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ABSTRACT

We conduct a field experiment across three diverse school districts to structurally identify student
motivation and estimate productivity parameters in a model of adolescent human capital
development. By observing exogenous variation in study time, homework task completion, and
test results, we can identify individual and demographic variations in motivation and study time
effectiveness. Struggling students typically do not lack motivation but rather have difficulties
converting study time into completed assignments and proficiency improvements. The study also
shows that attending a higher-performing school is associated with both higher productivity and
higher motivation relative to peers with similar observables in lower-performing schools.
Counterfactual analyses provide a suite of policies to reduce racial performance gaps and suggest
that school quality differences account for a substantial share of the racial differences in test
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MOTIVATION VS PRODUCTIVITY IN ADOLESCENT HUMAN CAPITAL 1
1. INTRODUCTION

Suppose that Anthony, a 6''-grade student, does not regularly complete his mathematics homework and
performs poorly on exams. Seeing this, one may think that Anthony lacks the motivation to put the time
and effort into studying math, not perceiving enough value in completing assignments, performing well on
tests, or learning the material relative to the opportunity costs of his time. If this is the case, it may be
possible to increase Anthony’s academic performance by increasing his motivation by providing incentives
or information (e.g., about the future returns from schooling) to him or his parents. However, a lack of
motivation is not the only possible explanation for Anthony’s observed choices and outcomes. Anthony
might be more than willing to spend time studying math, but he might struggle to convert his study effort
into completed homework or increased learning. If he lacks foundational math or literacy skills, adequate
study support, high-quality instruction in school, or accommodations for a learning disability, then spending
even large amounts of time on math may not be enough for Anthony to finish assignments and raise his
grades. If so, Anthony may rationally decide not to bother with the assignment. In this case, a very
different intervention would be appropriate, and merely providing additional incentives or information is
unlikely to substantially improve Anthony’s academic outcomes.

The challenge for policymakers, educators, and researchers comes from an inability to directly observe
whether low-performing students lack motivation—i.e., willingness to allocate a fixed quantity of time to
study—or whether they struggle with low productivity—i.e., the rate at which they convert their time inputs
into measurable academic success. Because typical observational datasets include only coarse measures of
student time inputs (if any at all) and tend to focus on output measures, such as grades/exam scores, both
explanations—i.e., low motivation and low academic productivity—are either observationally equivalent
or difficult to separately identify.! Moreover, we are unaware of any data set that permits estimating a
direct mapping between day-to-day learning activity and incremental skill gains. This inferential problem
is a formidable barrier to understanding student challenges, both at an individual and group level, and
designing effective education policies.

To overcome these challenges, we execute a structurally-motivated field experiment involving 1,676 ado-
lescent math students in partnership with their schools and teachers.? The setting of a natural field exper-
iment allows us to observe how study effort responds to incentives, how effective students are at converting
time inputs into completed assignments, and how additional study time leads to test score gains. Structural
econometric methods allow us to directly quantify individual labor-supply elasticity and study-time pro-
ductivity measures for each student, shedding new light on the root causes of low academic performance,
and its link to a learner’s rational day-to-day choices. Furthermore, by running the experiment across a
diverse set of students and school districts, we can explore how motivation and study-time productivity
differ by initial test performance, demographics, socio-economics, school quality, and other factors, which
facilitate counterfactual analyses of policies aimed at reducing education performance gaps. Our field ex-
periment produces a uniquely-rich set of student-level variables and varying incentives that are well-tailored
to solve various empirical confounds present in typical observational data from educational settings. Our
1Perhaps the most closely related papers to ours are Agostinelli and Wiswall (2022), which uses NLSY data with observations
at two-year intervals, and Del Boca, Flinn, Verriest, and Wiswall (2019), which uses PSID data including child time-use
variables. Unfortunately, neither of these datasets (or any others we know of) includes time-use data and exogenous incentive

variation, the two features needed to directly quantify children’s labor-supply elasticities.
2This study adhered to strict standards of research ethics; see Section 3.2 for further discussion.
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field experiment is designed to generate the individual level observable data required to estimate a novel
quantitative framework of day-to-day learner labor-supply (e.g., study-time) decisions.

To analyze of our field experimental data, we develop a novel quantitative framework for studying day-
to-day learner labor-supply choice. Leveraging the psychology literature (e.g., Carroll (1963); Eccles and
Wigfield (2002)), we model each student as having two idiosyncratic characteristics that govern productivity
(i.e., rate of progress through learning assignments) and the opportunity cost of time. A child’s utility costs
of spending study time are convex, meaning that she becomes increasingly less willing to continue work
as her total time allotment to studying grows. This model feature admits various natural interpretations,
including physical /mental exhaustion, or marginal value of non-study time rising as other activities become
increasingly crowded out of the child’s daily schedule.

A central theme of this framework is that the design of academic compensation schemes drive learner
behavior in important ways. Virtually all incentives tied to learning are “piece-rate,” where individuals
are rewarded for outputs rather than time inputs. Continuing our thought experiment, if Anthony and
Joseph both earn an “A” in a math course then, all else equal, they both see the same improvement in their
chances of landing a particular job, gaining admission to college, etc., even if achieving the “A” took Joseph
only 100 hours of work, while it took Anthony 500 hours. Within our model, while a child’s motivation
characteristic alone determines his willingness to spend an hour studying math, under piece-rate incentives
his productivity characteristic will also play a central role in his decision of whether to spend enough time
on math to achieve at a high level. Our model shows how a child with high motivation (i.e., relatively low
cost of spending an extra hour on math) may still make choices such that he will appear to be academically
withdrawn, if an hour of his study time is sufficiently unproductive for reaping the rewards of achievement.

Our approach to empirically modeling education is novel for two important reasons. First, we focus on
aspects of adolescent human capital—day-to-day rational leisure-study choice—that have not been thor-
oughly studied in the literature. Second, we depart from typical methods and models because our novel
data collection procedure opens a window into learner behavior not previously possible with observational
data. A comparison to other empirical work on childhood skill development is informative for understanding
the contribution of our framework and methods. A branch of this literature focuses on parental investment
in child human capital and/or policy interventions such as financial resources or incentives for parents;
e.g., Cunha, Heckman, and Schennach (2010) Del Boca, Flinn, and Wiswall (2014), Fryer, Levitt, and List
(2015), Chetty, Hendren, and Katz (2016), Del Boca et al. (2019), Agostinelli and Wiswall (2022), Gayle,
Golan, and Soytas (2022). Another branch of the literature focuses on the importance of schooling-input
quality /quantity; e.g., Hanushek (2020), Dobbie and Fryer (2011), Cullen, Levitt, Robertson, and Sadoff
(2013), Chetty, Friedman, and Rockoff (2014), Fryer (2017), Guryan et al. (2021), Ahn, Aucejo, and James
(2022), Fryer, Levitt, List, and Sadoff (2022), Luccioni (2023)). These are important topics deserving of
scientific attention, but parents and schools are only part of the parent-child-school partnership that shapes
adolescent human capital development.

Much less is known about how a child’s own decisions affect skill development. Indeed, one could argue
that this final missing link is uniquely crucial among the three components, as learner choices are the one
truly indispensable input. For example, some of the harm from low school quality may be offset by intensive
parental inputs. Moreover, many public education policies, such as universal pre- K, free and reduced-price
lunch, and after-school programs, are geared toward (partially) offsetting scarce or lacking parental inputs
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in a child’s education. If parental and school educational inputs are lacking, personal effort on the part
of the learner may even substitute for both. Prominent historical examples include Alexander Hamilton,
Frederick Douglass, and Abraham Lincoln, while contemporary examples abound, including authors Tara
Westover and Jeanette Walls. On the other hand, if the learner himself/herself is unwilling or incapacitated
from contributing to the parent-child-school partnership, it is difficult to imagine a viable compensating
factor in human capital production. Our research is designed to provide a novel and detailed window into
the learner’s rational decision process of self-investment.

A newer branch of the literature focuses on experimental studies of children’s responsiveness to incentives
as a means for spurring academic improvement, including Fryer (2011), Fryer (2016) Levitt, List, and Sadoff
(2016), Burgess, Metcalfe, and Sadoff (2016), and Cotton, Hickman, and Price (2022). While compelling
as a growing body of evidence, Fryer (2011) articulated well the main limitation of this standard approach:
“we urge the reader to interpret any results as specific to these [experimentally tested| incentive schemes
and refrain from drawing more general conclusions.” Furthermore, with the sole exception of Cotton et al.
(2022), this literature is not designed to produce real-time data on children’s day-to-day behavior changes in
response to incentives, or data on how these altered behaviors map into incremental academic improvement.

Our study and primary research questions are geared toward developing generalizable insights into the
underlying factors that affect student study choices, rather than studying the impact of a specific incentive
scheme or policy. In particular, how responsive are a child’s labor-supply choices to a given level of
enticement toward math work? How productive is their time when they do spend it studying? How
heterogeneous are adolescents in their study-time productivity and willingness to substitute time from
their outside options toward schoolwork? What portion of this cross-student variation is attributable
to observable external differences (e.g., family background, outside options for time-use, school quality,
socioeconomics, etc.) versus heterogeneity that is idiosyncratic to the child? How does this heterogeneity
shape adolescent skill-production technology, and what role(s) does school quality play? And finally, how
do a child’s motivation and productivity traits interact to produce choices and outcomes, under piece-rate
compensation schemes that dominate academic incentives?

We find strong empirical evidence that a large fraction of struggling students are not less motivated
than their higher performing peers. Rather, their struggles stem from difficulty in converting effort into
success. We also document surprisingly large productivity heterogeneity among students whose observable
achievement is well above average, including many with study productivity well below average. Conversely,
we also find nearly equal heterogeneity among students whose observed achievement choices are well below
average, including many that are quite productive in terms of converting time into completed learning tasks.
Our structural model also points to labor-supply cost convexity as a significant factor in driving student
choices. For the median student, we estimate that a marginal increase of additional math activity from 15
minutes per day to 30 minutes per day (i.e., a doubling of the child’s marginal time commitment) causes
monetized utility costs to rise by a factor of more than three.

We also investigate to what extent a child’s observable life circumstances can explain productivity and
motivation heterogeneity. While a large fraction of this heterogenetiy appears truly idiosyncratic to the
child and context-independent—53% for productivity and 64% for motivation—in both cases, we are able
to identify predictors that play a meaningful role in enhancing (or detracting from) a child’s academic
traits. One of our main empirical findings is that school quality is a substantial factor for augmenting both
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academic productivity (i.e., rate of progress through learning tasks) and motivation (i.e., willingness to
spend a fixed quantity of time on math study).

In another set of analyses based on our structural estimates, we investigate the mapping between student
productivity /motivation traits, interim learning activities, environmental factors, and measurable incremen-
tal gains in math skill. These are based on pre-test scores and post-test scores logged just before and just
after our sample period, with opportunities for incentivized learning activity in the interim. We find that
the volume of successfully completed practice problems is the primary driver of incremental skill gains,
with time spent actually serving as a (slightly negative) mitigating factor. Moreover, student productivity
not only spurs higher rational choices of learning task accomplishment, but also it fundamentally alters
the shape of the human capital production technology as well. More productive students not only progress
through math practice problems at a higher rate, but they are also able to more effectively convert a fixed
volume of math practice problems into permanent skill gains.

The empirical analysis also points toward a decreasing returns to scale learning technology, whereby math
score gains of a fixed margin become harder to accomplish as a child’s initial proficiency level rises. Once
again, we also find strong evidence that school quality plays a significant role in shaping human capital
production technology. Not only does it advantageously influence a child’s productivity and motivation,
which in turn spurs greater time spent on math, but it also increases the rate at which a fixed quantity of
math practice problems being solved are converted into permanent math skill gains. Given geographic racial
sorting patterns common to Chicago and most other US cities, a large fraction of the racial achievement
gaps in our sample population can thus be causally tied to school quality differentials.

Finally, in a series of counterfactual model simulations we run the thought experiment of holding all
aspects of Black/Hispanic students’ lives fixed—from family background and affluence, to attitudes and
consumption/time-use opportunities, to existing external academic incentives—while replacing their ob-
served school of residence with one drawn at random from the distribution of school assignments enjoyed
by their White and Asian peers. We then run the school quality differential through various aspects of
the model and re-compute how the child’s productivity, choices, and outcomes counterfactually change.
The most striking aspect of this exercise is how much more responsive these children become to external
enticements toward study. This result empirically highlights the implications of education systems based
on piece-rate incentives: when a child’s rate of progress through learning tasks significantly improves, the
salience of the existing academic incentives drastically increases.

Our study highlights the import of the learning environment in shaping both rational academic choices
and performance. Indeed, our data suggest that the school district where one enrolls matters more for
one’s test scores than race. Even when controlling for a wealth of individual and family characteristics,
we find that those who attend schools in more-affluent districts have higher test scores and are better able
to convert study effort into score improvements. Even highly-motivated and productive students tend to
perform significantly better when they attend a high-performing district than a low-performing district.
Alternatively, the decreasing returns to scale production technology implies that the overall social value of
improving school quality is highest among struggling students who lack educational resources.

The remainder of our paper is structured as follows. Section 2 outlines the quantitative theoretical frame-
work that underpins our research design. Section 3 describes the field experiment and Section 4 presents

identification and estimation of the structural primitives. Section 5 decomposes structural student type
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parameters, a host of observable environmental factors, and student characteristics. Section 6 illustrates
how the inferred student motivation and productivity data allow for a rich set of analyses, exploring how
these and other factors relate to initial mathematics proficiency, the interaction between study effort and
academic progress, and a series of counterfactual analyses. Section 7 concludes. The Appendix contains
additional technical details, graphs, and tables and on online Appendix contains additional technical details
of our research design and methodology.

2. A THEORETICAL FRAMEWORK FOR LEARNER SELF-INVESTMENT

We develop a quantitative model of study effort and academic outcomes that is in the spirit of the
qualitative frameworks of “mastery theory” (e.g., Carroll, 1963) and “expectancy-value theory” in education
and psychology (e.g., Eccles et al., 1983; Wigfield, 1994; Eccles & Wigfield, 2002; Wang & Degol, 2013). In
these literatures, the process of skill acquisition is viewed as a sequence of learning tasks: a child learning
algebra attends class each day, is assigned a number of practice problems for homework, chooses how much
of each assignment to complete, and then iterates the process anew each day until the algebra course
concludes. Regardless of raw talent, anyone wishing to acquire a new stock of skills or knowledge must
traverse some critical mass of learning tasks, or they will not develop competency in algebra. Thus, human
capital attainment ultimately hinges on a series of high-frequency, but individually low-stakes, decisions
made by a child on a day-to-day basis, over a course of weeks or months.

Our goal is to formally quantify the structural elements of this decision process. The core model primitives
include a 2-dimensional vector of child characteristics, which shape various aspects of learning, including
the mapping between effort and rewards. While the core of our empirical exercise, and the sole focus of the
first half of the paper, is unobserved child heterogeneity and its role in decision making, Sections 5 and 6
show how the structural primitives of the model we develop can open additional avenues for policy-relevant
analysis, such as decomposing environmental and idiosyncratic factors that drive education outcomes, and

solving endogeneity problems that plague estimation of school value added.

2.1. A Formal Model of Student Study Choices. We assume learning choices depend on (i) how
easily /quickly a child can complete learning tasks, and (ii) her perceived value of success relative to the
cost of effort (Carroll (1963); Wigfield and Eccles (2000)). We refer to these components of incentives as
study-time productivity and motivation, which we now formally define. For each child, indexed by i, let
A; €N denote the total number of learning tasks that ¢ completes within a fixed period of time. The precise
definition of a “time period” is not crucial, provided that it is a short enough span so that a child’s decision-
relevant characteristics can be thought of as fixed and stable (at least to a first-order approximation) within
a period. Once the length of a period is specified—e.g., a day, a week, a month, or perhaps a semester—our
model can be interpreted as one of within-period decisions, and the costs within the model can be thought
of as implicitly representing opportunity cost of allocating a certain fraction of within-period time to study,
while necessarily crowding out other activities, given a finite endowment of time.

Each individual task, chronologically indexed by a;=1,2, ..., A; for child i, represents some discrete unit
of work, which can be specified as finely as a single math problem, or as coarsely as an entire assignment or
block of assignments. Completion of these learning activities builds skill proficiency, which is of ultimate
interest to policy-makers. We study the mapping between work and proficiency gains in Section 6, but at

present we begin by focusing solely on within-period rational study-time choice, T;(A4;).
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Definition 2.1. (Inverse) Study-time productivity, denoted 6,; >0, governs the rate at which child i is able
to complete learning tasks.

Study-time productivity is inversely proportional to the parameter 6,, but for ease of discussion we
henceforth refer to it simply as “productivity”.® The mapping T;(4;) : N — R. is stochastic, with total
time commitment being an aggregate of study times across individual completed learning tasks:

A;
Ti(A;) = Z 7i(ai; 0pi),  where  Ti(a;;0p) = 0pi X 19 X Tlﬂ(a"zl) X a; ¥ xUq, 70, 71, Ug; >0. (1)
ai=1
Here, 7;(a;0);) is the time required for student ¢ to complete her a*™ learning task. The 7y term is mean
completion time across all students, 71 is a “startup cost,” which applies only to the first task of the

? is a standard

period, and the productivity fixed effect 6,,; scales this mean time up or down. The term a;
“experience curve” (Wright (1936)) whereby a student’s rate of progress may grow (if ¢ > 0) or decay (if
¢ < 0) as in-period task volume grows. Thus, the experience curve term allows for short-run gains (or
losses) in study productivity, despite 6,; being fixed within-period.

The transitory study-time shock, U,,, is ii¢d across tasks and represents unpredictable fluctuations in
difficulty, mental state, distractions, etc. The element of randomness provides a realistic representation of
the data: we observe substantial variation of within-student completion times across learning tasks (see
Table 1). It also squares well with common academic experience: sometimes a learner approaches a given
problem with dread, only to be pleasantly surprised at a quick turnaround time; other times a learner’s
initial optimism melts away as a given problem unexpectedly drags on. By convention, we use upper-case
U to denote the random variable and lower-case u for specific realizations; we also use subscripted “F” to
denote exogenous distributions, while subscripted “G” indicates a distribution of some endogenous object.

We assume the distribution of the shock is well-behaved in the following sense:

Assumption 1. The production-time shock Uy, follows (heteroskedastic) distribution Fy,(uq,|0pi) with con-

tinuous density f, that is bounded away from zero on support [u,u] C Ry.

A child’s time may be put to various alternate uses, so math study is costly. For the purpose of our field
experiment and empirical model, we focus specifically on math study; however, the model admits various
interpretations about what A; and T; represent. This could alternatively represent general schoolwork, in
which case the outside option for time encompases all non-scholastic activity (e.g., sleep, chores, relaxation,
socializing, recreation, etc.). Alternatively, they could represent subject-specific inputs (e.g., math), in
which case the set of outside options for time includes work on all other school subjects and non-school
activities. In this case, a child faces outside incentives for all activities, including say, Science homework, and
diverting time towards Math makes it more difficult to attain rewards for Science achievement or to avoid
punishment for lack thereof. Thus, we empirically formalize the cost for individual students to substitute
time away from the most profitable outside use (including all other academic activity like homework in

English, Science, etc.) toward math learning.

Definition 2.2. (Inverse) Motivation, denoted 6,,; >0, indexes idiosyncratic labor-supply costs, and reflects
student ¢’s willingness to substitute a fixed quantity of time toward math activity.

3n Section 6 we also allow for 0pi to influence the rate at which work volume (73, A;) is converted into permanent skill gains.

7i(2040p1) - g5

4We find very modest experience-curve effects: ¢ implies a 5% reduction after doubling output, or —= P
i(ai30pi
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Although willingness to spend time studying is inversely related to 6,,, for ease of discussion we often refer to
it simply as “motivation.” Student 4’s cost of spending T; hours learning math is multiplicatively separable
in her motivation type and a common labor-supply cost function: C;(T};0pmi) = Omic (T;). Assumption 2

establishes regularity conditions on costs that ensure a well-behaved leisure-study decision problem.

Assumption 2. Costs are twice differentiable, ¢/(t) >0, and ¢'(t) > 0 Vt € Ry; marginal costs ¢'(t) are

unbounded, and we impose scale and location normalizations of ¢(0)=0 and ¢/ (0)=1.

Intuitively, the cost of allocating time to study rises as a child spends more time working. Likewise, ¢’s
cost levels and marginal costs for any ¢ > 0 are increasing in the inverse motivation parameter: high 6,,;
means that child ¢ incurs relatively more dis-utility from an hour of study. Cost convexity (positive second
derivative) has an intuitive interpretation: marginal disutility of sacrificing outside options rises with one’s
total math-work time. That is, each additional hour studying math is more costly than the previous one,
because either marginal utility of outside options rises as their consumption is increasingly crowded out by
math, or because the direct marginal psychic cost of math effort is rising, or both.’

Our specification of costs does not derive from an explicit model of a child’s holistic time-allocation
decisions on sleep/grooming/eating, school time, regular study, leisure, social time, scheduled extracurric-
ular activities, chores, extracurricular website activity, etc. The advantages of this approach are two-fold.
First, it provides a simple and tractable model of how a child trades off external incentives to study math
versus utility from optimal outside time usage. Second, this approach has the potential to allow for some
generality, as our specification of the cost function need not pre-suppose a specific model of holistic student
time allocation choice.® Given that our cost function C(t;0,,) = 0mic(t) does not derive from an explicit
model, we interpret the parameter ,,; as a “reduced-form” estimate.” In Section 5, we draw upon a wealth
of student-level observables to empirically tease apart the various factors that contribute to student types,
and decompose (0p;,0mi) into predictable and idiosyncratic components. However, for the purpose of the
formal structural model, 6,,; can encompass either intrinsic costs of effort, opportunity costs of time, in-
nate characteristics of child 4, environmental factors, or some mixture of these. A similar statement can be
made about 6, as well: in the common language of regression analysis, (6p;, Om;) is a two-dimensional fixed
effect encompassing all factors of ¢ or her life circumstances that are stable over the short run, and govern

rate-of-progress and leisure-study tradeoffs, respectively.

Assumption 3. For each child i, a piece-rate payoff function I1;(A) governs external incentives. Payoffs are
increasing in A and bounded: there exists T < oo such that the difference 11;(A)—IL;(A—1) <7, VA> 2.

The bounded incremental payoffs assumption is needed to ensure a well-posed student decision process.
Intuitively, piece-rate incentive schemes may encompass all external “carrots” and “sticks” presented to

child 7 by her home, school, and community. For example, parents may inculcate in her a positive intrinsic

SUnbounded marginal costs ensures finite optimum study choices under any finite reward scheme. For example, if a period is
interpreted as a week, and ¢ is measured in hour units, then one might naturally assume ¢’(t) — oo as t — 168 as an Inada
condition on utility. This limiting choice would entail 7 full days of completely uninterrupted math study, requiring extreme
and physically dangerous levels of sleep and food deprivation.

6Agostinelli and Wiswall (2022) used a similar strategy to model parental investment in adolescent human capital.

"One child may have more valuable outside uses of her time available, such as a new gaming system or a prolific friend
network. Child ¢ may simply incur larger psychic costs of exerting effort solving math problems, relative to j. Alternatively,
j’s home/school environment may engender norms that shape perceptions of work as being less onerous than i’s perceptions.
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valuation of achievement, they may offer tangible monetary or non-monetary rewards, or they may stipulate
punishments that can only be escaped through regular completion of work and/or achievement benchmarks.
A child’s school rewards her for homework completion with grades, and may further motivate her regular
coursework via pre-announced exams. These cumulative grades and test scores will in turn determine
her future education and career prospects. Additionally, businesses, organizations, and colleges may offer
merit-based admissions, internships, or scholarships that represent expected flows of future monetary and
psychic income from a desirable career (Becker (1993)). Conversely, failure to perform academically may
be discouraged by the prospects of an undesirable or less stable career path.

In choosing total work time T; and task completion A;, a student solves an optimal stopping problem
by recursively comparing benefits and costs of finishing an additional learning task while accounting for
randomness in completion times.® Given (a; — 1) completed learning tasks, a student optimally deter-
mines the maximum time, ¢ , that she is willing to devote to completing the af-h task. Due to random

study-time shocks U,,, equation (1) implies success probability on task a;, given t units of time input, is

1y ) = (0. ] = t — t
Fs(ﬂ Qg epz) =Pr [Tz(au 9;)1,) §t|az} = PY[Uai < 7} =F, (m

T(a,=1) —
OpiToTy * a; ®

6,)7;>, with first derivative denoted

by fs(t;ai,6p:). Thus, a learner’s decision problem is defined by the Bellman equation,

V(a;i~1,Ti(a—1)) = 0% {Fs(t; ai, 0,7) [(Hi(ai)fﬂi(aifl)) +V (@ Ti(ai=1) + f)} — O {C(Ti(aiq) +1) fc<Ti(ai71))} } (2)

The first term inside the curly brackets is payoffs from work, being success probability times the sum of

immediate incremental payoffs (IT;(a;) — II;(a; —1)) and continuation value
V(ai, Ti(as)) = mas; {E [AlE, a3, 051] (T1(A) ~ i(a0)) = Oni [e(Tila) + D —e(Ti(a)] }, (3)

where A and ¢ are future tasks completed and future time worked after completing the a;?h learning task.
Note that a student retains the opportunity to reap rewards from future work only if she does not walk
away during the o' task attempt. This is an innocuous assumption, given that a; merely represents a
chronological index on work 7 chooses to complete. The last term inside the brackets is incremental costs
from work time on the current task a;.

From this, it follows that her optimal choice ¢} is implicitly defined by the first-order condition
St 01, 0,0) ([Hi(ai)—ni(ai—l)] + v(ai,Ti<ai—1)+t;)) Byt 0, 00)Va (00, Tilai = 1) 445, ) = O (Ti(ai=1)+15,). - (4)

Intuitively, if she achieves the agh success with some work time ¢ <t , then she pauses and re-optimizes the
updated Bellman equation (2) for the (a-+1)"™" learning task. Otherwise, if devoting ¢ <t} units of time does
not reach the completion state on task a;, she continues to work and equation (4) posits that her stopping
time ¢;  dictates the point at which the expected marginal benefit of continuing work (including retention

of future payoff opportunities) is exactly offset by the marginal cost. If she reaches t; without realizing
th

her a;" success, she discontinues work for the remainder of the period, and (T;(A4;), A;) are determined

by her recursive optimal stopping point, where A; = (a;—1). In reality, A;=A; (917,-,9%-,111-, {uq, aA;;rll) and
T.=T, <0pi70mi7ni, {uai}fgll) both depend not only on a child’s characteristics and incentives, but also on

a specific realized history of completion-time shocks encountered along the way to her stopping point. For

8We use the term “optimal stopping problem” in the sense of the statistics and decision theory literature pioneered by Wald
(1945), Arrow, Blackwell, and Girshick (1949), Snell (1952), and Chow and Robbins (1963).
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notational compactness, we suppress this dependence, but note that the important implication is that,
holding fixed a given (0p;, Omi, I1;) triple, there will be a non-degenerate distribution of final within-period
choices, whose joint distribution is denoted by Gyq (75, Ai|Opi; Omi, 11;).

Two key model predictions will be relevant to identification of our structural model. First, if a child
continues on to the (a;+1)" task, note an important shift in her decision problem: on the previous task
her accrued cost baseline was T;(a; —1), while now it is T;(a;) > T;(a; —1). Thus, cost convexity implies
elevated marginal costs of continuing math work, and bounded marginal payoffs (IT;(a;+1) —II;(a;) <7)
imply her maximal willingness to work eventually declines, or ¢ | <t; . Second, the model predicts a
monotone relationship between student types and actions. More precisely, the stochastic mapping from
unobserved 6,,; to observed A;, conditional on fixed 6,;, exhibits a monotone likelihood ratio: reductions
in labor-supply costs lead to first-order dominance shifts in a child’s distribution of work volume, or 6,, <
0!, = Gq(albp,0n) < Gq(alb,,0],). Likewise, a similar monotone-likelihood-ratio property holds for the
relationship between 6),; and A; (conditional on fixed 6,,;): reductions in mean completion times lead to
first-order dominance shifts, or 6, <8}, = Ga(alty, 0n) <Ga(alt), ), a€N.

2.2. The Significance of Piece-Rate Incentives. Our choice to represent work compensation as piece-
rate—that is, II;(+) is a function of completed tasks, A;, rather than time inputs, T;—is deliberate as these
schemes are the dominant form of incentive provision in academic settings. If two students, T'abby and
Jane, both complete 9 out of 10 math assignments, and score 95% on the final exam, it does not matter for
rewards if this result required a total of 40 hours study for Jane, but only 20 hours for T'abby. Both children
receive the same grade as a result of their identical performance record and, ceteris paribus, that grade
will map equally into increased likelihood of obtaining their desired college seat, scholarship, internship,
job, etc. This modelling choice is not only empirically relevant, but it also has profound implications for
how incentives interact with a child’s unobserved, idiosyncratic characteristics. If we consider a switch to
time-based incentives, say ﬁi(t), then (2) reduces to a simpler decision problem where a child’s productivity
fpi is irrelevant to their optimal study-leisure choice. By contrast, in the piece-rate decision problem (2)
where children are rewarded for outputs rather than inputs, they recognize that rewards not only require
time investment, but successful conversion of time into final results as well. Thus, rational choice of time
commitment depends not only on how averse a child is to spending an hour on math (i.e., 6,,;), but also
on how productive an hour of her time will be (i.e., 6;) for reaping output-contingent rewards of work.

Our model of adolescent time-allocation decisions therefore immediately calls into question prevailing
wisdom behind labels that are often applied to different students based on observed behaviors. For example,
if we see that Jane turns in only 50% of her assignments, while T'abby completes all of them, many
practitioners and researchers would simply conclude that Jane is “unmotivated” for math studies, while
Tabby appears “well-motivated.” It is certainly plausible that the observed behavior difference could stem
from Jane being less motivated (0 rapty < Om,sane). However, under the model it is also plausible that
Jane turns in less homework because she is sufficiently less productive (0 ruppy < 0p sanc), €ven if she is
more motivated than T'abby (0 rasvy = Om,janc). The model shows that both of these explanations are
observationally equivalent given the single raw data point of T'abby’s and Jane’s study choices or academic
performance.

The model also calls into question various common and incorrect usages of the term “effort.” In the

example above, many would say that T'abby put forth more “effort” since she completed more work. However,
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if T'abby is more than twice as productive as Jane, then Jane actually spent more time working on math
to produce half as much observable output, and in that sense can be said to have exerted greater “effort”
than T'abby. Our model highlights how multiple dimensions of agent unobserved heterogeneity may imply
that there does not exist a one-to-one mapping between typically unobserved measures of true effort (e.g.,
time spent, costs incurred, etc.) and observable output (e.g., grades, homework, etc.). This is a problem
for educators and policy-makers alike: the two opposing explanations for T'abby’s and Jane’s choices would

imply entirely different interventions to help children like Jane succeed academically.

2.3. Discussion on Modelling Choices. Before moving on, it is useful to briefly discuss some aspects of
our modelling approach. First, recall that our goal is to study short-run, high-frequency, adolescent decision
processes, so there are no formal “future periods” in the model, aside from the chronological indexing, “a,”
of learning tasks worked on. However, cost convexity essentially performs the role of “discounting” expected
utility on later units of work (i.e., a}>a;), since the baseline marginal cost of zero additional effort on the
next unit (a;+1) rises with time spent on task a;.

On a related note, the decision model constitutes a non-stationary dynamic program because of cost
convexity combined with history-dependence of the state variables (a;—1,T;(a;—1)) for the current unit of
work a;. The continuation value argmax (equation (4)) updates continuously as time accrues working on
task a;, and the final distribution of payoffs on future units of work @ > a; is not known until the moment
when the student finally completes the current task.? Although the model is computationally taxing for the
researcher, there are several advantages to modeling short-term leisure-study decisions in this manner, the
most important being that it requires only simplistic thinking on the part of the adolescent decision-maker.
The optimal stopping model merely assumes that the child comprehends three basic pieces of information at
each point in time: () her marginal incentives to complete another task, (ii) the unpredictable variability
of completion times for current and future tasks, and (iii) how taxed she feels from previous work leading
up to the present. In short, a child solving for optimal (7}, A;) need only be aware of her current feeling
and of her ability to continue productively for a small amount of work.

An alternate model where children make a one-shot decision on achievement target A; at the beginning
of the period would be computationally simpler, but would impose much stronger assumptions on decision-
making. It would require that adolescents plan ahead and rigidly stick to their ex-ante study plan, regardless
of whether they experience a string of especially good study-time shocks along the path to A;. If a child
completes A; tasks in an unexpectedly short amount of time, she would have incentive to work beyond
the original target A;: her marginal cost of time ¢/(T;(A;)) would still be relatively low, allowing her to
reap high expected marginal payoffs. By similar logic, a child encountering a particularly bad string of
shocks along the path to her target A; would wish to abandon work prematurely. Therefore, the simpler
one-shot decision model would require student behavior that is not always ex-post rational and indeed in
certain cases lead to backward-bending labor supply curves and time-consistency issues. Thus, we adopt

the optimal stopping model as a more defensible empirical framework for real-time leisure-study trade-offs.

3. A FIELD EXPERIMENT TO IDENTIFY STUDENT MOTIVATION AND PRODUCTIVITY
Observational equivalence between drastically opposing explanations for student behavior means that the

model of adolescent study-leisure choice with two-dimensional heterogeneity is not identified from standard

9Buchholz, Shum, and Xu (2023) use a similar non-stationary optimal stopping model for taxi-driver labor supply.
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observational data. This fact motivates our field-experimental design, carefully crafted to identify multiple
dimensions of student observables and exogenous variation that are difficult, if not impossible, to achieve by
using observational data. Our research design forms part of a nascent literature that employs experimental
methods for the relatively novel purpose of identifying structural primitives of an economic model, rather
than to directly test hypotheses about how people respond to some treatment (e.g., Augenblick, Niederle,
and Sprenger (2015), Rao (2019), DellaVigna, List, Malmendier, and Rao (2022), Hedblom, Hickman, and
List (2019), Bodoh-Creed, Hickman, List, Muir, and Sun (2023)).1

Our experiment was not designed to test the impact of paying students a certain amount of money to
study (e.g., as in Levitt, List, and Sadoff (2016)). Rather, our purpose is to empirically model underlying
mechanisms behind a student’s daily effort choices under any incentives. Our strategy uses the student
choice model as a basis for an econometric framework, and experimental methods shape a data-generating
process with the requisite observables and variation to identify structural parameters governing individual
motivation, productivity, and labor-supply costs. Given the alternate methodological focus, our study
differs somewhat from some common experimental designs. For example, we need not specify a control
group to serve as an empirical baseline. Rather, we simply specify multiple treatment groups that are
exposed to exogenously differing levels of incentives to identify idiosyncratic elasticities and trace out the
curvature of the labor-supply cost function. In this sense, our experimental variation is similar in spirit to
A /B testing methods commonly used in marketing and user-experience optimization in e-commerce.

Our approach to quantifying unobserved student traits combines standard panel-data methods with
recent econometric theory developed for using discrete instruments to identify continuously varying un-
observed heterogeneity (Torgovitsky (2015) and D’Haultfoeuille and Février (2015, 2020)). Our field ex-
periment also allows us to craft a data-generating process to be as true to a student’s everyday academic
environment, choices, and experiences as possible. We fully discuss our experimental design in Section 3.2,

but first it is useful to explore conceptually our identification strategy.

3.1. Identification Strategy. For intuition on how we quantify unobserved student traits, consider a
hypothetical “ideal” experiment involving students, T'abby and Jane, who perform poorly on a standardized
math exam. The exam score indicates that both students are struggling, but it offers no insights as to why.
To answer this question, the researcher obtains two clones, call them Tabby* and Jane*—i.e., identical in
genetic makeup, ability, preferences, family background, etc.—and during summer break places each of the
4 students into individual observation rooms for a period of two weeks. Inside each room is a desk with
a notepad, pencil, and age-appropriate mathematics textbook. There is also a couch with a web-enabled
smart-TV, a video gaming system, a smart phone connected to social media, and other leisure opportunities.
Upon entering the observation room, the researcher makes constant piece-rate wage offers—mu to T'abby and
Jane and 7 > to Tabby® and Jane*—for working through math textbook assignments, with completion

defined by some concrete criterion. The researcher explains that the children are free to allocate their time

10Augenblick et al. (2015) used a framed field experiment to point-identify dynamically inconsistent time preferences of college
students. Rao (2019) executed a framed field experiment to identify demand curves for discrimination among two groups with
differing exposure to social diversity. DellaVigna et al. (2022) and Hedblom et al. (2019) use natural field experiments
to identify individual-level unobserved worker characteristics. Bodoh-Creed et al. (2023) propose econometric methods to
identify robust bounds on consumer demand counterfactuals under out-of-sample prices, using natural field experimental data
combined with observational data.
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in any way, working through as many or as few math exercises as they wish, with piece-rate payments to
be delivered for the number of exercises successfully completed at the end of two weeks.

Suppose Tabby and Jane complete 5 and 10 math assignments, respectively, while T'abby® and Jane*
complete 7 and 13. The research team records a sequence of per-unit study times across completed math
assignments for each child, and can infer 6, 1., and 6, ;... as panel-data fixed effects. These imply
heterogeneous effective mean hourly wage rates; e.g., suppose T'abby works fast enough to earn $15/hour
on average, whereas Jane works slower and can garner only $12/hour on average. Note that all differences
in mean hourly wage between Jane and Jane* are due solely to their piece-rate offers w < 7*, since they
are otherwise identical and have the same productivity 6y, ;... Since Jane (Jane*) produced more output
than her same-piece-rate counterpart T'abby (T'abby™) despite lower hourly compensation, it must be that
Jane is more willing to allocate time toward math learning than Tabby (i.e., O, sane < Om. rassy)-

The piece-rate shift from 7 to 7* identifies individual labor-supply elasticities. Moreover, since 6, 74,
and 0y, jan. both interact with a common cost schedule, ¢(t), differences across the children’s choices and
labor-supply elasticities can be used to make inference about the shape of ¢(t), independent of Tabby’s
and Jane’s idiosyncratic traits. For instance, Tabby’s output increased by 40% while Jane’s output
under the same proportional wage increase rose by only 30%, indicating that marginal costs must be
higher from Jane’s baseline output of 10 assignments, relative to Tabby’s baseline of 5 assignments. In-
ferences about the form of the common cost schedule become richer as the experiment is repeated with
a large set of Tabby’s and Jane’s classmates, Clark, Anna, etc. With a complete picture of the shape
of the common cost schedule, ¢(t), the researcher can reverse-engineer each child’s leisure preference type,
{Om, 1avbys Om,sanes Om.clarks Om, anna, - - -}, from the solution of the optimal stopping problem (2), given their
observed, optimal choices.

While informative as a thought exercise, much is obviously infeasible or unethical about the above “ideal”
experiment. However, with field experimental methods and web-based technologies, one can capture the
essential elements while maintaining a level of realism and familiarity that would be impossible without
controlling the assignment mechanism. One can easily “clone” groups of students through individual-level
randomization. While no two groups will contain identical copies of the same child, the overall distributions
of observed and unobserved characteristics will be the same. Similarly, rather than sealing students into
observation rooms, a web-based learning setup has two considerable advantages. First, a web server can
meticulously record time-stamped activities in a non-invasive way that would be impossible otherwise.
Second, it allows students to make choices surrounded by the myriad outside options for their time—sports,

clubs, music, socializing with friends, chores, etc.—that form a natural part of their regular routine.'!

3.1.1. Caveats and Challenges. Since the researcher cannot observe a student’s regular educational activities
(e.g., classroom instruction and graded homework assignments), a question arises: how do we interpret
experimentally observed (extracurricular) math activity, given that concurrent, formal coursework and
its outside incentives (by parents, schools, communities, etc.) are unknown to the researcher? A major
challenge to any empirical modelling in this context, including our web-based experimental approach, is
that the payoff function in its entirety, encompassing all external “carrots” and “sticks,” is notoriously
difficult to quantify, due to data limitations. Our field experimental design solves this problem by placing

HAg a side benefit, our web-based research design provides a proof of concept for powerful new diagnostic tools cheaply
available to educators at scale, given recent dramatic increases in K-12 educational materials being housed online.
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many different children on the same footing with a known external incentive function dictated by the
research team. Moreover, structural identification is still possible, provided that the distribution of formal
coursework activity is uncorrelated with incentives. Thus, individual randomization is crucial to ensure that
experimental incentives are independent of a child’s teacher, school, and unobserved external incentives
provided by parents, schools, or communities. The other central design element is that experimental math
activities must be comparable to learning tasks encountered in formal coursework.

Provided the above two criteria are met, concurrent formal coursework and its unobserved external incen-
tives merely changes the interpretation of the motivation parameter somewhat. In the hypothetical, “ideal”
experiment, a child’s willingness to allocate time toward math activity is judged relative to the baseline of
zero activity, while in our web-based experiment 6,,,; represents marginal willingness to allocate extra time
above and beyond their regular schoolwork. Therefore, structural model estimates remain informative for
policy analyses focused on improving academic outcomes relative to the status quo. Notwithstanding, note
that the interpretation of experimentally inferred productivity, 6, hinges only on the similarity between
extracurricular incentivized math tasks and formal coursework.

Despite the caveat mentioned above, sufficiently rich data (discussed in Section 5 and Appendix A) may
allow the researcher to move beyond the basic extracurricular interpretation of experimentally inferred
0. Recall that (6, 0m;) represents a two-dimensional fixed effect encompassing all life circumstances—
including default formal coursework commitment among other external and internal factors—relevant to
student i’s productivity and motivation that are stable over the short-run. Thus, we can project a wealth
of student observables (e.g., outside time-use data) on type estimates to study how productivity and moti-
vation are impacted by formal coursework commitments, outside leisure opportunities, preferences, family
background, and other factors. Moreover, experimental estimates of unobserved student traits (and ob-
served extracurricular math activity) may be formally projected onto standardized exam scores to produce
policy-relevant comparisons among observably different students, and to gain quantitative insights into the
“black box” of the learning process, a theme we explore in Section 6.

Two final potential hazards are worthy of note. First, a possible threat to structural identification would
arise if students responded to extracurricular incentives by neglecting regular schoolwork. We do not access
childrens’ academic records due to privacy concerns, but in multiple conversations with our administrator
and teacher partners, they universally reported no perceptible reduction in homework completion rates
during the sample period. We also find evidence in our survey data consistent with their reports (see
Section 3.3 below). Finally, our intuitive discussion above also glosses over an important issue of sample
selection: what if T'abby spent no time on math under incentive 7, while her alter-ego T'abby™ did some math
time under incentive 7*7 Holding (finite) piece-rate incentives fixed, there may be a region of student-type
space where either 6, or 6, (or both) are prohibitively large to rationalize positive effort. If variation in
unobserved types is sufficiently high, this problem may persist even under generous piece-rate incentives.
Some group of children may feel that they are too inefficient or too averse to extra work (or both) to respond
with positive labor supply. This is especially true if formal coursework already competes for their time.
For such students, we cannot point-estimate their 2-dimensional type with a revealed preference approach,
but using the whole sample population as a guide, informative bounds can be derived. Our main structural
estimator requires only exogenous incentive variation for identification, but our later analyses deal with this

challenge via standard Tobit Maximum Likelihood methods (see Sections 5 and 6).
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3.2. Experimental Design Details. Our field experiment included 1,676 5% and 6™ grade students
across three demographically distinct school districts in the greater Chicago area. We developed a website
with age-appropriate learning tasks professionally designed by experts in mathematics pedagogy. School
administrators and teachers from the three districts cooperated with the research team for this study,
and served as the primary interface with student test subjects. The research team prepared all relevant
research materials, which were distributed and collected to/from students by their math teachers, including
parent/child assent forms, proficiency exams, surveys, personalized incentives, etc. Participation was on
an opt-out basis, meaning that (after prior notification) students in each math class were included in the
study unless the child or his/her parent declined.!? This setup carefully balanced scientific needs (a large,
representative sample of the local student population), with ethical imperatives of clearly articulating study
procedures and community members’ rights, and providing ample opportunity to decline participation. A
small fraction of students were opted out (<5%), but teachers and parents generally welcomed our study
enthusiastically as a supplemental learning opportunity for their students. While data analyses focus solely
on children in non-special-needs classes, some parents of special-needs students contacted us to request

website/incentive participation by their child; we were happy to oblige such requests.

3.2.1. Study Sample. We partnered with three public school districts in the greater Chicago area during the
2013-2014 academic year. A total of 1,676 5"and 6*Pgrade students participated in the experiment, with
46% from District 1, and 27% each from District 2 and District 3. These differed widely by population
and administrative characteristics, which we summarize for context in Table OS.3 of the Online Appendix.
Relative to the State of Illinois, the state most demographically representative of the U.S. national popula-
tion, District 1 was above-average on faculty compensation, teacher qualifications, fraction of budget spent
on instruction, and student performance. District 1 was also well above the rest of the state in terms of
financial resources per student. District 2 was remarkably close to the state averages on these dimensions,
while District 3 lagged considerably behind on most, including the fraction of budget spent on instruction
and student academic performance. District 3 had a relatively high operating budget per-pupil though, like
many districts serving less affluent communities, it receives additional state funding for factors such as social
workers, guidance counselors, ESL programming, lunch subsidies, non-instructional support programs, etc.

The populations these three districts serve are similarly ordered in terms of socioeconomic traits. District
1’s student population is substantially more affluent by income and wealth, with all but 15% of its operating
budget derived from local property taxes. District 2 is closest to the state means, while District 3 is much
less affluent by income and wealth, and has a relatively large fraction of students with limited English
language proficiency (many from Hispanic immigrant families). Finally, the other striking difference is

the racial sorting of the communities each district serves (see Table 8), which is typical of most major

12Experimental procedures underwent stringent ethical vetting by multiple IRBs (at UChicago, UMiami, and BYU). Prior to
the study, a parental assent form was emailed to parents, and hard copies went home with students. This form described the
study, gave contact information for the research team, and described strict data-security measures it would follow. The assent
form also allowed parents to opt their child out of the study by signing and returning it, or by responding via email. On the
first day of the study, students received an additional child consent form with similar information stated in age-appropriate
language. This form emphasized that participation was optional and would not affect their academic standing; it also gave each
child an opportunity to opt out on their own volition. Language on both assent forms was scrutinized by three research ethics
boards. Parents and students recieved multiple notifications—before and after data collection—of their right to withdraw
from the study. The research team deleted data tied to any child who opted out or was opted out of the study.
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metropolitain areas in the United states. District 2 has a racially diverse student body, while District 1 has

mostly White and Asian students, and District 3 is mostly comprised of Black and Hispanic students.

3.2.2. Test Subject Interactions. We worked closely with 5*and 6'"grade math teachers across the three
participating school districts to implement the field experiment. A primary feature of the study was a
website on which students could complete up to 80 math learning tasks, each comprised of six practice
problems, across five math sub-topics. Students had access to the website for 10 days and could complete
as many of the activities as they chose. Throughout the process, our web server monitored students’ use of
the site and tallied successful completions. We measured math proficiency using in-classroom assessments
before and after the website was made available. Given our focus on structural identification of the student
choice model primitives in this section, we defer discussion on exams and student survey data to Section 5,
Section 6, and Appendix A. Teachers were the primary point of contact for student participants, with the

exception of a technical support email account managed 24/7 by the research team.

3.2.3. Mathematics Pedagogical Materials. Proficiency assessments and website content were comprised of
professionally developed, age-appropriate math materials. Specifically, we obtained copies of 46 standard-
ized exams used by various U.S. states over the preceding decade, of which 30 were developed for 5" graders
and 16 were developed for 6"'graders.!> We split these materials into individual math problems, resulting
in a bank of 370 unique grade-5 problems and 302 unique grade-6 problems. Finally, we used Common Core
Math Standards definitions to categorize each problem into five subject sub-categories: (i) equations and
algebraic thinking, (i1) fractions, proportions, and ratios, (iii) geometry, (iv) measurement and probability,
and (v) number system.* We further categorized each math problem by high, medium, and low difficulty,
with generous consulting support by pedagogy experts at the UChicago School Math Project.

All 672 problems were pooled to expose both 5and 6*hgraders to the same materials. This pooling
served multiple purposes. First, it provided a wide swathe of content well-suited to studying a diverse
Chicagoland student population with considerable pre-existing proficiency heterogeneity. The goal was to
provide a mix of both challenging and basic material. Second, it gave us a larger pool of learning materials
from which to draw. Third, it facilitated an even comparison between age groups, allowing us to cleanly
estimate the effect of an additional year of schooling on skill formation.

5th

Of course, this comes at the risk of overwhelming less advanced 5" graders, and/or failing to sufficiently

challenge advanced 6"

graders. Concerns about pooling of students across two age cohorts are mitigated
significantly by the striking similarities in curricula and common-core sample problems across grades 5 and
6: most grade-6 math curriculum focuses on incremental steps forward from, or applications of, grade-5
curriculum concepts. Online Appendix B.1 and Table OS.1 explain Common Core recommendations for
mathematics focus areas by grade, and present a side-by-side harmonization of the grade-specific math
topics that went into each of our 5 merged sub-categories. Ultimately, the pooling issue boils down to an
empirical question: were the offered incentives and pedagogical materials sufficient to attract non-trivial
participation from all segments of our sample population? If not, then poor experimental design would
13These included the California Standards Test (2009), Illinois Standards Achievement Test (2003, 2006-2011, 2013), Min-
nesota Comprehensive Assessments-Series III, New York State Testing Program (2005-2010), Ohio Achievement Test (2005),
State of Texas Assessments of Academic Readiness (2011, 2013), Texas Assessment of Knowledge and Skills (2009), and
Wisconsin Knowledge and Concepts Examinations Criterion-Referenced Test (2005).

14Common Core subject definitions for 5% and 6thgrades (nttps://learning.ccsso.org/wp-content /uploads/2022/11/Math_Standardsl.pdf ACCES-
sible as of January 2023) differ slightly; our 5-subject classification is a merging of the two (see Appendix B.1).
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be manifest in the form of low statistical power within descriptive analyses and structural estimates. To
the contrary, in Section 3.3 (especially Figure 1), Section 4.3, and Section 6 (especially Table 4) the data

demonstrate that there were no undue scientific drawbacks to cohort pooling.

3.2.4. Website Structure. Our website was accessible through a login credential assigned to each student.
The web server automatically tracked and recorded site activity for each child without affecting user experi-
ence in any perceivable way.'> The website provided 80 learning tasks, each consisting of 6 multiple-choice
questions from our bank of math problems. Six problems per task were chosen based on feedback from
adolescent pilot-study subjects under similar incentives as in the main study. The passing criterion for
completion of each task was at least 5 out of 6 questions answered correctly. Each student was allowed
unlimited attempts at a given task, but for each new attempt the ordering of the questions and answer
choices were randomly perturbed. Adolescent pilot-study participants universally reported that these mea-
sures were enough to make attempts at gaming the system (i.e., repeatedly guessing in rapid succession)
unprofitable, and that either thinking through questions or giving up were relatively better options.
Incentivized website tasks were organized into 55 general-topic tasks with balanced portfolios of the 5
math topics and 25 topic-specific tasks (5 per topic). Aside from balancing on topical content, questions
were selected at random from our bank of math problems, so that relative difficulty was impossible to predict
from one activity to the next. After each attempt, an interactive feature provided optional feedback, which
the student could choose to skip through or learn from.'® The web server tracked time spent on each
activity, across all attempts, by recording a timestamp for each unique page view. Since only one math
problem appears per page view within each activity, this resulted in a high-frequency log of work times
for each child.!™ The website logged successful completions into a database, and included prominent visual
indications to the user of completed tasks, piece-rate incentives, and current earnings. The final result of
the website’s meticulous tracking capability is that we could obtain data, on not just total website time 7T;
and task accomplishment A;, but also a rich panel of within-child, task-specific, work times {Tai}f;:l.
The website was designed to be mobile-device friendly to accommodate children with various types of
devices and internet connections at home. Roughly three quarters of pageload requests originated from
computers (including laptops), about a fifth were from tablet devices, and about one in twenty pageloads
were from smartphones. One potential concern is that limited internet access may have unduly influenced
our results by inhibiting participation for some students. To address this concern, we collected survey
data on internet connectivity at home. Although 7% of students reported not having a regular internet

connection at home, these students were not statistically less likely to participate on the website than other

15Usernames and passwords were based on the child’s first name, last name, grade level, and /or teacher’s name. The research
team maintained a 24/7 tech-support email to quickly resolve any login problems. These turned out to be few, given the
intuitive nature of the login credentials.

16The website also included an instructive component built from math textbook glossaries (generously furnished by the
University of Chicago School Math Project, ucsmp.uchicago.edu) and practice materials by state boards of education. It
contained glossary terms organized by math topic and a number of guided, interactive examples chosen to be representative
of the paid materials on the site. This instructive component was clearly marked as non-incentivized to users, but it provided
an option for students to invest in their income generation capability. However, less than 2% of overall page-view time was
logged on the instructive portion of the website.

170ne technical concern was a small number of spurious page-view times that result when a child closed her web browser in
the middle of a task without logging off. We replace these spurious work-times with student-sub-category-problem mean work
times, using a procedure proposed by (Cotton et al., 2022, Online Appendix).



MOTIVATION VS PRODUCTIVITY IN ADOLESCENT HUMAN CAPITAL 17

t.18 We also found that having regular

students, suggesting that they had other ways of accessing the interne
internet connection at home was not a statistically significant predictor of website task completion, after
controlling for school district, socioeconomic status, regular homework time, math attitude, and incentives
(see Online Appendix B.2). These results strongly suggest that internet access was not a major concern
due to a combination of our mobile-friendly website design, the network of 11 public libraries serving our

sample population, and various other available options (extended family, school library, etc.).

3.2.5. Incentives and Randomization. We offered intuitive linear incentives with a constant piece-rate that
would be easy for adolescents to understand: IT;(a;) = (7§+mta;)1(a; >2). To ensure a within-student panel
of data, we informed students that they must complete at least 2 website learning tasks to receive any
payment. Each child was individually assigned at random to one of three incentive treatments, (g, 75;)=
(315,80.75), (mq, Tio) = (810, $1.00), and (73, 7f3) = (85, $1.25), thus ensuring treatment variation within
schools, grades, and classrooms.'® Our experimental design purposefully focused on piece-rate incentives—
the dominant form of academic compensation—and achieved incentive salience by prominently advertising
to each user on the home page his/her piece-rate, total accrued earnings (with real-time updates), and
total remaining potential earnings. The question of adequate subject motivation depends on the ratio of
payoffs to work quantity for each learning task. Breaking incentivized tasks into small units was useful
for encouraging participation and for facilitating precise panel-data inference on 6,;. Note that our three
incentive schemes vary widely in proportional terms: the contract-2 and contract-3 marginal piece rates
were, respectively, 33.3% and 66.7% larger than the contract-1 piece rate.

Our randomization algorithm first separated students into race-gender-school-grade bins. Within each
bin, we balanced on pre-test scores by ordering students according to their score and randomly assigning
consecutive blocks of 3 similar-score students to contract groups 1, 2, and 3. The algorithm then repeated
this process thousands of times, and selected the candidate assignment that minimized overall correlations
between treatment status and balance variables. A balance table (Table OS.4) is provided in the Online
Appendix. As the table shows, our final treatment assignment was independent of all balancing variables.
On the Monday after the pre-test, each student participant received a personalized letter in a sealed envelope
containing login credentials, instructions for accessing the website, a tech-support email address, and their

t.20

individual piece-rate incentive contrac They were also promised prompt delivery of payments within 2

weeks following the end of the experiment, which actually happened.

18The 95% confidence interval for participation rate among students without a regular home internet connection, [0.318,0.495],
contains the participation rate for the overall sample of 0.447. Among this group, computer-based pageloads were 14% lower
and smartphone pageloads were higher by a similar margin.

19Base payments varied inversely with marginal wage only to mitigate possible concerns of fairness on the part of participants;
otherwise, they play little role in the model or analysis. A pilot study indicated an expected average output of ~20 completed
tasks per student, at which point total payments across all three contracts are equal.

207 potential concern is that perhaps students shared their login credentials with others. While it’s impossible for us to
directly verify this, there are good reasons to believe it did not occur. First, nearly all students in a grade cohort received
login credentials(> 95%), so they would not likely have been willing to do work for someone else if they could do the same
work for themselves for profit. Second, roughly 1/2 of the sampled students declined any extracurricular math work on the
website, ruling out widespread login sharing, which would have inflated work volumes recorded by the web server. Third, we
see a strong and statistically significant relationship between completed learning tasks logged by the system and incremental
gains in math proficiency (using pre-test/post test scores, see Tables 8 and 6). This relationship persists even after controlling
for a wealth of other student observables, and is strongly suggestive that completed website tasks logged by students reflect
their own work, and not someone else’s.
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The design of our incentives had several advantages that encouraged ample effort from students on the
whole, enabling structural inference on motivation and productivity for a wide variety of student types.
First, we incentivized successful completion of learning tasks rather than time spent on these tasks. This is
consistent with actual school environments where students are typically rewarded or punished (by schools
and parents) based on whether they complete homework assignments. Similarly, we incentivized short-run,
at-home math practice (analogous to a short homework assignment) rather than long-term outcomes such
as year-end grades, making the decisions faced by students in our sample consistent with their day-to-day
choices on homework completion. Second, our small window of effort—in terms of size of incentivized
tasks and payment timeline—minimized the temporal gap between effort and reward in order to maximize
salience. Recent research (e.g., Bettinger (2012) and Levitt, List, and Sadoff (2016)) has shown that
incentives are more effective when rewards closely follow actions. Third, as in many contemporary web-
based homework platforms used by professional K-12 educators, we allow students multiple attempts at
passing each learning task. This is consistent with our model of stochastic completion times: a rational
student will click “submit” on a given attempt only if she believes she may pass, but even in real time she
cannot be certain of how much additional time it will take until the website reports that her last attempt
finally cleared the bar for passing. Moreover, failed attempts can still motivate students to exert additional
effort to achieve the intended result (Berger & Pope, 2011).

3.2.6. Experiment Timeline. The experiment proceded as follows. (1) Teachers disseminated parental in-
formation sheets and assent forms two weeks prior to the launch of our study. (2) Students received their
own assent form, and participated in an in-class pre-test and survey administered by their teachers. (3)
Students were randomly assigned a compensation scheme and then provided with information about the
experiment, website, login credentials, and their earnings potential. (4) For a 10-day period, students had
access to the website to complete learning tasks, success on which was compensated according to their
assigned scheme. (5) Teachers administered a post-test and survey in class. (6) Payments were mailed out

within two weeks of the post-test and survey.

3.2.7. Classroom Tests and Surveys. In addition to website activity logs, we also collected test score and
survey data on students. These data are not needed to identify individual motivation and productivity
parameters, but they enable analyses in Sections 5 and 6 where we enhance interpretability of structural
parameters by decomposing student (6, 6,,) type estimates, and measure their relation to test scores and
proficiency improvements. As part of our study, teachers in participating classrooms administered separate
30-45 minute exam based on common core sample problems as pre- and post-tests for the experiment.
Immediately following the pre- and post-tests, students also completed surveys, which collected informa-
tion on a myriad of individual factors, including attitudes, extracurricular activities, regular study time,
availability of parental homework support. We also gathered socioeconomic indicators from the American
Community Survey for each of the 160 (rounded to preserve anonymity) US Census block groups where
our participants resided. Full details on in-class assessments and surveys, including descriptive statistics,
are provided in Section 5, Section 6, and Appendix A.

3.3. Descriptive Analyses of Website Activity. Table 1 displays descriptive statistics of math website
activity. Moving forward it will be useful to define “active students” as those who completed at least

two website learning tasks, “marginal students” as those who completed one task but not a second, and
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“Inactive students” as those who did not complete any tasks. Active students represented 44.7% of the
sample, marginal students made up 5.6%, and inactive students were 49.7%. The raw data depict striking
heterogeneity: within the active group, the median student completed 12 learning tasks, while 4% completed
all 80. Distributions of learning task completion, website time, and rate of progress all have medians well
below the means, and standard deviations near or above the means. Overall, we observe 749 active students
who collectively completed 16,740 learning tasks (i.e., between 84,000 and 100,000 math problems solved
correctly) over the course of roughly 30,000 attempts and 2,000 child-hours during our 10-day sample period.

To place these numbers into perspective, first recall that website activity was extracurricular, being
separate from a child’s regular schoolwork regimen. For a basis of comparison, we compiled survey data
on school homework time per day (across all school subjects).2! One possible threat to our identification
strategy would be if students responded to the extracurricular financial incentives by neglecting their
schoolwork in proportion to their website activity. In multiple conversations with administrators and
teachers involved in the study, they universally reported a firm impression that students did not reduce
the amount of assigned homework they were actually turning in during the sample period. Our survey
data corroborate this claim: among active students, mean homework time reports across the pre-survey
and post-survey differed only by a small margin (3.97%), and this difference was statistically insignificant
(p-value=0.156).

TABLE 1. WEBSITE MATH ACTIVITY & DAILY HOMEWORK TIME

Contract Contract Contract
Sample Sample Sample Group 1 Group 2 Group 3
Variable Mean Median Std. Dev. N Mean Mean Mean
MASSES AT DIFFERENT WEBSITE ACTIVITY LEVELS
Active Students 1(A, >2) 0.447 0 0.497 1,676 0.422 0.453 0.466
Marginal Students 1(A; =1) 0.056 0 0.230 1,676 0.072 0.043 0.054
Inactive Students 1(A;=0) 0.497 0 0.500 1,676 0.506 0.504 0.480
EXTRACURRICULAR MATH ACTIVITY, CONDITIONAL ON A; >2

Learning Tasks Completed 22.35 12 24.29 749 17.72 22.91 25.98
Math Problems Solved 134.11 72 145.75 749 106.31 137.48 155.89
Website Time (min.) 157.05 102.85 152.45 749 122.74 160.13 184.96
Within-Child Avg. Time

Per Comp. Task (min.) 10.33 7.84 7.38 749 — —
Within-Child Computer

Pageload Fraction 0.768 1 0.376 749 — —
Within-Child Tablet

Pageload Fraction 0.185 0 0.348 749 — —
Within-Child Smartphone

Pageload Fraction 0.048 0 0.172 749 — —
Total Pay $33.05 $21.75 $25.77 749 $28.29 $32.91 $37.48
Avg. Piece-Rate Wage/Hr $8.52 $7.42 $5.45 749 $6.37 $8.39 $10.59

SELF-REPORTED AVG. DAILY HOMEWORK TIME ACROSS ALL ACADEMIC SUBJECTS

All Students (hrs) 1.248 1.214 0.681 1,676 — —
Active Only (hrs) 1.422 1.429 0.646 749 — —
(95% Conf. Int.) (1.88,1.47)
Marg./Inactive (hrs) 1.108 1.071 0.677 927 — —
(95% Conf. Int.) (1.06,1.15)

21We asked students on the pre-survey: “How many hours do you usually spend on homework on a typical weekday (Monday
through Thursday)?,” and then we asked the same question applied to “...a typical weekend day (Friday-Sunday)?” Responses
were multiple choice: “a. None; b. Less than 1 hour per day; c. Between 1 hour and 2 hours per day; d. Between 2 and
3 hours per day; e. More than 3 hours per day,” and we coded a.—e. as 0, 1, 2, 3, and 4 hours, respectively. For average
daily time spent, we computed (4/7)x (weekday avg. daily hmwk time)+(3/7)x (weekend avg. daily hmwk time). We repeated
both questions on the post-survey, but there we asked students to think about the previous two weeks, specifically. We then
averaged across pre- and post-survey responses.
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Aside from acting as a robustness check, this result helps us to contextualize the magnitude of observed
website activity. Assuming mathematics accounted for 25%-50% of daily homework time implies the
average (median) website math time per day among active students would have represented a substantial
increase of 37%-74% (24%-48%) in daily math activity by time.** Active students reported 22.1% more
daily homework time than their marginal/inactive counterparts, and a two-sample t-test rejects the null
hypothesis of active versus marginal /inactive mean equality (p-value 3.5x10738). Other indicators in our
data also point to a strong positive relationship between daily homework times and willingness to engage
in extracurricular math. Within the full sample we find positive Spearman rank correlations between
daily homework time and three different measures of website activity: (binary) active status, 0.229 (p-
value 1.8 x 10~21); task accomplishment, 4;, 0.238 (p-value 4.6 x 10~23); and time spent, T}, 0.223 (p-value
2.5x1072%). Finally, students were asked on our surveys to rate how often they miss homework assignment
deadlines at school; their responses have a statistically significant negative relationship with choices of time
spent on our extracurricular math website, with a Spearman rank correlation of -0.265 (p-value 2.6x10726).
These empirical results suggest that our website observables are connected to unobservable differences across

students that produce disparate academic day-to-day choices, and disparate outcomes over time.

FIGURE 1. Website Choices and Performance
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Figure 1 provides preliminary insights into unobserved student heterogeneity, based on field-experimental
observables. The top two panels depict CDFs of student-level data on total learning task attempts, and
what we refer to as the “success ratio” or task completions per unit of time, 4;/T;. Both plots indicate vast
heterogeneity, conditional on active status: the 90" percentile of total attempts is 17 times larger than
the 10*" percentile, and the 90" percentile child in terms of success ratio required only one fifth as much
22For an alternate benchmark, we discussed our findings on website math activity volume with a mathematics education
consultant employed by a state board of education for a Midwestern U.S. state. Although volume of math problems assigned
varies across classrooms, the consultant expressed the opinion that 72 extra math problems solved within a 10-day period

(the median for active students) would be on par with an increase of between 50% and 100% in terms of regularly assigned
homework volume for an average 5"or 6*"grade student in the Midwestern United States.
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time to complete each task as the 10" percentile child. While the 5*"and 6*"grade CDFs are ordered as
one would expect, both groups have significant representation across a common support, providing further
assurance that our choice to pool the two age cohorts within the experiment was reasonable.

The lower panel of Figure 1, a scatter-plot of success ratio 4;/T; to task completion A;, provides evidence
on the relation between unobserved study productivity and motivation. The striking observation here is
that the northwest quadrant, low success ratio but high task accomplishment, and the southeast quadrant,
high success ratio but low task accomplishment, are both well populated. Many students who required
>10 minutes per paid success completed well above the median number of learning tasks, while many
other students requiring <5 minutes per paid success completed well below the median volume. The rank
correlation between success ratio and task completion is (unsurprisingly) high at 0.551 (p-value 1.4x1076Y),
On the other hand, the rank correlation between success ratio and website time choice is surprisingly low,
at 0.067 (p-value 0.067). This reduced-form finding from our field experiment provides a new window into
the “black box” of academic success, given that observational data on education typically provides only
analogs of the vertical axis of the scatter plot such as assignments turned in on time, exam scores, etc.

A key prediction of our model is that sufficient strength on either trait, 6, or 8,,, is enough to drive high
observed performance. A very inefficient child (i.e., high 6,) may still achieve at a high level with sufficiently
high motivation (i.e., low 6,,), and vice versa. Figure 1 is strongly consistent with this idea. Conditional
on learning task completion A >30 (a standard deviation above the median) there is a striking degree of
heterogeneity in completions per unit time. Two particular data-points in the scatter-plot, call them child
1 (0.057,36) and child 2 (0.353,37), vividly illustrate this point. While conventional wisdom would label
child 2 as “slightly more motivated” for having exceeded child 1’s apparent effort level by a margin of one
more completed math task, our model and field-experimental data paint a very different picture. Despite
requiring over six-fold more time to achieve each incentivized success, child 1 still nearly matched child 2’s
output, and therefore could be considered as wvastly more motivated. Moreover, this begs the question of
how much more child I might have achieved under some intervention that narrowed the productivity gap

between him /her and child 2, holding piece-rate incentives fixed.

4. IDENTIFICATION AND ESTIMATION OF THE STUDENT CHOICE MODEL

The primary structural primitives of the study-leisure model are the idiosyncratic productivity (6,;) and
motivation (6,,;) parameters, and the common cost function ¢(¢). Additional structural parameters include
70, T1, ®, and work-time shock CDFs F,(uq,|0pi). We now discuss structural identification and sketch out

a two-stage GMM estimator to implement our identification strategy.

4.1. Stage-1 Estimation: Study-Time Productivity and Work-Time Shock Distributions. Our
approach follows standard methods using the within-child panel structure of work-time data, {Tai}fi"zl.

Taking a log transformation of (1) provides a linear-in-parameters regression equation:
log(7a,) = log(1o) + log(71)1(a;=1) + log(6pi) — plog(a;) + log(ue,), ai=1,...,A;, {Z‘AZ > 1} , (D)

where productivity 6,; enters as a student fixed-effect, and (79,71, ¢) enter as intercept and slope terms.
We estimate regression parameters and fixed effects through a standard differencing approach.
For estimation of the heteroskedastic study-time shock distributions F,(u|6,), we start by using re-

gression estimates to compute fitted residuals 4, =7,/ (ﬁﬁlﬂ (alzl)em-ai_ Y, a=1,...,A;, {i|A; > 1}. We
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allow for heteroskedastic shocks by partitioning the support of épi into 5 sub-intervals of equal length,

Ig’ ,j=1,...,5.2 Then, we use this partition to split the sample of fitted residuals into 5 sub-samples

{{ﬁai}fle} (ild, e j=1,...,5, and we smooth the corresponding empirical CDFs using a flexible cubic
=g

B-spline form Fu(u|IJP;'yuj):ZZ:1 YujkBujk(w), 7 =1,... ,5.24 Estimates are consistent with heteroskedas-

tic work-time shocks: generally, students who take longer on average to solve math problems experience
work-time shocks that are a mean-preserving spread relative to their quicker working counterparts.
All stage-1 model components can be separately pre-estimated under the following assumption:

Assumption 4. Study-time shocks U,, are conditionally independent of motivation ©,,;, given child i’s

productivity type 0p;.

Intuitively, this assumption means that a child’s motivation parameter 6,,; operates only on her decision
to devote time to math or the outside option. Conditional on allocating time to math, she invests full
cognitive resources into the incentivized task and operates at her production possibility frontier, modulo

random, unpredictable shocks. Under this assumption, stage-1 parameters including {6,;} (il6,517} To, T1,
pi &1

¢, and Fu(u|ljp;’yuj), j=1,...,5, can be treated as known (and fixed) during stage-2 estimation. This
provides needed tractability by drastically reducing parameter-space dimension and computational burden,
and by improving numerical stability for stage-2 estimates.

One challenge is that individual fixed-effect estimates have differing variances due to the unbalanced
nature of the panel: A; varies across active students, and higher values lead to more precisely measured
épi.% Therefore, in our secondary analyses in Section 5 we use inverse-variance weighting and in Section
6 we implement Feasible Generalized Least Squares methods and robust standard errors to address any
heteroskedasticity issues that arise from unbalanced panel estimation in Stages 1 and 2. A final challenge is
that student fixed effects can only be point-identified for active students. This problem plays only a minor
role in our stage-2 structural estimator, based on exogenous incentive variation, and is straightforward to

deal with in our secondary analyses in Section 5 by use of a standard Tobit Maximum Likelihood approach.

4.2. Stage-2 Estimation: Labor-Supply. Formal identification of idiosyncratic student labor-supply
elasticities builds on ideas developed by Torgovitsky (2015) and D’Haultfoeuille and Février (2015, 2020).
These papers explore conditions under which discrete instruments are sufficient to nonparametrically iden-
tify a continuum of unobserved heterogeneity (0,,; in our case) without a priori functional form restrictions
on the (dis)utility function ¢(t). Stage-2 identification relies on exogenous variation in observable incen-
tivized actions, which our experimental design achieves via randomized incentive contracts (mg;, 71;) across
groups of adolescents, j = 1,2,3, that are otherwise identical in their distributions of unobserved traits.
Table 1 and Figure 2 show descriptive evidence of the exogenous data variation on which our identification
strategy is based. The final three columns in the table depict a steady increase of activity level, learning

task completion, and time spent on the website between contract groups 1, 2, and 3.

238 pecifically, Ir= [min(épi) + (j — Dh, min(6,;) + jh}, h = (max(0p;) — min(0,:))/5, j=1,...,5. A finer partition of 10
sub-intervals of the support of 6, made little difference in the following stages of estimation.

24Basis functions Bk are determined by the Cox-de Boor recursion formula and a pre-specified knot vector spanning supp(F%,).
We chose 4 knots, uniformly spaced in quantile rank space. After constraining the endpoints this left 5 free parameters, which
achieved a remarkably tight model fit depicted in Figure OS.1 in the online appendix.

25Note that cross-student variation in panel length is central to identification in Stage 2, and the unbalanced panel problem
exists independently of whether stage-1 objects are pre-estimated or not.
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There are two basic tasks the Stage-2 structural estimator must accomplish with the experimental data:
() pin down idiosyncratic labor-supply elasticities determined by 6,,,;, and (i) trace out the curvature of the
labor-supply cost function ¢(t). The conditional CDFs plotted in Figure 2 represent primary data moments
relevant to these two tasks, and two artifacts of the figure are especially illustrative for identification. First,
the three CDFs follow a stochastic dominance ordering that the model predicts, given the progression of
our piece-rate incentives across contracts 1, 2, and 3. A formal nonparametric stochastic dominance test
proposed by Barrett and Donald (2003) reveals that the null hypotheses of pairwise equality among the three
CDFs are rejected in favor of first-order dominance. For accomplishing task (), randomization combined
with monotonicity in the mapping between 6,,,; and A; (holding 6,; fixed) implies that individual labor-
supply responses to incentive shifts can be pinned down by quantile differences across the three conditional
CDFs depicted in Figure 2. For example, a child at the median output level under contract 1 would, on
average, attain the median output level under contracts 2 or 3 as well, since the three contract groups have

the same underlying distribution of unobserved types (O,,, 0p).

FIGURE 2. Math Website Output by Contract Group
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Notes: Null hypotheses of pairwise distributional equality are rejected by the Barrett-Donald (2003) test (implemented using 100,000
bootstrap samples) in favor of the alternate hypothesis of first-order dominance with the following p-values: Group 1 versus Group 2,

p-value=0.002; Group 1 versus Group 3, p-value<10~2%; Group 2 versus Group 3, p-value=0.064.

Second, Figure 2 depicts two unequal stochastic shifts. For task (ii), recall that the marginal wage
difference between contracts 1 and 2 was the same as the difference between contracts 2 and 3: a $0.25 raise
per completed learning task. This fact, and strict cost curvature (i.e., ¢’(¢t) > 0, Vt) produces the model
prediction that quantile differences in work volume when shifting from contract 1 to contract 2 should
generally be larger than those induced by the shift from contract 2 to contract 3. The data confirm this
prediction: the integrated quantile difference, fol [G;l(rhlz)—égl(rhn)] dr, is 5.77 additional learning tasks,
on average, while the integrated difference for the other two contracts, ([01 [G‘; Yr|m3) -Gy 1(7’|7r12)} dr, implies
an average of 3.82 additional learning tasks. This is a 33% reduction in labor-supply response for the same

level increase in the marginal piece-rate. This double difference helps pin down cost curvature.?

26A5 shown by Torgovitsky (2015) and D’Haultfoeuille and Février (2015, 2020), a single exogenous incentive shift may
actually be sufficient to pin down the shape of ¢(-), as rich cost curvature information is encoded within the curvature of a
single quantile difference G * (v|m1;) — G,;l(r|7r1j/). However, the multiple cost shifts in our data-generating process improve
statistical power and help to establish simpler intuition for the identification logic.
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4.2.1. Simulated GMM Estimator Overview. Our GMM estimator is explicitly built upon functional repre-
sentations of these counterfactual quantile comparisons. We start with a flexible cubic B-Spline specification
of costs, é(t;%):ZZi’f?’ YerBer (t), having knot vector k.= {kc1, Ke2, - - -, I€C7K+1}.27

For any fixed shape of the cost function (conforming to Assumption 2), the researcher can employ
techniques in the spirit of Hotz and Miller (1993) and Guerre, Perrigne, and Vuong (2000) to reverse-
engineer a child’s motivation type 6,,; from her observable choices (7}, A;), using equations (2) and (4).
To fix ideas, consider individual i, whose learning task volume A; was at quantile rank r; in Contract
Group 1. We can repeatedly simulate sequences of work-time shocks from F,(u|6p;), and associated work
times using (known) 6,;, 70, 71, and . Then, holding fixed the cost-function parameters 7, and child
i’s actual incentives, denoted (7’[‘6, 7), we find 6,,,; such that the distribution of her optimal choices imply
mean stopping time equal to i’s observed 7;.2® When solving for optimal stopping choices, we employ a
new method recently proposed by Hamilton, Hickman, and Weidemann (2023) for tractable computation
of non-stationary dynamic programming problems with history dependence.

Observed choices are also informative on cost curvature. First, A; contributes to the empirical CDF of
work volume under child i’s actual contract-1 assignment: G,(a|m;)=", %
also simulate a sequence of counterfactual work-volume choices, {fiigs}f:l under contract 2, and {[11'33}55:1

Second, we can

under contract 3. These simulated values depend again on F,(u|0;), 6pi, 10, 71, and ¢ (all known and
fixed), and on the shape of the cost function ¢(+;7y,) through equations (1)—(4).

These simulated counterfactuals pin down model-generated CDFs of work volume under assignment to
contracts 2 and 3 through the following: G(a|mj;v,.)=N, 35, %,
child ¢ was assigned to Contract Group 1, her observed choices (T}, A;) contribute to the empirical achieve-

j =2,3. Thus, assuming

ment CDF of her actual group; they also contribute to the model-generated CDFs under counterfactual
contract assignments 2 and 3. Of course, there is nothing special about a student being in Contract Group
1, and similar logic can be applied to all active students across all three contract groups. Cost function
parameters 7y, are pinned down to match child ¢’s counterfactual projections to those of children at quantile
rank r; in contract groups 2 and 3 who, by random assignment, have similar characteristics, on average, to
child i. More formally, the cost parameter estimator 4, is defined by minimizing the distance between the
empirical CDFs Ga(-]mj), j=1,2,3, and their model-generated counterparts, éa(-]mj; Y.), 7=1,2,3.
Combining insights from all of the above steps, we obtain the following GMM objective function

2
e —argmm{zl V20 (Galalmy) = Galalmiyiy,))
290 ~ 2
i (G (lmy) = Galalmysve) ) < 1[G (almy) < Galalmyive)|

“+wp X (on(al\mj) — @a(al\ﬂ'lj;’yc)) X H[G%(al\m]) > G al|7le,’)’c } }

§t. Y1 =0, Y2 = (Kea — Ke1)/3s5 Yeb — Yeh1 >0, k=2,... K, +3,; Jektlleh Jekdek-l 50 =2 . K, +2.

Ke,k+1—HKck Kek—HKe,k—1

27For the cost function we chose a knot vector with K, =7 sub-intervals, or 8 knots spaced uniformly in quantile-rank space of
T in order to evenly spread the influence of data over the various parameters «,.. After imposing the two boundary conditions
in Assumption 2, this left 8 free parameters to allow the model-generated CDFs of A; to fit their empirical analogs.

28In a slight shift in notation, here we use T; to denote i’s total work time through all completed learning tasks, net of any
time spent on unfinished work tasks. While this choice leaves a small amount of empirical information on the table, it lends
a great deal of computational tractability to the problem by drastically reducing the number of continuation value function
evaluations during when simulating the model.
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All CDF values are linearly interpolated on a grid {aj,as,...,ar} C[2,80]. The first line of the objective
contains the primary least squares moment conditions, and the last two lines are “guardrail” moment con-
ditions for numerical stability. ézo(al\mj) and G2°(ay|m1;) are the (interpolated) point-wise 90% confidence
bounds of the empirical CDFs, and wyg is a penalty parameter. Guardrail conditions impose a quadratic
penalty in regions where the model-generated CDFs G, differ from the empirical analogs by more than the
90% confidence bounds; otherwise, they play no role. This helps the solver to avoid becoming stuck at
local optima ~,-space. The constraints enforce boundary value (¢(0)=0), boundary derivative (¢/(0)=1),

monotonicity (¢/(¢)>0), and convexity (¢”(t)>0), in that order.

4.2.2. Correcting for Sample Selection. There are two complications regarding mass points at the extremes
of the sample that the simulated GMM estimator must also address. First, we have a small mass of
students who achieve full output A; =80 on the website (see Figure 2). This issue is straightforward to deal
with: since these students’ productivity types 6, are known and precisely estimated, we compute multiple
hypothetical 6,,, values for each using values of A drawn from an extrapolated upper tail of the distribution
Gq(a|mi;). Details are discussed in Appendix B.3.1 (see also Figure OS.2).

The other challenge relates to sample selection issues in the upper tail of the (0,, ©,,) distribution, for the
mass of students who did not complete enough tasks to get paid, 4; <1. This is not a threat to identification
of the structural model, which relies only on exogenous incentive variation across two groups that are the
same on unobservable dimensions. Recall from Table 1 that the masses of active students, M J‘.Wt =N J‘?Ct /N;
in the three Contract Groups j = 1,2,3 were ordered as follows: M{ < M§t < M$°. Thus, within the
first two groups there were fractions Mg;[gfc\;[?d Mg;;;%gd

active status (A; >2) under contract-3 incentives. For these two groups, we include marginal students (i.e.,
MélCt—Mi’wt N]_”'Ci
Mg,ct CNTTT
J

j =1,2, to their simulated counterfactual choices when computing the model-generated CDFs G, (almyij).

and

of “missing” students who would have entered

A; =1) within the simulated GMM routine described above, and we assign weight w; =

This ensures that the empirical CDFs éa(A\wlj), a>2, and their model-generated counterfactual analogs

are based on underlying sets of students with comparable unobserved types.

4.3. Structural Estimates. Common structural parameter estimates and bootstrapped confidence inter-
vals are in Table 9 in Appendix A.3. These include B-Spline weights {~.1,7c2,---,7c10}, the first two of
which, .1 and 7.9, are pinned down by the boundary conditions and therefore have zero sampling variance.

The most directly interpretable structural primitive is ¢ = 0.0788, the experience-curve parameter. This
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estimated value is highly statistically significant, but it implies only minor short-term productivity gains.
Specifically, for any baseline of current work volume a;, the mean per-unit completion time on the (2a;)*™
task, E [1;(2a;;0p:)] (i-e., after doubling work volume), drops by 5.32%.

4.3.1. Cost Schedule. Figure 3 plots the estimated cost function C(T ém,‘)\lc), scaled to the median value
of 6,,; among active students. Costs and marginal costs are precisely estimated for relatively low values of
time commitment, while the 90% bootstrapped confidence bands widen for higher values where time-choice
data are sparse. Figure OS.3 in the online appendix depicts goodness of fit of our flexible structural model
by comparing empirical CDFs and model-predicted CDFs of work volume by contract group. Overall, the
structural model does remarkably well at matching patterns in the data, especially for contract group 2
where the richest set of counterfactual comparisons are available (i.e., with both higher and lower incentives).

We find that a high degree of curvature in the common cost function ¢ (¢;7,) is required to rationalize the
observed distributions of work activity. Figure 3 labels cost levels at regular intervals to illustrate this point.
The child whose cost schedule is depicted chose a total time commitment to our offered extracurricular math
activities of 151.1 minutes, or just over 15 extra minutes per day over our sample period. At this level of
sustained additional math activity, this median child would have incurred a daily utility cost of just over
$1.11 per day. A doubling of this marginal math-time allocation roughly triples costs, and an increase up
to 1 hour per day increases utility costs by an order of magnitude.

These numbers mask subtle agency issues that exist within the educational context. Note that the
labeled cost levels represent monetary transfers that exactly offset utility costs associated with a certain
commitment to marginal math activity beyond status-quo schoolwork. A principal who can force this
median student into an extra hour of math study per day, if such a thing were needed to reach competency
standards, could make the child whole again (i.e., zero surplus) with a daily transfer of $10.08. However,
this hypothetical assumes both access to the child’s private information and a means of compelling him /her
to the desired level of effort increase. Otherwise, the principal must simply offer incentives and allow the
child to optimize, in which case he/she will choose an optimal stopping time that ensures strictly positive
surplus. For example, the child depicted happened to be in contract group 3, and completed 28 learning
tasks in 151.1 minutes, resulting in a surplus of around $28. In that sense, the cost levels depicted are
actually deceptively low: for the median student to rationally choose an additional hour of daily math
study under private information and limited commitment, the principal would have to offer daily incentives

far in excess of $10.08.

4.3.2. Motivation and Productivity Heterogeneity. Figure 4 illustrates the degree of cost variation across
students. The figure depicts cost schedules scaled to 6,, types at the 10" percentile (i.e., highly motivated),
median, and 90" percentile (i.e., less motivated) of active students, where we have log-transformed costs
to facilitate a graphical comparison. In this case, we find dramatic heterogeneity in willingness to supply
time to math learning activity: the 10-90 range (conditional on active status) entails a 25-fold increase in
labor-supply costs for a fixed time commitment ¢. This striking variation only adds to the challenges of the
information- and commitment-constrained principal described above: not knowing who is highly motivated
and who is not, offering sufficient uniform incentives to entice the 90*"-percentile 6,,, type to study more
will elicit very large, and very costly, responses by students who are much more motivated. Alternatively,

Oth

providing lower uniform incentives that are only sufficient to entice the 90""-percentile types will evoke
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FIGURE 4. Motivation Heterogeneity

y =
——MEDIANACTIVESTUDENTO, | e
[|= =10thPCTL g (mostmotivated) ACTIVE STUDENT| =TT
—==90th PCTL 0, (least motivated) ACTIVE STUDENT | ___cme=="""""

C(1 hr/day)=$61.1/day
C(1 hr/day)=$10.08/day
C(1 hr/day)=$2.38/day )

C(15 min/day)=$6.72/day
C(15 min/day)=$1.11/day i
/ C(15 min/day)=$0.26/day

LOG COSTS, log, [C(t:6, )],
FOR VARIOUS MOTIVATION LEVELS, ¢

I I I I I I
o 100 200 300 400 500 600 700

10-DAY TOTAL (EXTRACURRICULAR) WORK TIME t (minutes)

FIGURE 5. Productivity Heterogeneity

EMPIRICAL CDF
T

—Mean:9.4, Median:7.8, StDev:5.2]|
L L T T

5 10 15 20 25 30
MEAN TASK COMPLETION TIME, Hpi X T FOR ACTIVE STUDENTS (minutes)

little or no labor-supply response from the rest of the population. Of course, under piece-rate academic
incentives, motivation, or willingness to supply a fixed quantity of time to study, is only one piece of the
puzzle of student choice. Figure 5 depicts estimated productivity differences, where the 10-90 range entails

more than a 4-fold increase in mean task completion times.

4.3.3. Do low-performing students lack motivation? Figure 6 jointly plots each student’s productivity and
motivation parameters, illustrating a wide range of type combinations. The figure distinguishes students
based on their pre-test score tercile and we include a large star, circle, and triangle to denote the average
motivation and productivity values for each performance tercile. The structural analysis shows a wide
variation in productivity-motivation combinations across students. Notably, we observe a small negative
correlation between log(6,) and log(f,,), suggesting that students who take longer to successfully complete
assignments may actually be more motivated than those who complete assignments more quickly, on average.

Similarly, when we compare the average productivity and motivation levels by pre-test performance
tercile, we find very little difference in motivation across the three groups.? In fact, the lowest performing
group tends to be slightly more motivated than their higher performing peers; although this difference is not
statistically significant at conventional levels. Both trends support the same conclusion: lower performing

students are not on average less motivated than higher performing students. If anything, they may be

29Gee Section 6 and Appendix A for more details on the pre- and post-tests.



28 MOTIVATION VS PRODUCTIVITY IN ADOLESCENT HUMAN CAPITAL

FIGURE 6. Student Productivity and Motivation by Pre-Test Tercile
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Notes: For active students (A; >2) plotted points represent Bayes shrunk forecasts of structurally estimated characteristics based on
observed choices. For marginal/inactive students (A4; <2) plotted points are estimated by integrating over the conditional mean of the
non-identified region in (log(ép), log(6m))-space, given covariates combined with the parameters in Tables 2 and 3 (specification 4). The
large bold star, circle, and triangle are mean (log(6p),log(6y)) values for students with pre-test scores in the upper tercile, middle

tercile, and lower tercile, respectively.

slightly more motivated. This is true regardless of whether performance is judged on the completion of
assignments or performance on proficiency assessments.

Where we observe the largest differences between higher and lower performing students is in terms of
their productivity parameters. Students in the higher performing groups require substantially less time
to complete a given amount of homework than their classmates, allowing them to work through more
assignments in a given amount of time. In the following subsections, we explore at a deeper level the

drivers of productivity and motivation, and explore how these factors interact to produce learning.

5. DECOMPOSITION OF MOTIVATION AND PRODUCTIVITY

The previous section estimated individual-level motivation (6y,;) and study-time productivity (6,;) traits.

In this section we explore sources of productivity and motivation heterogeneity.

5.1. Decomposition of Student Heterogeneity. Idiosyncratic differences in student motivation traits
0., may be driven by disparities in opportunity cost of foregone leisure time, the quality and variety of
outside options, or by direct psychic costs of working through math problems. Heterogeneity in productivity
0, may reflect either foundational cognitive or non-cognitive differences, initial proficiency level with the
current-grade concepts, or differences in a child’s study process, academic support network, school quality,
or other environmental factors. Since both traits are a mixture of innate and environmental components,

for each student ¢ we allow them to depend on changing circumstances as follows:

IOg(sz‘) = Xpi:Bp + Tlpis and log(emz) = sz/Bm + i, (7>
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where X ,; = [1, Tplis - - ,:cpkp,-] and X i = [1, Tmids - - - » Timk,,i) are vectors of student-level covariates, and
the 7 and 7,,; terms represent the truly idiosyncratic portions of student i’s unobserved traits (6p;, Omi).
The covariate vector, X,;, for the study-time productivity equation contains an intercept term and the
following variables: indicators for gender, race, grade level, and school district; the # of adult academic
helpers in a child’s social network; the # of peer academic helpers; and two socioeconomic proxies specific
to the child’s neighborhood of residence: mean household income (a proxy for affluence), fraction of minors
with no private health insurance, and a dummy variable for no home internet connection (both proxies for
deprivation of non-school developmental resources).

The covariate vector X,,; for motivation contains these same variables and includes an additional set
of variables pertaining specifically to attitudes, preferences, and outside options for time use, including
indicators for whether math is a favorite academic subject or math is a least favorite subject; extrinsic
motivation score; intrinsic motivation score; indicators for enrollment in organized sports, organized music
activities, other organized clubs; fraction of peer social time under adult supervision; # of video gaming
systems at a child’s home; parental permission for video gaming on weekdays; weekday time spent on
recreational internet use; mean daily recreational screen time; and mean daily reqular schoolwork time. The
idea behind augmenting equation (7) is that 6,,; represents a child’s level of motivation for shifting an
hour of her time away from the best outside option and toward math activity, which may be influenced
by her attitude toward math or her responsiveness to different forms of incentives, holding her study-time
productivity 6,; fixed. These variables are summarized in Table 8 in Appendix A.3.

One challenge in estimation is a basic sample truncation problem: while (X ;, X ;) is known for all
i=1,..., N, the outcome variables (log(fp;),log(6)) are known only for students who chose A; > 2. To

solve this issue, we adopt a parametric assumption on the underlying idiosyncratic types:

Assumption 5. Residual productivity and motivation heterogeneity (7, 7, ) follow a bivariate normal distri-

2
bution, (1, nm)~BV N (0, %), where the covariance structure may vary by race and gender: X; = Tpi%p l’] ,

2
OpliOm;

and 0j; = 0j0 + 051 fem; + ojeblack; + oj3hispanic;, j = p,m,pm.

By adopting Assumption 5, we can implement a 2-dimensional Maximum Likelihood Tobit strategy, using
the known, contract-specific selection thresholds ©,,,(8p; 75, 1% Ye)s B = 1,2,3, which can be estimated as
the northeast boundary of the convex hull of identified types uncovered in the previous stages of estimation.
Our Tobit estimator is thus defined by optimizing the following log-likelihood function:

~ o~

[,31;7 Bins 2} =argmax {val 1(A; > 2)wq; 10g (f (X piBps X piBp: i)
(8)
+1(A; < 2w log (Pr [10g(0m) > 108 [0, (03 bis w16, 5)) | X pis Xonis By B i ) }
1

Var(épi)
whenever A;<2. For tractability, we compute the probability in the Tobit term above by simulation. We

where the wy;’s are inverse-variance weights: wg; = whenever A; > 2, and wg; =min{wgj|A; > 2}

use the bootstrap method (with 280 bootstraps) in combination with bootstrapped structural estimates to

adjust the standard errors for sampling variability from previous stages of estimation.

5.2. Empirical Results: Student Type Decomposition. Figures 7 and 8 illustrate the distributional

differences in 0,, 0,,, pre-test score, and number of learning tasks completed by race and gender. Tables 2
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FIiGure 7. Distributions of Characteristics by Race
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and 3 report results from Tobit regressions exploring relationships between observable student characteristics
and the motivation and productivity parameters from the previous section. Although our model is primarily
one of short-term choices, our pooling of 5"and 6*graders within the field experiment allows us to measure
year-on-year evolution of types within the sample population. Coefficients on the Grade-5 dummy in
Tables 2 and 3 indicate that 5"-graders and 6*P-graders are indistinguishable, on average, in terms of
their motivation for math study, but 5*'-graders are less productive by 30% of a standard deviation after
controlling for the full set of student covariates. This last result is presumably the impact of an additional
year of instructional inputs and learning activity on 5'-/6'"-grade math materials, which are very similar
in content (see Online Appendix B).

Another significant lesson from Table 3 concerns external validity of our motivation index 6, derived from
the revealed-preference principal using our field-experimental incentives for extracurricular math activity.
Recall from Section 3.1.1 that a potential limitation of our method may be that it merely measures willing-
ness to allocate extra time to math learning, above and beyond regular schoolwork. A lingering question
therefore is whether estimated motivation heterogeneity represents deeper motivational differences across
students, or whether it is merely reflecting differences in baseline coursework load and differing levels of
associated burnout. Our rich outside time-use data from student surveys allow us to directly address this

concern, which implies that the coefficient on Reg. Study Time in Table 3 should be positive. In other



MOTIVATION VS PRODUCTIVITY IN ADOLESCENT HUMAN CAPITAL 31

TABLE 2. TOBIT REGRESSION RESULTS: STUDY-TIME PRODUCTIVITY

SPECIFICATION: (1) (2) (3) (4)

DEP. VAR.: log(6,) Estimate StDev Effect Estimate StDev Effect Estimate StDev Effect Estimate StDev Effect
Female (ﬁpl) -0.093 -0.066 -0.124 -0.104 0.208*** 0.201 0.192%** 0.205
(std. err.) (0.116) (0.100) (0.039) (0.038)

Black (ﬁpz) 0.990%*** 0.704 0.895%** 0.752 0.964*** 0.931 0.942%** 1.008
(std. err.) (0.146) (0.144) (0.079) (0.113)

Hispanic (Bp3) 1.131%%% 0.804 0.776%%* 0.652 0.955%** 0.922 0.723%%* 0.774
(std. err.) (0.177) (0.205) (0.171) (0.127)

Grade 5 (Bp4) 0.362%** 0.258 0.250%** 0.210 0.260%*** 0.251 0.280%*** 0.300
(std. err.) (0.058) (0.051) (0039) (0.044)

District 2 (B,5) — — 0.203%* 0.171 0.167%%* 0.162 0.149%* 0.159
(std. err.) (0.094) (0.080) (0.084)

District 3 (B\pg) — — 1.000%** 0.840 0.713*** 0.689 0.632%** 0.677
(std. err.) (0.197) (0.179) (0.166)

No Home _.

Internet (8,7) — — — — — — 0.399*** 0.427
(std. err.) (0.143)

Constant (Bpo) 0.296 0.110 -0.300 -0.322%%%*

(std. err.) (0.119) (0.121) (0.004) (0.003)

Nbhd. SES YES YES* YES YES

Fam. Support no no YES* YES**

N 1,676 1,676 1,676 1,676

Pseudo-R? 0.232 0.378 0.474 0.473
log-Likelihood -3,501.4 -3,498.9 -3,411.0 -3,386.2

Notes: Higher dependent variable values log(6,) imply lower study-time productivity. Nbhd. SES controls serve as proxies
for socioeconomic resources, including (standardized) log of mean income and (standardized) fraction of minors with no health
insurance within the US Census blockgroup where the child resides. Fam. Support controls include (self-reported) counts of how
many adults (e.g., parent, tutor, etc.), and how many peers (e.g., friend, sibling, cousin, etc.) regularly help the student with his/her
math homework. StDev Effect represents the change in standard deviation units of log (6,) from switching a binary regressor value
from 0 to 1; bold font indicates significance a the 90% level or higher. Significance of coefficient estimates at the 90%, 95%, and 99%
levels are denoted by “x,” “xx,” and “* x x,” respectively. Stars on YES/no entries indicate the highest statistical significance level for a
single variable within that group. In all Nbhd. SES and Fam. Support controls play a minor role in explaining math study-time
productivity. Due to joint Tobit Estimation, Pseudo-R? for log(6,) need not increase monotonically with model richness.

words, students who are estimated to be less motivated within our study (i.e., high log(6,,)) may tend to
be those who are more motivated and committed to regular coursework duties and thus log more regular
study time (i.e., positive an). If this were the case, the researcher could remove the spurious apparent
motivation from structural estimates by computing residual motivation net of observed study time. How-
ever, this potential concern is not supported by our data: the coefficient estimate Bmll is actually negative
and statistically different from zero at the 95% level. This means that students who are more committed
to regular coursework are also more committed to extracurricular math activity, after controlling for the
full set of 24 student-level covariates. Although the effect is small, it increases confidence in our field ex-
perimental and structural methodology as tapping into underlying factors that drive academic choices on

a day-to-day basis in real students’ lives.

5.2.1. Racial differences. From Figure 7 and specification (1) of both regression tables, we observe that
Black and Hispanic students are on average moderately more motivated and substantially less productive
than White/Asian students. This means that while Black/Hispanic students are on average more willing
to spend an hour studying, it also takes them more hours to complete a given set of learning tasks. The
productivity disadvantage dominates their motivational advantage, and on net Blacks and Hispanics tend
to complete fewer website learning tasks than White/Asian students in our sample.

Productivity differences are robust to controlling for gender, school district, and other factors that reflect

resources like peer/adult support, socioeconomic proxies, and home internet access. The racial gap is
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TABLE 3. TOBIT REGRESSION RESULTS: MOTIVATION

SPECIFICATION: (1) (2) (3) (4)

DEP. VAR.: log(0,,) Estimate  StDev Effect  Estimate  StDev Effect  Estimate  StDev Effect  Estimate  StDev Effect
Female (ﬁml) -0.368 -0.244 0.486 0.315 -0.695%** -0.337 -0.721%%* -0.344
(std. err.) (0.526) (0.344) (0.115) (0.101)

Black (ﬁmg) -1.260%*** -0.834 -0.583 -0.378 -1.449%** -0.702 -1.425%%* -0.679
(std. err.) (0.506) (0.403) (0.364) (0.8374)

Hispanic (Em3) -0.917* -0.606 -0.706 -0.458 -1.078%* -0.522 -0.365 -0.174
(std. err.) (0.598) (0.558) (0.584) (0.444)

Grade 5 (B\m4) -0.300** -0.198 -0.136 -0.088 -0.012 -0.006 -0.093 -0.044
(std. err.) (0.151) (0.158) (0.124) (0.117)

District 2 (Bms) — — 0.001 0.001 0.553%* 0.268 0.543%** 0.259
(std. err.) (0.287) (0.264) (0.234)

District 3 (Bmg) — — 0.190 0.124 0.675 0.327 0.801%* 0.382
(std. err.) (0.779) (0.541) (0.409)

Math Favorite (By7) — — — — -0.300%** -0.145 -0.269%* -0.128
(std. err.) (0.150) (0.148)

Math Least Fav. (Bns) — — — — 0.267 0.130 0.335% 0.159
(std. err.) (0.200) (0.200)

Intrinsic Mindset

Score (Bm9) — — — — -0.527*** -0.229 -0.570%*** -0.244
(std. err.) (0.128) (0.107)

Extrinsic Mindset

Score (Bm10) — — — — -0.520%** -0.211 -0.638%** -0.255
(std. err.) (0.117) (0.110)

Reg. Study Time (Bm11) — — — — — -0.179%* -0.058
(std. err.) (0.070)

Rec. Screen Time (Emlz) 0.146* 0.085
(std. err.) (0.072)

Constant (Bmo) -4.690%** -5.216%%* -3.360%%* -3.404%%*

(std. err.) (0.321) (0.197) (0.005) (0.004)

Nbhd. SES YES** YES YES*** YES***

Fam. Support no no YES YES
Extracurriculars no no YES YES*

Gaming & Surfing no no YES YES

No Home Internet no no no YES

N 1,676 1,676 1,676 1,676

Pseudo-R? 0.201 0.226 0.372 0.360
log-Likelihood -3,501.4 -3,498.9 -3,411.0 -3,386.2

Notes: Higher dependent variable values log(6,,) imply lower motivation. Nbhd. SES controls serve as proxies for
socioeconomic resources, including (standardized) log of mean income and (standardized) fraction of minors with no health insurance
within the US Census blockgroup where the child resides. Fam. Support controls include (self-reported) counts of how many adults
(e.g., parent, tutor, etc.), and how many peers (e.g., friend, sibling, cousin, etc.) regularly help the student with his/her math
homework. Extracurriculars controls include dummy variables for enrollment in sports, music, and clubs, as well as fraction of social
time in structured, adult-supervised activities. Gaming & Surfing controls include # of video gaming systems at a student’s home,
and parental permission for playing video games or recreational internet use on weekdays. StDev Effect represents the change in
standard deviation units of log (6y,) from switching a binary regressor value from 0 to 1, or from increasing the value of a continuous
regressor by one standard deviation; bold font indicates significance at the 90% level or higher. Significance of coefficient estimates at
the 90%, 95%, and 99% levels are denoted by “x,” “xx,” and “x x *,” respectively. Stars on YES/no entries indicate the highest statistical
significance level for a single variable within that group. Due to joint Tobit Estimation Pseudo-R? for log(fp) need not increase
monotonically with model richness.

substantial, with log(6,) being on average roughly 1 SD higher for Black students and 0.77 SD higher for
Hispanic students, relative to their White/Asian classmates, after controlling for socioeconomic proxies
and other observable factors in specification (4). To put this result into context, in Specification (4)
we find that the SD productivity advantage of White/Asian students relative to their minority peers is
between 2.6 and 3.4 times the productivity advantage associated with an additional year of schooling. The
statistical significance of the Hispanic motivation advantage is less robust to controlling for observable
factors, particularly school district, in Table 3. However, despite losing significance in some specifications,
the coefficients (all negative) consistently show that minority groups tend to be more motivated than their

White/Asian peers. After controlling for the full set of 24 student covariates in Specification (4), including
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attitudes towards math, typical time use, family background, etc., we find statistically significant evidence
that Black students on average are more motivated than non-black peers by roughly two-thirds of a standard

deviation.

5.2.2. Gender differences. Figure 8 illustrates a moderate female advantage in terms of motivation and a
moderate female disadvantage in terms of study-time productivity. From the tables, however, we see that
neither of these gender gaps are statistically significant before controlling for a richer set of observable stu-
dent characteristics, including whether the students have family members whom they rely on for homework
support and other factors. In the later productivity regressions, we find that log(6,) is approximately 0.21
SD higher for females than males, suggesting that females on average take longer to complete a given set
of homework assignments. Although the gender gap is substantially smaller than the racial gap, it is not
negligible in the later specifications. In specification (4) of Table 2, for example, the male study-time pro-
ductivity advantage is approximately 2/3 the productivity advantage associated with one year of schooling.
However, in specification (4) of Table 3, we find strong evidence that female adolescent students are also
more motivated, with log(6,,) being 1/3 SD lower, on average, for females than for males. On net, the

latter effect dominates, and in Figure 8 we see females on average completing more website learning tasks.

5.2.3. Differences across school districts. We now turn to the role of school quality in shaping adolescent
productivity and motivation. In Table 2, after controlling for observable student characteristics, one’s school
enrollment predicts significant reductions in time required for a student to complete learning tasks. From
the descriptive evidence in Table OS.3, one might have suspected that District 1’s inputs—higher funding
per student, larger fraction of budget devoted to instruction, and better paid faculty/administrators—
and its performance record—higher fraction of students meeting/exceeding state expectations—are more
advantageous to the student than District 2’s, which are in turn more advantageous than District 3’s.
Although school-district covariates were not included in the present analysis, this pattern plays out in the
value-added estimates from the Tobit model: switching from District 1 to District 2 or District 3 induces
a reduction in a child’s study-time productivity by 0.16 SD and 0.68 SD, respectively. The latter result is
more than twice the gap between grade-5 and grade 6-students, holding school district and all other student
observables fixed. Coefficient estimate magnitudes are stable across the last three specifications, suggesting
robustness of this result to inclusion of a rich set of other childhood contextual factors.

Similar patterns emerge for motivation levels 6,, as well. In specification (4) of Table 3, switching from
District 1 to District 2 or District 3 induces a statistically significant drop in motivation level by 0.26 SD
and 0.38 SD, respectively. Once again we see robustness of these estimated magnitudes to inclusion of a rich
set of other childhood contextual factors across specifications (3) and (4), including preferences, attitudes,
consumption proxies, and outside options for time use, among others. Our Tobit results speak to a classic
question of whether better outcomes at higher-performing schools are due primarily to treatment by more
advantageous school inputs, or whether they are due to selection of more academically adept students onto
their rolls. We indeed find strong evidence for both explanations of gaps in academic outcomes: higher-
performing schools do benefit from significant advantageous selection on both 6, and 6, (see Figure OS.4,
Online Appendix B), but at the same time they also causally contribute to the productivity and motivation
differentials in a substantial way. In the following section, we further investigate whether/how schools

produce value-added in the learning process by shaping production technology as well.
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At this point, we should mention that our identification strategy for causal value-added differs sig-
nificantly from existing approaches due to the unique set of observable student variables and exogenous
variation that our field experimental design facilitated. A typical study on school value-added would use
observational data with a large sample of schools and outcomes (e.g., exam scores) often aggregated to the
classroom or school level. The study would then appeal to some sort of plausibly exogenous variation to
tease apart selection on unobserved student traits from causal school value-added (e.g., Dale and Krueger
(2002) and Mountjoy and Hickman (2020) apply such techniques to colleges). In our case, we have a
small set of school districts, but incredibly rich, student-level data, including behavioral responses to exoge-
nously varying incentives that facilitate identification of unobserved student characteristics, independently
of school characteristics.

Our approach solves the canonical problem in school value-added of selection on student unobserved
traits by allowing the researcher to directly quantify and explicitly control for these unobserved traits. This
is why our study is able to derive plausibly causal school value-added estimates from a small sample of
schools. Given structural estimates based on incentive variation which was independent of schools and
teachers, causal interpretation of the value-added parameters (Bp5, Bpﬁ) and (Bmg,, Bm6) reduces to a simple
question of omitted variable bias, a concern which is mitigated by our rich data and stability of estimated

parameter magnitudes across multiple specifications in Tables 2 and 3.

5.2.4. Other considerations. Student self-reports of math being a favorite subject is predictive of a signif-
icant increase in willingness to spend time on math by 0.13 SD, while listing math as one’s least favorite
subject is associated with a significant reduction in willingness to allocate time to math by a similar amount,
0.16 SD. The presence of psychic costs of academic effort has long been theorized within the related lit-
erature. These novel results contribute to the literature by directly quantifying aspects of psychic costs:
we find that preferences for, or aversion to, the subject material indeed play a non-trivial role in utility
costs incurred by math activity, holding all else equal. We also find that being either more intrinsically
minded or more extrinsically minded are both strong indicators of responsiveness to our extrinsic financial
incentives for students to divert extra leisure time toward math activity.?® This forms part of a recent body
of empirical work finding evidence of a synergistic role for intrinsic and extrinsic incentives (e.g., Kremer,
Miguel, & Thornton, 2009; Hedblom et al., 2019), rather than a conflicting role as previously thought (e.g.,
Gneezy & Rustichini, 2000; Bénabou & Tirole, 2003; Leuven, Oosterbeek, & van der Klaauw, 2010). The
intrinsic mindset impact, 0.24 SD more motivation, also speaks to the role of psychic costs in determining
effort: a highly intrinsic mindset is more than enough to overcome the drop in motivation from having
math as one’s least favorite academic subject.

We also assess the relationship between socioeconomics and the current values of 6, and 6,,. We have
two measures of the socioeconomic well-being of a student’s census block group, including the log of mean
neighborhood income and the share of minors without private health insurance. The first is a measure

of affluence, while the second is a measure of developmental resource deprivation. While neither plays

30Intrinsic /Extrinsic mindset scores were derived as follows. We included two questions each on the pre-survey and post-survey
asking students about their most salient motivation for completing school-related work. Two external motivation choices were
listed with two intrinsic choices, and a fifth “none of the above” option. We then counted the number of corresponding responses
across the four questions and standardize the score by subtracting means and dividing by standard deviations. Given the
presence of the fifth option, it is possible for a student to coded as exhibiting significant levels of extrinsic mindset, intrinsic
mindset, both, or neither.
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a meaningful role in determining productivity 6,, we find suggestive evidence of a significant role for
motivation toward academic pursuits.>! Although not explicitly reported in the tables, the dominant factor
among neighborhood SES controls is the fraction of minors with no health insurance coverage. When this
factor rises significantly above its mean by half of a standard deviation or more, the model predicts that
neighborhood SES proxies on net contribute to a non-trivial degradation of willingness to spend time on
math activity. This pattern is illustrated in Figure 16 (Appendix A). This finding points to developmental

resource deprivation as a significant driver of a child being less motivated for schoolwork.

6. EXPLORING THE DETERMINANTS OF PROFICIENCY AND PROGRESS

This section explores how structurally estimated student traits and other environmental factors contribute
to student exam performance and measured proficiency gains. The framework we leverage is illustrative of
the inferential power to be had from being able to directly quantify underlying motivation and productivity.
Similar logic applies here as in Section 5.2.3 for our causal school value-added estimates. We have a
small set of school districts in our sample, but we base inference on rich, student-level data, including
exogenous incentive shifts. This solves the canonical problem in school value-added of selection on student
unobserved traits: given structural estimates (épi, éml) based on incentive variation which was independent
of schools and teachers, causal interpretation of school value-added parameters reduces to a simple question
of adequately controlling for relevant sources of omitted variable bias.

We first explore the determinants of initial mathematics proficiency (Table 5). The literature typically
uses test scores to measure proficiency, and in this section we do the same, relying on student scores on
the classroom pre-test, taken during the week before the website became available. Let S; denote one’s
initial math proficiency measured by pre-test score. We then examine the determinants of proficiency
improvements. We measure progress as changes in classroom test scores between the pre-test before the
experimental period and the post-test afterward, denoted AS; (Table 6). In these models, we allow for
student characteristics to not only determine intermediate inputs (73, 4;), but also to influence the rate
at which child ¢ converts a fixed volume of work into permanent proficiency gains as measured by the
exam. With those estimates in hand, we then conduct model simulations and counterfactual analyses,
exploring how differences in school-quality contribute to racial performance gaps and responsiveness to
general academic incentives.

Table 4 shows descriptive statistics on average pre-test scores and proficiency gains by sub-group and
the top left graphs in Figures 7 and 8 illustrate the pre-test score distributions by race and gender. The
data highlight a substantial racial gap in test performance, which is generally consistent with evidence
of substantial demographic mathematics gaps from other studies (e.g. Clotfelter, Ladd, & Vigdor, 2009;
Hanushek & Rivkin, 2006, 2009; NAEP, 2019). White/Asian students performed substantially higher
on the standardized mathematics pre-assessment than their Black and Hispanic peers, with the average
White/Asian student correctly answering roughly 10 additional questions (1.13 SD), relative to the average
minority student. The gender gap is relatively small compared to racial gaps in scores, with the average
male correctly answering 1.4 more exam questions than the average female, corresponding to 0.16 SD higher
performance.
31A note of caution regarding interpretation: our socioeconmic controls are measured at the neighborhood (i.e., Census block

group) level rather than at the household level, so this result may not represent the causal impact of health insurance per se,
but should be regarded as a stand-in for endowment of non-school developmental resources.
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TABLE 4. DESCRIPTIVE STATISTICS: MATH EXAM SCORES BY SUB-SAMPLE

SUB-SAMPLE: ALL FEMALE MALE BLACK HISPANIC WHITE/
ASTAN

SIZE/FRACTION: 1,676 0.5078 0.4922 0.2691 0.1915 0.5394

Pre-Test Score, S1 13.40 12.71 14.11 7.93 7.94 18.07

(sample std. dev.) (8.96) (8.23) (9.62) (6.13) (6.10) (8.35)

AScore (Post-Pre) 1.55 1.94 1.14 0.88 0.49 2.20

(sample std. dev.) (5.00) (5.03) (4-94) (5.01) (4.89) (4-94)

(p-value, Ho:No Change) 7.0x10737 2.4x10729 3.5%x10711 1.9x10~% 0.073 7.6x10~41

AScore (Active Only) 2.67

(sample std. dev.) (4.87)

(p-value, Hyo:No Change) 8.0x 10751

AScore (Marg./Inactive Only) 0.51

(sample std. dev.) (4-90)

(p-value, Hyo:No Change) 0.0015

Notes: Unless otherwise stated, standard font numbers in the table represent sample means, while italicized numbers in parentheses
represent sample standard deviations. The null hypothesis that incentivized website activity did not result in learning
gains, or Ho : E[AScore|Active] = E[AScore|Marg./Inactive], is firmly rejected by a two-sample t-test with a
p-value of 1.2 x 10~17. Fifth-graders make up 47.3% of the total sample, with 6t"graders comprising the other 52.7%. Sub-sample
proportions are close to that ratio for all gender and race groups.

The table also highlights how extracurricular math activity on our website during the sample period
contributed significantly to measured proficiency gains. Active students saw increases of 2.67 exam questions
answered correctly, on average, while marginal /inactive students improved their scores by only 0.51 correct
answers. Both changes are statistically significant at the 1% level, and the latter provides a useful baseline
for the default learning that happens through regular coursework over a 2-week period.

6.1. Determinants of mathematics proficiency. We model initial math proficiency as the outcome of
a Cobb-Douglass production process with 6,; and 0,,; as its principal inputs, and where production shares
and total factor productivity (TFP) terms are allowed to vary by individual 4:32

Si = TFP; x 037" x 0y x €, TFP; >0, i <0, ami <0. (9)
TFP and the production shares (o, Qi) are not random coefficients, but are functions of covariates
log(TFP;) = Wiy, ap = Wiy, and apm = Wi, (10)

with W, = [1, w1, ..., wk;], including a constant and various student-level contextual factors. The error
term ¢; is an idiosyncratic shock that accounts for cumulative impacts of transitory perturbations to HC
production and noise in the exam instrument used to measure math proficiency.

A student’s score on the classroom pre-test, S;, provides a baseline measure of skill stock, while produc-
tivity governs the rate at which intermediate learning tasks are traversed during one’s efforts to augment
skill stock. While the two are certainly related concepts, they are not identical. Many of the factors that in-
fluence S; over the short-run also influence evolution of 6, over the long-run, with both measures influenced
by general aptitude, foundational skills, knowledge of relevant concepts, practice, and different aspects of
attention or anxiety, for example. However, 6, reflects the the amount of time one requires to correctly solve
math problems outside of the classroom in an un-structured homework setting, given real-time feedback

on incorrect answers, as well as access to textbooks, supporting materials, examples, and assistance from

32When interpreting empirical results, recall that 6, and 6,, are both inversely related to efficiency and motivation. Therefore,
when a production share is larger in the negative direction, that is a good thing for skill development.
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friends or family members. Alternatively, proficiency stock S; is a measure of a child’s performance taken

in a controlled, timed, classroom environment, without any real-time feedback or access to external aids.

6.1.1. Estimating the model. Substituting equation (10) into equation (9), the initial proficiency model is
equivalent to a regression of log(S;) on 6y, 0,,i, W, and a complete set of pair-wise interactions between
(Gpi, le) and Wi:

log(S;) = Wian + Wiay, log(0pi) + Wia, log(6hm;) + log(e;). (11)

The covariate vector, W;, contains an intercept term and the following variables: indicators for gender, race,
grade level, and school district; neighborhood-level socioeconomic indicators mean neighborhood income (a
proxy for affluence) and fraction of neighborhood minors with no private health insurance (a proxy for
deprivation of non-school developmental resources); and total # of academic helpers in a child’s social
network. Note that each of these factors is allowed to have a direct impact (through the intercept terms
Wayp), and also to have an indirect impact (through the slope terms W;a, and W;a,,) on the shape of

production technology. Moving forward, we require the following assumption:
Assumption 6. E[W log(¢;)|0pi, Omi] = 0

There remain three final challenges to be addressed. First, since the empirical model of time allocation
can only infer unique values of (6, 0,,;) for students who chose minimal output 4; > 2 on our website, we
have a missing regressors problem in equation (11). This is actually a fairly straightforward challenge to
overcome: using the Tobit maximum likelihood results from the previous section, for each student ¢ with

A;<2 we can compute the conditional expectations,3

(001: i) = E| (108(6,), log(61n)

The second challenge is that since student traits play the role of regressors in equation (11), sampling

Xpi7 Xmi7 AZ < 27 145 ﬁpvﬁm?zi .

variability induces an errors-in-variables problem. We compute Empirical Bayes (EB) estimates of (6, 6;,)
to reduce attenuation bias by shrinking each fixed effect toward the mean in proportion to the individual
noise in each fixed effect. This approach has a long history in the literatures on school quality (e.g. Kane
& Staiger, 2002) and teacher value-added (e.g. Jacob & Lefgren, 2008). One standard procedure (e.g.
Morrix, 1983; Abdulkadiroglu, Pathak, Schellenberg, & Walters, 2020) is to assume a normal prior over
the true fixed effect, log(6;;), and the estimation residual, r;j; for j=e,{. This implies a shrinkage factor of
Aji = 1/]2/(1/]2 + iji), where 1/]2 is the estimated variance of true log(;;), and iji is the estimated sampling
residual variance on 1@) for individual 4’s trait j = e, 1.3* This results in the following EB estimates for
student characteristics to be used as regressors for estimation of skill production technology:

SN | 108(0,:) 1og(6,1y7)
Si=l o )

— S N
108(0pi)p 5=Apilog (0 )+ (1—Aps) and  10g(0mi)pB=Amilog(Bms)+(1—Aps) Z=L

Finally, the unbalanced nature of our panel data suggests that the error terms in equation (11) may
exhibit heteroskedasticity. We formally test for this and find that the null hypothesis of homoskedastic
errors is strongly rejected. Therefore, we estimate the production parameters via feasible generalized least

squares in the familiar way, as outlined in Wooldridge (2016).

33This approach follows standard methods for regression with missing X’s, surveyed by Little (1992, Section 4.2).

34An alternative approach is to restrict the shrinkage forecast of log(6;;), given log(6;;), to linear projections (e.g. Chetty et
al., 2014), which implies the same shrinkage factor \;;. Bootstrap estimation of 1/32 and iji are discussed in Section B.3.2.
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TABLE 5. INITIAL MATH PROFICIENCY (Cobb-Douglas)

SPECIFICATION: (1) (2) (3) (4)
DEP. VARIABLE: log (S1) (Mean; StDev) (Mean; StDev) (Mean; StDev) (Mean; StDev)
TFP (log(A;)) (3.230; 0) (3.105; 0.184) (3.063; 0.208) (3.071; 0.202)
0, Prod. Share (&;) (—0.346; 0) (—0.289; 0.124) (—0.258; 0.116) (—0.263; 0.114)
9., Prod. Share (Gm;) (—0.017; 0) (—0.019; 0.008) (—0.025; 0.016) (—0.024; 0.018)
Mean StDev Effect Mean StDev Effect Mean StDev Effect Mean StDev Effect
log (TFP) N/A 0.4376*** 0.4952%** 0.4805%**
(joint p-value) (< 10716) (< 10716) (< 1071'5)
log(6p) -0.6711%** -0.5590%** -0.4991%** -0.5087***
(joint p-value) (<1071%) (<1077%) (<1071%) (<1071%)
log(6:m) -0.0625*** -0.0723%** -0.0926*** -0.0892%**
(joint p-value) (0.0007) (4.2 x 1077) (1.1 x 1077) (0.0002)
CONTROL VARIABLES: -
District 2 (Qo1, &p1, Am1) — -0.2488%*** -0.2666*** -0.2619%**
(joint p-value) (< 10716) (< 10716) (< 10716)
District 3 (Qoz2, Gp2, Am2) — -0.6003*** -0.6816%** -0.6000%***
(joint p-value) (<1071%) (<1077%) (<1071%)
Grade 5 (803, 8p3, Gms) — — -0.2233%** -0.2126%**
(joint p-value) (1.9 x 10_10) (1.4 x 10_9)
Female (Go4, Gpa, Bima) - - -0.0450%** -0.0642%**
(joint p-value) (0.0001) (0.0007)
Black (aogs, ap5, am;;) — — —0.1371*** —0.0953**
(joint p-value) (0.0042) (0.0110)
Hispanic (Qos, Op6, Ame) — — 0.0428** 0.0452%*
(joint p-value) (0.0272) (0.0190)
log(Mean Nbhd Income) no no no YES
Nbhd Uninsured Minor Rate no no no YES
# Peer & Adult Helper no no no YES
N 1,676 1,676 1,676 1,676
R2 0.423 0.492 0.518 0.521
Adjusted R2 0.422 0.490 0.513 0.513

Notes: Mean StDev Effect is the total impact of a variable through both TFP (direct effect) and production shares of student inputs
(interactions). For discrete variables Mean StDev Effect is the mean impact (across all students) of switching value from 0 to 1 (all
else fixed), in standard deviation units of log(S1). For a continuous variable Mean St. Dev. Effect is the mean impact (across all
students) of a one standard deviation increase (all else fixed), in standard deviations of log(S1). Reported joint p-values are for the
joint exclusion of all terms involving a given control from the model. Significance at the 99%, 95% and 90% levels are denoted by three
stars, two stars, and one star, respectively. In specification (4), the interaction terms alone (i.e., (apk, amk), k=1,...,6) have the
following joint p-values: 1.4 x 107 for District 2; <1076 for District 3; 0.3314 for Grade 5; 0.0096 for Female; 0.0234 for Black;
and 0.0086 for Hispanic. The p-value for a joint exclusion of the neighborhood socioeconomic terms and helper terms are 0.6224.

6.1.2. Empirical Results. Empirical results regarding the determinants of initial proficiency scores, S;, are
presented in Table 5. For ease of interpretation, rather than reporting coefficient estimates the table reports
standard deviation effects, defined as the mean size, averaged across all students 4, of a shift in log(S;) that
is induced (in standard deviation units of log(S1)) by an increase in a control variable of one standard
deviation for continuous controls, or a 0-to-1 change for binary controls. These standard deviation effects
encapsulate influence through all channels, both direct and indirect, but the lower portion of the table
provides additional information to separate out effects on slopes.

Table 5 provides several interesting insights. First, we find that both 6, and 0,, are significant determi-
nants of initial math skill, but 6, plays a clearly dominant role between the two. This insight should be
considered alongside our earlier findings that females and Black students may be considered more motivated
compared to other groups, having relatively more advantageous levels of 0,,, on average. Together, these
results suggest new insights on educational interventions that aim to decrease gender or racial performance
gaps in mathematics by motivating students through incentives or information about the returns to educa-
tion (such as those studied in Fryer (2011); Levitt, List, and Sadoff (2016)).35 These groups already tend

35Gneezy et. al. (2019) also adds important insights for inducing effort on one-off tests.
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F1GURE 9. Idiosyncratic Cobb-Douglas Production Parameters by School District
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Notes: Since 0, (0,) is inversely related to productivity (motivation), the associated production share «p (am) is negative. The lower
two panels multiply production shares oy and o by -1 for ease of interpretation; shifts to the right imply more productivity from a
given factor. Thin lines represent CDFs for students actually enrolled in a given district, while thick lines represent general treatment

effects, or model-implied CDFs for all students under enrollment at a given district.

to be more motivated than their male or White/Asian peers, suggesting that motivation is not the primary
barrier limiting their progress. Moreover, in specification (4), since TFP is about 5.4 times as important as
O, and 6, is 5.7 times as important, efforts to further incentivize marginal groups (further decreasing 6,,)
may struggle to overcome the relative disadvantages these groups face.?® We explore these considerations
in more detail through counterfactual analyses in Section 6.3.

Second, we find strong evidence that school quality influences the production technology in important
ways.?” The magnitudes of the school district effects again strongly conform to the pattern one might suspect
from the suggestive evidence in Table 0S.3: Switching from District 1 (the high performing district) to
District 2 (the middling school district) or District 3 (the struggling school district) entails substantially
less productive human capital technology. Furthermore, the nature of the differences across school districts

36These insights may help explain why conditional cash transfers to students or families for increases in academic performance
have often resulted in limited returns to learning (e.g., Fryer, 2011). Similarly, Levitt, List, and Sadoff (2016) find limited
returns to such conditional transfers in Chicago-area schools, which is the setting of our experiment. Leuven et al. (2010) show
evidence among university students that those who are already performing well tend to respond most to financial incentives.
Levitt, List, Neckermann, and Sadoff (2016) show that incentives are more effective when delivered immediately. Cotton,
Nordstrom, Nanowski, and Richert (2020) estimate returns from an intervention in developing countries providing girls, their
families, and communities with information about the benefits of girls’ education, while motivating the academic efforts of the
girls. They find that such interventions can have significant effects on academic progress, but at potentially prohibitive costs.
37In discussing quality, it is important to note that the mechanisms through which school value added arise are not well
understood. For example, the research team’s interviews with teachers and administrators in District 3 (the low performing
district) suggest a high level of engagement, commitment, and effort among faculty and administrators. One principal claimed
to know all of his 600+ students by name, and provided ample evidence to that effect during a visit which lasted several hours.
At the same time, in his/her school, where resources to employ full janitorial staff were lacking, faculty would take turns
cleaning the cafeteria room during lunch periods. More research is needed to understand how internal resource constraints
and institutional structure are tied to school value added.



40 MOTIVATION VS PRODUCTIVITY IN ADOLESCENT HUMAN CAPITAL

is not merely one of levels, but of the fundamental shapes of the production processes employed. Figure
9, which plots empirical CDFs of student-specific production parameters, illustrates an interesting and
novel finding: high-performing school districts have higher TFP and lean more heavily on study-time
productivity, whereas middle- and low-performing schools have lower TFP and lean more heavily on a
student’s motivation level to generate improvements in math skill.*®

Third, we also find evidence of decreasing returns to scale production technology in the sense that
—(aptay,) is well below a value of 1 (which would indicate constant returns to scale) for all students in the
sample. This means that the extra benefit in math skill development from improving a student’s underlying
characteristics declines as those characteristics become more and more favorable. This also implies that the
marginal value of investments which may influence study productivity (e.g., tutors, improved educational
resources, etc.) is higher for children with less advantageous productivity traits 6, which is in line with

other recent results by Agostinelli and Wiswall (2023), among others.

6.2. Analysis of Study Effort and Proficiency Gains. The previous section estimated a reduced-form
production technology for initial proficiency stock. When modeling short-run proficiency gains during our
sample period, we can go one step further by incorporating available data on interim extracurricular math
learning activity. The model allows student study effort to improve test performance through either total
study time, T;, volume of completed learning tasks, A;, or both. Formally, we model incremental proficiency
gains as a flexible quadratic polynomial, where once again the shape of the production technology is

idiosyncratic to child ¢ and depend on her pre-existing characteristics:
AS; = Ao + AT + Ag TP+ Agi Ay + Ay A7 4+ Asi(T; x A;) + 5. (12)

Once again, ¢; is an idiosyncratic, transitory shock. Regression parameters are once again sub-scripted
by @ because they depend on individual student covariates, with Aj;; = V;d; for j = 0,1,...,5, being a
single index of covariate vector V; = [W;, S}, 0, 01;], which encompasses the full set of controls from the
previous section, and includes initial proficiency and student traits as additional controls.

By including the structural student types (0, 0m:) in V;, we allow them to play a dual role in shaping
a student’s ability to acquire new skill: first, they underlay choices of T; and A;, and second, they may
alter the rate at which a fixed volume of study activity is converted into measurable proficiency gains.
Including initial proficiency S; as a control allows for possible decreasing-returns-to-scale technology where
incremental gains of a fixed size become more difficult as a student achieves greater subject mastery.
Finally, note that our model of incremental proficiency gains allows for school quality, contained in W,
to impact learning through 3 distinct channels: (i) it can influence a child’s productivity and motivation
level (through equations 7); (i) it can directly impact learning independently of at-home math activity
(through influencing the intercept term Ag; = [W;,S;, 0pi, 0mi]d0), and (iii) it can alter the shape of the
mapping between (73, A;) and AS; (through influencing the coefficient terms {Aq;,...,As;}). It will be
shown hereafter that all three channels of school-quality influence are present and economically meaningful.

38While this result is novel within the education literature, it has interesting parallels to the literature on production technology
estimation in industrial organization, where it has been shown that firms with access to systematically different inputs often
evolve their productive technologies accordingly.

39For numerical stability in our short-run production function analysis, we normalize T" (practice time in minutes) and initial
test score S7 by subtracting means and dividing by standard deviation.
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6.2.1. Estimating the model. We require the following assumption on short-run proficiency gains shocks:
Assumption 7. E[ViTsi|9pi,9mi] =0.

The empirical strategy here faces similar challenges as in the previous Section 6.1, and we therefore
employ similar coping strategies, including empirical Bayes shrunk forecasts and feasible GLS estimation.
The results of this analysis are presented in Table 6. We again summarize results as standard deviation
effects rather than reporting long lists of (up to 78) parameter estimates, though an adjustment is in
order. In regression analysis standard deviations are commonly used as units of “typical” shift for a random
variable, but they lose that intuitive meaning as the distribution becomes more skewed.? Such is the case

0*" percentiles.

for T and A (see Table 1, Figure 2), where standard deviations exceed the respective 8
The usual standard deviation would constitute an especially extreme hypothetical shift in behavior for the
50% of students who did no work on the website. Thus, we define pseudo-standard deviation (pStDev) as
pStDev; = ijl(O.B\worker) = F]71(0.159|w07“ke7“), Jj =1,a, for computing standard deviation effects. The
pStDev is defined this way because for normally-distributed data it reduces to the usual standard deviation,
and it provides a more meaningful measure of a “typical” unit of shift for the average child in the sample.
Pseudo-standard deviations for 7" and A (relative to all students, not just workers) are roughly 64 minutes

of focused problem solving time and 8.4 website tasks completed (i.e., 50.4 practice problems solved).

6.2.2. Empirical Results. In Table 6 we find that learning task completion A; (and not simply time spent
studying) is primarily responsible for short-term gains in adolescent math skill. Indeed, StDev Effect
estimates for T; are consistently negative, meaning that (holding all else fixed, including productivity types
fp) total time spent actually plays the role of tempering (but never swamping) the conversion rate of task
completion A; into short-term gains in measured math proficiency. While the StDev Effects for T; and A;
seem large, one should recognize that it is not a well-posed thought experiment to hold one fixed while
varying the other, like it is for other regressors. This is because time spent working achieves output volume
with positive probability, and work tasks cannot be completed without time inputs. A more meaningful
interpretation would involve a simultaneous pStDev increase in both T; and A;, which on average would
entail a net increase of 1.375=2.152—0.777 standard deviations of skill gain AS.

Table 6 provides further evidence of a decreasing returns to scale human capital production technology:
the estimated StDev Effect of pre-test score S; is significant (both statistically and economically) and
negative. This implies that as students reach a higher level of mastery of math concepts, achieving further
improvements of a fixed size (in test score space) becomes more and more difficult. On the other hand,
all else equal, the results suggest that as children progress from 5"-grade to 6*'-grade they become more
effective at learning, with the year-on-year difference being equivalent to roughly one quarter SD of skill
gains AS. In other words, while students gain more experience as learners, they not only become more
adept at subject matter, but they also become more adept at the act of learning itself.

We find that 6, also alters the shape of the short-run learning technology in an economically meaningful
way. That is, students who progess through learning tasks more quickly also tend to derive more incremental
permanent skill from those tasks as well. This effect comes both directly through the intercept, and
indirectly through the slope terms. Finally, we find once again that after controlling for the rich set of

40As an extreme but illustrative counterexample, one would hesitate to interpret standard deviation as a typical unit of shift
for a Pareto-distributed random variable, which may exhibit large or infinite variance due to a small mass of extreme values.
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TABLE 6. PRODUCTION OF INCREMENTAL GAINS IN MATH SKILL

SPECIFICATION: (1) (2) (3) (4)
DEP. VARIABLE: AS Mean StDev Effect Mean StDev Effect Mean StDev Effect Mean StDev Effect
T (standardized)' (BMBZ,L,BM) 0.1477%%* -0.5464%%* -0.6183%** -0.77TOX**
(joint p-value) (4.1 x 1077) (<1071'%) (<1071'%) (<1071%)
At (Bgi,£4i,£5i) 0.3196%%* 1.4238%%% 1.6101 %%+ 2.1520%%*
(joint p-value) (0.0013) (<1071%) (<1071%) (<1071%)
S (standardized) (0.1,...,051) — -0.4169%%* -0.4334%%% -0.4380%**
(joint p-value) (< 10_16) (< 10_15) (< 10_16)
log(0p) (30,2, .-,05,2) — -0.3446%** -0.3019%* -0.3233%%%
(joint p-value) (0.0040) (0.0119) (8.3 x 1077)
log(6,m) (303, - -,05.3) — -0.0231%% 0.0364%* 0.0542%%%
(joint p-value) (0.0870) (0.0233) (0.0008)
District 2 (30,4, .. .,05,4) — -0.1593%%* 20.2277%%* -0.1261%%*
(joint p-value) (0.0002) (4.1 x 107%) (9.3 x 107%)
District 3 (3.5, ...,05.5) — -0.4295%%* -0.5765%%* -0.4435%%*
(joint p-value) (<1071%) (<1071%) (2.2 x 107°)
Grade 5 (80,6, - - -,05,6) — — -0.2323%** -0.2256%**
(joint p-value) (5.3 x 1077) (2.1 x 107%)
Female (5y.7,...,05,7) — — 0.0269 0.1257%*
(joint p-value) (0.4085) (0.0164)
Black (305, .- ,05,8) — — 0.0765%** 0.1118%**
(joint p-value) (2.0 x 107%) (2.2 x 1077)
Hispanic (30,9, . ,05,0) — — 0.0704%% 0.0900%*
(joint p-value) (0.0018) (0.03811)
#Tot. Regressors (incl. interactions) 7 37 61 79
log(Mean Nbhd Income) no no no YES***
Nbhd Uninsured Minor Rate no no no YES**

# Peer & Adult Helper no no no YES***
N 1,494 1,494 1,494 1,494

R? 0.096 0.196 0.220 0.229
Adjusted R? 0.093 0.177 0.188 0.187

Notes: For context, the mean 2-week learning, AS, by marginal/inactive students (who did no extracurricular math on the website) was 0.51,
with 95% confidence interval [0.28,0.74]. Mean StDev Effect is the total impact of a variable through the intercept Ag; (direct effect) and
slope terms (A1, ..., As;) (interactions). For discrete variables Mean StDev Effect is the mean impact (across all students) of switching from
0 to 1 (all else fixed), in standard deviation units of AS. For a continuous variable Mean St. Dev. Effect is the mean impact (across all
students) of a one standard deviation increase (all else fixed), in standard deviations of AS.

Reported joint p-values are for the joint exclusion of all terms involving a given control from the model. Significance at the 99%, 95% and 90%
levels are denoted by three stars, two stars, and one star, respectively. In specification (4), the interaction terms alone (i.e., (&k, - ,g5k),
k=1,...,9) have the following joint p-values: 0.0004 for Sy (standardized pre-test score); 0.0008 for log(8p); 0.0005 for log(6m); 9.8 x 10~ for
District 2; 9.3 x 10~ ¢ for District 3; 2.2 x 10~° for Grade 5; 0.0889 for Female; 3.3 x 10~ for Black; and 0.1138 for Hispanic.
Neighborhood socioeconomic proxies are statistically significant (joint p-values of (0.0008) and (0.0452), respectively) but collectively play a
minor role in predicting proficiency changes.

fDue to heavily skewed distributions of 7" and A, rather than using their standard deviations to compute Mean St. Dev. Effect, we use the
pseudo-standard deviation, (defined above) instead. For normally distributed data, pStDev=standard deviation.

student covariates, school quality plays an important role in converting math activity into new skill stock.
Moreover, the ordering among the three school districts is consistent with results from previous sections:
all else equal, a switch from District 1 to District 2 or District 3 on average reduces skill augmentation by
0.13 SD and 0.44 SD, respectively. Once again, our confidence in attaching causal interpretations to these
results is bolstered by the stability of estimated magnitudes across model specifications that include school
assignment as a control. This is suggestive of having adequately controlled for relevant sources of omitted
variable bias with our large set of additional controls and interactions.

In interpreting the results from Table 6 regarding StDev effects, one should keep in mind that they
involve many complicated interactions between various factors, and are therefore quite heterogeneous across
different students with a diverse set of life circumstances, including different school districts, different initial

proficiencies, different unobserved traits, different home backgrounds different genders, and different racial
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backgrounds. In the following section we highlight rational study choices and learning effects when varying

one key component of adolescent life circumstances: school assignment.

6.3. Model Simulations and Counterfactual Analysis. We are now in a position to conduct counter-
factual experiments to investigate the role of access to high-quality education services in explaining racial
achievement gaps within our sample population. For Black and Hispanic students, the profile of schools
attended is heavily tilted toward middle- and low-performing schools and away from the highest-performing
school district. Holding school assignment fixed for White/Asian students, we alter school assignment for
Blacks and Hispanics by repeatedly re-sampling with replacement from the distribution of school assign-
ment among Whites and Asians. Intuitively, this exercise levels the playing field by bringing Black /Hispanic
school quality allocation up to the empirical level of White/Asian school assignment, while leaving the latter
fixed.*! We then use model estimates to compute adjusted ¢, under the new school assignments, and we
simulate counterfactual distributions of pre-exam scores and choices of T' and A under our existing incentive
schemes. For each minority student we re-simulate counterfactual school assignment several times to wash
out the role of simulation error in driving our results.

In the previous sections, we observed evidence for three distinct roles of school quality in driving academic
choices and outcomes: (i) influencing productivity and motivation, (i7) directly augmenting a child’s learn-
ing independent of home-study activity, and (éi7) enhancing the conversion of fixed quantities of learning
activity into incremental skill gains. There remains a question of what, exactly, is entailed in the exercise
of raising Black/Hispanic school quality to a similar level enjoyed by Whites/Asians. Better facilities?
More effective administrators and teachers? Better educational support resources? Better peer effects?
Identifying specific channels through which school quality effects are manifest is beyond the scope of this
paper, but it is likely a mixture of these factors. To the extent that one has a good idea of which channels
are most salient for delivering impact, one can interpret our counterfactual school resource equalization as
a prescription for a specific set of interventions. Otherwise, our counterfactuals are indicative of the role
played holistically by inequities of publicly-provided educational inputs in driving racial achievement gaps,
holding an extensive list of other controlled factors of a child’s life fixed, including structurally estimated
idiosyncratic productivity and motivation types (1pi, 7mi), gender, race, affluence, home resources, family
academic support, consumption proxies, parental permissiveness for electronic entertainment, academic at-
titudes, intrinsic/extrinsic mindedness, and a host of time-use factors such as screen time, peer social time,

enrollment in sports, enrollment in music programs, and participation in organized clubs.

6.3.1. Racial Achievement Gaps. The model predicts complex changes to racial achievement gaps that vary
by a child’s percentile rank within her demographic group. These are depicted graphically in Figures 10 and
11, and numerically in Table 7. Generally, the closure of the racial achievement gaps from academic resource
equalization becomes more pronounced among higher achieving students. Indeed, our model predicts that
bringing Black/Hispanic school quality up to the same level as empirically exists for Whites/Asians would
cause the highest performing Black and Hispanic students to actually overtake their White/Asian counter-

parts in terms of exam score performance. Integrating over gap closure magnitudes at different percentiles

4 An alternative exercise would be to simply re-allocate all existing school seats via a lottery. Both methods would hy-
pothetically level the playing field, though the one we adopted—interpretable as a new infusion of resources targeted at the
Black/Hispanic communities—doesn’t require grappling with re-distribution concerns and also has an interesting interpretation
in terms of implications for affirmative action in college admissions.
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FIGURE 10. Counterfactual Achievement Gaps: Black vs White/Asian
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FIGURE 11. Counterfactual Achievement Gaps: Hispanic vs White/Asian
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Notes: for r € (0.05,0.95) Figure 10 (Figure 11) depicts the empirical and counterfactual differences in exam scores between a child at

the r*? percentile within the White/Asian group and a child at the rt? percentile within the Black (Hispanic) group.

TABLE 7. SCHOOL-QUALITY EQUALIZATION: ACHIEVEMENT GAPS

PERCENT CHANGE IN ACHIEVEMENT GAPS AT:

10" Pctl 250 Pctl Median 750 Pctl 90" Pctl Mean Integrated
% Change

Black —42.5% —44.6% —54.2% —68.0% —97.6% —53.5%

(full schl. qual. equalization)

Black —26.3% —34.7% —49.3% —-71.1% —129.7% —52.9%
(fized (0p,0m))

Hispanic Students —-73.0% —70.8% —82.6% —100.7% —130.5% —80.2%

(full schl. qual. equalization)

Hispanic Students —38.5% —46.3% —65.6% —92.0% —146.0% —67.0%

(fized (0p,0m))

generates a single aggregate summary value: holding all other student characteristics fixed, racial differences
in school quality account for roughly 54% of the achievement gap between Blacks and Whites/Asians in
our sample, and roughly 80% of the achievement gap between Hispanics and Whites/Asians. We also ran

an alternate specification of this counterfactual achievement gap calculation, where we held underlying 0,
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fixed, and only vary the production technology with the counterfactual school assignment profile. This de-
composition reveals that most of the achievement gap narrowing for Blacks and Hispanics is due to changes
in the long-run production technology that exist at higher-quality schools, holding student traits fixed.

6.3.2. Using Affirmative Action to Offset School Quality Differences in Academic Contests. Building on
the results of the previous exercise, we also consider a hypothetical head-to-head academic competition
between all students in our sample. This hypothetical competition assumes a large-market, many-to-
many, contest structure familiar to college admissions models in Bodoh-Creed and Hickman (2018), and
Cotton et al. (2022); Cotton, Hickman, and Price (2020), in which students compete for admissions to an
array of vertically-differentiated universities by investing in their observable human capital, as measured
by grades/test scores. We use the simulation results from the first counterfactual to ask, “What would
the Affirmative Action scheme have to be to exactly erase the ex-ante advantage to White/Asian students
which comes not from having better household or individual characteristics, but from simply attending
better schools?”

Intuitively, in rank-order contests such as college admissions, there may exist systemic, arbitrary disad-
vantages to some competitors before the competitive human capital investment game begins. Using our
results, we can quantify the precise affirmative action scheme that would ex-post remove that systemic dis-
advantage, and nothing more. The results of this calculation are displayed in Figure 17. For this exercise
we combine Blacks and Hispanics into a single, composite, underrepresented minority group for simplic-
ity. The horizontal axis displays URM percentiles, and the vertical axis is a point-specific score bonus (in
standard deviation units of the original pre-test scores). For comparison, the plot also depicts a baseline
rule, commonly referred to as “color-blind” admissions, which is simply a constant zero-bonus for all mi-
nority students.*?> Note that the plot zooms in on the 5-95 range since behavior in the extreme tails can
be less reliable. The salient features of the equal-school-equivalent AA scheme are (I) the score bonus is
substantially above the race-blind alternative along the entire distribution of URM students; and (1) it
trends steadily upward for the highest achievers. This novel result based on our causal estimates of student
characteristics and value-added estimates of school inputs may have important implications for the ongoing

legal debate surrounding affirmative action in college admissions.

6.3.3. Incentive response counterfactuals. Finally, we seek to better understand the extent to which a
policymaker could use the incentive channel alone to close achievement gaps by inducing Black and Hispanic
students to increase math activity. We also conducted a similar analysis to examine how hypothetical school
quality equalization impacts the answer to this question. The general take-home lesson from this section
is that, without getting more serious about equalizing the quality of public education inputs accessible to
Black and Hispanic students, the incentive lever is not a terribly promising option for a policymaker.
More concretely, Figures 12 and 13 explore what we refer to as Incentive Response Gaps. To define
that term, first note that an Incentive Response Function (IRF) is defined as the difference in the quantile

functions of A (or T alternatively) under different contracts. For example, the White/Asian Incentive

421t is worth mentioning that the results in this section call into question the appropriateness of the common label “color-blind
admissions” for the baseline rule, given that it ignores a large asymmetry of causal value-added resources delineated by a
child’s race. We maintain the common label here simply for its familiarity within the public debate on affirmative action.
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FIGURE 12. Incentive Response Gaps in Learning Activity: Black vs White/Asian
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FIGURE 13. Incentive Response Gaps in Learning Activity: Hispanic vs White/Asian
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Notes: Incentive Response Gaps depict differences across race groups in marginal learning activities under strengthening of incentives
from contract 1 to contract 2 or contract 3. For each r € (0.05,0.95), the Figure 12 (Figure 13) depicts the difference between increased
output for a student at the rt® percentile within the White/Asian group, and a student at the r*® percentile within the Black (Hispanic)

group. Thin lines depict IRGs under the status quo and thick lines represent IRGs under the school-quality equalization counterfactual.

Response Function for a contract 1-to-contract 2 shift would be
IRF(j,W/A,1,2) = Fj_l(r]W/A, contract 2) — Fj_l(r\W/A, contract 1), j = q,t, r € [0,1], (13)

or the quantile function of A or T for Whites/Asians under contract 2, minus the corresponding quantile
function for Whites/Asians under contract 1. This measures, at various percentiles of the student distri-
bution, how students respond to an increase in piece-rate incentives. With that definition in mind, the
Black-White/Asian Incentive Response Gap (IRG) is the IRF for Whites/Asians under a contract 1-to-
contract 2 shift, minus the IRF for Black students under the same contract 1-to-contract 2 shift. The IRG
therefore measures the difference across race groups in their responsiveness to piece-rate incentives. For
example, if IRG(0.5|j, Black, W hite/Asian, 1,2) = 5, that would mean that when the median White/Asian
student is switched from contract 1 to contract 2, she increases her total output on dimension j = ¢,¢ by 5

units more than the median Black student under the same shift in incentives.
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From our earlier analysis, one might believe that since Black students have systematically higher moti-
vation (lower 6,,), that they would be more responsive to incentives. However, such intuition is incomplete,
and it is important to recognize that one’s study effort is determined by the interaction between a student’s
motivation and how much time is needed for task completion, which is a function of 6,. While it is true
that a lower 6, makes it less burdensome for a student to give up an hour of leisure time, higher values of
6, work in the opposite direction and make a student’s time less valuable for earning rewards of time spent
working. Moreover, due to the dramatic curvature in the utility cost function, it turns out that 6, is quite
crucial for inducing students to respond to incentives and increase learning task accomplishment.

With these ideas in mind, Figures 12 and 13 plot the IRGs under the status-quo and under school
quality equalization. The left panels show activity output A and the right panels show time worked T
Incentive responses and response gaps are fairly low until the 75" percentile (i.e., most studious) students.
In that upper region the response gaps in terms of A are quite substantial, but are reduced significantly
by equalizing school quality, with its implied increase of study-time productivity (i.e., reduction in 6,).
Note also that the incentive response gaps are smaller in terms of 7', and also change less in terms of T.
This reflects the fact that because of the huge curvature of the utility cost function ¢(t;7.), learning gains
under optimal labor-leisure choice are primarily accomplished through increases in the productivity of time,
rather than through large re-allocations of a child’s time from leisure toward math.

Figures 14 and 15 consider a somewhat more drastic experimentation with piece-rate incentives. On
the horizontal axis are different simulated contract offerings, this time with no lump-sum base wages for
simplicity. Once again, the left panels plot simulated activity output and the right panels plot labor supply.
Thin lines represent the status-quo school assignment and thick lines represent the re-sampled, equalized,
school quality regime. Each of the plots in Figures 14 and 15 depict the behavior of the median most
studious student, and the 25" (less studious) and 75" (more studious) percentiles for all students, including
both workers and non-workers in the experimental data. These figures provide the clearest illustration of

why the incentive channel is relatively weak. For example, to induce the 75"

percentile most studious
Hispanic student (Figure 15) to produce roughly 12 units of learning-by-doing tasks (under status-quo
school assignment) the policymaker has to offer an outlandishly high piece rate of $16 per quiz.

To be clear, 6,, does matter: the 75" percentile most studious Black student (Figure 14) produces about
35 units of learning-by-doing tasks at $16 per quiz, and the biggest difference between the two groups is
the distribution of 6,,. However, for both groups overcoming their disadvantage in terms of 6, through
the incentive channel alone requires very large financial incentives. Now, consider a comparison of this
outcome for the status quo setting, in which the current distribution of students across school districts
is held constant, to the outcomes from a counterfactual setting in which minority groups have identical
access to school quality as Whites/Asians. For minority students, such a shift in school district produces
large improvements in study-time productivity ¢, while leaving 6,,, largely untouched. In such a scenario,
under-served minority students become dramatically more responsive to piece-rate incentives (thick lines),

as depicted in Figures 14 and 15.
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FIGURE 14. Incentive Response in Learning Activities: Black
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FI1GURE 15. Incentive Response in Learning Activities: Hispanic

25t prentl - Status Quo
- - --Median - Status Quo

—75" Prentl - Status Quo

""" 25" prentl - Equal Schl. Qual.
== Median - Equal Schl. Qual.

1 =75" Prentl - Equal Schl. Qual.

5 o8 B 8
T

HISPANIC STUDENTS
CF TASK COMPLETION

°
T

PIECE-RATE WAGE OFFER ($USD)

25t prentl - Status Quo
- - --Median - Status Quo

—75" Prentl - Status Quo

1o 25" prentl - Equal Schl. Qual.
== Median - Equal Schl. Qual.

—75" prentl - Equal Schl. Qual.

s~ o o
T

HISPANIC STUDENTS
CF LABOR SUPPLY (hours)

°

PIECE-RATE WAGE OFFER ($USD)

7. CONCLUSION

Since the 1960s one would be hard pressed to find two disciplines within economics that have grown
more and established as many deep insights as the study of the role of human capital on economic growth
and the study of how education, learning, and skills are produced. Likewise, a perusal of the popular press
suggests that most have accepted James Mill’s dictum that “if education cannot do everything, there is
hardly anything it cannot do.” Yet, even with these movements, modern economies continue to seek ways
to increase the proportion of their citizens completing higher education.

Gone are the days when societies can invest in only a small number of highly educated persons, where
the primary goal of education is to pinpoint the few students who can succeed. Such systems historically
invest a great deal more in the selection, rather than development, of students. These days, however,

investment in the development of a broader set of students is important both for creating opportunities for
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the economic success and stability of individuals, and for innovation and growth within society. Quality
education is no longer a luxury for a select few elite, but rather increasingly a necessity for anyone hoping
to secure comfortable employment, let alone upward mobility within an economy.

This study adds to the vast literature by using a structurally-motivated field experiment to produce
several important lessons for education policy. At the most fundamental level, we show that programs or
policies that aim to close performance gaps by better motivating under-performing groups, either through
information or incentives, may not be addressing the main barriers that constrain student performance. We
show that under-performing students and groups, whether defined by race, gender, or school district, tend
not to be any less motivated compared to their higher-performing peers. Rather, these under-performing
students typically struggle to convert their study time and effort into learning task completion and profi-
ciency gains. As such, effectively closing performance gaps likely requires something different than moti-
vating under-performing students. Indeed, the effective closure of performance gaps should aim to improve
their study-time productivity. This may mean improving access to high-quality education, tutoring, and
supplemental learning resources, especially in early grades. It may also mean increasing the use of formative
assessment and individualized curriculum, through teacher efforts or technology assisted learning.*3

Our analysis also highlights key differences in quality across school districts, suggesting that individual
students enrolled in less-affluent districts are at a substantial disadvantage compared to students in higher
performing districts. Students in less-affluent districts tend to be both less motivated and less productive
with their study time, even after controlling for student observables and socioeconomic factors. Our anal-
ysis relies on a structural model and econometric analysis to directly quantify motivation and study-time
productivity parameters for each individual student. In doing so, we uncover evidence of a causal link be-
tween school quality and students being less willing to spend time studying. School quality not only affects
the preferences and performance of individual students, it also contributes to the education performance
gaps between racial groups. Through a counterfactual analysis of the structural model, we show that school
district differences drive an estimated 54% (80%) of the current test score gap between Black (Hispanic)
and White/Asian students in our sample. Such insights suggest that having access to better performing
schools are likely to have significant impacts on one’s learning process and academic achievement, and high-
lights the potential need to better target resources and educational support at under-performing districts
to ensure that all students build foundational literacy and mathematics skills.

A lesson gleaned from the work of Heckman and colleagues, as well as many others, is that investment
in human capital pays off at a greater rate than does investment in physical capital, which suggests that
we must move from an economy of scarcity of educational opportunity to one of promoting and developing
all students over the life-cycle. A troubling observation from our raw data that underscores the current

state of developmental resource scarcity is that, while Black and Hispanic students in our sample self-report

43Such insights are consistent with several past evaluations, which find relatively small impacts on test scores from education
interventions focused on information provision or student incentives for studying (e.g., Baird, McIntosh, and Ozler (2021)),
or which find more substantial impacts from programs that involve either a strengthening of early grade foundational math
and literacy skills (e.g., Banerjee et al. (2016)), or adapting curriculum and teaching to the individual needs of learners,
whether though tutoring, formative assessment, individualized education plans, or technology assisted learning (e.g., Pitchford,
Chigeda, and Hubber (2019), Outhwaite, Gulliford, and Pitchford (2017), Rodriguez-Segura (2020)). Cotton et al. (2021)
conducts systematic cost-benefit analyses of alternative education programs in Malawi using impact evaluation data from
various settings and concludes that a technology assisted learning program that enables “teaching at the right level” is the
most cost effective means of improving education outcomes.
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higher preferences for studying math and science relative to other academic subjects, they are vastly less
affluent, much more likely to lack health insurance coverage, and are almost entirely relegated to schools
with average or below-average instructional budgets, faculty salaries, and teacher degree qualifications.
Their standardized test scores unsurprisingly lag far behind their White/Asian counterparts—slightly more
than a full standard deviation in our math pre-test, on average—whose corresponding resource allocations
on all the above dimensions are almost entirely at average or above-average levels, relative to the rest of
the State of Illinois. These facts together suggest adults are successfully advertising to Black and Hispanic
children that math and science education are the way out of poverty. However, their communities, schools,
and society at large are failing to follow up on the marketing campaign by equipping them with the tools
to effectively act upon this perception.

Of course, any particular exercise leaves much on the sidelines. In our case, we should be clear that we
believe academic efficiency and time preference are not completely stable over the long run. There is ample
evidence (Bloom, 1964; Hunt, 1961) that academic efficiency may be modified by appropriate environmental
conditions in the school and in the home. Factors such as the amount of time allowed for learning, quality
of teacher or parent instruction, and the student’s ability to understand instruction are important in
determining the arc of learning alongside our studied characteristics. Indeed, they may serve as important
complements. For example, an improvement in the quality of instruction yields important temporal returns:
the student now must commit less time for learning the same amount of materials. Likewise, if the student
lacks ability to understand the teacher instruction (which could be due to poor previous investment), the
amount of time needed to learn increases. These are the dynamic complementarities that are a key aspect in
the development of human capital (Cunha and Heckman (2007)). We reserve these discussions for another

occasion but note that they are ripe for further theoretical and empirical inquiry.

REFERENCES

Abdulkadiroglu, A., Pathak, P. A., Schellenberg, J., & Walters, C. R. (2020). Do parents value school
effectiveness? American Economic Review, 110, 1502-1539.

Agostinelli, F., & Wiswall, M. (2022). Estimating the technology of children’s skill formation. Journal of
Political Economy, forthcoming.

Agostinelli, F., & Wiswall, M. (2023). Estimating the technology of children’s skill formation. Journal of
Political Economy, forthcoming.

Ahn, T., Aucejo, E., & James, J. (2022). The importance of matching effects for labor productivity:
Evidence from teacher-student interactions. working paper, Arizona State University.

Arrow, K., Blackwell, D., & Girshick, A. (1949). Bayes and minimax solutions of sequential decision
problems. Econometrica, 17, 213-244.

Augenblick, N.; Niederle, M., & Sprenger, C. (2015). Working over time: Dynamic inconsistency in real
effort tasks. Quarterly Journal of Economics, 130(3), 1067-1115.

Baird, S., McIntosh, C., & Ozler, B. (2021). Cash or condition? evidence from a cash transfer experiment.
Quarterly Journal of Economics, 126, 1709-1753.

Banerjee, A., Banerji, R., Berry, J., Duflo, E., Kannan, H., Mukherji, S., & Walton, M. (2016). Teaching at
the right level: Evidence from randomized evalautions in India. NBER Working Paper. (wp 22746)

Barrett, G., & Donald, S. (2003). Consistent tests for stochastic dominance. Econometrica, 71(1), 71-104.



References 51

Becker, G. S. (1993). Human capital: A theoretical and empirical analysis with special reference to education,
3'd ed. Chicago: University of Chicago Press.

Bénabou, R., & Tirole, J. (2003). Intrinsic and extrinsic motivation. Review of Economic Studies, 70,
489-520.

Berger, J., & Pope, D. (2011). Can losing lead to winning? Management Science, 57(5), 817-827.

Bettinger, E. (2012). Paying to learn: The effect of financial incentives on elementary school test scores.
Review of Economics and Statistics, 94, 686—698.

Bloom, B. S. (1964). Stability and change in human characteristics. New York: Wiley.

Bodoh-Creed, A., Hickman, B., List, J., Muir, I., & Sun, G. (2023). Stress testing a structural model of non-
linear pricing: Robust inference on intensive-margin consumer demand. Working Paper, Washington
University in St Louis Olin Business School.

Bodoh-Creed, A., & Hickman, B. R. (2018). College assignment as a large contest. Journal of Economic
Theory, 175, 88-126.

Buchholz, N., Shum, M., & Xu, H. (2023). Rethinking reference dependence: Wage dynamics and optimal
taxi labor supply. working paper, Princeton University Economics Dept..

Burgess, S., Metcalfe, R., & Sadoff, S. (2016). Understanding the response to financial and non-financial
incentives in education: Field-experimental evidence using high-stakes assessments (No. 10284). (IZA
Discussion Paper Series)

Carroll, J. B. (1963). A model of school learning. Teachers College Record, 64, 723-733.

Chetty, R., Friedman, J. N., & Rockoff, J. E. (2014). Measuring the impacts of teachers ii: Teacher
value-added and student outcomes in adulthood. American Economic Review, 104, 2633-2679.
Chetty, R., Hendren, N., & Katz, L. F. (2016). The effects of exposure to better neighborhoods on
children: New evidence from the moving to opportunity experiment. American Economic Review,

106(4), 855-902.

Chow, Y., & Robbins, H. (1963). On optimal stopping rules. Zeitschrift fur Wahrscheinlichkeitstheorie und
Verwandte Gebiete, 2, 33—49.

Clotfelter, C. T., Ladd, H. F., & Vigdor, J. L. (2009). The academic achievement gap in grades 3 to 8.
Review of Economics and Statistics, 91, 398-419.

Cotton, C., Hickman, B. R., & Price, J. P. (2020). Affirmative action, shifting competition, and human cap-
ital accumulation: A comparative static analysis of investment contests. Queen’s University working
paper.

Cotton, C., Hickman, B. R., & Price, J. P. (2022). Affirmative action and human capital investment:
Evidence from a randomized field experiment. Journal of Labor Economics, 40(1), 157-185.

Cotton, C., Kashi, B., MacKinnon, J., Makuwira, J., Nordstrom, A., Wallace, L., ... Wong, B. (2021).
Cost-benefit analysis: Improving the quality of primary school education in malawi. Malawi Priorities
Project. (National Planning Commission of Malawi)

Cotton, C., Nordstrom, A., Nanowski, J., & Richert, E. (2020). Improving girls education outcomes through
community-wide information and empowerment campaigns. Queen’s University Working Paper.
Cullen, J., Levitt, S., Robertson, E., & Sadoff, S. (2013). The academic achievement gap in grades 3 to 8.

Journal of Economic Perspectives, 27(2), 133-152.
Cunha, F., & Heckman, J. J. (2007). The technology of skill formation. AEA Papers € Proceedings, 97,



52 References

31-47.

Cunha, F., Heckman, J. J., & Schennach, S. M. (2010). Estimating the technology of cognitive and
noncognitive skill formation. Econometrica, 78, 883-931.

Dale, S. B., & Krueger, A. B. (2002). Estimating the payoff to attending a more selective college: An
application of selection on observables and unobservables. Quarterly Journal of Economics, 117,
1491-1528.

Del Boca, D., Flinn, C., Verriest, E., & Wiswall, M. (2019). Actors in the child development process.
NBER Working Paper, #25596.

Del Boca, D., Flinn, C., & Wiswall, M. (2014). Household choices and child development. Review of
Economic Studies, 81(11), 137-185.

DellaVigna, S., List, J., Malmendier, U., & Rao, G. (2022). Estimating social preferences and gift exchange
at work. American Economic Review, 112(3), 1038-1074.

D’Haultfoeuille, X., & Février, P. (2015). Identification of triangular nonseparable models with discrete
instruments. Econometrica, 83(3), 1199-1210.

D’Haultfoeuille, X., & Février, P. (2020). The provision of wage incentives: A structural estimation using
contracts variation. Quantitative Economics, 11(1), 349-497.

Dobbie, W., & Fryer, R. (2011). Are high-quality schools enough to increase achievement among the poor?
evidence from the harlem children’s zone. American Economic Journal: Applied Economics, 3(3),
158-187.

Eccles, J. S., Adler, T. F., Futterman, R., Goff, S. B., Meece, C. M., & Midgley, C. (1983). Expectancies,
values, and academic behaviors. In J. T. Spence (Ed.), Achievement and achievement motives. San
Francisco: W. H. Freeman.

Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology,
58, 109-132.

Fryer, R. (2011). Financial incentives and student achievement: Evidence from randomized trials. Quarterly
Journal of Economics, 126, 1755-1798.

Fryer, R. (2016). Information, non-financial incentives, and student achievement: Evidence from a text
messaging experiment. Journal of Public Economics, 144, 109-121.

Fryer, R. (2017). Management and student achievement: Evidence from a randomized field experiment.
NBER Working Paper, #23437.

Fryer, R., Levitt, S., & List, J. (2015). Parental incentives and early childhood achievement: A field
experiment in chicago heights. NBER Working Paper No. 21477.

Fryer, R., Levitt, S., List, J., & Sadoff, S. (2022). Enhancing the efficacy of teacher incentives through
framing: A field experiment. American Economic Journal: Economic Policy, 14(4), 269-299.
Gayle, G.-L., Golan, L., & Soytas, M. (2022). What accounts for the racial gap in time allocation and
intergenerational transmission of human capital? working paper, Washington University in St. Louis

Economics Dept..

Gneezy, U., List, J. A., Livingston, J. A., Qin, X., Sadoff, S., & Xu, Y. (2019). Measuring success in
education: The role of effort on the test itself. American Economic Review: Insights, 1, 291-308.

Gneezy, U., & Rustichini, A. (2000). Pay enough or don’t pay at all. Quarterly Journal of Economics,
115, 791-810.



References 53

Guerre, E., Perrigne, 1., & Vuong, Q. (2000). Optimal nonparametric estimation of first-price auctions.
Econometrica, 68(3), 525-574.

Guryan, J., Ludwig, J., Bhatt, M., Cook, P., Davis, J., Dodge, K., ... Steinberg, L. (2021). Not too late:
Improving academic outcomes among adolescents. NBER Working Paper, #28531 .

Hamilton, B. H., Hickman, B. R., & Weidemann, C. (2023). A new method for efficient computation of
non-stationary dynamic programming problems with history dependence. working paper, Washington
University in St. Louts, Olin Business School.

Hanushek, E. A. (2020). Education production functions. In S. Bradley & C. Green (Eds.), The economics
of education: A comprehensive overview (2" ed.) (pp. 161-170). Academic Press.

Hanushek, E. A., & Rivkin, S. G. (2006). School quality and the black-white achievement gap. NBER
Working Paper no 12651 .

Hanushek, E. A., & Rivkin, S. G. (2009). Harming the best: How schools affect the black-white achievement
gap. Journal of Policy Analysis and Management, 28, 366-393.

Hedblom, D., Hickman, B. R., & List, J. A. (2019). Toward and understanding of corporate social
responsibility: Theory and field experimental evidence. NBER Working Paper No. 26222.

Hotz, J., & Miller, R. (1993). Conditional choice probabilities and the estimation of dynamic models.
Review of economic Studies, 60(3), 497-529.

Hunt, J. M. (1961). Intelligence and experience. New York: The Ronald Press Company.

Jacob, B. A., & Lefgren, L. (2008). Can principals identify effective teachers? evidence on subjective
performance evaluation in education. Journal of Labor Economics, 26(1), 101-136.

Kane, T. J., & Staiger, D. O. (2002). Volatility in school test scores: Implications for test-based ac-
countability systems. In D. Ravitch (Ed.), Brookings papers on education policy. Washington D.C.:
Brookings Institution.

Kremer, M., Miguel, E., & Thornton, R. (2009). Incentives to learn. Review of Economics and Statistics,
91, 437-456.

Leuven, E., Oosterbeek, H., & van der Klaauw, B. (2010). The effect of financial rewards on students’
achievement: Evidence from a randomized experiment. Journal of the Furopean Economic Associa-
tion, 8, 1243-1265.

Levitt, S. D., List, J. A., Neckermann, S., & Sadoff, S. (2016). The behavioralist goes to school: Leveraging
behavioral economics to improve educational performance. American Economic Journal: Economic
Policy, 8, 183-219.

Levitt, S. D., List, J. A., & Sadoff, S. (2016). The effect of performance-based incentives on educational
achievement: Evidence from a randomized experiment. NBER Working Paper No. 22107.

Little, R. J. A. (1992). Regression with missing xs: A review. Journal of the American Statistical
Association, 87, 1227-1237.

Luccioni, M. (2023). The determinants of teaching effectiveness: Evidence from a model of teachers’ and
students’ interactions. working paper, Olin Business School, Washington University in St Louis.
Morrix, C. N. (1983). Parametric empirical bayes inference: Theory and application. Journal of the

American Statistical Association, 78, 47-55.

Mountjoy, J., & Hickman, B. R. (2020). The return(s) to colleges: Estimating value-added and match

effects in higher education. Becker-Friedman Institute Working Paper Series, 2020-08.



54 References

NAEP. (2019). National assessment of educational progress. National Center for Education Statistics,
Washington, D.C. (available online at http://nces.ed.gov/nationasreportcard/)

Outhwaite, L., Gulliford, A., & Pitchford, N. (2017). Closing the gap: efficacy of a tablet intervention to
support the development of early mathematical skills in UK primary school children. Computers &
Education, 108, 43-58.

Pitchford, N., Chigeda, A., & Hubber, P. (2019). Interactive apps prevent gender discrepancies in early-
grade mathematics in a low-income country in sub-Sahara Africa. Developmental Science, 22, ¢12864.

Rao, G. (2019). Familiarity does not breed contempt: Generosity, discrimination, and diversity in delhi
schools. American Economic Review, 109(3), 774-8009.

Rodriguez-Segura, D. (2020). Education technology in developing countries: A systematic review.

(EdPolicyWorks working paper)

Snell, L. (1952). Applications of martingale system theorems. Transactions of the American Mathematical
Society, 73(2), 293-312.

Torgovitsky, A. (2015). Identification of nonseparable models using instruments with small support. Econo-
metrica, 83(3), 1185-1197.

Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16(2),
117-186.

Wang, M.-T., & Degol, J. (2013). Motivational pathways to STEM career choices: Using expectancy—value
perspective to understand individual and gender differences in STEM fields. Developmental Review,
38, 304-340.

Wigfield, A. (1994). Expectancy-value theory of achievement motivation: A developmental perspective.
Educational Psychology Review, 6, 49-78.

Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary
Educational Psychology, 25(1), 68-81.

Wooldridge, J. M. (2016). Introductory econometrics: A modern approach, 6th edition. Boston, MA: Cenage
Learning.

Wright, T. P. (1936). Factors affecting the cost of airplanes. Journal of the Aeronautical Sciences, 3(4),
122-128.

APPENDIX A. OBSERVABLE STUDENT CHARACTERISTICS AND TEST SCORES

A.1. Classroom based assessments and surveys. Prior to randomized treatment assignment, students
were given a standardized math pre-test by their teachers during regular classroom time to obtain a base-
line measure of proficiency. Teachers administered a similar post-test following the experiment to gauge
learning progress over the course of the study. Both assessments were designed by our research team from
professionally developed, age-appropriate math materials. We obtained copies of 46 different standardized
exams used by various U.S. states over the preceding decade, of which 30 were developed for 5*graders and

6th

16 were developed for 6™ graders.** The exams were then split into individual math problems, resulting in

a bank of 370 unique grade-5 problems and 302 unique grade-6 problems. All 672 problems were pooled

4These state standardized math exams included the California Standards Test (2009), Illinois Standards Achievement Test
(2003, 2006-2011, 2013), Minnesota Comprehensive Assessments-Series III, New York State Testing Program (2005-2010), Ohio
Achievement Test (2005), State of Texas Assessments of Academic Readiness (2011, 2013), Texas Assessment of Knowledge
and Skills (2009), and Wisconsin Knowledge and Concepts Examinations Criterion-Referenced Test (2005).
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5th 6th

to expose both 5*and 6""graders to the same materials. This facilitated an even comparison between age
groups, allowing us to cleanly estimate the effect of an additional year of schooling on skill formation.

We used Common Core Math Standards definitions to categorize each problem into one of 5 subject
categories: (i) equations and algebraic thinking, (ii) fractions, proportions, and ratios, (iii) geometry, (iv)
measurement and probability, and (v) number system.*> For the pre-test and post-test, we randomly selected
a large subset of problems from the math question bank and further categorized them as easy, medium, or
hard, depending on their complexity level or number of steps required to solve. Finally, to ensure uniformity
of subject content and difficulty level, both the pre-test and post-test were populated with similar sets of
36 questions: 8 each from subjects (i), (¢i7), and (v), and 6 each from subjects (i7) and (iv). Of the 36
questions, 20 were selected from 6"grade materials and the other 16 from 5""grade materials, and the easy,
medium, and hard categories were represented by 15, 12, and 9 questions respectively, spread evenly across
each exam. We computed pre-test scores .S; and post-test scores So; by awarding one point for each correct
answer, subtracting one quarter point for each incorrect answer (questions all had four possible choices),
and neither adding nor subtracting points for answers left blank.

The exams were coupled with surveys to collect additional relevant information about students. Class
periods were 45 minutes long; students were given 35 minutes to complete as much of the exam as they could
(and the scoring rule was explained in intuitive terms), with the remainder of the time allocated to filling
out a survey. Survey questions covered a child’s attitudes and preferences (most/least favorite academic
subjects and extrinsic vs. intrinsic motivation); family learning environment (# of academic helpers in
the child’s family/friend network and parental permissiveness for weekday video gaming and recreational
internet use); and consumption/leisure options (# of video gaming systems at the child’s home, fraction
of peer social time under adult supervision, and enrollment in organized sports, music activities, and/or
clubs). We also gathered socioeconomic indicators from the American Community Survey for each of the
~ 160 (rounded to nearest 10 to preserve anonymity) US Census block groups where our test subjects
resided, each of which can be thought of as a neighborhood. Within each neighborhood we collected mean
household income (a proxy for affluence), and the fraction of minors with no private health insurance (a
proxy for deprivation of non-school developmental resources).*

A.2. Descriptive Statistics. Table 8 presents descriptive statistics by demographic sub-group. In what
follows, we adopt the terminology of referring to Blacks and Hispanics collectively as “under-represented
minorities” or simply “minorities.”*

On average, Black students in our sample live in neighborhoods with mean incomes moderately above

that of the average student in Illinois ($71,602; see Online Appendix B), and Hispanic students in our

45Common Core subject definitions for 5*and 6""grades (http://www.corestandards . org/wp-content/uploads/Math accessible as of
September 2020) differ slightly; our 5-subject classification represents a merging of the two.

46The ACS contains many other socioeconomic indicators (e.g., mean home values) but when reported at the neighborhood
level, multicollinearity problems arise due to high correlations of within-neighborhood means across different measures. We
included mean neighborhood income and uninsured minor rate because the two seemed most different in what they represent
and had the lowest pair-wise correlation among available indicators.

4"This convention follows the higher education literature, where Blacks and Hispanics are known to be proportionally under-
represented at post-secondary education institutions. By contrast, Asian students, although a statistical demographic minority
group, are proportionally over-represented at colleges generally, and particularly so at elite colleges, like their White counter-
parts. Thus, Asians do not satisfy the definition of a “URM” group. For ease of discussion, we will often refer to URMs as
simply “minorities” for short, while recognizing this important caveat.
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TABLE 8. DESCRIPTIVE STATISTICS: STUDENT COVARIATES BY SUB-SAMPLE

SUB-SAMPLE: ALL FEMALE MALE BLACK HISPANIC WHITE/ASIAN
SIZE/FRACTION OF TOT.: 1,676 0.5078 0.4922 0.2691 0.1915 0.5394
SCHOOL DISTRICT & NEIGHBORHOOD SOCIOECONOMICS
Nbhd Mean Income $108,917 $108,917 $108,917 $80,774 $45,687 $132,038
(sample std. dev.) (41,470) (41,107) (41,871) (32,390) (23,175) (24,602)
Nbhd Uninsured Minors 0.252 0.253 0.252 0.378 0.616 0.072
(sample std. dev.) (0.297) (0.297) (0.297) (0.293) (0.231) (0.129)
District 1 0.465 0.475 0.455 0.007 0.044 0.843
District 2 0.268 0.260 0.276 0.650 0.103 0.136
District 3 0.267 0.266 0.269 0.344 0.854 0.021
FAMILY & RECREATIONAL TIME-USE VARIABLES
# Adult Academic Helpers 1.140 1.163 1.117 1.128 0.615 1.328
(sample std. dev.) (0.848) (0.821) (0.875) (0.892) (0.724) (0.789)
# Peer Academic Helpers 0.789 0.907 0.666 0.852 0.887 0.728
(sample std. dev.) (0.783) (0.792) (0.756) (0.825) (0.766) (0.765)
# Gaming Systems at Home 1.570 1.474 1.660 1.648 1.480 1.554
(sample std. dev.) (1.135) (1.130) (1.133) (1.299) (1.096) (1.056)
Parental Permission for
Video Gaming on Weekdays 0.878 0.882 0.874 0.809 0.888 0.909
(sample std. dev.) (0.827) (0.522) (0.8332) (0.393) (0.316) (0.287)
Weekday Daily Recreational
Internet Use (¥1rs) 1.766 1.790 1.740 1.908 1.788 1.694
(sample std. dev.) (1.201) (1.166) (1.236) (1.290) (1.210) (1.150)
Enrollment in Sports 0.669 0.639 0.700 0.548 0.455 0.807
(sample std. dev.) (0.471) (0.481) (0.458) (0.498) (0.499) (0.395)
Enrollment in Music 0.383 0.462 0.302 0.295 0.196 0.493
(sample std. dev.) (0.487) (0.499) (0.459) (0.457) (0.398) (0.500)
Enrollment in Clubs/
Other Activities 0.410 0.438 0.381 0.337 0.315 0.480
(sample std. dev.) (0.492) (0.496) (0.486) (0.473) (0.465) (0.500)
Fraction of Peer Social Time
In Adult-Supervised Activities 0.351 0.356 0.345 0.317 0.274 0.392
(sample std. dev.) (0.172) (0.172) (0.171) (0.167) (0.181) (0.158)
ACADEMIC PREFERENCES & ATTITUDE VARIABLES
Math Favorite Subj. 0.361 0.319 0.404 0.431 0.439 0.302
(sample std. dev.) (0.480) (0.466) (0.491) (0.496) (0.497) (0.460)
Math Least Favorite Subj. 0.216 0.254 0.176 0.277 0.212 0.189
(sample std. dev.) (0.411) (0.435) (0.881) (0.448) (0.410) (0.392)
Extrinsic Motiv. Score 0 -0.023 0.024 -0.222 -0.030 0.122
(sample std. dev.) (1) (0.989) (1.011) (1.016) (1.005) (0.971)
Intrinsic Motiv. Score 0 0.056 -0.058 0.010 0.150 -0.059
(sample std. dev.) (1) (1.005) (0.992) (1.047) (1.057) (0.949)

Notes: Unless otherwise stated, standard font numbers in the table represent sample means, while italicized numbers in parentheses
represent sample standard deviations. Adult Academic Helpers included parents, grandparents, and tutors; Peer Academic
Helpers included siblings and friends. Numbers reported for Neighborhood Mean Income represent the median across all students in
the sample. Extrinsic Motivation Score and Intrinsic Motivation Score both exist on a scale of 0-4, but have been standardized
for this table. All other figures represent sample means, with sample standard deviations in parentheses and italics. Fifth-graders make
up 47.3% of the total sample, with 6*Pgraders comprising the other 52.7%. Sub-sample proportions are close to that ratio for all gender
and race groups.

sample live in neighborhoods with significantly lower mean incomes. White and Asian students in our
sample live in neighborhoods with significantly higher incomes than the state average. The correlation
between socioeconomics and race is also starkly apparent in uninsured minor rates, being higher among
Blacks than Whites/Asians by a factor of 5.3, and higher among Hispanics by a factor of 8.6.

From survey responses we also see racial differences in terms of access to homework help, video game/internet
usage, and participation in extracurricular activities. Whites/Asians have access to more adult academic
helpers (including parents, grandparents, and tutors) and were more likely to be enrolled in sports and
music. Black and Hispanic students are more likely to report that math is either their favorite or least
favorite subject relative to their White/Asian peers. Minority students also self-reported higher levels of
intrinsic motivation when completing school work, while White/Asian students are more likely to report

being motivated by extrinsic factors such as satisfying parental or teacher expectations, or to earn a reward
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for satisfactory performance.*® Females in our sample also self-reported higher levels of intrinsic motivation,

and lower levels of extrinsic motivation, relative to males.

A.3. Additional Tables & Figures.

TABLE 9. COMMON STRUCTURAL PARAMETERS

KNOT (quoted in units of minute spent over a 10-day sample period)

LOCATIONS: {ke1 =0, Kke2 = 28.02, keg = 46.12, Keqa = 75.33, Kes = 109.59, ke = 171.31, ke = 289.31, keg = 1,254}
_VARIABLE: = ya ez Y3 Yed_ _____ Yes_ _ _ ___ Yo Ve

Point Est.: 0 9.3340 24.720 147.59 424.56 931.45 1,936.4

90% CI: — — [24.16, 25.20] [135.9,158.8] [399.7,451.8] [878.7,993.1] [1775.4,2088.9]
_VARIABLE: = s Y Yew o . oo ___To e

Point Est.: 9,969.8 17,626 85,103 6.575 1.058 0.0788

90% CI: [9088.5,10894] [15158,20526] [70455, 102835] [6.523,6.640] [1.053,1.063] [0.0760,0.0825]

FIGURE 16. Nbhd. SES Impacts on Motivation log(6,,)

HISTOGRAM

NN || |1 TV

04 03 01 a a1 02 o3 04
COMBINED NBHD SES PREDICTOR EFFECTS ON MOTIVATION (in StDev(Ing(Um]j units)

<-10% StDev(log(¢, )} NBHD SES Effect (increased motivation)
A « =10% StDev(log(f_ )} NEHD SES Effect (reduced motivation)

NBHD UNINSURED MINORS RATE
(standardized)
>

NBHD MEAN INCOME (standardized)

48For intrinsic/extrinsic motivation indexes, we included two questions each on the pre-survey and post-survey asking students
about their biggest motivations for completing school-related work. Two external motivations were listed alongside two intrinsic
motivations, along with a fifth “none of the above” option. We then counted the number of corresponding responses across
the four questions and standardize the score by subtracting means and dividing by standard deviations.
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FIGURE 17. School-Quality-Equalized Affirmative Action

T T T T
= EQUAL-SCHOOL-QUALITY EQUIVALENT AA
— = ‘COLOR-BLIND EQUIVALENT

@

(in standard deviations of 51)

UNDER-REPRESENTED MINORITY
EXAM SCORE BONUS

°

01 02 03 0.4 05 06 07 08 0.9

WITHIN-GROUP PERCENTILE
Notes: The figure considers a hypothetical, many-to-many college admissions contest among students in the sample. For r € (0.05,0.95)

the solid line plots an rth

-percentile-specific exam score bonus needed to ezactly offset handicaps for minority students due to less
advantageous school quality assignment relative to their r*P-percentile counterparts in the White /Asian group. The dashed line plots

the score bonus schedule under a so-called “color-blind” admissions scheme for comparison.
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APPENDIX B. ONLINE SUPPLEMENT TO ACCOMPANY Disentangling Motivation and Study
Productivity as Drivers of Adolescent Human Capital Formation: Evidence from a Field
Ezxperiment and Structural Analysis, BY CHRISTOPHER COTTON, BRENT HICKMAN,
JOHN LIST, JOSEPH PRICE, AND SUTANUKA ROY

B.1. Common Core Math Subject Sub-Categories. We used standard Common Core subject defini-
tions (accessible at nttps://learning.ccsso.org/wp-content/uploads/2022/11/Math_Standardsi.pdf as of January 2023)
to classify and organize pedagogical content on our website and proficiency assessments. These subject
definitions are grade-specific, but with considerable overlap in the themes and concepts covered by 5"'and
6P graders. In Table OS.1 below we provide an overview of Common Core definitions and a harmonization
of the specific subject sub-category topics that were merged to form 5-subject 5™ /6t"grade sub-categories
used in our study.

B.2. Internet Access Issues. Of the 1,676 student test subjects included in our study, 118 (7%) of them
reported having no regular internet connection at home. Of these, 48 completed at least 2 learning tasks
on the website, for a conditional activity rate of 40.7%. Activity rates were statistically similar for students
with and without regular internet connections at home: the 95% confidence interval of this rate estimate is
(36.3%,45.1%), which contains the activity rate for the overall sample population (44.7%). Among active
students with no regular internet connection, we saw reduced rates of pageloads from desktop comput-
ers (63.5% vs 76.8%) and tablet devices (15.2% vs 18.5%), and elevated pageload rates from smartphones
(21.3% vs 4.8%). The fact that the students with no regular internet connection at home still predominantly
connected to our website from a personal computer is suggestive that they were able to find regular internet
service elsewhere, for example in the network of 11 public libraries serving their communities, or from the
house of a family member or friend. In order to directly test whether limited internet access played a signif-
icant role in our study, we ran two regressions of website task completion A; on various student covariates.
Specification 1 includes dummies for no home internet; school district; mean neighborhood income (a
socioeconomic status proxy); self-reported regular homework time per day; math _attitude (a single index
based on responses to preference elicitation questions on student surveys); and incentive contract dummies.
In a second regression specification, we add quadratic terms for neighborhood income, homework time, and
math attitude, and race/gender dummies.

Results are displayed in Table OS.2. The coefficient estimate on no home internet in both specifi-
cations is negative and of similar magnitude, but in neither is it statistically different from zero. On the
other hand, other expected factors such as incentives, math attitude, and regular homework time play a
significant role in predicting total website task completion. These results, and students’ various outside
options for connectivity (e.g., smartphones or library computers) suggest that internet access is not driving

our main empirical results.
B.3. Estimator Technical Details.

B.3.1. Dealing With Upper-Tail Mass Points of Learning Task Accomplishment. We have a small mass of
students who achieve full output A; =80 on the website, as can be seen in Figure 2. This means that their
study-time productivity trait, 6,;, is known, but without extra structure their motivation trait, 6,,;, can

only be bounded from above. This is because it is impossible to know whether a given individual would
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TABLE OS.1. Common Core Focus Areas and Category Harmonization by Grade

GRADE 5

GRADE 6

FOCUS AREAS BY GRADE

“In Grade 5, instructional time should focus on three critical areas: (1)
developing fluency with addition and subtraction of fractions, and de-
veloping understanding of the multiplication of fractions and of division
of fractions in limited cases (unit fractions divided by whole numbers
and whole numbers divided by unit fractions); (2) extending division to
2-digit divisors, integrating decimal fractions into the place value system
and developing understanding of operations with decimals to hundredths,
and developing fluency with whole number and decimal operations; and

(3) developing understanding of volume.”

“In Grade 6, instructional time should focus on four critical areas:
connecting ratio and rate to whole number multiplication and division
and using concepts of ratio and rate to solve problems; (2) completing
understanding of division of fractions and ewtending the notion of num-
ber to the system of rational numbers, which includes negative numbers;
(8) writing, interpreting, and using expressions and equations; and (4)

developing understanding of statistical thinking.”

(i) Equations and Algebraic Thinking merged sub-category:

“(50AT) Write and interpret numerical expressions; and
(50AT) Analyze Patterns and Relationships.”

(42) Fractions, Proportions, and Ratios merged sub-
category: “(5NOF) Use equivalent fractions as a strategy to

add and subtract fractions; and (5NOF) Apply and exstend

previous wunderstandings of multiplication and division to

multiply and divide fractions.”

(ii1) Geometry merged sub-category: “(5GEOM) Graph
points on the coordinate plane to solve real-world and mathe-
matical problems; and (5GEOM) Classify two-dimensional fig-
ures into categories based on their properties; and (5MD) Geo-
metric measurement: understand concepts of volume and relate
volume to multiplication and to addition.”

(iv) Measurement and Probability merged sub-category:

“(8MD) Convert like measurement units within a given mea-
surement system; and (56MD) Represent and interpret data.”

(v) Number System merged sub-category: “(5NOBT) Un-
derstand the place value system; and (6NOBT) Perform opera-
tions with multi-digit whole numbers and with decimals to hun-

dredths.”

() Equations and Algebraic Thinking merged sub-category:

“(6EE) Apply and extend previous understandings of arithmetic
to algebraic expressions; (6EE) Reason about and solve one-
variable equations and inequalities; and (6EE) Represent and
analyze quantitative relationships between dependent and inde-
pendent variables.”

Fractions, Proportions, and Ratios merged

category: “(6RPR) Understand ratio concepts and use ratio

reasoning to solve problems; and (6NS) Apply and extend

previous wunderstandings of multiplication and division to

divide fractions by fractions.”

(i11) Geometry merged sub-category: “(6GEOM) Solve real-
world and mathematical problems involving area, surface area,

and volume.”

Measurement and Probability merged sub-category:

“(6SP) Develop understanding of statistical variability; and

(6SP) Summarize and describe distributions.”

(v) Number System merged sub-category: “(6NS) Compute
fAuently with multi-digit numbers and find common factors and
multiples; and (6NS) Apply and extend previous understandings

of numbers to the system of rational numbers.”

Notes: All underlined text is the merged subject sub-categories used for our study. All italicized text is quoted from the Common Core Mathemat-
ics Standards document (accessible at nttps://1earning.ccsso.org/up-content/uploads/2022/11/Math_Standardsi.pat as of January 2023). Bolded acronyms in parentheses
indicate that a particular topic was taken from a given Common Core grade sub-category as follows: for grade 5, “SOAT”=Operations and
Algebraic Thinking, “6SNOBT”=Number and Operations in Base Ten, “SNOF’=Number and Operations—Fractions, “56MD”=Measurement and
Data, and “6GEOM”=Geometry; for grade 6, “6RPR”=Ratios and Proportional Relationships, “6NS”=The Number System, “6EE’= Expressions
and Equations, “6GEOM”=Geometry, and “6SP”=Statistics and Probability.

have optimally chosen ezactly A; = 80, or A; > 80 if given the chance.! We deal with this problem by

estimating a constrained quantile function using a low-dimensional B-spline to extrapolate into the missing
upper tails of the empirical CDFs of A. The extrapolating B-spline quantile functions overlapped their

5th

empirical counterparts to the 85*" percentile. We assumed that no student would choose to more than

INote, however that this bound is much tighter than the bounds on Marginal/Inactive student motivation types.
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TABLE OS.2. DETERMINANTS OF WEBSITE TASK COMPLETION

(Dependent Var.: A;) Specification 1 Specification 2

Regressor Coeff. Est. (Std.Err.) 95% Conf. Int. Coeff. Est. (Std.Err.) 95% Conf. Int.
no_home_internet -2.45 (1.946) [-6.24,1.36] -2.33 (1.947) [-6.14,1.49]
District2 S11.16%%% (1.762) [-14.62,-7.71] -8.50%%* (2.168) [-12.82,-4.32]
District3 -17.24%%% (2.506) [-22.16,-12.33] -12.03%%* (3.588) [-19.07,-5.00]
nbhd_income -3.9%x107°%*  (1.8x107°) [-7.3,-0.4]x107°  2.4x107° (7.6x107°)  [-1.1,1.5]x10~*
nbhd__income? — -21x1071%  (2.1x1071°) [-6.3,2.2]x1071°
(hmavk_time/day) -1.76 (1.169) [-4.05,0.53] 1.99 (2.842) -3.58,7.57]
(hmwk_time/day)? — -2.11%* (0.933) [-3.94,-0.28]
math_attitude 2.55% %% (0.591) [1.78,3.31] 1.40%%* (0.489) [0.44,2.36]
math_attitude? — 0.38%** (0.096) [0.19,0.56]
Contract2 2.49%* (1.227) [0.08,4.89] 2.44%* (1.220) |0.05,4.83]
Contract3 4.73¥%% (1.226) [2.33,7.13] 4.71%%% (1.217) [2.32,7.10]
Constant 15.68%** (3.326) [9.16,22.20] 8.81 (5.654) [-2.27,19.89)
Gender/Race Dummies NO YES

R? 0.126 0.144

Notes: We follow typical “star notation” for statistical significance; “***” denotes significance at the 1% level, “**” denotes significance at the
5% level, and “*” denotes significance at the 10% level.

double the available workload on the website, so tails were bounded from above by A = 160. We chose
a low-dimensional B-spline with 3 knots so that all parameters for the extrapolating quantile functions
could be informed by the available data. One advantage of this approach is that we can pre-estimate the
extrapolated upper tails of the work volume distributions, without adding to the computational complexity
of the main simulated GMM estimator.

We discretized the extrapolated tails (for computational tractability) by selecting no more than 5 uniform
steps (in quantile rank space), and also requiring each step (except possibly the last one) to represent at
least 5 observations of A; = 80. The resulting frequency tables included 3 steps under contract 1 (with the
smallest upper mass point), and 5 steps each for contracts 2 and 3. Figure OS.2 in the online supplement
plots the extrapolated upper tails against the empirical CDFs of A. After discretizing the upper tail, for
each individual with full output this renders up to 5 possibilities for optimal stopping points {A\il, ceey A\ig,},
all being at or above 80. For each (6, ﬁzm) pair, m = 1,...,5, we back out a motivation trait Hmz(A\zm) to
match ﬁzm as the optimal stopping point, and we run counterfactual simulations for each (6, Hmz(zzl\lm))
pair. However, we give each of these (1/5)" weight when incorporating them into the model-generated
CDFs G,.

B.3.2. Standard Errors. For the empirical model of student time allocation and for the Tobit ML decom-
position of student traits, we bootstrap all standard errors. Our block-bootstrap procedure is designed to
mimic our randomized sampling procedure (discussed in Section 3.2.5) which balanced on race, gender,
school district, grade level, and pre-test score. We begin by arranging all test subjects into race-gender-
district-grade bins.2 Suppose that there are K such bins in total, and that within contract j = 1,2,3
the bins each have Ny;, Naj,..., Ni; subjects in them, respectively. Then, in order to construct a single
block-bootstrap sample, for each bin, k =1,..., K, we do the following:

(1) Randomly draw a test subject (with replacement), call her “subject;,” and record which contract j

she was assigned.

2Due to a sparsity of Blacks and Hispanics in District 1 and a sparsity of Whites and Asians in District 3, we only arrange
students into gender-district-grade bins in those two districts. District 2 subjects, who exhibit a more diverse racial mix, are
fully partitioned into race-gender-district-grade bins.
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(2) Select subjects from the other two contracts j' and j” in that same race-gender-district-grade bin
(with replacement) whose pre-test scores are closest to subject;’s pre-test score. Break ties randomly
if multiple subjects fit that description within contract groups j” and/or j”. Call these two selected
individuals “subjects” and “subjects, respectively.

(3) Add the triple (subject;, subjects, subjects) to the bootstrap sample.

(4) Repeat steps (1)—(3) above, until full bootstrap samples of size Ngi, Nio2, and N3z have been
constructed for bin k£ under contracts 1, 2, and 3, respectively.

(5) Repeat steps (1)—(4) above for each race-gender-district-grade bin, k =1,..., K.

The final remaining question is how many bootstrap samples on which to generate and re-estimate
the model. The main consideration here is a trade-off between simulation error and computational cost.
Estimates of the student time allocation model generally took between 20 and 80 minutes each, including
an adaptive multiple re-starts algorithm to ensure quality of the final solution. The Tobit ML estimator
took a similar amount of time to converge for each bootstrap iterate. We chose 280 bootstrap samples for
the time allocation model, and 280 bootstraps for the Tobit ML model, due to a necessity of estimating
multiple specifications of the latter.

For standard errors on student fixed effects, we first bootstrap all common parameters. Then, we combine

(5) _(5) (s) (s>}176°°

the bootstrapped parameter samples, {7’0 JT1 s PV e , etc., with an individual’s observables,

s=1

S
{{Téi:l}, Ti, Aiy X pi, sz}, to compute bootstrapped fixed effect estimates {0;?, 97(22 }821. These within-
student bootstrap samples of fixed effects are then used to compute standard errors, inverse variance weights,
and EB shrinkage forecasts. We compute heteroskedasticity-consistent standard errors and hypothesis tests

for production technology parameters in the usual way.

TaBLE OS.3. SCHOOL DISTRICT CHARACTERISTICS, AY2013-14

Variable STATE OF ILLINOIS DISTRICT 1 DISTRICT 2 DISTRICT 3
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, FINANCES _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ____________.
% Revenue from Local Property Tax 61.7% 85% 70% 35%
Operating Budget Per Pupil $12,521 $14,500 $12,500 $13,500

% Spending on Instruction ‘¢ a87%_ _ _ ______ 2% ¢ 8% 8% _ _ .
el e _ _kAcULXY o ________.
Avg. Administrator Salary $100,720 $130,000 $105,000 $100,000
Avg. Teacher Salary $62,609 $75,000 $60,000 $60,000

% Teachers w/Master’s & Above: 61.1% 80% 65% 55%
Pupil-Teacher Ratio: 18.5 17 16 17
Pupil-Administrator Ratlo: _ ___ _ ____ __ ____ _ w3 _____210________ 0. __ 180 _ _
,,,,,,,,,,,,,,,,,,,,, STUDENT POPULATION & OUTCOMES _ _ _ _ _ _ _ _ _ _ _ _ _ _______.
% Low Income: 54.2% 0% 50% 90%

% Limited English Proficient: 10.3% 2% 1% 24%

% Meeting/Exceeding Expectations

on State Standardized Math Exam (AY2014-15): 27.1% 60% 30% 10%

Notes: Data retrieved from the Illinois District Report Cards archive, 2015. District-specific numbers are rounded to preserve anonymity.
%Revenue from Local Property Tax is rounded to the nearest 5 pp. Operating Budget Per Pupil is rounded to the nearest $500.
%Spending on Instruction is rounded to the nearest 2 pp. Avg. Teacher Salary and Avg. Administrator Salary are rounded to the
nearest $5K. % Teachers with Master’s & Above is rounded to the nearest 5 pp. Pupil-Teacher Ratio is rounded to the nearest full number.
Pupil-Administrator Ratio is rounded to the nearest 10. %Low Income is rounded to the nearest 10 pp and primarily represents students
who are either from families receiving public aid or are eligible to receive free or reduced-price lunches. %Limited English Proficient is rounded
to the nearest 2 pp. %Meeting Expectations is a measure adoptied by the Illinois State Board of Education for school performance. It roughly
measures the fraction of a school’s student body that is projected to be college-bound after graduation from high school. This measure is rounded

to the nearest 10 pp and represents the average percentage across 5% and Gthgrades‘
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TABLE OS.4. BALANCE TABLE

#ASSIGNED
TREATMENT FEMALE HISPANIC Black ASIAN GRADE-5 PRE-TEST SUBJECTS
CONTRACT 1: 0.0005 -0.0054 0.0003 0.0032 -0.0014 -0.0021 557
(p-val) (0.99) (0.82) (0.99) (0.90) (0.95) (0.93)
CONTRACT 2: -0.0009 0.0024 -0.0048 0.0026 0.0001 0.0067 559
(p-val) (0.97) (0.92) (0.84) (0.92) (1.00) (0.78)
CONTRACT 3: -0.0009 0.0024 -0.0048 0.0026 0.0001 0.0067 560
(p-val) (0.97) (0.92) (0.84) (0.92) (1.00) (0.78)

Notes: This table displays correlations between treatment assignment and the demographic and academic variables that were used for random-
ization. Treatment assignment randomization used balancing on gender, race, grade-level cohort, and pre-test score (via stratification). P-values
(for the null hypothesis of zero correlation) are listed in parentheses.

FiGure OS.1. Conditionally Heteroskedastic Work-Time Shocks
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Ficure OS.2. CDF Smoothing and Upper Tail Extrapolation
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