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ABSTRACT

The challenge of mitigating climate change has focused recent attention on basic scientific 
research feeding into the development of new energy technologies (Popp, 2017).  Energy 
innovation tends to consist of a series of partially overlapping processes involving: (1) the 
production of scientific and technological knowledge, (2) the translation of that knowledge into 
working technologies or artifacts, and (3) the introduction of the artifacts into the marketplace, 
where they are matched with users’ requirements.  However, relatively little data are available 
showing how long each of these processes takes for energy technologies.  Here we combine 
information from patent applications with bibliographic data to shine light on the second process
—that is, the translation of scientific knowledge into working prototypes.  Our results show that 
“clean” energy technologies are more dependent on underlying science than “dirty” technologies, 
and that the average lag between publication of scientific findings and the incorporation of those 
findings in clean energy patents has risen from about five to about eight years since the 1980s. 
These findings will help policymakers to devise more effective mechanisms and strategies for 
accelerating the overall rate of technological change in this domain.
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1. Introduction 

 

Transitioning the world’s energy system away from carbon-intensive sources such as fossil fuels towards 

non-carbon alternatives represents an immense technological challenge (Deutch, 2011; Henderson & 

Newell, 2011b; Newell, 2011; Patt, 2015).  Despite the urgent case for bringing new energy-related 

innovations to the marketplace, developing and deploying them on a large scale has been frustratingly 

slow (Bunn, Anadon, & Narayanamurti, 2014; Grubler, 2012), often taking several decades to develop 

even the most promising ideas into novel technologies that achieve a significant amount of market 

penetration (Lester & Hart, 2012).  But even with the broad consensus about the protracted timeframes 

required for these activities (Smil, 2010, 2017), there is little evidence on the source or nature of the 

delays.  Significant attention has been paid to where and how financial investments in clean energy 

technologies occur (Lerner, 2011; Nanda, Younge, & Fleming, 2015; Rotman, 2019; Yeo, 2019) but, aside 

from a handful of case studies focused on individual technologies (e.g., Grubler & Wilson, 2014), far less 

is understood about the investments of time that are required to develop and deploy these innovations.  

In this paper, we build upon Popp’s (2017) examination of the flows of knowledge between universities, 

the private sector, and government agencies on the way to the development of new energy technologies. 

 

However, whereas Popp (2017) mostly relied on a manual analysis of the data, this paper uses the Lens, 

a new online tool that links information from patent applications with bibliographic data, to usefully 

extend Popp’s earlier findings.  Specifically, we present evidence showing how much time passes in the 

energy domain between the production of scientific knowledge and the delivery of working technologies 

or artifacts.  We start by reviewing prior investigations in this area, explaining the role of patents in 

technological innovation, and putting forward the research questions at the center of this investigation.  

We then present evidence quantifying the amount of time required to translate new science into energy-

related innovations, and conclude with a brief discussion about the importance and policy-related 

implications of these findings. 
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2. Background and Research Questions 

 

The long time horizons required for energy innovation are frequently discussed in the literature in a vague 

and aggregated way, but innovation tends to consist of a series of partially overlapping processes (Pavitt, 

2005; Wilson & Grubler, 2014).  As Figure 1 shows, technological innovation typically begins with the 

production of scientific and technological knowledge, which is then translated into working technologies 

or artifacts.  The artifacts typically require further development to be viable in the marketplace, including 

adaptation to users’ needs and scale-up from laboratory prototypes to viable volume. There is, of course, 

tremendous attrition across these processes, as much new knowledge never leads to any working 

artifacts, and many inventions that are manifest in working artifacts are never transitioned to a market 

innovation. But from the perspective of a successful market innovation, we can typically look backward 

and see the prototype invention from which it developed, and the underlying scientific and technological 

knowledge that contributed to that invention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Processes of Innovation (based on Pavitt (2005) pp. 88-89) 

 

 

Each of these processes involves a different combination of stakeholders who respond to different 

incentives and face different constraints. As a result, different policy instruments and strategies have been 

recommended for each in an attempt to accelerate the overall clean energy technology innovation 
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journey (Deutch & Lester, 2004; Grubler & Wilson, 2014; Henderson & Newell, 2011a).  It is therefore 

useful to pry apart the overall timeframe required for energy innovation into its constituent parts so that 

the length of each process can be examined separately.  In this Research Note, we zoom in on the middle 

process in Figure 1, leading to: 

 

Research Question 1:  How important is basic scientific research as a foundation for new 

clean energy technology? 

 

Research Question 2:  What is the magnitude of the lags between the production of 

scientific knowledge and the delivery of clean energy working technologies or artifacts? 

 

 

3. Methodology 
 

3.1 The Role of Non-Patent Literature in Patent Applications 

The patent system provides a useful window into the second stage of Figure 1, and the connections 

between the first stage and the second stage. A patent represents a legal acknowledgement that an 

invention has occurred. The patent document captures key aspects of this invention, and places that 

invention in the context of relevant knowledge at the time a patent is filed (Jefferson et al., 2018).  

Applicants find and disclose evidence of science and technology that preceded the work and upon which 

the innovation is based, and the patent examination process uncovers additional “prior art.”  Much of this 

disclosure is in the form of previous patents, but it also includes non-patent literature (NPL) such as 

publications in scholarly journals.  NPL is an indicator of the feedstock science that underpins the 

technological concept underlying the patent application (Jefferson et al., 2018).  Therefore, patent 

citations to NPL provide traces of pathways connecting the first and second processes described above. 

 

Following earlier categorizations of energy technology patents (Bosetti & Verdolini, 2013; Lanzi, Verdolini, 

& Haščič, 2011), we divided all the international patent classifications (IPCs) related to energy production 

into two groups: “dirty” and “clean.”  For each NPL item identified in the prior art search for each of these 

patents, we then measured the amount of time that had passed between when the scientific literature 

referenced in an energy-related patent application was published, and when the resulting patent 

application had been filed.2 

 
2 Citations here only include scholarly works for which a DOI, PMID, Microsoft Academic ID, or PMCID can be 

found.  The analysis therefore excludes other kinds of publications such as working papers, brochures, works 

published by outlets which are not covered by the above sources, or works that cannot be found in the above sources 

due to insufficient or incorrect information provided in the patent. 
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We recognize that this approach affords only an incomplete and imperfect representation of the 

contributions of scientific and technological knowledge to the generation of “working artifacts.”  First, the 

prior art search that yields the NPL references serves a specific legal function, and does not necessarily 

identify the broad scope of knowledge inputs of the invention. Second, while patent law requires that an 

invention be “reduced to practice” in order for a patent to be granted, patents in fact vary greatly in the 

extent to which a working artifact has truly been achieved. Third, there is frequently only a tenuous 

connection between the advent of novel technologies and any patents that are ostensibly underlying 

them (Jaffe & Lerner, 2004).  Finally, many inventions are never patented at all, so there will be no traces 

of their development in the patent data. Despite these limitations, we believe that that the NPL citations 

in energy patents provide a useful window into the scale and timing of linkages between scientific 

research and new technologies in the energy domain. A large fraction of the participants and contributors 

connected to these processes do use patents as a way to defend their intellectual property rights 

(Henderson & Newell, 2011a), so the picture presented by these data is an important indicator of these 

processes despite being incomplete. 

 

Patent references to NPL have been used previously to study how knowledge flows between and among 

universities, the private sector, and government research institutions contribute to energy innovation 

(Popp, 2017).  We build upon this earlier contribution by examining both the extent of citation to NPL and 

the lag between NPL references and patent applications reflected in “clean” as compared to “dirty” energy 

patents.  The data were extracted from the Lens (www.lens.org), an online tool that connects patent 

databases around the world with scholarly and technical literature.  Through it, we were able to access a 

broad range of information about worldwide patent applications and the scientific literature that 

underpins them. 

 

3.2 Categorizing Patents 

The patents used in this study were classified according to the IPC system of the World Intellectual 

Property Organization (WIPO).3  Prior investigations in the area of energy innovations (e.g., Ardito, 

Petruzzelli, & Albino, 2016; Bosetti & Verdolini, 2013; Johnstone, Haščič, & Popp, 2010; Lanzi et al., 2011) 

have not entirely agreed on what IPC codes in the energy domain are “clean” and which ones are “dirty.”  

 

 
3 https://www.wipo.int/classifications/ipc/en - accessed on 6 February 2020. 
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In this investigation, we adopted Bosetti et al.’s (2013) list of IPC codes for clean technologies, and 

included in our dirty technologies category IPC codes that appeared in either Bosetti et al.’s (2013) or 

Lanzi et al.’s (2011) lists of dirty technologies.  We framed our classifications in this way because the above 

categorizations offer an established classification system of IPC codes that focus on energy production 

technologies.  Several of the other classification systems were inclusive of patent groups like energy 

conservation or nuclear power generation for which there were no corresponding “dirty” innovations.  By 

confining our analysis only to IPC codes related to energy production technologies, we were able to make 

reasonable like-for-like comparisons between the clean and dirty categories. 

 

3.3 Linking IPCs to NPL 

The IPCs were then submitted to the Lens4, an online tool that connects patent databases around the 

world with scholarly and technical literature, to identify all of the individual patents applications filed 

during the period 1970-2015.5  The data revealed that about 2.8% of the patents within the study have 

any form of NPL connected to them that can be found on the Lens scholarly database.  Over 99% of these 

cited works had at least one digital object identifier (DOI), while the remaining 1% had a PubMed 

identification (PMID), Pubmed Central identifier (PMCID), or Microsoft Academic ID. 

 

3.4 Reference Data 

Within the Lens, we limited the query to “citing patents,” and then chose the “cited works” option to show 

the metadata of the cited scholarly works connected to each of the patent applications within the targeted 

IPC codes.  The following data fields were provided for each cited work: 

 

a) Article title 

b) Publication year 

c) Type of document 

d) Name of journal 

e) Volume and issue number of journal 

 
4 www.lens.org 

5 By using the Lens’ Boolean search function, we were able to query multiple IPC codes at a time. One limitation of 

the Lens at the time of this investigation, however, was that users were only able to export results that had no more 

than 50,000 records per query.  The 207 IPC codes for the “clean” and “dirty” categories resulted in more than 

50,000 records, so we needed to break apart the data gathering into seven separate queries, and then consolidate 

them into a joined-up data set for further analysis. 
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f) Publisher 

g) Names of authors 

h) Country of publisher 

 

The resulting database included bibliographic information for over 18,000 different NPLs.  We conducted 

two-sided t-tests to determine whether there was a difference between clean and dirty energy 

technologies with regards to (1) the average number of NPL citations per patent application, and (2) the 

time lags between patent applications and the NPL citations within them.  The results for these t-tests are 

shown in the Appendix, and are also depicted graphically in Figures 2 and 3. 

 

 

4. Results and Discussion 

In Figures 2-4, the bar height represents the mean (fraction of patents, number of papers or time lag) and 

the error bars represent the 95% confidence intervals.  Figure 2 shows the fraction of patents (clean and 

dirty) that contain any reference to NPL, by decade. Figure 3 shows, for those patents that do have NPL 

references, the mean number of such NPL items referenced in each awarded patent.  Taking the number 

of NPL per patent as an indicator of the importance of science as an input to invention, Figures 2 and 3 

show two important things. First, the frequency of NPL citations in energy patents has been increasing on 

both the extensive and intensive margins, i.e. a larger share of patents cite NPL and those that do cite NPL 

have a greater number of NPL citations per patent. It is likely that this trend is, to some extent, an artifact 

of technological and organizational changes that make it easier for patent examiners to find non-patent 

prior art. But it also likely that increases in the extent of NPL citation indicate an increasing dependence 

of invention on underlying scientific research over time (Jaffe and De Rassenfosse, 2019).  That is, energy 

invention (both clean and dirty) has become increasingly dependent on science in the last two decades 

relative to the end of the 20th century. 

 

The other clear pattern in Figures 2 and 3 is that the dependence of clean energy technologies on science 

is greater than that of dirty technologies, and again this is true on both the extensive and intensive 

margins. The fraction of patents with any science connection—as indicated by a NPL reference—is 

consistently approximately twice as high for clean patents as for dirty patents. And, for those patents in 

either group that do cite NPL, the NPL references per patent is greater for clean technologies in all periods. 

The period-by-period difference is statistically significant only for the 2000s but, if the data for all periods 
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is combined, the difference is statistically significant.  (See Appendix for t-tests on these differences.)  The 

relatively high and rising importance of science for clean energy invention reinforces the urgency of 

investment in the underlying basic science as a crucial component of global strategy to manage climate 

change (Jaffe, 2012; National Research Council, 2010). 

 

 

Figure 2:  Fraction of Patents Citing NPL by Period 
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Figure 3:  Average Number of Papers Cited per Patent by Period 

 

 

Figure 4 shows the average time lag between a published paper and a patent containing a NPL reference 

to that paper. The “time lag” variable is the number of years between when the cited scholarly article was 

published and when the patent was applied for.  However, a patent might cite several articles, and 

similarly an article might be cited by several patents.  Two weighting methods were applied to consolidate 

multiple linkages between patent applications and NPLs into a single calculation.  In the “plutocratic” 

weighting method, each patent-paper combination is weighted equally.  That is, if a patent cites N papers, 

then it will be used N times in the calculations (i.e., once for each cited paper). In the “democratic” 

weighting method, if a patent cites N papers, then each patent-paper combination for that patent only 

carries a weight of 1/N, thereby ensuring that the total weight for each patent is always 1.  The plutocratic 

method gives more weight to newer patents than does the democratic method, as newer patents tend to 

cite more than older ones.  The results presented in Figure 4 are based on the plutocratic weighting 

method. 
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Figure 4 shows that, during the past decade, it took on average approximately 8 years for scientific 

discoveries to appear in patent applications related to clean energy technologies.  Interestingly, the 

average for dirty energy technologies in the most recent decade was about 11 years. This may reflect a 

tendency for clean technologies to rely somewhat more on the most recent science, while dirty 

technologies have more of a reliance on older science. But whatever the factors underlying the difference, 

these relatively long lags suggest that the time needed for the middle stage of Figure 1 represents a 

significant fraction of the overall time lags necessary to bring new cleaner technologies into actual use. 

 

 

 

Figure 4:  Years between Academic Paper and Patent Application 
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5. Conclusions and Policy Implications 

This finding carries with it important consequences for policymakers: barring any unexpected departures 

from this pattern, discoveries arising from investments in science that are made today to help the 

transition towards clean energy will quite likely take many years to find their way into new energy 

technologies.  Conventional wisdom has traditionally held that the capital-intensive nature of the energy 

sector is a significant contributing factor to how slowly it is able to develop and deploy technological 

innovations(Lester & Hart, 2012), but our evidence shows that a significant part of the problem lies further 

upstream before the capital-intensive nature of the industry is materially relevant.  This finding also 

highlights the time-critical nature of investments in clean energy technologies.  If significantly new 

technologies will be required to mitigate climate change in a useful timeframe (Jaffe, 2012), then the 

scientific research laying the foundations for these new technologies needs to be undertaken very soon. 

 

Figure 4 also reveals that the process of turning scientific and technological knowledge into working 

artifacts is not getting shorter, despite the chorus of voices that has been calling over many years for the 

acceleration of energy-related innovation (Henderson & Newell, 2011a).  It should be emphasized, too, 

that this figure only considers the middle process of the three shown in Figure 1, and includes neither the 

amount of time it will take for these investments in science to actually generate published results (i.e., 

the first process), nor how long it will take for the new technology to be matched with user requirements 

in the marketplace (i.e. the third process). 

 

As energy technologies become more science-intensive, it follows that the success of processes for 

creating new energy technologies will become even more dependent on how scientific knowledge is 

created and integrated into these innovations.  By improving the granularity of our understanding of these 

processes, the evidence presented here will help policymakers and to make more effective mechanisms 

and strategies for accelerating the overall rate of technological change in this domain. 
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10. Appendix – Statistical Significance of Results 
 

 

Period 

Number of 

Applications 

for "Dirty" 

Patents 

(whether 

citing papers 

or not) 

Fraction of 

“Dirty” 

Patents 

Citing NPL  

Number of 

Applications 

for "Clean" 

Patents 

(whether 

citing papers 

or not) 

Fraction of 

“Clean” 

Patents 

Citing NPL 

t-statistic 

on the 

difference 

between 

clean and 

dirty 

1970-

1989 30117 0.01 6521 0.04 
-17.602 

1990s 25999 0.02 9599 0.04 
-13.281 

2000s 29593 0.02 26140 0.06 
-20.385 

2010s 33273 0.03 30315 0.06 
-20.569 

Total 118982 0.02 72575 0.05 
-20.569 

Table A1:  Results and Statistical Significance of Data Behind Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A2:  Results and Statistical Significance of Data Behind Figure 3 

 

 

 

 

 

Period 
Number of 

Applications 

for "Dirty" 

Patents that 

cite NPL 

Average 

Number of 

Papers Cited 

by "Dirty" 

Patents 

(conditional 

on citing) 

Number of 

Applications 

for "Clean" 

Patents that 

cite NPL 

Average 

Number of 

Papers Cited 

by "Clean" 

Patents 

(conditional 

on citing) 

t-statistic 

on the 

difference 

between 

clean and 

dirty 

1970-

1989 277 2.30 245 3.08 -1.768 

1990s 473 3.30 411 5.02 -3.083 

2000s 659 5.14 1440 9.74 -3.082 

2010s 912 6.09 1834 7.50 -2.170 

Total 2321 4.76 3930 7.80 -5.289 
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Table A3:  Results and Statistical Significance of Data Behind Figure 4 

 

 

 

Period Number of 

Applications 

for "Dirty" 

Patents that 

cite NPL 

Average 

Number of 

Years 

between 

Paper and 

"Dirty" 

Patent 

Application 

Number of 

Applications 

for "Clean" 

Patents that 

cite NPL 

Average 

Number of 

Years 

between 

Paper and 

"Clean" 

Patent 

Application 

t-statistic 

on the 

difference 

between 

clean and 

dirty 

1970-

1989 277 5.35 245 4.74 1.583 

1990s 473 6.81 411 5.64 4.116 

2000s 659 9.10 1440 6.77 14.443 

2010s 912 11.36 1834 8.36 17.662 

Total 2321 9.62 3930 7.31 21.876 




