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I. INTRODUCTION

The literature on portfolio choice in finance and international finance generally

assumes that all income arises from traded assets, and that there are no nonmarketable or

nontraded assets. In the real world, however, the existence of income from nontraded

assets seems to be the rule rather than exception. Nontraded assets would not present a

problem if traded assets provided perfect hedges against income from nontraded assets, but

that seems again to be the exception. Income from nontraded assets that can only be

imperfectly hedged by traded assets will affect portfolio choice as well as consumption and

saving decisions.

The existence of nontraded assets could be a result of asset market imperfections,

which in turn are caused by the usual reasons: transactions cost, moral hazard, legal

restrictions like capital controls, etc. As examples we can think of an individual who

cannot trade claims to his future wages (his human capital) for obvious moral hazard

reasons, a government which cannot trade claims to future tax receipts, or a country which

cannot trade claims to its GDP in world capital markets.

The literature has mostly avoided the problem of income from nontraded assets, with

a few exceptions. The literature on segmented markets (see for instance the survey by

Adler and Dumas (1983)) may come to mind, but that deals with assets traded in markets

separate from each other and not with the effect of nontraded assets on traded assets

portfolios. I have found few references on nontraded assets proper. Mayers (1972, 1973)

deals with nonmarketable assets and portfolio choice in the static Capital Asset Pricing

Model.1 Merton (1971) solves an individuals portfolio problem in a continuous time model

when the income from nontraded assets is a Poisson process, but not for the more

interesting case when the income is a diffusion process. Fischer's (1975) article on the

demand for indexed bonds in a continuous-time model also includes the case when there is

1 Mayers (1972) emphasizes that the notion of investors including other than just
marketable assets in their portfolio decision is not a new one and gives references to
Markowitz (1967) and Hirshleifer (1970) where the possibility of income from
nonmarketable assets are mentioned.
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a nontraded wage income that follows a diffusion process. A discussion and interpretation

of the case is provided but no analytical solution is presented.2 Modest (1984) uses a model

similar to Fischer's and presents an analytic solution, but only under the assumption that

traded assets provide a perfect hedge against wages (that is, wages are spanned by traded

assets).3 Losq (1978) solves the consumption and portfolio problem with nontraded wage

income both in a two-period CAPM and in a continuous time model for some special cases,

and that paper is a major source of inspiration for the current work.4 Breeden (1979) in his

derivation of a single beta Capital Asset Pricing Model in continuous time includes a

riskiess wage income in the portfolio problem but no explicit solutions are presented.

Persson and Svensson (1987), in discussing capital flows and exchange rate variability,

solves the general equilibrium in a two-country two-period CAPM where the countries in

some cases cannot trade claims to their own output.5

Two papers by Stulz (1984) and Adler and Detemple (1988) consider firms' optimal

hedging against a nontraded asset (a claim to uncertain cash payments at a given future

date). They assume that the implicit value of, and hence the implicit rate of return on, the

nontraded assets is a known exogenous stochastic process, and then solve the portfolio

problem. In contrast, we determine the implicit value of and rate of return on the

nontraded asset endogenously. In general, as we shall see, the implicit value of the

nontraded asset depends on both the available set of nontraded assets and the investor's

preferences, and hence the value will in general differ for different investors. Only when

the return from the nontraded asset is spanned by traded assets is the value of the

2 Fischer (1974) does present an analytic solution for the case with constant relative
risk aversion. As far as I can see, the solution is correct only under the additional
assumption of the wage being spanned by the traded assets (see footnote 13).
3 Richard (1975) examines portfolio choice and life insurance in a model with
nontraded human capital and uncertain length of life, but income from human capital is
assumed to be sure if the investor is alive.
4 I am grateful to Bernard Dumas who showed me Losq's unpublished paper.
5 Dumas (1988) discusses pricing of physical assets and the Law of One Price in a
situation when physical capital can be moved internationally only at a cost, but where
international financial markets are complete. Since all relevant assets (including claims on
physical capital) are internationally traded, there are no nontraded assets.
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nontraded asset independent of preferences and may be taken to be exogenously given to

the individual investor. Duffie and Jackson (1988) present explicit solutions in several

special cases to the finite-horizon portfolio problem of a single agent maximizing the

expected utility of the terminal value of a fixed portfolio of nontraded assets and a portfolio

of traded assets. As noted below, the solution to one of their cases corresponds to one of

our solutions, although the solution from the finite horizon terminal wealth maximization

cannot directly be meaningfully extended to an infinite horizon.

This paper, then, will discuss and present solutions to the portfolio problem in a

continuous time model when there is some income from nontraded assets. It can be seen as

an extension of Losq (1978). The model used is the standard one, from Merton (1971),

except that there is an additional exogenous stochastic income from some nontraded assets.

The model has several interpretations. It can be interpreted as a model of an individual

investor/consumer who can trade in a given set of assets with given stochastic rates of

return. The investor/consumer has a stochastic wage income, and claims on future wages

are nontradeable (due to moral hazard problems, for instance); or other income from

nontraded assets (which are nontraded due to regulation, legal restrictions, transactions

costs, etc.). The model can also be interpreted as a model of a closed economy with

representative consumers and firms in general equilibrium. Then the set of traded assets

corresponds to a set of constant-returns-to-scale no-adjustment-cost physical investment

activities with given stochastic rates of return. In addition there is, corresponding to

income from nontraded assets, stochastic income from some primary factors of production

in fixed supply (labor or land, for instance).

The model can also be interpreted as one of a small open economy, with a set of

internationally traded assets and possibly some domestic constant-returns-to-scale

no-adjustment-cost investment activities. In addition some or all domestic investment

production activities are not constant-returns-to-scale or have significant adjustment costs

(due to some factors in relatively fixed supply, for instance). In particular, the set of

internationally traded assets does not, for one reason or another, include claims on
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domestic GDP, or all domestic no constant-returns-to-scale no-adjustment-cost

investment activities; also the internationally traded assets are only imperfect hedge

against the above domestic sources of income. (This is actually the interpretation I first

had in mind when I got interested in the problem, because of dissatisfaction with the

existing work on actual and optimal international portfolio composition, especially

currency composition, where income from internationally nontradecl assets is consistently

disregarded. (See for instance the survey by Adler and Dumas (1983).)

There are, I believe, several new elements in the present paper. First, we emphasize

the close relation between the problem of portfolio choice with income from nontraded

assets (nontraded income, for short) to the problem of finding the implicit price of and

rates of return on the nontraded assets, that is, the price of the nontraded asset at which it

would be willingly held in case trade in that asset was possible. We shall see that it is

indeed very clarifying to solve for the implicit price and interpret its components. We shall

apply a modified form of the "fundamental valuation equation" of Cox, Ingersoll and

Ross (1985) to find the implicit price and rates of return. Second, we extend Losq's (1978)

analysis by solving the problem not only when the nontraded income is an ordinary

Brownian motion but also when its drift and standard deviation is affected by a stochastic

state variable. In the latter case it is helpful to distinguish nontraded income from from

the traditional state variables that affect traded assets rates of return and generate a

"stochastic investment opportunity set" in the usual terminology, since nontraded income

enter separately in the wealth equation. In line with this, it is also helpful to distinguish a

separate "nontraded-income hedge" portfolio in addition to the traditional "state-variable

hedge" portfolios.

We shall present explicit solutions to the portfolio problem in three different special

cases, each with one specific simplification. The three simplifications are spanning,

independence of a stochastic state variable, and instantaneous riskiessness, each considered

one at a time. Hence we consider the cases: (A) The nontraded income is restricted to be

spanned by the traded assets, whereas the nontraded income may depend on a state
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variable and be instantaneously risky. Then the implicit price of the nontraded asset can

be found by a simple no-arbitrage relation, and the solution to the portfolio problem is

easy to get from the solution to the problem when all assets are freely traded. (B) The

nontraded income is restricted not to depend on any state variable, whereas the nontraded

income need not be spanned and may be instantaneously risky. (This is the case

Losq (1978) solves.) Then the implicit price of the traded asset includes a term

corresponding to the value of unhedgeable variance of the nontraded income. (C) The

nontraded income is restricted to be instantaneously riskless, whereas it need not be

spanned and may be a function of a stochastic state variable. (In Fischer (1974, 1975) and

Breeden (1979) the exogenous income is actually instantaneously riskiess.) Then there is

no nontraded income hedge portfolio, only a state hedge portfolio. The implicit priceof the

nontraded assets in this case then includes a term corresponding to the value of the

unhedgeable state variable variance. In particular, even if the nontraded income is riskiess,

the nontraded asset is riskiess since there are implicit stochastic capital gains. In cases

(B) and (C) the utility function is restricted to have constant absolute risk aversion.

Section II lays out the model, presents the general problem, and interprets the

optimal portfolio. Section III derives the partial differential equation for the implicit price

of the nontraded asset. Section IV presents explicit solutions to the portfolio problem and

the pricing problem for the special cases (A), (B) and (C). Section V contains conclusions

and a discussion of some limitations of the analysis and possible directions for future

research. An appendix includes some technical details.

For a more detailed presentation of the analytical methods used in this paper, see

Merton (1971), Fischer (1975), Chow (1979) or Ingersoll (1987).

II. THE GENERAL PROBLEM

Consider an investor in an economy with one consumption good. Time is continuous.

The investor has preferences at time t over uncertain consumption paths {C(r)}...

represented by the expected utility integral
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(2.1) EfU(C(r),r)dr,
where Et denotes the expected value operator conditional upon information available at

time t, and U(C,r) is a standard instantaneous utility function.

The investor can continuously trade n+1 different assets, denoted i = 0, 1, .., n.

Asset 0 has an instantaneously riskiess real rate of return, r(s,t)dt, during an interval dt.

The real rate of return may be a function of a stochastic state variable, s(t), to be

specified below, and of time. Assets i = 1, ..,n have (instantaneously) risky rates of

return. Let q(t) denote the price of asset i in terms of goods, and let the returns occur

in the form of capital gains. The price of asset i is generated by an Ito process,

(2.2) dq(t)Iq(t) = Pqi(5(t)t)dt
+

Sqi(S(t)t)dw(t)•
Here Pqi(5t) which may be a function of the state variable and time, is the expected

instantaneous rate of return on asset i. Furthermore, Sqi(St) is a row rn-vector, and the

(column) rn-vector w(t) = (w(t))T denotes a vector of rn independent Wiener processes

(the number m of Wiener processes must be at least as large as the number of risky assets

plus the number of state variables in order to allow for linearly independent risky assets

and state variables). That is, the increments dw(t) j = 1, .., m, are serially independent

no matter how short the interval dt, and they fulfill

(2.3) E[d(t)] = 0, Var[d(t)} = dt, Cov[dwJ(t)dwk(t)} = 0 j, k = 1, .., m.

Hence, the stochastic component of the rate of return, the second term on the right-hand

side in (2.2), is a weighted sum of the increments of m independent Wiener processes. It

follows that the instantaneous variance of the rate of return of asset i is given by the inner

product SqiSqi' = Ej(Sqjj)2
where denotes transpose. For convenience, we shall call

Sqi the standard deviation vector of the rate of return on asset i. (The (instantaneous)

standard deviation of the rate of return on asset i is the scalar (SqjSqj)1/2•)

For the case when the expected rate of return and the standard deviation vector are

constant, (2.2) is a geometric Brownian motion and it implies that (i) the rate of return on

asset i is normally distributed and (ii) the price of asset i is lognormally distributed.6

6 Equation (2.2) is an equivalent way of writing the integral
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With more compact notation, we shall write

(2.4) D1dq(t) = izq(s(t)t)dt + Sq(S(t)t)d(4'(t)

where Dq denotes the diagonal nxn-matrix with the n-vector q(t) = (q(t)) as the

diagonal, dq(t) and /q(St) are column n-vectors, and Sq(5t) is an nxm-matrix.

Hence D1dq(t) denotes the column n-vector with components dq/q(t), etc.

At each instant t the investor chooses the rate of consumption C(t) and the

composition of his wealth, W(t), into the different assets. Let X(t) 0 be the amount

of wealth held in asset i, 1 = 0, 1, .., n. The investor's portfolio X0(t) of the riskless

asset and X(t) (X(t))._i of the risky assets fulfills

(2.5) X0(t) + 1'X(t) = W(t),

where 1 denotes an n-vector of ones and 1'X(t) denotes the inner product (and sum)

The present setup differs from the standard continuous-time portfolio problem in

that the investor is assumed to have an exogenous stochastic income, in addition to the

return on his portfolio. This exogenous income corresponds to an implicit nontraded asset,

the claim to the exogenous income. We shall refer to the exogenous income simply by

(nontraded) income. The stochastic income during an interval dt is denoted dy(t) and

follows the Ito process

(2.6) dy(t) = (s(t)t)dt + S(s(t)t)dw(t).
The drift coefficient (the instantaneous expected value) (st) and the (instantaneous)

standard deviation m-vector S(st) may be functions of the state variable and time.

During an interval dt the change in wealth, dW(t), for given X0(t) = X0, X(t) =

q1(t)
= q(t0) + Jqj(r)pqj(s(r),r)dr + Jq(s(r),r)Sq(s(r)r)dw(r).

To see that the price of asset i are lognormally distributed when qi and S are

constant, let z = in q1. From Ito's lemma it follows that dz qi + 7qjqj2)dt +

Sdw that is, z is generated by a Brownian motion. Then z(t) is normally
distributed with mean z1(t0) + ( + •/2)(t -

t0) and variance 0q.q.(t - t0).q q1q1 11
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X, and C(t) = C, is given by7

(2.7) dW(t) = X0r(s,t)dt + X'Ddq(t) + dy(t) - Cdt.

The change in wealth consists of four terms, the return on the riskiess asset, the return on

the risky assets, the exogenous income, and (with a negative sign) consumption. With

(2.4)-(2.6), equation (2.7) can be written as

(2.8) d'W(t) EX'l1q(5t) + W(t)r(s,t) + (st) - C]dt +
EX'Sq(St) + S(st)]d'(t)

where we have introduced the n-vector of expected excess rates of return for the risky

assets, I/q(St) defined by

(2.9) Vq(St) = iiq(St)
— r(s,t)1.

In the general case the expected returns and the standard deviation vectors of the

assets and the exogenous income may be affected by a set of exogenous stochastic state

variables. To simplify the notation we assume that there is only one state variable, s(t).

It is also generated by an Ito process, namely

(2.10) ds(t) = p5(s(t),t)dt + S5(s(t),t)dw(t).

We note that (2.6) and (2.10) imply that the special case when nontraded income is a

geometric Brownian motion, dy/y = ydt + Sda is included, since we may choose

Py(St) = p5(s,t)
=

JLs S(st) = S5(s,t)
=

Sy5
and indentify y with s.

The optimization problem of the investor is now to choose, for given current levels of

wealth and the state variable, W(t) = W and s(t) = s, and contingent upon future

realizations of wealth and the state variable, the consumption path {C(r)}_ and

portfolio path {X(r)_} for risky assets so as to maximize (2.1) subject to (2.8) and

(2.10). The portfolio path for the riskless asset {X0(r)}_ then follows from (2.5). We

let J(W,s,t) denote the corresponding indirect utility function, and C*(W,s,t) and

X*(W,s,t) the corresponding optimal solution.8

See Merton (1971) for a detailed derivation.
8 We assume that a solution exists and is unique, and that we may disregard
bankruptcy (that is, we assume either that consumption is always positive and
nonnegativity constraints on consumption are never binding or that negative consumption
is allowed). Karatzas, Lehoczky, Sethi and Shreve (1986) rigorously demonstrate existence
and discuss bankruptcy in the standard model without nontraded assets and state
variables.
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The Bellman equation is

(2.11) 0 = max {U(C,t) + + Jw[X'V (s,t) + Wr(s,t) + p (s,t) - C]
(C,X) q

+ Jww[X't7qq(st)X + 2X'o(st) +

+ J5p8(s,t) + JwsX qst) +
Here aqq o aqs and are the (instantaneous) covariances

matrices/vectors/scalars for and between q, y and s, given by SqSq' SqSy'

SqSs' and SS5t, respectively.
The first-order conditions are

(2.12) U - = 0 and

(2.13) W'q + Jww[aqqX + Oqy] + Ws°qs =
The first-order conditions can be solved for the consumption function and optimal

portfolio,

(2.14a) C*(W,S,t) Uj1(J) and

(2.14b) X*(W,s,t) = (w/Jww)aq'vq
- 'q'qy -

The optimal portfolio is the sum of three terms and may be interpreted as the combination

of three different portfolios, the "tangency" portfolio
t —1

(2.15a) X = (ww/w)qq "q'
the "income hedge" portfolio

(2.15b) xhy =
O'qq'CTqy

and the "state variable hedge" portfolio

(2.15c) =

The tangency portfolio is the portfolio that corresponds to the point of tangency of the

mean-variance efficient locus and the borrowing-lending line. A hedge portfolio against a

random variable is the portfolio (i) whose return has the maximum negative correlation

with the variable, or, equivalently, (ii) that minimizes the variance of the sum of the

random variable and the return on the portfolio.9 (See Ingersoll (1987) for further

9 The income hedge portfolio (2.15b) is the solution to
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discussion.) The term in the tangency portfolio is the absolute tolerance to

wealth risk (the reciprocal of the absolute aversion to wealth risk). Similarly, we can call

the term the absolute tolerance to the state variable risk (the reciprocal of

the absolute aversion to the state variable risk). Then the term in the state

variable hedge portfolio can be interpreted as the ratio of the absolute tolerance to wealth

risk to the absolute tolerance to state variable risk (or the ratio of the absolute aversion to

state variable risk to the absolute aversion to wealth risk).

The consumption function and the optimal portfolio in (2.14) are expressed in terms

of the partial derivatives of the indirect utility function. In order to get a complete

solution, equations (2.14a,b) are substituted into the Bellman equation (2.11) which results

in a partial differential equation for the indirect utility function (see (A.1) in the

appendix). Solution of this partial differential equation gives the explicit indirect utility

function which can then be substituted back into (2.14) to get the explicit consumption

function C*(W,s,t) and optimal portfolio X*(W,s,t).

We note that if nontraded income and the state variable are uncorrelated with the

returns on traded assets, the corresponding hedging portfolios will be zero. Even in this

case the existence of the nontraded asset affects the solution. We will see this in detail

below, but we can realize this already at this stage since the variances of nontraded income

and the state variable still enter the partial differential equation (A.1) for the indirect

utility function.

III. PRICING A CLAIM TO INCOME

Let us consider the (implicit) value of a claim to the exogenous stochastic income dy.

The value of the claim is the price at which the claim would be willingly held by the

investor if the claim was freely traded. The problem of finding the value of a claim to a

given stochastic income is a problem of independent interest. The problem is however of

(i) rninx[XI ,/(XIcqqX7yy)h/2] as well as to (ii) minVar[X'Dq'd + dy]/dt =
+ 2X, +
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particular interest here, since it is closely related to the problem of finding the optimal

portfolio of traded assets when the claim to income is nontraded. Indeed, knowing the

implicit value of the claim facilitates very much the interpretation of the optimal portfolio

of traded assets.

The value of the claim, F, will in general be a function of the level of wealth, the

state variable, and time. It is practical to consider it a function of the investors

comprehensive (implicit) wealth, W, including the value of the claim and therefore given

by

(3.1) W=W+F.
Let us hence denote the value of the claim by F(W,s,t).

Finding the implicit price at which the claim is willingly held also involves finding its

implicit rate of return. To see this, we shall write the rate of return in two ways. First, in

analogy with (2.2) we let dq(t)/q(t) denote the (implicit) rate of return on the claim

during an interval dt, we let PF(W,s,t) denote the expected rate of return, and we let

SF(W,s,t) denote the standard deviation vector for the rate of return. Then we can write

the rate of return as the Ito process

(3.2) dq(t)/q(t) = F('W'(t),8(t),t)d1t + SF(W(t),S(t),t)dW(t),

where F() and SF(.) remain to be determined. Second, we note that return on the claim

during an interval dt consists of a stochastic (explicit) dividend, dy(t), and a stochastic

(implicit) capital gain, dF(t) = dF(W(t),s(t),t). Therefore, we have the identity

(3.3) dq(t)/q(t) (dy(t) + dF(t))/F(W(t),s(t),t),
where F(.) and dF remain to be determined.

The expected rate of return pF(W,s,t) and the standard deviation of the rate of

return SF(w,s,t) can now be identified from (2.6), (3.2) and (3.3). More precisely, Ito's

lemma is used to develop the differential dF in (3.3) (see appendix B for details). Then

we can identify the terms multiplying dt to get the expected return in terms of the

partials of F,

(3.4) FPF /iy + Ft + F(t - C*) + F5p5 + F*a* +
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1+

where we use the notation

(3.5a) X'Z/q + FVF + Wr

for the expected change in comprehensive wealth, and

Ii h\ C * — V*'Q _— " '

for the standard deviation vector of comprehensive wealth. Furthermore, and

denote, respectively, the variance of comprehensive wealth and the covariance

between comprehensive wealth and the state variable. Similarly, by identifying the terms

multiplying d we get the standard deviation vector in terms of partials of F,

(3.6) FSF S. + + F5S5.

Combining these identities with the relevant equilibrium conditions, either a

no-arbitrage condition (when the claim to income is spanned by the traded assets) or an

implicit first-order condition with respect to the amount of implicit wealth invested in the

claim (when the claim to income is not spanned by the traded assets), gives a partial

differential equation in F(W,s,t), the nontraded asset's Fundamental Valuation Equation,

to which a solution will have to be found.

IV. SPECIAL CASES

We shall present solutions to the portfolio problem and the pricing problem only for

selected special cases. First, we make some simplifying assumptions throughout the

analysis. We assume that the rates of return on the traded assets are independent of the

state variable and time (that is, they are constant),

(4.la) r(s,t) = r, Pq(St) = and Sq(St) = Sq•

We also assume that the drift and standard deviation of the state variable are independent

of time,

(4.lb) p3(s,t) = p5(s) and S5(s,t) = S5(s).

We moreover assume that the instantaneous utility function has an exponential discount

factor,
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(4.lc) U(C,t) eV(C), 8> 0.
Under these assumptions it is easy to show that the indirect utility function also has an

exponential discount factor and can be written

(4.2) J(W,s,t) = etI(W,s).
Then the optimal solution and the value of the claim to income will be independent of

time.

Second, we consider some specific simplifications. In section IV.A we assume that

both income and the state variable are spanned by the traded assets. In section IV.B we

relax the assumption of income being spanned, but assume that there is no state variable.

In section IV.C we assume that income is instantaneously riskless but allow for a

non-spanned state variable. Throughout section IV.B and IV.C the instantaneous utility

function is restricted to have constant absolute risk aversion.

A. Income and the State Variable Spanned By Traded Assets

We assume now that both income and the state variable are spanned by the n+1

traded assets. Spanning here means that there exist linear combinations of the traded

assets which have the same risk characteristics as income and the state variable. This can

be precisely defined in several equivalent ways: First, the hedge portfolios XT and

in (2.15) are perfect hedges, that is, the returns on them are perfectly negatively correlated

with income and the state variable, respectively. Second, the standard deviation vectors

Sr(s) and S5(s) are linear combinations of the rows of the standard deviation matrix Sq.

The weights in the linear combination are given by the hedge portfolios. More precisely,

(4.3a) Sy(S) + XhY(s)ISq = 0 and

(4.3b) S5(s) + aqqaqs'5q = 0.

Third, the "unhedgeable" variances of income and the state variable conditional upon the

set of traded assets, c q(S) and s q(S) defined by

(4.4a) Oyq(S) = a(s)
-

7yq(S)Cqq'Uqy(S)
and

(4.4b) 75q(S) = o8(s)
-
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are both zero,'0

(4.5) 7yq(S) = O•sq(5)
= 0.

Spanning obviously excludes the possibility that income and the state variable are

uncorrelated with the rates of return on traded assets.

One way to find the optimal portfolio is to directly solve the partial differential

equation (A.1) in the appendix, taking (4.5) into account. Another way is to first find the

implicit price of a claim to income. We shall use the latter way, which we find useful and

illuminating. Then we have to derive a partial differential equation for the value of the

claim to income, F(W,s,t), and solve that.

First, it is easily seen that if income and the state variable are spanned by the traded

assets, so is the claim to income (see appendix C). If the claim to income is spanned, the

'F hedge" portfolio xh' of traded assets, given by

(4.6) xhF = - qqOqFF
has its return perfectly negatively correlated with the return on the claim to income. This

means that the combination of the F hedge portfolio and the claim to income has an

instantaneously riskless return. Absent arbitrage, the combination must pay the riskless

rate of return. That is, we have the no-arbitrage relation

(4.7) FPF + XhFPq = (F + X'l)r.
On the left side we have the expected return on the combination of the claim and the hedge

portfolio; on the right hand side we have the riskless return on the investment.

Let us now combine this no-arbitrage relation with (3.4), the expression for expected

returns on the claim in terms of the derivatives of F. This gives us a partial differential

equation in F, the fundamental valuation equation with a no-arbitrage condition, which

after some manipulations (see appendix D) can be written

10 The unhedgeable variance of income is the minimum variance of the sum of income
and the return on a portfolio of the trade assets, that is, the variance of the sum of income
and the return on the income hedge portfolio.

A fourth equivalent definition of that income is spanned by the risky assets is that

the variance/covariance matrix qq qy is singular.
yq yy
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(4.8) + F5c5 + F5555 + F(i - C -
jq7qq1Vq)

+ F5(p5 - sqqq Uq) + F - Fr + -
Cyq7qq1Vq

= 0.

This is the partial differential equation we need to solve. Under the assumption of

spanning, we may guess that the value of nontraded income is independent of wealth.

Then all terms in (4.8) involving derivatives with respect to wealth drop out. We then

note that parameters of the utility function do not enter, neither directly via derivatives of

the indirect utility function nor indirectly via wealth and consumption. This is an example

of "preference-free" pricing of assets, which results when the asset in question is spanned

and a no-arbitrage relation like (4.7) can be used instead of a first-order condition.

Let us restrict the drift and standard deviation of income to be linear in the state

variable,

(4.9a) (s) = iLyS
and Si(s) =

SyS

where and are constant. Furthermore, we restrict the state variable to have

constant drift and standard deviation,

(4.9b) p5(s) = and S5(s) = S.
This formulation implies that the state variable is normally distributed and can take

negative values, making income negative. Hence our analysis is symmetrical in the sense

that it also covers the case when the nontraded asset is a liability with a negative value.

Indeed, this symmetry is used below when "extraneous" solutions to the fundamental

valuation are eliminated.

As mentioned, under the assumption of spanning we may guess that F is

independent of W. Also, under the assumptions (4.la)-(4.lc) we may guess that F is

independent of t. Therefore all terms in (4.8) involving derivatives of F with respect to

W and t vanish, and (4.8) becomes a second order ordinary differential equation.

Finally, we guess that F is linear in s. Then it is easy to see that a solution to F is

(4.lOa) F(s) =
(Jigs

-

yqTq1vqs)/r
+
{[( - &yqq'vq)/r]Ps

- [( - ayqq1vqr1sqcqvq
where •yq =

SySq'•
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The solution (4.lOa) is a particular solution to the second order linear ordinary

differential equation that results after restricting F to be independent of wealth and time.

The general solution the that differential equation is the sum of the particular solution and

the homogeneous solution, the solution to the homogeneous part of the equation. With

reference to reasonable asymptotic properties of F, namely that F should be roughly

proportional to the state variable for large values of the state variable, the extraneous

homogeneous solution can be eliminated. The reason why F should be asymptotically

proportional to the state variable is that for large values of the state variable, the relative

variance of the state variable becomes insignificant, since the variance of the state variable

is constant (see appendix E).

Before interpreting the expression for F, we shall see what the rest of the solution

looks like. Let J(W,t) denote the indirect utility function to the portfolio problem when

the claim to income is freely traded. The indirect utility function J(W,t) will not depend

on the state variable for given levels of comprehensive wealth W since the state variable

is spanned by the traded assets and all assets, including the claim to income, are in that

case freely traded. Then we may conjecture that the indirect utility function J(W,s,t) for

the problem when the claim to income is not traded will fulfill

(4.lOb) J('W,s,t) = J('W + F(s),t)

That is, the effect on utility of the state variable enters only through the effect on

comprehensive wealth W = W + F(s). (Solving the partial differential equation (A.1) in

the appendix confirms that (4.lOb) holds.)

It follows from (4.lOb) that the term in the state variable hedge portfolio xhs in

(2.15c), the ratio of absolute tolerances to wealth risk and the state variable risk, fulfills

(4.11) WS''WW = J F5/JX = F,
where, by (4.lOa),

(4.12) F8 = - yqq'Vq)/r.
Hence the optimal portfolio (2.14b) is

(4.13) X* = (Jw1Jww)cqq - Tqq'7qyS
-

FsCq1Yqs
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= x + xhY(s) + X.

The income hedge portfolio X'"(s), the second term on the right-hand side of (4.13)

is linear in the state variable. This of course follows directly from the assumption that the

drift and standard derivation of income is linear in s. The state variable hedge portfolio

xhs, the third term on the right-hand side of (4.13) is independent of the state variable.

Furthermore, from (4.6), (D.2) in the appendix, and (4.11) we have

(4.14) X"s = aqq'7qyS
-

Fs7q1aqs
= +

The F hedge portfolio is simply the combination of the income hedge portfolio and the

state variable hedge portfolio, Thus, the optimal portfolio can be written

(4.15) x*=xt+xhF,
the sum of the tangency portfolio and the F hedge portfolio.

Let us interpret the results derived so far. The easiest case is when there is no state

variable, or, equivalently, when the state variable is deterministic and constant. This case

corresponds to

(4.16) p5 = 0 and S5 = 0.

Then

(4.17a) F(s) = (s -
yq7q1vqs)/r

and

(4.17b) xh5 = x''is =
aqq1oqyS.

The value of the claim is simply the expected income, tyS plus the expected excess return

of the perfect income hedge portfolio, X1'Y(s)IVq discounted by the riskless rate of

return r. This is the first term in (4.lOa).

When there is a state variable, the value of the claim has a second component as well,

the second term in (4.lOa). The second component is the expected return on the state

variable, the value of which is -
yqrq'vq)/r1Ps

plus the expected return on the

perfect state variable hedge, the value of which is [( - again

discounted by the riskless rate of return. Hence, owning the claim is equivalent to also

owning an asset, the state variable, with expected return [(i&) - Tyqaq'vq)/r1P5 and

standard derivation vector {(iy -
yqaq1vq)/r1S5.
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The results above are independent of the precise form of the utility function V(C).

(As mentioned, we have an example of preference-free pricing.) For specific utility

functions, we can in addition find the explicit consumption function and tangency portfolio.

Let us therefore see what the consumption function and tangency portfolio looks like for

two different instantaneous utility function.

First, with constant absolute aversion to consumption risk, we have

(4.18) V(C) = eJ'CI(F),
with the coefficient of absolute risk aversion F = VVc > 0. For that case it is known

that the indirect utility function J(W,t) to the standard problem when all assets are

traded is of the form (see Merton (1969))

(4.19a) J(W,t) = e6teV/(Fr),
where A is a constant. Hence, by (4.lOb) and (4.19a) we can conclude that for the

problem when the claim to income is not traded, the indirect utility function is

(4.19b) J(W,t) = + F(S)]/(Fr)

Substitution in the Bellman equation (A.1) in the appendix gives

(4.19c) A = (r - 8 - uqcq1vq/2)Ir.

From (4.19b) the absolute tolerance to wealth risk is

(4.20) w1ww 1/Fr.

and the tangency portfolio is

(4.21) X =
7qq1vq/I'r

independent of wealth and the state variable. From (2.14a) and (4.18) it follows that the

consumption function is

(4.22) C*(W,s) = V(eötJW) = log(eötJ)/F = -A/F + r[W + F(s)).

Second, let the instantaneous utility function have constant relative aversion to

consumption risk,

(4.23) V(C) = */(1 - 'y).

with the coefficient of relative risk aversion 7 = - CVcc/Vc > 0. The indirect utility

function for the standard problem with all assets traded and no state variable is of the form



19

(see Merton (1969))

(4.24a) J(W,t) = e 6tAwl_ /(i- 7)

Hence, the indirect utility function for the problem when the claim to income is not traded

is

(4.24b) J(W,t) = etA[W +F(s)]/(1 - 7).

Substitution in the Bellman equation (A.1) reveals that

(4.24c) A = {[ö - (1 - 7)(r +

This solution is meaningful only if A is positive. Hence the rate of time preference must

fulfill the condition

(4.24d) 8> max[O, (1-7)(r + V'c7qq1VI27)].

From (4.24a) the absolute tolerance to wealth risk is

(4.25) = [W + F(s)]/7,

and the tangency portfolio is

(4.26) Xt(W,s) = aqLiq[W + F(s)]/7,

proportional to comprehensive wealth. The consumption function is

(4.27) C*(W,s) = V'(eJ) = (eJ)" = A1/[W + F(s)].

The solution presented in Modest (1984) is a special case of this.

The discussion above has been conducted in terms of the implicit value F of the

claim to nontraded income. Given that F has been calculated, we can then use (3.4) and

(3.6) to calculate the drift and standard deviation for the implicit rate of return on the

claim to nontraded income.

B. No State Variable

We shall now consider the situation when nontraded income is spanned by the

traded assets. We assume throughout this section that there is no state variable. That is,

the drift and standard deviation vector of income are constant,

(4.28) (s) = p, and Sr(s) =
S,.

That income is not spanned means that the income hedge portfolio is no longer a
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perfect hedge against income, that the standard deviation vector S, is no longer a linear

combination of the standard deviation matrix Sq and that the unhedgeable variance

(4.4a) of income conditional upon the set of traded assets is positive,

(4.29) '7yjq > 0.

If there is no perfect hedge to income, we cannot use an arbitrage relation like (4.7)

to derive a partial differential equation for the value of a claim to income. Instead wewill

use the implicit first-order condition for F, that is, the first-order condition when the

relevant Bellman equation for the problem when also claims to income are traded is

maximized with respect to the amount of comprehensive wealth held in claims to income.

For completeness we first derive the partial differential equation for the case when there is

a state variable. The first-order condition for F is then (see the derivation of (F.5) in

appendix F)

(4.30) WF + WWFqX + FFF) + WsFs = 0,

where = F - r is the expected excess return on claims to income.

We note that the term in parenthesis can be written we use (3.6) to express

FW and °Fs in (4.30), and we combine the result with (3.4) to eliminate FPF (see

appendix F). This gives the Fundamental Valuation Equation"

(4.31) + F5C5 + F55o3
+ F[ji - C - (J/J)c - (J/J)o]
+ F5[p5 - (- -

+ Ft - Fr

+ py - -
(-J\T5/Jr)5 0.

This is the partial differential equation that needs to be solved. Since we assume that

it See Cox, Ingersoll and Ross (1985). Equation (4.31) differs from equation (31) in
Cox, Ingersoll and Ross since here dividends dy are instantaneously risky instead of
instantaneously riskiess, which adds the last two terms in (4.31). Also, Cox, Ingersoll and
Ross assume that there is no net supply of the riskless asset and that the riskiess rate of

return is endogenous. Assuming X0 = 0 implies Wr(W,s,t) = - -

which makes the term multiplying F equal to Wr - C*, as in Cox,

Ingersoll and Ross's formulation.
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there is no state variable, all terms involving s drop out. Let us also assume that the

utility function has constant absolute aversion to consumption risk, (4.18). Then we can

guess that F is independent of W and hence constant. That gives

(4.32) F =
{Py

- (-J/J)J/r.
With constant absolute aversion to consumption risk, the absolute aversion to wealth risk

is

(4.33) (-J/J) = Fr.

From this and from the rewriting (see appendix G) it follows that the value of a

claim to income fulfills

(4.34) F = - yqq'Vq - Frjq]/r.
From (4.33) and (F.2) the optimal portfolio will fulfill

(4.35) = q'vqIFr
- q'qy = + xhy.

The indirect utility function is of the same form as (4.19a), namely

(4.36a) J(W,t) eSteA
- Fr(W + F)/(Fr)

but the constant A now reflects also the unhedgeable variance in income,

(4.36b) A = [r - 5- VTqqlVq/2 - (Fr)2ay1q/2]/r.
The consumption function is then

(4.36c) C*(W) = -A/F + r(W + F).

Both (4.32) and (4.34) are intuitive. We see in (4.32) that F is the expected income

less the covariance between income and comprehensive wealth weighed with the absolute

aversion to wealth risk, everything discounted by the riskiess rate of return. In (4.34) we

see that F is the expected income plus the expected excess return on the income hedge

portfolio (the first two terms in the bracket) less the unhedgeable variance o I q weighted

with the absolute aversion to wealth risk, everything discounted by the riskless rate. This

latter expression is also derived by Losq (1978), by directly solving the Bellman equation.

We see that if income is spanned, and hence the unhedgeable variance q is zero, (4.34)

collapses to (4.17a).

If income is uncorrelated with the rates of return on traded assets, the income hedge
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portfolio is zero. There is no effect on the portfolio of traded LiJ assets of the existence

on nontraded income. There is a wealth effect though, and consumption and holdings of

the riskiess traded asset are affected.

Given that the value of the claim to nontraded income has been calculated, we can

use (3.4) and (3.6) to compute the drift and standard deviation of the implicit rate of

return on the claim.

For the finite horizon problem when utility of terminal wealth is maximized, and for

the special case with no state variable and constant absolute risk aversion, Duffie and

Jackson (1988, Case 2) derive a portfolio of risky assets which is essentially the portfolio

X in (4.35) multiplied with the term eT_t), where T is the horizon. Hence, that

portfolio of risky assets approaches zero when the horizon T becomes large. Obviously,

the results from finite horizon terminal wealth maximization cannot directly be

meaningfully extended to the case with an infinite horizon and consumption at each date.

C. Income Instantaneously Riskiess

We now assume that income is instantaneously riskless, that j,12

(4.37) Sy(5) = 0.

We assume that the drift in income is linear in the state variable, and that the drift and

standard deviation vector of the state variable are constant, that is (4.9a) and (4.9b).

When income is instantaneously riskless, the Bellman equations (2.11) and (A.1) are

simplified since all terms involving variances and covariances of income vanish. The

optimal portfolio is simplified since there is no income-hedge portfolio. In the fundamental

valuation equation (4.31) the last two terms vanish.'3

Even if nontradeci income is instantaneously riskiess, the nontraded claim to income

is instantaneously risky, since implicit capital gains will be instantaneously risky.

12 Fischer (1974, 1975) and Breeden (1979) implicitly assume that the exogenous income
is instantaneously rikless.
13 As mentioned, Cox, Ingersoll and Ross (1985) derive the fundamental valuation
equation for an asset with an instantaneously riskless dividend.
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Let us restrict the utility function to have constant absolute aversion to consumption

risk, (4.18). Then we may assume that the value of the claim to income is independent of

comprehensive wealth, which simplifies the fundamental valuation equation. After some

manipulations (see appendix H) the valuation equation can be written

(4.38) -
F52(J + F5[p5 -

Csqq1I/q1
- Fr + IiyS = 0.

We guess that F is linear in s, use (4.33), and get the solution

(4.39) F(s) sIr + [G4/r)5 - (y/r)asqq1uq -
Fr(y/r)2siq}/r.

Again it makes sense that F should be roughly proportional to the state variable for

large positive and negative values of the state variable, since the relative variance of the

state variable is then small. I conjecture, although I have not been able to provide a

formal argument, that this asymptotic property is enough to exclude other solutions to

(4.38).'4

Given the solution (4.39), the indirect utility function will be

(4.40a) J(W,s,t) = eeA - Fr[W + F(5)]/(Fr) with

(4.40b) A = [r - 6- vq'crq'vq/2 -(Fy)27sq/2]/r.
The consumption function is

(4.40c) C*(W,s) = -A/F + r[W + F(s)].

Since the ratio of the absolute tolerance to wealth risk to the absolute tolerance to state

variable risk is

(4.41) J5/J =F =

from (2.14b) the optimal portfolio is

(4.42) X* = OqvqIFr
-

(iiyIr)oq1cq5
= x + xhs = x +

From (4.39) we see that the value of the claim again has two components. The first

component is the value of a riskiess income stream which equals Jts/r the first

term in (4.39). The second component is the value of a risky state variable, equivalent to

14 We want to exclude solutions with a non-zero second-order derivative It is

easy to show that any polynomial solution will be linear. I have been unable to find a
general solution to (4.38), which has the special property of having a term which is
quadratic in the first derivative.
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an asset with expected return (/r)i8 and standard deviation (iz/r)S which value is

the present value of the expected return on the state variable and on the state-variable

hedge portfolio, Ui/r)(t3 - less the present value of the unhedgeable

return variance of s, (i/r)2o8 q/I• weighed by the absolute aversion to wealth risk, Fr.

From (4.42) we see that the state variable hedge portfolio and the F hedge portfolio

equal, as they should, the negative of the product of and the covariance between

traded asset returns and the return (iz/r)ds on the state variable. There is, as

mentioned, no income hedge portfolio when income is instantaneously riskiess.

If the state variable is uncorrelated with the rates of return on traded assets, there is

no state variable and F hedge portfolio. There is no effect of the existence of nontraded

income on the portfolio of traded assets, but there is a wealth effect and an effect on

consumption and holdings of the riskiess traded asset.

Again, the drift and standard deviation of the implicit return on the claim to

nontraded income can be calculated from (3.4) and (3.6).

V. CONCLUSIONS

Let us first summarize the results. We have extended the small previous literature on

portfolio choice with income from nontraded assets (nontraded income, for short) by

relating the portfolio problem with nontraded asset to the problem of pricing a nontraded

asset, and by including a state variable that affects the nontraded income. We have seen

that the existence of nontraded assets clearly affects the optimal portfolio of traded assets

as well as the indirect utility and consumption functions.

In the general formulation of the problem we have found it helpful to distinguish a

nontraded-income hedge portfolio from the ordinary state-variable hedge portfolios. This

nontraded-income hedge portfolio is the portfolio whose return has the maximum negative

correlation with the nontraded income. We have seen that the optimal portfolio of traded

assets can be written as a linear combination of the riskless asset, the tangency portfolio,

the income hedge portfolio, and the state-variable hedge portfolio corresponding to the
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state variable that effects the nontraded income.

We have also derived a variant of the fundamental valuation equation of Cox,

Ingersoll and Ross (1985) for a claim to an instantaneously risky nontraded income with

and without spanning. This valuation equation is of independent interest, but it is also

helpful in interpreting the solution to the optimal portfolio problem. With nontraded

assets the indirect utility and consumption functions are modified by the addition of the

implicit value of the non traded asset to value of traded asset. When the nontraded income

is not spanned by traded asset, the "unhedgeable' variance of the nontraded income also

enters these functions.

Our analysis has also covered the symmetrical case when the claim to nontraded

income has a negative value and is actually a liability, since income and the state variable

may become negative in the model.

The implicit value of a claim to a given exogenous stochastic nontraded income is the

value of the claim for the owner of the claim. Hence, except under spanning the value

differs between investors/consumers and depends on the preferences of the owner, his

holdings of other nontraded assets, etc. Except under spanning, the implicit value of the

claim is not the value of the claim that would result under free trade in the claim, since

other investors/consumers generally value the claim differently. As mentioned above, in

the literature on optimal hedging against future cash payments Stulz (1984) and Adler and

Detemple (1988) take the stochastic process for the value of a nontraded claim to that

future cash payment to be exogenously given to the holder of the claim, which as far as I

can see makes sense only if the claim is spanned by traded assets.

We have reported explicit analytical solutions to the portfolio problem and the

pricing problem for three special cases, namely (A) the nontraded income is spanned by

the risky assets and there is a state variable affecting it, (B) the nontraded income is not

spanned, there is no state variable, and the instantaneous utility function has constant

absolute risk aversion, and (C) the nontraded income is instantaneously riskless, there is a

state variable, and the instantaneous utility function has constant absolute risk aversion.
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There are some obvious limitations in the analysis. These limitations also provide

natural directions for further research. Throughout we have assumed the existence of a

riskless asset with an exogenously given constant rate of return, which gives very simple

expressions for the implicit price of the nontraded asset. Without this assumption, there is

an endogenously determined instantaneously riskiess rate of return which equilibrates the

market at zero net supply of the instantaneously riskiess asset, as shown in Cox, Ingersoll

and Ross (1985). With this endogenous no longer constant riskless rate of return it seems

that the solutions to the fundamental valuation equation for the implicit price of the

nontraded asset would be a more complicated integral.

The restriction to constant absolute risk aversion in cases (B) and (C) implies that

the price of the nontraded asset is independent of wealth. This is because with constant

absolute risk aversion, the demand for risky assets is independent of wealth. One way to

understand why it is difficult to find a solution for other utility functions, for instance with

constant relative risk aversion, is that then the price of the nontraded asset will depend on

wealth, since then demand for risky assets is proportional to wealth (which, of course,

seems more plausible than demand for risky assets independent of wealth). Then the terms

in the fundamental valuation equation involving derivatives with respect to wealth are not

zero, and the equation is much more difficult to solve.'5 These difficulties do not arise in the

spanning case, since then the price of the nontraded asset can be assumed to be

independent of wealth anyhow.16

'5 Equivalently, the implicit rate of return on the nontraded asset is a complicated
stochastic process with wealth as a state variable and far from a simple Brownian motion.

Cox and Huang (1987) demonstrate a new and more powerful method of solving
continuous-time optimum portfolio problems, which involve formulating a linear partial
differential equation instead of the nonlinear partial differential equation that results with
the traditional method used by Merton (1971). Their method depends critically upon an
assumption that the number of risky assets is equal to the number of underlying
independent Wiener processes that describe the uncertain environment. That assumption
is definitely violated in the case when a nontraded asset is not spanned by traded assets,
and it therefore seems that their method cannot be applied in that case.
16 Losq (1978) does present an analytic solution to the case when there is constant
relative risk aversion but only under the awkward assumption that the drift and standard
deviation of the nontraded income are proportional to wealth.

Fischer (1974) presents an analytic solution to the case with constant relative risk
aversion when the nontraded income is instantaneously riskless but proportional to a state
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As to the empirical importance of the effects we have studied, it is of course in

principle possible to estimate the crucial variances and covariances. Of particular interest

would be the covariance between nontraded income and rates of return on traded assets.

Fama and Schwert (1977) examine how the existence of nontraded human capital

empirically affects the security market line in Mayers's CAPM model. Their finding for

US data is that the effect on the security market line is small and that the correlation

between measures of returns on human capital and returns on an aggregate market

portfolio is weak, but that this does not exclude that the correlation may be strong for

particular assets. As they emphasize there are numerous measurement problems involved.

We can easily think of examples of returns on specific human capital strongly correlated

with returns on specific assets, for instance wages and stock prices in a given industry.

I am not aware of attempts to estimate correlations between nontraded income and returns

on traded assets for countries, governments, and other agents. It would clearly be very

interesting to see such estimates, in particular of to what extent nontraded income is

spanned by traded assets.

variable that follows a geometric Brownian motion. In our notation, 5y = 0, Py(5) =

= and S8(s) = Ss. One can infer that the suggested solution is of the form (in

our notation) J(W,s,t) = eA(W + s/B)/(l-'y). As far as I can see this solution
works only under the assumption that the nontraded income is spanned by the traded

* t hsassets. Then B is a constant, which gives the optimal portfolio X =X + X =
t7qq'Vq(W

+ s/B)/7 - (1/B)cq'q5s and the consumption function C* = (etJW)1
= Ah17(W + s/B). This corresponds to Fischer's equations (61), (62) and (66). Without
spanning, B is a constant but a function of s/W, according to Fischer's equation
(67). Then the derivatives and have more terms, and the suggested solution
will not work.
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APPENDIX

A. The Partial Differential Equation for J(W.s.t1

Substitution of (2.14a) and (2.14b) into (2.11) gives

(A.1) 0 U(U1(Jw)) + + J[Wr + -
CyqCqq'Vql

-

- + -
yqq'qy1

+ JsIus

+ Jws(Cys -
CyqCq'Tqs)

- (ww5/wwSqCq1 "q - (w521wwsqqq1 qs
+ Jsso.ss.

B. Differentiating F(W,s.t)

Applying It&s lemma to express the differential dF in (3.3) gives

(B.1) dF(W,s,t) = Fdt + FdW + F5ds
+ F(dW)2 + F5dWds + F55(ds)2

= [F + F(p - C*) + F5p5 +

+ + F5,5 +
+ FS]d,

where we use the notation

(B.2) dW = (p - C*)dt + that is,

(B.3a) Pii = X''L1q
+ FSF + Wr and

(B.3b) S = XSq + FSF.

C. Demonstration in IV.A that F is spanned by traded assets

From (3.2), (3.3) and (B.1) we see that the standard deviation vector of the rate of

return on the claim will fulfill

(C.1) FSF = Sy + FSIJ + F5S5 Sy + F(X*lSq + FSF) + F5S5, hence,

(C.2) FSF = (S + FX*ISq + F5S8)/(1 - F).
If F # 1 (we shall indeed see that F = 0 under spanning), it follows from (4.6) that
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SF is a linear combination of Sq since S and S are linear combinations of Sq

Hence, the claim to income is spanned by the traded assets.

D. Derivation of (4.8)

Combining (3.4) and (4.7) gives

(D.1) + F*scr5 + F555 + F( - C*) + F5p5 + Ft - Fr

+ + X'iiq = o.

The hedge portfolio depends on F and its derivatives, however, via UqFF in (4.6).

Thus we use (3.6) to write

(D.2) aqFF = SqSF'F
=

Sq(Sy
+ FS + F5S5)' = + FTqX + Fs7qs

Substituting in (4.6) and then in (D.1) gives (4.8).

E. Eliminating 'extraneous' solutions to the Fundamental Valuation Eciuation

The homogeneous solution to the second order linear ordinary differential equation

resulting from (4.8) after elimination of the derivatives with respect to wealth and time is

of the form

(E.1) FH =
A1exp(A1s) + A2exp(A2s),

where A1 and A2 are constants, and and A2 are the roots (assumed distinct) of the

characteristic equation. It seems that an argument along the following lines implies that

both A1 and A2 are zero. Suppose at least one of the roots, A1, say, has a positive real

part. Under (4.9) it makes economic sense that for large values of the state variable, F

should be approximately proportional to the state variable, since the variance of the state

variable then is small relative to the value of the state variable. Then we must have A1

equal to zero. Suppose at least one of the roots, A2, say, has negative real part. In the

model, the state variable has not been restricted to be nonnegative. Actually, under

(4.9b) it is normally distributed and can take negative values. Neither have we restricted

the nontraded income to be nonnegative (or allowed for free disposal if it becomes

negative). Hence, our treatment of nontraded income is symmetrical in that it may be
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positive or negative, and the nontraded asset may actually be a liability, corresponding to

negative values of F. Given this, we can consider what happens to F when the state

variable takes large negative values. It then again makes economic sense that F should be

roughly proportional to the state variable also for large negative values of the state

variable. Then A2 must be equal to zero as well.

F. Derivation of the Fundamental Valuation Equation (4.31)

When claims to income are freely traded, let F denote the amount of comprehensive

wealth W held in claims to income. That is, the budget constraint is

(P.1) X0+1'X+F=W.
Comprehensive wealth will develop according to

(F.2) dW =
[X'Uq

+ Fv + Wr + - C]dt + [X'Sq + FSF + S(st)}dw.

The first-order conditions with respect to C, X, and F of the relevant Bellman

equation will be

(F.3) U=J=Oand
(F.4) JUq + J*(TqqX + CqFF) + 'sqs =
(F.5) JWUF + J(OpqX + FFF) + JWs0Fs = 0.

First, it follows from (F.4) that the optimal portfolio X* can be written

(P.6) X* = (JIJ )CqUq -
Cqq qF1 - (is1iqqs

Second, we note that the term in parenthesis in (F.5) is Using (3.6) to rewrite

°FW and °Fs in (F.5), and by identifying and *y' we can manipulate

(P.5) to read

(F.7) FVF = F(PF
- r) =

= F'w[(( - iIJq) + (- k'I
+ F5[(-J +(Jw5/Jw)c53
+ (J /J)c*y + (-J5/J)c5.

Combining (F.7) with (3.4) to eliminate FPF gives (4.31).

We note in passing that (F.7), of course, is fully consistent with the usual equation
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for the security market line. For when there is no state variable, for an asset whose price is

independent of wealth (F.7) implies

(F.8) "F = (-J/J)/F.
Similarly, for F = W we get

(F.9) = (-J/J)c/W.
Eliminating (-j*/j) from (F.7) and (F.8) we get

(F.1O) "FF"W' with
(F. 11) F = Cov[dy/F,dW/W]/Var[dW/W],

the equation for the security market line.

G. Rewriting in (4.32)

We have

(G.1) = + aYFF = (J/J yqq"'q +
where we have used

(G.2) X = (J TqVq - cq'aqy and

(G.3) °yF" = SYSF'F
=

S(S' + F*S' +
F5S51)

(since there is no state variable and F does not depend on W).

H. Derivation of (4.38)

When the utility function has constant absolute aversion to consumption risk, (4.18),

we may assume that the value of the claim to income is independent of comprehensive

wealth. Then the fundamental valuation equation (4.31) simplifies to

(H.1) F5555 + F5[5 - (-j - (-J5/J55] - Fr +
7is

=0.

The covariance depends on F8, though. Therefore we write it as

(H.2) =
sqX* + a5FF J/J sqqq"'q - sqUqqqFF

- (JsIJ CsqUqqqs +

where we have used that the optimal portfolio fulfills

(11.3) X* JJ(Tq'L/q - Cqq qFF -
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and that

(H.4) O'SFF = F5c5.

By incorporating (11.2) in (H.1) the valuation equation can be written

1 2 -1
(H.5) -

1's (JwIJw)q + F5[p3 -
JsqCqq "q - (Jws/Jw)csiq]

- Fr + = 0.

We can simplify (11.5) further by realizing that J5 = 0. For we know from (3.6)

that

(H.6) FSF =

since Sy = 0 and F = 0. This means that when the claim to income is traded, it is a

perfect hedge against the state variable. That is, the state variable is spanned by the claim

to income, and the indirect utility function J(W,t) when claims to income are traded will

therefore not depend separately on the state variable, that is, = 0. This gives (4.38).
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