower performing students
are not predominantly less motivated than higher performing students. This is true regardless
of whether performance is judged on the completion of website learning tasks (Figure 1) or
proficiency assessment scores (Table 6 and Figure 5). Rather, the strongest distinguishing
trait is learning productivity: students in higher exam terciles require substantially less
time to complete homework, allowing them to traverse more learning task volume before
opportunity costs rise too high to rationally continue study.

These results suggest new insights on education interventions that aim to decrease gender
or racial academic gaps by motivating students through incentives or information about
the returns to education (such as those studied in Fryer (2011); Levitt et al. (2016)).39

These groups are either more or no-less willing to devote time to study than their peers,
suggesting that motivation is not the primary barrier limiting their progress. Moreover,
Table 6 suggests that, since TFP is about 5.2–5.9 times as important as θm, and θp is 4.1–3.8

39Gneezy et. al. (2019) also adds important insights for inducing effort on one-off tests.
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Figure 6. Cobb-Douglas Parameters by School Dis-
trict
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times as important, efforts to further incentivize effort by students from marginal groups
may struggle to overcome the more salient productivity disadvantages they face.40

The second insight from Table 6 is evidence that school quality influences skill produc-
tion technology in important ways. The magnitudes of the school district effects again
strongly conform to the pattern one might suspect from the suggestive evidence in Table
OS.3: Switching from District 1 (the high performing district) to District 2 (the middling
school district) or District 3 (the struggling school district) entails substantially less effective
skill production technology. We also see suggestive evidence that VA differences across school
districts may not be one of levels only, but of the shapes of the production technologies.41

Figure 6 plots empirical CDFs of student-specific production parameters and illustrates this
idea: higher VA schools appear to have better TFP and also to get more production from
student characteristics as well.

Third, we also find evidence of decreasing returns to scale production technology in the
sense that −(αpi+αmi) is well below the constant-returns benchmark of 1 (for all students in
the sample). This means that the extra benefit in math skill development from improving a
student’s underlying characteristics declines as those characteristics become more favorable.
40This may explain why conditional cash transfers to students or families for improved academic performance have often resulted
in limited returns (e.g., Fryer, 2011). Levitt et al. (2016) find limited returns to such conditional transfers in Chicago-area
schools, which is the setting of our experiment. Leuven et al. (2010) show evidence among university students that those who
are already performing well tend to respond most to financial incentives. C. Cotton, Nordstrom, Nanowski, and Richert (2024)
find that significant effects on academic progress from information interventions may come at prohibitive costs. In ongoing
work, C. S. Cotton, Hickman, List, and Sun (2024) explore structural market-design of academic incentives.
41Table 6 specification (3) appears to somewhat favor TFP as the driver of school effects, though it becomes statistically harder
to distinguish the two as more covariates are added in specifications (4) and (5).
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This also implies that the marginal value of investments which may influence study pro-
ductivity (e.g., tutors, improved educational resources, etc.) is higher for children with less
advantageous productivity traits θpi, which is in line with other recent results by Agostinelli
and Wiswall (2023), among others.

6.2. Analysis of Study Effort and Proficiency Gains. The previous section estimated a
reduced-form production technology for initial proficiency stock. With our field experimental
design we can go a step further by incorporating data on interim math learning activity and
exam score shifts over the sample period. We model incremental proficiency gains as a
quadratic complete polynomial in study time Ti and learning task volume Ai:

∆Si = ∆0i +∆1iTi +∆2iT
2
i +∆3iAi +∆4iA

2
i +∆5i(Ti × Ai) + εi. (13)

Once again, regression parameters depend on student covariates, with ∆ji ≡ Viδj for j =

0, 1, ..., 5, being a single index of covariate vector Vi=[Wi, Si, log(θpi), log(θmi)] for student i,
including Wi, with initial proficiency and student traits as additional controls. By including
student types log(θpi) and log(θmi) in Vi, we allow them to play a dual role in shaping skill
acquisition: aside from driving choices (Ti, Ai) they may alter the rate at which a fixed
volume of study activity is converted into durable skill gains. Including initial proficiency
Si as a control allows for possible decreasing-returns-to-scale technology, where proficiency
score gains of a fixed size become more difficult as a student achieves greater subject mastery.
In order to causally interpret school effects we require the following condition:

Assumption 8. E[V ⊤
i εi|θpi, θmi] = 0.

Assumption 8 once again highlights the advantages of our school VA approach based
on structural type estimates. The incremental gains model (13) takes an additional step
forward from standard VA models (equation (9)), by incorporating information on tracked
home-study activity, and mapping these onto short-run measured changes in the outcome
variable. This allows for a richer formulation of the production technology, and provides
a novel window into the micro-foundations of learning. It also retains the advantages of
the reduced-form VA model of the previous section: we are able to bring latent student
ability out of the error term and explicitly control for selection on unobservables; we can still
model ability ξi as a two-dimensional object (θpi, θmi); and we can still capture the direct
impact of school quality through its contribution to the ∆0i (“TFP”) term, while allowing for
interactions between school quality and student home study through its contributions to the
∆ji (slope) terms, j=1, . . . , 5. While the school interactions included in (13) are somewhat
different from those in (12)—school dummies interacted with choices, {T, T 2, A,A2, T×A},
versus school dummies interacted with types, {θp, θm}—it is important to remember that
(Ti, Ai) are functions of (θpi, θmi), as formalized by the student choice model in Section 2.
Thus, the interaction terms retain the same spirit, and moreover, the two models of skill
technology are mutually consistent.
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6.2.1. Estimation. The empirical strategy here faces similar challenges as in Section 6.1, and
we employ similar coping strategies: EB shrunk type forecasts and FGLS estimation with
heteroskedasticity-robust standard errors. Results are summarized in Table 7, again using
Average SD Effects rather than reporting long lists of (up to 116) parameter estimates. For
reference, recall that one SD of skill gains ∆S is 5 exam-score points, or 5 extra problems
solved correctly out of 36, with a 40-minute time limit.
6.2.2. Empirical Results. While interpreting SD Effect results from Table 7, the reader
should remember that they involve many complicated interactions between various factors,
and are therefore quite heterogeneous across different students with a diverse set of life cir-
cumstances, including different schools, skill stocks, latent traits, homes, ages, genders, and
racial backgrounds. Baseline learning ∆̂0i—that occurred independently of extracurricular
website math activity—has a mean of 0.71 (0.77) exam-score points in specification (4) (spec-
ification (5)) over the 3-week sample period. Baseline learning also varied broadly across
different students and contexts, with a standard deviation of 1.4 (1.6) exam-score points.

When interpreting SD Effects for the primary productive inputs Ti and Ai, it is not a well-
posed thought experiment to hold one fixed while varying the other, since learning tasks
require student time. Rather, simultaneous SD increases in Ti and Ai imply an average
net increase of between 1.17(=2.01-0.84, specification (4)) and 0.57(=1.07-0.50, specification
(5)) SD of skill gain ∆S. This translates into an improvement range of 2.85–5.85 exam-
score points, or between 25 and 51 practice problems solved (26–53 minutes practice time)
per exam point gained, for the average child. Learning task completion Ai is the primary
driver of skill development; idiosyncratic SD Effects of Ti are negative for roughly 4/5 of
the student sample, meaning that total time spent actually tempers (but doesn’t negate)
the conversion rate of task completion Ai into new durable skill. This result points to
some important policy-relevant insights: adolescent math proficiency is developed through
experience in correctly solving a wide variety of problems, rather than by spending more
time thoroughly understanding solutions to fewer problems. It also further highlights the
importance of addressing productivity differentials for struggling students.

Table 7 results suggest that, holding productivity type θp fixed, as children progress from
5th-grade to 6th-grade they become more effective at learning, with the total year-on-year
difference being over 1/5 SD of ∆S, through changes to both slopes and the intercept. In
other words, while students gain more experience as learners, they not only become more
adept at subject matter, but they also become more adept at the act of learning itself. We
also find strong evidence that one’s productivity type θp alters the shape of the learning
technology in an economically meaningful way, by influencing both slopes and intercepts.
Thus, students who are more productive with their learning time also tend to derive more
durable skills from a fixed volume of learning tasks as well. Our grade-5 and log(θp) effects
from Table 7, along with the grade-5 effect from Table 2, corroborate similar findings by
Cunha et al. (2010) on the complementarity of skill development over time.
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Table 7. PRODUCTION OF INCREMENTAL GAINS IN MATH SKILL

SPEC: (1) (2) (3) (4) (5)
(Mean; SD) (Mean; SD) (Mean; SD) (Mean; SD) (Mean; SD)

DEP VAR: ∆S (1.549; 5.003) (1.549; 5.003) (1.549; 5.003) (1.549; 5.003) (1.549; 5.003)

Baseline Learning ∆̂0i (0.511; 0) (0.831; 1.272) (0.714; 1.355) (0.706; 1.378) (0.770; 1.577)

Avg SD Effect Avg SD Effect Avg SD Effect Avg SD Effect Avg SD Effect

Baseline Learning ∆̂0i — 0.2543*** 0.2709*** 0.2754*** 0.3153***
(joint p-value)

(
1 .4×10−14

) (
4 .6×10−14

) (
8 .0×10−11

) (
1 .6×10−14

)
T

(
∆̂1i, ∆̂2i, ∆̂5i

)
0.1477*** -0.5024*** -0.6222*** -0.8383*** -0.5038***

(joint p-value)
(
4 .1×10−5

) (
<10−16

) (
<10−16

) (
<10−16

) (
<10−16

)
A

(
∆̂3i, ∆̂4i, ∆̂5i

)
0.3196*** 1.2424*** 1.5160*** 2.0135*** 1.0660***

(joint p-value) (0 .001 )
(
<10−16

) (
<10−16

) (
<10−16

) (
<10−16

)
S (δ̂0,1, . . . , δ̂5,1) — -0.4194*** -0.4334*** -0.4166*** -0.4539***
(joint p-value)

(
<10−16

) (
<10−16

) (
<10−16

) (
<10−16

)
log(θp) (δ̂0,2, . . . , δ̂5,2) — -0.3423*** -0.2787** -0.4202*** -0.5016***
(joint p-value)

(
7 .5×10−4

)
(0.006)

(
8 .4×10−9

) (
1 .8×10−10

)
log(θm) (δ̂0,3, . . . , δ̂5,3) — -0.0488* 0.0271 0.0457 0.0690*
(joint p-value) (0.099) (0.110) (0.195) (0.065)

Grade 5 (δ̂0,4, . . . , δ̂5,4) — — -0.2221*** -0.2329*** -0.2192***
(joint p-value)

(
2 .4×10−4

) (
9 .2×10−7

) (
9 .2×10−7

)
Female (δ̂0,5, . . . , δ̂5,5) — — 0.0460 0.1335* 0.1010
(joint p-value) (0.336) (0.068) (0.1685)

Black (δ̂0,6, . . . , δ̂5,6) — — 0.1287*** 0.1476*** 0.2118***
(joint p-value)

(
3 .5×10−7

) (
1 .3×10−5

) (
3 .3×10−15

)
Hispanic (δ̂0,7, . . . , δ̂5,7) — — 0.0636*** 0.0841*** 0.1285**
(joint p-value) (0.002) (0.003) (0.009)

SCHOOL EFFECTS (District 1 omitted):

Joint P-Value, All Terms (df = 12):
(
<10−16

) (
<10−16

) (
3 .0×10−4

) (
2 .4×10−11

)
Joint P-Value, Intercepts Only (df = 2): (0.055) (0.006) (0.462) (0.179)
Joint P-Value, Slopes Only (df = 10):

(
<10−16

) (
<10−16

)
(0.001)

(
1 .0×10−6

)
District 2 (δ̂0,8, . . . , δ̂5,8) — -0.1516*** -0.2229*** -0.1084*** -0.0947***
(joint p-value)

(
2 .6×10−4

) (
4 .9×10−6

)
(0.009)

(
2 .2×10−12

)
District 3 (δ̂0,9, . . . , δ̂5,9) — -0.4322*** -0.5309*** -0.4418*** -0.5518***
(joint p-value)

(
<10−16

) (
<10−16

) (
7 .6×10−4

)
(0.001)

Nbhd-SES Cntrls (12) no no no YES*** YES***
Home Acad Support (6) no no no YES*** YES***
Home Connectivity (18) no no no YES*** YES***
Prnt Survey Cntrls (20) no no no no YES***

#Parameters 6 36 60 96 116
N 1, 494 1, 494 1, 494 1, 494 1, 494

R2 0.096 0.198 0.221 0.237 0.247

Notes: For context, StDev(∆S)=5.00 exam score points. Avg SD Effect measures total impact of a variable through the
intercept ∆0i (direct effect) and slope terms {∆1i, . . . ,∆5i} (interactions). It is the mean impact in standard deviations of
∆S (across all students) from switching a binary variable value from 0 to 1, or from increasing a continuous variable value by
one standard deviation. Reported joint p-values are for the joint exclusion of all terms involving a given control. Significance
at the 99%, 95% and 90% levels are denoted by ***, **, and *, resp. In spec. (4), interaction terms alone (δ̂1k, . . . , δ̂5k),
k=1, . . . , 7 have the following joint p-values: 0.0127 for S; 4.0×10−6 for log(θp); 0.1490 for log(θm); 2.0×10−5 for Grade
5; 0.1473 for Female; 0.0002 for Black; and 0.0122 for Hispanic. For parent survey controls we did not include T ·A
interactions to avoid numerical instability problems.

The table also gives further evidence of a decreasing returns to scale skill production
technology: the Avg SD Effect of pre-test score Si is significant (both statistically and
economically) and negative. This implies that (over the short/medium run) as students reach
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a higher level of mastery of 5th/6th-grade math concepts, achieving further improvements of
a fixed size in ∆S units requires increasingly more work.

Finally, we find once again that after controlling for the rich set of student covariates,
school quality plays an important role in converting math activity into new skill stock.
Moreover, the ordering among the three school districts is consistent with results from pre-
vious sections: all else equal, a switch from District 1 to District 2 or District 3 has a total
effect, on average, of reducing skill augmentation by 0.11 SD and 0.44 SD (0.09 SD and 0.55
SD), respectively, under specification (4) (specification (5)). School district terms are highly
significant all together, and individual District-1/District-2 total effects are still significant
at the 1% level when taken separately. In contrast to the model of initial math proficiency,
the data favor slopes as the main mechanism through which school quality impacts skill
growth. In other words, holding student observed and unobserved traits fixed, more effective
schools appear to act as a force multiplier for a child’s home learning efforts.
6.3. Threats to Causal Interpretation of School VA Effects on Skill Production.
Once again, our confidence in attaching causal interpretations to school VA estimates is bol-
stered by the stability of estimated magnitudes across model specifications. This is suggestive
of having adequately controlled for relevant sources of omitted variable bias in Models (12)
and (13). The core of our identification strategy in Section 6 has been the ability to directly
control for selection on unobservables. Within the standard VA framework (equation (9)),
this is equivalent to bringing latent student ability ξi out of the error term as an explicit
regressor. To our knowledge, ours is the first paper to do so in estimating K-12 school VA.42

Moreover, our structurally-motivated field experiment also allows us to model multiple di-
mensions of latent ability as log(θpi) and log(θmi). Of course, all claims to empirical causality
rest to some extent on unverifiable assumptions. We require that remaining unexplained fac-
tors determining initial proficiency (Assumption 7) or incremental skill gains (Assumption
8) be conditionally uncorrelated with our full set of controls. In order for the school-district
VA effects in Tables 6 and 7 to be largely or mostly attributable to omitted variable bias,
there would have to exist some additional aspect of latent ability or other math-skill-relevant
factor that is both strongly correlated with school assignment, and also not well proxied for
by a combination of race, gender, age, neighborhood socioeconomics, family/friend academic
support, home learning resources, parental academic involvement, family size, birth order,
idiosyncratic study productivity θp, and idiosyncratic study motivation θm.

7. Conclusion

Since the 1960s, few areas in economics have grown as significantly or provided as many
valuable insights as the study of human capital’s role in economic growth and the examination
of how education, learning, and skills are developed. A perusal of the popular press suggests

42Bodoh-Creed and Hickman (2024) use a related identification strategy to estimate college value-added in a Mincer equation
for post-graduate income. They used observational college data and a model of Bayes-Nash competition for college admissions
to derive a control function which proxied for 1-dimensional unobserved college-student types.
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that most have accepted James Mill’s dictum that “if education cannot do everything, there
is hardly anything it cannot do.” Yet, modern economies still strive to increase the number
of their citizens completing higher education.

Gone are the days when societies can invest in only a small number of highly educated per-
sons, where the primary goal of education is to pinpoint the few students who can succeed.
Such systems historically invest a great deal more in the selection, rather than development,
of students. These days, however, investment in the development of a broader set of stu-
dents is important both for creating opportunities for the economic success and stability of
individuals, and for innovation and growth within society. Quality education is no longer a
luxury for a select few elite, but rather increasingly a necessity for anyone hoping to secure
comfortable employment, let alone upward mobility.

This study adds to the vast literature by using a structurally-motivated field experiment
to produce several important lessons for education policy. At the most fundamental level,
we show that programs or policies that aim to close performance gaps by better motivating
under-performing groups, either through information or incentives, may not be addressing
the main barriers that constrain student performance. We show that under-performing stu-
dents and groups, whether defined by race, gender, or school district, tend not to be any
less motivated compared to their higher-performing peers. Rather, these under-performing
students typically struggle to convert their study time and effort into learning task com-
pletion and proficiency gains. As such, effectively closing performance gaps likely requires
something different than motivating under-performing students. Indeed, the effective closure
of performance gaps should aim to improve their study-time productivity. This may mean
improving access to high-quality education, tutoring, and supplemental learning resources,
especially in early grades. It may also mean increasing the use of formative assessment and
individualized curriculum, through teacher efforts or technology assisted learning.43

Our analysis also highlights key differences in quality across school districts, suggesting
that students enrolled in less-affluent districts are at a substantial disadvantage compared to
students in higher performing districts. Our approach makes it possible to bread this total
effect down by several different mechanisms. First, after controlling for various contextual
factors (residential sorting patterns, home background, etc.), more effective schools make
their students more productive learners at home; that is they enable their students to traverse
a critical mass of homework tasks before burning out. Second, more effective schools have a
positive impact on learning independent of home-study activity, and third, they also influence
the rate at which a child’s study effort creates new durable math skill. Finally, since more

43These insights align with previous studies, which have found that education interventions focused on providing information
or offering student incentives yield relatively small impacts on test scores (e.g., Baird, McIntosh, and Ozler (2021)). In contrast,
programs that strengthen foundational math and literacy skills in early grades (e.g., Banerjee et al. (2016)), or tailor curriculum
and teaching to meet individual learners’ needs—through methods like tutoring, formative assessments, individualized education
plans, or technology-assisted learning (e.g., Pitchford, Chigeda, and Hubber (2019), Outhwaite, Gulliford, and Pitchford (2017),
Rodriguez-Segura (2020)) tend to have more substantial effects.
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productive students also enjoy a higher conversion rate between effort and skill gains, school
quality may indirectly strengthen this effect by bolstering productivity.

A key takeaway from the work of Heckman and colleagues, along with many others, is that
investing in human capital yields a higher return than investing in physical capital. This
insight suggests we should shift from an economy characterized by scarce educational oppor-
tunities to one that promotes and supports the development of all students over the life-cycle.
A troubling observation about educational scarcity is that Black and Hispanic students re-
port higher preferences for STEM but face significant disadvantages. They tend to be less
affluent, often lack health insurance, and are mostly enrolled in schools with below-average
budgets, faculty salaries, and teacher qualifications. Consequently, their standardized test
scores lag behind those of White and Asian students, who generally have far better resource
allocations. These facts together suggest adults are successfully advertising to Black and His-
panic children that STEM education is the way out of poverty. However, their communities,
schools, and society at large are failing to follow up the marketing campaign by equipping
them with the tools to effectively act on this perception.

Of course, any particular exercise leaves much on the sidelines. In our case, we should
be clear that academic productivity and preferences may evolve over the long run. There
is ample evidence (Bloom, 1964; Hunt, 1961) that academic efficiency can be modified by
appropriate environmental conditions in the school and in the home. Factors such as the
amount of time allowed for learning, quality of teacher or parent instruction, and the stu-
dent’s ability to understand instruction are important in determining the arc of learning
alongside our studied characteristics. Indeed, they may serve as important complements.
For example, an improvement in the quality of instruction yields important temporal re-
turns: the student now must commit less time for learning the same amount of materials.
Likewise, if the student lacks ability to understand teacher instruction (which could be due
to low previous investment), the amount of time needed to learn increases. These are the dy-
namic complementarities that are a key aspect in the development of human capital (Cunha
and Heckman (2007)). We reserve these discussions for another occasion but note that they
are ripe for further theoretical and empirical inquiry.
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Appendix A. Observable Student Characteristics and Test Scores

A.1. Classroom based assessments and surveys. Prior to randomized treatment as-
signment, students were given a standardized math pre-test by their teachers during regular
classroom time to obtain a baseline measure of proficiency. Teachers administered a similar
post-test following the experiment to gauge learning progress over the course of the study.
Both assessments were designed by our research team from professionally developed, age-
appropriate math materials. We obtained copies of 46 different standardized exams used by
various U.S. states over the preceding decade, of which 30 were developed for 5thgraders and
16 were developed for 6thgraders.44 The exams were then split into individual math prob-
lems, resulting in a bank of 370 unique grade-5 problems and 302 unique grade-6 problems.
44These state standardized math exams included the California Standards Test (2009), Illinois Standards Achievement Test
(2003, 2006-2011, 2013), Minnesota Comprehensive Assessments-Series III, New York State Testing Program (2005-2010), Ohio
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All 672 problems were pooled to expose both 5thand 6thgraders to the same materials. This
facilitated an even comparison between age groups, allowing us to cleanly estimate the effect
of an additional year of schooling on skill formation.

We used Common Core Math Standards definitions to categorize each problem into one
of 5 subject categories: (i) equations and algebraic thinking, (ii) fractions, proportions, and
ratios, (iii) geometry, (iv) measurement and probability, and (v) number system.45 For the
pre-test and post-test, we randomly selected a large subset of problems from the math
question bank and further categorized them as easy, medium, or hard, depending on their
complexity level or number of steps required to solve. Finally, to ensure uniformity of subject
content and difficulty level, both the pre-test and post-test were populated with similar sets
of 36 questions: 8 each from subjects (i), (iii), and (v), and 6 each from subjects (ii) and
(iv). Of the 36 questions, 20 were selected from 6thgrade materials and the other 16 from
5thgrade materials, and the easy, medium, and hard categories were represented by 15, 12,
and 9 questions respectively, spread evenly across each exam. We computed pre-test scores
Si and post-test scores S2i by awarding one point for each correct answer, subtracting one
quarter point for each incorrect answer (questions all had four possible choices), and neither
adding nor subtracting points for answers left blank.

The exams were coupled with surveys to collect additional relevant information about
students. Class periods were 45 minutes long; students were given 35 minutes to complete as
much of the exam as they could (and the scoring rule was explained in intuitive terms), with
the remainder of the time allocated to filling out a survey. Survey questions covered a child’s
attitudes and preferences (most/least favorite academic subjects and extrinsic vs. intrinsic
motivation); family learning environment (# of academic helpers in the child’s family/friend
network and parental permissiveness for weekday video gaming and recreational internet use);
and consumption/leisure options (# of video gaming systems at the child’s home, fraction of
peer social time under adult supervision, and enrollment in organized sports, music activities,
and/or clubs). We also gathered socioeconomic indicators from the American Community
Survey for each of the ≈160 (rounded to nearest 10 to preserve anonymity) US Census block
groups where our test subjects resided, each of which can be thought of as a neighborhood.
Within each neighborhood we collected mean household income (a proxy for affluence), and
the fraction of minors with no private health insurance (a proxy for deprivation of non-school
developmental resources).46

Achievement Test (2005), State of Texas Assessments of Academic Readiness (2011, 2013), Texas Assessment of Knowledge
and Skills (2009), and Wisconsin Knowledge and Concepts Examinations Criterion-Referenced Test (2005).
45Common Core subject definitions for 5thand 6thgrades (http://www.corestandards.org/wp-content/uploads/Math accessi-
ble as of September 2020) differ slightly; our 5-subject classification represents a merging of the two.
46The ACS contains many other socioeconomic indicators (e.g., mean home values) but when reported at the neighborhood
level, multicollinearity problems arise due to high correlations of within-neighborhood means across different measures. We
included mean neighborhood income and uninsured minor rate because the two seemed most different in what they represent
and had the lowest pair-wise correlation among available indicators.
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Table 8. DESCRIPTIVE STATISTICS: STUDENT COVARIATES BY SUB-SAMPLE

SUB-SAMPLE: ALL FEMALE MALE BLACK HISPANIC WHITE/ASIAN
SIZE/FRAC OF TOT: 1,676 0.5078 0.4922 0.2691 0.1915 0.5394

SCHOOL DISTRICT & NEIGHBORHOOD SOCIOECONOMICS

Nbhd Mean Income ($1,000’s) $108.9 $108.9 $108.9 $80.8 $45.7 $132.0
(sample StDev, [fmo]) (41.5,[0.05]) (41.1) (41.9) (32.4) (23.2) (24.6)

Nbhd Uninsured Minors 0.252 0.253 0.252 0.378 0.616 0.072
(sample StDev, [fmo]) (0.297,[0.06]) (0.297) (0.297) (0.293) (0.231) (0.129)

District 1 0.465 0.475 0.455 0.007 0.044 0.843
(sample StDev, [fmo]) (0.499,[0.00]) (0.499) (0.498) (0.083) (0.205) (0.364)

District 2 0.268 0.260 0.276 0.650 0.103 0.136
(sample StDev, [fmo]) (0.443,[0.00]) (0.439) (0.447) (0.477) (0.304) (0.343)

District 3 0.267 0.266 0.269 0.344 0.854 0.021
(sample StDev, [fmo]) (0.442,[0.00]) (0.442) (0.443) (0.475) (0.353) (0.143)

FAMILY & RECREATIONAL TIME-USE VARIABLES

#Adult Academic Helpers 1.140 1.163 1.117 1.128 0.615 1.328
(sample StDev, [fmo]) (0.848,[0.07]) (0.821) (0.875) (0.892) (0.724) (0.789)

#Peer Academic Helpers 0.789 0.907 0.666 0.852 0.887 0.728
(sample StDev, [fmo]) (0.783,[0.07]) (0.792) (0.756) (0.825) (0.766) (0.765)

#Gaming Systems at Home 1.570 1.474 1.660 1.648 1.480 1.554
(sample StDev, [fmo]) (1.135,[0.00]) (1.130) (1.133) (1.299) (1.096) (1.056)

Parental Permission for
Video Gaming on Weekdays 0.878 0.882 0.874 0.809 0.888 0.909
(sample StDev, [fmo]) (0.327,[0.00]) (0.322) (0.332) (0.393) (0.316) (0.287)

Weekday Daily Recreational
Internet Use (hrs) 1.766 1.790 1.740 1.908 1.788 1.694
(sample StDev, [fmo]) (1.201,[0.09]) (1.166) (1.236) (1.290) (1.210) (1.150)

Enrollment in Sports 0.669 0.639 0.700 0.548 0.455 0.807
(sample StDev, [fmo]) (0.471,[0.00]) (0.481) (0.458) (0.498) (0.499) (0.395)

Enrollment in Music 0.383 0.462 0.302 0.295 0.196 0.493
(sample StDev, [fmo]) (0.487,[0.00]) (0.499) (0.459) (0.457) (0.398) (0.500)

Enrollment in Clubs/
Other Activities 0.410 0.438 0.381 0.337 0.315 0.480
(sample StDev, [fmo]) (0.492,[0.00]) (0.496) (0.486) (0.473) (0.465) (0.500)

Fraction Leisure Time
In Adult-Supervised Activity 0.351 0.356 0.345 0.317 0.274 0.392
(sample StDev, [fmo]) (0.172,[0.05]) (0.172) (0.171) (0.167) (0.181) (0.158)

ACADEMIC PREFERENCES & ATTITUDE VARIABLES

Math Favorite Subj. 0.361 0.319 0.404 0.431 0.439 0.302
(sample StDev, [fmo]) (0.480,[0.07]) (0.466) (0.491) (0.496) (0.497) (0.460)

Math Least Favorite Subj. 0.216 0.254 0.176 0.277 0.212 0.189
(sample StDev, [fmo]) (0.411,[0.08]) (0.435) (0.381) (0.448) (0.410) (0.392)

Extrinsic Motiv. Score 0 -0.023 0.024 -0.222 -0.030 0.122
(sample StDev, [fmo]) (1,[0.00]) (0.989) (1.011) (1.016) (1.005) (0.971)

Intrinsic Motiv. Score 0 0.056 -0.058 0.010 0.150 -0.059
(sample StDev, [fmo]) (1,[0.00]) (1.005) (0.992) (1.047) (1.057) (0.949)

Notes: un-bracketed, standard font numbers are sample means; italicized numbers are sample standard deviations; and
bracketed, standard font numbers report fractions of missing observations. Adult Academic Helpers included parents,
grandparents, and tutors; Peer Academic Helpers included siblings and friends. Extrinsic Motivation Score and
Intrinsic Motivation Score both exist on a scale of 0-4, but have been standardized for this table. Fifth-graders make up
47.3% of the total sample, with 6thgraders comprising the other 52.7%. Sub-sample proportions are close to that ratio for all
gender and race groups.



References 57

Table 9. DESCRIPTIVE STATISTICS: PARENT SURVEY VARIABLES

N Obs. %Sampled Mean Median StDev Min Max

Involved Parent 333 19.87% 0.426 0 0.495 0 1
Big Family 307 18.32% 0.435 0 0.497 0 1
Youngest Child 307 18.32% 0.316 0 0.466 0 1
Middle Child 307 18.32% 0.502 1 0.501 0 1

Notes: Involved Parent is a dummy for (self-reported) daily average time spent with child on schoolwork weakly exceeding
2 hours. Big Family is a dummy for 3 or more children living in the household. Youngest Child and Middle Child are
birth-order dummies for whether the child enrolled in the field experiment is the youngest (with at least one sibling) or middle
child. The omitted birth-order category is Oldest Child, which includes only-child as a special case.

A.2. Descriptive Statistics. Table 8 presents descriptive statistics by demographic sub-
group. In what follows, we adopt the terminology of referring to Blacks and Hispanics
collectively as “under-represented minorities” or simply “minorities.”47

On average, Black students in our sample live in neighborhoods with mean incomes mod-
erately above that of the average student in Illinois ($71,602; see Online Appendix B), and
Hispanic students in our sample live in neighborhoods with significantly lower mean incomes.
White and Asian students in our sample live in neighborhoods with significantly higher in-
comes than the state average. The correlation between socioeconomics and race is also
starkly apparent in uninsured minor rates, being higher among Blacks than Whites/Asians
by a factor of 5.3, and higher among Hispanics by a factor of 8.6.

From survey responses we also see racial differences in terms of access to homework help,
video game/internet usage, and participation in extracurricular activities. Whites/Asians
have access to more adult academic helpers (including parents, grandparents, and tutors)
and were more likely to be enrolled in sports and music. Black and Hispanic students are
more likely to report that math is either their favorite or least favorite subject relative to their
White/Asian peers. Minority students also self-reported higher levels of intrinsic motivation
when completing school work, while White/Asian students are more likely to report being
motivated by extrinsic factors such as satisfying parental or teacher expectations, or to earn
a reward for satisfactory performance. Females in our sample also self-reported higher levels
of intrinsic motivation, and lower levels of extrinsic motivation, relative to males.

47This convention follows the higher education literature, where Blacks and Hispanics are known to be proportionally under-
represented at post-secondary education institutions. By contrast, Asian students, although a statistical demographic minority
group, are proportionally over-represented at colleges generally, and particularly so at elite colleges, like their White counterparts.
Thus, Asians do not satisfy the definition of a “URM” group. For ease of discussion, we will often refer to URMs as simply
“minorities” for short, while recognizing this important caveat.
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Figure 7. Distributions of Characteristics by Race
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Figure 8. Distributions of Characteristics by Gender

0 5 10 15 20 25 30 35

PRE-TEST SCORE

0

0.2

0.4

0.6

0.8

1

C
D

F
s

FEMALES

MALES

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

log(
p
) (PRODUCTIVITY)

0

0.2

0.4

0.6

0.8

1

C
D

F
s

FEMALES

MALES

-10 -8 -6 -4 -2 0 2

log(
m

) (MOTIVATION)

0

0.2

0.4

0.6

0.8

1

C
D

F
s

FEMALES

MALES

Figure 9. Website Task Completion by Gender and Race

0 10 20 30 40 50 60 70 80

WEBSITE LEARNING TASK COMPLETION

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
s

BLACK/HISPANIC

WHITE/ASIAN

0 10 20 30 40 50 60 70 80

WEBSITE LEARNING TASK COMPLETION

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
s

MALE

FEMALE

A.3. Additional Tables & Figures.



References 59

Table 10. COMMON STRUCTURAL PARAMETERS

KNOT (quoted in units of minute spent over a 10-day sample period)
LOCATIONS: {κc1, κc2, κc3, κc4, κc5, κc6, κc7, κc8} = {0, 28.02, 46.12, 75.33, 109.59, 171.31, 289.31, 1254}

VARIABLE: γc1 γc2 γc3 γc4 γc5 γc6

Point Est.: 0 9.3340 24.720 147.59 424.56 931.45
90% CI: — — [24.19, 25.27] [134.3, 157.9] [403.4, 456.8] [887.7, 981.6]

VARIABLE: γc7 γc8 γc9 γc10

Point Est.: 1,936.4 9,969.8 17,626 85,103
90% CI: [1760.5, 2100.3] [9044.4, 11063] [15246, 20532] [72252, 111460]

VARIABLE: τ0 τ1 φ

Point Est.: 6.575 1.058 0.0788
90% CI: [6.483, 6.648] [1.052, 1.064] [0.0741, 0.0817]

Notes: Confidence intervals are computed via the bootstrap (400 bootstrap samples). γc1 and γc2 are not free parameters
during estimation (pinned down by the boundary conditions c(0 = 0 and c′(0) = 1).

Figure 10. Empirical Bayes Shrunk Type Estimates
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Appendix B. Online Supplement to accompany
Disentangling Motivation and Study Productivity as Drivers of

Adolescent Human Capital Formation: Evidence from a Field Experiment
and Structural Analysis,

by Christopher Cotton, Brent Hickman, John List, Joseph Price, and
Sutanuka Roy

B.1. Common Core Math Subject Sub-Categories. We used standard Common Core
subject definitions (accessible at https://learning.ccsso.org/wp-content/uploads/2022/11/Math_Standards1.pdf

as of January 2023) to classify and organize pedagogical content on our website and pro-
ficiency assessments. These subject definitions are grade-specific, but with considerable
overlap in the themes and concepts covered by 5thand 6thgraders. In Table OS.1 below we
provide an overview of Common Core definitions and a harmonization of the specific subject
sub-category topics that were merged to form 5-subject 5th/6thgrade sub-categories used in
our study.

B.2. Internet Access Issues. Of the 1,676 student test subjects included in our study, 118
(7%) of them reported having no regular internet connection at home. Of these, 48 completed
at least 2 learning tasks on the website, for a conditional activity rate of 40.7%. Activity
rates were statistically similar for students with and without regular internet connections at
home: the 95% confidence interval of this rate estimate is (36.3%, 45.1%), which contains
the activity rate for the overall sample population (44.7%). Among active students with
no regular internet connection, we saw reduced rates of pageloads from desktop computers
(63.5% vs 76.8%) and tablet devices (15.2% vs 18.5%), and elevated pageload rates from
smartphones (21.3% vs 4.8%). The fact that the students with no regular internet connection
at home still predominantly connected to our website from a personal computer is suggestive
that they were able to find regular internet service elsewhere, for example in the network of 11
public libraries serving their communities, or from the house of a family member or friend. In
order to directly test whether limited internet access played a significant role in our study, we
ran two regressions of website task completion Ai on various student covariates. Specification
1 includes dummies for no_home_internet; school district; mean neighborhood income (a
socioeconomic status proxy); self-reported regular homework time per day; math_attitude

(a single index based on responses to preference elicitation questions on student surveys);
and incentive contract dummies. In a second regression specification, we add quadratic terms
for neighborhood income, homework time, and math attitude, and race/gender dummies.

Results are displayed in Table OS.2. The coefficient estimate on no_home_internet in
both specifications is negative and of similar magnitude, but in neither is it statistically dif-
ferent from zero. On the other hand, other expected factors such as incentives, math attitude,
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Table OS.1. Common Core Category Harmonization by Grade

GRADE 5 GRADE 6
FOCUS AREAS BY GRADE

“In Grade 5, instructional time should focus on three critical areas: (1)

developing fluency with addition and subtraction of fractions, and de-

veloping understanding of the multiplication of fractions and of division

of fractions in limited cases (unit fractions divided by whole numbers

and whole numbers divided by unit fractions); (2) extending division to

2-digit divisors, integrating decimal fractions into the place value system

and developing understanding of operations with decimals to hundredths,

and developing fluency with whole number and decimal operations; and

(3) developing understanding of volume.”

“In Grade 6, instructional time should focus on four critical areas: (1)

connecting ratio and rate to whole number multiplication and division

and using concepts of ratio and rate to solve problems; (2) completing

understanding of division of fractions and extending the notion of num-

ber to the system of rational numbers, which includes negative numbers;

(3) writing, interpreting, and using expressions and equations; and (4)

developing understanding of statistical thinking.”

SUB-CATEGORIES, GROUPED BY SIMILARITY
(i) Equations and Algebraic Thinking merged sub-category:

“(5OAT) Write and interpret numerical expressions; and

(5OAT) Analyze Patterns and Relationships.”

(i) Equations and Algebraic Thinking merged sub-category:

“(6EE) Apply and extend previous understandings of arithmetic

to algebraic expressions; (6EE) Reason about and solve one-

variable equations and inequalities; and (6EE) Represent and

analyze quantitative relationships between dependent and inde-

pendent variables.”

(ii) Fractions, Proportions, and Ratios merged sub-

category: “(5NOF) Use equivalent fractions as a strategy to

add and subtract fractions; and (5NOF) Apply and extend

previous understandings of multiplication and division to

multiply and divide fractions.”

(ii) Fractions, Proportions, and Ratios merged sub-

category: “(6RPR) Understand ratio concepts and use ratio

reasoning to solve problems; and (6NS) Apply and extend

previous understandings of multiplication and division to

divide fractions by fractions.”

(iii) Geometry merged sub-category: “(5GEOM) Graph

points on the coordinate plane to solve real-world and mathe-

matical problems; and (5GEOM) Classify two-dimensional fig-

ures into categories based on their properties; and (5MD) Geo-

metric measurement: understand concepts of volume and relate

volume to multiplication and to addition.”

(iii) Geometry merged sub-category: “(6GEOM) Solve real-

world and mathematical problems involving area, surface area,

and volume.”

(iv) Measurement and Probability merged sub-category:

“(5MD) Convert like measurement units within a given mea-

surement system; and (5MD) Represent and interpret data.”

(iv) Measurement and Probability merged sub-category:

“(6SP) Develop understanding of statistical variability; and

(6SP) Summarize and describe distributions.”

(v) Number System merged sub-category: “(5NOBT) Un-

derstand the place value system; and (5NOBT) Perform opera-

tions with multi-digit whole numbers and with decimals to hun-

dredths.”

(v) Number System merged sub-category: “(6NS) Compute

fluently with multi-digit numbers and find common factors and

multiples; and (6NS) Apply and extend previous understandings

of numbers to the system of rational numbers.”

Notes: All underlined text is the merged subject sub-categories used for our study. All italicized text is quoted from the
Common Core Mathematics Standards document (accessible at https://learning.ccsso.org/wp-content/uploads/2022/11/Math_Standards1.pdf as of
January 2023). Bolded acronyms in parentheses indicate that a particular topic was taken from a given Common Core
grade sub-category as follows: for grade 5, “5OAT”=Operations and Algebraic Thinking, “5NOBT”=Number and Operations
in Base Ten, “5NOF”=Number and Operations–Fractions, “5MD”=Measurement and Data, and “5GEOM”=Geometry; for
grade 6, “6RPR”=Ratios and Proportional Relationships, “6NS”=The Number System, “6EE”=Expressions and Equations,
“6GEOM”=Geometry, and “6SP”=Statistics and Probability.
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and regular homework time play a significant role in predicting total website task comple-
tion. These results, and students’ various outside options for connectivity (e.g., smartphones
or library computers) suggest that internet access is not driving our main empirical results.

Table OS.2. Determinants of Website Task Completion

(Dependent Var.: Ai) Specification 1 Specification 2
Regressor Coeff. Est. (Std.Err.) 95% Conf. Int. Coeff. Est. (Std.Err.) 95% Conf. Int.

no_home_internet -2.45 (1.946) [-6.24,1.36] -2.33 (1.947) [-6.14,1.49]
District2 -11.16*** (1.762) [-14.62,-7.71] -8.50*** (2.168) [-12.82,-4.32]
District3 -17.24*** (2.506) [-22.16,-12.33] -12.03*** (3.588) [-19.07,-5.00]
nbhd_income -3.9×10−5** (1.8×10−5) [-7.3,-0.4]×10−5 2.4×10−5 (7.6×10−5) [-1.1,1.5]×10−4

nbhd_income2 — -2.1×10−10 (2.1×10−10) [-6.3,2.2]×10−10

(hmwk_time/day) -1.76 (1.169) [-4.05,0.53] 1.99 (2.842) [-3.58,7.57]
(hmwk_time/day)2 — -2.11** (0.933) [-3.94,-0.28]
math_attitude 2.55*** (0.391) [1.78,3.31] 1.40*** (0.489) [0.44,2.36]
math_attitude2 — 0.38*** (0.096) [0.19,0.56]
Contract2 2.49** (1.227) [0.08,4.89] 2.44** (1.220) [0.05,4.83]
Contract3 4.73*** (1.226) [2.33,7.13] 4.71*** (1.217) [2.32,7.10]
Constant 15.68*** (3.326) [9.16,22.20] 8.81 (5.654) [-2.27,19.89]

Gender/Race Dummies NO YES
R2 0.126 0.144

Notes: We follow typical “star notation” for statistical significance; “***” denotes significance at the 1% level, “**” denotes
significance at the 5% level, and “*” denotes significance at the 10% level.

B.3. Structural Estimator Technical Details.

B.3.1. Dealing With Upper-Tail Mass Points of Learning Task Accomplishment. We have a
small mass of students who achieve full output Ai=80 on the website, as can be seen in Figure
2. This means that their study-time productivity trait, θpi, is known, but without extra
structure their motivation trait, θmi, can only be bounded from above. This is because it is
impossible to know whether a given individual would have optimally chosen exactly Ai=80,
or Ai > 80 if given the chance.1 We deal with this problem by estimating a constrained
quantile function using a low-dimensional B-spline to extrapolate into the missing upper
tails of the empirical CDFs of A. The extrapolating B-spline quantile functions overlapped
their empirical counterparts to the 85th percentile. We assumed that no student would choose
to more than double the available workload on the website, so tails were bounded from above
by A=160. We chose a low-dimensional B-spline with 3 knots so that all parameters for the
extrapolating quantile functions could be informed by the available data. One advantage of
this approach is that we can pre-estimate the extrapolated upper tails of the work volume
distributions, without adding to the computational complexity of the main simulated GMM
estimator.

We discretized the extrapolated tails (for computational tractability) by selecting no more
than 5 uniform steps (in quantile rank space), and also requiring each step (except possibly
the last one) to represent at least 5 observations of Ai = 80. The resulting frequency

1Note, however that this bound is much tighter than the bounds on Marginal/Inactive student motivation types.
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tables included 3 steps under contract 1 (with the smallest upper mass point), and 5 steps
each for contracts 2 and 3. Figure OS.2 in the online supplement plots the extrapolated
upper tails against the empirical CDFs of A. After discretizing the upper tail, for each
individual with full output this renders up to 5 possibilities for optimal stopping points
{Âi1, . . . , Âi5}, all being at or above 80. For each (θpi, Âim) pair, m = 1, . . . , 5, we back
out a motivation trait θmi(Âim) to match Âim as the optimal stopping point, and we run
counterfactual simulations for each (θpi, θmi(Âim)) pair. However, we give each of these
(1/5)th weight when incorporating them into the model-generated CDFs G̃a.

B.3.2. Numerical Solution Approach.

B.3.3. Standard Errors. For the empirical model of student time allocation and for the Tobit
ML decomposition of student traits, we bootstrap all standard errors. Our block-bootstrap
procedure is designed to mimic our randomized sampling procedure (discussed in Section
3.2.5) which balanced on race, gender, school district, grade level, and pre-test score. We be-
gin by arranging all test subjects into race-gender-district-grade bins.2 Suppose that there are
K such bins in total, and that within contract j = 1, 2, 3 the bins each have N1j, N2j, . . . , NKj

subjects in them, respectively. Then, in order to construct a single block-bootstrap sample,
for each bin, k = 1, . . . , K, we do the following:

(1) Randomly draw a test subject (with replacement), call her “subject1,” and record
which contract j she was assigned.

(2) Select subjects from the other two contracts j′ and j′′ in that same race-gender-
district-grade bin (with replacement) whose pre-test scores are closest to subject1’s
pre-test score. Break ties randomly if multiple subjects fit that description within
contract groups j′ and/or j′′. Call these two selected individuals “subject2” and
“subject3,”respectively.

(3) Add the triple (subject1, subject2, subject3) to the bootstrap sample.
(4) Repeat steps (1)–(3) above, until full bootstrap samples of size Nk1, Nk2, and Nk3

have been constructed for bin k under contracts 1, 2, and 3, respectively.
(5) Repeat steps (1)–(4) above for each race-gender-district-grade bin, k = 1, . . . , K.

The final remaining question is how many bootstrap samples on which to generate and re-
estimate the model. The main consideration here is a trade-off between simulation error and
computational cost. Estimates of the student time allocation model generally took between
20 and 80 minutes each, including an adaptive multiple re-starts algorithm to ensure quality
of the final solution. The Tobit ML estimator took a similar amount of time to converge for
each bootstrap iterate. We chose 280 bootstrap samples for the time allocation model, and
280 bootstraps for the Tobit ML model.

2Due to a sparsity of Blacks and Hispanics in District 1 and a sparsity of Whites and Asians in District 3, we only arrange
students into gender-district-grade bins in those two districts. District 2 subjects, who exhibit a more diverse racial mix, are
fully partitioned into race-gender-district-grade bins.
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For standard errors on student fixed effects, we first bootstrap all common parameters.

Then, we combine the bootstrapped parameter samples,
{
τ
(s)
0 , τ

(s)
1 , φ(s), γ

(s)
c

}280

s=1
, etc., with

an individual’s observables,
{
{τAi

ai=1}, Ti, Ai,Xpi,Xmi

}
, to compute bootstrapped fixed effect

estimates
{
θ
(s)
pi , θ

(s)
mi

}S

s=1
. These within-student bootstrap samples of fixed effects are then

used to compute standard errors, inverse variance weights, and EB shrinkage forecasts. We
compute heteroskedasticity-consistent standard errors and hypothesis tests for production
technology parameters in the usual way.

B.4. Tobit Estimator Technical Details. Here we outline our approach to numerically
solving the Tobit ML estimator from Section 5. In order to ensure convergence to a global
optimum, we adopted the following approach to solving for the argmax of the Tobit objective
function (8), given an initial guess of the parameters (βp0,βm0,Σ0):

(1) Let a candidate solution be denoted by (β̂∗
p, β̂

∗
m, Σ̂

∗,L∗), where L∗ is its corresponding
log-likelihood function value. Iteratively obtain this candidate solution as follows:
solve for (β̂p,k+1, β̂m,k+1, Σ̂k+1,Lk+1) 9 times, using (β̂pk, β̂mk, Σ̂k,Lk) as an initial
guess, and various MATLAB (v2022b) solvers in the following order:
(a) k = 0: (quasi-Newton) interior-point algorithm;
(b) k = 1: (quasi-Newton) sequential quadratic programming legacy (SQP-L) algo-

rithm;
(c) k = 2: (quasi-Newton) sequential quadratic programming (SQP) algorithm;
(d) k = 3: (quasi-Newton) active-set algorithm;
(e) k = 4: (derivative-free) Non-Uniform Pattern Search algorithm with mesh-

adaptive direct search option (NUPS-MADS);
(f) k = 5: (derivative-free) Uniform Pattern Search algorithm;
(g) k = 6: (derivative-free) Non-Uniform Pattern Search, default algorithm;
(h) k = 7: (derivative-free) Non-Uniform Pattern Search algorithm with generalized

pattern search option;
(i) k = 8: (quasi-Newton) interior-point algorithm;

specify (β̂∗
p, β̂

∗
m, Σ̂

∗,L∗)=(β̂p9, β̂m9, Σ̂9,L9).
(2) Generate multiple re-start values to re-solve from as follows:

(a) Define seven variable groups (I) neighborhood SES controls; (II) race, gender,
age; (III) peer/adult helpers, math attitudes, extrinsic/intrinsic scores; (IV )

#gaming systems, weekday gaming permission, weekday recreational internet
permission, fraction leisure time under adult supervision, sports/music/clubs
enrollment; (V ) study time, screen time, home connectivity controls; (V I) parent
survey controls; (V II) school district dummies.

(i) For each variable group G, find three holdout restart points (βHGl
p ,βHGl

m ,ΣHGl),
l=1, 2, 3, by the following:
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(A) l = 1: optimize (8) using (β̂p9, β̂m9, Σ̂9) as a start point, but con-
straining group G coefficients in the θp equation only to be zero;

(B) l = 2: optimize (8) using (β̂p9, β̂m9, Σ̂9) as a start point, but con-
straining group G coefficients in the θm equation only to be zero;

(C) l = 3: optimize (8) using (β̂p9, β̂m9, Σ̂9) as a start point, but con-
straining group G coefficients in both equations to be zero.

(D) For each case above, iteratively solve the constrained Tobit objective
twice using the interior-point and SQP-L algorithms in that order.

(ii) For each variable group G, find 12 scaled restart points (βSGl
p ,βSGl

m ,ΣSGl),
l=1, . . . , 6, by the following:
(A) l=1, 2, 3: using (β̂p9, β̂m9, Σ̂9) as a start point, scale group G coeffi-

cients in the θp equation only by a factor of (1/2); then do the same
for group G coefficients in the θp equation only; then do the same for
group G coefficients in both equations.

(B) l= 4, 5, 6: using (β̂p9, β̂m9, Σ̂9) as a start point, scale group G coef-
ficients in the θp equation only by a factor of 2; then do the same
for group G coefficients in the θp equation only; then do the same for
group G coefficients in both equations.

(C) l=7, 8, 9: using (β̂p9, β̂m9, Σ̂9) as a start point, scale group G coeffi-
cients in the θp equation only by a factor of (1/4); then do the same
for group G coefficients in the θp equation only; then do the same for
group G coefficients in both equations.

(D) l = 10, 11, 12: using (β̂p9, β̂m9, Σ̂9) as a start point, scale group G

coefficients in the θp equation only by a factor of 4; then do the same
for group G coefficients in the θp equation only; then do the same for
group G coefficients in both equations.

(b) For each generated re-start point—that is, for (βrGl
p ,βrGl

m ,ΣrGl), r=H,S and for
each corresponding l— obtain candidate solution (βrGl∗

p ,βrGl∗
m ,ΣrGl∗,LrGl∗) by

iteratively re-solving the unconstrained Tobit objective function (8) four times
using (βrGl

p ,βrGl
m ,ΣrGl) as a start point and the following order of solvers

(i) k = 0: (quasi-Newton) interior-point algorithm;
(ii) k = 1: (quasi-Newton) SQP algorithm;
(iii) k = 2: (derivative-free) NUPS-MADS algorithm;
(iv) k = 3: (derivative-free) Uniform Pattern Search algorithm.

(c) Define (β∗∗
p ,β∗∗

m ,Σ∗∗,L∗∗) =
{(

βrGl∗
p ,βrGl∗

m ,ΣrGl∗,LrGl∗) : LrGl∗ = min
r′=H,S;G′=I,...,V II;l′

{Lr′G′l′∗}
}
.

(3) If L∗∗ > L∗+tol—that is, if the re-start solutions collectively achieve a non-trivial im-
provement over the original candidate solution, re-define (βp0,βm0,Σ0)=(β̂∗∗

p , β̂∗∗
m , Σ̂∗∗)

and return to step (1). Otherwise, stop and define (β̂p, β̂m, Σ̂,L)=(β̂∗
p, β̂

∗
m, Σ̂

∗,L∗).
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While objective function (8) is smooth enough for derivative-based quasi-Newton methods
to function properly (see footnote 31), the derivative-free pattern-search algorithms have
the virtue of searching a broad array of points in the neighborhood of a candidate solution,
which is particularly useful when local optima exist within the vicinity of a global optimum.
Each one of the derivative-free methods differs by how it generates a set of local test points,
so using all four ensures good coverage of the region around a candidate solution. In Step
1, ending with one last quasi-Newton solver provides a final Hessian matrix, which can be
used for standard errors.

As a final practical note, if the above process is executed exactly as described it can be
thought of as a Gauss-Seidel approach to solving for a fixed point corresponding to a global
optimum. However, it can be sped up considerably by stopping in the middle of Step (2b) and
proceeding on to Step (2c), if the researcher finds a non-trivial improvement before traversing
all restart vectors across values of r=H,S; G= I, . . . , V II; and l. This adjustment to the
process would bring it more in line with a Gauss-Jacobi fixed point approach.

Table OS.3. SCHOOL DISTRICT CHARACTERISTICS, AY2013-14

Variable STATE OF ILLINOIS DISTRICT 1 DISTRICT 2 DISTRICT 3

FINANCES

% Revenue from Local Property Tax 61.7% 85% 70% 35%
Operating Budget Per Pupil $12,521 $14,500 $12,500 $13,500
% Spending on Instruction 48.7% 52% 48% 48%

FACULTY

Avg. Administrator Salary $100,720 $130,000 $105,000 $100,000
Avg. Teacher Salary $62,609 $75,000 $60,000 $60,000
% Teachers w/Master’s & Above: 61.1% 80% 65% 55%
Pupil-Teacher Ratio: 18.5 17 16 17
Pupil-Administrator Ratio: 173.3 210 140 130

STUDENT POPULATION & OUTCOMES

% Low Income: 54.2% 0% 50% 90%
% Limited English Proficient: 10.3% 2% 4% 24%
% Meeting/Exceeding Expectations
on State Standardized Math Exam (AY2014-15): 27.1% 60% 30% 10%

Notes: Data retrieved from the Illinois District Report Cards archive, 2015. District-specific numbers are rounded to preserve
anonymity. %Revenue from Local Property Tax is rounded to the nearest 5 pp. Operating Budget Per Pupil is
rounded to the nearest $500. %Spending on Instruction is rounded to the nearest 2 pp. Avg. Teacher Salary and Avg.
Administrator Salary are rounded to the nearest $5K. %Teachers with Master’s & Above is rounded to the nearest 5
pp. Pupil-Teacher Ratio is rounded to the nearest full number. Pupil-Administrator Ratio is rounded to the nearest 10.
%Low Income is rounded to the nearest 10 pp and primarily represents students who are either from families receiving public
aid or are eligible to receive free or reduced-price lunches. %Limited English Proficient is rounded to the nearest 2 pp.
%Meeting Expectations is a measure adoptied by the Illinois State Board of Education for school performance. It roughly
measures the fraction of a school’s student body that is projected to be college-bound after graduation from high school. This
measure is rounded to the nearest 10 pp and represents the average percentage across 5thand 6thgrades.
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Table OS.4. BALANCE TABLE

#ASSIGNED
TREATMENT FEMALE HISPANIC Black ASIAN GRADE-5 PRE-TEST SUBJECTS

CONTRACT 1: 0.0005 -0.0054 0.0003 0.0032 -0.0014 -0.0021 557
(p-val) (0.99) (0.82) (0.99) (0.90) (0.95) (0.93)
CONTRACT 2: -0.0009 0.0024 -0.0048 0.0026 0.0001 0.0067 559
(p-val) (0.97) (0.92) (0.84) (0.92) (1.00) (0.78)
CONTRACT 3: -0.0009 0.0024 -0.0048 0.0026 0.0001 0.0067 560
(p-val) (0.97) (0.92) (0.84) (0.92) (1.00) (0.78)

Notes: This table displays correlations between treatment assignment and the demographic and academic variables that were
used for randomization. Treatment assignment randomization used balancing on gender, race, grade-level cohort, and pre-test
score (via stratification). P-values (for the null hypothesis of zero correlation) are listed in parentheses.

Figure OS.1. Conditionally Heteroskedastic Work-Time Shocks
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Figure OS.2. CDF Smoothing and Upper Tail Extrapolation
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Figure OS.3. Cost Model Fit
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B.5. Supplemental Tables and Figures.




