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“The public doesn’t understand all about vaccines ... including that this
disease may, even with vaccines, become endemic.” Dr. David Heymann, WHO,
Nov 12, 2020

“I doubt we are going to eradicate this. I think we need to plan that this is
something we may need to maintain control over chronically. It may be something

that becomes endemic, that we have to just be careful about” Dr. Anthony Fauci,

Nov 12, 2020

The ongoing Covid-19 pandemic has, as of this writing, killed more than 2.5 million
people worldwide, including more than 500,000 people in the United States. Social dis-
tancing measures aimed at slowing the spread of the virus shut down large sectors of the
U.S. economy, leading to the steepest quarterly decline in GDP and the highest level of the
unemployment rate since the Great Depression.! This economic collapse led many people to
question whether the benefits of reduced infections and deaths resulting from social distanc-
ing are worth the costs of increased unemployment and decreased output caused by social
distancing. This question has spawned an economics literature that analyzes the economic
effects of social distancing and weighs the benefits of reduced infection against the costs of
reduced economic activity.

Even as Covid vaccines were granted approval in late 2020, leading epidemiologists quoted
above warned that the disease is likely to become endemic. In the parlance of economics, an
endemic disease is one that persists indefinitely and is a feature of long-run, or steady-state,
equilibrium. Most papers in the burgeoning economics literature focus on the evolution of
infections and economic activity in the short run. Because these papers are silent about the
long run, they are also silent about whether the disease will become endemic. Moreover,
these papers typically use versions of the workhorse SIR model that contain neither vital
statistics (births and deaths) nor waning immunity, and thus, by construction, rule out the
possibility of an endemic equilibrium.

To introduce the possibility of an endemic equilibrium in an SIR model, the population

!The Bureau of Economic Analysis series for quarterly growth rates of real GDP begins in 1947. The
decline in 2020Q2 was the steepest quarterly decline on record.



of susceptible people (S) must be replenished over time. In this paper, we introduce two
channels for the replenishment of S. The first channel operates through the introduction
of vital statistics, comprising births, baseline deaths, and excess deaths from the disease.
We assume that people are born without any immunity to the disease, so births replenish
S. Depending on the specification of the parameters of the model, the steady state can be
either endemic (which we label as an endemic equilibrium, EE) or non-endemic (which we
label as a disease-free equilibrium, DFE). The population dynamics associated with births
and deaths are, admittedly, slow moving so that it takes a long time get close to the steady
state. The second channel is the specification that immunity wanes over time. As recovered
people (R) lose their immunity, they rejoin S, which can lead to an endemic equilibrium.
Again, depending on the specification of parameter values, the steady state can be EE or
DFE. Importantly, the waning feature of immunity greatly speeds up the approach to the
steady state and thus makes the steady state a relevant object of analysis.

We consider two tools to reduce the spread of the disease. Omne tool is social distanc-
ing, described above, and the other tool is vaccination. In the first several months of
the pandemic, before a vaccine was available, social distancing was the only tool available.
Therefore, we begin with positive and normative analyses of social distancing. In the nor-
mative analysis, the welfare function is the present value of the stream of output minus a
penalty that is proportional to the number of excess deaths from the disease. The optimal
degree of social distancing mandated by the planner maximizes the welfare function. We
also examine a laissez-faire equilibrium that arises when each person decides how much social
distancing to practice in the absence of an enforceable mandate.

Our analysis of the pre-vaccine model produces several results. First, the outcome
under optimal policy and the laissez-faire outcome both involve a non-trivial amount of
social distancing, even in the steady state. Second, in the laissez-faire outcome, the degree
of social distancing is smaller, and the amount of infections and excess deaths are higher than
under the optimal policy because individuals in the laissez-faire outcome do not internalize
the effect of their own infection on the likelihood of an additional infection among susceptible

individuals. Third, in the long run, optimal policy leads to an endemic equilibrium (EE)



even though a non-endemic equilibrium (DFE) is attainable. Strikingly, the emergence of an
endemic equilibrium holds regardless of the magnitude of the societal cost of an additional
death. Indeed, for any admissible constellation of model parameters, optimal policy leads
to an endemic steady state, as long as the basic reproduction rate of the disease (Rp) in the
absence of any social distancing is above one. Fourth, benchmarking the pre-vaccine model
to the U.S. experience in the first few months of the pandemic, we find that actual excess
deaths were somewhere between the model outcomes under optimal policy on the one hand
and laissez-faire on the other hand; in fact, actual experience was closer to the laissez-faire
version of the model at the beginning of the pandemic and then moved toward the model
under optimal policy, as various states implemented social distancing policies.

We extend the model to include a vaccine that provides immunity to the disease, but the
immunity wanes at the same rate that immunity acquired from infection wanes. Optimal
policy uses two tools—social distancing and vaccination—to maximize a social welfare function
that is the same as described above in the absence of a vaccine, except that the cost of
administering the vaccine is subtracted from aggregate output. Again, optimal policy leads
to an endemic steady state, though the use of a vaccine changes important features of the
steady state. When social distancing is the only tool to limit the spread of the disease, the
optimal degree of social distancing, and the consequent reduction in output, can be quite
large in the steady state. Adding a vaccine to the policy tool kit relieves social distancing
from sole burden of fighting the disease; as a consequence, the optimal degree of social
distancing and the associated loss in output become extremely small in the steady state. In
addition, the use of a vaccine reduces the rate of excess deaths per year substantially below
the rate attained with optimal social distancing alone. In the quantitative implementation
of optimal policy for a country with 330 million people, the endemic equilibrium entails
about 22,500 deaths per year in the absence of vaccines (a stock of about 187,500 infected
people on any given day) but only 65 deaths per year (a stock of 542 infected people on any
given day) with the optimal use of vaccines.

Our findings put the potentially alarming comments of Drs. Heymann and Fauci cited

above in a new light. While the distinction between endemic equilibria and disease-free



equilibria is quite sharp, we demonstrate, perhaps surprisingly, that optimal policy leads to
an endemic equilibrium. Therefore, the attainment of a disease-free equilibrium need not be
the goal of public health policy. Having said that the optimal steady state will be endemic,
we find that in the optimal endemic equilibrium, excess deaths in the United States would
be fewer than hundred per year, and the loss of output per person would be essentially
undetectable.

The economics literature on the covid-19 pandemic has grown at an explosive rate since
the arrival of the coronavirus. We focus on the literature in the tradition of the epidemio-
logical framework based on Kermack et al. (1927), Bailey (1975), Hethcote (2000) andAvery
et al. (2020). Three features of the eponymous paradox — that optimal public health policy
leads to an endemic steady state — distinguish our paper from the existing literature. First,
in contrast to the findings in most of the literature, which depend on numerical computation,
the paradox is an analytic result. The advantage of the analytic result is that it holds for
an entire set of admissible parameter values and thus does not depend on particular choices
of parameter values that are needed in numerical computation.

The second feature of the paradox is that even in the presence of a vaccine that is capable
of leading to a steady state with zero infections, the optimal policy will not do so. Of course,
to examine this question in the first place, one needs to include vaccines in the tool kit used
for public health policy. Most of the recent economics literature, including Berger et al.
(2020), Piguillem and Shi (2020), Gonzalez-Eiras and Niepelt (2020b), Gonzalez-Eiras and
Niepelt (2020a), Jones et al. (2020), focuses on social distancing as the only tool to slow the
spread of the disease. Often when vaccines have been included in the existing literature, the
vaccines are treated as an anticipated future tool of public health policy. While forward-
looking policy makers would take account of the (stochastic) arrival of a vaccine in deciding
on current social distancing mandates, the future arrival of a vaccine is often modeled as
an event that immediately transforms all susceptible people into recovered people (Alvarez
et al. (2020) , Acemoglu et al. (2020), Eichenbaum et al. (2020)). Indeed, we adopt this
assumption in Section 3, when we analyze optimal social distancing in the absence of a

vaccine. However, in Section 6, we adopt a more nuanced description of the vaccine in the



evolution of infection dynamics.

The third feature of our analysis, which is needed to even consider the paradox, is that
we use an epidemiological model that admits both disease-free and endemic steady states.
That is, an endemic steady state resulting from optimal policy is possible, but it is not hard-
wired. As we have mentioned above, an endemic steady state requires replenishment of the
pool of susceptible people either through waning immunity or births of susceptible people.
Much of the recent literature includes neither waning immunity nor births, thereby ruling
out endemic steady states. Notable papers in this endemic-free framework include Alvarez
et al. (2020), Acemoglu et al. (2020), Atkeson (2020), Bethune and Korinek (2020), Cochrane
(2020), Fernandez-Villaverde and Jones (2020), Farboodi et al. (2020), and Garibaldi et al.
(2020).  Cenesiz and Guimardes (2020) and Giannitsarou et al. (2020) include waning
immunity in their models, but neither paper includes vaccines and neither paper derives
general theoretical results. An older, pre-covid literature examines the possibility of endemic
equilibria in the presence of vaccines. Geoffard and Philipson (1997) and Barrett and Hoel
(2007) frame the question about the desirability of eradicating a disease. However, Geoffard
and Philipson (1997) explicitly ignores steady states that are disease-free.? Barrett and Hoel
(2007) departs from the SIR framework to examine eradication that occurs in finite time.
Goldman and Lightwood (2002) shows that optimal medical treatment of infected people
can lead to an endemic steady state in an SIS model, which is a simple special (limiting)
case of the SIR model as the hazard rate of waning immunity approaches infinity. Public
health policy in Goldman and Lightwood (2002) is confined to the treatment of infected
people, whereas the public health policies we examine focus on controlling the flow of new
infections, both by decreasing the infection hazard rate through social distancing and by
increasing the vaccination rate. Gersovitz and Hammer (2003) also analyze optimal public
health policy, excluding vaccination. They remark that optimal policy may lead to a disease-
free equilibrium, but rule out such cases in their formal analysis, thereby forcing optimal
policy to lead to an endemic steady state.

The planning problem used to derive optimal public health policy takes account of the

2See their footnote 4: “We ignore the steady state (S,1,R) = (1,0,0) with zero prevalence [of the
infection].”



externality imposed by infected people on susceptible people. We demonstrate the impact
of internalizing this externality by comparing the planner’s optimal social distancing (in the
absence of a vaccine) to the equilibrium level of social distancing in a “laissez-faire” economy;,
where the degree of social interaction is chosen freely by individuals, as in the optimization
frameworks of Eichenbaum et al. (2020) and Toxvaerd (2020), or informally as in Cochrane
(2020).

In Section 1, we present a version of the basic SIR model that incorporates vital de-
mographics, including births, baseline deaths, and excess deaths from the disease; waning
immunity; and vaccinations. We analyze the steady state of this model and show which
combinations of social distancing and vaccinations lead to disease-free steady states and
which combinations of these public health measures lead to endemic equilibria. We specify
the impact of social distancing and the infected share of the population on aggregate output
per capita in Section 2. In Section 3, we turn from a positive analysis to a normative anal-
ysis and derive the steady state that arises from the optimal use of social distancing before
the appearance of a vaccine. Then in Section 4, we analyze the steady state that arises
in a laissez-faire economy in which individuals choose their own degrees of social distancing
in the absence of a vaccine. Section 5 quantitatively implements the short-run equilibria
in the early stages of a pandemic under socially optimal social distancing as well as under
laissez-faire. In Section 6, we add a vaccine to the tool kit of public health policy and show
that even with a vaccine, the optimal steady state is endemic. Concluding remarks are

contained in Section 7.

1 SIR Model with Population Growth and Excess Deaths

The total population, a continuum of measure NV, is the sum of susceptible people, S, infected
people, I, and recovered people, R, who are no longer susceptible to the disease. Let ¢ > 0
be the birth rate per unit of population per unit of time, ;1 > 0 be the baseline death rate
per unit of population per unit of time, 7 > 0 be the recovery rate per infected person per

unit of time and § > 0 be the excess death rate of infected people per unit of time. As in



conventional SIR epidemiological models, the flow of new infections per unit of time is 55 %,
where 8 > 0 is a contagion parameter reflecting the extent of social and business interactions.
We augment the SIR model in two important ways: First, we assume that susceptible people
are vaccinated with a hazard rate A > 0. The vaccination transforms susceptible people
into recovered people. Second, immunity from the disease, whether acquired by vaccination
or by having recovered from the disease, wanes over time with a hazard rate xy > 0.

We begin by treating the contagion rate, 8, and the vaccination rate, A, as fixed parame-
ters and conduct a positive analysis of the dynamics and steady state of this augmented SIR
model. Beginning in Section 3, we treat S and A as control variables of public health policy
and we analyze the values of these control variables that maximize a planner’s objective
function.

The differential equations governing the evolution of S, I, and R are

dsS I

E—gb]\/’—i-xR—BSN—,uS—/\S (1)

dl I

= BS —(uo )T )
and

%zvl—i-/\S—,uR—xR. (3)

Equation (1) expresses the change in the susceptible population per unit time as the
number of births, ¢/N, plus the number of recovered people, YR, who lose their immunity
and become susceptible, minus the number of people per unit time who leave the population
of susceptible people through baseline deaths, .S, becoming infected infected at rate 5.5 %, or
getting vaccinated at rate AS. This formulation assumes that all newborns are susceptible.

Equation (2) expresses the change in the infected population per unit of time as the number

L

of susceptible people who become infected, 35+,

minus the number people who leave the



population of infected people through baseline deaths, ul, excess deaths from the disease,
01, or recovery from the disease, vI. Equation (3) expresses the change in the number of
recovered people per unit of time as the sum of people who enter the recovered population
either by recovering from the disease, v/, or by vaccination, AS, minus the number of people
who leave the recovered population either by baseline death, uR, or by waning immunity,
xR.

Throughout our analysis, we assume that
Ad+y—x)=0. (4)

In the absence of a vaccine, A = 0, and the restriction in equation (4) has no impact. In the
presence of a vaccine, A > 0 and the restriction requires x < é ++. Note that (x + ,u)_1 is
the expected duration of immunity for an individual since y + p is the rate at which people
lose immunity either through death or by waning of immunity; also, (6 + v+ u)fl is the
expected duration of infection for an individual, since § 4+ u + v is the rate at which people
leave the infected state, either through death or recovery. Thus, y < d + v is equivalent to
requiring that the expected duration of immunity is longer than the expected duration of an
infection episode. This restriction is likely to be satisfied. In the quantitative analysis in
Section 5, § + «y is 12.12 and  is 1, so the restriction in equation (4) is satisfied by a wide
margin.
Because population potentially can grow without bound, we work with the population
S

shares s = %, 1 =

time is gN = ¢N — uN — 61, which is births, ¢ N, less baseline deaths, u/V, and less excess

%, and r = %, where s + ¢ 4+ r = 1. The change in population per unit

deaths, d1, so

g=yg(i) =¢—p—oi (5)
The change in the susceptible share s = % is % = %% — gs, S0

ds .

E=¢+xr—ﬁsz—(u+g+)\)s, (6)



Similarly,

di .

o = Bs— (@0 +y+pu+g)i (7)
and

dr )

%:fyz—l—/\s—(,ung—l—x)r. (8)

Define the effective reproduction rate, R, as the ratio of Ssi, which is the gross increase
in the infection share ¢ shown by the first term on the right hand side of equation (7), to
(6 + 7+ p+ g) 1, which is the gross decrease in share i resulting from disease-caused deaths
(07), baseline deaths (pi), the recovery of infected people (i) and population growth (gi).

Therefore,

Ry=— D5
O+vy+g+p

and equation (7) can be rewritten as
— =0 +7+g9+u)(Re—1)4, (10)

where § + v+ g+ pu=3d+v+ ¢ —di > 0. Equation (10) shows that the sign of R, — 1
determines whether a positive infection share, ¢ > 0, is increasing or decreasing.

Define the basic reproduction rate R as the value of the effective reproduction rate when
s = 1, as would be the case at the beginning of an epidemic if no one has any immunity

from the disease before the epidemic. Therefore,

_ B
S0t y+g+p

(11)

Ro

The basic reproduction rate, Ry, plays a pivotal role in determining whether the long-run
equilibrium is a disease-free equilibrium (DFE) with a zero measure of infected people or an

endemic equilibrium (EE) with a positive measure of infected people. Note that since the



growth rate, g, is endogenous, both Ry and R; are endogenous.

Remarkably, the expression for % in equation (7) does not directly depend on either the
vaccination parameter, A, or the waning immunity parameter, y. Since the inflows to and
outflows from the pool of infected people are unaffected by A and x, the effective reproduction
rate, R, and the basic reproduction rate, Ry, do not directly depend on either A or x. The
expression for the growth rate of the economy in equation (5), g = g (i) = ¢ — u — i, also
does not depend directly on A or y, though the endogenous value of the growth rate, and
consequently the values of the effective reproduction rate and the basic reproduction rate,

are affected by A and x to the extent that A and x affect the infection rate i.

1.1 Steady-State Equilibria

In a steady state, S, I, R, and N all grow at the rate g, so s, ¢, and r are constant and

*

equal s*, i*, and r*, respectively. Throughout, an asterisk (*) denotes steady-state values
of variables.
. . . ” dr s
We begin the analysis of the steady state by deriving an upper bound on *. Set % in

equation (8) equal to zero to obtain

Yt = (g + X)) = AT < (g + )T < (6 X) 17 (12)

where the final inequality follows from the definition of the growth rate g (i) in equation (5).

. . . L . . . L Sk ¢)+X+fy . .
Equation (12) implies that r* > Sy, so that 1 > ¢* +1r* > * + Tl = S, which
proves the following proposition.

ops - o+
Proposition 1 0 <* < JMX < 1.

In addition to providing a quantitative upper bound on ¢*, Proposition 1 emphasizes
the importance of ¢ + x > 0 for the existence of an endemic steady state. An endemic
steady state requires replenishment of the pool of susceptible people either through births
(¢ > 0) or through waning immunity (y > 0). Without births or waning immunity — strictly
speaking, in the limit as ¢ + x approaches zero, the upper bound in Proposition 1 implies

that ¢* approaches zero — the steady state is not endemic.

10



To facilitate the analysis of the steady state, we define a critical value of the contagion

parameter
Be=0+7+0¢ (13)

As will become evident from Proposition 4, in the absence of a vaccine, that is, when A\ = 0,
the steady state is DFE if 8 < . and is EE if § > (.. In the presence of a vaccine, the
value of 3 that is the boundary between DFE and EE states is /?c (A), which is defined as

= (142 ) 0= (145 ) G+ovo. (14

It is also useful to define
Nn=g+p+x=0+x—0<o+x, (15)

where the final equality uses equation (5) to replace g + u by ¢ — di.  The variable 5
captures the forces that tend to decrease the recovered share, r, over time. Specifically, r
decreases because of baseline deaths at rate u, waning immunity at rate x, and dilution due
to population growth at rate g.

ds _ di _ dr _

In the steady state, £

, o =a =9 =0. Since s +i+r =1, it is sufficient to characterize

the conditions for any two of these three time derivatives to be zero. Set % in equation (7)
equal to zero, use the definition of the critical value of 5 from equation (13) and use equation

(5) to replace g + p1 by ¢ — di to obtain
[Bs™ — (B, — 0i")]i* = 0. (16)
Set % in equation (8) equal to zero and use the definition of 7 in equation (15) to obtain

Vit A+ AT =0t (17)
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Equation (17) implies®
n* > 0. (18)

Equations (16) and (17), together with s*+i*+7* = 1, lead directly to the following two

propositions.
Proposition 2 [If* =0, then

* __ 1 A
1. s* =1 —¢+X+A>O

* A
2. r = g < 1.

Proposition 3 If* > 0, then

_ Be=0ir _ -1

2. =1 (1-Ry ") — 2Ry

n*+7 oty

3= (1R + 2 Re ™

n*+y n*+y

The expressions for ¢* and r* in Proposition 3 involve the endogenous variable n*. Lemma
4 in the appendix proves that if i* > 0, then n* is the unique positive root of the following

quadratic equation

qm) =[(B—=0)n+8y—0An—(¢+x)+d[Bn—(n+A)B]. (19)

Proposition 4 If g < EC(A) = (1+ L) Be, then i* = 0, s* and r* are as stated in

d+x
Proposition 2, and Ry <1+ ﬁ If 6 > 6.(\) = (1 + ﬁ) Be, then i* > 0, s*, i*, and r*
are as stated in Proposition 3, and R§ > 1+ ¢T/\x
Define
Ap (B%) =min{\ > 0:¢"(8") =0} (20)

3If vi* + As* > 0, then 7*r* > 0, which implies n* > 0. If 43* + As* = 0, then i* = 0, so equation (15)
implies n* = ¢ + x > 0.

12
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Figure 1: An illustration of disease-free and endemic equilibria in the presence of vaccination.

as the minimum vaccination rate A that achieves a DFE steady state when the contagion

*

parameter in the steady state is §*.

Proposition 5 If 5* > ., then

L) = (% -1) 6+

2. if \* = A\, (6%), then s* = %, *=0 andr*=1-— %

The following proposition shows how a positive steady-state infection rate depends on

the steady-state contagion parameter 5* and the steady-state vaccination rate \*.

Proposition 6 If 5* > Bc (M) = (1 + ¢§x) Be, then

LA =gt (M) (L= )0+ + 6] [ ()] >0

2 4 === o+y+glld ()] <0.
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Figure 1 illustrates the results in the preceding propositions and corollaries for combina-
tions of the steady-state contagion parameter 5* on the horizontal axis and the steady-state
vaccination parameter A* on the vertical axis. The upward-sloping line segment AB is a
graph of the function Ay, () in Proposition 5. It is the boundary between (5*, \*) pairs that
lead to DFE steady states (in the shaded region above and to the left of AB) and (3*, \*)
pairs that lead to EE steady states (below and to the right of AB). Along AB, the steady
states are DFE. Thus, points with sufficiently high vaccination parameter A* or sufficiently
low contagion parameter §* will have DFE steady states. However, if \* is sufficiently low
and B* is sufficiently high, so that the (8%, \*) pair is below AB, then the steady state is EE.

Figure 1 shows that if g* < . = 0 + v + ¢, the steady state is DFE for any admissible
value of A\*) including zero; thus, a DFE steady state can be attained without a vaccine.
Figure 1 also shows that if \* > A\, (3), the steady state is DFE even when 3* = j so a
DFE steady state can be attained without social distancing.

Within the DFE region, ¢* = 0 and the values of s* and r* depend linearly on A* but
are invariant to 5* (Proposition 2). Within this region, a decrease in A* reduces the rate at
which people transfer directly from the susceptible status to the recovered status, and this
reduced rate is reflected in an increased value of s* and a decreased value of r*. Indeed,
if the vaccination parameter is reduced to A* = 0 when * < f., then the steady state is
characterized by s* =1 and ¢* =7* = 0.

Within the EE region in Figure 1, the steady-state infection rate, ¢*, is positive. Propo-
sition 6, which states that i* is increasing in $* and decreasing in A*, suggests that increasing
£* and increasing \* by appropriate amounts will leave 7* unchanged. That is, there is an
upward-sloping iso-infection locus of (8*, \*) pairs for any i* > 0. As shown in Appendix
A.1.1., the iso-infection loci are, in fact, linear. The upward-sloping dashed lines in the
EE region of Figure 1 are iso-infection lines.* Moving up and to the right along a given

iso-infection line, s* decreases and r* increases, while, of course, * remains unchanged.®

4Appendix A.1.1. shows that the iso-infection line through, say, point E on the horizontal axis, where
B* = B and A* =0, is \* = Z—Eﬁ* —n};, where 1}, is the positive root of ¢(n) = 0 when §* = S and A* =0
in the quadratic function ¢ (n*) in equation (19).

In the EE region, Statement 1 of Proposition 3 is that s* = R(’;_l, which implies s* = W&.

Since 7" is constant along an iso-infection line, g (i*) is also constant, and hence s* is inversely proportional

14



As one moves to the right in the EE region, the iso-infection lines become less steep and,
as indicated by the increasing thickness of the iso-infection lines, the value of ¢* increases,

reaching a maximum value at Point C.

2 Effect of Social Distancing on Output

We will use the term social distancing to denote non-medical public health policies aimed
at reducing the contagion parameter 5. Social distancing policies can range from making
hand sanitizer readily available in public places and wearing of face coverings to limiting or
outright closing various social and productive activities where people gather, such as schools,
offices, factories, personal care services, sports and entertainment venues, and restaurants
and bars. We will specify aggregate output per capita to be an increasing function of 5.
To the extent that social distancing reduces (3, output is a decreasing function of social
distancing.

Define z as an index of a person’s social and productive interactions. The amount of
output produced by that person per unit of time is strictly increasing in z for z < Z and
is constant for z > Z. The contagion parameter [ is strictly increasing in z, so we write
the amount of output per unit of time produced by that person as y (5) with ¢ (5) > 0 for
B < and y (B) =0 for 3 > 3, where 3 is the value of 8 when z = Z.

We assume that infected people do not produce output so that aggregate output per

capita is

Y = SY (ﬁs) +Ty (ﬁr) (21)

where 5, and 3, are the contagion parameters for susceptible and recovered people, respec-
tively. If xy > 0, so that recovered people eventually become susceptible, we need to consider
whether susceptible and recovered people can be distinguished from each other. We analyze
two extreme cases. If susceptible and recovered people can be costlessly distinguished from

each other, then there are distinct values of the contagion parameter, S, and j,, respectively,

to B* along an iso-infection line.
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for these two groups. In this case, there is no need for recovered people to restrain their
interactions below Z, so 5, = 8. Alternatively, if the cost of distinguishing susceptible
people from recovered people is sufficiently high, then 5, = 5. We can capture both cases
with the specification 8, = (B¢ + (1 — ¢) B, ¢ € {0,1}, where ¢ = 1 if susceptible people and
recovered people are indistinguishable from each other and ¢ = 0 if susceptible and recovered
people can be costlessly distinguished from each other. Henceforth, we use 8 to represent

Bs, which implies

Br=CB+(1-0)B, (e{0.1}. (22)

Equations (21) and (22) imply that aggregate output per capita is

Y (8,s,1) = sy (B) +ry (B;) = sy (B) +ry (¢B+(1-¢)B), ¢€{0,1}. (23)

Equation (23) implies the following partial derivatives

Y5 (B,5.7)=(s+¢r)y (8), ¢€{0.1} (24)

and

Y, (B,57)=y(8) <y((B+(1—-B)=Y,(8,s1), (25)

where the weak inequality holds as an equality if ¢ =1 or if 8 = 8.

3 Optimal Social Distancing without a Vaccine

In the beginning stages of a pandemic, before effective treatments or vaccines are available, a
forward-looking social planner anticipates that medical and scientific developments will bring
relief from the pandemic. To incorporate the anticipation of future relief, without endowing
the planner with too much knowledge of when or in what form that relief will arrive, we follow

Alvarez et al. (2020) and model the planner as assuming that there will be a “breakthrough
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date,” denoted T', when medical therapies lead to complete and instantaneous recovery of all
infected people and a vaccine prevents any new infections, so that the disease is completely
eradicated. To capture the uncertainty about the timing of the breakthrough date, we
let p be the constant hazard rate of arrival of the breakthrough. This formulation of the
breakthrough is a simplification. We use the simplification merely to guide the dynamics of
policy in the pre-vaccine phase of the pandemic. In Section 6, we analyze the cum-vaccine
phase of the pandemic and adopt a more realistic specification of the role of the vaccine in
taming the spread of the disease. In particular, we specify that the immunity provided by
the vaccine, as well as immunity obtained by recovery from the disease, wanes over time,
replenishing the population of susceptible people.

From 7" onward, i = 0, g (i) = ¢ — 1, and optimal 3 = 3. Therefore,

> v (P)

W7 = [y (B)e e

T p—(¢—p) (26)

is the present value, discounted at rate p > 0, of aggregate output from date 7" onward. To

ensure that V is finite, assume that

p>¢— . (27)

Before T', the optimal time path of § balances the benefit of reducing £ in terms of
reducing excess deaths against the cost of reducing f§ in terms of lost output. This tradeoff
is reflected in the objective function

T
max F, {/ Nue PUNY (Buy Suy Tu) — wiiy,] du + NTe_p(T_t)V} , (28)
t

Bu,t<u<T

where 0 < w < oo is the weight the planner places on an excess death relative to a unit of
aggregate output per capita.
Using N, = N;exp (ftu gzdz), the objective function in (28), per unit of population, N,
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at time ¢ is

T
V (s¢,i4,7m) = max Ey {/ e~ i (p=gz)dz Y (Bu, Su, ) — wiiy] du + Ve_ftT(”_gz)dz} . (29)
t

Bu,t<u<T

Recognizing that T is a random value with constant hazard p, the Bellman equation associ-

ated with the objective function in equation (29) is

Y (8,s,1) —wdi
(p—g(2)V (s,i,r) = max (B, s,7)

B8 ds di dr 17 ; (30)
—l—VSEvLV}E—i-VTEva(V—V(s,z,r))

The left hand side of (30) is the required return per unit time, which is the growth-adjusted
discount rate, p— g (i), multiplied by V. The right hand side of this equation is the expected
return, which comprises the instantaneous flow of welfare, Y (3, s, ) —wdi, and the expected
change in V' (i, s, r), which consists of the change resulting from changes in the state variables,
s, ¢, and r, VS% + Vi% + V}dd—’;, and the expected change associated with the breakthrough,
P (\7 — V(s,z’,r)).

To obtain expressions for the dynamic behavior of V;(s,i,r), j € {s,i,r}, differentiate

both sides of (30) with respect to 7 and use dd—‘? = VJ-S% + VJZ% + Vj,,%. Appendix A shows
that these calculations lead to
dV .
(p+p+p)Ve=y(B) +—= + Bi(Vi = V) (31)
dV; - )
(p+pu+p+90)V,=—-wi+ o +y(V, = Vi) =0V — (sVs +iV; + rV,)]— (Vs = Vi) Bs (32)
and
dV,
(p+p+p)Ve=y(B)+—-+x (Vi = V), (33)

where 3, is defined in equation (22).
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In (31), the effective discount rate on the left side is p+ +p. As in models of uncertain
lifetimes going back to Yaari (1965), the effective discount rate includes the rate of pure time
preference, p, and the instantaneous hazard rate of death. Here, the hazard rate of death
is the baseline death rate, p, plus the hazard rate, p, that 7" will arrive, terminating the
regime in which the disease is present. Thus, the left hand side of (31) is the required return
associated with increasing s by one unit. It is equated with the expected return on the right

hand side, which consists of the output y (8) produced by an additional unit of s and the

dVs
s T dt 0

change in valuation reflecting: (1) the passage of time and (2) the increased hazard of
becoming infected, (i, multiplied by the change in valuation, V; — Vj, as a person moves from
susceptible to infected. The interpretation of (33) is similar, except that y (Vs — V) is the
impact of a unit increase in r on the transition from recovered status to susceptible status
as recovered people lose immunity at rate x, multiplied by Vi — V,., which is the impact on
welfare of such a transition.

The interpretation of (32) is more complicated. On the left hand side, the effective
discount rate, p+ p+p—+9, includes ¢ because a unit increase in 7 increases excess deaths by
0. The first three terms on the right hand side are similar to the terms on the right hand side

of (31): The first term reflects that a unit increase in 4 increases deaths by §, which reduces

dv;
dt ’

the flow of welfare by wd; the second term, captures the change in V; with the passage
of time; and the third term, v (V, — V), is the hazard rate 7 of switching from status i to
status r, multiplied by the change in valuation, V, — V;, associated with that change. The
fourth term reflects that a unit increase in ¢ reduces the population change by d N, reducing
the aggregate flow of utility by (5%]\71/ (=, 4, %), which equals® § [V — (sV; +1iV; + rV,)].
The fifth term, — (Vs — V;) Bs, reflects an important externality, namely, that an increase in
the infection share 7 increases by (s the hazard rate that a susceptible person will become
infected. The planner takes account of this externality by including the change in welfare

associated with this new infection — (V; — V;) multiplied by fSs.

S%NV (%%7%) = V(S,i,T‘) - SVS (S,i,?“) - ZVZ (S,i,T) - TVT (S,i,T).
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The first-order condition for optimal (5 is

(s +¢r)y' (8) = (Vs = Vi) si. (34)

The optimal value of 3 equates the marginal benefit and marginal cost increasing 5. The
marginal benefit is the increase in output per capita, Yz (5,s,r) = (s +(r)y’ (5). Since a
unit increase in § increases the infection rate by si, which reduces s by si units and increases

i by si units, the marginal cost of increasing 3 is (Vi — V;) si.

3.1 Steady State Under Optimal Policy

To better characterize optimal social distancing policy, captured by [, prior to the arrival of

the vaccine, we first consider the situation in which %, %, %, %, ’gf,

dVy
dt

and are all equal to
zero. We refer to this situation as a steady state. © As we show in the quantitative analysis
in Section 5, the transition to this pre-vaccine steady state is rapid, so the conclusions
presented in this section are applicable after the first few months of the pandemic.

Let 8* denote the steady-state value of 5 and let 3, denote the value of 5* under the

optimal policy.

Lemma 1 Assume that no vaccine is yet available. If B > 3. = § +~ + ¢, then V¥ — V* is

positive and finite.
Lemma 1 helps prove the following proposition.

Proposition 7 Assume that no vaccine is yet available. If f> B =6 +~v+ ¢, and w > 0
is finite, then . < BHp < B. Therefore, under the optimal policy, the steady state is EF.

Proof of Proposition 7. We prove this proposition by contradiction. We show that both
B5p < B and Bp > B are impossible. Case I: (85, £ B.): For any 8* < 8, i* = 0 and
therefore Proposition 2 implies (s* + (r*) ¢’ (8*) > 0. Therefore, since V.* — V;* > 0 is finite

"This analysis (unlike the steady-state analysis in Section 6) is confined to the period of time before the
breakthrough date, T', and hence is a “pseudo steady state.”
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(Lemma 1), the marginal cost of 3, (V. — V.*) s*i*, equals zero and the marginal benefit of /3,
(s* + ¢r*) ¥/ (B) > 0, exceeds the marginal cost. Therefore, 85, > .. Case IL: (85, # B):
Since V} — V;* > 0 and, from Proposition 4, i* > 0, the marginal cost of 3, (V} — V;*) s*i*,
is positive and exceeds the marginal benefit of 5, (s* + (r*)y' (5*) = (s* + (r*) v/ (B) = 0.
Therefore, 35p < 8. [ ]

Proposition 7 implies that under the optimal policy, the steady-state value of i* in the
absence of a vaccine is positive and thus the equilibrium is endemic. Nevertheless, the
proposition also states that 85, < B, so that the optimal policy never stops imposing some

degree of social distancing (at least, prior to the arrival of a vaccine).

4 Laissez Faire in the Pre-Vaccine Regime

In the absence of centralized policy to control 3, individual susceptible people may choose
to limit their interactions to reduce their own risks of becoming infected. In this section, we
analyze the optimal choice of 3 for individuals in each of the three states of health. To focus
the analysis, we assume that ( = 0, so that individuals know whether they are susceptible
or recovered. In this case, output per susceptible person is y() and equation (22) implies
that output per recovered person is y(f3).

Consider the decision of a susceptible person, who knows that in the future she may
become infected and subsequently may recover from the disease. Using backward induction,
first consider the recovered stage of life. The expected present value, discounted at rate p,
of a recovered person’s earnings until her death, or the arrival of T', whichever comes first,

R

is v'* and satisfies

R

(o4 n+p) o™ =y (B) + — 4 x (o5 = 0"). (35)

For an infected person, the effective discount rate, p + p + 6 + p, includes the hazard
rate, 8, that the person dies from the disease. Let v! be the value of being in the infected

state. The instantaneous flow of welfare, —wd, and the hazard-weighted change in value
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when recovering from the disease, v (v — v'), satisfy

1

d
(p+,u+p+5)’ulz—w5+d—1;+’y('uR—'UI). (36)

A susceptible person chooses how much to expose herself to infection according to the

Bellman equation

dv®

(p+u+p)vszmgX{y(ﬁ)Jrngﬁi(vl—vS)} (37)

The first-order condition for the maximization in (37) is
v (B) = (US — vI) i. (38)

Now compare an individual’s v, v’, and v® with the derivatives of the planner’s value
function V., V;, and Vj, respectively. Comparing (35) with (33) and observing that ¢ = 0
implies that 3, = 3 implies that v = V,. Also, (37) has the same form as (31) and the
first-order condition (38) has the same form as (34) with ¢ = 0, where V; corresponds to v°
and V; corresponds to v’.

The optimal values of 3 in the two problems differ because the expression for v in (36)
has a different form than the expression for V; in (32). The last two terms on the right hand
side of (32) have no counterpart in (36). Because v’ differs from V;, the laissez-faire choice
of 8 differs from the planner’s choice, so social welfare can be improved by mandating /3
rather than relying on individual precaution.

The two terms on the right side of (32) that are responsible for the discrepancy between
Vi and vf are =3[V — (sV, +iV; +rV})], and — (Vi — V;) Bs. The first term is related to
the fact that the planner takes into account the impact of ¢ on population growth. The
second term, (Vy — V;) fs, reflects an important externality, as discussed earlier. An infected
individual does not internalize the contagion of her infection, while the planner does. This

externality is the fundamental reason that public health policy is useful.

Proposition 8 In the absence of a vaccine, there exists a unique steady-state laissez-faire
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equilibrium, B3, < B.

Proposition 8 shows that under laissez faire, and in the absence of a vaccine, individuals
choose to reduce their social and productive interactions relative to the pre-pandemic world.
However, as shown in the following proposition, they do not reduce their interactions as

much as in the socially optimal steady state in Section 3.

Proposition 9 In the absence of a vaccine, in a non-negative neighborhood of 6 = 0, 5}z >

Bop-

5 Quantitative Analysis of the Early Stage of the Coro-
navirus Pandemic

Before we analyze optimal policy in the presence of a vaccine, we illustrate the short-run
quantitative behavior of the model in the absence of a vaccine (A = 0) at the beginning
of the coronavirus pandemic. The goal of this section is two-fold. First, we compare the
behavior of the model to the actual evolution of the pandemic during its early stage. Second,
we demonstrate our earlier claim that the model approaches its steady state quickly.

We set ¢ = 0.015, which is the sum of the annual birth and net immigration rates, and
i = 0.01, which is the annual death rate in the United States.® The values of disease-related
parameters are based on the US experience with Covid-19. We set v = 12 to reflect that
the average person who recovers was infected for about one month. We set § = 0.01v
= 0.12 to reflect that infected people are about 1% as likely to die from the disease as to
recover from it. Therefore, the critical value 8, = 6 + v + ¢ = 12.135. To calibrate §,
we use (11), the definition of ., and the fact that 07 is so much smaller than . to obtain
B = (B, — 61) Ry =~ B.Ro, where Ry is the maximal value of Ry observed at the beginning of
the pandemic before any individual actions or any public health policies to reduce contagion.

We use the high end of estimates for Ry across US states in the last week of February 2020

8Source: United Nations Population Division, (2015-2020).
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and set Ry = 3.5, which implies B = 42.473.° The value of the discount rate used by the
planner and by individuals, p, is set to 0.03. Consistent with the analysis of laissez-faire in
Section 4, ¢ = 0.

We specify the production function y (5) to be quadratic with maximal value y (B) nor-
malized to one. Specifically, for 3 < 8, y(8) = 1 — « (B — 6)2, v (6) = 2« (B — B), and
the “output gap” is y () — y(8) = « (3—6)2.10 Let A = % =« (5—5)2 be
the reduction, as a fraction of y (B), in y when g is reduced from its pre-pandemic level,
B, to f., the level of B at which Ry = 1, which was approximately the value of the re-
production rate for most states during the second quarter of 2020. We set A = 0.09 to
match the 9% drop in output in that quarter. Therefore, « (B — 60)2 = A, which implies

a=—2 =9.779 x 107°. At the time of the writing of this paper, it is not known how

long t(lﬁleﬁi‘;l)lmunity of the recovered patients lasts. In our baseline case, y = 1, which implies
that immunity has an average duration of one year. To illustrate the quantitative role of ¥,
in Tables 1 and 2 we also present results for y = 0.5 and y = 0.

To calibrate w we use the concept of “Quality Adjusted Life Year” (QALY), defined
as the value of extending quality life by an extra year. The World Health Organization
consensus is that QALY is 1 - 3 times annual GDP per capita.!! Using a discount rate of
p~+ 1= 0.03+0.01 to discount the foregone stream of 1 QALY per year over the lost years of
life implies that the present value of the losses from an excess death is 25 QALY. Assigning
a value of 2 times GDP per capita to each QALY implies w = 50 times GDP per capita.
With y (8) = 1, we set w equal to 50.'2

Finally, i, the infection share of the population on the initial day of our simulation

(March 1), is chosen so that the daily excess death count implied by the model matches the
270 daily Covid-related deaths observed three weeks later (March 22). The daily death rate

9Source:  Estimates of the reproduction rate provided by the websites http://rt.live and
http:/ /epiforecasts.io. For instance, rt.live estimates that on February 27, 2020, the effective reproduction
rate of Covid 19 was 3.98 in New Jersey and approximately 3.6 in New York and Illinois.

OFor g > 6,y (8) = 1.

1Source: “Overview of the ICER value assessment framework and update for 2017-2019”, p. 15, available
at: https://icer.org/wp-content/uploads/2020/10/ICER-value-assessment-framework-Updated-050818.pdf

12 Alvarez et al. (2020), citing Hall et al. (2020), set w = 20, but note that this value “is on the low range of
the estimates in the literature.” Our fundamental result that optimal policy leads to an endemic equilibrium
holds for any positive value of w.
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Laissez Faire
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(a) Effective reproduction rate Ry, . The thick lines depict the effective
reproduction rate (R,;;) according to the model under the optimal policy
(OP) and laissez faire (LF) scenarios from beginning of March to end of July,
2020. The thin lines depict estimated R;, for each US state.

2500

Data

s

2000

Data excl. NY

Laissez Faire

o

S

S
T

Daily deaths

o

S

S
T

500

Optimal

Mar Apr May Jun Jul Aug

(b) Model-implied daily excess deaths under the optimal policy (OP) and
laissez faire (LF) scenarios. The line “Data” corresponds to the daily excess
deaths observed in the US over this period. The line “Data Excl NY” excludes
New York from the computation of daily excess deaths.

Figure 2: Effective Reproduction rates and excess deaths when y = 1.
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(a) Output Y; under the optimal policy (OP) and laissez faire (LF) scenarios. The
horizontal lines labelled “ss” reflect the steady-state values for the two scenarios.
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(b) by, i¢, s¢. The horizontal lines labelled “ss” reflect the steady-state values for the two
scenarios.

Figure 3: Y;, by, %4, ¢ when y = 1.
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is 52 x Nig = 52 x (330 x 10) 4o = 270, which together with § = 0.12 implies iy = 0.0025.

Figures 2 and 3 present our results for the baseline calibration (y = 1). In Figure 2(a),
the optimal policy scenario (OP) shows the value of the effective reproduction rate, Ry,
when the contagion parameter 3, is the socially optimal value determined by the first-order
condition in (34) at each point of time. The laissez-faire scenario (LF) shows the value of
R; when the contagion parameter 3, is the laissez-faire value determined by the first-order
condition in (38) at each point of time. Figure 2(a) also shows empirical estimates of R;
for the 50 individual US states.’ The most notable feature of Figure 2(a) is that scenario
OP exhibits more aggressive policy to fight the disease than does scenario LF. Specifically,
the values of R, which reflect values of (;, are lower in scenario OP than in scenario LF.
In particular, during the first 4-6 weeks, R, is substantially smaller than one in scenario OP
and is substantially higher than one in scenario LF.

Figure 2(b) shows excess daily deaths. Under scenario OP, daily excess deaths initially
decline and continue to decline throughout the 5 months shown. In contrast, under scenario
LF, daily excess deaths spike upward abruptly, and after 2-3 months begin to decline very
slowly. To illustrate the quantitative difference under the two scenarios, we find that on May
1, daily excess deaths are 107 under scenario OP and are 1,353 under scenario LF. For the
first 6 weeks, the data for nationwide daily excess deaths resemble scenario LF. Thereafter,
daily excess deaths decline rapidly, lying between those for LF and those for OP, as policies
are implemented to combat the pandemic.

Figure 3(a) presents the evolution of output. Under scenario OP output drops imme-
diately at the onset of the disease and rises towards its steady state value. The transition
is quite fast; within two quarters, output is within one percent of its steady state value.
Interestingly, the behavior of output under scenario LF is non-monotonic. Output declines
by less than one percent in the first days of the pandemic. Then it declines to a level below
its steady-state value, before rising quite slowly to its steady-state value. Figure 3(a) shows
that around July the two scenarios imply essentially the same level of output, while Figure

2(b) shows that excess deaths are dramatically higher under LF than under OP.

13Source: http://rt.live. Data from http://epiforecasts.io imply quantitatively similar values.
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Scenario OP shows the importance of sacrificing output early in the pandemic to prevent
the stock of infections, i;, from rising to an unmanageable level. After a few months, the
stock of i; can be maintained by choosing a stable (3, close to its steady state value. By
contrast, under the LF scenario, the level of output remains higher than under OP, with
the consequence that the infection stock grows to a far higher level under LF than under
OP. After a few months, this higher level of i; induces individuals to cut back their social
and productive interactions, leading to a drop in output of about the same size as the drop
in scenario OP at that point in time. While output drops by similar amounts after a few
months in the two scenarios, the level of infection, i;, and consequently daily excess deaths,
are dramatically higher in scenario LF than in scenario OP. Therefore, the higher output in
the early months of the pandemic under the LF scenario proves to be short-lived and comes
at the cost of a high level of infection and excess deaths.

Table 1 presents the steady states for the OP and LF scenarios under different parametric
assumptions. The baseline values of the parameters are the same as those used in Figures
2 and 3 (¢ = 0.015, = 0.01, v = 12, § = 0.12, w = 50, A = 0.09, 3 = 42.473, p = 0.03
and xy = 1.0.). The three panels of the table use y = 1.0 (baseline), y = 0.5, and x = 0.0,
respectively. For each of the 18 rows in the table, steady-state social distancing under LF
is smaller than steady-state social distancing under OP, as reflected by the fact that g*
is higher, usually substantially higher, under LF than under OP. Therefore, steady-state
infection, ¢*, is higher under LF than under OP, since individual people ignore the infection
externality they impose when infected. Also, since s* is so much lower under LF than under
OP, we can infer that r* is higher under LF than OP. Thus, output per capita is higher
under LF than under OP.

The three panels of the table illustrate the quantitative importance of including waning
immunity, y > 0. The differences between the panel with x = 1.0 and the panel with
x = 0.5, are swamped by the differences between the panel with y = 0.5 and the panel with
x = 0.0. That is, even a little bit of waning immunity has an important quantitive impact.
Interestingly, without waning immunity, output per capita in the LF scenario is essentially

unchanged from its pre-pandemic level.
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Optimal Laissez Faire

x =1.0
w = 50 (Baseline) 99.27 0.06 1.01 0.91 12.22 84.57 1.20 1.18 0.92 14.35
w =20 98.90 0.09 1.01 091 12.27 67.57 252 148 0.94 17.96
w =170 99.40 0.05 1.01 0091 12.21 88.69 0.88 1.13 0.92 13.68
A =0.15 98.70 0.10 1.01 0.85 12.30 73.37 207 1.36 090 16.54
A =0.05 99.61 0.03 1.00 095 12.18 91.74 0.64 1.09 0.95 13.23
p=0.05 99.28 0.06 1.01 091 12.22 88.68 0.88 1.13 0.92 13.68

x =0.5
w =50 98.58 0.06 1.01 091 12.31 7220 1.14 1.38 094 16.80
w =20 9784 0.09 1.02 091 12.40 51.32 199 195 096 23.64
w =70 98.85 0.05 1.01 091 12.28 79.13 0.86 1.26 0.93 15.33
A =0.15 9741 0.11 1.03 0.86 12.46 56.99 1.76 1.75 0.94 21.29
A =0.05 99.26 0.03 1.01 095 12.23 84.57 0.63 1.18 0.96 14.35
p=0.05 98.59 0.06 1.01 091 12.31 79.13 086 1.26 0.93 15.33

x = 0.0
w =50 62.81 0.05 1.59 097 19.32 30.22 0.09 3.31 1.00 40.16
w =20 52.69 0.06 190 098 23.03 29.37 0.09 3.40 1.00 41.32
w="T70 67.95 004 147 096 17.86 30.80 0.09 3.25 1.00 39.40
A =0.15 49.03 0.06 2.04 097 24.75 29.54 0.09 3.38 1.00 41.07
A =0.05 77.64 0.03 1.29 0.97 15.63 31.61 0.08 3.16 1.00 38.39
p =0.05 63.06 0.05 159 097 19.25 30.79 0.09 3.25 1.00 39.41

Table 1: Steady state values of s*,¢*, Rj, Y ", 8* for the optimal and “laissez faire” equilibria
under alternative parametric assumptions. s* and ¢* are expressed in percentage points.

6 Optimal Social Distancing and Vaccination Policies

In Section 3, we examined optimal social distancing in the absence of a vaccine. In this
section, we extend the analysis of optimal policy to include optimal vaccination rates as well

as optimal social distancing. We assume that
A S )\maxv (39)

Where(% — 1) (¢ +X) < Amax < 0©. Importantly, the lower bound on Ap.x allows A to

be large enough to achieve a DFE steady state, even when there is no social distancing so
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We derive optimal policies in a dynamic framework and then focus on the steady state

of an economy following optimal policies. The planner’s maximization problem is

E { / N Nue P [Y (Bu, Suru) — iy — YAy (Su + (1) du} , (40)
t

max
BusAu<Amax for u>t

where ¢ > 0 and ¥\, (s, + (ry) Ny is the real cost of vaccinating the vaccine-eligible popu-
lation (s, + (ry) N, at rate A\, at time u > ¢.

The Bellman equation associated with the maximization problem in equation (40) is

Y (5,s,1) —wdi — P (s+(r
(p—g )V (s,i,r) = max (B, 5,7) —wbi = YA (s +¢r) : (41)

B, A< Amax ds - di dr
Ve +Vig + Vi

Appendix A derives expressions for the dynamic behavior of Vj(s,i,7), j € {s,i,r}, by

differentiating both sides of equation (41) with respect to j and using % = Vjs% + Vji% +

er%. As shown in that appendix,
dVs
dt

(p+m)Vea=y(B) — A+ ="+ Bi (Vi = Vi) + A (V, — V), (42)

which is the same as equation (31), except for three straightforward changes. First, the
hazard rate of the future arrival of the vaccine, p, that appears in equation (31) is absent
from equation (42) because the vaccine has already arrived. Second, the right hand side
of equation (42) subtracts the cost of vaccinating a susceptible person, ¥\, which is not
present in equation (31). Third, the right hand side of equation (42) includes the hazard, A,
that a susceptible person is successfully vaccinated and joins the pool of recovered people,
multiplied by the value, V, — Vj, of that transition.

Appendix A also derives the dynamic equations for V; and V,. These equations are

identical to equations (32) and (33), respectively, once one sets p = 0 in equations (32) and

14Proposition 5 implies, that if 3 =5 and X = (% — 1) (¢ + x), then i* = 0.
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(33). For convenience, we repeat these equations here

dV; )
(04 1+ 8 Vi= —wb o Ty (V= V) = 8 [V = (Vi Vi +1W3)] = s (V, = V) (43)

and

dv;
dt

P+ Vi=y(B) = A+ —+x (Vs =V,). (44)

The first-order conditions for optimal # and optimal A are obtained by differentiating
the right hand side of equation (41) with respect to § and A, respectively. The first-order

condition for (8 is

(s +¢r)y' (B) = (Vs — Vi) si, (45)

which is the same equation (34), and the first-order condition for optimal A is

(s+Cr)v < (V, =Vy)s. (46)

The inequality in equation (46) arises from the restriction A < A\jax.

6.1 Optimal Social Distancing and Optimal Vaccination in the

Steady State

In the steady state, & = % = & — &% — ddV; = =

In this subsection we analyze the
optimal combination of 5 and A in the steady state, which we denote as (85, A5p). We
begin the analysis of optimal policy in the steady state with two lemmas that, taken together,
imply that (65p, A5 p) must lie in the triangle ABC' in Figure 1. All (5, \) pairs on the line
segment AB, which is the northwest boundary of this triangular region, are associated with
DFE steady states. All (3, \) pairs in the interior of ABC, as well as the boundaries AC
(excluding Point A) and BC (excluding Point B), are associated with EE steady states. We
then show that (8%p, \Hp) cannot be on AB, thereby proving Proposition 10 below, which
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states that the optimal policy leads to a steady state that is EE. Since the proof of Lemma

2 is instructive, we include it in the text.

Lemma 2 (55p, \5p) cannot lie to the left of the piecewise-linear boundary ABD in Figure

1.

Proof of Lemma 2. Suppose, contrary to what is to be proved, that (85p, AHp) is located
at an arbitrary point, say G, to the left of ABD. Now consider Point H in Figure 1, which
is the point on ABD that is directly to the right of Point GG, with a higher value of g and the
same value of A as at Point G. The instantaneous flow of aggregate output, Y (5*, s*,r*),
is higher at Point H than at Point G, because Y3 > 0 and Point H has a higher value of 8*
and the same values of s* and r* as Point G. Thus, Point G cannot represent the (3, \) pair
with the highest steady-state value of the objective function. Moreover, this finding goes
beyond a simple comparative steady-state analysis that ignores the transition path from the
steady state at Point G to the steady state at Point H. The comparison described here
fully takes account of the transition path because there is no transition path from the steady

state at Point G to the steady state at Point H. The values of s* =1 — —2— i* =0, and

XN’
r* = m are the same at Points G and H, so the new steady state is reached immediately.
Therefore, no point to the left of ABD can be optimal. [

Lemma 3 (B5p, \5p) cannot lie on the half-open line segment BD (which includes point D

but excludes point B) in Figure 1.

Lemmas 2 and 3 imply that (85p, \5p) lies in the triangle ABC, either on the boundary
or in the interior. Points along the boundary AB are associated with DFE steady states:
all other points in ABC, including the interior of the triangle as well as the half-open line
segment AC' (excluding point A) and the half-open line segment BC (excluding Point B)
are associated with EE steady states.

The following equation, which is derived by subtracting equation (42) from equation (44)

and setting d;;'s = % = 0, is useful in proving Proposition 10 below
(p+p+x+X) (V7 =V) =y (B) —y(B") + (L= QA"+ pi" (V= V7). (47)
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Proposition 10 Assume that a vaccine is available and let A () be defined as in Proposi-
tion 5. Assume that @ > max[\,(B),y +d+p+p+x]. Under optimal social distancing
and vaccination policies, the steady state is FE. The optimal steady-state values of 5 and

A, Bop and A p, respectively, satisfy B. < Bop < B and 0 < Aop < A (BEp)-

Proposition 10 states that even when a vaccine is available, the optimal steady state is
EE. Since 35, < f3, there will be some degree of social distancing in the optimal steady
state, but since 85, > ., social distancing alone will not be intense enough to eliminate
the disease in the steady state. While it is feasible for the vaccine to eliminate the disease
for any degree of social distancing by setting \* = A, (85p), Proposition 10 states that
Nop < A (Bop).

We have shown that (85p, A5 p) must lie in the triangle ABC' in Figure 1, which implies
that \5p < Ay (6) < Amax- Therefore, in the steady state, the constraint A\ < A, in
equation (39) is not binding'® so the first-order condition for 1 in equation (46) holds as an
equality ¥ (s + (r) = (V, — Vi) s. We can substitute this first-order condition for A* and

the first-order condition for §* from equation (45) into equation (47) to obtain
% lr* * % * lr* * / *
et 3 (1465 ) 0= (8= (o1 = ) vx+ (14 € ) Bt/ (35) (35)

Equation (48) relates the optimal steady-state values of A and 8 without using the value
function, V', or its derivatives, V5, V;, and V,. Nevertheless, equation (48) depends on the
endogenous variables s* and 7*. However, we can use the definition 8, = (8 + (1 — ()3
from equation (22) to obtain a relationship between \* and * that involves only fundamental

parameters and the specification of the production function y (8). Specifically,'

(p+p+x+N)0=>10-0)1[y(B) —yBop)] + Bory (Bop) - (49)

15This statement leaves open the possibility that early in the pandemic, when almost everyone is susceptible
to the disease, it may be optimal to vaccinate as quickly as possible. That is, the constraint A < Ay ax might
bind outside of the steady state.

16Tf ¢ = 0, then 3, = /3 and equation (48) becomes (p + p + X)
¢ =1, then g} = 5 p and equation (48) becomes (p + p + x + A*)

() y(Bop) + Bopy (Bop)- If

Y=y
P ﬂ rY (ﬂOP)
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x =1.0
w = 50 (Baseline) 0.000184 3.394 0.999950 41.186 2.430
w =20 0.000266 3.394 0.999950 41.186 2.430
w =70 0.000152 3.394 0.999951 41.186 2.430
A =0.15 0.000186 3.436 0.999970 41.699 2.473
A =0.05 0.000178 3.310 0.999911 40.166 2.344
p =0.05 0.000406 3.393 0.999948 41.179 2.429
¥ = 0.002 0.000123 3.429 0.999978 41.614 2.466
¥ = 0.001 0.000062 3.465 0.999994 42.042 2.501

x=0.5
w =50 0.000095 3.446 0.999987 41.814 1.260
w =20 0.000138 3.446 0.999986 41.814 1.259
w="T70 0.000079 3.446 0.999987 41.814 1.260
A =0.15 0.000096 3.467 0.999992 42.077 1.271
A =0.05 0.000094 3.402 0.999977 41.289 1.237
p=0.05 0.000212 3.445 0.999985 41.807 1.259
¥ = 0.002 0.000064 3.464 0.999994 42.033 1.269
¥ = 0.001 0.000032 3.482 0.999998 42.253 1.278

x = 0.0
w =50 0.000004 3.498 1.000000 42.444 0.037
w =20 0.000006 3.498 1.000000 42.445 0.037
w =70 0.000003 3.498 1.000000 42.445 0.037
A =0.15 0.000004 3.499 1.000000 42.456 0.037
A =0.05 0.000004 3.496 1.000000 42.422 0.037
p=0.05 0.000011 3.497 1.000000 42.437 0.037
¥ = 0.002 0.000003 3.498 1.000000 42.454 0.037
¥ = 0.001 0.000001 3.499 1.000000 42.463 0.037

Table 2: Steady-state values of #*, Rj, Y™, 5*, A* in the presence of vaccination and with
¢ = 1. 7" is expressed in percentage points.

Equation (49) provides a remarkably simple illustration of our finding that the steady
state under the optimal combination of social distancing and vaccination policy is endemic.
The left hand side of equation (49) is strictly positive so the right hand side must also be
strictly positive. Since y () = 1 for 3 > (3, the fact that the right hand side of equation (49)
is positive implies 85p < B. The only reason for social distancing, represented by Bop < B,
is because ¢* > 0 (i.e., the disease remains present in the population in the steady state).

Since A* is finite, limy_0 (p+p+x+ )¢y = 0. Therefore, equation (49) implies
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that limy_o [(1 =€) [y (B) —y (Bop)] + Bopy (Bop)] = 0, which implies limy_,o B5p = 5.7
That is, when the cost of the vaccine is arbitrarily small, the optimal amount of social dis-
tancing is arbitrarily small because the vaccine essentially bears the total burden of reducing
infections.

Equation (49) is linear in A* and since y () is quadratic in 3, equation (49) is quadratic
in B*. Specifically, for 8 < 3, the production function is y (8) = 1 — « (B — 6)2 so By (B) =
203 (B — ﬁ). Therefore, equation (49) can be rewritten as

(p+u+x+N) 0 =010=Ca(B-B5p) +2085p (B Bop), for g5 <B.  (50)

When ¢ = 0, equation (50) is a quadratic equation in 37, and is independent of A*. We

solve this equation to obtain'®

Bép)Q prp+x ¥
1—(Fer) — i 51
(% 7 100 (51)

The left hand side of equation (51) is a (nonlinear) measure of social distancing. In our
baseline calculations, p = 0.03 per year, ;1 = 0.01 per year, y = 1 per year, B = 42.473,
a =9.779 x 10~° and hence QBZ = 0.1764, so the first of the two factors on the right hand
side of equation (51) is L’;ﬁm = 5% ~5.90. The second factor on the right hand side of
equation (51), ﬁ, is the marginal cost of the vaccine divided by output per capita. In
our baseline calibration we use T‘%) = 0.003.1 Therefore, the right hand side of equation

. \2
(51) is 5.90 x 0.003 = 0.02. Hence, equation (51) implies that (%) ~ 0.98, which implies

*

. N2
’%ﬂ ~ 0.99, and hence (1 — %) ~ (0.01)2 = 10~*. Therefore, the loss in output per

"When ¢ = 1, 8% = 0 also satisfies [(1 - () [y (B) —y (ﬁgp)} + B5pY (ng)] = 0, but violates 55p >
Be > 0.

18 3 : e Q% 2 * a) *

With ¢ = 0, equation (50) becomes (p+pu+x) = a(B—85p)" + 2085p (B—B5p) =

« (3 - B85 p) (ﬁ—i— Bé P) = (;_5’2 - ;5’621(,). Dividing this equation by ﬁ27 and recalling the normalization

_ 2
y (B) =1 yields p%‘##@ =1- (%) .

19For an average income of $60,000 per year, this implies ¢» =$180. While the manufacturing cost of a
vaccine is only a small fraction of that number, vaccination also involves other costs (travel time to and from
vaccination centers, administrative costs, healthcare-professional time, venue rentals etc.)
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capita, y (B) —y (B5p) = QBQ (1 - %TP)Z, is approximately 0.1764 x 10~*, which is less than
20% of one basis point.

In the case in which ¢ = 1, equation (50) depends on \* as well as on 3% ,. In this case,
it is not possible to solve for 5* analytically. Table 2 provides numerical results for the case
with ( = 1 for various parameter assumptions. As in the case with ( = 0, Y* is within one
basis point of y(#) = 1. For a fixed value of , there are no notable differences across the
various parameter constellations. The most interesting variation is across different values of
X- In particular, the optimal vaccination rate is approximately equal to 2.5(¢ + x), which

accounts for the differences in A\* as y changes from 1.0 to 0.5 to 0. 2°

7 Concluding Remarks

In the epidemiology literature, there is a sharp contrast between disease-free equilibria and
endemic equilibria. The major theoretical result of our paper is that optimal public health
policy leads to an endemic steady state even if an effective vaccine is available. This result
is consistent with the quoted statements of Drs. Heyman and Fauci at the beginning of the
paper. However, the planner’s problem that underlies our finding provides a framework to
calculate the loss in steady-state welfare caused by the ongoing nature of the disease and the
policies to manage it.

Equation (40) implies that under optimal policy, the flow of welfare per capita in the
steady state is Y (B85 p, s*,1%) — wdi* — A" (s* + (r*). If ( = 1, which is the case in which
vaccines are given to both susceptible people and recovered people, the steady-state flow of

welfare is

Y~ wéit — YA (1 — i), (52)

20The following approximation offers a transparent view of the impacts of 9 and x on the determination
of \*. With optimal use of the vaccine, 3* ~ 8 and i* ~ 0 so \* & )}, (3) = (Bﬂ — 1) (¢ + x). In Section

5, we calculated 3 as (Be — 5i)ﬁ0 ~ B.Ry, where_]_%o is the value of Ry observed on the initial day of _the
pandemic when f is still at its pre-pandemic level, 3, and i is approximately zero. Substituting 8. Ro for 5 in
the expression for Ap () yields A\n(8) = (Ro —1)(¢ + x). Using Ry = 3.5 from Section 5, A\p(5) = 2.5(¢ + x)-
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Pre-vaccine

X 1-Y* wdi* L*
1 900 36 936
0.5 900 36 936
0 300 30 330
Cum-vaccine
X 1-Y* wdi* (1 —a*)A* L*
1 0.00 0.12 72.89 73.01
0.5 0.00 0.06 37.78 37.84
0 0.00 0.00 1.13 1.13

Table 3: Loss in Steady-State Flow of Welfare. This table shows the components of the loss
in steady-state welfare, and the sum of these components, denoted L*. All numerical entries
are expressed in basis points.

where Y* is Y (85p, s*,7*).  As a benchmark for comparison, if the disease had never
appeared in the first place, the steady-state flow of welfare would be y (B) = 1 because [*
would be § and i* and A\* would be zero. Therefore, the reduction in the steady-state flow of
welfare resulting from the disease and optimal public health policy is 1 minus the expression

in equation (52). Letting L* be this loss,
L' =(1-Y") +wdi* + X" (1 —1). (53)

Equation (53) illustrates the three components of the loss, namely, the loss in output per
capita, the loss in welfare arising from disease-induced deaths, and the cost of administering
vaccinations. Table 3 displays, for the pre-vaccine model and the cum-vaccine model, the
components of L* for the baseline calculations when y € {0,0.5,1.0} in Tables 1 and 2,
respectively. To avoid long strings of zeroes after the decimal point in some entries of the
table, all of the entries are expressed in basis points. Several conclusions are evident in
Table 3. First, without a vaccine, the loss in welfare, L*, is substantial; when y = 1,
the loss in welfare is 9.36% of the never-disease benchmark. Second, in the absence of a
vaccine, with social distancing being the only measure to reduce the spread of the disease, the
loss in output per capita contributes far more to L* than do disease-induced deaths; when

x = 1, optimal social distancing is intense enough to reduce output per capita by 9.00%
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while disease-induced deaths reduce L* by 0.36%. Third, the introduction of vaccines to
the toolkit of public health policy reduces L* by more than 90% for y = 1 and by more than
99% for x = 0. Fourth, consistent with the analytic findings discussed above for the case
with ¢ = 0, the introduction of vaccines virtually eliminates the need for social distancing
in the steady state, as evidenced by the finding that the reduction in steady state output
per capita is smaller than one percent of one basis point. Fifth, in the presence of vaccines,
more than 99% of L* is due to the cost of the vaccinating the population; with y = 1, the
cost of optimal vaccination reduces welfare by 0.73%. With aggregate output per capita
virtually unaffected by the disease in the steady state, the cost of vaccination amounts to a
redirection of 0.73% of output away from other goods and services.

Our overall conclusion is that optimal social distancing and vaccination lead to an en-
demic steady state, regardless of the welfare cost assigned to the loss of a life from the
disease. To give our model the greatest opportunity to find that optimal policy might lead
to a disease-free steady state, we incorporated total compliance by the public with mandated
social distancing and vaccination guidelines. Nevertheless, the propositions we derived state
that optimal policy leads to an endemic state, with or without a vaccine. For the range of
parameter values examined in the quantitative analysis of our model, the steady-state flow of
welfare under total compliance with optimal public health guidelines can be much as 0.73%
below the steady-state flow of welfare in the never-disease steady state. Taking account of
noncompliance with social distancing mandates and the stated refusal by many people to
get vaccines could substantially increase the degree of infection and deaths, reinforcing the

major result of this paper.
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Appendix

A Optimal Social Distancing and Vaccination Policies

In this appendix, we derive optimal policies both when social distancing is the only policy
tool and when both vaccination and social distancing are policy tools. We can efficiently
derive these optimal policies in the context of a single problem that encompasses both the
pre-vaccine analysis in Section 3 and the cum-vaccine analysis in Section 6.

As a first step, use pu+ g = ¢ — di to write equations (6) - (8) as

%Zgb—l—x'r‘—ﬁsi—(gb—éz’—l-)\)s (A.1)
di . AT

%:[ﬁs—(é—kv%—(/)—éz)]z (A.2)
dr , .

- = +As— (¢ — i+ x)r (A.3)

Consider the following Bellman equation that nests the Bellman equations (30) and (41)

for the pre-vaccine and cum-vaccine models, respectively

Gt p—o()V(s,ir) = max | WOTv@G)mwiizpAlse) Loy

B;A< Amax _i_‘/s% + ‘/Z% + ‘/7“% + p‘7

Note when A = 0, the Bellman equation (A.4) is identical to Bellman equation (30) and
when p = 0 the Bellman equation (A.4) is identical to Bellman equation (41).

Differentiate both sides of (A.4) with respect to s and use d;f = Vssﬁ + VSi% + VST% and
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(A.1) - (A.3) to obtain

dV;
(04D =g ()Ve=y(B) ~ oA+ 55— 0+ (B0 i+ NVa+ AV 4NV, (AS)
Use g (i) = ¢ — p — i and define
oc=p+pu+p (A.6)
to obtain
dVs :
oVy =y (8) = oA+ 2 4 Bi (V= Vi) + A (V, = V). (A7)

Differentiate both sides of (A.4) with respect to ¢ and use d;/ti = ViS% + Vﬁ% + ViT%,
g(i)=¢—p—0iand (A.1) - (A.3) to obtain

dV;
dt

oVi+ 6V = —wd + —(B=0)sVi+[Bs— (6 4+~ — )] Vi+ (v +07)V,, (A.8)

which can be rearranged to obtain

av;

(0+0)V;=—wo+ dti+65<%—%)+7(%—Vi)—6[V—<s%+iw+r%»)]- (A.9)

Differentiate both sides of (A.4) with respect to 7 and use % = Vm,,% + VM% + VM%,

g (i) = ¢ — u — 61, and equations (A.1) - (A.3) to obtain

dv;
dt

oVi=y(B) = YA+ —=+x (Vs = V,). (A.10)

Equations (A.7), (A.9) and (A.10) can be written as a first-order system of nonhomoge-
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neous linear ordinary differential equations with nonconstant coefficients

o v,
4l =Al V| -0b (A.11)
o v,
where
o+ 0Bi+ A -0 -\
A=| (B-08)s o+6+y—Bs—0di —(y+or) |, (A.12)
—X 0 g+ x
and
y(B) — A
b=| —0(V+uw) |- (A.13)
y (Br) — CPA

A.1 Steady State

: ds _ di _ dr _ dVe _ dV; _ dVie _
Now confine attention to the steady state so that ¢ = ¢ = & = <= = & = 2= = 0. Set

ds _ di _ dr _
e~ odt T di
and V* are finite to obtain (p+p — g (¢%)) V* = s* [y (6%) — N |+ [y (BF) — CYN*] — wdi*.

0 in equation (A.4) and use the fact, which we verify below, that V*, V¥,

Now use ¢ (i*) = ¢ — u — 6i* and equation (A.6) to obtain

5* [y (8) — wN] + 7 [y (87) — Cun] — wai + p2OL

Vv — Py , (A.14)
where pi(f_) 5 = V. Add w to both sides of equation (A.14) to obtain
5)
5* 6* — N+ ﬁ: o A+ y(__ _
v SOV N e oo
o— ¢+ o— ¢+ 01
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Notably, the coefficient on w in (A.15) is positive, since 0 — ¢ = p — (¢ — ) + p and
p > ¢ — p from equation (27).

Inspection of (A.10) reveals that in the steady state, in which % =0, (c+x)VF =
v (B) — CON* + XV 50 that

Ve _ BB = CON Ty

(A.16)

Equation (A.16) allows us to write the 3x3 system in V¥, V;* and V,* in equation (A.11)
as the following 2x2 system in V;* and V;*

‘/: ) N + 2\* y(Br)—CPA*
me| o= 7 (? ) (;{)_CW R _ (A.17)
‘/z'* (“/ + OT*) yTT -0 (V* + CL))
where
o+ B+ N — %"
M = P T b : (A.18)
(B=0)s"=(v+0r") A5 o+d+y—0"— s

Since 0 < A < A\ax and w are both finite and p — ¢ + p + di* > p — ¢ + p > 0, equation
(A.15) implies that V*+4w is finite. Therefore, the vector on the right hand side of equation
(A.17) is finite, which together with det M* # 0 (proved in Lemma 7) proves that V;* and
V* are finite. Since V* is finite, equation (A.16) implies that V,* is finite.

The 2 x 2 system in equation (A.17) can be rewritten as

1% ) N 4 A\ y(Br)—CYA*
S _ M*—l y (6 ) (;p*) o o+X (A19>
* *\ YWOr)— S *
‘/i (”y—i—ér)T—O(V —i—w)
where
—1_ 1/* o+0+y—8i*—[F*s B*1 (A.20)
det ) —[(5—5)3*—(7+5r*)$ 0+ BT N
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Substituting equation (A.20) into equation (A.19) and performing matrix multiplication

yields
(04847 = 8i" = Bs") |y (8) — A" 4 X~ UL x|
A £ (4 0r%) M 6 (1 )]
) T (T o) ] o) ex - arsen)
|\ (o s [ e MR s (v )| )
(A.21)
Since s* +i* +r* =1, § — §i* — ds* = Jr* so equation (A.21) implies
* * *Y(Br)—C¥A
1 [U+(’y+0r)a+x][ (B*) — A +)‘Tx}
€ —((T"—)\*Uj_x) |:(’)/+(ST’)T—(S(V*+OJ)]
which can be rewritten as
., * oy \ ¥ * Y™
Ve-vVr= 2 [ G o) 5] [y (8) — o g (A.23)
det M* _ (1 + )\*m> [(A/ + or* )_ 57«(])_{_)((1/))\ _45 (V* ‘l‘w)]
and further rearranged to obtain
e e o 1 () | I (87) = X o
$ ! * P x\ Y(Br)—CPA * * '
et M=\ — (y 4 gr= — ar) sBLCOX <1+/\ ﬁ)é(v +w)
and finally
14 =YX+ (Vi 4w
N B G311 R NIV e

det M\ g a0 Xy (54 — g — (y (8) — CA%)]
A.1.1. Steady State Iso-infection Lines

An iso-infection locus is the set of pairs (3, A) for which ¢* > 0 is constant. Use the implicit

function theorem along with Proposition 6, which implies that % = B+ AL T
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that

D
dﬁ t* constant — B .

(A.26)

Now consider the iso-infection locus through point E in Figure 1, where (5, A\) = (fg,0)
for an arbitrary By € (BC,B). Let % be the root of the quadratic equation ¢ (n) = 0 when
f = Pr and A = 0 in the quadratic function ¢ (1) defined in Lemma 4. (Note that n* = n},
because i* stays constant). All points on the iso-infection locus through Point £ satisfy the
ODE in equation (A.26) subject to the boundary condition that A = 0 when 5 = Sg. The

linear equation

Ul "
A= ﬁ_:::ﬁ — e (A.27)
has slope Z—’é = "79; % and thus satisfies the ODE in equation (A.26). It also satisfies the

boundary condition that A = 0 when g = (.

Finally, consider an iso-infection locus, which we can now call an iso-infection line,
through Point F', which lies to right of Point E' (and to the left of Point C') on the hor-
izontal axis in Figure 1. Let 8z be the value of § at Point I'. Since fr > S and A =0 at
both points, the infection rate ¢}, on in the iso-infection line through Point F' is higher than
i} , the infection rate on the iso-infection line through Point £, which implies that n}; < n}.
Therefore, TE < B go the slope of the iso-infection line through Point F' is less than the

BF BE
slope of the iso-infection line through Point E.

B Selected Proofs

Proof of Proposition 2. Assume that i* = 0. Then equation (15) implies n* = ¢ + x;,

so equation (17) implies As* = n*r* = (¢ + x)r*. Since s* + r* = 1, it follows that

x __ 1 _ A * A
s*=1 T and r = ]

Proof of Proposition 3. Assume that ¢* > 0. Then equation (16) implies [s* =
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(B, — 6i*), equivalently, s* = % From the definition of R} in equation (11), R§™' =

Syt — Sy tedF _ Bed ywhich completes the proof of Statement 1. Substitute R~

B B B
for s* in equation (17) to obtain yi* + AR~ = n*r*, which together with i* +7r* =1 - R,

are two linear equations in ¢* and 7*. The solution of this 2-equation linear system is given

by Statements 2 and 3. ]

Lemma 4 Consider the quadratic function in equation (19). Then

1.q(0) == [By(¢+x) +A (0 +v—x)] <0.
2. q(6+x) =6+ 8- (1+75) 4]

3. Ifi* > 0, then

e 3> so that q(n) is convex

e cquation (15) implies that n* = p+ g* + x = ¢ — 61" + x < ¢ + x is the positive
root of ¢ (n) = 0.

Proof of Lemma 4. (Statement 1) Evaluate ¢ () at n = 0 to obtain ¢ (0) = — (67 — dA) (¢ + x)—
SABe = — [(B7 — 6X) (64 X) + N (6 7+ 6)] = — [37 (6 + )+ A (6 + 7 — x)] < 0, where
the inequality follows from equation (4). (Statement 2) Evaluate q(n) at n = ¢ + x to
obtain ¢ (¢+x) =m0 (8- (1+2) 8] = (0 + )6 [5- (1+75) 8]

(Statement 3) Assume that ¢* > 0. Therefore, s* = d+~v+pu+g* = d+~v+¢—9i*, where
the first equality follows from equation (7) and the second equality uses u + g* = ¢ — di*
from equation (15). Therefore, (5 —9)s* = d+v+ ¢ — 61" — ds* = v+ ¢+ or* > 0,
which implies 8 — ¢ > 0. Hence, the second-order term in ¢(n) is (8 —9)n* > 0 so
q(n) is convex. Therefore, since ¢ (0) < 0, ¢(n) = 0 has a unique positive root. Also
since ¢* > 0, Statement 1 of Proposition 3 implies s* = % . In equation (17), replace
r* by (1 —s*—i*) to obtain (y+n*)i* + (A+7*)s* = n*.  Now replace i* by &=
replace s* by % and multiply both sides of the resulting equation by (6 to obtain
By+n)(@o+x—n")+6AN+n") (B — (¢ + x —n%)) = Bén*, which can be rewritten as
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[(B=08)n"+ By =N (o+ x—n*)=d[Bn* — (A+7n*) B = 0. Finally, multiply both sides
by —1to obtain ¢ () = [(8 = 0)n* + By = AL (0" — (6 + X)) + 0 [Bn" — (A +0) B]=0. m
Proof of Proposition 4. (i) Assume that § < (1 + ﬁ) B. and, contrary to what is
to be proved, ¢* > 0. Since ¢* > 0, Lemma 4 implies that n* is the unique root of

q(n) = 0in (0,¢ + x]. However, Lemma 4 also implies that ¢ (n) is convex, ¢ (0) < 0,
and ¢ (¢ + x) < 0, so ¢(n) = 0 does not have any roots in (0,¢ + x]. Therefore, i* = 0

and R = /Bcfj(%* = % <1+ thT)\x (ii) Assume that g = (1+ﬁ) Be.  Lemma 4
implies that ¢(¢+x) = 0, so n* = ¢+ x and 0i* = ¢+ x —n* = 0, so i* = 0 and
R = ﬁc_ﬁ(w = ﬁﬁ =1+ ¢T/\x (iii) Assume that 5 > (1 + ﬁ) B.. Suppose, contrary

to what is to be shown, that ¢* = 0. Proposition 2 implies s* = 1 — ¢+2+/\ = ¢f>2ih’

Bs* > (1 + L) B2 — 3. and hence % > 0 in the positive neighborhood of i* = 0.

SO

d+x d+x+A
Therefore, ¢ will not approach zero, so ¢* > 0. Since § > (1 + ﬁ) Be, Lemma 4 implies
that ¢ (¢ + x) > 0, so ¢ (n) = 0 has a unique root in (0, ¢ + x|, which is n* = ¢ + x — di*, so
i* > 0. Also, Ry = s h 1+ T n

Proof of Proposition 5. Statement 1: Consider a particular Ay > 0 and [, =

(1 + asffX) B.. Proposition 4 implies that if 3 = fy and A = Ao, then * = 0. It also

implies that if § = [y and A < Ao, then § > (1 + qﬁT)\x) B. and ¥ > 0. Therefore, \g

is the minimum value of A for which i* = 0 when 5 = ;. Rearranging the definition of

Bo = (1 + ﬁ?) Be as Ao = (% — > (¢ + A) thus implies that A, (8) = (% — 1) (o + x)-

Statement 2: If A\ = A\, (), then i* = 0s0o ¢* = ¢ — u, so Ry = e = 5+f+¢ = %

DS An(B) _ 8 _ — B - A
Observe that 1 + i = 14+ o = 14+ (56 1) = 4 Therefore, Ry = 1 + Fig 50

iy : : * _ x—1 x _ _ o _ px—1 A x—1 : _ B
Proposition 4 implies s* = Ry™" and r* = =~ (1-Ry™) + 71 Ro - Since Ro = 4, we

have s* = ’% and r* = # (1 — &) + #% Since i* = 0, equation (15) implies that

N =¢+x,s01r* = ¢+;+7( —%)+¢+;+7% and since A\, () = (%—1) (¢ + x), we have

x _ __ 7 _ Be otx (B _ Be _— _ _ Be d+x _ B} 1 _ Be
"= Py (1 B>+¢+x+7 (Bc 1>ﬁ_¢+x+v( B)+¢+x+v (1 B>_1 - ™

Proof of Proposition 6. Since, § > BC (A), ©* > 0 so Lemma 4 Statement 3 implies that

qm) = [B=0)n+by—A(n—(0+x)) +[Bn—(n+A) B is convex. Since n* > 0,
implies that it is the larger root of ¢ (n*) = 0, and hence ¢’ (n*) > 0. Since ¢ (1) is linear in

3, it can be written as ¢ () = ﬁj—g—é (m+X) = (@+x)+ M+ ) B Usen=o+x—0i
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and (., = d+v+¢ to obtain ¢ (n) = B —0(n+A)[(1—1)0+~v+ ¢]. Therefore, 0 =q(n*) =

B%Z*)—é (n* + X)) [(1 —14)d + v+ ¢], which 1mphes dq(" L= 15+ N (1 =) 6+ +¢] >

0. Therefore, 9 =~ ¢ (5y)] " < 0. Since 4 =~ 45 = 87 (" + N [(1 =) 6+ + ¢l [¢ ()]
0. Differentiate g (n) with respect to A to obtain % = —5 [(n* — (¢ + X)) + B = =6 [(L —4) 0 + v + ¢] <
0. B = Mg o) = S0ty 4+l ) > 0. Since g5 = —},
=% = =)d+y+9lld ()] <0. u
Proof of Lemma 1. Lemma 1 is a corollary of Lemma 7 with \* = 0. ]
Proof of Proposition 8. In the steady state, % = % = % =0and using o =p+pu+p
y(B)+xv®

and equation (35) to substitute 0 for v, the three-equation system in equations

p+u+ptXx)

(35)-(37) can be written as the following two-equation system

ov® = Y (BLr) + BrriLe (UI - US) (B.1)
and
7 S
(0+5)v1:—w5+7<y(?+§@—vl> . (B.2)

This two-equation system can be written as

v’ x
e, | v(ip) (B.3)
f W) s
v Yo — YW
where
M, = 5L1; LF BrriLr . (B.4)
—’}/m o+ 0 -+ Y

Premultiply both sides of equation (B.3) by

1 o+0+ ok
M = . v BLriLe (B.5)
detMip | 4o o4 Bty
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to obtain

UI

[ e } | o)y B + Bipii (wi@ - wé)

- . . . (B.6)
et Miv | gy (B,) + (0 + Bipils) (ﬁ@ - wé)

Subtract the second row from the first row on each side of equation (B.6) and rearrange

to obtain
v = e |G e By B) bows] . (B
Define
BB = 0+ 0)y() =1 (1 ()~ u (F)) +owd (5.5)
d(ﬁ)za(a+5+w)+ﬁi*(ﬁ)<0+6+7$)>0 (B.9)
and
w(p) = 1O (B.10)

so that h (B} r) is the expression in square brackets in equation (B.7) and d (5} ) is equal to

det M} . Accordingly,

w(BLp) = (US - UI) & (BLr) (B.11)
and the first-order condition in equation (38) can be written as

V(i) < w0 (Bp) = P L), (B.12)
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where the inequality reflects the constraint ¢ > 0.
Lemma 5w/ (3}) = 0 (0+ 6 +7) b (5 ) > 0.
[4(61r)]
Proof of of Lemma 5. First, we prove that h(8}r) > 0. We consider two cases:
(i) If B;, = B, use equation (B.8) to obtain h(8;,) = h(B8) = (0 +8)y (B) + owd > 0.

(ii) If Bf, < B, there are two sub-cases: (a) if the first-order condition in equation (B.12)
h(Bir)i*(Bir)
d(B)

d (55 ) > 0, equation (B.12) implies that h (5} ) * (55 ) > 0, which implies h (8} ) > 0. (b)

holds as an equality, then 0 < ¢/ (8} ) = , and since equation (B.9) states that
if the first-order condition in equation (B.12) holds as a strict inequality, then ¢* (8} ) = 0,
which, along with ¢’ (55 ,) > 0 violates equation (B.12). Therefore, we need not consider
this sub-case.

Differentiate h (5) and d () in equations (B.8) and (B.9), respectively, and evaluate these

derivatives at § = [} 5, using the first-order condition in equation (B.12) to obtain

W (Bip) = <a+5+vL> ' (Bir) = (a+5+va

g h(Brr)i* (Bir)
p——" ) (B.13)

+ X d (Bt r)

and

¢ (016) = (o 40+ 72 ) (0 Bi) + Bii” (851)) (B.14)

Differentiate w (f) in equation (B.10) and evaluate the derivative at § = ] » to obtain

[0 (Bir) d(Bir) = b (Bir) d (Bip)li (Bir) + 0 (Bir) ™ (Bir) d (Bir)

w (Brp) = . (B.15)
o 4 (56))
Use equations equations (B.8), (B.9), and (B.13) and rearrange to calculate
8L A(550) ~ 0 (31 @ (31) =~ (B1) (04049 ) 61,07 (51) (B1O)
Substitute equation (B.16) into equation (B.15) to obtain
W (Bi) = 0 (0464 7) 0Dt 51 > (B.17)
[d(B7r)]
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[
When it holds as an equality, the first-order condition in the laissez-faire case in equation
(B.12) can be interpreted as equating the marginal benefit of increasing 3, which is y' (5),
and the marginal cost of increasing [, which is w (/). The marginal benefit, ¢’ (5), is
decreasing in $ and when ' (5) = w (), Lemma 5 implies that the marginal cost, w (5),
is increasing in B. Therefore, there is a unique value of 3, 8}y, where v/ (8) = w (5). In
addition, equation (B.8) implies that h (B) > 0 so that along with i* (B) >0 and d (B) > 0,
w (B) >0=1y (B) .Therefore, 3%, < f3. [ ]
Proof of Proposition 9. Set 6 =0 (as well as A = 0) in V.* — V;* in equation (A.25) and
since i* (B5p) > 0, use fs* =0 + v+ ¢ — di* = v + ¢ to obtain

(Ve = Vi) (Bop) = W (Bop) (B.18)

where
_HOP )

W(B) = D) (B.19)

H(E) =0y (8)+ 17— () -y (3).  sinced =0 (B.20)
and

D(B)=o0(oc—¢)+ i (B) <J+VU+X) , since § = 0. (B.21)
Set 0 = 0 in equation (B.8) to obtain

h(B)=0y(B)+~ (y B)—y (3)) , since § = 0 (B.22)

o+ X

and observe that H (§) and h (8) are identically equal when § = 0. Now set 6 = 0 in equation
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(B.9) to obtain

d(B) =0(oc+7)+pi" (B) (0 + ’y#) : since 0 = 0. (B.23)

Subtracting equation (B.21) from equation (B.23) yields
d(B)—D(B)=0c(y+¢) >0, since 0 = 0. (B.24)

Therefore, when 6 = 0, W (§) = % >w(f) = %;)(ﬁ) because H (B) and h (3) are

identically equal and d (8) > D (8). Lemma 5 implies that there is a unique S for which
Y (B1r) = w (Bip) and y (8) < w (B) for B> Byp. Since W (8) > w (8), we have W (8) >
w(p) >y (B) for B > f5p. Therefore, W (85p) = v (B5p) implies B5p < 55 - u
Proof of Lemma 3. At all points on BD, i* = 0, s*+r* = 1, and f = B, so the
instantaneous steady-state flow of aggregate output, s*y () + r*y (B), is y (B) The per
capita aggregate cost of the vaccine is W = ¥ A (s 4+ (r). In the steady state, this cost is U*

=N (s*+(r*) =YX (1 =) s*+ (). Since s* = 1—# at all points on BD, we have
* ds* __ s* av* * * s* _
Y |(1=¢)s* 3 f;’_‘/\ + C] > 0. Therefore, ¥* is minimized along BD at point B and the

instantaneous steady-state flow of social welfare, y (B) —U*, is maximized along BD at Point
B. To go beyond this comparative statics result, consider an arbitrary Point J that lies on
BD above Point B. Start from the steady state at Point J and consider an immediate and
permanent reduction in A to A, (B), which is the value of A at Point B. Along the transition
path to the new steady state at Point B, ¢ = 0, which implies ¢ = ¢ — p and s +1r = 1,
so the dynamic behavior of s in equation (6) becomes % = ¢+ xr — (¢ +\)s = ¢+ x —

(¢ + x + A) s, which is a first-order linear constant coefficient ODE. Starting from Point

J, the permanent reduction in A to Aj (ﬁ) causes % to become positive so that s increases
An(B)
¢+x+An(B)
in A causes an immediate reduction in vaccination cost by ()\f} — A\ (B)) P ((1—¢)s%+ (),

monotonically toward 1 — Along the transition path, the permanent reduction

where X% and s% are the values of A and s in the initial steady state at Point J. Along the

transition path, the vaccination cost ¥\, (B) ((1 = ¢) s+ ¢) increases monotonically toward
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=YX, (B) (1 =€) s + ¢), where s} is the value of s in the new steady state at Point
B. Since we have already shown that U* is lower at Point B than at Point J, it follows that
the permanent reduction in A reduces the vaccination cost everywhere along the transition
path to the new steady state, without changing aggregate output per capita or deaths from

the disease. Therefore, Point J cannot be an optimal steady state. [

Lemma 6 In the presence of a vaccine with > 0, ify (3) > 1 max {a +x+7+9, (BE — 1) (¢ + X)}
and 3* = B, then sign (V¥ — V*) = sign (det M*).

Proof of Lemma 6. We have shown that the optimal pair (855, AHp) must lie in or on

the triangle ABC in Figure 1, so A\5p < A\, (B) = (% — 1) (p+x) < @, where the fi-

nal inequality follows from the assumption #f) > max {a +x+v+9, (— — 1) (o + X)}

Equation (A.15) implies that when 8* = 8, V*+w > 0 if - (11)) > \*, which implies - ( ) > (A%
Since ¢ € {0, 1}, the statement above that \},p < y(v—?) implies that V*+w > 0 When B* = B.

(14 225) [y () — X +8(V" +w)]

When 3* = 3, equation (A.25) implies that V,*—V;* =

v detM* P _A* %
— o (=0 WA
and since 0 (V* + w) > 0, V*—V* will have the same sign as det M* if A = (1 + m) ly (B) — NI

%";A* (1 = ¢)¥A* is positive. We consider two cases. Case I: ( = 1. When ( = 1,

A= (1 + U’XX) [y (B) — 1/1)\*] > 0, where the inequality follows from A\;p < i{f) Case

II. (. = 0. When ¢ =0, A = (1 + m) [y (B) — w)\*} — mzﬂ)\* will be positive if

(0 4+ x+ %) [y (B) — 1/))\*} > (7 4+ 0r* — A*) ¢ A*, which is equivalent to (o + x + A\*) y (6)
(v + dr* + o + x) ¥ A*, which is equivalent to y(w) > (y+dr*+o0+x)

W This inequal-

ity holds because 0 < < 1 and the assumption that ( ) > max {a +x+v+9, (— — 1) (o + X)}

otx +A*
[

Corollary 1 (to Lemma 6) In the absence of a vaccine, if 3* = B3, then sign (V¥ — V) =
sign (det M*).

Proof of Corollary 1. It suffices to prove that A = (1 + m) [y (B) — @D)\*} —%";’\* (1 =) A"
in the proof of Lemma 6 is positive. Setting A* = 0 in the definition of A yields A =y (ﬁ) >

0. ]
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Lemma 7 Under optimal policy, det M* > 0 and V} — V.* > 0 s finite.

Proof of Lemma 7. Inspection of equation (A.25) reveals that V* —V* is finite if det M* >

0. M* is given in equation (A.18), which we repeat here for convenience,

M* = P 7HX b (B.25)

(B=0)s"=(y+0r) 75 o+0+y—0i" = %"

Case I: Assume i* > (0. Setting % = 0 in equation (A.2) implies that in the steady state

B*s* = d+y+¢—0i*. Therefore, (8 — 0) s*—(vy + 0r") A5 = 0+7y+¢—0i"—0s"— (v + or*) 25

o+X
so M* = p X g . Equation (27) implies that the lower right
o+ (y+0r) 35 prutp—0

= ¢+(7y + 6r%) (1 — L) = ¢+(y + 0r") 55 and p+ptp+i+y—00* =" = p+ptp—¢ >0

_I_ —
element of M* is positive, so the sign pattern of M* is , so det M* > 0. Case II:
+ +

. R e 0
Assume i* = 0, so M* = X . It suffices to

(B*=0)s" —(y+0r") A o+0+7— [

prove that o + 0 + v — f*s* > 0. Optimal policy implies that (5*, A*) must lie in or on
triangle ABC in Figure 2. Since i* = 0 and § = %, it must be the case that \* = \;, (8*) so
Statement 2 of Proposition 5| implies 5*s* = f5.. Therefore, o0 4+6+~v—p*s* =o+0+~v— 5.
=0+0+7—(0+v+¢)=0—¢=p+pu+p—¢ >0, where the inequality follows from
equation (27). n
Proof of Proposition 10. Suppose, contrary to what is to be proved, that the steady
state under optimal policy is DFE so that ¢* = 0. In Lemma 7, we show that V, —V; >
0 is finite.  Therefore, if the steady state is DFE, (V* —V;*)i* = 0, so the first-order
condition in equation (45) implies v’ (65p) = 0, which implies 85,p > B, so gr > B and hence
y(B:) =y (B). Withy (8:) =y (B5p) =y (B) and (V; — V;*)i* = 0, equation (47) becomes
Vy—-Vr= ﬁ (1 —=¢)v < 1, which contradicts the first-order condition in equation

r S ptp+

(46). ' Therefore, the steady state under optimal policy cannot be DFE, which implies

I The first-order condition in equation (46), (V. — Vi) s > ¢ (s + (r) implies V,, =V, > ¢ (1 +¢Z) > o
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B5p > B.. To prove that 85, < (3, suppose, contrary to what is to be proved, that 85, = 3.
Then Lemma 7 implies that V* — V;* > 0. Since the steady state cannot be DFE, we have
i* > 0, which implies s* = Ry~" > 0. Therefore, (V' —V)s*i* > 0= (s*+(r*)y (B) =

(s* + Cr*) y' (B p), which violates the first-order condition in equation (45). n
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