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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become one of the central

tools of macroeconomics. The class of DSGE economies is not defined by a particular set

of assumptions, but by an approach to the construction of macroeconomic models. Without

being exhaustive, there are DSGE models with fully flexible prices (the subclass of real busi-

ness cycle models in the tradition of Kydland and Prescott, 1982) or with nominal rigidities

(the New Keynesian models à la Woodford, 2003 and Christiano et al., 2005, so prevalent

in central banks for the analysis of monetary policy). There are DSGE models with a rep-

resentative household or with heterogeneous households and firms (Kaplan et al., 2018, and

Khan and Thomas, 2007). There are DSGE models with infinitely lived agents and with

finitely lived ones (Nishiyama and Smetters, 2014). There are DSGE models with complete

financial markets or with financial frictions and incomplete markets (Fernández-Villaverde

et al., 2019). There are DSGE models with standard CRRA utility functions and with a wide

variety of “exotic” preferences, such as recursive utility functions or ambiguity aversion (van

Binsbergen et al., 2012; Ilut and Schneider, 2014). There are DSGE models with rational

expectations or with learning (Primiceri, 2006). There are DSGE models with full rationality

or with behavioral biases (Gabaix, Forthcoming). The possibilities are endless.

The common thread behind all of these DSGE models is an emphasis on the explicit de-

scription of all the details behind the preferences, technology, and information sets of agents,

a focus on the dynamic consequences of stochastic shocks, careful attention to general equilib-

rium interactions, and the first-order importance of a quantitative assessment of the properties

of the model and its fit to the data beyond a purely qualitative gauging of its implications.

This last point is particularly salient for this paper: macroeconomists working with DSGE

models are keenly concerned with the features of the data that their models can (and, often,

cannot) account for. While the research agenda started highlighting calibration as an alterna-

tive to formal econometric methods (Hansen and Prescott, 1995), it was soon apparent that

we could apply suitably adapted econometric tools to these models. For instance, many of

the equilibrium conditions of a DSGE model, such as the Euler equation relating marginal

utilities today with marginal utilities tomorrow, can be thought of as a moment condition

and the parameters governing them can be estimated by matching moments of the model

with analogous moments from the data (Hansen, 1982). Similarly, researchers learned how to

build the likelihood function of a DSGE model and either maximize it or use it to derive a

posterior for Bayesian analysis (Fernández-Villaverde, 2010). Two vital complementary im-

provements were the hardware improvements (including the arrival of massive parallelization

at low prices) and the development of better computation techniques to solve DSGE models,

which allowed economists to work with richer environments.
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Formal econometric tools enjoy several decisive advantages. A first advantage is that

they provide a general framework for determining the model’s parameter values. Calibration,

as proposed by Kydland and Prescott (1982), is easy to apply to models with a few well-

identified parameters. However, once the models become more complex, researchers face too

many degrees of freedom: i) there are plenty of potential moments to match (this is also a

problem for methods of moments); ii) micro estimates become harder to import into macro

contexts (Browning et al., 1999); and iii) many combinations of parameter values “fit” the

data. In comparison, the likelihood function offers a clean solution to all of these concerns,

as it embodies all the relevant information existing in the data (Berger and Wolpert, 1988).

Even when the DSGE model is not well-identified (a common occurrence; Canova and Sala,

2009, Iskrev, 2010, and Komunjer and Ng, 2011), the likelihood function gives us a range

of parameter values and bounds on outcomes of interest implied by them. Far from being a

weakness of econometric methods, the rise in the awareness of a lack of (or weak) identification

that these methods bring is one of their strengths. There are limits to our knowledge. It is

better to tackle those limits than to live under the false impression of certainty that a quick-

and-dirty calibration begets. For instance, we can build economic policies that incorporate

lack-of-identification results by factoring in robustness considerations in our choices of fiscal

stimuli or policy interest rates.

A second advantage is the econometric tools’ ability to forecast, assess the model’s fit to

the data, and compare models rigorously. Calibration, beyond its inability to engage in any

forecasting, offers only heuristic approaches to gauge how a model fits the data and decide

which of two or more models is superior in its ability to account for the data dynamics. While

heuristic assessments are not without value (and, for simple cases, they offer an attractive

combination of insight and speed in implementation), they often leave the researcher at a loss

when dealing with more complex models.

Similarly, estimation allows us to recover the conditional distribution of latent variables

of interest. These variables, such as shocks or unobserved states, are the object of interest in

many exercises related to policy assessment, counterfactual analysis, and forecasting.

If one is intrigued by the previous arguments, the natural question is: how do we estimate

DSGE models in “real life”? We answer this question by building on Fernández-Villaverde

(2010), Herbst and Schorfheide (2015), and Fernández-Villaverde et al. (2016), which reviewed

the state-of-the-art in the solution and estimation of DSGE models a few years ago. Many of

the ideas in these surveys are still fully applicable, and, here, we will introduce only the bare

minimum notation to review them. Here, we will extend those surveys by discussing some of

the most recent advances in the field, such as the tempered particle filter, approximated

Bayesian computation, the Hamiltonian Monte Carlo, variational inference, and machine
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learning, methods that show much promise, but that have not yet been fully explored by

the DSGE community. Since there is much to cover, let us start without further ado.

2 A general framework for estimating DSGE models

We introduce a high-level notation to explain how to estimate a large class of DSGE

models. The key to our approach is to use a state-space representation, a formalism that

originated in optimal control theory (Kalman, 1960), but that has gained widespread use

across many fields. In any DSGE model, we have a vector of states St ∈ Rm that describes

the economy’s situation at period t. A state can be, among others, a scalar (e.g., the aggregate

capital in the economy), a population distribution (e.g., the measure of households over their

individual states), or a probability distribution (e.g., the beliefs of an agent regarding future

events). Dealing with complex states, such as distributions, brings computational challenges,

but it does not require much effort in terms of notation.

The states are buffeted by shocks, such as random changes to technology, preferences,

fiscal and monetary policy, health conditions, etc. We stack all the shocks in a vector Wt. We

do not impose normality or any other constraint on these shocks except that they are i.i.d.

We can capture persistence and time-varying moments with additional states in St, such as

in Fernández-Villaverde et al. (2011).

Finally, we have a vector of parameters θ ∈ Rd. These parameters determine the prefer-

ences, technology, information sets, and the economy’s fiscal and monetary policy rules. For

simplicity, we assume that the parameters are fixed over time, but with extra notation, we

can allow them to vary over time (Fernández-Villaverde and Rubio-Ramı́rez, 2008).

Putting all these elements together, we get the first leg of the state-space representation,

the transition equation:

St = f (St−1,Wt; θ) . (1)

An alternative way to think about equation (1) is as a conditional probability distribution for

St, p (St|St−1; θ), where the conditioning is on the value of the states at t− 1.

The second leg of the state-space representation is a measurement equation:

Yt = g (St, Vt; θ) , (2)

where Yt ∈ Rn are the observables and Vt is a set of shocks. These shocks might be defined

within the model (such as a shock to some variable that does not feed back into the states)

or outside the model (for example, measurement errors on observables). As before, equation

(2) induces a density, p (Yt|St; θ), for Yt conditional on St−1.
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Combining equations (1) and (2), we get Yt = g (f (St−1,Wt; θ) , Vt; θ) and, implicitly, the

density p (Yt|St−1; θ) of observables conditional on St−1. This last density embodies the idea

that a DSGE model is nothing more than a restriction on a general stochastic process for Yt.

The functions f(·) and g(·) are, in general, unknown and cannot be found explicitly.

Instead, we need to solve the DSGE model and, with such a solution, build them. Simultane-

ously, there are occasions when the components of f(·) and g(·) may be trivial. For example,

a state may be directly observable, and the corresponding dimension of g(·) would just be the

identity function. Fernández-Villaverde et al. (2016) is an updated survey of the main existing

solution methods for DSGE models. Fernández-Villaverde and Valencia (2018) outline how

to parallelize these methods.1

All of these conditional densities can be exploited to take the model to the data. We

can use them, for instance, to build moments for Yt implied by the model and estimate θ by

minimizing the distance between these moments and the data analogs. The moments can be

direct (means, variances, correlations) or indirect (the model’s impulse-response functions, or

IRFs). In the latter case, the researcher also needs to estimate the data IRFs, for example,

through a structural vector autoregression. Andreasen et al. (2018) show how to build the

moments and IRFs of DSGE models using closed-form formulae from a perturbation solution

and provide a software toolbox for doing so efficiently.

An alternative to estimation by moments is to use the conditional densities to evaluate

the likelihood function of a sequence of observations yT = {y1, y2, ..., yT} at θ, p
(
yT ; θ

)
, as

follows. First, given the Markov structure of equations (1) and (2), we write:

p
(
yT |θ

)
= p (y1|θ)

T∏
t=2

p
(
yt|yt−1; θ

)
=

∫
p (y1|s1; θ) dS1

T∏
t=2

∫
p (yt|St; θ) p

(
St|yt−1; θ

)
dSt

where lower case letters denote realizations of a random variable. Therefore, if we have

access to the sequence {p (St|yt−1; θ)}Tt=1 and the initial distribution of states p (S1; θ), we can

evaluate the likelihood of the model.

Finding the sequence {p (St|yt−1; θ)}Tt=1 can be recursively accomplished using the Chapman-

1While reviewing solution methods is beyond our scope, the speed and accuracy of these methods are
crucial. Speed is a vital consideration because we will need to evaluate moments or the likelihood function of
the model for many different combinations of parameter values. Accuracy in the solution is required to avoid
getting incorrect point estimates.
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Kolmogorov equation:

p
(
St+1|yt; θ

)
=

∫
p (St+1|St; θ) p

(
St|yt; θ

)
dSt (3)

and Bayes’ theorem:

p
(
St|yt; θ

)
=
p (yt|St; θ) p (St|yt−1; θ)

p (yt|yt−1; θ)
(4)

where

p
(
yt|yt−1; θ

)
=

∫
p (yt|St; θ) p

(
St|yt−1; θ

)
dSt.

is the conditional likelihood. This recursion is started with p (S1; θ).

The Chapman-Kolmogorov equation forecasts the density of states tomorrow given the

observables up to today. This conditional density is the density of states tomorrow conditional

on St given by the transition equation (1) times the density of St given the observables up to

today, integrated over all possible states. Bayes’ theorem delivers the density of states today

given the observables up to today by updating the distribution of states p (St|yt−1; θ) when a

new observation arrives given its probability p (yt|St; θ).
While equations (3) and (4) are conceptually simple, solving all of the required integrals

in them by hand is impossible beyond a few textbook examples. We next outline the main

approaches for doing so.

3 Evaluating the likelihood function

3.1 The Kalman filter

Often, equations (3) and (4) are linear or, more likely, we can find a linearized version of

them that is close to the original formulation under an appropriate metric (see Fernández-

Villaverde et al., 2016). Also, most DSGE models (but not all!) assume that the shocks Wt

and Vt follow a normal distribution. Then, we can write

st = Ast−1 +Bεt (5)

yt = Cst +Dεt (6)

εt ∼ N (0, I)

where, for notational simplicity, we stack Wt and Vt in the vector εt, add the required zero

columns in the matrices A, B, C, and D to make the system consistent, and scale B and D

to induce the right covariance matrix of the shocks.
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Equations (5) and (6) are linear transformations of εt conditional on st−1. Since the linear

transformation of a normal random variable is still normally distributed, p (St|St−1; θ) and

p (Yt|St; θ) are normal densities. Because the mean and variance are sufficient statistics for a

normal distribution, keeping track of the sequence {p (St|yt−1; θ)}Tt=1 is equivalent to keeping

track of the sequence of conditional means and variances of St.

Kalman (1960) developed a simple recursive procedure for this tracking, which became

known as the Kalman filter (KF), that can be implemented in a few lines of software (see

Harvey 1990 for more details).

To explain how the KF works, we define the conditional expectations of the states st|t−1 =

E (st|Yt−1) and st|t = E (st|Yt), where Yt = {y1, y2, ..., yt} and the subindex tracks the condi-

tioning set (i.e., t|t−1 means the expectation at t conditional on information until t−1). Also,

we define the covariance matrices of the state Pt−1|t−1 = E
(
st−1 − st−1|t−1

) (
st−1 − st−1|t−1

)′
and Pt|t−1 = E

(
st−1 − st|t−1

) (
st−1 − st|t−1

)′
.

With this notation, we can manipulate equations (5) and (6) and derive the one-step-

ahead forecast error, ηt = yt−Cst|t−1, and its variance Vy = CPt|t−1C
′+DD′. Because of the

linearity of equations (5) and (6) and the normality of innovations, ηt is white noise and the

loglikelihood of yt is:

log p (yt|θ) = −n
2

log 2π − 1

2
log |Vy| −

1

2
ηtV

−1
y ηt.

The task is, therefore, to recursively compute st|t−1, st|t, Pt|t−1, and Pt|t. With these

objects, we can compute (3.1) for all yT = {y1, y2, ..., yT} and get the loglikelihood function:

log p
(
yT |θ

)
=

T∑
t=1

log p (yt|θ)

How do we compute st|t−1, st|t, Pt|t−1, and Pt|t? Forecasting st|t−1 (i.e., implementing

the Chapman-Kolmogorov equation in terms of means) is straightforward: st|t−1 = Ast−1|t−1.

Updating st|t given a new observation (i.e., implementing Bayes’ theorem in terms of means)

is also direct:

st|t = st|t−1 +Ktηt = st|t−1 +Kt(yt − Cst|t−1), (7)

where Kt is the Kalman gain at time t, which minimizes Pt|t with the first-order condition:

∂Tr
(
Pt|t
)

∂Kt

= 0

and the solution Kt =
[
Pt|t−1C

′ +BD′
]

[Vy + CBD′ +DB′C ′]−1. We minimize Tr
(
Pt|t
)

be-
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cause we want to update the estimate of the states to have the smallest unbiased covariance

matrix. We can obtain the same Kt by alternative routes, such as using the rules of compo-

sition of normal distributions.

With some algebra, we can derive the forecast Pt|t−1 = APt−1|t−1A
′+BB′ and the update:

Pt|t = (I −KtC)Pt|t−1 (I − C ′K ′t)+KtDD
′K ′t−KtDB

′−BD′K ′t+KtCBD
′K ′t+KtDB

′C ′K ′t.

The recursion for st|t−1, st|t, Pt|t−1, and Pt|t, which takes a fraction of a second in a

standard laptop, requires initial values to be started. A conventional choice for DSGE models

is to compute, given the values of θ, the mean and variance of the ergodic distribution of St,

and use those as the starting points of the recursion. Andreasen et al. (2018) provide the

formulae of these ergodic moments for a general class of DSGE models.

3.2 Nonlinear filters

The linearity of the state-space representation and normal shocks are restrictive assump-

tions. For many DSGE models, such as standard real business cycle or New Keynesian models,

linearizing the model’s equilibrium conditions is not a bad approximation (see, for quantitative

evidence, Aruoba et al., 2006). However, in many applications, we cannot rely on linearizing

the equilibrium conditions of the model.

A transparent case is when we have time-varying uncertainty, a booming research line dur-

ing the last 15 years (Fernández-Villaverde and Guerrón-Quintana, 2020). When the variance

of the shocks that hit the economy changes over time, we need nonlinear solution methods

because the linearized solution is certainty equivalent and, therefore, it misses all the changes

in behavior induced by varying second moments. Similarly, DSGE models with “exotic”

preferences (van Binsbergen et al., 2012; Ilut and Schneider, 2014) also require nonlinear so-

lution methods. In a linearized world, the decision rules implied by those “exotic” preferences

collapse to those coming from a standard CRRA utility function.

When the state-space representation is not linear or when the shocks are not normal, the

conditional densities of states do not belong to well-behaved parametric families. Thus, the

KF approach of tracking the sufficient statistics of the normal distribution breaks down.

For many years, researchers attempted to extend the KF to nonlinear setups, for example,

by keeping track of additional moments or by linearizing the state-space representation around

an estimate of the current means and covariances. Those extensions perform poorly when

applied to DSGE models.2 In economics, researchers have found that particle filters (PFs), a

2Some more recent extensions, such as the unscented Kalman filter (UKF), have gained popularity in
engineering (Wan and Van Der Merwe, 2000). In unpublished work, we applied the UKF to nonlinear DSGE
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class of sequential Monte Carlo algorithms (Chopin and Papaspiliopoulos, 2020), deliver good

results, although at some computational cost.

3.2.1 The bootstrap particle filter

A PF builds from the idea that, if we can draw from the conditional densities of states

{p (St|yt−1; θ)}Tt=1, we can approximate the unknown density by an empirical distribution of N

draws

{{
sit|t−1

}N
i=1

}T
t=1

from the sequence {p (St|yt−1; θ)}Tt=1 generated by simulation. This

set of draws is often called a swarm of particles (hence the name of the filter). Under technical

conditions, the law of large numbers gives us:

p
(
yT |θ

)
' 1

N

N∑
i=1

p
(
y1|si0|0; θ

) T∏
t=2

1

N

N∑
i=1

p
(
yt|sit|t−1; θ

)
(8)

The task is to efficiently draw from {p (St|yt−1; θ)}Tt=1 for DSGE models. Fernández-

Villaverde and Rubio-Ramı́rez (2007), in the first application of this technique to the esti-

mation of DSGE models, propose a simple bootstrap particle filter (BPF) structured around

sequential sampling (Robert and Casella, 2005):

Proposition 1 Let
{
sit|t−1

}N
i=1

be a draw from p (St|yt−1; θ). Let the sequence {s̃it}
N
i=1 be

a draw with replacement from
{
sit|t−1

}N
i=1

where the resampling probability is given by the

importance weights:

ωit =
p
(
yt|sit|t−1; θ

)
∑N

i=1 p
(
yt|sit|t−1; θ

) , (9)

Then {s̃it}
N
i=1 is a draw from p (St|yt; θ).

Proposition 1 uses a draw
{
sit|t−1

}N
i=1

from p (St|yt−1; θ) to draw
{
sit|t

}N
i=1

from p (St|yt; θ).
By doing so, it updates the conditional distribution of the state by incorporating yt, as Bayes’

theorem requires. Resampling ensures that the sequences of draws do not deviate arbitrarily

far away from the true value of the states, losing all information in the simulation.

Once we have
{
sit|t

}N
i=1

, we draw N vectors of exogenous shocks to the model from their

distributions and apply the law of motion for states to generate
{
sit+1|t

}N
i=1

. This Chapman-

Kolmogorov forecast step allows us to go back to Proposition 1, but now having moved from

conditioning on t|t− 1 to conditioning on t+ 1|t.

models with disappointing results. However, other researchers might deliver better performance with further
tuning of the algorithm.
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The pseudo-code below summarizes the algorithm:

Step 0, Initialization: Set t 1. Sample N values
{
si0|0

}N
i=1

from p (S0; θ).

Step 1, Prediction: Sample N values
{
sit|t−1

}N
i=1

using
{
sit−1|t−1

}N
i=1

, the law of

motion for states and the distribution of shocks εt.

Step 2, Filtering: Assign to each draw
(
sit|t−1

)
the weight ωit in Proposition

1.

Step 3, Sampling: Sample N times with replacement from
{
sit|t−1

}N
i=1

using the

probabilities {ωit}
N
i=1. Call each draw

(
sit|t

)
. If t < T set t  t + 1 and go to

step 1. Otherwise stop.

Next, we substitute the resulting N draws

{{
sit|t−1

}N
i=1

}T
t=1

into equation (8) and we get

an estimate of p
(
yT |θ

)
. Künsch (2005) shows how laws of large numbers and a central limit

theorem apply to this estimate under weak technical conditions.

Coding the BPF is straightforward and easy to parallelize. Unfortunately, the resulting

approximation of the likelihood contains significant numerical error because of the noise in-

troduced by the simulation and is computationally costly. How can we reduce the noise and

improve the accuracy of the evaluation of the likelihood?

3.2.2 The tempered particle filter

A promising alternative to the BPF is the tempered particle filter (TPF) introduced by

Herbst and Schorfheide (2019). The TFP starts with oversized shocks in the measurement

equation and computes an approximate of the likelihood. Then, it iteratively reduces the

covariance matrix of the measurement shocks updating the likelihood at each iteration. After

Nφ steps, the tempered measurement shocks coincide with the original ones.

We return to our state-space representation, with the transition equation:

St = f (St−1; θ) +Wt, (10)

and measurement equation

Yt = g (St, ; θ) + Vt. (11)

where Wt ∼ N (0,ΣW ) and Vt ∼ N (0,ΣV ). In comparison with equations (1) and (2), we

assume that the shocks are normal and enter linearly into (10) and (11). This is just for

convenience. We could generalize these assumptions with heavier notation.
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Recall that, in the BPF, we built the importance weights according to equation (9). Given

the normality of Vt and how they enter linearly in (11), these weights satisfy:

ωit ∝ (2π)d/2|ΣV |−1/2 exp

{
−1

2
(yt − g

(
sit|t−1; θ

)′
Σ−1
V (yt − g

(
sit|t−1; θ

)
)

}
. (12)

The weights in equation (12) become more equal as the variance of the measurement

errors increases. However, blindly raising these errors has the unappealing effect of reducing

the explanatory power of the structural shocks of the model. Hence, the TPF proposes to

work with an inflated covariance matrix and a sequence of approximated likelihoods:

pn(yt|st|t−1; θ) ∝ φd/2n |ΣV |−1/2 exp

{
−1

2
(yt − g(sn−1

t|t−1; θ))′φnΣ−1
u (yt − g(sn−1

t|t−1; θ))

}
. (13)

The superindex n = 1, · · · , Nφ indexes the steps of the tempering process. If Nφ = 1, the TPF

collapses to the BPF. Moreover, the tempering sequence satisfies 0 < φ1 < φ2 < · · · < φNφ =

1. After the last step, we end up with an approximated likelihood featuring less numerical

error than its equivalent from the BPF.

The TPF consists of three stages. First, we have the correction stage. Suppose that we

enter into the tempering stage n with the swarm of particles {si,n−1
t|t−1 }. Define the weights:

ω̃i,nt (φn) =
pn(yt|si,n−1

t ; θ)

pn−1(yt|si,n−1
t ; θ)

,

where pn(yt|si,n−1
t ; θ) is given by equation (13). Since the proportionality constants cancel

out, these weights are easy to compute. Our notation makes explicit the weights’ dependence

on the tempering sequence.

Next, we define the weights:

ωi,nt (φn) =
ω̃i,nt (φn)∑N
i=1 ω̃

i,n
t (φn)

.

and the inefficiency ratio InEff(φn) = 1
N

∑N
i=1

[
ωi,nt (φn)

]2
.

Herbst and Schorfheide (2019) select the sequence of weights φn to achieve a targeted

inefficiency ratio ρ∗ > 1. That is, if at stage n, InEff(1) ≤ ρ∗, we stop and set φn = 1,

Nφ = n and ωi,nt = ωi,nt (1). In contrast, if the threshold is not met, InEff(1) > ρ∗, we set the

tempering parameter φn as the solution to the equation InEff(φn) = ρ∗, and ωi,nt = ωi,nt (φn).

The next stage is resampling. We resample the swarm of particles {si,n−1
t|t−1 } with proba-

bilities {ωi,nt }, resulting in a new swarm {ŝi,nt|t−1} with weight ωi,nt = 1. This step guarantees a
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unique solution of the equation InEff(φn) = ρ∗.

The final stage is mutation. Here, we use a random walk Metropolis Hastings (to be

described in Section 4) with NMH steps to mutate the particles {ŝi,nt|t−1} into {si,nt|t−1}. This

step avoids the algorithm reproducing the BPF as the tempering sequence approaches φn = 1.

As mentioned above, the final result is a more accurate evaluation of p
(
yT |θ

)
than the one

obtained from a BPF.

3.3 Approximate Bayesian computation

An alternative to the use of PFs is approximate Bayesian computation (ABC). ABC algo-

rithms deal with the cases where evaluating the likelihood p
(
yT |θ

)
is impossible or simply too

computationally expensive, even for PFs. ABC proposes a series of likelihood-free methods,

such as rejection samplers and perturbation kernels. Useful introductions to the field are

Marjoram et al. (2003), Sisson et al. (2007), and Marin et al. (2012). Important asymptotic

results are reported by Li and Fearnhead (2018). ABC has not been applied often to the

estimation of DSGE models, although Scalone (2018) is an example of its potential usefulness

in the field, particularly when dealing with small samples.

4 Markov chain Monte Carlo methods

In the previous section, we saw how we can move from the state-space representation (1)

and (2) to a likelihood function p(θ|yT ). Next, we can either maximize this likelihood function

or combine it with a prior using Bayes’ theorem:

p(θ|yT ) =
p(yT |θ)p(θ)
p(yT )

.

With the posterior in hand, we can evaluate expectations of interest, such as the mean,

variance, and quantiles of the parameters, build credible intervals, and perform model com-

parison. Bayesian methods are particularly attractive to DSGE models because i) they can

incorporate prior information about the parameter values (for example, from previous studies

or the estimates in other countries); ii) the posterior gives us a much wider assessment of

the uncertainty existing in the data than a point estimate and its standard deviation; iii)

they deal transparently with lack of (or weak) identification; and iv) they scale well to large

dimensions, even in those situations where alternative approaches break down.

Unfortunately, finding the posterior p(θ|yT ) is usually hard. Since the 1990s, the standard

approach to tackling this problem has been to use Markov chain Monte Carlo (MCMC)

methods. An MCMC builds a Markov chain such that an empirical distribution coming from

12



simulating it converges to the target density of interest (in our case, the posterior) and, thus,

has the same moments. MCMC methods can be used to sample from any target distribution

of interest, such as those built to minimize moment conditions or other estimating functions

in a frequentist set-up (Chernozhukov and Hong, 2003).

The field of MCMC is so vast that it is impossible even to outline most of the ideas in the

area. A standard handbook, Brooks et al. (2011), fills 619 dense pages of material and, yet, it

misses important recent developments. Instead, we will introduce the basic MCMC method,

the Metropolis-Hastings algorithm, to give a flavor of what MCMCs are about. Next, we will

describe the Hamiltonian Monte Carlo, a powerful second-generation MCMC that can deal

with highly dimensional problems.

4.1 The Metropolis-Hastings algorithm

Given a state of a Markov chain θi−1, the Metropolis-Hastings algorithm generates draws

θ∗i from a proposal density q (θi−1, θ
∗
i ) and accepts or rejects them depending on how p(yT |θ∗i )

compares with p(yT |θi−1). If the θ∗i moves the chain toward areas of a higher posterior, we

accept the draw, and θ∗i becomes the new state of the chain. If the θ∗i moves the chain toward

areas of a lower posterior, we accept the draw with probability less than 1. Otherwise, the

chain stays at θi−1. The intuition of why we do this is simple: we always want to travel to

areas of higher density, but, if the draw proposes exploring areas of lower density, we should

travel to them with some probability to avoid getting stuck at local minima.3

The pseudo-code for the Metropolis-Hastings algorithm is:

Step 0, Initialization: Set i  0 and an initial θi. Solve the model for θi

and build the state-space representation. Evaluate p (θi) and p(yT |θi). Set i i+

1.

Step 1, Proposal draw: Get a draw θ∗i from a proposal density q (θi−1, θ
∗
i ).

Step 2, Solving the model: Solve the model for θ∗i and build the state-space

representation.

Step 3, Evaluating the proposal: Evaluate p (θ∗i ) and p(yT |θ∗i ).
Step 4, Accept/reject: Draw χi ∼ U (0, 1). If χi ≤

p(yT |θ∗i )p(θ∗i )q(θi−1,θ
∗
i )

p(yT |θi−1)p(θi−1)q(θ∗i ,θi−1)
, set

θi = θ∗i , otherwise θi = θi−1.

Step 5, Iteration: If i < I, set i i+ 1 and go to step 1. Otherwise stop.

3Notice that the Gibbs sampler is a particular case of the Metropolis-Hastings algorithm. Since the Gibbs
sampler is less useful for estimating DSGE models because specifying densities conditional on some parameters
is difficult, we will skip a further discussion of it. See, for more details, Casella and George (1992).
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Step 4, Accept/reject, is the key to the algorithm. We compute the ratio of the posteriors

(after cancelling constants) multiplied by the ratio
q(θi−1,θ

∗
i )

q(θ∗i ,θi−1)
. If the numerator is higher than

the denominator, as we explained above, we accept the draw and the chain moves to θ∗i .

Otherwise, we accept θ∗i only with some probability and, with the complementary probability,

we keep the chain at its current location by setting θi = θi−1.

Every step of the algorithm is simple to code except for the need to specify a proposal

density q (·, ·) and to set I, the length of the chain. In fact, the code for a Metropolis-Hastings

can be recycled from the estimation of one model to the next with next-to-no changes.

Concerning the proposal density, a standard practice is to choose a random walk proposal,

θ∗i = θi−1 + cκi, κi ∼ N (0,Σκ), where Σκ is a covariance matrix (often, an estimate of the

posterior covariance matrix obtained in a preliminary run of the Markov chain) and c is a

scaling factor picked to get the appropriate acceptance ratio of proposals (i.e., the percentage

of times that the chain moves). Roberts et al. (1997) demonstrate that the asymptotically

optimal acceptance rate is 0.234 under quite general conditions. One can hit this acceptance

rate by playing with c during tuning runs of the Markov chain.

With respect to I, we can monitor whether the chain has converged by looking at re-

cursive means of the parameter values and checking that those means have stabilized. Fast

convergence is easier to obtain if we start the chain from a “good” θ0, in the sense of being

close to the target density’s mean. For DSGE models, a good default choice is the values θ0

that come out of a standard calibration where θ0 matches some empirical moments. Also, a

percentage of the initial draws is often disregarded as a burn-in.

The performance of the RWMH can be improved by “blocking” the parameters. We can

partition the parameter vector into j subsets, θ = {θ1, ..., θj}. We want partitions where the

parameters are strongly correlated within blocks and weakly correlated across blocks. Then,

we get a proposal for θ1
i conditional on {θ2

i−1, ..., θ
j
i−1}, accept or reject it, get a proposal

for θ2
i conditional on {θ1

i , ..., θ
j
i−1}, accept or reject it and, so on, cycling over all the blocks

in a Gibbs-step manner. Blocking reduces the persistence of the RWMH, a serious concern

in high-dimensional parameter spaces. Other possibilities to improve performance include

adaptive MCMCs (Andrieu and Thoms, 2008; Strid et al., 2010) and gradient and Hessian-

based MCMCs (Herbst, 2011).

4.2 The Hamiltonian Monte Carlo

A drawback of the RWMH algorithm is that it spends much time outside the typical set of

the posterior, that is, the part of the parameter space containing the relevant information to

compute the expectations we care about in Bayesian analysis. To understand this statement,

we need to introduce additional notation.
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For ε > 0 and any I, we define the typical set AIε with respect to the target posterior

p(θ|yT ) as: {
(θ0, θ1, ..., θI) :

∣∣∣∣∣− 1

I + 1

I∑
i=0

log p(θi|yT )− h(θ)

∣∣∣∣∣ ≤ ε

}
,

where h(θ) = −
∫
p(θi|yT ) log p(θi|yT )dθ is the differential entropy of the parameters with

respect to their posterior density (i.e., a measure of how concentrated or disperse a density

is; Cover and Thomas, 2012, ch. 8).

By a weak law of large numbers, Pr(AIε ) > 1 − ε for I sufficiently large. That is, AIε

is “typical” because it includes “most” sequences of θi’s that are distributed according to

p(θ|yT ). This result shows why AIε is, indeed, the relevant region to compute moments of the

posterior. Since “most” sequences belong to the typical set, moments of the posterior will

depend on those “most” sequences.
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Figure 1: The typical set from a multivariate normal

Two properties of the typical set are surprising but crucial. The first property is that, in

general, the typical set is not the region where the posterior density is the highest. To make

this point clear, let us assume that the posterior p(θ|yT ) of our DSGE model is a multivariate

normal with zero mean and unit covariance matrix. Let us also vary the dimensionality of

θ from 1 to 512 and, for each dimension, draw 100,000 times from p(θ|yT ). Figure 1 plots

the Euclidean distance between a draw and the zero vector, the mode of the posterior for

all dimensions.4 In the circled line, we plot the median distance. The band represents the

4Figure 1 is borrowed, with some minor changes, from the excellent explanation of typical sets by Bob
Carpenter at https://mc-stan.org/users/documentation/case-studies/curse-dims.html.
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99% interval of the draws. Clearly, as we increase the dimensionality of the problem, most

sequences diverge from the peak of p(θ|yT ). The second property is that, by concentration

of measure, the typical set will be a narrower and narrower band as the number of parame-

ters grows. Again, Figure 1 illustrates this point, as the 99% confidence interval shrinks as

dimensions grow.

The RWMH wastes many iterations because the jumps in the proposal density are blind

to any information regarding the typical set of the posterior. Thus, most draws of the chain

are either away from AIε or only induce small movements within AIε , p(θ|yT ) is not explored

efficiently, and convergence to the ergodic distribution is slow. This problem is salient when

solving the DSGE model is costly and, hence, we cannot run the RWMH for a long time.

A solution to this problem that has gained much popularity during the last decade is

the Hamiltonian Monte Carlo (HMC). This method is an MCMC algorithm that improves

efficiency by exploiting information from the posterior’s gradient and using it to force the

Markov chain to spend more time in the typical set (Neal, 2011).

However, we cannot use the gradient of the posterior directly, because it would push the

jumps toward the mode of the posterior and stay there, away from the typical set. Instead, the

HMC supplements the gradient with an extra force, momentum, so that the jumps gravitate

around the mode and stay inside the typical set, even if the jump size is large. Thus, we can

reduce the correlation between successive values of the parameters in the Markov chain while

keeping a high acceptance probability.

It turns out that this idea –a pull toward a center counteracted by a momentum– also

appears in many physical contexts and, thus, we can use the framework of Hamiltonian

mechanics designed to study these dynamics (Betancourt, 2017).

In particular, we augment the vector of parameters, θ ∈ Rd, with an auxiliary momentum

variable p ∈ Rd with density N (0,M). Then, the Hamiltonian associated with the posterior

of the DSGE model is:

H(θ,p) = − log p(θ|yT ) +
1

2
log((2π)d|M |) +

1

2
p′M−1p.

where − log p(θ|yT ) is the analog of a potential energy function, 1
2
p′M−1p is a kinetic energy

term, and 1
2
log((2π)d|M |) is a scaled mass matrix. A Markov chain {θi,pi}Ii=1 drawn from

this Hamiltonian has a stationary marginal density p(θ|yT ).

How do we sample from H(θ,p)? Girolami and Calderhead (2011) propose a Gibbs-

sampling scheme. In the first step, we draw from the normal distribution that we have

specified for p,

pi+1 ∼ p(pi+1|θi) = N (0,M).
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This step is straightforward with standard software. In the second step, we draw:

θi+1 ∼ p(θi+1|pi+1).

To do so, we start from p(0) = pi+1 and θ(0) = θi and run the Störmer-Verlet integrator for

L iterations:

p(τ + ε/2) = p(τ) + ε∇θ log p(θ(τ)|yT ) (14)

θ(τ + ε) = θ(τ) + εM−1p(τ + ε/2) (15)

p(τ + ε) = p(τ + ε/2) + ε∇θ log p(θ(τ + ε))/2. (16)

Steps (14) and (15) can be combined to form a discrete preconditioned Langevin diffusion.

We call the values (θ∗,p∗) at the end of the L-th iteration a proposal. Then, we apply a

Metropolis step, where the probability of keeping the proposal (θ∗,p∗) is:

min(1, exp(H(θi,pi+1)−H(θ∗,p∗))).

To implement the HMC, we need values for L, ε, and M . L and ε can be fine-tuned in

each application. If L is too small, the HMC behaves like a RWMH. If L is too large, the

algorithm wastes computations. To avoid this fine-tuning, Homan and Gelman (2014) propose

the No-U-Turn Sampler (NUTS), a recursive algorithm that builds a set of likely candidate

points that spans a wide swath of p(θ|yT ) and stops when it starts to retrace its steps (hence,

its name). With respect to M , Neal (2011) suggests using M−1 = Σ̂, which implies that the

momentum variables have covariance Σ̂−1. One can obtain Σ̂ by running a RWMH for a few

steps and get an approximate shape of the posterior.

But the real bottleneck of the HMC is that, in each iteration of the Störmer-Verlet in-

tegrator, we need to evaluate the gradient ∇θ log p(θ|yT ) twice. Sometimes this is simple.

For instance, if we have a linearized DSGE model, the Kalman filter gives us not only an

evaluation of the likelihood but also an easy-to-evaluate gradient (Watson, 1989). However,

there are also many situations where evaluating the gradient is too costly or unfeasible. For

example, the BPF that we described above gives an evaluation of the likelihood function that

is not differentiable with respect to the parameters because, by changing the parameter values

by a small ε, we would potentially change the resampling of particles.

Strathmann et al. (2015) have proposed the kernel Hamiltonian Monte Carlo to solve

this bottleneck. This sampler is an adaptive MCMC algorithm that “learns” the gradient

structure by using a surrogate function, f , and the history of the Markov chain, which can

be obtained from an initial RWMH run. The surrogate must satisfy ∇f ≈ ∇θ log p(θ|yT ).
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In practice, suppose we have access to a random sample {θi}Ii=1 from the Markov chain and

let k(θi, x) = exp(−σ−1||θi − x||22) denote the Gaussian kernel. Then, f(x) =
∑I

i=1 αik(θi, x),

where the parameters αi are obtained by minimizing the empirical score matching objective.

Strathmann et al. (2015) show that α̂ = −σ
2
(C + λI)−1b, where b and C are parameters

that depend on the kernel, I is the identity matrix, and λ a regularization parameter. The

approximated gradient can be easily computed and, with it, we can run the Störmer-Verlet

integrator to obtain the proposal (θ∗,p∗).

In current work, Childers et al. (2020) show to apply the HMC to DSGE models, in

particular when we have a state-space representation that is differentiable.

5 Variational inference

Variational inference (VI) is an approach to statistical computations where we replace the

probability distributions implied by a model of interest (a DSGE or any other econometric

model) with tractable and easy-to-evaluate functions. This goal is crucial in the Bayesian

approach, where the model’s posterior density can be unwieldy. While VI was developed

in the machine learning community, the main idea has broad applicability in econometrics.

Experience has shown that, in many problems, VI can be faster and easier to scale than

MCMC, although its theoretical properties are less well understood (Blei et al., 2017).

VI builds on the tradition of variational methods, a class of approximation techniques in

applied mathematics that convert a complex model into a simpler one. Suppose, for example,

that we want to compute the logarithm of x. This operation is costly, and we might want to

avoid it due to computational constraints (for instance, because we do it repeatedly in a loop).

A variation approach replaces the original nonlinear problem with a transformed optimization

problem that is linear on x: ln(x) = minλ [λx− ln(λ)− 1]. The first-order condition for this

problem is λ = x−1. Direct substitution shows the equivalence between the two problems.

There are situations where solving the minimization problem (or getting a good approximation

to it) can be faster than evaluating ln(x).

To extend this idea to the estimation of DSGE models, denote the joint distribution of the

model by p(yT , θ) = p(yT |θ)× p(θ), with a gradient ∇θ log p(yT , θ). Also, consider a situation

where evaluating the likelihood of the model or drawing from it is cumbersome.

Instead of dealing with the posterior density p(θ|yT ), VI works with an approximating

density q(θ;φ) that is easier to handle. More formally, VI looks for q(·;φ) by minimizing the

Kullback-Leibler (KL) divergence between q(·;φ) and p(θ|yT ):

KL
(
q(θ;φ)||p(θ|yT )

)
= Eq(θ)[log q(θ;φ)]− Eq(θ)[log p(θ|yT )],
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with respect to the auxiliary approximation parameters φ.

By Bayes’ theorem:

p(θ|yT ) =
p(yT |θ)p(θ)
p(yT )

=
p(yT , θ)

p(yT )
,

we get:

KL
(
q(θ;φ)||p(θ|yT )

)
= Eq(θ)[log q(θ;φ)]− Eq(θ)[log p(yT , θ)] + log p(yT ), (17)

since, given some data, p(yT ) is a constant.

Tackling equation (17) is not feasible because it requires the evaluation of p(yT ), the

marginal distribution of yT . Instead, we can switch signs, drop p(yT ), and maximize the

proxy:

L = Eq(θ)[p(yT , θ)]− Eq(θ)[log q(θ;φ)]. (18)

with respect to φ. Clearly, L = −KL
(
q(θ;φ)||p(θ|yT )

)
+ log p(yT ), that is, L is the negative

KL divergence plus p(yT ), a term that is independent of φ. L is called the evidence lower

bound, or ELBO for short (also known as the variational lower bound). Its name derives

from the fact that L provides a lower bound for the marginal likelihood of the data. Since,

by Gibbs’ inequality, KL(q(θ;φ)||p(θ|yT ) ≥ 0, we must have that log p(yT ) ≥ L.

VI proceeds by maximizing L subject to supp(q(θ;φ)) ⊆ supp(p(θ|yT ). Once we have

q(·;φ∗), where φ∗ is the argmax of L, we can employ it like any other posterior. In other

words, while MCMC algorithms are built around the idea of sampling the posterior by build-

ing a Markov chain with the appropriate ergodic distribution, VI focuses on optimizing an

approximation to such a posterior.

Unfortunately, maximizing the ELBO is not straightforward because it demands the eval-

uation of expectations in equation (18). Also, if we are using a derivative-based optimization

algorithm (such as a Quasi-Newton), we need ∇θ log p(yT , θ).5

The literature has provided several alternatives for working around the ELBO (Blei et al.,

2017). We focus on an option usable in state-space representations (Archer et al., 2015).

Let p(s|y; θ) denote the posterior distribution of states of the DSGE model that we get from

filtering its state-space representation and let q(s|y;φ) be its tractable approximation.

Maximizing (18) with respect to φ to find q(·;φ) will usually require computing:

∇Eq(s|y;φ)[log p(s, y|θ)− log q(s|y;φ)] (19)

as an input into a derivative-based optimization algorithm. To do so, Archer et al. (2015)

5If the model is not differentiable –or its derivatives are too cumbersome to evaluate–, one can think about
non-derivative-based optimization algorithms such as the Nelder-Mead method or genetic approaches.
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advocate the use of the “reparameterization” trick: z = g(s, ε;φ). Here, ε is an easy-to-sample

random variable with distribution p(ε). For example, one could use:

x = µ(y|φ) + Σ(y|φ)ε, (20)

where ε is drawn from a multivariate normal with mean 0 and the identity covariance matrix.

We can select flexible functions for the µ(·) and Σ(·) such as Chebyshev polynomials or neural

networks to capture intricate behaviors of the posterior densities that we want to approximate.

Since neural networks are universal nonlinear approximators (Barron, 1993) and break the

curse of dimensionality (Bach, 2017), they are a particularly attractive choice for this step.

With equation (20), we can draw L samples from p(ε) and compute a stochastic ap-

proximation to the gradient ∇Eq(z|x;φ)[f{θ,φ}] ≈ 1
L

∑L
`=1∇f{θ,φ}(g(s, ε`;φ)), where f{θ,φ}(s) =

log p(s, y|θ) − log q(s|y;φ). With this approximated gradient, we can search for the duple

{θ, φ} that maximizes the ELBO.

6 Our application

To illustrate our arguments, we estimate a canonical DSGE model.6 We have a repre-

sentative household that consumes, saves, holds money, and supplies labor. A final good

firm produces output using a continuum of intermediate goods. These intermediate goods,

in turn, are produced by monopolistic competitors subject to nominal price rigidities à la

Calvo. The representative household is the owner of all of these firms. The model is closed

with a government that sets up monetary and fiscal policy. Since there are trends in the

data, we introduce two unit roots, one in the level of neutral technology and one in the

investment-specific technology, that induce stochastic long-run growth.

6.1 The model

The representative household. The representative household has a lifetime utility func-

tion on consumption, cjt, real money balances, mjt/pt (where pt is the price level), and hours

worked, ljt:

E0

∞∑
t=0

βtdt

{
log (ct − hct−1) + υ log

(
mt

pt

)
− ϕtψ

l1+ϑ
t

1 + ϑ

}
. (21)

In equation (21), β is the discount factor, h controls habit persistence, ϑ is the inverse of

the Frisch labor supply elasticity, dt is an intertemporal preference shock with law of motion

6The reader can find additional details regarding the model and the algebraic derivations at https:

//www.sas.upenn.edu/~jesusfv/ARE_DSGE.pdf.
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log dt = ρd log dt−1 + σdεd,t, where εd,t ∼ N (0, 1) and ϕt is a labor supply shock with law of

motion logϕt = ρϕ logϕt−1 +σϕεϕ,t, where εϕ,t ∼ N (0, 1). We should understand both shocks

as a stand-in for more complex mechanisms, such as financial frictions, demographic shifts,

or changes in risk attitudes.

The household’s budget constraint is:

ct + xt +
mt

pt
+
bt+1

pt
+

∫
qt+1,tat+1dωt+1,t

= wtlt +
(
rtut − µ−1

t Φ [ut]
)
kt−1 +

mt−1

pt
+Rt−1

bt
pt

+ at + Tt + zt.

In terms of uses –the left-hand side of equation (6.1)– and beyond consumption, the

household can save in physical capital, by investing xt in new capital, holding real money

balances, purchasing government debt, bt, and trading in Arrow securities. More concretely,

at+1 is the amount of those securities that pays one unit of consumption in event ωt+1,t

purchased at time t at (real) price qt+1,t. This price will be such that, in equilibrium, the net

supply of the Arrow securities would be zero.

In terms of resources –the right-hand side of equation (6.1)– the household gets income

by renting its labor supply at the real wage wt and its capital at real rental price rt. The

household chooses the utilization rate of capital, ut > 0, given the depreciation cost µ−1
t Φ [ut],

where µt is an investment-specific technological shock that we will introduce below and Φ =

γ1(u− 1) + γ2

2
(u− 1)2. We interpret ut = 1 as the “normal” utilization rate. The household

also has access to its money balances, the government debt (with a nominal gross interest rate

of Rt), the Arrow security that pays in the actually realized event, the lump-sum transfers

(of taxes if negative) from the government, Tt, and the profits of the economy’s firms, zt.

Capital follows kt = (1− δΦ [ut]) kt−1 + µt

(
1− S

[
xt
xt−1

])
xt, where δ is the depreciation

rate when ut = 1 and S [·] is an adjustment cost function. We assume that S [Λx] = 0,

S ′ [Λx] = 0, and S ′′ [·] > 0 where Λx is the growth rate of investment along the balanced

growth path (BGP) of the economy.

The investment-specific technological shock evolves as µt = µt−1 exp (Λµ + zµ,t) where zµ,t =

σµεµ,t and εµ,t ∼ N (0, 1), where µt is, in equilibrium, the inverse of the price of new capital

in consumption terms.

For future reference, define λt as the Lagrangian multiplier associated with the budget

constraint, Qt the Lagrangian multiplier associated with installed capital, and the (marginal)

Tobin’s Q as qt = Qt
λt

.

The final good producer. A perfectly competitive final good producer combines interme-

diate goods with the technology ydt =
(∫ 1

0
y
ε−1
ε

it di
) ε
ε−1

, where ε is the elasticity of substitution.
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Given the intermediate goods prices pti and the final good price pt, the demand function

for every intermediate good i is yit =
(
pit
pt

)−ε
ydt , where ydt is the aggregate demand in the

economy (to be defined below). Integrating over i and using the zero profit condition for the

final good producer, we get pt =
(∫ 1

0
p1−ε
it di

) 1
1−ε

.

Intermediate good producers. Each intermediate good producer i has a technology yit =

Atk
α
it−1

(
ldit
)1−α

, where kit−1 is the capital rented by the firm, ldit is the labor input rented, and

At is the technology level that evolves as At = At−1 exp (ΛA + zA,t), where zA,t = σAεA,t and

εA,t ∼ N (0, 1).

Also, define zt = A
1

1−α
t µ

α
1−α
t , a variable that encodes the joint effect of both technology

shocks along the BGP of the economy. Simple algebra tells us that zt = zt−1 exp (Λz + zz,t)

where zz,t =
zA,t+αzµ,t

1−α and Λz = ΛA+αΛµ
1−α .

Intermediate good producers solve a two-stage problem. First, taking the input prices wt

and rt as given, firms rent ldit and kit−1 to minimize real cost. This problem delivers a marginal

cost:

mct =

(
1

1− α

)1−α(
1

α

)α
w1−α
t rαt
At

The marginal cost is the same for all intermediate good producers, as they all have access to

the same technology and take input prices as given.

Second, intermediate good producers choose the price that maximizes discounted real

profits subject to Calvo pricing. In each period, a fraction 1 − θp of firms can change their

prices. All other firms only index their prices by past inflation, Πt−1 = pt−1

pt−2
by a degree

χp ∈ [0, 1], where χp = 0 is no indexation and χp = 1 is total indexation. The marginal value

of a dollar of future profits, λt+τ/λt, comes from the fact that the household owns the firm

and we have complete markets. For this problem to be well posed, we assume that (βθp)
τ λt+τ

goes to zero sufficiently fast in relation to inflation.

After some algebra, this pricing problem is characterized by two auxiliary variables:

g1
t = λtmcty

d
t + βθpEt

(
Πχ
t

Πt+1

)−ε
g1
t+1,

g2
t = λtΠ

∗
ty
d
t + βθpEt

(
Πχ
t

Πt+1

)1−ε(
Π∗t

Π∗t+1

)
g2
t+1,

where Π∗t =
p∗t
pt

is the ratio of the reset price of firms that can change their prices over pt.

Given the Calvo assumption, the price index evolves as 1 = θp

(
Πχt−1

Πt

)1−ε
+ (1− θp) Π∗1−εt .
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The government. The economy has a government that determines monetary and fiscal

policy. In terms of monetary policy, the government sets the nominal interest rate following

a Taylor rule:

Rt

R
=

(
Rt−1

R

)γR(Πt

Π

)γΠ

 ydt
ydt−1

Λyd

γy1−γR

exp (mt)

through open market operations. The variable Π is the target level of inflation (equal to

inflation in the BGP), R is the BGP nominal gross return of capital (equal to the BGP real

gross returns of capital plus Π), and Λyd is the BGP growth rate of ydt . The term mt =

σmεmt is a random shock to monetary policy, where εmt ∼ N (0, 1). In terms of fiscal policy,

government consumes gt = g̃tzt, where g̃t follows log g̃t = (1− ρg) log g + ρg log g̃t−1 + σgεg,t,

where εg,t ∼ N (0, 1).

Aggregation. Aggregate demand is ydt = ct + gt + xt + µ−1
t Φ [ut] kt−1. Aggregate supply

is yst = 1
vpt
At (utkt−1)α

(
ldt
)1−α

, where vpt =
∫ 1

0

(
pit
pt

)−ε
di is the loss of output created by the

price rigidities and the resulting misallocation of inputs. By the properties of Calvo’s pricing,

vpt = θp

(
Πχt−1

Πt

)−ε
vpt−1 + (1− θp) Π∗−εt .

Equilibrium and solution. A definition of equilibrium in this economy is standard and

we can skip it. Also, since we have two unit roots in the model, we need to make the model

stationary before solving it. To do so, we define c̃t = ct
zt

, λ̃t = λtzt, r̃t = rtµt, q̃t = qtµt, x̃t = xt
zt

,

w̃t = wt
zt

, w̃∗t =
w∗
t

zt
, k̃t = kt

ztµt
, and ỹdt =

ydt
zt

and re-write all of the relevant equilibrium conditions

accordingly. Next, we solve for the steady state of these rescaled equilibrium conditions and

we log-linearize them around such a steady state (Fernández-Villaverde et al., 2016).

The endogenous states are statet =

(
Π̂t, ĝ

1
t , ĝ

2
t ,
̂̃
kt, R̂t, ̂̃ydt , ̂̃ct, v̂pt , ̂̃qt, ̂̃xt, ̂̃λt, ̂̃zt)′, the exoge-

nous states are exot =
(
zµ,t, d̂t, ϕ̂t, zA,t,mt

)′
, and the shocks are εt = (εµ,t, εd,t, εϕ,t, εA,t, εm,t, εg,t)

′.

Then, after log-linearization, we have:

statet = PP ∗ statet−1 +QQ ∗ exot (22)

and

exot = NN ∗ exot−1 + Σ1/2 ∗ εt. (23)

where PP,QQ,NN, and Σ are matrices that involve complex nonlinear relations of the pa-

rameters of the model and that we obtain from solving the model. Stacking equations (22)

and (23) together gives us the a transition equation (5).
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6.2 Estimation

Since we have six exogenous shocks (two demand shocks to preferences, two supply shocks

to technology, a monetary policy shock, and a fiscal policy shock), we select six time series

to match: inflation, the federal funds rate, real wages growth, output per capita growth, per

capita hours worked, and the inverse relative price of investment with respect to the price of

consumption growth.7 Then Yt =
(
log Πt, logRt,4 logwt,4 log yt, log lt,4 log µ−1

t

)′
, and the

measurement equation is:

Yt = CCstatet +DDexot. (24)

Researchers have some degrees of freedom in determining which series to use for estimation.

Since the choice is consequential (Guerrón-Quintana, 2010), we should pick time series that

are informative about the parameters of interest. Selecting these time series requires a com-

bination of trial-and-error and experience.

Param Description Domain Density Mean SD

Steady-state-related parameters

100(1/β − 1) β is discount factor (0, 1) Gamma 0.25 0.1
g SS govt expenditure/GDP (0, 1) Beta 0.3 0.1
100(Π∗ − 1) Target inflation R Gamma 0.95 0.1

Endogenous propagation parameters

h Habit persistence (0, 1) Beta 0.7 0.1
α Cobb-Douglas labor (0, 1) Normal 0.3 0.025
κ Investment adjustment cost R Normal 4 1.5
θP Fraction of firms with fixed prices (0, 1) Beta 0.5 0.1
χP Price indexation (0, 1) Beta 0.5 0.15
γR Taylor rule coefficient past rates (0, 1) Beta 0.75 0.1
γΠ Taylor rule coefficient inflation R+ Normal 1.5 0.25
γY Taylor rule coefficient demand R+ Normal 0.12 0.05

Exogenous shocks parameters

ρD Persistence demand shock (0, 1) Beta 0.5 0.2
ρφ Persistence labor supply shock (0, 1) Beta 0.5 0.2
ρG Persistence govt consumption shock (0, 1) Beta 0.5 0.2
Λµ Long-run growth investment specific R Gamma 0.0034 0.001
ΛA Long-run growth productivity R Gamma 0.00178 0.00075
σD s.d. demand shock innovation R+ InvGamma 0.1 1
σφ s.d. labor supply shock innovation R+ InvGamma 0.1 1
σG s.d. govt consumption shock innovation R+ InvGamma 0.1 1
σµ s.d. investment-specific shock R+ InvGamma 0.1 1
σA s.d. long-run productivity R+ InvGamma 0.1 1
σM s.d. monetary shock R+ InvGamma 0.1 1

Table 1: Prior Distribution for Structural Parameters

7Data come from the Federal Reserve Bank of St. Louis’ FRED database, at a quarterly frequency from
1959:Q1 to 2016:Q1. More than six observables will make the model stochastically singular, i.e., it would give
zero probability to nearly all observations. If we wanted to use more observables, we could add other shocks
or introduce measurement errors. After all, NIPA is imprecise because of the limitations in the resources of
statistical agencies and the conceptual difficulties involved in measuring many goods and services.
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We estimate the model with Bayesian methods, using the Kalman filter to evaluate the

likelihood function and a single-block RWMH algorithm to generate draws from the posterior

distribution. The priors we use are summarized in Table 1. Because of space constraints, we

do not have time to discuss them in detail beyond pointing out that they are conventional.

We calibrate ϑ = 1, γ2 = 0.01, δ = 0.025, and ε = 10 because these parameters are poorly

identified without microdata (γ1 disappears when we log-linearize the model). Also, notice

that only one parameter κ of the investment-adjustment function S[·] appears in the log-

linearized solution

We start our chain from the prior mean and variance, adjust tuning constant to get an

acceptance rate of around 30%. We run the chain 3,000,000 times and discard the first 10% of

draws as a burn-in. We then calculate the posterior mean and in-sample variance-covariance

matrix and rerun the RWMH using the new mode and variance for 2,000,000 times (again,

with acceptance rate around 30% and discard the first 10% of draws). Finally, we the fix

structural parameters at their posterior mean, and run RWMH only on exogenous process

parameters for 2,000,000 times (again, with acceptance rate around 30% and discard the first

10% of draws). One can think about this last run as a Gibbs step to improve the convergence

of these parameters.

Figure 2 plots the marginal posteriors for the structural parameters not related to the

exogenous processes (with vertical lines to denote the mean). As usual in similar exercises,

we estimate a high discount factor, large adjustment costs, and high price indexation. In

terms of the parameters in the Taylor rule, monetary policy targets an average inflation of a

bit above 2.3% per year, and it satisfies Taylor’s principle (i.e., γΠ > 1).

Figure 3 plots the marginal posteriors for the parameters in the exogenous processes.

Among the most interesting results, we find volatile preference shocks and a long-lived govern-

ment expenditure shock. These two findings hint at the importance of demand considerations

in our estimated DSGE model.

If we had more space, we could analyze these results in detail, including an assessment

of the robustness of the results with respect to our priors, the implications for variance de-

compositions, the study of moments and IRFs, forecasting, policy counterfactuals, welfare

analysis, and model comparison. We hope that, at least, the reader will have a feeling of the

wide variety of outputs one can obtain from this class of estimation exercises.
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Figure 2: Posterior distribution for structural parameters
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Figure 3: Posterior distribution for exogenous processes only, keeping other parameters fixed
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7 Future challenges

The estimation of DSGE models is a vibrant area of research that faces many open chal-

lenges. We will conclude by outlining three of them.

First, during the last few years, many macroeconomists have moved from DSGE models

in discrete time to models in continuous time (Brunnermeier and Sannikov, 2014, and Achdou

et al., 2017). Continuous-time models are often easier to solve and there are powerful mathe-

matical results that apply to them, such as the theory of stochastic differential equations. At

the same time, there has been little work done in the structural estimation of DSGE models

in continuous time, perhaps because researchers have to deal with time aggregation issues

(data come in discrete time units, such as the GDP for 2020:Q2). Fernández-Villaverde et al.

(2019) show how to take advantage of the mathematical structure of a continuous-time model

to build its associated likelihood with next-to-no computational effort.

Second, DSGE models with heterogeneous agents, such as the HANK class pioneered by

Gornemann et al. (2012) and Kaplan et al. (2018), are undergoing a boom. The estimation

of these models is difficult because solving them is computationally hard. This is an area,

therefore, where some of the ideas introduced in the survey, such as ABC or variational

inference, can be a promising area of exploration.

Related to this point is the third challenge for DSGE models: the incorporation of machine

learning methods (Goodfellow et al., 2016). Those algorithms can be used in at least two

ways. The first way is as a solution method. Machine learning is particularly suitable for

approximating high-dimensional functions (such as the state-space representation (1) and (2))

efficiently. For example, deep neural networks break the curse of dimensionality (Bach, 2017)

and, therefore, can tackle large DSGE economies. Fernández-Villaverde et al. (2019), Maliar

et al. (2019), and Azinović et al. (2020) are recent examples of how to apply these ideas to

solve DSGE models with heterogeneous agents.

The second way is to “process” unstructured data (such as text, satellite images, so-

cial media activity) and use them as additional observables in DSGE models. For instance,

statements about monetary policy from central banks can carry information about the ex-

pectations of agents in the economy that are difficult to tease out of NIPA data or even from

other rich data sets as in Boivin and Giannoni (2006). The work by Casella et al. (2020) is

an illustration of how the estimation of structural DSGE models with unstructured data can

be accomplished by merging techniques described in this survey and a Latent Dirichlet allo-

cation for text data in an augmented state-space representation. The posterior distribution

of parameters from the resulting representation can be sampled with an MCMC algorithm,

and it is readily amenable to massive parallelization.

We hope to see these challenges tackled during the next few years. The combination of
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better computers, better methods, and better data makes us optimistic about the crop of

papers that we will see during the 2020s.
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