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1. Introduction

In the context of in-person retail transactions, the utility a buyer gets from purchasing a good

or service is oftentimes influenced by the presence of other buyers at the seller’s store or venue.

Most people would prefer to attend a sporting event in a crowded stadium rather than sitting

alone in the stands; to drink in the company of others rather than in an empty bar; to dance in

a crowded night club rather than in a half-empty one; to share a restaurant with other patrons

rather than being surrounded by empty tables. There are other shopping activities where

buyers prefer to have fewer buyers around. Your experience in a supermarket, for example,

may be negatively affected by having other buyers nearby inspecting and handling the apples

and tomatoes you intend to buy. Another, perhaps higher-stake example, is the preference

for shopping at stores with lower buyer density to reduce the risk of becoming infected with a

pathogen transmitted through close contact with other people.1 In all these examples, buyers’

preferences over the proximity to other buyers are an inherent part of the satisfaction they derive

from the purchase. It is therefore natural to think that the prices for these goods and services,

and the resulting densities of clients at the establishments that sell them, reflect individual

attitudes toward socializing, and in turn feed back into the choices that buyers make regarding

these market-based social interactions.

This paper has two objectives. The first is to generalize the classic equilibrium price-posting

model of Burdett and Judd (1983) to accommodate individual buyers’ preferences over the

density of other buyers who visit the seller where they choose to buy.2 As argued above, this

seems like a relevant driver of consumer behavior for a wide range of goods and services—yet

it does not appear to have been studied in the literature. The second objective is to deploy

a version of the theory (in which preferences for social distancing are derived from the risk

of contracting a disease) to analyze the two-way interaction between disease propagation and

retail-market outcomes (the distribution of prices posted by sellers, and the distribution of

density of buyers across sellers).

The paper is organized as follows. Section 2 lays out the model. Section 3 defines equilibrium

1In the midst of the year 2020, SARS-CoV-2 and the risk of COVID-19 is an obvious example.
2Burdett and Judd (1983) is a natural starting point for the question at hand since it is a standard workhorse

model of sellers’ explicit competition for clients: some firms choose to charge high prices and attract few buy-
ers, while others choose to charge low prices and attract many buyers. The model has found applications
in many fields, including Macroeconomics, Microeconomics, Industrial Organization, International Economics,
Labor Economics, Monetary Economics, and the Economics of Crime.
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and shows how to characterize it. Section 4 discusses how the equilibrium of the Burdett-Judd

benchmark responds to changes in individual buyers’ attitudes toward socializing and social

distancing. The two main insights are intuitive. First, introducing a preference for socializing

or social distancing changes the utility level buyers associate with purchasing the good, and

this typically has a first-order effect on sellers’ profit and the distribution of prices. Second,

buyers’ preferences for socializing heighten competition among sellers, while preferences for

social distancing weaken it. The reason is that facing sociable buyers boosts sellers’ incentives

to undercut each other by lowering prices, while a seller’s incentive to undercut other sellers

in order to attract more buyers is weakend if buyers prefer distancing themselves from other

buyers. As a result, keeping the (average) level of utility the same as in the Burdett-Judd

benchmark, prices in the economy with sociable buyers tend to be lower than in the Burdett-

Judd economy, while prices in the economy where buyers have a preference for social distancing

tend to be higher than in the Burdett-Judd benchmark.

Section 5 turns the focus toward the epidemiological application. In this section I do two

things. First, I show that a situation with positive prevalence of a disease transmitted from

person to person that reduces the utility of those infected, leads to an expected utility function

that fits the utility specification with a preference for social distancing studied in Section 3 and

Section 4. Second, in this section I study how the prevalence of the disease affects market-based

contagion and consumer welfare. The most immediate effect of the probability of infection is to

reduce buyers’ expected utility of visiting sellers, and keeping all else constant, this force induces

buyers to cut back on shopping activities that may lead to contagion. In the full equilibrium,

however, all else is not constant: sellers respond to this change in customer behavior by changing

prices, and as a result, the contagion function reflects the changes in the best-responses of both

sides of the market. This section reports several numerical examples that show that taking into

account the sellers’ pricing responses to the buyers’ shift toward social distancing is critical to

assess the degree to which consumers’ individual behavioral responses to the risk of contagion

can mitigate the spread of the disease. I propose a decomposition of the full equilibrium

response in contagion and welfare into two components: One that captures the change in

buyers’ strategies keeping sellers’ behavior fixed at the no-disease equilibrium, and another

that arises as a result of the (full equillibrium responses triggered by the) pricing responses of

sellers. The typical finding in the numerical examples is that by abstracting from the supply-side

response one would overestimate the effectiveness of buyers’ individual incentives to distance
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themselves from other buyers, and therefore predict that private incentives are more effective in

reducing contagion than they are in the full equilibrium. The idea is simple: sellers respond by

accommodating prices in a way that draws consumers back into their stores. This logic applies

as long as the additonal expected cost of shopping introduced by the risk of infection is not so

large that it dissipates all gains from trade between buyers and sellers. Otherwise, the market

simply shuts down.

In Section 6 I characterize the efficient allocation of buyers to sellers by solving the problem

of a fictitious benevolent social planner. The difference between the planner’s decision of where

to allocate a buyer, and that buyer’s private decision of which seller to visit in the decentralized

equilibrium is that the buyer only considers the effect that her trading decision has on her own

contagion probability, while the planner, in addition, internalizes the effect that this decision has

on the contagion probability of every other buyer.3 The planner and the decentralized solutions

generically differ along two margins: an extensive margin (the number of buyers who participate

in the market), and an assignment margin (how buyers are allocated to sellers conditional

on participating in the market). The numerical work I report suggests that the former is

quantitatively more relevant than the latter. If the disease is very costly to an individual, or

the contagion probability is very high, the planner’s solution excludes more buyers from market

activity than the equilibrium. This result can be inerpreted as society’s desire to implement

social distancing practices that are more aggressive than the ones that would be implemented

by decentralized self-interested individual decision making. In this section I also explore the role

of the density of population, e.g., as measured by the size of the population of buyers relative

to the number of stores. The general insight that emerges is that the planner’s solution and

the equilibrium outcome tend to coincide for relatively low population densities, and become

different once population density exceeds a threshold that depends on the cost of contracting

the disease and the probability of contagion.

The second half of this paper is related to work in Behavioral Epidemiology, see, e.g.,

Manfredi and D’Onofrio (2013), and in Economics, e.g., Posner et al. (1993), Geoffard and

Philipson (1996), Kremer (1996), Gersovitz and Hammer (2004), Reluga (2010), Toxvaerd

(2019, 2020), Bethune and Korinek (2020), Brotherhood et al. (2020), Eichenbaum et al. (2020),

Garibaldi et al. (2020), Jarosch et al. (2020), Keppo et al. (2020), Rachel (2020), that emphasizes

3This kind of health externality is standard in the literature, see, e.g., Kremer (1996), Toxvaerd (2019, 2020),
Brotherhood et al. (2020), Garibaldi et al. (2020), Jarosch et al. (2020), Keppo et al. (2020).
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the importance of modeling individual agents’ behavioral responses to the risk of contagion.

In these contributions, the model of contacts between agents is highly stylized, i.e., typically

uniform random matching between everyone in the economy, and the contacts that lead to

contagion are either modeled as non-market interactions, or when a connection is made to

market activity, it is by assuming a probability of contagion that is a reduced-form function

of the consumption or labor supply chosen by the agent. Relative to these contributions, the

novelty here is twofold. First, I offer an explicit micro-level model in which contagion takes

place between buyers who seek to purchase goods from a common seller. Second, I highlight the

relevance of the two-way interaction between buyers’ initial inclination toward social distancing

and the supply-side price setting responses that in turn feed back into buyers’ incentives to

expose themselves to the disease.

2. Model

There is a set B = [0, B] of buyers and a set S = [0, S] for sellers, with B,S ∈ R++, and

θ ≡ B/S. There is a single good and each seller can sell any quantity of it at a constant

marginal cost c ∈ R+. Each buyer wishes to purchase one unit of the good, and their utility

depends on the number of other buyers who buy from the same seller. Specifically, a buyer

who buys from a seller who is visited by b ∈ R+ buyers gets utility U (b), where the function

U : R+ → R is continuously differentiable, with c < u ≡ minb∈R+ U (b) ≤ maxb∈R+ U (b) ≡ u.

The special case U ′ = 0 corresponds to the “noisy search” model in Burdett and Judd (1983),

but the point here is to consider more general specifications. For example, U ′ < 0 captures an

individual preference for social distancing. The case U ′ > 0 captures an individual preference for

socialization associated with purchasing the good. Each seller posts and commits to the price

it will charge any buyer who wishes to buy the good. Let Π (p) denote the expected profit of a

seller who posts price p. Different sellers may offer different prices. The cumulative distribution

of posted prices is denoted by F . Let p = inf{p∈R:F (p)=0} p and p = sup{p∈R:F (p)=1} p, and let

P denote the convex hull of the support of F , i.e., P = [p, p]. For the analysis I assume c ≤ p

and p ≤ u.4 A buyer’s search process is denoted {qk}k∈N, where N ≡ {0, 1, ...}, qk ∈ [0, 1],

and
∑

k∈N qk = 1. For each k ∈ N, qk denotes the probability a buyer receives k independent

random draws from the distribution of prices posted by sellers. A buyer has the option to buy

4This is with no loss of generality, since no profit maximizing seller of has an incentive to post p < c (since
this implies selling at a loss) or p > u (since this implies making no sales).
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the good from any one of the sampled sellers. The payoff of a buyer is

V (p, b) = U (b)− p (1)

if she purchases the good from a seller with client density b at price p, and 0 if she does not

purchase the good.

3. Equilibrium

Consider a buyer i ∈ B who draws a sample of prices pi =
{
pki
}η(i)

k=1
, where pki ∈ R denotes the

kth price drawn by i (an independent draw from the distribution of prices posted by sellers),

and η (i) ∈ N is the random number of prices sampled by i (with probability distribution given

by the search process {qk}k∈N). Let P denote the set of all possible price samples a buyer can

draw, and let H denote the cumulative distribution function for the random variable pi on P
that is implied by the search process. A purchase strategy for buyer i is a function ξi : P → P
that satisfies ξi (pi) ∈ pi for any pi ∈ P. Intuitively, for any price sample pi ∈ P that buyer i

may draw, ξi (pi) represents the single price (among the η (i) sampled prices) at which buyer

i chooses to purchase. Let ξ = (ξi)i∈B and ξ−i = (ξi)i∈B\{i} denote a purchase strategy profile

for all buyers, and for all buyers other than buyer i, respectively. Given a strategy profile ξ,

the number of buyers who visit a seller who posts price p can be written as

b (p) =

∞∑
k=0

1

S
kqk

∫ ∫
I{
ξi

(
{pni }

k

n=1

)
=p
}dH ({pni }kn=1 |k

)
di,

where H
(
{pni }

k
n=1 |k

)
denotes the cumulative distribution function for the sample of prices

drawn by buyer i, conditional on i drawing k prices. From (1), a buyer’s payoff depends not

only on the price she pays, but also on the number of buyers at the store where she buys.

Hence, when buyer i samples a posted price p, in order to decide whether to visit that price,

buyer i has to form a belief, b̂i (p), for the number of buyers she expects to find at that seller.

I will restrict attention to equilibria in which these beliefs are rational, i.e., b̂i (p) = b (p). A

posting strategy for a seller is a price, p, at which he commits to sell any quantity of the good.

Definition 1. Given a search process, {qk}k∈N, a price posting equilibrium is a list,
(
F, Π̄, ξ

)
,

such that: (1) given
(
F, Π̄, ξ−i

)
, ξi is a best response for every buyer i ∈ B, i.e., ξi(pi) =

arg maxp∈pi
[U(b (p))− p] for every pi ∈ P; and (2) every seller maximizes profit given ξ and
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all other sellers’ price posting decisions, i.e., (a) Π (p) = Π̄ for all p in the support of F , and

(b) Π (p) ≤ Π̄ for all p.

Focus on a buyer i ∈ B who is considering whether to visit a seller s ∈ S who has posted

price p. Suppose i expects s to be visited by b (p) buyers. Then, from (1), the payoff (or value)

i expects to get from visiting s is

v = U (b (p))− p. (2)

For any pi ∈ P, use (2) to define the implied sample of values, vi =
{
vki
}η(i)

k=1
, with vki =

U(b
(
pki
)
) − pki , let V be the set of all buyer payoffs associated with all possible price samples

from P, let H̃ denote the cumulative distribution function for the random variable vi on V,

and let V be the set of buyer payoffs associated with all prices in P. Since buyers care only

about their payoff, v, it is natural to cast buyer i’s purchase strategy in value space, i.e., as a

function γi : V → V that satisfies γi (vi) ∈ vi. Intuitively, for any implied value sample vi ∈ V
that buyer i may draw, γi (vi) represents the single value (among the η (i) sampled values) that

is offered by the seller whom buyer i chooses to visit. Let γ = (γi)i∈B and γ−i = (γi)i∈B\{i}

denote a purchase strategy profile in value space for all buyers, and for all buyers other than

buyer i, respectively. Given a strategy profile in value space, γ, the number of buyers who visit

a seller who offers value v is

b (v) =

∞∑
k=0

1

S
kqk

∫ ∫
I{
γi

(
{vni }

k

n=1

)
=v
}dH̃ ({vni }kn=1 |k

)
di,

where H̃
(
{vni }

k
n=1 |k

)
denotes the cumulative distribution function for the sample of values

drawn by buyer i, conditional on i drawing k prices. Clearly, a buyer should visit the seller

who delivers her the highest payoff among the sellers she sampled, so buyer i’s best-response

condition in value space is

γi(vi) = maxvi (3)

for any random sample vi ∈ V. By thinking of buyers’ purchase strategies in value space, we

know that if a seller who posts price p is delivering value v, then v must satisfy

v = U (b (v))− p. (4)

Condition (4) defines the p that a seller needs to post in order to deliver value v to buyers, i.e.,

p = U (b (v))− v ≡ p(v).
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To find a price posting equilibrium, it is convenient to begin by characterizing the distribu-

tion of posted values implied by the price posting equilibrium. To this end, letG denote the equi-

librium cumulative distribution of posted values induced by (2) and the equilibrium cumulative

distribution of prices posted by sellers, F . Let v = inf{v∈R:G(v)=0} v and v = sup{v∈R:G(v)=1} v,

and let G denote the convex hull of the support of G, i.e., G = [v, v]. Assume that 0 ≤ v and

v ≤ ū − c.5 Hereafter, I will assume the search process satisfies q1 ∈ (0, 1) and will focus the

analysis on a class of equilibria in which G is strictly increasing and continuous. In this case,

the buyer best-response condition (3) implies

b (v) =
∞∑
k=0

θkqkG (v)k−1 . (5)

From (5), it is clear that the focus on equilibrium with G′ (v) > 0 entails b′ (v) > 0. To find

the equilibrium, I will also conjecture that p′ (v) < 0 for all v ∈ G.6 Condition (5) implies

the numbers of buyers who visit the sellers who deliver the lowest, and the highest utilities,

respectively, are

b (v) = θq1 (6)

b (v) =
∞∑
k=0

θkqk. (7)

If a seller offers value v, this value must deliver the seller the equilibrium level of profit, i.e.,

Π̄ = [p (v)− c]b (v) ≡ Ψ (v) . (8)

The first observation is that in any equilibrium, v = 0.7 Then (8) implies the equilibrium level

of profit is

Π̄ = [U (b (0))− c]b (0) (9)

5This is with no loss of generality, since v > ū − c requires a seller to post p < c (and no profit maximizing
seller is willing to sell at a loss), and no seller would post a p that delivers negative value to buyers (since this
would imply making no sales).

6Notice that p′ (v) = U ′ (b (v))b′ (v)−1, so since b(v) is an equilibrium object yet to be found, the conjecture
p′ (v) < 0, as well as the conjecture that G (v) (or b(v)) is strictly increasing and continuous, need to be verified
after the equilibrium has been constructed. Proposition 1 provides sufficient conditions on primitives that ensure
these conjectures are indeed verified in the equilibrium.

7To see this, notice that Ψ (v) = [U (θq1)− v − c] θq1 is decreasing in v, so any seller who posts a price that
delivers v > 0 can increase profit by reducing the value he offers buyers to zero (i.e., by sufficiently increasing
his posted price), which delivers profit Ψ (0) = [U (θq1)− c] θq1 > 0. The equilibrium cannot have v < 0 because
any seller who offers value v < 0 would attract no buyers and earn profit equal to 0 < Ψ (0).
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with b(0) = b(v) as given in (6). Since Π̄ is now known, the equal-profit condition (8) can be

evaluated at v to obtain Π̄ = [U (b (v))− v − c]b(v), which implies

v =

{
1− [U (b (0))− c]b (0)

[U (b (v))− c]b (v)

}
[U (b (v))− c] (10)

with b(v) as given in (7). Also, given Π̄, the equal-profit condition (8) can now be regarded as

a single equation in the unknown b(v), i.e.,

Π̄ = [U (b (v))− v − c]b (v) (11)

can be used to solve for b(v) for all v ∈ [0, v] (see proof of Proposition 1 for details). Once

(11) has been solved for b(v), condition (5) can be solved for G (v) for all v ∈ [0, v] (see proof

of Proposition 1 for details). Finally, G (v) and the equilibrium mapping from values to prices,

p = p (v) from (4), can be combined to recover the underlying distribution of posted prices

F (p) = 1−G(p−1 (p)) (12)

with

p = p (v) =
b (0)

b (v)
U (b (0)) +

(
1− b (0)

b (v)

)
c (13)

p = p (0) = U (b (0)) . (14)

The number of buyers who visit a seller who posts price p is b (p) =b(p−1 (p)). Proposition 1

(in Appendix A) gives an existence result.

To conclude this section, notice that if sellers’ profits are rebated to buyers lump sum, then

market welfare can be defined as the equally weighted average of buyers’ utility (net of seller’s

profit), and equals

W =
1

θ

∫ v

0
b (v) [U (b (v))− c] dG (v) . (15)

4. Market responses to attitudes toward socializing and social distancing

To fix ideas, suppose

U (b) =
u+ ũ

2
− ũ− u

2

(
1− e−σb

)
,

where u, ũ, σ ∈ R+, with c < min(u, ũ). If either ũ = u or σ = 0, buyers’ payoffs are independent

of their social interactions while shopping, and the model reduces to Burdett and Judd (1983).
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If u < ũ, buyers are rivalrous, i.e., they have a preference for social distancing in the sense

that their utility is decreasing in the number of other buyers who shop at the same seller. The

parameter σ indexes the intensity of the buyer’s preference for social distancing: a larger value

of σ reduces an individual buyer’s utility from purchasing the good at a store with a given

number of other buyers. If ũ < u, buyers are sociable, i.e., they have a preference for socializing

in the sense that their utility is increasing in the number of other buyers who shop at the

same seller. In this case, the parameter σ indexes the intensity of the buyer’s preference for

socializing: a larger value of σ increases an individual buyer’s utility from purchasing the good

at a store with a given number of buyers.

To delineate how the model works, consider two economies: one where buyers are rivalrous

and have utility function

UR (b) =
u+ u

2
− u− u

2

(
1− e−σb

)
, (16)

and another where buyers are sociable and have utility function

US (b) =
u+ u

2
+
u− u

2

(
1− e−σb

)
, (17)

with u, u, σ ∈ R+, and c < u ≤ u. To illustrate, set B = 100, S = 10, c = 0, u = 1,

u = 3, σ = 0.01, and q1 = 1 − q2 ∈ (0, 1). Figure 1 assumes q1 = 0.7 and displays the key

equilibrium variables for these two economies. If σ = 0, both economies reduce to the Burdett-

Judd economy, which is also depicted in Figure 1. In this case the utility a buyer gets from

purchasing the good is independent of the density of buyers across stores, and equal to u+u
2 .

When σ 6= 0, a seller is not only offering a buyer the good, but also proximity to other buyers,

e.g., in the case of (16) and (17), this implies UR (b) < u+u
2 < US (b) for all b ∈ R++. That is,

the gain from trade available to any buyer-seller pair in the Burdett-Judd economy is higher

than in the economy where buyers value social distancing, and lower than in the economy where

buyers value socializing. As a result, the equilibrium of the market with sociable buyers delivers

higher utility at higher prices than the Burdett-Judd equilibrium, which in turn delivers higher

utility at higher prices than the equilibrium of the market with rivalrous buyers.8 Figure 2

displays the same economies as Figure 1, but with q1 = 0.9. As is to be expected, for each

8Let GR, GBJ , and GS denote the equilibrium cumulative distribution functions for posted values in the
economies with rivalrous, Burdett-Judd, and sociable buyers, respectively (and similarly for the distributions of
posted prices, FR, FBJ , and FS). Then, the figures show that GR ≺ GBJ ≺ GS and FR ≺ FBJ ≺ FS , where
for any pair of cumulative distribution functions, F1 and F2, “F1 ≺ F2” means that F2 first-order stochastically
dominates F1.
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of the three economies the cumulative distribution function of offered values, G, in the more

competitive parametrization of Figure 1 first-order stochastically dominates the corresponding

distribution of values in the less competitive parametrization of Figure 2, while the opposite is

true for F , i.e., the distribution of posted prices that implements the posted values.

To illustrate how the preferences toward socializing and social distancing interact with the

forces that drive competition, it is instructive to control for the effects that these preferences

have on the size of the gain from trade for buyer-seller pairs. To this end, Figure 3 considers

the same economy with rivalrous buyers depicted in Figure 1 and compares it with a Burdett-

Judd economy that is the same as the one depicted in Figure 1, except for the fact that u in

the Burdett-Judd economy has been calibrated to match the average buyer-seller gain from

trade implied by the equilibrium of the economy with rivalrous buyers.9 Figure 4 makes the

analogous comparison between the economy with sociable buyers depicted in Figure 1, and the

Burdett-Judd economy parametrized as in Figure 1, but with u calibrated to match the average

buyer-seller gain from trade implied by the equilibrium of the economy with sociable buyers.

The main takeaway from these figures is that buyers’ preferences for social distancing weaken

competition among sellers, while preferences for socializing heighten it. The reason is that

facing sociable buyers boosts sellers’ incentives to undercut each other by lowering prices, while

a seller’s incentive to undercut other sellers in order to attract more buyers is weakend if buyers

prefer distancing themselves from other buyers. Therefore, keeping the average equilibrium

level of utility the same as in the Burdett-Judd benchmark, prices (values) in the economy

with sociable buyers tend to be lower (higher) than in the Burdett-Judd economy, while prices

(values) in the economy where buyers have a preference for social distancing tend to be higher

(lower) than in the Burdett-Judd benchmark.

5. Market contagion

In the previous sections I specified agents’ preferences over socializing, U (b), as a primitive. In

this section I focus on the case with U ′ (b) < 0 to show that these preferences can be regarded

as a reduced-form representation of an environment in which buyers are concerned about the

possibility of becoming sick from interacting with other buyers while visiting a seller’s location.

Assume a buyer can be in one of two health states: S or I, that stand for susceptible, and

9This can be done by setting u = 2
∫
UR (b (p)) dF (p)−u in the Burdett-Judd economy, where b (·) and F (·)

are the buyer density and distribution of posted prices for the equilibrium of the economy with rivalrous buyers.
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infected, respectively. Let Nh denote the number of buyers whose pre-trade health state is

h ∈ {S, I}, with NS + NI = B and µ ≡ NI/B. Buyers in state S may transit to state I if

they come into contact with infected buyers.10 Let h, h′ ∈ {S, I} denote a buyer’s health states

before and after visiting a seller, respectively. The transition of the health state of a susceptible

buyer depends on her market interactions. Specifically, a buyer who is in state S when she visits

a seller who is visited by b other buyers has Pr (h′ = I|h = S) = 1− Pr (h′ = S|h = S) = ι (b),

where ι : R+ → [0, 1] is given by

ι (b) = 1− e−σµb. (18)

The parameter σ ∈ R+ represents the likelihood that a buyer contacts another while at a seller’s

location, as well as the probability that the disease is transmitted conditional on a contact with

an infected buyer.11

In an epidemiological model in which agents make decisions that influence their exposure

to other individuals it is necessary to specify the information available to them regarding their

own health state. I work with the following own-health information structure. Agents do not

know if their healh state is S or I, but they have a pre-trade belief φ ∈ [0, 1] that they are

infected (i.e., φ is the probability the agent assigns to being in state I before engaging in market

activity). If the agent visits a seller visited by b other buyers, then her post-trade belief of being

infected is

ϕ (b, φ) = φ+ (1− φ) ι (b) .

I assume all buyers share the same prior belief of being infected.12 This belief could be treated

as a free paramter, or it could be set to equal the prevalence of the disease in the population of

buyers, i.e., φ = µ.

Let u ∈ R++ denote the utility any agent gets from consuming the good. The payoff of a

buyer with prior belief φ from purchasing the good at price p from a seller with buyer density

b ∈ R+ is given by u − p − ϕ (b, φ)λ, where λ ≡ (u − u) ∈ R++ is the disutility associated

with being in state I. The payoff of a buyer with prior belief φ who does not participate in the

10The assumption that agents are either in state S or I would be accurate for a disease that does not confer
immunity to those who recover (i.e., a “SIS” model in epidemiological jargon). Otherwise, it would be a reasonable
approximation to the early stages of an epidemic when the number of recovered is relatively small.

11In Appendix B (Section B.1) I describe two micro-level contact processes among the buyers who visit a
particular seller that give rise to the contagion probability (18).

12The assumption that all agents share the same prior belief of infection seems like a reasonable approximation
for the early stages of the epidemic. As time passes, however, priors would branch out as a result of different
histories of individual actions.
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market is equal to V0 (φ) ≡ −ϕ (0, φ)λ. Hence, the buyer’s gain from purchasing the good at

price p is

V (p, b, φ) = u− p− ϕ (b, φ)λ− V0 (φ) . (19)

Notice (19) is a special case of (1) with

U (b) = u− (u− u) (1− φ)
(

1− e−σµb
)
. (20)

The number of new infections at a seller with µb ∈ [0, b] infected buyers is (1− µ) bι (b).13

Hence, the total number of new infections is

C = S

∫ v

0
(1− µ)b (v) ι (b (v)) dG (v) . (21)

5.1. Equilibrium decomposition: consumer behavior and the role of prices

I now turn to the question of how the prevalence of the disease, µ, affects market-based contagion

and consumer welfare. The immediate effect of the probability of infection is to reduce buyers’

expected utility from visiting sellers. If we abstract from the supply-side response by sellers,

the result would be that buyers cut back on shopping activities that may result in contagion.

In the equilibrium, however, sellers respond to the change in buyers’ behavior by changing

prices, and as a result, the contagion function reflects the changes in the best-responses of both

sides of the market. As mentioned in the introduction, existing work in this area emphasizes

the importance of accounting for the endogenous choices of agents in the determination of the

contagion rate. My goal here is to go a step further and bring into the analysis the role of the

endogenous response of market prices in shaping buyers’ incentives to expose themselves to the

disease. To this end, it is useful to decompose the overall equilibrium response in the contagion

function (21) into two components: One that is due to the change in buyers’ strategies keeping

sellers’ behavior fixed at the no-disease equilibrium, and another that arises as a result of the

(full equillibrium responses triggered by the) pricing responses of sellers.

To carry out this decomposition, I calculate contagion and welfare in two counterfactual

economies. The first is an economy in which all buyers and sellers ignore the disease, i.e., they

all act as if the environment was one with µ = 0 even though it has µ > 0. The second is

13In Appendix B (Section B.2) I show that if the number of infected buyers is small, then the number of new
infections at a seller’s location visited by b buyers, i.e., (1− µ) bι (b), is approximately equal to the number of new
infections that would be obtained by assuming quadratic contacts between susceptible and infected buyers at
the seller’s location. (Quadratic contacts is a common specification in the simplest epidemiological SIR models.)
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an economy in which prices remain fixed as if µ = 0 even though µ > 0, but buyers optimize

taking as given the posted prices and the true prevalence of the disease, µ. The former is

a conventional Burdett-Judd economy in which buyers are oblivious to the disease, and the

latter is a fixed-price economy in which buyers are aware of the disease and will therefore

express a preference for social distancing. These two counterfactual economies will allow me

to decompose the full equilibrium response of contagion and consumer welfare to the level of

µ into a component attributed to the change in buyers’ behavior in response to the disease

keeping prices fixed, and a component attributed to the change in firms’ pricing strategies in

response to the disease. I will use C̄ and W̄ to denote the number of new infections and welfare

in the Burdett-Judd economy with oblivious buyers, and Ĉ and Ŵ to denote the number of

new infections and welfare in the economy with fixed prices and buyers wary of contagion. I

will use C̃ ≡ C− Ĉ and W̃ ≡ W− Ŵ to denote the components of equilibrium contagion, and

welfare, respectively, that are due to price responses.

In the Burdett-Judd economy in which buyers are oblivious to the disease (obtained by

solving the model with µ = 0 in (20)), contagion is

C̄ = S

∫ p

p
(1− µ) b̄ (p) ι

(
b̄ (p)

)
dF̄ (p) ,

and average welfare is

W̄ =
1

θ

∫ p

p
b̄ (p)

[
U
(
b̄ (p)

)
− c
]
dF̄ (p) ,

where for each p ∈ [p, p], F̄ (p) is the number that solves

0 = (p− c)
∞∑
k=0

θkqk
[
1− F̄ (p)

]k−1 − (u− c) θq1, (22)

with p = c+ θq1∑∞
k=0 θkqk

(u− c), p = u, and

b̄ (p) =
∞∑
k=0

θkqk
[
1− F̄ (p)

]k−1
for p ∈ [p, p]. (23)

In the economy in which prices are fixed but buyers are aware of the disease and optimize

accordingly, contagion is

Ĉ = S

∫ p

p
(1− µ) b̂ (p) ι(b̂ (p))dF̄ (p)
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and average welfare is

Ŵ =
1

θ

∫ p

p
b̂ (p) [U(b̂ (p))− c]dF̄ (p) ,

where F̄ (p) is given by (22), and

b̂ (p) =

{
b̄ (p) if p ≤ p ≤ p̂
b̄0 (p) if p̂ < p ≤ p, (24)

where b̄ (p) is given by (23), the cutoff p̂ satisfies

p̂ = U(b̂ (p̂)), (25)

and for each p ∈ (p̂, p], b̄0 (p) is the number that satisfies

p = U
(
b̄0 (p)

)
. (26)

The total number of buyers who visit sellers to purchase the good equals

b̂ =

∫ p

p
b̂ (p) dF̄ (p) .

Conditions (24)-(26) summarize buyers’ optimal purchase behavior in an economy where

they fear contagion but sellers post the same prices they would post in the disease-free equilib-

rium. To see why, consider the following. In the economy with positive prevalence, a buyer’s

payoff internalizes the risk of infection, so given any purchase behavior followed by other buyers

(as summarized by a resulting density of buyers at every price posted by sellers), the value de-

livered to any buyer by a price p on the support of F̄ is lower than the value that same p would

deliver to a buyer in the disease-free environment for which F̄ constitutes an equilibrium. For

example, in the disease-free equilibrium, given optimal buyer purchase behavior summarized

by the function b̄ (p), every posted price p ∈ [p, p) delivers strictly positive value to buyers,

while p delivers value equal to 0. In the equilibrium with risk of contagion, however, there is

a cutoff price, p̂ < p such that—given other buyer’s optimal search strategies imply density

function b̄ (p) for p ∈ [p, p̂]—an individual buyer only gets positive value from prices in the

interval [p, p̂).14 Buyers whose lowest sampled price is from a seller who posts p ∈ (p̂, p] only

14The reason buyers’ optimal purchase strategy given F̄ in the economy with positive prevalence is still char-
acterized by the density function b̄ (p) for p ∈ [p, p̂] (i.e., the same density function that characterizes optimal
purchase strategy in the disease-free equilibrium) can be understood as follows. Having sampled prices from
k ∈ {1, 2, ...} sellers, a buyer’s optimal strategy is always to purchase from the seller whose combination of
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visit the seller if the equilibrium density of buyers who visit a seller who posts p implies their

individual value from buying the good at this price p is nonnegative. Thus, for buyers whose

best sampled price is in (p̂, p], the optimal purchase strategy with positive disease prevalence

but prices given by F̄ is given by the consumer density b̄0 (p), which is the maximum number of

buyers visiting price p ∈ (p̂, p] consistent with a nonnegative value from purchasing the good.

To illustrate the effect of different levels of prevalence of the disease (µ) with utility function

(20), assume φ = µ and set B = 100, S = 10, c = 0, u = −2.3, u = 1, σ = 0.05, q1 = 1− q2 =

0.7. Figure 5 displays, for µ = 0 (or equivalently, µ = 1), and for µ = 0.5, the equilibrium

distributions of posted values and prices, and the density of buyers per seller. Figure 6 shows

the contagion and welfare for all possible levels of prevalence, µ ∈ [0, 1]. The left panel shows

the behavior of C̄ along with C and its decomposition into Ĉ and C̃. The right panel shows the

behavior of W̄ along with W and its decomposition into Ŵ and W̃.15

Interestingly, contagion and welfare do not differ much between the economy with oblivious

buyers (in which neither buyers nor sellers change their behavior in response to the risk of

contagion), and the economy in which buyers and sellers play best responses that incorporate

the risk of contagion. The decomposition of the equilibrium contagion rate C, however, reveals

that the sellers’ pricing response is critical to understand the full equilibrium effect: if prices

remained fixed, contagion would be lower (up to 1/3 lower, in this particular example). The

reason is that in the economy with fixed prices, sellers who post prices in the upper part of the

support of F̄ , i.e., (p̂, p], attract fewer buyers when µ > 0 than when µ = 0. Formally, b̂S < B,

i.e., the total number of buyers who visit sellers in the setting with µ > 0 and fixed prices is

lower than the total number of buyers who visit sellers in the economy in which both buyers

and sellers optimize in response to the disease. This market-induced response is reminiscent

of a kind of endogenous voluntary social distancing by buyers. The right panel of Figure 6

shows that while it generates lower contagion, the economy with fixed prices also delivers lower

posted price and implied consumer density deliver the highest value. Any price p ∈ [p, p̂] delivers strictly positive

value to an individual buyer given other buyer’s strategies are characterized by b̄ (p) on [p, p̂] (this is how p̂ is
defined). The value is decreasing in the price, so buyers’ optimal purchase behavior implies any seller who posts
a price in the interval [p, p̂] attracts a density of buyers equal to b̄ (p), i.e., the same density of buyers they would

attract in a disease-free equilibrium with price distribution F̄ . This is because, conditional on offering a positive
value to buyers, the number of buyers that a seller manages to attract only depends on the position of the seller’s
posted price in the distribution of prices that the buyers are sampling from, which in the economy with positive
prevalence and fixed prices is still F̄ .

15The welfare component attributable to the endogenous response of prices, W̃, can be read as the vertical
difference between the line labeled W and the line labeled Ŵ in the right panel of Figure 6.
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consumer welfare. This is because in this example, there are allocations of buyers to sellers

such that the private gain from trade U (b) − c can be positive for all buyer-seller pairs, and

the full equilibrium implements one of these allocations. Traditional epidemiological models

are sometimes criticized on the basis that they ignore the behavioral responses of the agents

who bear the risk of infection. The economy displayed in Figure 6 shows it may be just as

important to also incorporate the endogenous responses of the markets where suceptible and

infected agents interact. In fact, notice that in the example in Figure 6, ignoring all endogenous

responses as in the traditional epidemiological models would be closer to the “correct” fully

optimizing model than only endogenizing the behavioral responses of buyers.

6. Contagion externalities and market efficiency

When a buyer decides to visit a seller in the price posting equilibrium, she understands her

decision will affect her own probability of infection and therefore her own utility, but fails to

internalize the fact that her decision affects the probability of contagion of other buyers and

consequently their utilities as well. In other words, the possibility of contagion introduces an

externality in the price posting equilibrium. In this section I characterize the efficient allocation

of buyers to sellers by solving the problem of a fictitious social planner who wishes to maximize

the equally weighted sum of buyer’s utilities (under the assumption that seller’s profits are

redistributed to buyers lump sum).

The planner’s problem consists of finding an optimal assignment of buyers to sellers, i.e., a

nonnegative real-valued (piecewise continuous) function a = [a (s)]s∈[0,S] that solves

max

∫ S

0
a (s) [U (a (s))− c] ds, s.t.

∫ S

0
a (s) ds ≤ B. (27)

Intuitively, a (s) represents the density of buyers that the planner assigns to an individual seller

s ∈ S. Proposition 2 (in Appendix A), shows that the solution to the planner’s problem (27)

is the function θ∗ = [θ∗ (s)]s∈[0,S], with

θ∗ (s) = θ∗ ≡ arg max
a∈[0,θ]

a [U (a)− c] for all s ∈ [0, S] . (28)

According to (28), depending on the parametrization, the planner’s solution could take

one of two forms. First, it could have per-seller buyer density θ∗ < θ (in this case the costate

associated with the planner’s Hamiltonian is zero, i.e., the shadow price of placing an additional
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buyer in the market is zero at the optimum). This is the solution that would obtain when

the health externality that buyers impose on other buyers is relatively strong, and it could

be interpreted as the planner’s decision to prevent some buyers from engaging in shopping

activities. In other words, θ∗ < θ can be construed as the planner wanting to restrict the

number of buyers who go shopping in order to achieve a desired level of social distancing.

Conversely, the planner’s solution could have θ∗ = θ (in this case the shadow price of a buyer in

the planner’s Hamiltonian is positive). This is the solution that would obtain when the expected

losses from the buyer’s health externality are relatively mild, so the planner still wants all buyers

to participate in the market. The average welfare achieved by the planner’s solution is

W∗ =
1

θ
θ∗ [U (θ∗)− c] , (29)

and the efficient contagion function is

C∗ = S (1− µ) θ∗ι (θ∗) . (30)

There are two margins along which the planner and the decentralized solutions may differ:

an extensive margin having to do with the number of buyers who participate in the market,

and an assignment margin having to do with how buyers are allocated to sellers conditional on

participating in the market.

6.1. Assignment inefficiency

Figure 7 compares the contagion and welfare implied by the planner’s solution to the market-

based contagion and welfare, for different levels of disease prevalence (for the same economy

displayed in Figures 5 and 6). In this example there is no difference between the market

outcome and the planner’s solution along the extensive margin (i.e., all buyers participate in

both). The differences along the assignment margin imply contagion is a somewhat lower under

the planner’s solution, but the difference in welfare appears to be negligible.

6.2. Participation inefficiency

To illustrate the difference between the market outcome and the planner’s allocation along

the extensive margin, consider the model with preferences given by (20), but set q1 = 1, and

generalize the formulation to allow for exit of buyers. Specifically, suppose the number of buyers

who choose to participate in the market is Be ≤ B, and let θe ≡ Be/S. (So far I have been
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assuming all buyers choose to participate in the market, i.e., that Be = B.) The fact that all

buyers get one price offer implies all firms post the price that delivers value v = 0 to every

buyer they might contact. Hence, the equilibrium is characterized by a single price, namely

p = U (θe) , (31)

and an individual seller’s profit equals

Π̄ = θe [U (θe)− c] . (32)

For parametrizations with 0 < U (θ) − c, the gain from trade between any buyer-seller pair is

positive even if all buyers choose to participate in the market, so the equilibrium is that all

buyers choose to participate, i.e., Be = B, and sellers earn a positive profit given by (32). This

will also be the equilibrium if U ′ = 0 < U (0)− c, i.e., if there is no risk of contagion and there

are gains from trade in the contagion-free economy. For economies with U (θ) < c < U (0) some

buyers will prefer not to participate in the market. In this case, the equilibrium is that the

number of buyers who choose to participate in the market, Be, satisfies U (θe) = c, and every

seller’s profit and every buyer’s utility is equal to zero (whether they choose to participate or

not). The equilibrium therefore consists of the posted price, (31), the seller’s profit, (32), and

the per-seller density of buyers, θe, resulting from buyers’ participation decision, i.e.,

θe =


0 if u ≤ c
U−1 (c) if U (θ) < c < u
θ if c ≤ U (θ) .

Equilibrium welfare and contagion are given by

W =
1

θ
θe [U (θe)− c]

and

C = S (1− µ) θeι (θe) ,

respectively. The efficient levels of welfare and contagion are still given by (29) and (30).

To compare the key prices and allocations implemented by the price-posting equilibrium

with those chosen by the social planner for different levels of prevalence of the disease (µ),

assume the utility function is given by (20) with φ = µ, and set B = 100, S = 10, c = 0, u = 1,

and q1 = 1. Given this baseline parametrization, Figure 8 assumes u = −0.2 and σ = 0.5. In

this case the cost of contracting the disease and the contagion rate are relatively mild, and the
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equilibrium allocation and prices coincide with those chosen by the planner. The top-left panel,

for example, shows that Sθe = Sθ∗ = B for all prevalence levels µ, i.e., all buyers participate

in the market, and this is efficient. Similarly, for all prevalence levels µ, the bottom-left panel

shows that C = C∗, the top-right panel that U (θe) = U (θ∗), and the bottom-right panel that

W = W∗. Figure 9 keeps the same baseline parametrization, but sets u = −0.8 and σ = 0.5;

i.e., the cost of contracting the disease is higher than in the economy of Figure 8, but all else

is equal. In this economy the equilibrium outcome diverges from the planner’s solution. The

top-left panel shows that the planner prescribes that a large percentage of buyers (more than

50% for intermediate values of µ) stay away from the stores where they shop, i.e., Sθ∗ ≤ B,

with “<” for intermediate values of µ. The planner’s recommendation could be interpreted as

a kind of social distancing. In the equilibrium, however, even though buyers are aware of the

risk of infection, they all find it privately optimal to continue to shop, i.e., Sθe = B for all µ.

This different behavior along the extensive margin manifests itself in a much higher market-

based infection rate than is socially optimal, i.e., C∗ ≤ C, with “<” for intermediate values of

µ, as shown in the bottom-left panel. By restricting participation, the planner keeps buyer’s

valuations higher than in the equilibrium, i.e., U (θe) ≤ U (θ∗), with “<” for intermediate values

of µ, as shown in the top-right panel. Finally, the bottom-right panel shows that the planner’s

social distancing prescriptions mitigate the welfare loss from the disease. Figure 10 has the

same baseline parametrization as Figure 8 and Figure 9, but assumes u = −1 and σ = 0.9, so

the disease is even more costly and more contagious than in the economy depicted in Figure 9.

The top-left and bottom-left panels show that in this case the market can curb contagion by

inducing a significant amount of privately-chosen social distancing, while the bottom-right panel

shows that the more aggressive use of the participation margin by the planner can somewhat

mitigate the welfare losses of the market economy, but arguably not buy much.

6.3. The role of population density

The probability a buyer becomes infected when visiting a seller is increasing in the number

of buyers who visit that same seller. Hence, an increase in the aggregate density of buyers

per seller, θ, will affect the contagion rate, the participation of buyers, buyer’s equilibrium

valuations, and welfare. Figure 11 illustrates this result by varying the size of the population

of buyers, B, in an economy parametrized by (20) with φ = µ, S = 10, c = 0, u = −0.8,

u = 1, µ = 0.25, σ = 0.5, and q1 = 1. The planner’s solution and the equilibrium outcome tend
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to coincide for relatively low population densities, but diverge once the aggregate number of

buyers per seller exceeds a threshold that depends on the cost of contracting the disease and

the probability of contagion. Beyond this threshold, the planner’s solution calls for more severe

social distancing than the decentralized equilibrium.

7. Conclusion

Section 3 focused on an equilibrium characterized by a continuous and strictly increasing cu-

mulative distribution function of posted values. This class of equilibria is the most natural

generalization of the Burdett-Judd equilibrium. It would be interesting to learn more about

uniqueness and existence of equilibria in a more general class.

In Sections 5 and 6 I brought into the analysis the endogenous marketwide responses that

shape buyers’ incentives to expose themselves to the disease. In this regard I have gone a step

further than the exising work that focuses on individual behavioral responses but abstracts

from the explicit role that markets play in disease transmission. I have, however, also taken

a step back relative to this existing work in my treatment of time. To introduce these new

mechanisms it was sufficient to work in a static environment. But disease transmission is an

eminently dynamic phenomenom, so embedding the market-mediated model of interpersonal

contacts proposed here into a dynamic econ/epi framework seems like a natural next step. The

background environment could borrow elements from some of the recent contributions of the

Economics literature spurred by the COVID-19 pandemic, e.g., Acemoglu et al. (2020), Alvarez

et al. (2020), Atkeson (2020), Berger et al. (2020), Brotherhood et al. (2020), Eichenbaum

et al. (2020), Garibaldi et al. (2020), Jarosch et al. (2020), Keppo et al. (2020), Rampini

(2020), Toxvaerd (2020).
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A. Proofs

Proposition 1. Suppose U ′ < 0 with

sup
b∈[b(0),b(v)]

∣∣U ′ (b) b2∣∣ < [U (b (0))− c]b (0) < [U (b (v))− c]b (v) , (33)

or alternatively, U ′ ≥ 0 with

sup
b∈[b(0),b(v)]

∣∣∣∣ U ′ (b) b

U ′ (b) b2 + [U (b (0))− c]b (0)

∣∣∣∣ < 1. (34)

Then, there exists a unique equilibrium with a continuous and strictly increasing distribution

of posted prices. Equilibrium profit is given by (9) and the price distribution is

F ∗ (p) = F (p) I{p≤p≤p} + I{p<p},

with F given by (12), and p and p given by (13) and (14), respectively.

Proof of Proposition 1. The proof consists of checking that the conjectures made in the

construction of the equilibrium are indeed true in the equilibrium.

(1) [Prove that v < v.] For G to be continuous and strictly increasing, it is necessary that

v > 0 = v. The equilibrium value of v is given in (10). From this it is clear that U ′ ≥ 0

immediately implies v > 0. If U ′ < 0, v > 0 follows from the second inequality in (33).

(2) [Prove that b(v) and G (v) are strictly increasing continuous functions on [0, v].] The sec-

ond step is to prove that (11) implicitly defines a continuous and strictly increasing function b(v)

on [0, v]. Condition (11) can be written as T (b, v) = 0, where T (b, v) ≡ [U (b)− v − c]b−Π̄.

The condition T (b, v) = 0 implies

b′ (v)
∣∣
T (b,v)=0

= −Tv
Tb

=
1

U ′ (b (v))b (v) + U (b (v))− v − c

=
1

U ′ (b (v))b (v) + Π̄
b(v)

=
1

U ′ (b (v))b (v) + [U(b(0))−c]b(0)
b(v)

. (35)

Hence, b′ (v) > 0 if and only if

−U ′ (b (v))b (v)2 < [U (b (0))− c]b (0) (36)
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for all b(v) ∈ [b (v) ,b (v)]. The right side is strictly positive because of the maintained assump-

tion 0 < minb∈R+ U (b) − c. Hence, (36) is immediately satisfied if U ′ > 0. If U ′ < 0, the first

inequality in (33) is a sufficient condition on primitives for (36) to hold. Hence, in either case

the condition T (b, v) = 0 implicitly defines a strictly increasing continuous function b(v) on

[0, v]. Notice that the values of this implicit function at the endpoints 0 and v, are the values

b(0) and b(v), respectively, defined in (6) and (7). This can be checked by verifying that

T (b(0), 0) = 0 = T (b(v), v) ,

where the first equality follows from (9), and the second from (10). Since b(v) is a strictly

increasing continuous function on [0, v], so is G (v) (by (5)).

(3) [Prove that ρ′ (v) < 0.] The construction of equilibrium presumes that

ρ′ (v) ≡ U ′ (b (v))b′ (v)− 1 < 0. (37)

First, consider the model with U ′ < 0. In this case, as shown above, b′ (v) > 0 follows from the

first inequality in assumption (33). Given b′ (v) > 0, the inequality (37) is immediately implied

by U ′ < 0. Next, consider the model with U ′ > 0. In this case, as shown above, no additional

assumptions are needed to ensure that b′ (v) > 0. However, in order to ensure the inequality

(37) holds, we need to ensure that U ′ (b (v))b′ (v) − 1 < 0. With (35), this condition can be

written as
U ′ (b (v))

U ′ (b (v))b (v) + [U(b(0))−c]b(0)
b(v)

− 1 < 0. (38)

Condition (34) is sufficient for (38) to hold for all v ∈ [0, v̄].

(4) [Prove that given b(v) (5) can be solved for G (v).] Condition (5) can be written as

T(G) = 0, where T(G) ≡
∑∞

k=0 θkqkG
k−1− b. Notice that T is continuous with T′ (G) > 0,

and

T (0) = b (0)− b ≤ 0 ≤ b (v̄)− b = T (1) ,

for all b ∈ [b (0) ,b (v̄)], so there exists a unique G that solves T(G) = 0 for each b ∈
[b (0) ,b (v̄)]. Thus, T(G) = 0 implicitly defines G (v) as a continuous strictly increasing func-

tion of b(v).

Proposition 2. The solution to the planner’s problem (27) is a∗ = [a∗ (s)]s∈[0,S] with a∗ (s)

given by (28).
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Proof of Proposition 2. The planner’s problem can be cast as an optimal control prob-

lem with a (s) as the control, x (s) =
∫ s

0 a (z) dz as the state, and λ (s) as the costate. The

corresponding Hamiltonian is

H = a (s) [U (a (s))− c] + λ (s) a (s) ,

and the necessary conditions for optimization are

U (a (s))− c+ U ′ (a (s)) a (s) + λ (s) = 0 (39)

λ̇ (s) = 0. (40)

Condition (40) implies, λ (s) = λ for all s, and then condition (39) implies

U (a (s))− c+ U ′ (a (s)) a (s) = −λ for all s,

so the solution must satisfy a (s) = a for all s. Hence, at the optimum, x (S) = aS, and the

constraints 0 ≤ a (s) and
∫ S

0 a (s) ds ≤ B can be written as 0 ≤ a ≤ θ, and the solution to the

planner’s problem is given by (28).
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B. Supplementary material

This appendix consists of two sections. In Section B.1 I describe two micro-level contact pro-

cesses among the buyers who visit a particular seller that give rise to the contagion probability

(18). In Section B.2 I show the relationship between the new infections at a given seller with

buyer density b implied by the contagion probability (18), and the quadratic matching specifi-

cation often used in epidemiological SIR-style models.

B.1. Micro-level meeting processes

B.1.1. Micro model I

Consider a seller who is visited by b buyers, a fraction µ of whom are infected. Assume the

rate at which an individual buyer contacts another buyer at the seller’s location is equal to αb.

Suppose that a contact with an infected buyer causes a susceptible buyer to become infected

with probability κ ∈ [0, 1]. Hence the rate at which an individual susceptible buyer contacts an

infected buyer at a location with b buyers and becomes infected is αµκb. Assume buyers coincide

at the seller’s location during a time period of length τ . If we divide this time interval into

τ/∆ discrete subintervals of small length ∆, then αµκb∆ is the probability that an individual

susceptible buyer contacts and becomes infected by an infected buyer while both visit a seller’s

location during the subinterval of length ∆. Then the probability that an individual buyer

does not become infected in the period of length τ is (1− αµκb∆)τ/∆. Thus, as ∆ → 0, the

probability a buyer comes in contact with an infected agent is

lim
∆→0

[
1− (1− αµκb∆)τ/∆

]
= 1− e−ακτµb.

This is the same as (18) if we set σ = ακτ .

B.1.2. Micro model II

Consider a setup in which b large (non-atomistic) buyers visit a seller, and assume µb ∈ [0, b]

of these buyers are infected. These sellers are “large” in the sense that they occupy some

nonnegligible amount of space in the seller’s store. In this context, consider (a deterministic

adaptation of) the Reed-Frost formulation of incidence (e.g., as discussed in Sattenspiel (1990)).

That is, suppose an individual buyer comes in contact with each one of the other buyers in

the store with independent probability $ ∈ [0, 1] (i.e., think of the contacts of buyer i with
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all the other buyers at the store as being a sequence of independent Bernoulli trials). Assume

each between a susceptible agent and an infected agent results in contagion with probability

κ ∈ [0, 1]. Hence, the probability that a susceptible buyer becomes infected at a store with µb

infected buyers is given by 1 − (1−$κ)µb. Next, consider the limit as each individual buyer

becomes small, while keeping the collective size of all buyers equal to b. A way to do this is to

“partition” every agent into N replicas, each of size 1/N < 1. The probability of meeting each

of the infected buyers is scaled accordingly, to $ 1
N . Then, the probability that a susceptible is

infected is given by 1 −
(
1−$κ 1

N

)µbN
. Thus, as agents become infinitesimally small, we get

the probability that a susceptible is infected is

lim
N→∞

[
1−

(
1−$κ 1

N

)µbN]
= 1− e$κµb.

This is the same as (18) if we set σ = $κ.

B.2. Quadratic matching

The standard SIR model often assumes quadratic matching between the infected and susceptible

agents. Consider a given location (e.g., a seller’s store) in which there are b buyers, and the

number of infected and susceptible buyers are nI = µb and nS = (1− µ) b, respectively, for

some µ ∈ [0, 1]. Then the typical SIR quadratic matching assumption, the number of new

infections at this seller’s location would equal

CQ ≡ σnSnI = σ (1− µ)µb2. (41)

To make the connection between (41) and the number of new infections at a given seller

with buyer density b implied by the contagion probability (18), first notice that we can write

ι (b) as

ι (b) = 1− e−σµb = 1− e−σnI ≡ ι̂ (NI) .

Notice that for NI ≈ 0 (i.e., if the infection has just started), ι̂ (NI) ≈ σNI = σµb, so

(1− µ) bι (b) = (1− µ) bι̂ (NI) ≈ CQ.
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