NBER WORKING PAPER SERIES

OVERREACTION AND WORKING MEMORY

Hassan Afrouzi
Spencer Yongwook Kwon
Augustin Landier
Yueran Ma
David Thesmar

Working Paper 27947 http://www.nber.org/papers/w27947

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 October 2020

This paper is a combination of two previous works "Biases in Expectations: Experimental Evidence" and "A Model of Costly Recall." Many thanks to Nick Barberis, Cary Frydman, Nicola Gennaioli, David Hirshleifer, Charlie Nathanson, Andrei Shleifer, Emanuel Vespa, and Mike Woodford, as well as conference participants at the AFA Annual Meeting and the Behavioral Approaches to Financial Decision Making Conference and seminar participants at Babson College, BYU, Columbia, Duke, the Fed, HEC Paris, Yale, MIT, NBER, NYU, Stanford SITE, and University of Amsterdam. David Norris provided very skillful research assistance on this project. Landier acknowledges financial support from the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) Grant Agreement no. 312503 SolSys. This study is registered in the AEA RCT Registry and the identifying number is: "AEARCTR-0003173." The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2020 by Hassan Afrouzi, Spencer Yongwook Kwon, Augustin Landier, Yueran Ma, and David Thesmar. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Overreaction and Working Memory
Hassan Afrouzi, Spencer Yongwook Kwon, Augustin Landier, Yueran Ma, and David Thesmar
NBER Working Paper No. 27947
October 2020
JEL No. C91,D03,D83,D84

ABSTRACT

We study how biases in expectations vary across different settings, through a large-scale randomized experiment where participants forecast stable random processes. The experiment allows us to control the data generating process and the participants' relevant information sets, so we can cleanly measure forecast biases. We find that forecasts display significant overreaction to the most recent observation. Moreover, overreaction is especially pronounced for less persistent processes and longer forecast horizons. We also find that commonly-used expectations models do not easily account for the variation in overreaction across settings. We provide a theory of expectations formation with imperfect utilization of past information. Our model closely fits the empirical findings.

Hassan Afrouzi
Columbia University
Economics Department
420 W 118th Street
New York, ny 10027
USA
hassan.afrouzi@columbia.edu

Spencer Yongwook Kwon Department of Economics Harvard University 1805 Cambridge Street Cambridge, Mass 02138 United States ykwon@hbs.edu

Augustin Landier HEC Paris 1 rue de la libération 78351 Jouy en Josas Cedex France augustin.landier@tse-fr.eu Yueran Ma
The University of Chicago
Booth School of Business
5807 S. Woodlawn Ave.
Chicago, IL 60637
United States
Yueran.Ma@chicagobooth.edu

David Thesmar MIT Sloan School of Management 100 Main Street, E62-632 Cambridge, MA 02142 and NBER thesmar@mit.edu

A randomized controlled trials registry entry is available at https://www.socialscienceregistry.org/trials/3173
An online appendix is available at http://www.nber.org/data-appendix/w27947

1 Introduction

Expectation formation plays a critical role in economics. The benchmark model is rational expectations, which assumes that agents process information optimally and without bias. Empirically, however, a vibrant stream of recent studies uses survey data to document systematic biases in expectations, with evidence of overreaction in some settings¹ and underreaction in others.² In particular, biases in expectations seem to vary across different settings, but evidence and theory about how and why are still relatively sparse. Knowledge about such variations is an important step towards a unified understanding of findings on expectation biases. In this paper, we offer new experimental evidence and a new theory on how expectation biases vary with the features of the data generating process (DGP) as well as the forecast horizon.

We begin with a large-scale randomized experiment to cleanly document the relationship between biases in expectations and features of the process. Our experimental approach allows us to address three major concerns in analyzing expectations using survey data. First, we can control the relevant information set of forecasters, which is not observable to the econometrician in survey data.³ Second, we can control and vary the DGP, whereas it is very difficult for the econometrician to know or control the DGP in survey data. Finally, we can also control the payoff of forecasters, while in field data there can be concerns that forecasters have considerations other than forecast accuracy. Overall, the experiment helps us measure biases in forecasts precisely, trace out the structure of

¹A large share of this research follows up on the insight of Shiller (1981) that asset prices move more than fundamentals. De Bondt and Thaler (1990), Amromin and Sharpe (2013), Greenwood and Shleifer (2014), Gennaioli, Ma and Shleifer (2016), Bordalo, Gennaioli, La Porta and Shleifer (2019), and Barrero (2020) document extrapolation and overreaction in expectations of corporate earnings and stock returns; Bordalo, Gennaioli and Shleifer (2018) show over-optimistic forecasts of future credit spreads during credit market booms.

²These papers have roots in both macroeconomics and finance. Mankiw and Reis (2002), Coibion and Gorodnichenko (2012, 2015) present evidence of informational rigidity in inflation expectations; Abarbanell and Bernard (1992), Bouchaud, Krueger, Landier and Thesmar (2019), and Ma, Ropele, Sraer and Thesmar (2020) find underreaction in near-term earnings forecasts.

³One workaround is to predict forecast errors using forecast revisions, since revisions are supposed to be within the forecaster's information set (Bordalo, Gennaioli, Ma and Shleifer, 2020c). However, this approach has limitations, which we explain in detail in Section 2.2. Among other things, this method may be unreliable when the process is transitory, in which case the variance of forecast revisions may approach zero if beliefs are close to rational.

these biases and variations across settings, and then investigate whether commonly-used models account for the key findings in the data.

In our experiment, participants make forecasts of simple AR(1) processes. They are randomly assigned to a condition with a given persistence level, drawn from the set {0,0.2,0.4,0.6,0.8,1}. Participants observe 40 past realizations of the process at the beginning, and then make forecasts for another 40 rounds. In each round, participants observe a new realization from the process, and report one- and two-period-ahead forecasts before the next round begins. In follow-up experiments, we also extend the forecast horizon and elicit five-period-ahead forecasts.

Our main empirical results are as follows. First, even though the process is simple and stable, rational expectations are strongly rejected in our data, consistent with previous research. In particular, forecasts in the data display strong overreaction to recent observations: they are systematically too high when the past realization is high, and vice versa. This pattern is robust and it does not depend on whether participants know the process is AR(1), which we show using a sample of MIT students who understand AR(1) processes.

Second and importantly, we find that forecasts feature more overreaction when the process is more transitory. This result echoes the patterns Bordalo, Gennaioli, Ma and Shleifer (2020c) observe in survey data. In the experiment, however, we can measure the degree of overreaction more precisely. Specifically, we can calculate the persistence implied by participants' forecasts, and compare it to the actual persistence of the process. In our setting, this implied persistence is a clear measure of overreaction. We find that the implied persistence is close to one when the process is a random walk, and decreases when the actual process is more transitory, but only reaches 0.4 for i.i.d. processes (where the actual persistence is zero).

Third, we find that commonly-used expectations models in the literature do not perform very well in accounting for how biases vary with the type of process. For example, the older adaptive or extrapolative models do not generate enough variation in the forecast-implied persistence based on the actual persistence of the process. In contrast, more recent models such as constant gain learning (Evans and Honkapohja, 2001; Nagel

and Xu, 2019) and diagnostic expectations (Bordalo, Gennaioli and Shleifer, 2018) adapt too much: they overreact too little for transitory processes. Diagnostic expectations, for instance, are the same as rational expectations for i.i.d. processes, which is not the case in the data.

In light of the failure of these models to account for the key empirical features, in particular the variation of overreaction across different settings, we provide a new modeling framework for biases in expectations. We consider the problem of an agent who forms estimates of the long-run mean of the process. For each round of forecasting, she initially observes a context, such as the most recent realization of a process, which automatically forms the initial prior. Then, the agent decides how much additional past information to utilize, subject to a cost of retrieval. The set of information retrieved, which we call working memory, captures what is "on top of the mind" when agents make decisions. In our model, like in the experiment, forecasts tend to overreact, since the agent partially relies on the most recent observation to estimate the long-run mean of the process. This direct effect is, however, partially counteracted by the costly retrieval of past information. As a result, in our model, as in the data, the forecast adapts partially to the properties of the true process, but the adaptation is imperfect: there is a stronger tendency to respond too much to recent realizations when the true process is less persistent. When we fit our model to the forecast data, it matches the key empirical patterns very closely, unlike other models used in the literature.

Finally, recent research also indicates that overreaction appears to be stronger when the forecast horizon is longer (see Bouchaud et al. (2019) and Bordalo et al. (2019) for evidence from analyst earnings forecasts, as well as Brooks, Katz and Lustig (2018), Wang (2019), and d'Arienzo (2020) for evidence from interest rate forecasts). We also document this pattern in our experimental data. Moreover, our model naturally generates more overreaction at longer horizons. The intuition is that longer horizon forecasts are more sensitive to the estimate of the long-run mean, so they are more affected if the estimate of the long-run mean responds too much to recent observations. We take this model prediction to the data, and find the model performs well along this dimension too. In particular, we use the model parameters estimated using one-period-ahead forecasts, and

compute the model-based forecasts for longer horizons as non-targeted moments. For two-period-ahead and five-period-ahead forecasts that we have in the experimental data, the model lines up very closely with the empirical evidence.

Literature Review. Our work is related to three branches of literature. First, our empirical findings complement recent evidence from survey data discussed in the first paragraph. As mentioned before, while analyses using survey data are very valuable, they face major obstacles given that researchers do not know forecasters' information sets, payoff functions, and the DGP. A key contribution of our study is using a large-scale experiment to cleanly connect the properties of the process with the structure of expectation biases.

Second, our paper also contributes to the literature on experimental studies of forecasts (see for instance Assenza, Bao, Hommes and Massaro (2014) for a survey). Prior work in this area includes Hey (1994), Frydman and Nave (2016) and Beshears, Choi, Fuster, Laibson and Madrian (2013). Most closely related, Reimers and Harvey (2011) also document that the forecast-implied persistence is higher than the actual persistence for transitory processes, which indicates the robustness of this phenomenon, but they do not test models or analyze the term structure of forecasts. We offer an extensive review of the experimental literature in Table A.1. Overall, relative to existing research, we provide an experiment with a large scale, a wide range of settings, and diverse demographics; we also collect the term structure of forecasts. In addition, we use the experiment to test a number of commonly-used models and to provide a unifying picture of expectation biases across different settings, while prior studies tend to focus on testing a given type of model.

Finally, we contribute to the emerging literature which proposes portable and microfounded models of expectations formation that allow for deviations from rational expectations. The diagnostic expectations model of Bordalo, Gennaioli and Shleifer (2018) is a leading example, but it does not explain biases when the process is i.i.d. as mentioned above. Some modeling techniques we use are related to the literature on noisy perception and rational inattention (Woodford, 2003; Sims, 2003). This literature has focused on frictions in the perception component of belief formation (e.g., imperfect perception of recent observations), and there is perfect utilization of past information. Instead, our model emphasizes frictions in exploiting past information, which is key for generating overreaction.

Given the frictions in exploiting past information, our model is related to recent work on memory and belief formation. Bordalo, Gennaioli and Shleifer (2020b) and Bordalo, Coffman, Gennaioli, Schwerter and Shleifer (2020a) draw inspirations from representativeness (Kahneman and Tversky, 1972) and associative recall (Kahana, 2012). Wachter and Kahana (2020) present a retrieved-context theory for belief formation to model associative recall, and Enke, Schwerter and Zimmermann (2020) experimentally test the role of associative recall in stock price formation.⁴ The most closely related analysis is da Silveira, Sung and Woodford (2020): they present a dynamic model of noisy memory and show its predictions for the empirical findings in our experiment. In their model, past information is summarized by a memory state formed before each period, and imprecise memory leads the agent to optimally put more weight on the latest observation, which generates overreaction. In our model, the agent decides the amount of past information to exploit depending on the current context, where the costly retrieval of past information can reflect memory constraints, or "availability biases" more generally. We discuss the relationship between our model and this literature in further detail in Section 5.3.

The rest of the paper proceeds as follows. Section 2 shows stylized facts from survey forecast data, and discusses the limitations of field evidence on overreaction, which leads us to conduct a simple experiment. Section 3 describes the experiment. Section 4 presents our main result — that overreaction is stronger for less persistent processes — and shows that commonly-used models fail at fitting it. We lay out our alternative model in Section 5 and show that it fits the data well. Finally, we discuss in Section 6 the additional prediction that overreaction is more pronounced at longer horizons. We also discuss modeling assumptions and robustness checks. Section 7 concludes.

⁴In addition, Nagel and Xu (2019) and Neligh (2020) study applications of memory decay. Hartzmark, Hirshman and Imas (2020) and D'Acunto and Weber (2020) also find evidence consistent with memory playing a role in decision making.

2 Motivating Facts

To motivate our study, we first describe some stylized facts from survey forecasts of macroeconomic variables and corporate earnings. We show some intriguing patterns that emerge from survey forecast data, and discuss the key limitations of using survey data to analyze the variation of expectation biases across settings.

2.1 Overreaction and Process Persistence: Evidence from the Field

A major challenge for analyzing expectations using field data like surveys is that the true DGP and forecasters' information sets are both unknown. Taking inspiration from Coibion and Gorodnichenko (2015), Bordalo et al. (2020c) observe that one idea is to capture belief updating using forecast revisions by individual forecasters, which should incorporate news they respond to and should be part of their information sets. When forecasters overreact to information, forecast revisions at the individual level would overshoot: upward forecast revisions would predict realizations below forecasts. The empirical specification is the following, which regresses forecast errors on forecast revisions in a panel of quarterly individual-level forecasts:

$$\underbrace{x_{t+h} - F_{i,t} x_{t+h}}_{\text{Forecast Error}} = a + b \underbrace{\left(F_{i,t} x_{t+h} - F_{i,t-1} x_{t+h}\right)}_{\text{Forecast Revision}} + v_{it}, \tag{2.1}$$

where $F_{i,t}x_{t+1}$ is the forecast of individual i of outcome x_{t+h} . For each series, we obtain a coefficient b (henceforth the "error-revision coefficient"). When forecasters display over-reaction, b is expected to be negative, and vice versa (Bordalo et al., 2020c).

Bordalo et al. (2020c) analyze professional forecasts of 22 series of macroeconomic and financial variables. They find that the error-revision coefficient b is generally negative, and more negative for processes with lower persistence. They interpret this pattern as an indication that overreaction tends to be stronger when the true process is more transitory. In Figure I, Panel A, we use Survey of Professional Forecasters (SPF) data and replicate this finding. Here we use the simple one-period-ahead forecasts, namely h = 1. The y-axis shows the coefficient b for different series, and the x-axis shows the autocorrelation

of each series as a simple measure of persistence. We see that the coefficient b is more negative when the actual series is less persistent (i.e., more overreaction).

In Figure I, Panel B, we also document similar results using analysts' forecasts of firms' sales from the Institutional Brokers' Estimate System (IBES). Again we use one-period ahead forecast, namely h=1. We normalize both actual sales and projected sales using lagged total assets, and the frequency is quarterly. Results are very similar if we use an annual frequency, or using earnings forecasts instead of sales forecasts.⁵ We run one regression in the form of Equation (2.1) for each firm i to obtain coefficient b_i . We also compute the autocorrelation of the actual sales process ρ_i . Figure I, Panel B, shows a binscatter plot of the average b_i in twenty bins of ρ_i . Here, the majority of firms exhibit underreaction (as previously documented by Bouchaud et al. (2019)), but the key fact remains: the coefficient b_i is more negative when the actual sales process of the firm is less persistent.

These motivating facts in the field data point to the importance of understanding how subjective beliefs vary with the setting, which would be important for making progress in unifying existing empirical results and for guiding models of expectations.

2.2 Challenges in Field Data

The results from the error-revision regressions in field data, however, can be difficult to interpret unequivocally, for several key reasons.

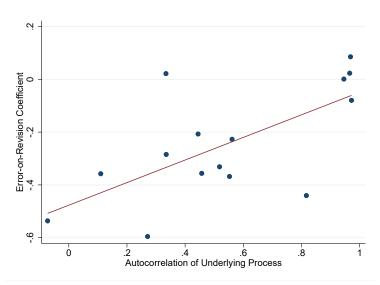
First, it is difficult to estimate b precisely for transitory processes when expectations are close to rational. In this case, revisions are close to zero, so the regression coefficient is not well estimated. As an illustration, in Figure A.1, Panel A, we show the error-revision coefficient b from simulations where we simulate forecasters under diagnostic expectations (Bordalo et al., 2018, 2020c) for AR(1) processes with different levels of persistence.

⁵Earnings forecasts have several complications relative to sales forecasts. First, earnings forecasts primarily take the form of earnings-per-share (EPS), which may change if firms issue/repurchase shares, or have stock splits/reverse splits. This requires us to transform EPS forecasts to implied forecasts about total firm earnings, which could introduce additional measurement error. Second, the definition of earnings firms use for EPS can be informal ("pro forma" earnings, instead of formal net income according to the Generally Accepted Accounting Principles (GAAP). As a result, matching earnings forecasts properly with actual earnings can be more challenging. In comparison, sales forecasts are directly about total sales of the firm, and the accounting definition of sales is clear (based on GAAP).

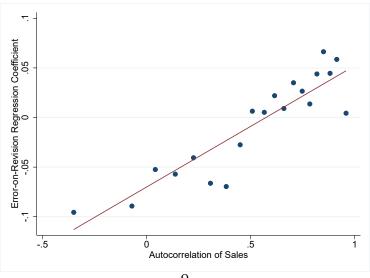
Figure I: Forecast Error on Forecast Revision Regression Coefficients

In Panel A, we use SPF data on macroeconomic forecasts and estimate a quarterly panel regression using each individual j's forecasts for each variable x_i : $x_{i,t+1} - F_{i,j,t}x_{i,t+1} = a + b_i(F_{i,j,t}x_{i,t+1} - F_{i,j,t-1}x_{i,t+1}) + v_{i,j,t}$, where the left hand side variable is the forecast error and the right hand variable is the forecast revision for each forecaster j. The y-axis plots the regression coefficient b_i for each variable, and the x-axis plots the autocorrelation of the variable. The variables include quarterly real GDP growth, nominal GDP growth, GDP price deflator inflation, CPI inflation, unemployment rate, industrial production index growth, real consumption growth, real nonresidential investment growth, real residential investment growth, real government spending growth, housing start growth, unemployment rate, 3-month Treasury yield, 10-year Treasury yield, and AAA corporate bond yield. In Panel B, we use IBES data on analyst forecasts of firms' sales and estimate a quarterly panel regression using individual analyst j's forecasts for each firm i's sales $x_{i,t+1} - F_{i,j,t}x_{i,t+1} = a + b_i(F_{i,j,t}x_{i,t+1} - F_{i,j,t-1}x_{i,t+1}) + v_{i,j,t}$, where the left hand side variable is the forecast error and the right hand variable is the forecast revision for each forecaster j. The y-axis plots the regression coefficient b_i , and the x-axis plots the autocorrelation of firm i's sales. For visualization, we group firms into twenty bins based on the persistence of their sales, and present a binscatter plot. Both actual and projected sales are normalized by lagged book assets.

Panel A. SPF Forecasts



Panel B. Analyst Forecasts



By construction, the simulated coefficient (shown by the solid line) is on average similar to theoretical predictions in the diagnostic expectations model (Bordalo et al., 2020c). Meanwhile, the dashed lines show that the confidence intervals become very wide when the process persistence is below 0.5.⁶ The intuition in this example is that the variance of the right-hand-side variable, the forecast revision, goes to zero for i.i.d. processes when expectations are close to rational (see discussion on asymptotic standard errors in Appendix C.1).

Second, the error-revision coefficient b is not necessarily a direct metric for the degree of overreaction (i.e., how much subjective beliefs over-adjust relative to the rational benchmark). This empirical coefficient does not directly map into a structural parameter, and its interpretation can be model dependent. In particular, since the forecast revision in period t is the change between the subjective forecast from t-1 to t ($F_tx_{t+h} - F_{t-1}x_{t+h}$), its size and variance are affected by the past forecast ($F_{t-1}x_{t+h}$), so the magnitude of the error-revision coefficient b can be path dependent. In addition, the error-revision coefficient b can be subject to the critique that if the forecast F_tx_{t+h} is measured with noise, the regression coefficient b could be mechanically negative, given that F_tx_{t+h} affects both the right-hand side (forecast revision) and the left-hand side (forecast error) of the regression.

Taken together, the error-revision coefficient is a popular empirical measure in the field data, to circumvent issues arising from researchers not observing the forecasters' information sets and the DGP. It is inadequate, nonetheless, for measuring biases in expectations.

A more precise way to study the properties of subjective beliefs is to estimate the implied persistence from the forecasts ρ_h^s , which is the coefficient of regressing $F_t x_{t+h}$ on x_t when the process is AR(1). We can then compare it with the actual persistence ρ of the process. When $\rho_h^s > \rho^h$, there is overreaction, in the sense that the forecast displays excess sensitivity to the latest observation x_t (i.e., when x_t is high, the forecast tends to be too high, and vice versa). Figure A.1, Panel B, shows via simulations that this approach

⁶For AR(1) processes, the diagnostic forecast is $E_t^{\theta}x_{t+1} = E_tx_{t+1} + \rho \epsilon_t$, where E_tx_{t+1} is the rational forecast in period t, ρ is the AR(1) persistence, and ϵ_t is the shock to the process x_t in period t. When the process is i.i.d., the diagnostic forecast becomes the same as the rational forecast, and the error-revision coefficient is not well defined.

is reliable for all levels of persistence. This alternative approach does not suffer from the shortcomings of the error-revision coefficient for two main reasons. First, the variance of the right-hand-side variable, the past realization, does not vanish to zero as ρ decreases. Second, the magnitude of ρ_h^s is much easier to interpret. For instance, ρ_h^s can be translated into a degree of overreaction by normalizing it using the rational sensitivity, ρ^h :

$$\zeta = \rho_h^s / \rho^h. \tag{2.2}$$

If $\zeta = 2$, then the subjective forecast responds twice as much as the rational forecast.⁷

Nonetheless, this approach is only meaningful if forecasters' information sets are restricted to past realizations of the process, and it requires that the DGP is truly AR(1). This is why we now turn to our experimental setting where we control both the forecasters' information set and the DGP.

3 Experiment Design

We design a simple forecasting experiment, where the DGP is an AR(1) process:

$$x_{t+1} = (1 - \rho)\mu + \rho x_t + \epsilon_t. \tag{3.1}$$

The experiment begins with a consent form, followed by instructions and tests. Participants first observe 40 past realizations of the process. Then, in each round, participants make forecasts and observe the next realization, for 40 rounds. *After* the prediction task, participants answer some basic demographic questions.

Each participant is only allowed to participate once. Participants include both individuals across the US from Amazon's online Mechanical Turk platform (MTurk) and MIT undergraduates in Electrical Engineering and Computer Science (EECS). For MTurk, we

⁷There is an approximate relationship between ζ and the error-revision coefficient. Specifically, $1/(1+b) = \frac{Var(FR)}{Cov(FE+FR,FR)}$. If we set $F_{t-1}x_{t+h}$ as a constant, then this coefficient is the same as ζ . Accordingly, a negative error-revision coefficient, often interpreted as evidence of overreaction, implies $\zeta > 1$, i.e., overreaction of the subjective belief to the latest observation.

use HITs titled "Making Statistical Forecasts." For MIT students, we send recruiting emails to all students with a link to the experimental interface.

3.1 Experimental Conditions

There are three main sets of experiments, which we describe below and summarize in Table A.2 in the Appendix.

Experiment 1 (Baseline, MTurk). Experiment 1 is our baseline test, conducted in February 2017 on MTurk. We use 6 values of ρ : $\{0, .2, .4, .6, .8, 1\}$. The volatility of ϵ is 20. The constant μ is zero. Participants are randomly assigned to one value of ρ . Each participant sees a different realization of the process. At the beginning, participants are told that the process is a "stable random process." In each round, after observing realization x_t , participants predict the value of the next two realizations x_{t+1} and x_{t+2} . Figure A.2 provides a screenshot of the prediction page. There are 207 participants in total and about 30 participants per value of ρ .

Experiment 2 (Long horizon, MTurk). Experiment 2 investigates longer horizon forecasts. We assign participants to conditions identical to Experiment 1, except that we collect forecasts of x_{t+1} and x_{t+5} (instead of x_{t+2}), with $\rho \in \{.2, .4, .6, .8\}$. Experiment 3 was conducted in June 2017 on MTurk. There are 128 participants in total.

Experiment 3 (Describe DGP, MIT EECS). In Experiment 3, we study whether providing more information about the DGP affects forecasts. To make sure that participants have a good understanding of the AR(1) formulation, we perform this test among MIT undergraduates in Electrical Engineering and Computer Science (EECS). Experiment 3 was conducted in March 2018 and there are 204 participants. We use the same structure as in Experiment 1, with AR(1) persistence $\rho \in \{.2, .6\}$. For each persistence level, the control group is the same as Experiment 1, and the process is described as "a stable random process." For the treatment group, we describe the process as "a fixed and stationary

⁸The MTurk platform is commonly used in experimental studies (Kuziemko, Norton, Saez and Stantcheva, 2015; D'Acunto, 2015; Cavallo, Cruces and Perez-Truglia, 2017; DellaVigna and Pope, 2017, 2018). It offers a large subject pool and a more diverse sample compared to lab experiments. Prior research also finds the response quality on MTurk to be similar to other samples and to lab experiments (Casler, Bickel and Hackett, 2013; Lian, Ma and Wang, 2018).

AR(1) process: $x_t = \mu + \rho x_{t-1} + e_t$, with a given μ , a given ρ in the range [0,1], and e_t is an i.i.d. random shock." Thus there are $2 \times 2 = 4$ conditions in total, and participants are randomly allocated to one of them. At the end of the experiment, we further ask students questions testing their prior knowledge of AR(1) processes.

We focus on AR(1) processes because they are simple and therefore make the definition of rational expectations relatively clear. They are easy to learn as discussed more in Section 4. In addition, as Fuster, Laibson and Mendel (2010) point out, in finite samples, ARMA processes with longer lags are difficult to statistically tell apart from AR(1) processes. Finally, as discussed in Section 2.2, it is also straightforward to assess the degree of overreaction in this setting.

3.2 Payments

We provide fixed participation payments and incentive payments that depend on the performance in the prediction task. For the incentive payments, participants receive a score for each prediction that increases with the accuracy of the forecast (Dwyer, Williams, Battalio and Mason, 1993; Hey, 1994): $S = 100 \times \max(0, 1 - |\Delta|/\sigma)$, where Δ is the difference between the prediction and the realization, and σ is the volatility of the noise term ϵ . This loss function ensures that a rational participant will optimally choose the rational expectation, and it ensures that payments are always non-negative. A rational agent would expect to earn a total score of about 2,800.¹⁰ We calculate the cumulative score of each participant, and convert it to dollars. The total score is displayed on the top left corner of the prediction screen (see Figure A.2).

For experiments on MTurk (Experiments 1 and 2), the base payment is \$1.8; the conversion ratio from the score to dollars is 600, which translates to incentive payments of

⁹We do not disclose the values of μ and ρ , since the objective of our study is to understand how people form forecasting rules; directly providing the values of μ and ρ would make this test redundant.

 $^{^{10}}E(1-|x_{t+1}-F_t|/\sigma)$ is maximal for a forecast F_t equal to the 50th percentile of the distribution of x_{t+1} conditional on x_t . Given that our process is symmetric around the rational forecast, the median is equal to the mean, and the optimal forecast is equal to the conditional expectation. Whether the rational agent knows the true ρ (Full Information Rational Expectations) or predicts realizations using linear regressions (Least-Square Learning) does not change the expected score by much. In simulations, over 1,000 realizations of the process, we find that expected scores of the two approaches differ by less than .3%.

about \$5 for rational agents. For experiments with MIT students (Experiment 3), the base payment is \$5; the conversion ratio from the score to dollars is 240, which translates to incentive payments of about \$12 for rational agents.

3.3 Summary Statistics

Appendix Table A.3 shows participant demographics and other experimental statistics. Overall, MTurk participants are younger and more educated than the U.S. population. The mean duration of the experiment is about 18 minutes, and the hourly compensation is in the upper range of tasks on MTurk. As expected, MIT EECS undergrads are younger. Their forecast duration and overall forecast scores are similar to the MTurk participants. 11

4 Main Empirical Findings

In this section, we present the main empirical findings from the experiment. In Section 4.1, we present the key stylized facts, connecting to the field data evidence discussed in Section 2. In Section 4.2, we then analyze whether commonly-used models of expectations are in line with these key facts.

4.1 Basic Fact: More Overreaction for More Transitory Processes

We begin by presenting the basic facts from our experiments. Figure II, Panel A, shows that the feature in SPF and IBES data discussed in Section 2 also holds in our experiment. Using data from Experiment 1, we have AR(1) processes with persistence from 0 to 1, and we run the error-revision regression in Equation (2.1), as we did on field data, for each level of persistence. As before, the *y*-axis shows the error-revision coefficient, and the *x*-

¹¹The participation constraint is likely to be satisfied. For the MTurk tests, the average realized total payment (participation plus incentive payment) is about \$5 (for a roughly 15 minute task), which is high compared to the average pay rate. For the MIT tests, the average realized total payment is around \$15. The payments are sufficiently attractive to recruit 200 EECS undergrads out of 1,291 students within 6 hours. For the incentive compatibility constraint, recent work by DellaVigna and Pope (2017) show that participants provide high effort even when the size of the incentive payment is modest, and the power of incentives does not appear to be a primary issue in this setting.

axis shows the persistence of the process. Like in the field data, we see that the coefficient *b* is more negative for transitory processes.

Given the limitations of the error-revision regression approach explained in Section 2, a natural and more precise alternative in our experiment is the persistence implied by the forecast. The implied persistence is measured as the coefficient ρ_1^s in the regression:

$$F_{it}x_{t+1} = c + \rho_1^s x_t + u_{it}, \tag{4.1}$$

estimated in the panel of individual-level forecasts, for each level of AR(1) persistence ρ .¹² As the Full Information Rational Expectation (FIRE) is given by ρx_t , the difference between ρ_1^s and ρ provides a direct measure of the extent of overreaction. This measure is reliable for AR(1) processes as we show in Section 2, and forecasters' information sets are relatively clear in the experiment.

In Figure II, Panel B, we plot the implied persistence ρ_1^s against the true ρ . We see that when $\rho = 1$, ρ_1^s is roughly one (i.e., the subjective and rational forecasts have roughly the same sensitivity to x_t). When ρ is smaller, ρ_1^s declines, but not as much. When $\rho = 0$, ρ_1^s is roughly 0.45 (the sensitivity of the subjective forecast to x_t is much larger than the rational benchmark).¹³

Overall, in the experiment, by explicitly controlling for the DGP and the forecasters' information sets, we can establish clearly that overreaction is stronger for more transitory processes.

FIRE vs. In-Sample Least Square Learning. The comparisons above used the FIRE benchmark of true ρ . The results are very similar if we instead use in-sample least square learning as the rational benchmark. Specifically, the in-sample least square estimates are

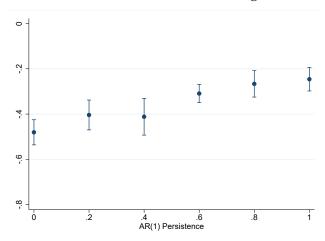
¹²As in Bordalo et al. (2020c), we can also estimate the error-revision coefficient for each forecaster, and take the mean or median coefficient for each level of ρ. Similarly, we can estimate the implied persistence for each forecaster, $ρ_{1,i}^s$, and take the mean or median for each level of ρ. The results are very similar.

¹³We can also compute the ratio of relative overreaction $\zeta = \frac{\rho_h^s}{\rho^h}$ as defined in Equation (2.2). Internet Appendix Figure A.3 plots the value of ζ for each level of ρ (except when $\rho = 0$ where ζ is not well defined). Since ρ_1^s decreases less than one-for-one with ρ , the degree of overreaction is higher when the process is less persistent.

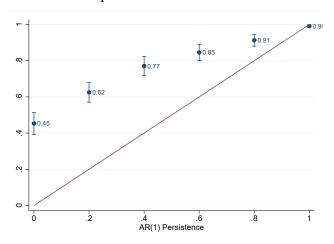
Figure II: Overreaction and Persistence of Underlying Process: Experimental Data

In Panel A, we use data from Experiment 1 and for each level of AR(1) persistence ρ , we estimate a panel regression of forecast errors on forecast revisions: $x_{t+1} - F_{i,t}x_{t+1} = a + b(F_{i,t}x_{t+1} - F_{i,t-1}x_{t+1}) + v_{it}$. The y-axis plots the regression coefficient b, and the x-axis plots the AR(1) persistence ρ . In Panel B, we estimate the implied persistence ρ^s from $F_{it}x_{t+1} = c + \rho^s x_t + u_{it}$ for each level of AR(1) persistence ρ . The y-axis plots the implied persistence ρ^s , and the x-axis plots the AR(1) persistence ρ . The red line is the 45-degrees line, and corresponds to the implied persistence under Full Information Rational Expectations (FIRE). The vertical bars show the 95% confidence interval of the point estimates.

Panel A. Forecast Error on Forecast Revision Regression Coefficients



Panel B. Forecast-Implied Persistence and Actual Persistence



formed as:

$$\widehat{E}_{t}x_{t+h} = \widehat{a_{t,h}} + \sum_{k=0}^{k=n} \widehat{b_{k,h,t}}x_{t-k}.$$
(4.2)

In period t the forecaster predicts x_{t+h} using lagged values from x_{t-k} up to x_t ; parameters $\widehat{a_{t,h}}$ and $\widehat{b_{k,h,t}}$ are estimated, on a rolling basis, using OLS and past realizations until x_t . The estimated coefficients may differ based on persistence ρ . We set n=3, but results are not sensitive to the number of lags.

In our data, the difference between $\widehat{E}_t x_{t+h}$ and FIRE is small. The top panel of Appendix Figure A.4 shows that the mean squared difference between these two expectations is small, and does not decrease much after 40 periods. This is because our AR(1) processes are very simple, and a few dozen data points are enough for least square forecasts to be reasonably accurate. It also shows that the mean squared difference between the least square forecast and the actual forecasts are substantial, and does not change much across different periods. The bottom panel shows that the persistence implied by least square learning is about the same as the true ρ . Accordingly, in the rest of the paper we use FIRE in our baseline definitions, but all the results are very similar if we use the in-sample least square $\widehat{E}_t x_{t+h}$ instead.

Effect of Linear Prior. We also analyze whether explicitly providing a linear prior affects the results. In Experiment 1 with participants from the general population, we describe the process as a "stable random process" (given that most of these participants may not know what an AR(1) process means). In Experiment 3 with MIT EECS students, we tell half of the participants that the DGP is AR(1) with fixed μ and ρ (treatment group), and half of the participants the process is a "stable random process" (control group). In Appendix Figure A.5, we show that whether this information was provided has no discernible impact no discernible impact on the properties of forecast errors. In Panel A , we plot the distributions of the forecast errors, which are almost identical in the treatment vs. control group. In Panel B, we find that the predictability of forecast errors conditional on the latest observation x_t is also similar in the treatment vs. control group. In both samples, forecasts tend to be too high when x_t is high (overreaction), and the magnitude of the bias is about the same. Appendix Table A.4 shows that the implied persistence is

also similar in both the treatment and control groups. Overall, we find that explicit descriptions of the AR(1) process do not seem to affect the basic patterns in the data. Put differently, participants do not seem to enter the experiment with complicated nonlinear priors.

Stability across Demographics. Figure A.6 in the Appendix shows both the error-revision coefficient b and implied persistence ρ_1^s against ρ in different demographic groups. In all cases, the main patterns are stable.

4.2 Testing Models of Expectations

We now use the data from our experiments and the key fact above to examine the performance of expectation formation models.

A. Models of Expectations

We begin by laying out commonly-used models of expectations below.

Backward-Looking Models

We begin with older "backward-looking" models, which specify fixed forecasting rules based on past data and do not incorporate properties of the process (i.e., are not a function of ρ). The term structure of expectations in these models is not well defined, so we focus on one-period ahead forecasts.

1. Adaptive expectations

Adaptive expectations have been used since at least the work of Cagan (1956) on inflation and Nerlove (1958) on cobweb dynamics. The standard specification is:

$$F_t x_{t+1} = \delta x_t + (1 - \delta) F_{t-1} x_t. \tag{4.3}$$

2. Extrapolative expectations

Extrapolative expectations have been used since at least Metzler (1941), and are sometimes used in studies of financial markets (Barberis, Greenwood, Jin and Shleifer, 2015; Hirshleifer, Li and Yu, 2015). One way to specify extrapolation is:

$$F_t x_{t+1} = x_t + \phi(x_t - x_{t-1}). \tag{4.4}$$

That is, expectations are influenced by the current outcome and the recent trend, and $\phi > 0$ captures the degree of extrapolation.

Forward-Looking Models

We now proceed to "forward-looking" models, where forecasters do incorporate features of the true process. Since these models contain rational expectations, the term structure of expectations is more naturally defined.

3. Full information rational expectations

Full information rational expectations (FIRE) is the standard specification in economic modeling. Decision makers know the true DGP and its parameters, and make statistically optimal forecasts accordingly:

$$F_t x_{t+h} = E_t x_{t+h} = \rho^h x_t. \tag{4.5}$$

As explained in Section 4.1, in our data in-sample least square learning is very close to FIRE, so we use FIRE as the benchmark.

4. Noisy information/sticky expectations

Noisy information models assume that forecasters do not observe the true underlying process, but only noisy signals of it (e.g., Woodford, 2003). In our experimental setup, where recent realizations are shown in real time, such frictions may correspond to noisy perception. These models typically have the following recursive definition:

$$F_t x_{t+h} = (1 - \lambda)\rho^h x_t + \lambda F_{t-1} x_{t+h} + \epsilon_{it,h}, \tag{4.6}$$

where $E_t x_{t+h}$ is FIRE, and $\lambda \in [0,1]$ depends on the noisiness of the signal. $\epsilon_{it,h}$ also comes from the noise in the signal.

Alternatively, this formulation could also represent anchoring on past forecasts. This formulation is used in Bouchaud et al. (2019) to model earnings forecasts of equity analysts.

5. Diagnostic expectations

Diagnostic expectations are introduced by Bordalo, Gennaioli and Shleifer (2018) to capture overreaction in expectations driven by the representativeness heuristic (Kahneman and Tversky, 1972). The specification is:

$$F_t x_{t+h} = E_t x_{t+h} + \theta (E_t x_{t+h} - E_{t-1} x_{t+h}). \tag{4.7}$$

That is, the subjective expectation is the rational expectation plus the surprise (measured as the change in rational expectations from the past period) weighted by θ , which indexes the severity of the bias. Under diagnostic expectations, subjective beliefs adjust to the true process and incorporate features of rational expectations ("kernel of truth"), but overreact to the latest surprise by degree θ .

6. Constant gain learning

We also test a version of LS learning where weights decrease for observations further in the past (Malmendier and Nagel, 2016). We use the specification:

$$F_t x_{t+h} = \widehat{E}_t^m x_{t+h} = \widehat{a_{h,t}} + \widehat{b_{h,t}} x_t, \tag{4.8}$$

where $\widehat{a_{h,t}}$, $\widehat{b_{h,t}}$ are obtained through a rolling regression with all data available until t. The difference with the standard least square learning specification is that this regression uses decreasing weights (i.e., older observations receive a lower weight) to reflect imperfect retention of past information. Specifically, in period t, for all past observations $s \leq t$, we use exponentially decreasing weights: $w_t^s = \frac{1}{\kappa(t-s)}$. These weights correspond to constant

gain learning in recursive least squares formulations (Malmendier and Nagel, 2016; Nagel and Xu, 2019).

Other Models

The above list leaves out three classes of models in the literature: simple bounded rationality models, learning with nonlinear Bayesian priors, and natural expectations (Fuster, Laibson and Mendel, 2010; Fuster, Hebert and Laibson, 2012). The reason is we do not find evidence for these models in our data, by design or by outcome, as we explain below.

First, a possible model for our key fact is the one in Gabaix (2018). He describes a model where the forecaster faces a range of possible processes with varying degrees of persistence. To limit computational cost, the boundedly rational forecaster anchors the true persistence to a default level of persistence ρ^d : $\rho^s = m\rho_i + (1-m)\rho^d$. In such a setting, forecasters would tend to overreact to processes that are less persistent than average, and underreact to processes that are more persistent than average. This model has several limitations in our setting. First, it predicts underreaction for processes with high persistence, which we do not find in the data. Second, it is not clear how m and ρ^d are formed. Furthermore, models that solely work through misperceptions of the persistence parameter would predict diminishing overreaction for longer horizons, which is also not the case in the data as we discuss more in Section 6.

Second, we find no evidence of nonlinear priors in our data. Nonlinear priors may arise, for instance, because of nonstationary environments or beliefs in regime switches (Barberis, Shleifer and Vishny, 1998; Bloomfield and Hales, 2002; Rabin, 2002; Massey and Wu, 2005; Rabin and Vayanos, 2010). As explained in Section 4.1, in Experiment 3 among MIT EECS students, we explicitly describe the linear AR(1) process to half of the participants. We do not find that the information of a linear AR(1) prior affects the results. Overall, our findings highlight that systematic biases in expectations can be significant even in linear stationary environments.

Third, for natural expectations, the key observation is that forecasters may have difficulty differentiating processes with hump-shaped dynamics from simpler processes in finite samples (e.g., differentiating AR(2) or ARMA(p,q) from AR(1)), even based on statistical tools like BIC. In our tests, the emphasis is not the difficulty in detecting long-term mean-reverting processes in-sample. We focus instead on deviations from rational expectations for the simplest processes, an AR(1) which has much more simple dynamics.¹⁴ Yet, even in this case, we find biases that have a clear structure.

B. Estimating Models of Expectations

We now estimate the six models described above on one-period ahead expectations data (i.e., with h=1). We pool data from all conditions of Experiment 1 (i.e., with $\rho \in \{0,.2,.4,.6,.8,1\}$). All models except FIRE (which has no parameter) and constant gain learning (whose parameter lies in the decreasing weights) can be simply estimated using constrained least squares. We cluster standard errors at the individual level. The constant gain learning model is estimated by minimizing, over the decay parameter, the mean squared deviation between model-generated and observed forecasts. We estimate standard errors for this model by block-bootstrapping at the individual level.

Table A.5 reports the estimated parameters. Each model is described by an equation and a parameter (in bold). The parameter estimate is reported in the third column, along with standard errors in the fourth column. In the fifth column, we report the mean squared error of each model, as a fraction of the sample variance of forecast. Since forecasts in the $\rho=1$ condition are mechanically more variable than forecasts in the $\rho=0$ condition, we compute one such ratio per level of ρ , and then compute the average ratio across values of ρ .

Several patterns emerge from the model estimation. First, consistent with findings in Section 4.1, rational expectations are strongly rejected, for at least two reasons. One is that FIRE has the lowest explanatory power of forecast data. The other is that rational expectations are nested in all three forward-looking non-RE models, and the coefficient related to deviations from rational expectations is always significant at 1%.

¹⁴Fuster, Laibson and Mendel (2010) formulate an "intuitive model" $F_t x_{t+1} = x_t + \phi(x_t - x_{t-1}) + \varepsilon_{t+1}$, when the true DGP is an AR(2) $x_{t+1} = \alpha x_t + \beta x_{t-1} + \eta_{t+1}$, and $\phi = (\alpha - \beta - 1)/2$. We could test this model in our data, where $\alpha \ge 0$, $\beta = 0$, $\phi < 0$, and the intuitive model has the same functional form as the extrapolative expectation in Equation (4.4) with negative ϕ .

Second, most models point to strong signs of overreaction. The adaptive model features overreaction through the fact that the loading on the past realization x_t is very high (.83). This corresponds to overreaction whenever ρ is less than .83. The backward-looking extrapolative model has a negative coefficient on the slope $(x_t - x_{t-1})$, but this again reflects that most overreaction is built into the past realization effect x_t , whose coefficient is estimated to be .93. The diagnostic expectations model has a θ of .34, which indicates strong overreaction (forecasts react 34% "too much" to the last innovation).¹⁵ The constant gain learning model features a significant decay in the weight of past observations, a loss of 6% per period (i.e., it takes about 12 periods to divide the weight by 2), rejecting the equal weights in benchmark least square learning. Last, the sticky/noisy expectations model is the only one that does not feature overreaction. The coefficient on previous forecasts ($F_{t-1}x_{t+1}$) is statistically significant at .14***, a magnitude consistent with earlier analyses on individual analyst EPS forecasts (Bouchaud et al., 2019). This finding suggests that there is some anchoring on the level of past forecasts, in addition to overreaction to the recent realization.

C. Do Models Match the Relationships in the Data?

We first ask how the estimated models fit our key fact that overreaction is stronger for more transitory processes (our Figure II). We start with the pattern on the implied persistence, which is the most intuitive one. In Figure III, we compute the persistence implied by forecasts based on the five models estimated above. For each model m and for each observation in our data, we compute the predicted forecast $\widehat{F_t^m}\widehat{x_{t+1}}$, using the parameters in Table A.5. We then group observations per level of $\rho \in \{0, .2, .4, .6, .8, 1\}$. For each level, we regress the model-based forecast $\widehat{F_t^m}\widehat{x_{t+1}}$ on x_t to obtain the implied persistence according to the model.

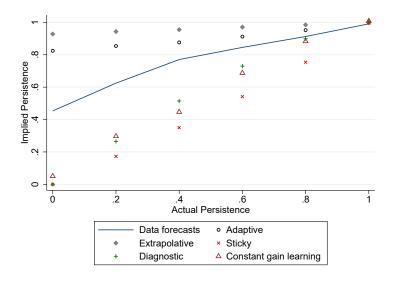
In Figure III, the solid line represents the implied persistence based on actual forecasts (same as Figure II, Panel B). The dots represent the forecast-implied persistence based on the models. In all models, the implied persistence is an increasing function of ρ , and is

¹⁵The θ estimate is slightly lower than the typical estimate in Bordalo et al. (2020c) using macro survey data (which find θ of around 0.5) and in Bordalo, Gennaioli and Shleifer (2018) and Bordalo et al. (2019) using analyst forecasts of credit spreads and long-term EPS growth (which find θ of around 1).

close to one for random walks as in rational expectations. However, the list of commonly-used models performs quite poorly for transitory processes. Backward-looking expectations models generate "too much" overreaction for transitory processes, while on the contrary, most forward-looking models do not generate enough overreaction. By definition, diagnostic and sticky expectations generate no overreaction for transitory processes (the forecast implied persistence according to these models is equal to zero). The constant gain learning model does slightly better: by giving larger weights to recent observations, the model generates some excess sensitivity to recent realizations. Nonetheless, the weights on past observations, as fitted on forecasting data, do not seem to decrease fast enough.

Figure III: Forecast-Implied Persistence: Data vs Models

For each model m, we compute the model-based forecast $\widehat{F_t^m}x_{t+1}$ for each observation in our data. We use the model parameters reported in Table A.5. We then group observations per level of actual persistence $\rho \in \{0, .2, .4, .6, .8, 1\}$. For each level of ρ , we regress the model-based forecast $\widehat{F_t^m}x_{t+1}$ on lagged realization x_t . The dots report this regression coefficient, which is the forecast implied persistence according to model m for a given level of ρ . The solid line corresponds to the forecast implied persistence in the data, also shown in Figure II, Panel B.



To connect with results in field data and for completeness, we also report in Appendix Figure A.7 the error-revision coefficients based on the models. Again, the solid line represents experimental data (same as Figure A.7, Panel A) and the dots represent predictions from estimated models. In this figure we omit the adaptive and extrapolative models, because they do not impose an obvious structure on the two-period ahead forecasts $F_t x_{t+2}$,

which are needed to compute revisions. The conclusions are similar to those in Figure III. For transitory processes, diagnostic and sticky expectations tend to lead to error-revision coefficients that are too high. Constant gain learning, on the contrary, generates a coefficient that is too negative. Overall, the core message remains that commonly-used expectations models have trouble fitting the variation of expectation biases across settings with different levels of process persistence.

5 Model

Given the failure of commonly-used models to account for the empirical findings, we now introduce a model with a different approach, which provides a general framework for expectations formation that emphasizes recent data, context, and imperfect information utilization. We show that the model performs very well in matching the evidence described above.

5.1 Environment

Time is discrete and is indexed by $t \in \{0, 1, 2, ...\}$. There is an agent who tracks an exogenous stochastic process $\{x_t : t \ge 0\}$ and produces forecasts for the future realizations of this process at horizon h. The agent's payoff at any given time t depends on the accuracy of these forecasts and is given by:

$$-(F_t x_{t+h} - x_{t+h})^2, (5.1)$$

where $F_t x_{t+h}$ is the agent's time t forecast of x's realization h periods ahead and x_{t+h} is the $ex\ post$ realization of the variable at t+h.¹⁷

¹⁶This is in fact a mechanical effect of the error-revision coefficient, which divides by the variance of forecast revision. In the constant gain learning model, forecast revisions tend to be very small for low values of ρs (they are close to zero), which blows up the absolute value of the error-revision coefficient. The implied persistence measure in Figure III is immune to this problem.

 $^{^{17}}$ It is important to note that x_{t+h} is not fully known at time t and only realized h periods after the forecast is made. Nonetheless, at time t, the agent knows that their payoff will be determined by the realization of the process at t + h. This is similar to the score function in the experiment with one slight difference that in the experiment, as discussed in Section 3.2, the score function does not have an exact quadratic form, to

We assume that x_t follows an AR(1) process with mean μ and persistence ρ :

$$x_t = (1 - \rho)\mu + \rho x_t + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2).$$
 (5.2)

Working Memory. We assume that at the beginning of each period, the agent observes the context (defined as the most recent realization of x_t) and then decides whether to retrieve more data before forming their beliefs. We let S_t denote the set that contains the context x_t and all the other data retrieved by the agent. Specifically, we assume that beliefs are formed based on the set S_t and refer to this set as the agent's *working memory*.

The notion of working memory is a central component of our model. Although the agent may see many things, working memory in our model refers to the set of information that is "on top of the mind" when making decisions, consistent with the spirit of working memory in psychology research (Baddeley, 1983). Accordingly, a key feature of our model is that it draws a distinction between data that is potentially available, and the data utilized for the forecast. In our model, only a subset of all available data might be on top of the mind, which shapes the forecast. In the following, we model the process of retrieval, i.e., what comes to mind.

Formally, we assume that at the beginning of each period, the agent observes the most recent realization x_t costlessly, so that x_t is always in S_t . Furthermore, the agent can decide to retrieve more information from the history of past observations, but at a cost. If the cost is zero, then the model collapses to FIRE where all available data is retrieved as more data always leads to better forecasts. While this decision is trivial when retrieval is costless, in our setting, costly retrieval leads to a trade-off for information utilization. We assume that the cost of retrieved information is increasing and convex in *bits* of information retrieved by the agent. Formally, the cost of retrieval associated with S_t at time t, denoted by $C_t(S_t)$, is given by:

$$C_t(S_t) \equiv \omega \frac{\exp(2\ln(2) \cdot \gamma \cdot \mathbb{I}(S_t, \mu|x_t)) - 1}{\gamma},$$
(5.3)

ensure that payments in the experiment are always non-negative. We use this standard quadratic form for simplicity of modeling, so we can derive closed-form solutions.

where $\omega \geq 0$ governs the overall cost of retrieval by shifting the function, and $\gamma \geq 0$ governs its convexity in Shannon's mutual information function ($\mathbb{I}(S_t, \mu|x_t)$) which measures the amount of information retrieved by the agent in units of bits after observing x_t .

The reason for assuming this functional form is that it embeds two useful cases. First, it converges to be linear in $\mathbb{I}(S_t, \mu|x_t)$ when $\gamma \to 0$, which is the classic case that Sims (2003) assumed in introducing rational inattention and is widely used in that literature. Second, with a quadratic objective and a Gaussian posterior, it collapses to an increasing and convex cost in the precision of the agent's posterior when $\gamma > 1$, which is also used in the literature that assumes the precision of the agent's information is a choice variable (e.g., Myatt and Wallace, 2012).¹⁸

Feasible Retrieval Set. Finally, to ensure that the agent cannot retrieve information beyond what is available at a given time, we assume that any retrieved information set should be independent of μ once we condition on the set of all available data at time t. Formally, we define the set of feasible signals as follows.

Definition 1. Let \bar{S}_t be the set of all possible signals over μ at t. Then, given a history of available data at t, denoted by x^t , $s \in \bar{S}_t$ is *feasible* to retrieve if it is independent of μ conditional on x^t . Formally, the feasible retrieval set for a given x^t is given by

$$S_t(x^t) \equiv \{ s \in \bar{S}_t | \mathbb{I}(s, \mu | x^t) = 0 \}. \tag{5.4}$$

Agent's Problem. Given the primitives of the problem at time *t*, the agent solves:

$$\min_{S_t} \mathbb{E} \left[\min_{F_t x_{t+h}} \mathbb{E} \left[(F_t x_{t+h} - x_{t+h})^2 | S_t \right] + C_t (S_t) \right]
s.t. \underbrace{\{x_t\}}_{\text{observation}} \subseteq \underbrace{S_t}_{\text{working memory}} \subseteq \underbrace{S_t (x^t)}_{\text{feasible retrieval set}}$$
(5.5)

 $^{^{18}}$ For a formal derivation of these claims, see the proof of Lemma 1.

5.2 Characterization

We make two simplifying assumptions for our benchmark model. First, we assume that the agent's prior beliefs about the long-run mean μ after observing x_t is a normal distribution with mean x_t and precision $\underline{\tau}$.¹⁹ Second, we assume that the agent knows the correct ρ for the process of x_t . As we discuss in Section 6, modeling frictions in beliefs about the long-run mean μ is the most parsimonious way to unify empirical evidence on expectation biases observed in the literature, while modeling frictions in beliefs about ρ does not seem sufficient.

Under these two assumptions, the problem simplifies to a simple choice of precision of the long-run mean estimate, summarized in the following Lemma:

Lemma 1. For a set of available data $x^t \equiv \{x_\tau\}_{\tau=0}^t$, the agent's retrieval problem can be simplified to choosing the precision of the belief about μ :

$$\min_{\tau} \left\{ \frac{(1 - \rho^h)^2}{\tau} + \omega \frac{\left(\frac{\tau}{\underline{\tau}}\right)^{\gamma} - 1}{\gamma} \right\} \tag{5.6}$$

s.t.
$$\underline{\tau} \le \tau \le \bar{\tau}_t \equiv var(\mu|x^t)^{-1}$$
. (5.7)

Proof. See Appendix C.2.

The presence of $1-\rho^h$ in the objective function captures the fact that the agent is seeking to minimize prediction error over future outcomes x_{t+h} , not directly over the long-run mean μ . In the model, the assessment of the long-run mean is more important for longer horizons $(h\uparrow)$, or processes with lower persistence $(\rho\downarrow)$. The following proposition presents the solution to the retrieval problem.

Proposition 1. Suppose that the set of available data points is large enough that $var(\mu|x^t)$ is arbitrarily close to zero. Then the agent's optimal posterior precision about the long-run

This can be obtained by assuming that the agent's prior before observing x_t is an improper uniform distribution.

mean, $\tau^* = \text{var}(\mu|S^t)^{-1}$, is given by:

$$\tau^* = \underline{\tau} \max \left\{ 1, \left(\frac{(1 - \rho^h)^2}{\omega \underline{\tau}} \right)^{\frac{1}{1 + \gamma}} \right\}. \tag{5.8}$$

Moreover, the agent's forecast for x_{t+h} at time t, conditional on the true μ and realization of x_t , is distributed normally according to:

$$F_t x_{t+h} | (\mu, x_t) \sim \mathcal{N}(\mu_t, \sigma^2)$$

$$\mu_t \equiv \left(\rho^h + (1 - \rho^h) \frac{\tau}{\tau^*}\right) x_t$$
(5.9)

$$\sigma^2 \equiv (1 - \rho^h)^2 \frac{1}{\tau^*} \left(1 - \frac{\tau}{\tau^*} \right)$$
 (5.10)

where we have normalized $\mu = 0$.

5.3 Model Predictions

We now explore the implications of our model for explaining the empirical evidence.

Overreaction. A key prediction of our model is that relative to rational expectations, forecasts under costly retrieval exhibit overreaction to the most recent observation. The reason is that the agent relies on the latest observation to predict the long-run mean of the process. This is a fundamental difference between our model and models of sticky information (which may use similar modeling techniques). In sticky information models, agents are fully aware of the past but some of them do not have access to the most recent observation, which can result in underreaction in the sense that forecasts rely more on the past than the present. In our model, agents are fully aware of the most recent observation and they have to decide whether to retrieve past data or not, which results in overreaction in the sense that forecasts rely more on the present than on the past data. To visualize this algebraically, we rewrite the equations of Proposition 1 as:

$$F_{t}x_{t+h} = \underbrace{E_{t}x_{t+h}}_{\text{rational forecast}} + (1 - \rho^{h}) \min \left\{ 1, \left(\frac{\omega \underline{\tau}}{(1 - \rho^{h})^{2}} \right)^{\frac{1}{1+\gamma}} \right\} x_{t} + \underbrace{\varepsilon_{t}}_{\text{retrieval noise}}. \tag{5.11}$$

which shows that the bias relative to the rational benchmark has the sign of x_t , indicating systematic overreaction.

Comparative Statics. In addition to predictions about overreaction in general, our model also predicts that the degree of overreaction varies with the persistence of the process. The reason is that for less persistent processes, the predictability of the long-run mean based on the most recent observation is lower and the agent needs to rely more on costly retrieval rather the most recent observation. The following proposition provides comparative statistics with respect to the parameters of the model.

Proposition 2. Consider the regression estimating the implied persistence ρ_h^s from the forecasts:

$$F_t x_{t+h} = c + \rho_h^s x_t + u_t, (5.12)$$

and let $\Delta \equiv \rho_h^s - \rho^h$ denote the difference between asymptotic estimator of ρ_h^s in the data and the actual ρ^h of the process. Then,

- 1. $\Delta \ge 0$ with $\Delta = 0$ if and only if, either $\rho = 1$, or information retrieval is free ($\omega = 0$) and past information available to the forecaster is infinite.
- 2. Δ is increasing in $\underline{\tau}$ and ω .
- 3. Δ is decreasing in ρ^h if the cost function is weakly convex in τ , which is true if and only if $\gamma \geq 1$.

Furthermore, connecting this result to the measure of overreaction in Equation (2.2) yields the following corollary.

Corollary 1. Consider the relative measure $\zeta \equiv \rho_h^s/\rho^h$. Then, $\zeta \geq 1$. Moreover, ζ is decreasing in ρ^h , for all values of ρ and h, if and only if $\gamma \geq 1$.

Proof. See Appendix C.5. □

In summary, Proposition 2, along with its Corollary 1, delivers two main results of our model. The first result is overreaction, a prediction that is consistent with the evidence presented in Section 4: the gap between implied and actual persistence, Δ , is positive (or equivalently, ζ , the relative measure of this gap, is greater than 1). The second result is that if the cost of retrieval is convex in the precision of the agent's forecast, the degree of overreaction, as measured by Δ or ζ , is larger for less persistent processes, as we observe in the data.

Moreover, the model provides two further testable predictions, which we discuss in more detail in Section 6. First, since what enters Δ or ζ is ρ^h , our results also imply that overreaction should be larger for longer-horizon forecasts (ρ^h is decreasing in h). Second, ρ^h forms in a sense a sufficient statistic for overreaction: the implied persistence parameter should be similar in settings that share similar values of ρ^h .

Our model connects to recent work on memory and overreaction in belief formation. Wachter and Kahana (2020) construct a model of associative memory, which emphasizes the role of context in shaping retrieval. In that model, cued recall reinforces the association between two events, which may lead to overreaction. Nonetheless, the model does not address variation of overreaction process persistence and forecast horizon. da Silveira, Sung and Woodford (2020) present another approach of modeling overreaction through memory, which also assumes that memory is costly. In that model, agents decide what they want to remember in the future before an observation is revealed. In our model, the recent observation forms the key context, and agents decide to retrieve relevant information after an observation has been realized. In other words, while our model and the model in da Silveira, Sung and Woodford (2020) both deliver overreaction in posterior beliefs, the prior beliefs are anchored to different values: in our model, the priors are anchored to the present, namely the most recent observation; in da Silveira, Sung and Woodford (2020), in contrast, the priors are anchored to the past, which is given by the

noisy memory state.

5.4 Model Fit

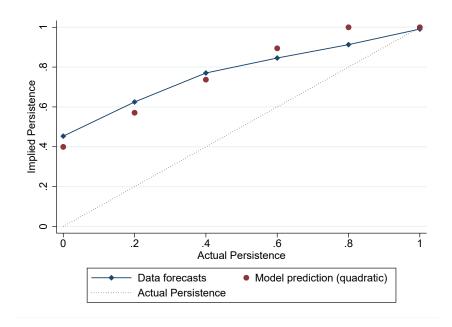
In the following, we present results on model fit for the case where the cost of retrieval is quadratic ($\gamma = 2$). We set $\gamma = 2$ in order to minimize the degrees of freedom in the model. We also present an alternative calibration in Section 6.2 where we jointly estimate γ with the other parameters of the model. We study the implied persistence in the data, and that predicted by our model when fitted to the realizations of x_t in the data. As before, the model is estimated by minimizing the mean-squared error (MSE) between the 1-period forecast predicted by the model for a given parameter (using the realizations of x_t in the data) and the 1-period forecast observed in the data.

Figure IV shows the results for the baseline horizon h=1: the solid line represents the implied persistence ρ_1^s in the data, and the red solid circles represent ρ_1^s predicted by our model. We see that the implied persistence ρ_1^s predicted by our model is very similar to that in the data. The fit is much better compared to what we obtained in Figure III for the models in Section 4.2. Appendix Table A.6 further evaluates the model fit by calculating the MSE between ρ_h^s in by the model and ρ_h^s in the data, as well as the MSE between $F_t x_{t+h}$ in the model and $F_t x_{t+h}$ in the data. We calculate the MSE for our model and the models in Section 4.2. This MSE calculation also confirms what is obvious visually and shows that our model has better performance than models discussed in Section 4.2.

Finally, we discuss the intuition behind the better performance of our model. The alternative models in Section 4.2 can be categorized into two groups. For the first group, namely, adaptive expectations and traditional extrapolation, the models place a fixed weight on past observations that do not vary with the actual persistence ρ . Consequently, with a given parameter, these models generate implied persistence that adapts too little to the situation (the curve is too flat). For the second group, namely, diagnostic expectations and noisy information/sticky expectations, the models rely on rational expectations of the future forecasts. In particular, they converge to rational expectations when the true persistence is zero. The dependence on rational expectations and the adaptation turn

Figure IV: Model Fit: Implied Persistence

This figure shows the forecast implied persistence ρ_1^s as a function of the objective persistence ρ . The implied persistence ρ_1^s is obtained by regressing $F_t x_{t+1}$ on x_t . The blue line represents the results in the forecast data. The solid red dot represents ρ_1^s from our model.



out to be too strong in low persistence conditions (the implied persistence curve is too steep). In our framework, due to costly retrieval of past information, the forecaster conflates part of the transitory shock with changes in the long-run mean of the process. The agent adapts, but only partially because retrieval is costly. This partial adaptation is what makes our model fit the data better than the alternatives when $\rho=0$: it overreacts less than backward-looking models, but more than the other non-RE forward-looking models.

6 Further Discussion

In this section, we present additional non-targeted results from our model about how overreaction varies with the forecast horizon. We then show the robustness of our model formulations to different functional forms. We finally discuss the relevance and significance of several modeling assumptions.

6.1 Additional Implications for Forecast Horizons

Some recent research suggests that overreaction in survey data is also more pronounced for forecasts of longer horizon outcomes. Using the error-revision regression, Bordalo et al. (2019) find a negative and significant coefficient for equity analysts' forecasts of long-term earnings growth, which points to overreaction, while Bouchaud et al. (2019) document a positive error-revision coefficient for analysts' forecasts of short-term earnings. Wang (2019) and d'Arienzo (2020) use professional forecasters' predictions of interest rates, and show that the error-revision coefficient is negative and significant for long-term interest rates, but not for short-term interest rates. Earlier work by Giglio and Kelly (2018) using asset prices also points to "excess volatility" of long-term outcomes relative to short-term outcomes. Brooks, Katz and Lustig (2018) documents the same fact on the term structure of interest rates.

As noted above in Proposition 2 and Corollary 1, our model predicts that the degree of overreaction increases with $1 - \rho^h$, so it naturally delivers more overreaction for longer-horizon forecasts.

In the following, we present results for different forecast horizons in our data and our model. We begin with the empirical results in our forecast data. In addition to the one-period ahead forecast (F_tx_{t+1}) that we focus on in Section 4, from Experiment 2 we also have data on the two-period ahead forecast (F_tx_{t+2}), as well as the five-period ahead forecast (F_tx_{t+5}). We cannot construct the error-revision coefficient for these long-horizon forecasts, which will require information about (F_tx_{t+3}) and (F_tx_{t+6}) that is not available. Instead, we can study the implied persistence ρ_h^s associated with the long-term forecasts (F_tx_{t+2} and F_tx_{t+5}) by regressing F_tx_{t+h} on x_t . To aid visualization, we can also renormalize ρ_h^s to the implied per-period persistence as $\rho^s = (\rho_h^s)^{1/h}$. Internet Appendix Figure A.8 shows ρ^s for h=1, 2, and 5. Consistent with the model's prediction that $1-\rho^h$ is a sufficient statistic for overreaction, we see that overall, the impact of increasing h (which leads to a smaller ρ^h) is similar to the impact of decreasing ρ , so that different setting with the similar values of $1-\rho^h$ exhibit the same amount of bias.

We can also ask how well our model fits the data for the longer horizon forecasts,

which we show in Figure V, where Panel A studies the two-period-ahead forecast and Panel B studies the five-period-ahead forecast. Again, we show $\rho^s = (\rho_h^s)^{1/h}$ in the data, as well as the same quantity based on models discussed in Section 4.2 (dropping the adaptive model and the extrapolative model whose term structure of forecasts is not well defined) and based on our model. In particular, we fit all models using h=1 (i.e., the model parameters are the same as those in Figure IV), so their performance for h=2 and h=5 are non-targeted. We see that the implied persistence according to standard models is too low: they do not produce sufficient overreaction for long horizon forecasts. Our model, on the other hand, performs quite well for the long-horizon forecasts, despite the moments being non-targeted. Appendix Table A.6 shows that our model also achieves the best fit in terms of MSE with respect to the forecasts in the data.

Overall, the data shows that overreaction is stronger for longer horizon forecasts. The commonly used models again do not seem to match the degree of overreaction for long horizon forecasts. Our model fits them quite closely.

6.2 Robustness of Model Formulations

We now discuss several main assumptions in our baseline model in Section 5.

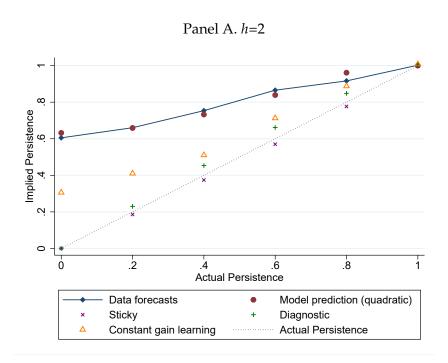
A. Convexity and General Functional Form

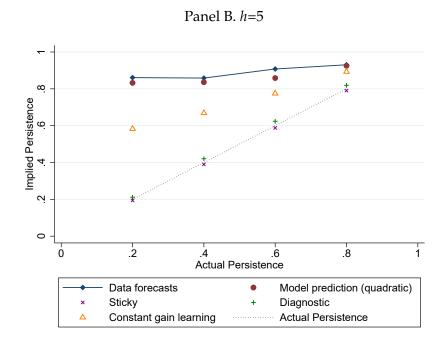
We have assumed in our benchmark calibration that the cost of retrieval is quadratic $(\gamma = 2)$ in the relative precision $\frac{\tau}{\underline{\tau}}$. Here, we examine two alternative ways for calibrating γ and show the robustness of the results. First, we fit our model assuming the cost is linear in the mutual information $(\gamma \mapsto 0)$, which is a standard approach in the rational inattention literature (e.g. Sims, 2003). Second, we fully optimize over the convexity parameter γ using a grid-search method.

Figure A.9 in the Internet Appendix shows the fit of both exercises. The linear approach does a reasonable job fitting the implied persistence, but overshoots slightly for processes with higher persistence and undershoots slightly for processes with lower persistence. The general γ approach produces very good fit (with the optimal value of γ roughly equal to 10). Overall, however, we find that the model performance is not very

Figure V: Model Fit: Longer Horizon Forecasts

This figure shows the implied persistence ρ^s as a function of the objective persistence ρ . The subjective persistence ρ^s is obtained by regressing $F_t x_{t+h}$ on x_t and taking the 1/hth power of the coefficient. Panels A and B show results for h=2 and h=5 respectively. The solid lines represent the value in the data. The solid red dot represents the value according to by our model. The dotted line is the 45-degree line.





sensitive to the exact value one picks for γ .

B. Assumptions on $\underline{\tau}$

In our main model, we define $\underline{\tau}$ as the baseline precision the agent has regarding the long-run mean after seeing the most recent observation. For simplicity, we assumed $\underline{\tau}$ to be fixed across all experiments and across different persistence levels ρ .

In the following, we also consider an alternative approach, where we endogenize $\underline{\tau}$. One natural candidate for $\underline{\tau}$ is the inverse of the variance of the stationary distribution for the AR(1) process:

$$\underline{\tau}^{alt} = \frac{1 - \rho^2}{\sigma_e^2}.\tag{6.1}$$

This choice can have a Bayesian interpretation as the posterior variance given x_t , for a Bayesian with an improper uniform prior (or a sequence of priors that become increasingly dispersed). In particular, $\underline{\tau}^{alt}$ is decreasing in ρ : the agent is ex ante more uncertain about the long-run mean when the process in unconditionally more volatile.

Figure A.10 in the Internet Appendix shows the fit of the alternative specification, and confirms that the model performs well in this case too.

C. Assumptions about ρ

In the model, we assume that the forecaster uses the correct ρ but may have biased estimates of the long-run mean μ . We make this modeling choice because biases about the mean are the most parsimonious way to account for the accumulating empirical evidence on predictable errors in forecasts. Biases about ρ (Gabaix, 2018; Angeletos, Huo and Sastry, 2020) may not be sufficient. For instance, such models do not necessarily account for the finding that overreaction is more pronounced in the long run than in the short run. In these models, the bias in ρ is attenuated for long-run forecasts as forecasters predict the long-run mean. On the other hand, our model, which focuses on inference about the long-run mean, does not have this problem.²⁰

Overall, while we do not rule out that forecasters can directly use an incorrect ρ , we

²⁰Consider the example case of regressing the forecast error on the current realization. If the bias takes the form of using $\tilde{\rho}$ instead of ρ , then the coefficient of regressing forecast error of horizon h ($x_{t+h} - F_t x_{t+h}$) on the current realization x_t is $\tilde{\rho}^h - \rho^h$, which decreases with h. If the bias takes the form of using $\tilde{\mu}$ instead of the true mean, then the coefficient of regressing forecast error of horizon h on the current realization x_t is $(1 - \rho^h)\beta_{\tilde{\mu}|x_t}$ (where $\beta_{\tilde{\mu}|x_t}$ is the regression coefficient of $\tilde{\mu}$ on x_t), which increases with h.

find that modeling biases about the mean μ is the most parsimonious way to capture biases in beliefs, and the variations with both the persistence of the true process and forecast horizons. This approach of modeling biases about the mean also has natural synergies with frictions of retrieving past information (if retrieval is costly then the mean can be estimated reasonably well). Thus our framework fits well with utilizing biases about the mean as a useful modeling setup.

D. Incentives

A possible question is whether one can test the effect of variation in incentives, or the relative trade-off between the cost of information retrieval and the benefit of obtaining accurate beliefs. While in principle one might ask whether these predictions can be tested in experiments, we have refrained from doing so for several reasons. First, to obtain results that are statistically or economically strong, the magnitude of incentives may need to be substantially different across treatment arms, which can raise issues of fairness. For example, if an experiment randomly assigns participants to some conditions that pay ten or twenty times as much as other conditions, this design may be questionable to human subject reviews and may antagonize potential participants when they read disclosures of payments in the consent form. Second, DellaVigna and Pope (2017) also suggest that participants are often not only motivated by monetary incentives.

Another possible question is whether incentives for accuracy in practice could be so large that decision makers will overcome all costs of information retrieval. A large literature document biases in high-stake settings (Malmendier and Tate, 2005; Pope and Schweitzer, 2011; Ben-David, Graham and Harvey, 2013; Greenwood and Hanson, 2015; Bordalo, Gennaioli, La Porta and Shleifer, 2019), which suggest that frictions may not be fully eradicated in these situations. Furthermore, many decisions are made under time constraints or with a fair bit of human discretion, in which case the frictions represented by our model—namely, certain information is particularly on top of the mind—are likely to be present.

7 Conclusion

Recent research using survey data from different sources points to varying degrees of biases in expectations. A key question is how to unify the different sets of findings. To have a better understanding of how biases vary with the setting, we conduct a large-scale randomized experiment where participants forecast stable random processes. The experiment allows us to control the DGP and the relevant information sets. This is not feasible in survey data, which can give rise to major complications in interpreting results in survey data.

We find that forecasts display significant overreaction: they respond too much to recent observations. Overreaction is particularly pronounced for less persistent processes and longer forecast horizons. We also find that commonly-used expectations models, estimated in our data, do not easily account for the variation in overreaction. Some predict too much overreaction when the process is transitory (e.g., adaptive expectations and simple extrapolation), while others predict too little (e.g., diagnostic expectations and constant gain learning).

We propose a new framework for understanding biases in expectations formation, where forecasters form estimates of the long-run mean of the process using a mix of the recent observation and past data. They balance these two sources of information depending on the setting, but the utilization of past information can be costly and imperfect. As a result, forecasts adapt partially to the setting, but recent observations can have a disproportionate influence, resulting in overreaction. Over-adjusting the estimates of the long-run mean in response to recent observations also naturally implies that overreaction is more pronounced when the process is more transitory and the forecast horizon is longer. We estimate the model in our data and find that it closely matches how overreaction varies with process persistence. The model, when estimated on short-term forecasts, also predicts long-term forecasts that closely match what we observe in the data.

While our current model can provide a unifying framework for how the degree of overreaction varies with the setting, it does not generate underreaction and neither does our experimental evidence. Nonetheless, if there is noisy perception of the recent observa-

tion, then we can obtain underreaction too in the model. This is also a plausible reason for underreaction sometimes observed in survey forecast data (Coibion and Gorodnichenko, 2012; Bouchaud et al., 2019). Taken together, we hope that the theory and evidence in the paper contributes to the unification of findings on expectation biases.

References

- **Abarbanell, Jeffry and Victor Bernard**, "Tests of Analysts' Overreaction/Underreaction to Earnings Information as an Explanation for Anomalous Stock Price Behavior," *Journal of Finance*, 1992.
- **Amromin, Gene and Steven A Sharpe**, "From the Horse's Mouth: Economic Conditions and Investor Expectations of Risk and Return," *Management Science*, 2013, 60 (4), 845–866.
- Angeletos, George-Marios, Zhen Huo, and Karthik A Sastry, "Imperfect Macroeconomic Expectations: Evidence and Theory," Working Paper 2020.
- **Assenza, Tiziana, Te Bao, Cars Hommes, and Domenico Massaro**, "Experiments on Expectations in Macroeconomics and Finance," *Research in Experimental Economics*, 2014, 17, 11–70.
- **Baddeley, Alan David**, "Working Memory," *Philosophical Transactions of the Royal Society of London. B, Biological Sciences*, 1983, 302 (1110), 311–324.
- Barberis, Nicholas, Andrei Shleifer, and Robert Vishny, "A Model of Investor Sentiment," *Journal of Financial Economics*, 1998, 49 (3), 307–343.
- _ , **Robin Greenwood**, **Lawrence Jin**, **and Andrei Shleifer**, "X-CAPM: An Extrapolative Capital Asset Pricing Model," *Journal of Financial Economics*, 2015, 115, 1–24.
- **Barrero, Jose Maria**, "The Micro and Macro Implications of Managers' Beliefs," Working Paper 2020.
- **Ben-David, Itzhak, John R Graham, and Campbell R Harvey**, "Managerial Miscalibration," *Quarterly Journal of Economics*, 2013, 128 (4), 1547–1584.
- Beshears, John, James J Choi, Andreas Fuster, David Laibson, and Brigitte C Madrian, "What Goes Up Must Come Down? Experimental Evidence on Intuitive Forecasting," American Economic Review, 2013, 103 (3), 570–574.
- **Bloomfield, Robert and Jeffrey Hales**, "Predicting the Next Step of a Random Walk: Experimental Evidence of Regime-Shifting Beliefs," *Journal of Financial Economics*, 2002, 65 (3), 397–414.
- **Bondt, Werner De and Richard H Thaler**, "Do Security Analysts Overreact?," *American Economic Review*, 1990, pp. 52–57.
- Bordalo, Pedro, Katherine Coffman, Nicola Gennaioli, Frederik Schwerter, and Andrei Shleifer, "Memory and Representativeness," *Psychological Review*, 2020, *Forthcoming*.
- _ , **Nicola Gennaioli, and Andrei Shleifer**, "Diagnostic Expectations and Credit Cycles," *Journal of Finance*, 2018, 73 (1), 199–227.

- _ , _ , and _ , "Memory, Attention, and Choice," *Quarterly Journal of Economics*, 2020, 135 (3), 1399–1442.
- __, __, Rafael La Porta, and Andrei Shleifer, "Diagnostic Expectations and Stock Returns," *Journal of Finance*, 2019, 74 (6), 2839–2874.
- Bouchaud, Jean-Philippe, Philipp Krueger, Augustin Landier, and David Thesmar, "Sticky Expectations and the Profitability Anomaly," *Journal of Finance*, 2019, 74 (2), 639–674.
- **Brooks, Jordan, Michael Katz, and Hanno Lustig**, "Post-FOMC Announcement Drift in US Bond Markets," Working Paper 2018.
- **Cagan, Phillip**, "The Monetary Dynamics of Hyperinflation," *Studies in the Quantity Theory of Money*, 1956.
- **Casler, Krista, Lydia Bickel, and Elizabeth Hackett**, "Separate but Equal? A Comparison of Participants and Data Gathered via Amazon's MTurk, Social Media, and Face-To-Face Behavioral Testing," *Computers in Human Behavior*, 2013, 29 (6), 2156–2160.
- Cavallo, Alberto, Guillermo Cruces, and Ricardo Perez-Truglia, "Inflation Expectations, Learning, and Supermarket Prices: Evidence From Survey Experiments," *American Economic Journal: Macroeconomics*, 2017, 9 (3), 1–35.
- **Coibion, Olivier and Yuriy Gorodnichenko**, "What Can Survey Forecasts Tell Us About Information Rigidities?," *Journal of Political Economy*, 2012, 120, 116–159.
- _ and _ , "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, 2015, 105 (8), 2644–78.
- da Silveira, Rava Azeredo, Yeji Sung, and Michael Woodford, "Optimally Imprecise Memory and Biased Forecasts," Working Paper 2020.
- **D'Acunto, Francesco**, "Identity, Overconfidence, and Investment Decisions," Working Paper 2015.
- _ and Michael Weber, "Memory and Beliefs: Evidence from the Field," Working Paper 2020.
- **d'Arienzo, Daniele**, "Increasing Overreaction and Excess Volatility of Long Rates," Working Paper 2020.
- **DellaVigna, Stefano and Devin Pope**, "What Motivates Effort? Evidence and Expert Forecasts," *Review of Economic Studies*, 2017, 85 (2), 1029–1069.
- _ and _ , "Predicting Experimental Results: Who Knows What?," Journal of Political Economy, 2018, 126 (6), 2410–2456.

- Dwyer, Gerald P, Arlington W Williams, Raymond C Battalio, and Timothy I Mason, "Tests of Rational Expectations in a Stark Setting," *Economic Journal*, 1993, 103 (418), 586–601.
- **Enke, Benjamin, Frederik Schwerter, and Florian Zimmermann**, "Associative Memory and Belief Formation," Working Paper 2020.
- **Evans, George and Seppo Honkapohja**, *Learning and Expectations in Macroeconomics*, Princeton University Press, 2001.
- **Frydman, Cary and Gideon Nave**, "Extrapolative Beliefs in Perceptual and Economic Decisions: Evidence of a Common Mechanism," *Management Science*, 2016, 63 (7), 2340–2352.
- **Fuster, Andreas, Benjamin Hebert, and David Laibson**, "Natural Expectations, Macroeconomic Dynamics, and Asset Pricing," *NBER Macroeconomics Annual*, 2012, 26 (1), 1–48.
- _ , **David Laibson**, **and Brock Mendel**, "Natural Expectations and Macroeconomic Fluctuations," *Journal of Economic Perspectives*, 2010, 24 (4), 67–84.
- **Gabaix, Xavier**, "Behavioral Inattention," *Handbook of Behavioral Economics*, 2018.
- **Gennaioli, Nicola, Yueran Ma, and Andrei Shleifer**, "Expectations and Investment," *NBER Macroeconomics Annual*, 2016, 30 (1), 379–431.
- **Giglio, Stefano and Bryan Kelly**, "Excess Volatility: Beyond Discount Rates," *Quarterly Journal of Economics*, 2018, 133 (1), 71–127.
- **Greenwood, Robin and Andrei Shleifer**, "Expectations of Returns and Expected Returns," *Review of Financial Studies*, 2014, 27 (3), 714–746.
- _ **and Samuel G Hanson**, "Waves in Ship Prices and Investment," *Quarterly Journal of Economics*, 2015, 130 (1), 55–109.
- Hartzmark, Samuel M, Samuel Hirshman, and Alex Imas, "Ownership, Learning, and Beliefs," Working Paper 2020.
- **Hey, John D**, "Expectations Formation: Rational or Adaptive or ..?," *Journal of Economic Behavior & Organization*, 1994, 25 (3), 329–349.
- **Hirshleifer, David, Jun Li, and Jianfeng Yu**, "Asset Pricing in Production Economies With Extrapolative Expectations," *Journal of Monetary Economics*, 2015, 76, 87–106.
- Kahana, Michael Jacob, Foundations of Human Memory, Oxford University Press, 2012.
- Kahneman, Daniel and Amos Tversky, "Subjective Probability: A Judgment of Representativeness," *Cognitive Psychology*, 1972, 3 (3), 430–454.

- Kuziemko, Ilyana, Michael I Norton, Emmanuel Saez, and Stefanie Stantcheva, "How Elastic Are Preferences for Redistribution? Evidence From Randomized Survey Experiments," *American Economic Review*, 2015, 105 (4), 1478–1508.
- **Lian, Chen, Yueran Ma, and Carmen Wang**, "Low Interest Rates and Risk-Taking: Evidence From Individual Investment Decisions," *Review of Financial Studies*, 09 2018, 32 (6), 2107–2148.
- Ma, Yueran, Tiziano Ropele, David Sraer, and David Thesmar, "A Quantitative Analysis of Distortions in Managerial Forecasts," Working Paper 2020.
- **Malmendier, Ulrike and Geoffrey Tate**, "CEO Overconfidence and Corporate Investment," *Journal of Finance*, 2005, 60 (6), 2661–2700.
- _ and Stefan Nagel, "Learning From Inflation Experiences," Quarterly Journal of Economics, 2016, 131 (1), 53–87.
- Mankiw, Gregory and Ricardo Reis, "Sticky Information Versus Sticky Prices: A Proposal to Replace the New Keynesian Philips Curve," *Quarterly Journal of Economics*, 2002, 117 (4), 1295–1328.
- **Massey, Cade and George Wu**, "Detecting Regime Shifts: The Causes of Under- and Overreaction," *Management Science*, 2005, 51 (6), 932–947.
- **Metzler, Lloyd A**, "The Nature and Stability of Inventory Cycles," *Review of Economics and Statistics*, 1941, 23 (3), 113–129.
- **Myatt, David P and Chris Wallace**, "Endogenous Information Acquisition in Coordination Games," *The Review of Economic Studies*, 2012, 79 (1), 340–374.
- **Nagel, Stefan and Zhengyang Xu**, "Asset Pricing With Fading Memory," Working Paper 2019.
- Neligh, Nathaniel, "Rational Memory With Decay," Working Paper 2020.
- **Nerlove, Marc**, "Adaptive Expectations and Cobweb Phenomena," *Quarterly Journal of Economics*, 1958, 72 (2), 227–240.
- **Pope, Devin G and Maurice E Schweitzer**, "Is Tiger Woods Loss Averse? Persistent Bias in the Face of Experience, Competition, and High Stakes," *American Economic Review*, 2011, 101 (1), 129–57.
- **Rabin, Matthew**, "Inference by Believers in the Law of Small Numbers," *Quarterly Journal of Economics*, 2002, 117 (3), 775–816.
- _ **and Dimitri Vayanos**, "The Gambler's and Hot-Hand Fallacies: Theory and Applications," *Review of Economic Studies*, 2010, 77 (2), 730–778.
- **Reimers, Stian and Nigel Harvey**, "Sensitivity to Autocorrelation in Judgmental Time Series Forecasting," *International Journal of Forecasting*, 2011, 27 (4), 1196–1214.

- **Shiller, Robert J**, "Do Stock Prices Move Too Much to Be Justified by Subsequent Changes in Dividends?," *American Economic Review*, 1981, 71 (3), 421–436.
- **Sims, Christopher A**, "Implications of Rational Inattention," *Journal of Monetary Economics*, 2003, 50 (3), 665–690.
- **Thomas, M Cover and A Thomas Joy**, "Elements of Information Theory," *New York: Wiley*, 1991, 3, 37–38.
- **Wachter, Jessica A and Michael Jacob Kahana**, "A Retrieved-Context Theory of Financial Decisions," Working Paper 2020.
- **Wang, Chen**, "Under- and Over-Reaction in Yield Curve Expectations," Working Paper 2019.
- **Woodford, Michael**, "Imperfect Common Knowledge and the Effects of Monetary Policy," *Knowledge, Information, and Expectations in Modern Macroeconomics*, 2003.