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ABSTRACT

Comparing median outcomes to gauge treatment effectiveness is widespread practice in clinical 
and other investigations. While common, such difference-in-median characterizations of 
effectiveness are but one way to summarize how outcome distributions compare. This paper 
explores properties of median treatment effects as indicators of treatment effectiveness. The 
paper's main focus is on decisionmaking based on median treatment effects and it proceeds by 
considering two paths a decisionmaker might follow. Along one, decisions are based on point-
identified differences in medians alongside partially identified median differences; along the 
other decisions are based on point-identified differences in medians in conjunction with other 
point-identified parameters. On both paths familiar difference-in-median measures play some role 
yet in both the traditional standards are augmented with information that will often be relevant in 
assessing treatments' effectiveness. Implementing both approaches is shown to be 
straightforward. In addition to its analytical results the paper considers several policy contexts in 
which such considerations arise. While the paper is framed by recently reported findings on 
treatments for COVID-19 and uses several such studies to explore empirically some properties of 
median-treatment-effect measures of effectiveness, its results should be broadly applicable.
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1. Introduction 

 In a study published online on March 18, 2020, comparing lopinavir–ritonavir treatment 

for COVID-19 with standard care, Cao et al., 2020, report: 

 
Patients assigned to lopinavir–ritonavir did not have a time to clinical 
improvement different from that of patients assigned to standard care alone in 
the intention-to-treat population (median, 16 days vs. 16 days; hazard ratio for 
clinical improvement, 1.31; 95% confidence interval [CI], 0.95 to 1.85; P=0.09)… 

 
 On April 29, 2020, the U.S. National Institute on Allergy and Infectious Diseases 

(NIAID, 2020a) announced in a news release summarizing a separate study: 

 
Hospitalized patients with advanced COVID-19 and lung involvement who 
received remdesivir recovered faster than similar patients who received placebo.… 
Specifically, the median time to recovery was 11 days for patients treated with 
remdesivir compared with 15 days for those who received placebo.1 
 

On the basis of that study the U.S. Food and Drug Administration (FDA) two days later issued 

an Emergency Use Authorization for remdesivir (U.S. FDA, 2020a), noting: 

 
While there is limited information known about the safety and effectiveness of 
using remdesivir to treat people in the hospital with COVID-19, the 
investigational drug was shown in a clinical trial to shorten the time to recovery 
in some patients. 

 
This study, the Adaptive Covid-19 Treatment Trial or ACTT Study (Beigel et al., 2020), was 

subsequently published online on May 22, 2020. 

 In a third study, published online May 8, 2020, Hung et al., 2020, report on a trial 

comparing combination therapy for COVID-19 with lopinavir–ritonavir alone. The authors note: 

 
The combination group had a significantly shorter median time from start of 
study treatment to negative nasopharyngeal swab (7 days [IQR 5–11]) than the 
control group (12 days [8–15]; hazard ratio 4·37 [95% CI 1·86–10·24], p=0·0010). 

 

 Apart from their focus on treating COVID-19, a common feature of these three studies2 

is that they summarize their respective primary endpoints as medians of each arm's time-to-

																																								 																					
1 Mass media wasted no time reporting these findings. An April 29 headline in the Washington 
Post read: "Gilead’s remdesivir improves recovery time of coronavirus patients in NIH trial." 
2 The Cao et al., 2020, Beigel et al., 2020, and Hung et al., 2020, studies will be referenced 
henceforth simply as Cao, Beigel, and Hung. They will be revisited later in the paper. 
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event (TTE) distribution, and then judge the treatments' efficacy or effectiveness by the 

difference between those medians. Such median-based comparisons are common in the clinical 

literature, so common perhaps that they and the information they convey to decisionmakers 

may be taken for granted. 

 Much is at stake on the manner in which the effectiveness of candidate COVID-19 

treatments and vaccines is assessed, using clinical trial data or otherwise. Loading this burden 

onto two parameters—median outcomes under treatment and comparator—is a high-stakes 

gamble. Consider for instance figure 1 whose top panel depicts by the two indicated points the 

results reported in the NIAID news release (NIAID, 2020a); until the publication of the Beigel 

study over three weeks later this was the only information about the study's effectiveness known 

by the public. (The bottom panel of figure 1 reproduces the results reported by Beigel.) Is this 

information alone sufficient for a decisionmaker to conclude that remdesivir is effective since it 

will "shorten the time to recovery in some patients"? Analogously does the finding that median 

outcomes do not differ in the Cao study mean that decisionmakers should not prefer one 

treatment over the other (see figure 2)? Or might in both instances regulators, clinicians, 

patients, and others wish to know more about the distributions of outcomes before arriving at 

such conclusions? 

[figures 1 and 2 about here] 

 

 The perhaps-obvious points are that there are many ways subject-level outcome data can 

be summarized or aggregated across a sample3 and that these alternative approaches may not 

yield the same conclusion about treatments' effectiveness, nor should they. Understanding the 

nature, merits, and shortcomings of the methods chosen as well as how those methods stack up 

against alternatives should thus be instructive for COVID-19 decisionmaking and beyond. 

 Numerous comparisons of candidate COVID-19 vaccines and treatments will be 

contemplated, studied, and reported. It is thus timely to review and assess the properties and 

decisionmaking value of treatment effect (TE) measures defined by distributions' medians—like 

those featuring in the studies described above—as summaries of treatments' effectiveness: In a 

nutshell, what is learned about treatments' effectiveness from consideration and comparison of 

two distributions' medians? 

 The paper argues that a reasonable answer to this question is: "Probably something but 

often little." To learn more about treatments' effectiveness the paper suggests two paths 

decisionmakers might follow. Along path 1 decisions are based on point-identified differences in 

median outcomes—as is customary—in conjunction with medians of the distribution of 

differences in outcomes, i.e. the treatment effect distribution (section 2). The latter medians are 
																																								 																					
3 See Zarin et al., 2011, who discuss data aggregation in the context of clinical-trial reporting. 



 3 

typically partially identified since the distribution of differences may not be observable.4 Along 

path 2 decisions are again based on point-identified differences in medians in conjunction with 

additional point-identified parameters whose nature will be discussed in section 5. On either 

path it is proposed that the basis of decisions is enhanced by considering features of 

distributions in addition to differences in median outcomes. In both cases conventional 

differences in medians play some role so that decisionmakers accustomed to relying on such 

criteria should find nothing particularly foreign in the proposed strategies. 

 Given the urgency of discovering effective treatments and vaccines for COVID-19 it is 

timely to consider measures of effectiveness that align with what is important to decisionmakers 

and those affected by their decisions. What is proposed here may be helpful to this end, 

particularly since the paper strives to offer intuitive and easily implemented strategies. 

 Section 2 offers definitions and other preliminaries. Section 3 discusses basic elements of 

decisions based on median treatment effects. Sections 4 and 5 present the key issues and results 

for paths 1 and 2 as described above. Section 6 illustrates the applicability of these ideas using 

three COVID-19 clinical studies. Section 7 summarizes. While the discussion throughout is 

motivated and framed by attempts to discover the effectiveness of COVID-19 treatments, the 

issues addressed should be broadly applicable in contexts where considerations of median 

treatment effects arise.5 

 

2. Definitions and Other Preliminaries 

 Consider two subject-specific outcomes, 
 
y0  and 

 
y1 , which might be health status under 

treatment 0 (
 
T0 ) and treatment 1 (

 
T1 ) and which may or may not—depending on particulars—

be potential outcomes where only one of 
 
y0  or 

 
y1  is observed. Suppose throughout that each 

 
yj  is non-negative and has either continuous or discrete (integer) measurement. Whether or not 

both 
 
yj  are observed for each subject, define the subject-level treatment effect as 

  
Δ= y1− y0 .6 

Unless noted otherwise smaller values of y will correspond to better health outcomes. 

 Let 
  
Pr …( )  denote a probability mass or density and 

  
F …( ) its corresponding cumulative. 

																																								 																					
4 Partial identification strategies have recently been used to understand aspects of COVID-19 
prevalence and treatment decisions (see Manski, 2020b, and Manski and Molinari, 2020). 
5 To streamline the paper many technical details and in-depth discussions appear in appendixes 
and footnotes. 
6 In this paper the term "treatment effect" when unqualified has the precise meaning indicated 
here. The expressions "median treatment effect," "quantile treatment effect," "treatment 
effectiveness," and others are generic; their meaning depends on particular context. 
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Define 
  
Fj y( ) = Pr yj ≤ y( )  for 

  
j∈ 0,1{ } .7 

  
Fj y( )  will sometimes be abbreviated as 

 
Fj . Each 

 
yj  

has support 
 
Yj , which may be continuous or discrete. 

   
Y = Y0 ∪Y1  is the common support of 

 
y0  and 

 
y1 ; often 

  
Y0 = Y1 . Define the   α–quantile  of 

  
Fj y( )  as8 

 

 
  
qj α( ) = infy∈Y y Fj y( )≥α{ }  for 

  
α ∈ 0,1( ) .      (1) 

 

 
mj  is shorthand used henceforth for the marginal medians 

  
qj .5( ) .9 Define the interquartile 

range (IQR) of each 
 
Fj  

as 

 

 
  
IQRj = qj .25( ),  q j .75( ){ } .        (2) 

 

Note that 
 
IQRj  is defined as a two-element set not as an interval as perhaps more conventional. 

 It is assumed at this point that the 
 
Fj  are point identified over relevant subsets of Y; 

requiring identification to be over all   y ∈ Y  or only over subsets will be considered in context.10
 

Whether identification results from a randomized trial or some other method is unimportant; 

indeed each 
 
Fj  can be learned from a different data source. 

 Define the difference-in-y-probabilities treatment effect as 

																																								 																					
7  This paper will focus only on issues of identification leaving considerations of inference 
involving sampling variation for future study. (Goldman and Kaplan, 2018, offer innovative 
perspectives on hypothesis testing in contexts like those considered here.) Distinguishing 
population from sample parameters as might be typical is thus of little consequence. The N-
observation sample data can be treated as if they are a finite population of size N. This is noted 
here so that notation can be streamlined, e.g. one needn't distinguish population distributions 

  
Fj y( )  from sample or empirical distributions 

  
Fj,N y( ) . Thus interpreted a randomized trial splits 

the population of size 2N into subpopulations of size M and 2N–M and administers accordingly 

 
T0  

and 
 
T1 ; the resulting 

 
Fj  characterize the counterfactual full-population distribution of 

outcomes under each treatment. 
8 "min" suffices for most cases covered here but "inf" is technically appropriate (see Hansen, 
2020, section 11.13). 
9 See appendix A for discussion of medians' computation and measurement. 
10 In some cases (e.g. right censoring) point identification need hold only up to some value. 
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ΔF y( ) = F1 y( )−F0 y( ) ,        (3) 

 

a familiar endpoint in TTE and other studies (e.g. difference in 12-month survival probabilities). 

Define the difference-in- α -quantiles treatment effect as 

 

 
  
Δq α( ) = q1 α( )−q0 α( ) .        (4) 

 

A special case of (4) is the difference-in-medians treatment effect 

 

 
  
Δm =  m1−m0 =  Δq .5( ) .        (5) 

 

  Δm  is a prominent measure used to compare treatments' effectiveness in clinical studies, 

particularly albeit not exclusively for TTE outcomes. 11    Δm  is point identified under the 

assumption that both 
  
Fj y( )  are point identified at least for 

  
y Fj y( )≤ .5{ } . 

  The treatment effect distribution is 
  
F Δ( ) , where the distribution of  Δ  derives from the 

joint distribution 
  
Pr y0,y1( ) . In potential-outcomes and other contexts 

  
Pr y0,y1( ) is not point 

identified so that 
  
F Δ( )  is consequently not point identified. 12  When 

  
F Δ( )  is not point 

identified, that it can generally be informatively partially identified is an important 

consideration in what follows. 

 Quantiles of the treatment effect distribution are 

 

 
  
q α( )Δ= min Δ F Δ( )≥α{ } .        (6) 

 

with the median-difference treatment effect defined as 

 

																																								 																					
11 Other characterizations of median TEs based on ratios or percentage changes instead of 
differences have been considered; see Lee and Kobayashi, 2001, and Rogawski et al., 2017. 

12 In some instances 
  
Pr y0,y1( )  is point identified even though the corresponding 

  
F Δ( )  would 

not readily admit interpretation as a distribution of counterfactual outcome differences. 
Examples include pre-post and crossover designs. See Fan et al., 2003, for an example in 
ophthalmology research where individuals' left eyes and right eyes are randomized to serve as 
treatment and control "subjects." 
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mΔ =  q .5( )Δ =  med F Δ( )( )  =  min Δ F Δ( )≥ .5{ } .    (7) 

 

With a few exceptions this paper's discussion focuses on   Δm  and   mΔ  rather than general 

quantile treatment effects, this owing to the prominence13 of medians in empirical clinical and 

health research; most results generalize readily to other quantiles. Manski (2007, chapter 7) 

notes the inequality 

 

   mΔ≠Δm ,          (8)  

 

and proceeds to suggest that "a researcher reporting a median treatment effect must be careful 

to state whether the object of interest is the left- or right-hand side [of (8)]."14 

 As will be seen in section 4 understanding and computing bounds on   mΔ  is facilitated 

by reference to the inequality probabilities (IPs) 
  
Pr y1 > y0( ) = Pr Δ> 0( ) . Like   mΔ  IPs are 

generally not point identified but are partially identified using information on the 
 
Fj . Define 

 

 
  
Djk = maxy∈Y Fj y( )−Fk y( ),0{ },  for j,k ∈ 0,1{ } .      (9) 

 

The 
 
Djk  are the largest vertical differences between 

  
Fj y( )  and 

  
Fk y( )  over the common support 

Y.15 These measures, known commonly as Kolmogorov's D-statistics, are depicted in figure 3. 

Note that at most one of the 
 
Djk  can exceed .5, a result that will prove useful later. 

 

[figure 3 about here] 

																																								 																					
13 A pubmed.gov search conducted on September 8, 2020 yielded: 

— 90,192 hits using the search string: "median time to" OR "median survival" OR 
"median progression-free" OR "median length" OR "median duration" 

— 185,333 hits using the search string: "median difference" OR "median change" OR 
"median percentage change" OR "median percent change" OR "median relative 
change" OR "difference in median" OR "difference between median" 

— 253,125 hits using the union of these search strings 
14   Δm  and   mΔ  

are what Manski, 1997, refers to generically and respectively as   "ΔD"  and 
  "DΔ "  treatment effects; thus the   Δm  and   mΔ  notation used here. 

15 The corresponding y-ordinates that define the 
 
Djk  may not be unique. 
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3. How   Δm  May Inform Decisions 

 There are many standards by which two or more outcome distributions might be 

compared: moments, quantiles, dominance, etc. On what principles might   Δm  be advocated to 

inform decisions? While   Δm  may have reasonable statistical properties this is a different 

matter from it possessing well grounded conceptual properties. For instance comparison of the 

medians (or other quantiles) of observed marginal distributions are uninformative about the 

distribution of gains and losses arising from an imagined change from 
 
T0  to 

 
T1 , i.e. 

  
F Δ( ) . 

 Imbens and Wooldridge, 2009, raise two issues to support their claim that   Δm  may 

often be of greater interest than   mΔ  or other features of 
  
F Δ( ) . First, they assert that it is 

natural for decisionmakers to compare policies via differences between outcome distributions, 

which differences "can often be summarized by differences in the quantiles." Second, they note 

that 
  
F Δ( ) and associated parameters like   mΔ  cannot generally be point identified. Each claim 

has some merit. 

 Yet two counterclaims might be advanced to support consideration of   mΔ . The first is 

statistical: While   mΔ  
cannot generally be point identified it can generally be partially 

identified informatively, and in a subset of such cases can be sign identified (section 4 and 

appendix C). The second is conceptual: While decisionmakers may assess treatments' 

effectiveness by comparison of resulting marginal outcome distributions, they may also care 

about policies' distributional consequences, e.g. the fractions of the population that benefit or 

suffer from policy change and how much they benefit or suffer. The latter concerns are not 

informed by examination of the marginal distributions but require consideration of the joint 

distribution 
  
Pr y0,y1( )  or, specifically, 

  
F Δ( ) . Heterogeneous response to policy in direction and 

magnitude may be important considerations: As articulated nicely by Koenker and Bilias, 2000, 

"treatment may make otherwise weak subjects especially robust, and turn the strong to jello." 

 Decisionmakers may or may not feel that the basis of their decisions is enhanced by 

information on 
  
F Δ( )  or   mΔ . Either way a revealed preference argument suggests that   Δm  

measures of treatments' effectiveness provide them with at least some useful information about 

their choices (see footnote 13). Ease of computation, applicability with right-censored data, and 

parsimony in summarizing data are three plausible reasons for such popularity. The following 

two sections discuss decisionmaking that does (path 1; section 4) and does not (path 2; section 

5) admit roles for partially identified parameters like   mΔ  working in conjunction with   Δm . In 

both instances it is suggested that the basis of decisions may be enhanced by considering 

parameters beyond   Δm . To implement the strategies proposed along either path analysts need 

appeal only to information contained in 
 
F0  and 

 
F1 ; how that information gets used is quite 
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different along the two paths, however.16 

 Finally, while the analytical results reported in sections 4 and 5 may be of interest per 

se, considering how they may be applicable in real-world decision and policy settings is 

appropriate. Rather than disrupting the flow of the paper here with a lengthy discussion, 

appendix E describes several policy or regulatory contexts wherein considerations of median or 

more general quantile TEs are or at least arguably should be prominent.17 To anticipate that 

discussion it is worth noting briefly one example of regulatory language that naturally motivates 

such considerations. The regulatory language governing FDA's determination of effectiveness of 

biological products is: 

 
Effectiveness means a reasonable expectation that, in a significant proportion of 
the target population, the pharmacological or other effect of the biological 
product, when used under adequate directions, for use and warnings against 
unsafe use, will serve a clinically significant function in the diagnosis, cure, 
mitigation, treatment, or prevention of disease in man. [21 CFR 601.25(d)(2)] 
(emphasis added) 
 

Note that this standard entails considerations of both population quantiles ("significant 

proportion") and treatment effect magnitudes ("clinically significant function"). Appendix E 

suggests statistical formalization of this language and suggests further how the discussion in 

sections 4 and 5 may usefully address such regulatory questions. 

 

4. Path 1: Assessing Treatments' Effectiveness via   Δm  and Partially Identified   mΔ  

 The essence of decision problems in this context is captured by a simple picture. Figure 4 

depicts some population's discrete 
  
Pr y0,y1( ) that puts probability mass 1/3 on three 

  
y0,y1( )  

																																								 																					
16 Regulatory language suggests that parameters like medians on their own may inadequately 
describe outcomes. In its guidance for product labeling, the FDA (FDA, 2006) notes: 

When time-to-event endpoints (e.g., mortality) are used, median or mean 
survival alone is not usually an adequate descriptor. Survival curves (or event-
free survival curves) and hazard ratios are often effective ways to display such 
data. Data can also be summarized at specific times (e.g., prevalence at 3, 6, 9, 
12 months) or at specific event frequency (e.g., time to 25 percent, 50 percent, 
and 75 percent prevalence of events). 

17 While it is straightforward to imagine how understanding IPs may be valuable in informing 
certain decisions (see Mullahy, 2018a) it is maybe less obvious how knowledge of, or knowledge 
of bounds on,   mΔ  is informative. While applicability to practical questions may be more 
nuanced there are nonetheless real-world settings where knowledge of   mΔ—or more generally 

of 
  
q α( )Δ—should be decision-relevant as will be suggested in appendix E. 
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values, 
  

3,8( ),  15,11( ),  17,21( ){ } . Imagine 
  
Pr y0,y1( )  is known. There is nothing particularly 

peculiar about the depicted probability structure (Pearson correlation .77, rank correlation 1.0). 

Yet   Δm =−4 < 0  and   mΔ= 4 > 0 . A decisionmaker knowing nothing more than the pictured 

information must select 
 
T0  or 

 
T1 . Which should be chosen? (Which would you choose?) 

 

[figure 4 about here] 

 

 In general one would appeal to the decisionmaker's utility or loss function to answer this 

question. But this is not the main issue here: Important here is whether the assumed knowledge 

of   mΔ  might influence even to some degree a decisionmaker's attitudes about the relative 

merits of 
 
T0  and 

 
T1  given that   Δm  is presumed known. Would such knowledge be even 

partially influential then the obstacle to decisionmaking based on   mΔ  in settings where 

  
Pr y0,y1( )  is not known is   mΔ ' s  point identification not, as Imbens and Wooldridge hint, 

irrelevance of   mΔ  per se. In these cases partial identification may support such decisionmaking. 

 

Partial Identification of and Bounds on   mΔ  

 Since   mΔ  is generally partially but not point identified, a decisionmaker whose choice 

would depend to at least some degree on knowing it must accept that knowing a range of 

possible values is the best to be hoped for. Whether the knowable range of its possible values 

suffices for decisionmaking is context dependent. 

 A parameter  θ  is partially identified when it is known to be in the closed, half-open, or 

open bounds interval 
  
b θ( ) . Define the bounds set 

  
B θ( ) = L θ( ),U θ( ){ }  where 

  
L θ( ) = inf b θ( )( )  

and 
  
U θ( ) = sup b θ( )( ) .18 

  
L θ( )  and 

  
U θ( )

 
are valid bounds since 

  
θ ∈ b θ( )  but may not be the 

tightest bounds. The bounds 
  
B θ( )  are considered sharp when 

  
L θ( )  and 

  
U θ( )  are the largest 

and smallest values learned from the data that are consistent with knowledge of  θ . These 

tightest bounds and corresponding bounds interval are denoted 
  
B* θ( ) = L* θ( ),U* θ( ){ }  and 

  
b* θ( ) . A partially identified parameter  θ  is sign identified when 

  
b* θ( )  excludes zero. 19 

																																								 																					
18 Using inf/sup instead of min/max covers cases where 

  
b θ( )  may be half or fully open. 

19  The paper does not consider monotone treatment response (Manski, 1997) or related 
considerations (Lee, 2000). See appendix B for a brief discussion. 
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Strategies for computing 
  
B* mΔ( )  are discussed in appendix C.20 

 

Bounds with Partially Observed Outcome Data 

 Because they are relevant in the case studies appearing in section 6, a few considerations 

involved in computing bounds on   mΔ  under two forms of partially observed outcomes—right-

censored data and IQR data—are sketched here and discussed more fully in appendix C. 

 Right-censoring of outcome data is common in TTE studies. Given noninformative right-

censoring at 
 
yc  

(outcomes unobserved if they exceed 
 
yc ) three scenarios can be considered: 

 

a. both 
  
F0 yc( )  and 

  
F1 yc( )  are greater than .5 (both 

 
m0  and 

 
m1  are point identified) 

b. one of 
  
F0 yc( )  and 

  
F1 yc( )  is greater than .5, the other is not (one of 

 
m0  or 

 
m1  is 

point identified, the other is not) 

c. both 
  
F0 yc( )  and 

  
F1 yc( )  are less than than .5 (neither 

 
m0  nor 

 
m1  is point identified) 

 

These cases, depicted in the top panel of figure 5, have different implications for the 

identification of   Δm  and   mΔ : 

 

a.   Δm  is point identified;   mΔ  is partially identified with finite bounds 

b. both   Δm  and   mΔ  are partially identified with one finite bound 

c. neither   Δm  nor   mΔ  is informatively bounded (no finite bounds) 

 

None of these results is surprising. Yet even under scenario (a) it is noteworthy that while the 

particular right-censoring threshold 
 
yc  is of no consequence for point identifying   Δm —i.e. 

 
m0 , 

 
m1 , and   Δm  are invariant with respect to any 

 
yc  that exceeds both 

 
m0  and 

 
m1 —this is not 

so for computation of   mΔ  bounds. The extent of right-censoring affects the amount of 

																																								 																					
20 A Stata program, medte, computes 

  
B* mΔ( )  with uncensored or right-censored outcomes. A 

zip file containing the do-file defining the medte program is available here. medte reports   Δm , 

  
B* mΔ( ) , the IP bounds defined in appendix C ((C.1) and (C.2)), and the approximate central 

aperture measures defined in section 5. The zip file also contains a readme file and the two 
datasets used for the analyses reported in those tables. (It may be of interest to note that 

  
B* mΔ( ) = −6,6{ }

 
for the data depicted in figure 4, with this 

  
B* mΔ( )

 
computed using the 

permutation approach described in appendix C.) 

https://uwmadison.box.com/s/jyczo6zljf96z0hmx5lg5scdh42osdjn
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information used to compute the   mΔ  bounds. Reducing right-censoring—i.e. increasing 
 
yc —

can never widen   mΔ  bounds but may narrow them. See appendix C for discussion.21 

 

[figure 5 about here] 

 

 The second form of partially observed data of interest here is interquartile-range data. 

IQRs are often reported alongside medians, sometimes in settings where data are also right 

censored. For instance IQRs are reported for the primary endpoints in the Cao study that 

reported entire data (their figure 2 and table 3) as well as in the Hung study that reported the 

two arms' quartiles only (their table 2; figure 6 here). Indeed it is not unusual to find the only 

outcome information reported to be that on each outcome's three sample quartiles. 

 

[figure 6 about here] 

 

 Recall the definition of 
 
IQRj  in (2). It turns out that   mΔ  can be bounded 

informatively using only the 
 
IQRj . When outcomes are continuously distributed and the 

  
Fj y( )  

are everywhere-increasing in y the IQR-based bounds are 

 

 
  
BIQR mΔ( ) = q1 .25( )−q0 .75( )( ),  q1 .75( )−q0 .25( )( ){ } ,    (10) 

  

where the 
  
qj .25( ) and 

  
qj .75( )  are the observed data. When outcomes are measured as integers 

the corresponding IQR-based bounds are 

 

 
  
BIQR mΔ( ) = q1 .25( )−q0 .75( )−1( ),  q1 .75( )−q0 .25( )+1( ){ } .   (11)  

 

Appendix C provides details. 

 

Relationships between   Δm  and   B
*(mΔ)  

 While   Δm  and   mΔ  describe different quantities, understanding relationships between 
																																								 																					
21 For ethical and statistical reasons stopping clinical trials "early for benefit" is controversial 
(Pocock, 1992). Ethical considerations aside, if the only endpoints of interest are the median 
TTE outcomes 

 
m0  and 

 
m1  

then there is no further statistical benefit to be realized by waiting 

to amass more data once the events for half the subjects in each treatment arm have occurred. 
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them may enhance understanding of treatment effectiveness when knowledge of   Δm  alone 

inadequately informs choice. If so, whether knowing 
  
B* mΔ( )  instead of   mΔ  itself will satisfy a 

decisionmaker will depend on context. 

 This subsection presents results on relationships between   Δm  and 
  
B* mΔ( ) . Knowledge 

of   Δm  turns out to be partially informative about 
  
B* mΔ( )  and vice versa; since both   Δm  

and   mΔ  derive from 
  
Pr y0,y1( )  this is not surprising. The results are explained in appendix D. 

 

Result 1 (R1):   Suppose   Δm < 0 . Then: 

   a. 
  
0≤D01 ≤ .5  

   b. 
  
0 < D10 ≤1  

   c. 
  
L* mΔ( )≤ 0

 
 

R1(c) means that knowing 
  
sign Δm( ) suffices to sign 

  
L* mΔ( )  when   Δm < 0 . An interpretation 

is that the data cannot reject 
  
sign mΔ( ) = sign Δm( ) . Alternatively, if   mΔ  is sign identified—

with   Δm < 0  this means 
  
U* mΔ( ) < 0 —then its sign must be the same as   Δm's , i.e.   mΔ  and 

  Δm cannot be sign identified in opposite directions. This result is generalized with Result 2: 

 

Result 2 (R2):   
  
L* mΔ( ) ≤  Δm ≤  U* mΔ( )  

 

Result 3 (R3):   Suppose 
  
D10 > .5 . Then: 

   a. 
  
Pr y1 ≤ y0( ) > .5  

   b.   Δm < 0  

   c.   mΔ< 0  

 

Finding 
  
Djk > .5  is powerful, sufficing to sign identify   mΔ  and offer a strong statement about 

  
Pr yj < yk( ) .22 Indeed,   mΔ  is sign identified if and only if one of the 

 
Djk  exceeds .5. 

																																								 																					
22 With smaller values of y corresponding to better health it might be reasonable in such cases 

to consider 
 
Tj  to be a breakthrough treatment. See appendix E. 
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 Figure 7 integrates these ideas. Depicted are two different joint probability structures. 

  
Pr(a) y0,y1( ) , where 

 
y0  and 

 
y1  are proximate, has   Δm = 2 ,   mΔ= 2 , 

  
B* mΔ( ) = −1,4{ } , 

  
D01 = .4 , and 

  
B* Pr y1 > y0( )( ) = .4,1{ } . Conversely 

  
Pr(b) y0,y1( ) , where 

 
y0  and 

 
y1  are distant, 

has   Δm = 6 ,   mΔ= 6 , 
  
B* mΔ( ) = 3,8{ } , 

  
D01 = 1 (zero-order dominance; see Castagnoli, 1984), 

and 
  
B* Pr y1 > y0( )( ) = 1,1{ } . Roughly speaking, joint distributions placing probability mass 

further northwest of the 
  
y0 = y1  

locus yield stronger identifying information along with larger 

median treatment effects; in such instances the marginals 
 
F0  and 

 
F1  are "farther apart" in an 

important sense explored further in section 5. 

 

[figure 7 about here] 

 

Informing Decisions with   Δm  and Partially Identified   mΔ  

 Imagine a decisionmaker for whom both   Δm  and   mΔ  are decision-relevant parameters. 

Consider a stylized policy or decision function 

 

 
  
pβ = βΔm + 1−β( )mΔ ,        (12) 

 

where 
  
β ∈ 0,1⎡⎣⎢

⎤
⎦⎥  is presumed known and reflects the relative importance to the decisionmaker of 

  Δm  and   mΔ . With smaller y corresponding to better health, positive and negative values of 

  
pβ  favor 

 
T0  or 

 
T1 , respectively. In general 

  
pβ  is only partially identified, with 

 

 
  
B* pβ( ) = βΔm + 1−β( )L* mΔ( ),  βΔm + 1−β( )U* mΔ( ){ } .    (13) 

 

However sign identification of 
  
pβ  would be valuable for decisionmaking. Consider three cases: 

 

a. Suppose   Δm = 0 . Then for any 
  
β ∈ 0,1⎡⎣⎢

⎤
⎦⎥    

pβ  would be sign-identified only if   mΔ  is 

sign-identified. But from R2   mΔ  is not sign identified when   Δm = 0 . 

b. Suppose   Δm ≠ 0  and   mΔ  is sign-identified. Then 
  
pβ  is sign-identified for any 

  
β ∈ 0,1⎡⎣⎢

⎤
⎦⎥  since from R2 the signs of   Δm and   mΔ  coincide when   mΔ  is sign-

identified. 
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c. Suppose   Δm ≠ 0  and   mΔ  is not sign-identified. Then 
  
pβ  is sign-identified for some 

values of  β . E.g. suppose   Δm < 0  and 
  
U* mΔ( ) > 0 . Then 

  
pβ  is sign identified 

for 
  
β ∈ U* mΔ( ) U* mΔ( )−Δm( ),  1( ⎤

⎦
⎥ . Knowing this range may be instructive. 

 

 Decisionmakers may be positioned to make coherent choices even when they know only 

(13) and not (12). If 
  
pβ  

is sign identified then the decision at hand is well supported and there 

can be no regret. If not then it is appropriate to admit reservations about whatever decision is 

made since it might be regretted and since certitude about its merits is not credible (Manski, 

2020a). Either way to the extent that   mΔ  is at least minimally important to a decisionmaker 

its partial identification needn't hinder information on its bounds supporting or cautioning 

choices that must be made.23,24 

 

5. Path 2: Assessing Treatments' Effectiveness via   Δm  and Other Point-Identified Parameters 

 Recall from section 3 that Imbens and Wooldridge, 2009, have argued that typical policy 

choices will appropriately be based on consideration of quantiles of 
 
F0  and 

 
F1 , writing: "choice 

should be governed by preferences of the policymaker over [
 
F0  and 

 
F1 ] (which can often be 

summarized by differences in the quantiles)." One might thus imagine a decision function in 

which various quantiles hold different importance for a decisionmaker: 

 

 
  
pω J( ) = ωα ×Δq α( )α∈J∑ ,        (14) 

 

where J is the set of quantiles of interest and 
 
ωα  are importance weights. Should all the 

  
Δq α( )  

in (14) be point identified then Imbens and Wooldridge's claim suggests that the sign of 
  
pω  will 

determine the policymaker's choice; its magnitude might also be of interest in some contexts. 

Basing choices on   Δm  alone is a particular version of (14) with 
  
J = .5{ }  and 

  
ω.5 = 1 . 

																																								 																					
23 See Manski, 2018a,b, for important insights on decisionmaking in clinical and related contexts. 

24 	When  β  is unknown, a more modest yet quite pragmatic suggestion—one that still 
acknowledges both the decision-relevance of   mΔ  as well as its partial identification—is simply 

to routinely report 
  
B* mΔ( )

 
alongside point estimates of   Δm  when a study's results are 

tabulated. For instance, one might report  -4	{-15,10}  in a tabular summary of the results 
reported in table 1 (being careful to note that this is not a conventional confidence interval).	



 15 

 Still in the spirit of Imbens and Wooldridge's suggestion of comparing marginal 

distributions, policy choices might alternatively depend on a set of probability treatment effects, 

 

 
  
pπ K( ) = πk×ΔF yk( )k∈K∑ ,        (15) 

 

where K is the set of y-values of interest (e.g. 6-, 12-, and 24-month survival) and 
  
πk  are 

importance weights. Again the sign and perhaps the magnitude of 
  
pπ  may be decisive for 

treatment choice. Familiar single-outcome criteria, e.g. differences in 12-month survival 

probabilities, are specific versions of (15). 

 Of course (14) and (15) might both be of interest in which case a general choice function 

 

 
  
pboth = v pω J( ), pπ K( )( )        (16) 

 

may underpin decisions. 

 

Aperture and Weighted-  Δm  Measures of Treatment Effectiveness 

 Point-identified parameters beyond   Δm  may provide decisionmakers more-nuanced 

perspectives on treatment effectiveness than those offered by   Δm  alone. The search is for 

broadly applicable parameters that provide such perspectives while also being straightforward to 

implement in empirical studies. The perspective here is that of a decisionmaker who is not 

prepared to entirely abandon   Δm  but is willing to temper decisions by additional criteria. One 

approach, seemingly novel, is suggested here.25 

 As used in the preceding paragraph "treatment effectiveness" is intended to describe a 

broad sense of the extent to which one treatment makes people better off than another. In the 

following discussion greater treatment effectiveness means some amalgam of larger   α–quantile  

treatment effects 
  
Δq α( )  over some 

  
α ∈ 0,1( ) and larger y–probability treatment effects 

  
ΔF y( )  

over some   y ∈ Y . In essence, greater treatment effectiveness means 
 
F0  and 

 
F1  are "farther 

apart" in some directions. The practical challenge is how to summarize this notion with a single 

parameter, i.e. how to define decision-informative yet simple and parsimonious representations 

of "farther apart" and "some direction." 

 Define the area between 
 
F0  and 

 
F1  over some interval 

  
y ∈ r,s( )  as the local aperture of 

																																								 																					
25 The approach suggested here is admittedly speculative; its merits—should it appear to have 
any—would need to be vetted more thoroughly than the scope of this paper permits. 
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F0  and 

 
F1  and denote this area 

  
A r,s( ) . 26  "Aperture" signifies that 

  
A r,s( )  measures the 

"opening" between 
 
F0  and 

 
F1  over the interval 

  
r,s( ) . Intuitively, the larger is 

  
A r,s( )  the more 

effective is 
 
Tj  relative to 

 
Tk  in the vicinity of 

  
r,s( )  as 

 
F0  and 

 
F1  are locally "farther apart."27 

 For any point 
  
y,α( )  in the region bounded by 

 
F0  and 

 
F1  over 

  
y ∈ r,s( )  define two 

approximations to 
  
A r,s( )  

as 

 

 

  

a1 y,α( ) = F0 y( )−F1 y( )( )× F1
−1 α( )−F0

−1 α( )( )
          =−ΔF y( )×Δq α( )

,        (17) 

and 

 

  

a2 α( ) = .5× F0 F1
−1 α( )( )−F1 F0

−1 α( )( )( )× F1
−1 α( )−F0

−1 α( )( )
        = .5× F0 F1

−1 α( )( )−F1 F0
−1 α( )( )( )×Δq α( ).

    (18) 

 

 Using the idea of aperture and its approximations to devise broadly applicable and 

point-identifiable measures of treatment effectiveness, it is natural to consider aperture at a 

"central" location in the data, or central aperture. Letting 
  
r,s( ) = mj,mk( )  (i.e. r is the smaller 

of 
 
m0  or 

 
m1 ), define central aperture as 

  
A mj,mk( ) . From (17) and (18) it follows that two 

easily computed approximations to central aperture are: 

 

 

  

a1 m*,.5( ) =−ΔF m *( )×Δm

             = δ1×Δm
        (19) 

and 

 

  

a2 .5( ) = .5× F0 F1
−1 .5( )( )−F1 F0

−1 .5( )( )( )×Δm

        = .5×δ2×Δm
     (20) 

																																								 																					
26 With discrete data "area" should be interpreted as a scaled sum over a set 

  
y ∈Q = r,…, s{ } , 

e.g. 
  
A r,s( ) = R−1

R
F0 y( )−F1 y( )( )y∈Q∑  if Q is a set of consecutive integers (with   R = #Q ). 

27 Imagine at this point that 
 
F0  and 

 
F1  do not cross on the interval 

  
r,s( ) . Crossovers are seen 

below to be irrelevant for the particular approaches proposed here. 
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where 
  
m* = .5 m0 + m1( ) .28,29 

 
  
a1 m*,.5( )  and 

  
a2 .5( )  are necessarily non-negative since for any y between 

 
m0  and 

 
m1  

  Δm  has the opposite sign of the terms multiplying it in (19) and (20).30 For practical purposes 

it is useful to re-define 
  
a1 m*,.5( )  and 

  
a2 .5( )  so their signs indicate the   Δm -direction of 

treatment effectiveness, i.e. 

 

 
  
a1 m*,.5( ) = sign Δm( )× δ1×Δm( )        (21) 

and 

 
  
a2 .5( ) = sign Δm( )× .5×δ2×Δm( ) ,       (22) 

 

with 
  
A mj,mk( )  analogously signed. These revised definitions are used henceforth. 

 Figure 8 depicts 
  
a1 m*,.5( )  and 

  
a2 .5( )  when 

 
y0  and 

 
y1  are imagined to be gamma-

distributed with 
  
m0 = 4  and 

  
m1 = 2 . In the top panel 

  
−a1 m*,.5( ) = .70  is the area of the 

shaded rectangle while in the bottom panel 
  
−a2 .5( ) = .64  is the area of the shaded trapezoid.31 

 

[figure 8 about here] 

																																								 																					
28 Note that  m *  may or may not be in the common support Y (e.g. if Y is the set of non-
negative integers). 

29 The vertical distances between 
 
F0  and 

 
F1  described by the 

  
δ j  not only define probability 

treatment effects but also correspond roughly to the degree of informativeness (or tightness) of 
bounds on parameters like   mΔ  and IP (see section 4 and appendix C). Moreover while the roles 

played by the 
  
δ j  in (21) and (22) may be intuitive per se, it might also be noted that they are 

respectively (if positive) Boole-Fréchet lower bounds on 
  
Pr yj < m*,yk > m *( )  and 

  
Pr yj < mk,yk > mj( )  (if the 

  
δ j < 0  then reverse the inequality directions in these probability 

statements). These translate roughly as "
 
yj  is small and 

 
yk  is large so 

  
yk − yj  is large." 

30 Note that 
 
F0  and 

 
F1  cannot cross over their local domains in the definitions of 

  
a1 m*,.5( )  

and 
  
a2 .5( ) . E.g. suppose 

  
m1 < m0 ; then 

  
F1 y( )≥ .5  and 

  
F0 y( ) < .5  for all 

  
y ∈ m1,m0( ) . 

31 The .5 multiplier in the expression for 
  
a2 .5( )  in (22) arises since the area of the trapezoid 

PQRS is the combined area of the two right triangles PSQ and RQS. 
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 Noteworthy from (21) and (22) is that 
  
a1 m*,.5( )  and 

  
a2 .5( )  respect but augment   Δm . 

Both are
 
intuitive, easily computed indicators of treatment effectiveness,32 measures that provide 

broader characterizations of effectiveness than does   Δm  on its own. That is 
  
a1 m*,.5( )  and 

  
a2 .5( )  describe more comprehensively than does   Δm  the divergence of 

 
F0  and 

 
F1  in the 

"middle" of the data. In an important sense 
  
a1 m*,.5( )  and 

  
a2 .5( )  combine the motivations 

underlying (14) and (15); for instance 

 

 
  
a1 m*,.5( ) = sign Δm( )× −pω .5{ }( )×pπ m *{ }( )( ) .     (23) 

 

 The sense in which central aperture and its approximations are indicators of treatment 

effectiveness can be appreciated with reference to figure 9 where 
  
m0 = 4  and 

  
m1 = 2  in both 

panels wherein 
 
F0  is the same but 

 
F1  

differs (each 
 
Fj  is gamma distributed). In the top panel 

  
δ1 =−.08  and 

  
a1 m*,.5( ) =−.16  while in the bottom panel 

  
δ1 =−.18  and 

  
a1 m*,.5( ) =−.35 . 

This difference in approximate central aperture conforms to a notion that the effectiveness of 
 
T1  

relative to 
 
T0  is greater in the scenario depicted in the figure's bottom panel even though 

  Δm =−2  in both cases. If a decisionmaker must choose among 
 
T0 , 

 
T1(top) , or 

 
T1(bottom)  which 

do they select? Might knowledge of the respective 
  
a1 m*,.5( )  influence or support their choice?33 

 

[figure 9 about here] 

																																								 																					
32 

  
a1 m*,.5( )  and 

  
a2 .5( )

 
can be estimated even with right censoring; they are point identified so 

long as both 
  
Fj y( )  are point identified for all 

  
y≤max m0,m1{ } . 

33 For positive y the global aperture of 
 
F0  and 

 
F1 —the area between 

 
F0  and 

 
F1  

over the 

entirety of Y—is the difference in means 
  
E0 y⎡⎣⎢

⎤
⎦⎥ −E1 y⎡⎣⎢

⎤
⎦⎥ =−ΔE y⎡⎣⎢

⎤
⎦⎥  (necessarily finite in a sample 

but perhaps not so in a population where Y is unbounded). If a decisionmaker uses 
  
ΔE y⎡⎣⎢

⎤
⎦⎥  to 

inform choice they are appealing to the global aperture of 
 
F0  and 

 
F1  even if they do not 

appreciate this explicitly. While 
  
ΔE y⎡⎣⎢

⎤
⎦⎥  could be used to gauge treatment effectiveness it will 

often be impractical in clinical studies to do so due to right censoring. Also note that 
 
F0  and 

 
F1  

can cross over Y, making any corresponding notion of aperture as "opening" somewhat fuzzy. 
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 One might also consider tail aperture or quartile aperture to assess treatment 

effectiveness, akin to how one might consider comparisons of IQRs, e.g. 
  
A qj α( ),qk α( )( )  for 

  α = .25 ,   α = .75 , etc., implemented using 
  
a j …( )  approximations. A vector of such measures 

might complement the Imbens and Wooldridge, 2009, approach described in (14) and (15), e.g. 

  
pξ J( ) = ξα ×A qj α( ),qk α( )( )α∈J∑ . Such indicators may be instructive regarding treatment 

effectiveness even when the information conveyed by 
  
a1 m*,.5( )  or 

  
a2 .5( )  is tenuous, as with 

the Cao et al., 2020, data where 
  
A mj,mk( ) = a1 m*,.5( ) = a2 .5( ) =Δm = 0  (see figure 2). 

 Inspection of (21) and (22) suggests that 
  
a1 m*,.5( )  and 

  
a2 .5( )  can be interpreted as 

weighted   Δm . One might thus consider more generally a class of weighted   Δm ,   w×Δm , 

where 
  
w ∈ 0,1⎡⎣⎢

⎤
⎦⎥  are point-identifiable weights describing some decision-relevant aspects of the 

divergence of 
 
F0  and 

 
F1 . Conventional analysis effectively sets   w = 1  but there is no reason to 

believe   w = 1  best informs a decisionmaker's choice. Such weighted   Δm  parameters build on 

  Δm  but downweight it the smaller is w. Reasonable candidates for w might include 
  
δ1  and 

  
.5×δ2  as in (21) and (22), as well as other parameters that characterize vertical distances 

between 
 
F0  and 

 
F1 , e.g. the 

 
Djk .34

 
 The preceding discussion is not advocacy for using a particular aperture measure or 

weighted   Δm  as a decision standard. Instead it is an appeal for future research to assess the 

merits of easily implementable and point-identified criteria like 
  
a1 m*,.5( )  and 

  
a2 .5( )  for 

decisionmaking using point-identified parameters, the premise being that decisions should be 

informed more comprehensively than by appealing to   Δm  alone. Consideration of central 

aperture might serve as a useful starting point for such exploration but is unlikely to be its 

destination. Moving beyond the intuition that parameters akin to 
  
a1 m*,.5( )  and 

  
a2 .5( )  

describe treatment effectiveness to a formal assessment of welfare differences they may describe 

might also be a valuable step. 

 Determining what values of 
  
a1 m*,.5( )  or 

  
a2 .5( ) —or indeed any other parameters 

																																								 																					
34 Referring to   w×Δm  to gauge treatment effectiveness recalls the Harberger, 1971 (eq. 2), 
first-order approximation to welfare change due to a "treatment": the product of marginal value 
and quantity change. Quantity change alone—here   Δm —tells an incomplete story; a fuller 
story unfolds by considering as well the worth of quantity along the margin of quantity change. 
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advanced in such discussions—correspond to "clinically significant" differences between 
 
F0  and 

 
F1  will also require novel consideration. (For instance if 

  
ΔCS  is considered a clinically 

significant   Δm  in a particular treatment context then might a magnitude of 
  
a1 m*,.5( )  or 

  
a2 .5( )

 
exceeding 

  
.25×ΔCS  suggest clinical significance? Or 

  
.1×ΔCS ? Or … ?) While ultimately 

essential, such pragmatic considerations ought not postpone exploring the merits of parameters 

that better inform decisionmakers about treatment effectiveness than do those conventionally 

used, particularly when such novel parameters are straightforward to implement in practice. 

 

6. COVID-19: Three Case Studies 

Case Study 1: Remdesivir for COVID-19 Treatment (Beigel et al., 2020) 

 The Beigel study reports results of a randomized, double-blind, placebo-controlled trial 

of intravenous remdesivir in adults hospitalized with COVID-19. Its primary outcome is time to 

recovery (TTR) measured in days, with recovery determined by a patient meeting a pre-

specified threshold on an ordinal scale. The intention-to-treat sample analyzed here35 consists of 

538 and 521 observations on treated and control patients, respectively, of which 147 and 181 

observations are right-censored after 28 days. The bottom panel of figure 1 depicts these data. 

 Table 1 summarizes the results. As noted earlier   Δm =−4 , favoring treatment over 

control, while 
  
B* mΔ( ) = −15,10{ } . The bounds interval is fairly wide as can be expected from 

the wide IP bounds. While the   Δm  result might lead a decisionmaker to favor treatment over 

control, wide bounds on   mΔ  might encourage that same decisionmaker to be conservative in 

advancing such a recommendation should considerations beyond   Δm  be relevant. Using earlier 

arguments, however, note that 
  
pβ  is sign identified (negative) for 

  
β ∈ 5 7,1⎡
⎣⎢

⎤
⎦⎥ , so that a 

decisionmaker who appeals to (12) and who weighs   Δm  no more than  2 7  is positioned to 

recommend treatment over control. 

 Finally, for the Beigel data the central aperture measures are 
  
A m1,m0( ) =−.394 , 

  
a1 m*,.5( ) =−.386 ,  and 

  
a2 .5( ) =−.375 . 

 

Case Study 2: Lopinavir-Ritonavir for COVID-19 Treatment (Cao et al., 2020) 

 The Cao study reports the results of an RCT involving hospitalized patients with 

																																								 																					
35 The data used in this section's analyses of the first two case studies as well as in producing 
figure 1 (bottom panel) and figure 2 were coded from "eyeball analysis" of Beigel's figure 2A and 
Cao's figure 2 then calibrated as necessary to match the reported sample medians. 
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confirmed SARS-CoV-2 infection. Treatment consisted of receipt of lopinavir-ritonavir plus 

standard care, while control consisted exclusively of standard care. The trial's primary endpoint 

is time to clinical improvement (TTI), measured in days. The trial was open label; moreover the 

authors report that placebo treatment in the control group was not possible due to the trial's 

emergency nature. The intention-to-treat sample consists of 199 patients with 99 and 100 

randomized to treatment and control, respectively. By the administrative censoring time of 28 

weeks clinical improvement was observed for 77 of the 99 treatment subjects and 70 of the 100 

control subjects; thus 22 and 30 subjects' data, respectively, are treated as right-censored. Figure 

2 reproduces the data depicted in Cao's figure 2. 

 Median TTI is 16 days in both arms of the trial so   Δm = 0 . A decisionmaker concerned 

only with marginal median outcomes would favor neither treatment. But 
  
B* mΔ( ) = −9,7{ } , so 

the magnitude of   mΔ  could be quite substantial in either direction. Regarding central aperture 

  
A mj,mk( ) = a1 m*,.5( ) = a2 .5( ) = 0  in the Cao sample as   Δm = 0 .36,37 

 

Case Study 3: Combination Therapy for COVID-19 Treatment (Hung et al., 2020) 

 The Hung study reports the results of an open-label randomized phase-2 trial comparing 

combination treatment for COVID-19 (interferon beta-1b plus lopinavir–ritonavir plus ribavirin) 

with lopinavir–ritonavir alone in a sample of hospitalized patients. The study's primary outcome 

is time to providing a nasopharyngeal swab negative for severe acute respiratory syndrome 

coronavirus 2 RT-PCR. 86 and 41 patients were randomly assigned to treatment and control. 

The time to negative test (TTNT) outcomes are reported as integers (days) and analyzed in an 

intention-to-treat context.38 

																																								 																					
36 As seen in figure 2 

 
F0  first-order dominates 

 
F1  (at least up to the censoring threshold), so 

that a decisionmaker might have other reasons to favor 
 
T1 . 

37 While this paper has sidestepped issues of sampling variation and inference it might be noted 

that 
  
a1 m*,.5( )  and 

  
a2 .5( )  are themselves subject to sampling variation. Even in a case like the 

Cao data where the point estimates of both measures are zero (since   Δm = 0 ) there will 
generally arise non-degenerate sampling distributions. A simple bootstrap with 1,000 replications 

shows for those data 95% central sampling intervals of 
  
−.85,.09⎡
⎣⎢

⎤
⎦⎥  for 

  
a1 m*,.5( )  and 

  
−.80,.07⎡
⎣⎢

⎤
⎦⎥  

for 
  
a2 .5( )

 
with respective sampling distribution medians of   −.04  and   −.04 . (For the Beigel 

data the corresponding results are 
  
−1.15,−.05⎡
⎣⎢

⎤
⎦⎥  for 

  
a1 m*,.5( )  and 

  
−1.11,−.04⎡
⎣⎢

⎤
⎦⎥  for 

  
a2 .5( )

 
with 

respective sampling distribution medians of   −.42  and   −.40 .) 
38 The Hung study reports no information on right-censoring. The analysis proceeds as if the 
data are uncensored, i.e. that the reported quantiles are those corresponding to the full sample. 
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 Figure 6 depicts the medians and IQRs reported in Hung's table 2; this is the only 

information the study provides on the outcomes' marginal distributions. As such, the reported 

TTNT data are right-censored and interval-measured (e.g. 
  
q1 .25( ) = 5  implies 

  
F1 5( )∈ .25,.5⎡

⎣⎢ ) , 

as depicted by the closed and open symbols in figure 6). For these data   Δm =−5 . Applying 

(11) to these data yields 
  
BIQR mΔ( ) = −11,4{ } .39 

 

 7. Summary 

 Ease of computation, broad applicability, and parsimony in summarizing outcome data 

are three plausible statistical reasons for the prominence of   Δm  in clinical research. By a 

revealed preference argument,   Δm  must routinely provide decisionmakers with useful 

information about the choices they confront. Yet this popularity could arise either because 

parameters other than   Δm  are not of interest40 or because parameters beyond   Δm  are of 

interest but the cost of using them to inform choices is perceived to be too great. 

 This paper has suggested that it is straightforward to augment the signals about 

treatment effectiveness sent by   Δm  with information about other features of outcomes' 

distributions in such ways as should more comprehensively inform decisionmakers who must 

choose on the basis of the data at hand, whether or not those other features are point identified. 

In essence the strategies presented in this paper may serve to reduce the perceived costs of 

appealing to parameters beyond just   Δm  for those decisionmakers who do find them of interest. 

 While one might imagine a portfolio of alternative approaches, the particular ideas 

advanced here are designed to be broadly roadworthy since they are easily implemented and 

require—whether a decisionmaker follows path 1 or path 2—assumptions hardly more stringent 

than those needed for identification of   Δm  itself. That the measures of treatment effectiveness 

proposed here are all anchored to   Δm  should also be of comfort to decisionmakers who have 

traditionally and broadly relied on   Δm  in making choices. How these approaches perform in 

practice, whether they provide useful information to decisionmakers, and how corresponding 

																																								 																					
39  A curiosity is that IQRs and medians are sometimes reported when right-censoring 

probabilities exceed .25 or .5. For example, the Cao study reports 
 
IQR0  as 

  
15,18{ } even though 

the right-censoring fraction in the control group is .30. Other clinical studies report analogous 
results. Whether what is reported in such instances derives from model-based predictions (e.g. 
from proportional hazard models), from other sources, or from erroneous calculations is not 
always evident. In no event, however, are right-censoring probabilities exceeding .5 or .25 
logically consistent with point-identified medians or .75-quantiles. 

40	For example,   β= 1  in (12) or 
  
J = .5{ } , 

  
ω.5 = 1 , and 

  
v …( ) is invariant w.r.t. 

  
pπ  in (16).	
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standards for clinical significance should be defined are among the issues still to be resolved. 

 Finally the paper has focused on issues involving identification, ignoring considerations 

of inference used to understand implications of sampling variation. Such considerations may be 

of interest in some decisionmaking contexts and, if so, would be useful to tackle in future study. 
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Appendix A: Computing Medians 

 The definition of 
 
mj  in section 2 may not coincide with how statistical packages 

compute medians for samples where N is even. In these cases the definition (1) selects the .5N 

low-to-high order statistic, 
 
y(.5N) , while some packages (e.g. Stata commands, including 

centile, summarize, and tabstat) compute the median as the average of 
 
y(.5N)  and 

  
y(.5N+1) . 

While this discrepancy will typically be inconsequential when analyzing large samples this is not 

necessarily so for smaller samples (see table A1). 

 As such, understanding what formulae are used in published research and whether these 

align with the parameters that are conceptually of interest may be worthwhile. Also noteworthy 

is that Stata has several commands that compute percentiles, and for quantiles other than the 

median these may not yield the same results (though the different formulae are documented; e.g. 

compare centile and summarize). In small-to-medium-sized samples such differences may be 

nontrivial in estimating some parameters, e.g. IQRs. 

 

Additional Measurement Considerations 

 Measuring TTEs as integers (e.g. days) may introduce a form of measurement error. 

Suppose the outcome of interest is TTR. As in the Beigel study, a patient is assessed once daily 

at an unreported time with respect to recovery status. Suppose an assessment performed at one 

second after midnight on day two indicates the patient as not recovered but that recovery 

occurs at some point later on day two. Assuming recovery is an absorbing state, then the 

assessment taken sometime on day three would indicate recovery. That day-three assessment 

could in theory take place as late as one second before midnight. Thus observing the patient's 

TTR as day=3 means that the true recovery time could be anywhere in the open interval 
  
2,4( ) . 

Therefore the true difference in median outcomes is only partially identified, known only to be 

in the interval 
  
Δm−2,Δm + 2( )  where   Δm  is the observed integer difference in medians. 

While such complications could be relevant in practice—especially when TTEs are "small"—they 

are ignored in this paper.  
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Appendix B: Monotone Treatment Response and Distributional Assumptions 

Monotone Treatment Response 

 While this paper does not make use of assumptions about monotone treatment response, 

its prominence in related work merits brief mention. In a foundational paper Manski, 1997, 

shows the potential identifying power of monotone response to treatment in partial 

identification settings. While typically not testable, assumptions about monotone response—

outcomes are increasing or at least non-decreasing in treatment—will generally provide tighter 

bounds on partially identified parameters. 

 Several researchers have considered special cases in the spirit of monotone response that 

may yield tighter bounds on   mΔ  and related parameters. Lee, 2000, describes five cases 

("Special Models," or SM): 

 

  (SM1) 
  
y1 = y0 + q ,   q ≥ 0   

(SM2) 
  
y1 = y0 + ε ,   ε ≥ 0  

(SM3) 
  
y1 = y0 + ε ,   ε unrestricted  

(SM4) 
  
y1 = y0 + ε ,   ε symmetric  

(SM5) 
  
y1 = ξ y0( ) , 

  
ξ y0( )≥ y0  and 

  
ξ y0( )  increasing in 

 
y0  

 

Relating 
   
sign mΔ( )  to 

   
sign Δm( )   

 Lee draws on this framework to derive necessary and sufficient conditions under which 

  Δm = 0→ mΔ= 0  and   Δm > 0→ mΔ> 0 . Specifically   Δm = 0→ mΔ= 0  if and only if  

 

 
  
Pr y0 −m0 < y1−m1 < 0( ) =  Pr 0 < y1−m1 < y0 −m0( ) ,    (B.1)  

 

what Lee calls "equal probability of octants." Moreover,   Δm > 0→ mΔ> 0  if and only if 

 

 
  
Pr m1 < y1 < y0( ) <  Pr y0 < y1 < m1( ) .      (B.2) 

     

These conditions are not verifiable when the joint distribution 
  
F y0,y1( )  is unknown. 

 

Stochastic Dominance 

 Determining that 
  
F0 y( )  and 

  
F1 y( )

 
obey a stochastic dominance relationship is of limited 

value for understanding magnitude or sign relationships between   Δm  and   mΔ . For example, a 
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first-order dominance relationship between 
  
F0 y( )  and 

  
F1 y( ) implies knowledge of 

  
sign Δm( ) as 

well as the signs of all marginal quantiles' differences, but implies nothing correspondingly about 

  
sign mΔ( ) . Higher-order dominance is no more informative.  
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Appendix C: Details on Computation of Bounds on   mΔ  

Computing Bounds using Permutation Distributions 

 A intuitive strategy for computing tightest bounds on   mΔ  imagines a sample of 

  
N0 = N1 = N  observations on 

 
y0  and 

 
y1 , each gathered into N-vectors 

  
yj . Define 

    
Π y1( )  as the 

  N×N!  matrix whose columns are the N! permutations of 
  
y1 . Then the distributions of the 

elements of each column of the   N×N!  matrix D whose p-th column is 
    
Π y1( )

p
− y0 , 

  
p ∈ 1,…,N!{ } , are all the possible treatment-effect distributions consistent with the data. 

 Let 
   
m = m1,…,mN!

⎡
⎣⎢

⎤
⎦⎥  be the   1×N!  vector of column medians of D. Given the data the 

tightest possible bounds 
  
L* mΔ( )  and 

  
U* mΔ( ) are the smallest and largest elements of m; this 

holds since any claimed lower bound larger than 
   
min m( )  or upper bound smaller than 

   
max m( )  

is inconsistent with the data. When N is odd these permutation bounds are unique; when N is 

even one must decide how to define medians, as discussed in appendix A. 

 While intuitively straightforward, this approach is of limited value in applications. When 

  
N0 ≠ N1  D cannot be defined as above.41 Even if 

  
N0 = N1  relying on permutations becomes less 

practical as N increases. 42  Moreover, with right-censored data it is not evident how the 

permutation approach can be used even if 
  
N0 = N1 . 

 

Computing Bounds using 
 
Djk  

 In lieu of permutation-based solutions one can appeal to a generally applicable approach 

that relies on 
 
D01  and 

 
D10  and the inequality probabilities defined in (9). Tightest bounds on 

the IP (Fan and Park, 2010; Mullahy, 2018) are given by 

 

 
  
D01 ≤  Pr y1 > y0( ) = Pr Δ> 0( ) ≤  1−D10      (C.1)  

and            

																																								 																					
41 If 

  
N0 ≠ N1  then imagine the imbalance arises from different sampling probabilities. Let C be 

the least common multiple of 
 
N0  and 

 
N1 . Then replicating each 

 
yj  

 
C Nj  times yields a 

balanced sample of C observations from which the permutation distribution can be computed. 

42  Heckman et al., 1997, suggest approximating such data by defining the 
 
yj  as selected 

quantiles of each 
 
Fj  , so that 

  
N0 = N1 , and undertaking permutation analysis of the quantiles. 
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D10  ≤  Pr y0 > y1( ) = Pr Δ< 0( ) ≤  1−D01 .     (C.2) 

 

 For an intuition on determining the tightest bounds on   mΔ  use (C.2) and consider a 

case where it is observed that 
  
D10 > .5 . Then it follows from (C.2) and R3 that 

  
Pr Δ< 0( ) > .5  

so that   mΔ  must be negative. To determine the value of 
  
U* mΔ( )  consider an algorithm where 

the elements of 
 
y1  are all displaced by some positive amount d (i.e.

  
y1 + d ) and then compute 

the corresponding 
  
D10 d( ) = maxy F1 y + d( )−F0 y( ){ } . If 

  
D10 d( )≥ .5  then 

  
U* mΔ( ) is no greater 

than -d; if 
  
D10 d( ) < .5  then 

  
U* mΔ( )  is between -d and zero. Repeating this search over all 

possible d identifies the largest value of d for which 
  
D10 d( )≥ .5 , thus defining 

  
U* mΔ( ) =−d .  

 If initially 
  
D10 < .5  then 

  
U* mΔ( )  is positive. To determine this bound reverse the 

previous procedure: displace the elements of 
 
y1  as 

  
y1−d  until is determined the smallest d for 

which 
  
D10 d( )≥ .5  which value of d will define 

  
U* mΔ( ) = d . Determining 

  
L* mΔ( )  is  

analogous, using 
 
D01  and corresponding 

  
D01 d( ) . With integer-valued outcomes like the TTE 

data examined in this paper the determination of 
  
B* mΔ( )  is straightforward since the d-search 

is over a regular (integer) grid; with continuous outcomes the search will rely on some 

reasonably selected step sizes.43 

 This discussion establishes a link between the 
 
Djk  and sign identification of   mΔ . 

Specifically   mΔ  is not sign identified unless one of the 
 
Djk  exceeds .5. That is sign 

identification of   mΔ  corresponds to a lower bound greater than .5 on one of the 
 
Djk . 

  
Pr y1 > y0( ) > .5  if and only if 

  
L* mΔ( ) > 0 .44 

 Figure C1 demonstrates the intuition of the search algorithm using the Cao sample 

where the outcomes are measured as integers. For these data 
  
D10 < .5 . The top panel of Figure 

																																								 																					
43 This search algorithm is equivalent to, but the inverse of, the algorithm proposed in lemma 
2.3 of Fan and Park, 2010, that searches over u to determine the largest difference 

  
F1
−1 u( )−F0

−1 u + .5( )  over the domain 
  
u ∈ 0,.5⎡⎣⎢

⎤
⎦⎥ . 

44 The distinction between strict and weak inequalities in the preceding discussion is largely 
irrelevant if the focus is on continuously distributed outcomes. With discrete/integer outcomes, 
however, such distinctions may be important. 
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C1 indicates that a displacement of   d =−8  results in 
  
D10 −8( ) = .48  so that the displacement 

of -8 is not sufficiently large to determine 
  
U* mΔ( ) . However, with a displacement of  

(bottom panel of Figure C1), 
  
D10 −9( ) = .52 . As such 

  
U* mΔ( ) = 9 . 

 

[figure C1 about here] 

 

 Using simulated integer data and small 
  
N0 = N1 = N  (N≤12), the medte program 

mentioned in section 4, which uses the 
  
Djk −based

 
algorithm described here, is seen to have the 

following properties when compared with the exact permutation algorithm: when N is even 

medte returns bounds between those returned by the permutation algorithm based on the  .5N  

and   .5N +1  order-statistic median definitions (e.g. 
  
B* = −1,6{ }  versus 

  
−2,5{ }  or 

  
0,7{ } ); when 

N is odd medte returns bounds one unit more conservative than those returned by the 

permutation algorithm (e.g. 
  
B* = −2,9{ }  versus 

  
−1,8{ } ). 

 

Computing Bounds with Right-Censored Data 

 Computation of   mΔ  bounds with right-censored outcomes is no different than with fully 

observed outcomes so long as the censoring is properly accommodated in the various 

probabilities involved in computation. 

 While such bounds will generally not be tightest in the sense of the bounds that would 

arise were the data not censored they will still generally be informative. Moreover as noted in 

section 4 reducing the amount of right-censoring—i.e. increasing 
 
yc —can never widen   mΔ  

bounds but may narrow them. To see this consider an extreme example depicted in the bottom 

panel of figure 5 where 
  
yc = 11  (i.e. all values of y greater than 11 are unobserved). In this 

example the marginal medians and   Δm  are identified, with 
 
m0 =

 
m1 =10 and   Δm =0. Based 

on the observable (uncensored) data the   mΔ  bounds are 
  
B* mΔ( ) = −10,10{ } . Were the data 

fully uncensored the resulting bounds would be 
  
B* mΔ( ) = −10,2{ }  whereas with a less 

stringent censoring threshold, say 
  
yc = 15 , the bounds would be 

  
B* mΔ( ) = −10,7{ } . 

 

Computing Bounds with Quartile Data 

 Because it does not use information from the entirety of the 
 
Fj  marginals 

  
BIQR mΔ( )  

  d =−9
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defined in section 4 is not generally sharp though in some specific cases (e.g. 
   
yj ∼N µ j,σ

2( )) it 

is. In any event bounding   mΔ using information only on quartiles requires that the 
 
IQRj  be 

point identified, which may be problematic when right-censoring is prevalent. Just as the 
 
mj  

are not point identified when right-censoring fractions exceed .5, 
 
IQRj  is not identified when 

  
Fj y( )  is right censored at 

  
y < Fj

−1 .75( ) .45 

 The basic idea in computing 
  
BIQR mΔ( )

 
can be illustrated concretely for integer-

measured outcomes using the Hung data. 46  The estimated bounds from (11) are 

  
BIQR mΔ( ) = −11,4{ }  (note   Δm =−5 ). Figure C2 depicts the computation of the lower bound. 

The distribution 
  
F1 y( ) is displaced rightward by one-unit increments until the maximum (over 

y) vertical distance between 
  
F0 y( )  and the displaced 

  
F1 y + d( )  can be determined to be at least 

.5. Imagine a rightward displacement of 
  
F1 y( )  of   d =−10 . At y=15 

  
F1 y−10( )∈ .25,.5⎡

⎣⎢ )  and 

  
F0 y( )−F1 y−10( )∈ .25,.75( ⎤

⎦⎥ . Consequently the distribution has not been displaced sufficiently 

far rightward to determine 
  
LIQR mΔ( ) . Consider now a rightward displacement of 

  
F1 y( )  of 

  d =−11 . At y=15 
  
F1 y−11( )∈ 0,.25⎡

⎣⎢ ) and 
  
F0 y( )−F1 y−11( )∈ .5,1( ⎤

⎦⎥ . Thus 

 

 
  
LIQR mΔ( ) = q.25,1−q.75,0 −1 = 5−15−1 =−11       (C.3) 

 

since   d =−11  is the smallest possible shift guaranteeing 
  
F0 y( )−F1 y + d( )≥ .5 . 

																																								 																					
45 Some simulations suggest that 

  
BIQR mΔ( )  is often close to the sharp bounds obtained from 

fully observed data. E.g. with 
  
Fj = uniform 0,a j( ) and 

  
a0 < a1   

  
B* mΔ( ) = .5a1−a0,  .5a1{ }

 
and 

  
BIQR mΔ( ) = .25a1− .75a0,  .75a1− .25a0{ } ; for 

  
a0 = .8  and 

  
a1 = 1  

  
B* mΔ( ) = −.3,  .5{ }

 
while 

  
BIQR mΔ( ) = −.35,  .55{ } . 

46 One can also consider outcomes having continuous distributions. In samples drawn therefrom, 
however, 

 
F0  and 

 
F1  will not be smooth but instead will have a finite number of jump points at 

irregularly spaced non-integer y-values. Determining the bounds in such instances is 
conceptually no different but practically would need to accommodate irregularly spaced jump 
points in the search algorithm. 
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[figure C2 about here] 

 

Computing Bounds with Transformed Outcomes 

 The signs but not the magnitudes of both   Δm
 
and   mΔ  are invariant to monotone-

increasing transformations 
  
t yj( ) . Define 

  
Δt = t y1( )− t y0( ) . Then47 

 

 
  
sign med F1 t y( )( )( )−med F0 t y( )( )( )( ) =  sign Δm( )     (C.4) 

and 

 
  
sign med F Δt( )( )( )  =  sign mΔ( ) .       (C.5) 

 

 To determine bounds on 
  
med F Δt( )( ) two considerations arise: the first is whether the 

monotone positive transformation 
  
t yj( )  is affine; the second is whether both the original and 

transformed outcomes are integers. 

 The general result is that the signs of the tightest lower and upper bounds on 

  
med F Δt( )( ) are the same as those on   mΔ . While the monotone positive transformations 

  
t yj( ) 

change the shapes of the distribution functions 
  
F yj( )  they do not change 

 
D01  or 

 
D10 , only 

their corresponding y-ordinates. As shown above it is the 
 
Djk —in particular whether or not 

they exceed .5—that determine the bounds' signs. When furthermore the outcomes and 

transformed outcomes are continuous and 
  
t yj( )  is affine (i.e. 

  
t yj( ) = a + byj with b>0) then 

  
L* med F Δt( )( )( ) = a + bL* mΔ( ) and 

  
U* med F Δt( )( )( ) = a + bU* mΔ( ) . 

 When the 
 
yj  and 

  
t yj( )  are all integers—e.g. converting outcomes from weeks to days 

by multiplying by seven—and 
  
t yj( ) is affine then 

 

 
  
L* med F Δt( )( )( ) = a + b L* mΔ( )+1( )−1

      
(C.6) 

																																								 																					
47  Such sign-invariance does not hold for average treatment effects (ATEs) where 

  
sign E y1− y0

⎡
⎣⎢

⎤
⎦⎥( )  has no necessary implications for 

  
sign E t y1( )− t y0( )⎡

⎣⎢
⎤
⎦⎥( ) .
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and 

 
  
U* med F Δt( )( )( ) = a + b U* mΔ( )−1( )+1 .      (C.7) 

 

As such the sharp bounds on 
  
med F Δt( )( ) have the same sign as those on   mΔ  except when 

  
L* mΔ( ) = 0  or 

  
U* mΔ( ) = 0  in which cases 

  
L* med F Δt( )( )( )  takes the sign of 

  
U* mΔ( )  if 

  
L* mΔ( ) = 0  and 

  
U* med F Δt( )( )( )  takes the sign of 

  
L* mΔ( )  if 

  
U* mΔ( ) = 0 . While perhaps 

curious on first impression this result arises because the bounds in such cases are defined as 

integers and respect the mechanical definition medians in (1). 
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Appendix D: Explanation of Results 1-3 

 

Result 1 (R1):   Suppose   Δm < 0 . Then: 

   a. 
  
0≤D01 ≤ .5  

   b. 
  
0 < D10 ≤1  

   c. 
  
L* mΔ( )≤ 0

 
Explanation 

a. 
  
F0 y( ) < .5  for all 

  
y < m0  so 

  
0≤D01 = max F0 y( )−F1 y( ),0{ } < .5  for all 

  
y < m0 . 

Since 
  
m1 < m0  then 

  
F1 y( )≥ .5  for all 

  
y≥m0 , and since 

  
F0 y( )≤1  then 

  
0≤D01 ≤ .5  for all 

  
y≥m0 . Thus 

  
0≤D01 ≤ .5 . 

b. Since 
  
m1 < m0  there is at least one value of 

  
y≤m1  where 

  
F1 y( ) > F0 y( )  so that 

  
D10 > 0 . Since 

  
0≤ F0 y( ) < .5  for all 

  
y < m0  and since 

  
.5≤ F1 y( )≤1  for all 

  
y≥m1  then 

  
0≤D10 ≤1  for all 

  
y ∈ m1,m0
⎡
⎣⎢

⎤
⎦⎥ . Thus 

  
0 < D10 ≤1 . 

c. Follows directly from (a).  

 

Result 2 (R2):   
  
L* mΔ( ) ≤  Δm ≤  U* mΔ( )  

Explanation: 

Consider the permutations 
    
Π y1( )  defined in appendix C. One column of 

    
Π y1( )  (say the 

p-th) must be perfectly negatively rank correlated with the elements of 
  
y0 .48 The median 

of that permutation's TE distribution 
   
min y1( )

p
−max y0( ),…,max y1( )

p
−min y0( )⎡

⎣
⎢

⎤
⎦
⎥  is 

  
m1−m0 =Δm . Thus   Δm  is one element of the vector of permutation-distribution 

medians, m. Result 2 holds since 
  
L* mΔ( )  and 

  
U* mΔ( )  are the smallest and largest 

elements of m. 

 

Result 3 (R3):   Suppose 
  
D10 > .5 . Then: 

  a. 
  
Pr Δ< 0( ) > .5  

  b.   Δm < 0  
																																								 																					
48 With ties in the data more than one column may have this property. 
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  c.   mΔ< 0  

Explanation: 

a. Follows from (C.2). 

b. Since 
  
D10 > .5  then there is at least one value of y where 

  
F1 y( ) > .5 > F0 y( ) . Such 

values of y must satisfy 
  
m1 ≤ y < m0 . Thus 

  
m0 > m1  or   Δm < 0 . 

c. Follows from (C.2) with 
  
U* mΔ( ) < 0  implying   mΔ< 0 . 
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Appendix E: Median and Related Treatment Effects in Policymaking Contexts 

 This appendix reviews several policy contexts within which considerations of median and 

other quantile measures and treatment effects do (or should) figure prominently. 

 

FDA Effectiveness Criteria for Biological Products 

 FDA's standards for determining effectiveness of biological products (21 CFR 

601.25(d)(2)) were quoted in section 3. Similar regulatory language defining effectiveness 

governs medical devices (21 CFR 860.7(e)(1)) and over-the-counter drugs (21 CFR 

330.10(a)(4)(ii)). These standards rely on two key parameters: a significant proportion of the 

target population being affected, and effect magnitudes that are clinically significant.49 

 One perhaps fair interpretation of "clinically significant function" is that the outcome 

under 
 
T1   is better than the outcome under 

 
T0  by at least the some prespecified amount (say 

  
ΔCS ). That is, for a given subject 

  
y1− y0 =Δ≤ΔCS  when smaller outcomes correspond to 

better health.50 

 Consider the top panel of figure E1. Assume that larger values of y correspond to worse 

health (  Δ< 0  is an improvement in health). Let 
  
ΔCS < 0  be the threshold for the clinically 

significant improvement in outcome; as such 
  
Δ≤ΔCS  is required to demonstrate effectiveness. 

(Note that smaller—more negative—values of 
  
ΔCS  correspond to more stringent standards.) 

Let 
  
αSP ∈ 0,1( )  be the threshold for the significant proportion of the population experiencing the 

clinically significant improvement; as such 
  
α ≥αSP  is required to demonstrate effectiveness, 

where  α  is the fraction of the population for which 
  
Δ≤ΔCS . (Note that larger values of  

correspond to more stringent standards.) Then the two shaded regions in figure E1's top panel 

indicate the combinations 
  
ΔCS,  αSP( )  corresponding to 

 
T1  being effective or ineffective relative 

to 
 
T0  given the treatment effect distribution 

  
F Δ( ) indicated in the figure. 

 

																																								 																					
49	Cravens, 2002, offers a detailed assessment of the role of "clinical significance" in legal and 
regulatory contexts, noting: "At its worst, 'clinical significance' is assigned no explicit meaning at 
all, but simply appears in passing.…it makes sense either that the phrase should be endowed 
with some specific meaning or that it should not be used at all."	
50 Often policy does not work from a position of equipoise between 

 
T0  

and 
 
T1  but rather 

privileges or gives deference to a status quo (e.g. non-inferiority trials). (See Manski and 
Tetenov, 2020.) 

  
αSP
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[figure E1 about here] 

 

 In general some   α−quantile  of 
  
F Δ( ) determines whether the CFR standard is met. If 

  
αSP = .5  then the magnitude of   mΔ  is determinative. While 

  
αSP = .5  is not privileged in this 

regulatory context is nonetheless has some intuitive appeal (though see the case study reported 

in the final subsection of this appendix). 

 When   mΔ  cannot be point identified appealing to its bounds is partially informative 

about whether these regulatory standards are met. The bottom panel of figure E1 depicts the 

regions where it is possible to determine effectiveness or ineffectiveness when only bounds (sharp 

or otherwise) on the quantiles of the treatment effect distribution 
  
q α( )Δ  are available. 

 Related considerations arise in the determination of breakthrough therapies. Suppose 

smaller values of y represent better health. It might be reasonable in cases like those covered in 

R3 (section 4) to consider 
 
T1  a breakthrough therapy.51 Consider FDA policy for expedited 

approval of drugs that treat serious or life-threating illnesses: 

 
The Secretary shall, at the request of the sponsor of a drug, expedite the 
development and review of such drug if the drug is intended, alone or in 
combination with 1 or more other drugs, to treat a serious or life-threatening 
disease or condition and preliminary clinical evidence indicates that the drug may 
demonstrate substantial improvement over existing therapies on 1 or more 
clinically significant endpoints, such as substantial treatment effects observed 
early in clinical development. (In this section, such a drug is referred to as a 
“breakthrough therapy”.) [21 USC 356(a)(1)] (emphasis added) 

 

As with the determination of effectiveness of biological products, what constitutes "substantial 

improvement" presumably affects determination of breakthrough therapy status. 

 

Outcome Measurement in ClinicalTrials.gov Registration and Reporting 

 At the stage when an "applicable" clinical trial is registered, as required, in the 

ClinicalTrials.gov registry the registrant is not required to specify the particular "measure type" 

they will be estimating as the parameter that summarizes the trial's primary or secondary 

outcome, e.g. a median, mean, or probability. It is instructive to compare 42 CFR 11.28 ("What 

constitutes clinical trial registration information?") with 42 CFR 11.48 ("What constitutes 

clinical trial results information?"). 

																																								 																					
51  FDA approvals of breakthrough therapies are catalogued at https://www.fda.gov/drugs/ 
nda-and-bla-approvals/breakthrough-therapy-approvals 
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 While recording information on the measure type is not mandated when a trial is 

registered in ClinicalTrials.gov—although it can be provided optionally (Zarin et al., 2016)—this 

information is required when a trial's results are reported. Whether it is appropriate to report 

the "measure type" at the initial registration stage or not until results are reported has been 

debated,52 but in principle allowing measure types (parameters) to be specified after a trial's 

data have been realized raises possibilities of cherry picking (Zarin et al., 2011). 

 What is variously called the "method of aggregation," (Zarin et al., 2011, 2016), the 

"population-level summary" (EMA, 2020), or the "measure type" (42 CFR 11.48(a)(3)(iii)(E); 42 

CFR 11.48(a)(3)(v)(B)(2)(ii)) is what would be known familiarly as a parameter.53  

 
When specifying the Measure Type, the responsible party is required to select 
one option from the following limited list of options: "Count of participants," 
"count of units," "number," "mean," "median," "least squares mean," "geometric 
mean," and "geometric least squares mean." When specifying the associated 
Measure of Dispersion, the responsible party is required to select one option from 
the following limited list of options: "Standard deviation," "inter-quartile range," 
"full range," and "not applicable" (which would be permitted only if the specified 
measure type is "count of participants," "count of units," or "number"). [U.S. 
DHHS, 2016, p. 25084] 
 

"median time to response" is noted explicitly as a measure type that may be suitable for time-to-

event data (U.S. DHHS, 2016, p. 25087). Though perhaps of little practical importance it is 

noteworthy that the median is the only quantile recognized in the regulatory language: 

 

No "other" option is available for either Measure Type or Measure of Dispersion, 
but responsible parties have the option of voluntarily providing additional 
information about the baseline measures as part of a freetext description of the 
baseline measure. [U.S. DHHS, 2016, p. 25084] 
 

A Case Study—Torax Medical, Inc. and the LINX Reflux Management System 

 In 2010, Torax Medical, Inc., submitted to the FDA a premarket approval application 

for its LINX Reflux Management System, an "implantable device for the treatment of pathologic 

Gastroesophageal Reflux Disease (GERD) in patients who continue to have chronic GERD 

																																								 																					
52 Zarin et al., 2011: "Some argue that the method of aggregation…is part of the statistical 
analysis plan and may properly be specified later—after data accrual but before unblinding." 
53 Confusion may arise with the regulatory terminology: "outcome measure type" refers to 
primary vs. secondary outcomes; "measure type" refers to the parameter; compare CFR 
11.48(a)(3)(iii)(D) with CFR 11.48(a)(3)(iii)(E). Moreover the meaning of an "estimand" may 
also not align with standard usage of that term in econometrics; see EMA, 2020. 
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symptoms despite antireflux therapy" (U.S. FDA, 2012).  The key results supporting the 

sponsor's PMA application are from a pre-post clinical study reported in Ganz et al., 2013. The 

primary outcome is the proportion of patients experiencing a reduction of at least 50% in the 

fraction of a 24-hour period with a pH less than four. The sponsor specified ex ante that 

"effectiveness" would be determined by whether at least 60% of subjects met or bettered the 

50% criterion (but see transcript below). 

 The following are excerpts from the official transcript of the January 11, 2012, meeting 

of the FDA's Medical Devices Advisory Committee, Gastroenterology and Urology Devices 

Panel.54 

 

DR.	VENKATARAMAN-RAO	[FDA	Presenter]:	...As	shown	by	this	table,	64	out	
of	100	subjects	met	the	primary	effectiveness	endpoint.	Of	these,	56	had	
pH	normalization	and	8	had	an	at	least	50%	reduction	in	total	time	that	
their	pH	was	less	than	4.	As	the	lower	limit	of	the	confidence	interval	
was	found	to	be	53.8%,	the	results	for	this	endpoint	do	not	support	the	
claim	that	the	success	probability	is	greater	than	60%.	
	

.	.	.	
	
DR.	 SCHROEDER	 [FDA	 Presenter]:	 ...From	 the	 statement	 of	 the	 hypothesis	
given	on	this	slide,	it	can	be	seen	that	the	Sponsor	was	attempting	to	
show	that	the	true	success	probability	associated	with	this	endpoint	is	
greater	than	60%.	Of	the	100	implanted	subjects,	64	could	be	classified	
as	 treatment	 success	 based	 on	 the	 esophageal	 pH	 monitoring	 endpoint.		
The	observed	success	rate	was	64%,	and	the	95%	confidence	interval	for	
this	 success	 rate	 ranged	 from	 54%	 to	 73%.	 Note	 that	 4	 subjects	 with	
missing	 responses,	 including	 3	 explants,	 were	 treated	 as	 failures	 in	
this	analysis.		Since	the	lower	bound	of	the	confidence	interval	is	less	
than	60%,	there	is	not	enough	evidence	to	conclude	that	the	true	success	
rate	is	greater	than	60%,	so	the	primary	endpoint	for	the	study	was	not	
met.		

.	.	.	
	
DR.	AFIFI	[Panel	Member]:	...	My	question	is	about	the	choice	of	the	60%	
figure	for	the	target	improvement.	How	was	that	arrived	at?	And	was	it	
really	sort	of	a	compromise	between	sample	size	available	or	anticipated	
sample	size?	And	because	there	could've	been	other	choices.	If	you	could	
answer	that	question.		
	
MR.	 PULLING	 [Sponsor	 Advisor]:	 ...The	 60%	 performance	 goal	 was,	
admittedly,	largely	arbitrary	in	choice.	We	did	a	careful	assessment	of	
the,	you	know,	current	feasibility	data	we	had	available	at	the	time.	We	

																																								 																					
54 While the FDA is not required to follow the recommendations of its Advisory Committees, it 
does so in the great majority of cases. 
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considered	 other	 performance	 goals	 and	 really	 between	 50%	 and	 60%.	 As	
you	know,	had	we	gone	down	to	50,	sample	size	requirements	would've	been	
much,	 much	 less;	 settled	 on	 60	 with	 a	 high	 degree	 of	 confidence	 that	
even	though	the	bar	was	set	a	little	higher	than	we	probably	needed	to,	
we	felt	it	was	something	we	would've	met.		
	
DR.	SHAHEEN	[Panel	Member]:	I'd	like	to	first	say	that,	unlike	some	that	
may	 speak	 later,	 I'm	 not	 particularly	 --	 I	 don't	 feel	 very	 off-put	 by	
the	 fact	 that	 you	 didn't	 make	 the	 primary	 outcome	 variable.	 It's	
actually	 laudable	 that	 you	 used	 a	 physiologic	 outcome	 variable	 as	
opposed	to	just	symptoms,	which	we	know,	in	almost	all	of	these	previous	
studies,	 will	 respond	 to	 these	 kind	 of	 therapies.	 So	 I	 think	 that,	
especially	 given	 that	 there's	 nothing	 magical	 about	 the	 lower	 95%	
confidence	interval	on	60%,	I	think	that	those	numbers	are	fine.		
	

.	.	.	
	
MS.	OLVEY	[FDA	Advisor]:	...The	primary	effectiveness	endpoint	is	based	
on	 esophageal	 pH	 testing	 at	 baseline	 and	 12	 months.	 An	 individual	
subject	 was	 defined	 as	 a	 success	 if	 either	 of	 the	 following	 criteria	
were	met:		
	
-	normalization	 of	 pH,	 with	 normalization	 defined	 as	 a	 pH	 <	 4	 for	 no	
more	than	4.5%	of	the	monitoring	time;	or		
	
-	reduction	 of	 at	 least	 50%	 in	 total	 time	 that	 pH	 <	 4	 relative	 to	
baseline.		
	
For	 the	 primary	 endpoint,	 the	 LINX	 pivotal	 study	 required	 that	 the	
success	rate	be	at	least	60%	as	indicated	by	the	lower	bound	of	a	97.5%	
confidence	 interval.	 Sixty-four	 of	 the	 100	 implanted	 patients	 achieved	
success,	resulting	in	an	observed	success	rate	of	64%	with	a	97.5%	lower	
confidence	 bound	 of	 54%.	 Since	 this	 lower	 bound	 falls	 below	 60%,	 the	
primary	endpoint	was	not	met.		
	
Please	discuss	whether	these	data	support	the	effectiveness	of	the	LINX	
device.		
	
DR.	WOODS	[Panel	Chair]:	Okay,	so	I'm	going	to	move	around	the	table	and	
ask	everyone	for	their	answers.	If	it	appears	that	we're	quickly	coming	
to	consensus,	then	we	may	not	need	everyone	to	answer.	But	we	will	start	
with	Dr.	Shaheen.		
	
DR.	SHAHEEN	[Panel	Member]:	Well,	clearly	by	the	a	priori	outcome,	the	
device	did	not	make	the	primary	endpoint.	However,	it's	been	discussed	
here	already,	the	primary	endpoint	in	this	situation	is	fairly	arbitrary	
and	could	just	as	easily	have	been	picked	to	be	50%.	I	think	that	the	
important	thing	is	to	look	at	the	totality	of	the	data	and	to	understand	
that	 within	 the	 field,	 which	 is	 that	 most	 previous	 devices	 that	 have	
attempted	to	do	something	similar	to	this	device	haven't	even	used	the	
physiologic	 primary	 outcome	 and	 have	 relied	 primarily	 on	 symptom	
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control.	 Given	 that	 situation,	 I	 think	 that	 there	 is	 substantial	
evidence	that	the	device	does	have	efficacy	in	the	setting,	although	I	
think	we	do	need	to	acknowledge	it	did	not	meet	this	primary	endpoint.		
	
DR.	WOODS	[Panel	Chair]:	Okay.	Dr.	Inge.		
	
DR.	 INGE	 [Panel	 Member]:	 I	 don't	 disagree.	 In	 fact,	 I	 think	 that	 he's	
made	the	exact	points	that	need	to	be	made.		
	

.	.	.	
	
DR.	WOODS	[Panel	Chair]:	Okay.	So,	Dr.	Lerner,	the	Panel	is	unanimous	in	
its	 belief	 that	 the	 data	 do	 support	 the	 effectiveness	 of	 the	 LINX	
device.	Is	that	sufficient	for	you?		
	
DR.	LERNER	[FDA	Representative]:	Yes,	thank	you.		
	
MS.	 WATERHOUSE:	 ...We	 will	 proceed	 to	 Question	 2.	 Question	 2	 reads	 as	
follows:	 Is	 there	 reasonable	 assurance	 that	 the	 LINX	 Reflux	 Management	
System	is	effective	for	use	in	patients	who	meet	the	criteria	specified	
in	the	proposed	indication?	Please	lock	in	your	votes.		
	
(Panel	vote.)		
	
MS.	 WATERHOUSE	 [Panel	 Member,	 Designated	 Federal	 Officer]:	 The	 poll	 is	
now	closed.		
	
...On	Question	2,	the	Panel	members	voted	unanimously	yes,	so	they	voted	
9	 to	 0	 that	 there	 is	 reasonable	 assurance	 that	 the	 LINX	 Reflux	
Management	System	is	effective	for	use	in	patients	who	meet	the	criteria	
specified	in	the	proposed	indications	for	use.		

 

 Note foremost the seemingly arbitrary choice by the sponsor of 
  
αSP , the target 

population fraction parameter. 

 The FDA followed the recommendations of the Advisory Committee and approved the 

Linx System for marketing on March 22, 2012. How the data were summarized mattered, and 

could have mattered much more had the Advisory Committee been convinced by the FDA 

staff's assessments. (See Mullahy, 2018b, for extended discussion.) 
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Figure 1 — Time-to-Recovery Outcomes in the Beigel et al., 2020, ACTT Remdesivir Study: 
Outcomes reported in NIAID, 2020 (top); Reproduction of Beigel's figure 2A (bottom) 
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Figure 2 — Time-to-Improvement Outcomes in the Cao et al., 2020, Lopinavir–Ritonavir Study 
 (Reproduction of Cao's figure 2) 

 

 
 

  

.5

1

Cumul.
Improv.

Rate

0 4 8 12 16 20 24 28
 

Day (=y)
 

Control (F0(y)) Tx (F1(y))



 46 

Figure 3 — Defining 
 
D01  and 

 
D10  
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Figure 4 — Defining   Δm  and   mΔ  with Known 
  
Pr y0,y1( )  
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Figure 5 —Identifying   Δm  and   mΔ  with Right-Censored Outcomes: 
Three right-censoring scenarios (top); Degree of right censoring affects   mΔ  bounds (bottom) 
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Figure 6 — Time-to-Negative-Test Outcomes in Hung et al., 2020, Combination-Treatment 
Study (Quartiles and IQR reported in Hung's table 2) 
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Figure 7 — Comparing Implications of Two Different Joint Distributions 
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Figure 8 — Approximate Central Aperture, 
  
m0 = 4 , 

  
m1 = 2 , 

  
yj ~ gamma γ j,δ j( )  with 

  
γ0 = 4  and 

  
γ1 = 1 : 

  
a1 m*,.5( ) =−.70  (top); 

  
a2 .5( ) =−.64  (bottom) (Note: 

  
mj,γ j( )  fix 

  
δ j ) 
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Figure 9 — 
  
a1 m*,.5( ) , with 

  
m0 = 4 , 

  
m1 = 2 , 

  
yj ~ gamma γ j,δ j( )  (Note: 

  
mj,γ j( )  fix 

  
δ j ): 

  
γ0 = .3 , 

  
γ1 = .2 , 

  
a1 m*,.5( ) =−.16

 
(top); 

  
γ0 = .3 , 

  
γ1 = .9 , 

  
a1 m*,.5( ) =−.35 ) (bottom) 
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Figure C1 — Computation of 
  
L MTE( ) , Cao et al., 2020, Data: 

  
F1 y−d( )  with   d =−8  (top); 

  
F1 y−d( )  with   d =−9  (bottom) 

 

 
 

.48

.09

.57

1

Cumul.
Improv.

Rate

0 4 8 12 16 20 24 28
 

Day (=y)
 

Control (F0(y)) Tx (F1(y)) F1(y–8))

.52

.09

.61

1

Cumul.
Improv.

Rate

0 4 8 12 16 20 24 28
 

Day (=y)
 

Control (F0(y)) Tx (F1(y)) F1(y–9))



 54 

Figure C2 — IQR-Based Computation of 
  
LIQR mΔ( ) , Hung et al., 2020, Data 
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Figure E1 — Visualizing FDA Effectiveness Criteria for Biological Products: 

  
F Δ( )  and 

  
q α( )Δ  point identified (top); 

  
F Δ( )  and 

  
q α( )Δ  partially identified (bottom) 
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Table 1 — Empirical Results, Beigel et al., 2020, Remdesivir Trial 
(Output from medte Stata Program) 

 
 

		Median	Treatment	Effects	and	Related	Parameters	
		
		Outcome	variable:							ttr	
		(integer-valued)	
		
		Group	variable	(g):					tx	
		
				Uncensored	Obs.	for	g=0:									340	
				Uncensored	Obs.	for	g=1:									391	
		
				Right-censored	Obs.	for	g=0:					181	
				Right-censored	Obs.	for	g=1:					147	
		
		Median	Treatment	Effects	
		
				Sample	median	for	g=0	(m0):							15	
				Sample	median	for	g=1	(m1):							11	
		
				Diff.	in	medians	m1-m0:											-4	
		
				Lower	bound	on	med(F(y1-y0)):				-15	
				Upper	bound	on	med(F(y1-y0)):					10	
		
		Central	Aperture	Measures	
		
				a1(m*,.5):																							-0.3862	
				a2(.5):																										-0.3747	
		
		Bounds	on	Inequality	Probabilities	
		
				Lower	bound	on	Prob(y1>y0):							0.0000	
				Upper	bound	on	Prob(y1>y0):							0.8856	
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Table 2 — Empirical Results, Cao et al., 2020, Lopinavir–Ritonavir Trial  
(Output from medte Stata Program) 

 
 

		Median	Treatment	Effects	and	Related	Parameters	
		
		Outcome	variable:							tti	
		(integer-valued)	
		
		Group	variable	(g):					tx	
		
				Uncensored	Obs.	for	g=0:										70	
				Uncensored	Obs.	for	g=1:										77	
		
				Right-censored	Obs.	for	g=0:						30	
				Right-censored	Obs.	for	g=1:						22	
		
		Median	Treatment	Effects	
		
				Sample	median	for	g=0	(m0):							16	
				Sample	median	for	g=1	(m1):							16	
		
				Diff.	in	medians	m1-m0:												0	
		
				Lower	bound	on	med(F(y1-y0)):					-9	
				Upper	bound	on	med(F(y1-y0)):						7	
		
		Central	Aperture	Measures	
		
				a1(m*,.5):																								0.0000	
				a2(.5):																											0.0000	
		
		Bounds	on	Inequality	Probabilities	
		
				Lower	bound	on	Prob(y1>y0):							0.0000	
				Upper	bound	on	Prob(y1>y0):							0.8259	
 

 
	

 	



 58 

Table A1 —Simulated Relative Frequencies of Differences between 

Two Median Computation Methods, 
  
.5× y(.5N) + y(.5N+1)( )− y(.5N)  

(
  
y ~ Discrete Uniform ∈ 0,1,…,100{ } ; 10,000 replications for each N) 

 

Difference	
Sample	Size	=	N	

20	 50	 100	 1,000	
0	 .09	 .21	 .37	 .90	

.5	 .17	 .31	 .41	 .10	
1	 .14	 .19	 .15	 0	

1.5	 .11	 .12	 .05	 0	
2	 .09	 .07	 .02	 0	

2.5	 .07	 .04	 .01	 0	
3	 .06	 .02	 <.005	 0	

3.5	 .05	 .01	 <.005	 0	
4	 .04	 .01	 <.005	 0	

4.5	 .03	 .01	 0	 0	
≥5	 .14	 .01	 0	 0	

 
 




