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1 Introduction

Empirical studies using micro data find that product prices change with a probability of

about 33% per quarter (e.g., Nakamura and Steinsson, 2008). The fact that prices don’t

change every quarter is often interpreted as indicating the absence of price indexation. Fur-

ther, models of staggered price setting without indexation assume that all price changes are

optimal. However, the empirical evidence is mute with regard to whether price changes are

optimal or not. In this paper, I modify the Calvo sticky price model by allowing a fraction

of randomly picked prices to change optimally, another fraction of randomly picked prices

to change due to indexation, and the remaining prices to be constant.

Staggered price indexation introduces a new dimension of payoff-relevant states in the

pricing problem of the firm. The reason is that in any given period, say t, given the path of

all aggregate variables, a firm that gets to choose its price optimally takes into account that

it can arrive at any given future date, say t+ j, with a multitude of different possible prices,

depending upon whether and when it got the chance to index its price between periods t and

t+ j. Thus, its expected profit in period t+ j depends not just on the accumulated inflation

between periods t and t+ j, as is the case under the standard indexation scheme, but on the

expected inflation rate at every individual date within that period. In other words, the firm’s

expected present discounted value of profits features a double summation: the standard one

over time horizons, capturing the presence of price stickiness, and an additional nested one

over the length of each time horizon, capturing the presence of staggered price indexation.

The paper has two main theoretical findings: First, with staggered price indexation the

Phillips curve includes a state variable that carries information about all past inflation rates.

This state variable is the inflation rate of the basket of goods whose prices get to be indexed

in the current period. In turn, this state variable takes the form of a geometric distributed

lag of all past inflation rates, with a weight coefficient equal to the degree of price stickiness

(0.66 if one uses the evidence reported at the top of this introduction). The second theoretical

finding is that the slope of the Phillips curve as well as its expected-inflation coefficient are

decreasing in the degree of staggered price indexation. Intuitively, given the total number of

goods whose prices can change each period, the larger is the number of goods whose prices

are indexed to past inflation, the fewer will be the number of goods whose prices can be

adjusted in response to current or future expected disturbances in marginal costs.

The staggered price indexation model nests as special cases the standard Calvo model

without price indexation and the Calvo model with the standard form of price indexation

(i.e., one in which each period all prices that are not adjusted optimally are indexed to past

inflation). For simplicity the formulation considered in this paper assumes full indexation to

1



past inflation. Allowing for partial staggered indexation is relatively straightforward.

The empirical contribution of the present investigation is an econometric estimation of

the degree of staggered price indexation and an assessment of its contribution to explaining

inflation persistence in the United States. Fixing the probability of a price change to 33%,

(in accordance with the available micro-data evidence), a small-scale new-Keynesian model

estimated on U.S. data yields a probability of indexation of 19% per quarter (and therefore

a probability of an optimal price change of 14% per quarter). Thus, according to this

estimate, more than half of all price changes observed each period are indexatory in nature.

The estimated model does a good job at explaining the dynamics of output, inflation, and

the nominal interest rate. Shutting off staggered price indexation causes a drop in the serial

correlation of inflation from 0.71 (which coincides with its observed value) to 0.30, suggesting

that staggered indexation explains more than half of the observed persistence of inflation in

the United States. The intuition behind this result is straightforward; the larger the fraction

of goods that are updated on the basis of past changes of the general price level is, the larger

the correlation of current inflation with past inflation will be. Finally, an analysis of impulse

responses shows that staggered indexation dampens the short-run effects of monetary policy

shocks on inflation and amplifies their effects on output.

This paper is related to a large body of empirical and quantitative work on price stickiness,

indexation, inflation persistence, and the Phillips curve, too large to allow for an exhaustive

account. On the empirical front, the evidence on the frequency of price changes used in this

paper comes from Nakamura and Steinsson (2008) who, using micro data underpinning the

U.S. consumer and producer price indices, find that after accounting for sales, the frequency

of price changes is about 11 percent per month. Earlier, Bils and Klenow (2004), without

controlling for sales, had found a frequency of price changes almost twice as large, 21 percent

per month. The present paper contributes to this literature by showing that knowing what

fraction of prices change each period might not suffice to ascertain how much price stickiness

there is in the data, for holding this fraction constant, the partition between optimal and

indexatory price adjustments can be key for understanding the dynamics of inflation. An

early study on the difficulties of models with nominal rigidity in replicating observed inflation

persistence is Fuhrer and Moore (1995). Pioneer work on estimating medium-scale DSGE

models with nominal rigidity and indexation are Christiano et al. (2005) and Smets and

Wouters (2007). These papers estimate a standard form of price indexation under which

all prices change every period. The present paper extends the standard model of price

indexation by assuming that this type of price updates are staggered over time as opposed

to taking place every period. In this way, the aggregate model is in line with the fact that

individual prices do not change every period.
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More closely related is the hybrid sticky-price model of Gaĺı and Gertler (1999). As in

the present model, in the hybrid model each period there is a fraction of firms that cannot

change their prices. The difference between the two formulations arises when firms get to

update prices. Specifically, the hybrid model assumes the existence of two types of firms.

One type always adjusts prices in an ad-hoc, backward-looking fashion and the other type

always adjusts prices in an optimal, forward-looking fashion. By contrast, in the staggered

indexation model developed in this paper all firms are optimizing and forward looking. As

a result, differently to what happens in the hybrid model, under staggered indexation when

firms get the chance to change their price optimally they internalize that there will be random

spells of time in which they will have to keep the price fixed and spells in which they will

have to index to past inflation. This feature endogenously introduces a state variable in

the Phillips curve that depends not just on last-period’s inflation but on the entire history

of inflation rates. Importantly, the law of motion of this state variable is endogenous, so

that the loading of any past inflation is determined within the model. This means that the

staggered indexation model differs in relevant ways even from formulations of the hybrid

model in which the backward-looking firms are assumed to index to an average of any

number of past inflation rates, as it provides a theory of what the weights on this average

should be. Quantitatively, the staggered indexation model places a relatively high weight

on the forward looking component of the Phillips curve. The coefficient on future expected

inflation is estimated to be more than ten times as large as that on the backward-looking

state variable. Although the estimation strategies and samples are different, in the baseline

estimation of the hybrid model reported in Gaĺı and Gertler (1999) this ratio is below three.

This ratio, however, does not represent a sufficient statistic for the ability of either model

to explain inflation persistence, for the introduction of backward-looking firms or staggered

indexation also affects the marginal cost coefficient of the Phillips curve and, in the case of

staggered indexation, introduces long memory in the backward-looking term. As mentioned

above, the general equilibrium effect of staggered indexation is estimated to be significant,

accounting for more than half of the predicted serial correlation of inflation.

A number of papers have attempted to disentangle the roles played by indexation and

the monetary regime in inducing inflation persistence, see Woodford (2007) for a conceptual

argument and Benati (2008) and Cogley and Sbordone (2008) for empirical investigations.

Ascari and Branzoli (2010) show that partial indexation to past inflation à la Christiano

et al. (2005) can be optimal in models with staggered price setting and trend inflation.

Kurozumi and Van Zandweghe (2019) show that introducing trend inflation and a Kimball-

type non-CES aggregator in the Calvo model gives rise to lags of inflation in the Phillips

curve, despite having only forward-looking, optimizing price setters. The recent subdued
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response of inflation to relatively large swings in aggregate activity, especially since the onset

of the great contraction of 2007-2009, has revitalized a literature that aims to document and

explain changes in the slope of the Phillips curve (Del Negro et al., 2020; Stock and Watson,

2019; Gaĺı and Gambetti, 2018; and McLeay and Tenreyro, 2019, among others). This paper

contributes to this literature by identifying a new channel through which the slope of the

Phillips curve can be affected.

The paper proceeds in six sections. Section 2 presents the model with staggered price

indexation. Section 3 derives the Phillips curve under staggered price indexation. Section 4

presents a numerical illustration to shed light on the role of staggered price indexation in

producing inflation persistence and amplification. Section 5 estimates the degree of staggered

price indexation in the context of a small-scale new-Keynesian model on U.S. data. Section 6

uses the estimated model to ascertain how much of the observed inflation persistence in the

United States is accounted for by staggered price indexation. Section 7 concludes.

2 The Model

Consider an economy populated by a large number of identical households with preferences

given by

E0

∞∑

t=0

βtU(ct, ht),

where ct denotes consumption in period t, ht denotes hours worked, U(·, ·) is the period

utility function, assumed to be increasing in its first argument, decreasing in its second

argument, and concave, β ∈ (0, 1) denotes the subjective discount factor, and Et denotes

the expectations operator conditional on information available in period t.

Every period t ≥ 0 households face the budget constraint

Ptct +Bt + Tt = (1 + it−1)Bt−1 +Wtht + Φt,

where Pt denotes the nominal price of consumption, Wt denotes the nominal wage rate, Bt

denotes holdings of a nominally riskless, one-period bond issued by the government in period

t, Φt denotes nominal profit income, and Tt denotes lump-sum taxes paid in period t. Bonds

issued in period t pay the nominal interest rate it in period t+ 1.

The household chooses processes {ct, ht, Bt}
∞

t=0 to maximize its lifetime utility function

subject to the above sequential budget constraint and to some borrowing limit that prevents

it from engaging in Ponzi-type games. Letting βtλt/Pt be the Lagrange multiplier on the

period budget constraint, the first-order conditions of the household’s optimization problem
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with respect to ct, ht, and Bt are, respectively,

Uc(ct, ht) = λt, (1)

−Uh(ct, ht) = wtλt, (2)

and

λt = β(1 + it)Et
λt+1

1 + πt+1
, (3)

where πt ≡ Pt/Pt−1 − 1 denotes the inflation rate, and wt ≡ Wt/Pt denotes the real wage

rate.

The consumption good ct is assumed to be a composite of a continuum of varieties cit

indexed by i ∈ [0, 1]. The aggregation technology is assumed to be of the form

ct =

[∫ 1

0

c
1−1/η
it di

] 1

1−1/η

,

where the parameter η > 0 denotes the elasticity of substitution across varieties. Given

ct, the household chooses the consumption of varieties cit to minimize total expenditure,∫ 1

0
Pitcitdi, subject to the above aggregation technology, where Pit denotes the nominal price

of variety i. This problem delivers a demand for individual varieties of the form

cit = ct

(
Pit
Pt

)
−η

, (4)

where the price level Pt is given by

Pt ≡

[∫ 1

0

P 1−η
it di

] 1

1−η

, (5)

and represents the minimum cost of one unit of the composite consumption good.

The firm producing variety i operates in a monopolistically competitive market. The

production technology is linear and uses labor and is buffeted by exogenous productivity

shocks. Specifically, output of variety i is given by

yit = eathit, (6)

where yit denotes output of variety i in period t, hit denotes labor input used in the production

of variety i, and at denotes the productivity shock.

The main innovation of the model is in the formulation of nominal rigidity. The model
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builds on Calvo (1983) and Yun (1996). Each period, firm i ∈ [0, 1] gets to change its price

with constant probability 1 − θ. Thus, the probability of being stuck with the previous

period’s price is θ. The point of departure from the Calvo-Yun model is that in the present

formulation having the right to change the price is not equal to having the right to choose the

price optimally. Specifically, I assume that with probability χ the firm indexes its price to

past inflation. Thus, each period the firm chooses its price optimally with probability 1−θ−χ.

I refer to this price-setting mechanism as staggered price indexation. The parameter χ resides

in the interval [0, 1 − θ]. The special case χ = 0 corresponds to the standard Calvo-Yun

model. The special case χ ∈ (0, 1) and θ = 0 corresponds to the Calvo-Yun model with

standard indexation—i.e., a model in which all prices that are not set optimally are indexed

to past inflation.

Let P̃it be the price charged in period t by a firm i ∈ [0, 1] that gets to set its price

optimally in period t. In period t+ j, j ≥ 0, a firm that has not gotten the permission to

set its price optimally since period t and has not gotten the permission to index since period

t+ k, k ≤ j, charges the price P̃itPt+k−1/Pt−1.
1 The probability of this event conditional on

information available in period t is [χ(θ + χ)k−1]I(k>0)θj−k, where I(k > 0) is the indicator

function taking the value 1 if k > 0 and 0 otherwise.

At the posted price, firms commit to meet demand. Then, a firm i that gets to optimize

its price in period t chooses P̃it and employment to maximize the present discounted value

of profits,

Et

∞∑

j=0

βj
λt+j
λt

j∑

k=0

[χ(θ+ χ)k−1]I(k>0)θj−k


ct+j

(
P̃itPt+k−1

Pt+jPt−1

)1−η

− wt+jhit+j,k


 ,

subject to the participation constraint

eathit+j,k ≥ ct+j

(
P̃itPt+k−1

Pt+jPt−1

)
−η

,

where hit+j,k denotes the demand for labor in period t+ j by any firm i ∈ [0, 1] that chooses

the price optimally in period t and gets to index its price for the last time in t + k, for

0 ≤ k ≤ j and j ≥ 0. Unlike in the standard Calvo-Yun formulation, expected profits

features a double summation. The summation over k reflects the fact that the firm can

arrive at period t+ j with k+1 different possible prices, depending on the period in which it

last was allowed to index since period t. The first-order optimality conditions with respect

1Note that this firm will charge this price regardless of how many times it got the right to index between

periods t and t+ k − 1.
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to P̃it and hit+j,k are, respectively,

Et

∞∑

j=0

βj
λt+j
λt

j∑

k=0

[χ(θ + χ)k−1]I(k>0)θj−kct+j

(
P̃itPt+k−1

Pt+jPt−1

)
−η [

η − 1

η

P̃itPt+k−1

Pt+jPt−1
− µit+j,k

]
= 0

(7)

and

µit+j,k =
wt+j
eat+j

. (8)

where βj
λt+j

λt
[χ(θ+χ)k−1]I(k>0)θj−kµit+j,k is the Lagrange multiplier associated with the firm’s

participation constraint. The interpretation of these optimality conditions is the same as

in the standard sticky-price model: The second condition says that at the optimum, the

Lagrange multiplier on the participation constraint equals the firm’s marginal cost. The first

condition states that the firm picks the price P̃it in period t so that the demand-weighted

present discounted value of discrepancies between marginal cost and marginal revenue is nil.

The difference with the standard model is that here the firm faces a larger set of payoff-

relevant future states, due to the presence of staggered price indexation.

2.1 The Government

Monetary policy takes the form of a Taylor-type interest-rate feedback rule of the form

1 + it
1 + i

=

(
1 + πt
1 + π

)απ
(
yt
y

)αy

eψt , (9)

where yt is aggregate output, to be defined later, π is the central bank’s inflation target, i

and y are the steady-state values of it and yt, respectively, and ψt is an exogenous monetary

shock.

The fiscal authority consumes no goods and maintains a passive fiscal stance, in the sense

that it sets lump-sum taxes, Tt, to guarantees fiscal solvency independently of the paths of

the price level or the nominal interest rate.

2.2 Equilibrium

The key step in characterizing the equilibrium conditions of the present model is to express

the firm’s optimality condition (7) in recursive form. To this end, we proceed as follows:

The firm’s optimality condition (8) shows that the Lagrange multiplier µit,k is independent

of i and k, so we will write it without these two subscripts. Then we have

µt =
wt
eat
, (10)
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for all t ≥ 0. Similarly, since the firm problem features no idiosyncratic state variables other

than its own price, all firms choosing the price optimally in a given period pick the same price,

which allows one to drop the subscript i from P̃it. Now let’s split optimality condition (7) in

two parts, the demand-weighted present discounted value of marginal revenue, denoted z1
t ,

and the present discounted value of marginal costs, denoted z2
t . Formally, let

z1
t = Et

∞∑

j=0

βj
λt+j
λt

j∑

k=0

[χ(θ+ χ)k−1]I(k>0)θj−kct+j
η − 1

η

(
P̃tPt+k−1

Pt+jPt−1

)1−η

and

z2
t = Et

∞∑

j=0

βj
λt+j
λt

j∑

k=0

[χ(θ+ χ)k−1]I(k>0)θj−kct+j

(
P̃tPt+k−1

Pt+jPt−1

)
−η

µt+j

So that, by equation (7), we have that

z1
t = z2

t (11)

To write the first of the above three expressions recursively, begin by rewriting it as

z1
t = Et

∞∑

j=0

βj
λt+j
λt



θjct+j
η − 1

η

(
P̃t
Pt+j

)1−η

+ χ

j∑

k=1

(θ + χ)k−1θj−kct+j
η − 1

η

(
P̃tPt+k−1

Pt+jPt−1

)1−η


 .

Now define

z11
t = Et

∞∑

j=0

(θβ)j
λt+j
λt

ct+j
η − 1

η

(
P̃t
Pt+j

)1−η

and

z12
t = Et

∞∑

j=0

(θβ)j
λt+j
λt

ct+j
η − 1

η




j∑

k=1

(
θ

θ + χ

)
−k
(
P̃tPt+k−1

Pt+jPt−1

)1−η


 ,

so that

z1
t = z11

t +
χ

θ + χ
z12
t . (12)

In turn, letting pt ≡ P̃t/Pt denote the relative price of every variety whose price is optimized

in period t in terms of the composite consumption good, one can write z11
t and z12

t recursively

as

z11
t =

η − 1

η
ctp

1−η
t + βθEt

λt+1

λt

(
pt
pt+1

)1−η

(1 + πt+1)
η−1z11

t+1 (13)
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and

z12
t = β(θ + χ)Et

λt+1

λt

(
pt
pt+1

1 + πt
1 + πt+1

)1−η [
z11
t+1 + z12

t+1

]
. (14)

Appendix A presents a detailed derivation of equation (14). The derivation of equation (13)

is analogous. Similarly, one can write z2
t recursively as

z2
t = z21

t +
χ

θ + χ
z22
t , (15)

with

z21
t = ctp

−η
t µt + βθEt

λt+1

λt

(
pt
pt+1

)
−η

(1 + πt+1)
ηz21
t+1 (16)

and

z22
t = β(θ + χ)Et

λt+1

λt

(
pt
pt+1

1 + πt
1 + πt+1

)
−η [

z21
t+1 + z22

t+1

]
. (17)

This completes the recursive representation of optimality condition (7).

In equilibrium, a fraction θ of all firms is stuck with the previous period’s price, a fraction

1 − θ − χ sets their optimal price P̃t, and the remaining χ firms index their price to past

inflation. So the price level given in equation (5) can be written as

P 1−η
t = θP 1−η

t−1 + (1 − θ − χ)P̃ 1−η
t +

∫

i∈Ix

P 1−η
it di, (18)

where Ix denotes the set of goods whose prices are indexed in period t. By definition, Ix has

measure χ. A firm that has not optimized since period t − j and gets to index in period

t charges the price P̃t−jPt−1/Pt−j−1. The size of this cohort in period t − j is 1 − θ − χ.

Of these firms, a fraction (θ + χ)j−1 arrives in period t − 1 not having gotten the right to

optimize again, and of these a fraction χ receives the permission to index in period t. So we

have that ∫

i∈Ix

P 1−η
it di = χ(1 − θ − χ)

∞∑

j=1

(θ + χ)j−1

(
P̃t−jPt−1

Pt−j−1

)1−η

. (19)

Define the price level of the basket of goods whose prices are indexed in period t as

P x
t ≡

[
1

χ

∫

i∈Ix

P 1−η
it di

] 1

1−η

.

Then, we can write equations (18) and (19), respectively, as

P 1−η
t = θP 1−η

t−1 + (1 − θ − χ)P̃ 1−η
t + χP x1−η

t (20)
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and

P x1−η
t = (1 − θ − χ)

∞∑

j=1

(θ + χ)j−1

(
P̃t−jPt−1

Pt−j−1

)1−η

(21)

Equation (21) can be written recursively as (see section B of the appendix for a proof)

P x
t

1−η = (1 + πt−1)
1−η
[
(1 − θ − χ) (pt−1Pt−1)

1−η + (θ + χ)P x1−η
t−1

]
. (22)

Let 1 + πxt ≡ P x
t /Pt−1. The variable πxt is the rate of inflation of the basket of goods whose

prices are indexed in period t. To see this, note that since the right to index is random across

goods, the price level of this basket of goods in period t− 1 is Pt−1. Then, after shifting the

time subscript one period forward, we can write (22) as

(1 + πxt+1)
1−η = (1 − θ − χ)p1−η

t (1 + πt)
1−η + (θ + χ)(1 + πxt )

1−η. (23)

The inflation rate of indexed goods, πxt , is a predetermined state variable, because both P x
t

and Pt−1 are determined prior to period t. Similarly, we can write equation (20) as

1 = θ(1 + πt)
η−1 + (1 − θ − χ)p1−η

t + χ

(
1 + πxt
1 + πt

)1−η

. (24)

Let us now derive an expression for aggregate output, which, as mentioned earlier, we

denote by yt. Clearing of the labor market requires that

ht =

∫ 1

0

hitdi.

In the goods market output of each variety must equal demand,

eathit = ct

(
Pit
Pt

)
−η

.

Integrating over varieties and using the above labor resource constraint yields

eatht = ct

∫ 1

0

(
Pit
Pt

)
−η

di. (25)

The integral on the right-hand side of (25) is a measure of price dispersion that arises

naturally in models of staggered price stickiness. As shown next, the presence of staggered
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price indexation adds more persistence of this distortion. Let

S−η
t ≡

∫ 1

0

P−η
it di.

By the same argument used to derive equations (20) and (22), in equilibrium this equation

can be written as

S−η
t = θS−η

t−1 + (1 − θ − χ)P̃−η
t + χSx−ηt (26)

with

Sxt
−η = (1 + πt−1)

−η
[
(1 − θ − χ) (pt−1Pt−1)

−η + (θ + χ)Sx−ηt−1

]
, (27)

where

Sxt ≡

[
1

χ

∫

i∈Ix

P−η
it di

]
−

1

η

is a measure of price dispersion among goods whose prices are allowed to be indexed in

period t. This variable is backward looking, adding persistence to the general measure

of price dispersion St, relative to the standard Calvo-Yun model. Defining st ≡ St/Pt

and sxt ≡ Sxt /Pt−1, we can write equations (26) and (27) as the following two expressions

describing the equilibrium dynamics of price dispersion:

s−ηt = θ(1 + πt)
ηs−ηt−1 + (1 − θ − χ)p−ηt + χ(1 + πt)

ηsx−ηt (28)

and

sx−ηt+1 = (1 − θ − χ)(1 + πt)
−ηp−ηt + (θ + χ)sx−ηt . (29)

The variables st−1 and sxt are predetermined states. Finally, using this definition, we can

write equation (25) as

yt = ct, (30)

with

yt ≡ sηt e
atht. (31)

We are now ready to define a competitive equilibrium in this new-Keynesian model with

staggered price indexation.

Definition 1 (Competitive Equilibrium with Staggered Price Indexation) A com-

petitive equilibrium is a set of process ct, ht, yt λt, µt, wt, πt, it, pt, z
1
t , z

2
t , z

11
t , z12

t , z21
t , z22

t ,

πxt , st, and sxt+1 satisfying equations (1)-(3), (9)-(17), (23), (24), (28)-(31), given the initial

conditions πx0 , s
x
0, s−1, and the laws of motion of the exogenous shocks.
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3 The Phillips Curve with Staggered Price Indexation

To understand the role of staggered price indexation in equilibrium, this section derives the

Phillips curve that arises from a linearized version of the equilibrium conditions around a

zero-inflation steady state. The main result of this section is that the Phillips curve under

staggered price indexation includes a new term featuring the state variable π̂xt , the inflation

rate of the basket of goods that get to be indexed in period t. Formally, the Phillips curve

takes the form

π̂t = γπEtπ̂t+1 + γµµ̂t + γxπ̂
x
t , (32)

with

π̂xt+1 = π̂t + θπ̂xt . (33)

where hatted variables correspond to the log deviations of µt, 1 + πt, and 1 + πxt from

their deterministic steady-state values. Equation (33) says that the state variable πxt carries

information about all past inflation rates. The higher the degree of price stickiness, the larger

the effect of past inflations on π̂xt . The loading of π̂xt on π̂t the Phillips curve, given by the

parameter γx depends on χ, the fraction of prices that are indexed each period. In particular,

γx is increasing in χ and vanishes at χ = 0. The next two sections show that this property

of the Phillips curve under staggered indexation has a significant role in determining the

persistence of the rate of inflation in equilibrium.

As shown later in this section, equation (32) nests the Phillips curves of two special

economies, one with no indexation (χ = 0), and one with full indexation (θ = 0). Setting

χ = 0, equation (32) becomes

π̂t = βEtπ̂t+1 +
(1 − θ)(1 − βθ)

θ
µ̂t

which is the familiar expression implied by the standard Calvo-Yun model. Setting θ = 0,

the state variable π̂xt collapses to π̂t−1, and the Phillips curve becomes

π̂t =
β

1 + β
Etπ̂t+1 +

(1 − βχ)(1− χ)

(1 + β)χ
µ̂t +

1

1 + β
π̂t−1 (34)

One might find it surprising that πxt does not depend on the probability of indexation,χ.

After all, πxt is the inflation rate of the basket of goods whose prices got the permission to

be indexed in period t. To build intuition for this property of πxt , let us deconstruct its law

of motion, given in equation (33) (a formal derivation appears later in this section). Of the

set of goods that are indexed in period t + 1, the fraction of prices that are increased by

12



exactly π̂t is given by the fraction of goods whose prices are allowed to change in period t,

namely, 1 − θ − χ prices that are optimized in period t plus χ prices that are indexed in

t, for a total of 1 − θ prices. The fraction of indexed prices that will increase by exactly

π̂t + π̂t−1 in t + 1 is given by the fraction of prices that were allowed to change in t − 1

but not in t, that is, θ(1 − θ). Similarly, the fraction of indexed prices that will increase by

exactly π̂t + π̂t−1 + π̂t−2 in t+ 1 is θ2(1 − θ). In general, the fraction of indexed prices that

will increase by exactly π̂t + π̂t−1 + · · · + π̂t−j in period t + 1 is (1 − θ)θj . So we have that

π̂xt+1 = (1 − θ)[π̂t + θ(π̂t + π̂t−1) + θ2(π̂t + π̂t−1 + π̂t−2) + · · · = π̂t + θπ̂xt , which is precisely

equation (33).

To derive the Phillips curve and the law of motion of πxt (equations (32) and (33)), begin

by linearizing equilibrium conditions (11), (12), and (15). This operation yields

ẑ1
t =

1 − β(θ + χ)

1 − βθ
ẑ11
t +

βχ

1 − βθ
ẑ12
t ,

ẑ2
t =

1 − β(θ + χ)

1 − βθ
ẑ21
t +

βχ

1 − βθ
ẑ22
t

and

ẑ1
t = ẑ2

t .

In deriving these linearizations and those of the other equilibrium conditions of the model, it

is of use to first calculate the steady state of the model under zero inflation. This information

appears in appendix C. Combining the above three linear expressions gives

ẑ12
t − ẑ22

t = −
1 − β(θ + χ)

βχ
(ẑ11
t − ẑ21

t ) (35)

Linearizing equations (13) and (16) we have

ẑ11
t = (1 − βθ)[ĉt + (1 − η)p̂t] + βθ[Etλ̂t+1 − λ̂t + (1 − η)(p̂t − Etp̂t+1 − Etπ̂t+1) + Etẑ

11
t+1]

and

ẑ21
t = (1 − βθ)[ĉt − ηp̂t + µ̂t] + βθ[Etλ̂t+1 − λ̂t − η(p̂t − Etp̂t+1 − Etπ̂t+1) + Etẑ

21
t+1]

Subtracting the second of these two expressions from the first, one can write

ẑ11
t − ẑ21

t = (1 − βθ)(p̂t − µ̂t) + βθ[p̂t −Etp̂t+1 − Etπ̂t+1 + Etẑ
11
t+1 − Etẑ

21
t+1] (36)

13



Performing the same operations with equilibrium conditions (14) and (17) produces

ẑ12
t = Etλ̂t+1 − λ̂t+(1− η)[p̂t−Etp̂t+1 + π̂t−Etπ̂t+1] + [1−β(θ+χ)]Etẑ

11
t+1 +β(θ+χ)Etẑ

12
t+1,

ẑ22
t = Etλ̂t+1 − λ̂t − η[p̂t − Etp̂t+1 + π̂t − Etπ̂t+1] + [1 − β(θ+ χ)]Etẑ

21
t+1 + β(θ+ χ)Etẑ

22
t+1,

and

ẑ12
t −ẑ22

t = p̂t−Etp̂t+1+π̂t−Etπ̂t+1+[1−β(θ+χ)](Etẑ
11
t+1−Etẑ

21
t+1)+β(θ+χ)(Etẑ

12
t+1−Etẑ

22
t+1)

Using equation (35) to eliminate ẑ12
t − ẑ22

t and ẑ12
t+1 − ẑ22

t+1 and rearranging gives

ẑ11
t − ẑ21

t = −
βχ

1 − β(θ + χ)
[p̂t − Etp̂t+1 + π̂t − Etπ̂t+1] + βθ(Etẑ

11
t+1 − Etẑ

21
t+1) (37)

Comparing (36) and (37) yields the restriction

(1−βθ)p̂t−β(θ+χ)(1−βθ)Etp̂t+1+βχπ̂t−βθ(1−β(θ+χ))Etπ̂t+1−(1−β(θ+χ))(1−βθ)µ̂t−βχEtπ̂t+1 = 0

To eliminate p̂t and p̂t+1 log-linearize equation (24). This yields

p̂t =
(θ + χ)π̂t − χπ̂xt

1 − θ − χ
(38)

Combining the last two equations yields

[θ(1 − βθ) + χ[1 + β(1 − θ(1 + βχ+ βθ))]]π̂t = [χβ(1− βθ) + βθ(1 − βθ)]Etπ̂t+1

+χ(1 − βθ)(1 − βθ2 − βχθ)π̂xt

+[1 − β(χ+ θ)](1 − βθ)(1− θ − χ)µ̂t,

Dividing both sides by the coefficient on π̂t yields the Phillips curve (32) as desired. It is

straightforward to see that setting χ = 0 the Phillips curve collapses to its standard form

given by equation (34) and that setting θ = 0 it becomes the Phillips curve implied by a

model with the standard form of indexation, given in equation (34).

Let’s now derive the law of motion of the state variable π̂xt given in equation (33). Log-

linearizing equation (23) evaluated in period t+ 1 yields

π̂xt+1 = (1 − θ − χ)(p̂t + π̂t) + (θ + χ)π̂xt . (39)

14



Now using equation (38) to eliminate p̂t one obtains

π̂xt+1 = π̂t + θπ̂xt

which is equation (33).

4 The Effects of Staggered Price Indexation

How does staggered indexation affect aggregate dynamics? It is natural to think that if, as

in the standard Calvo-Yun model, all of the 1− θ prices that change every period adjust op-

timally, inflation will be more responsive and aggregate activity less responsive to aggregate

disturbances than if a nonzero fraction χ of these 1 − θ prices adjust autonomously to past

inflation.

Figure 1 confirms this intuition. It plots the response of inflation and output to a

contractionary interest-rate shock, ψ0 = 1 , with persistence equal to 0.5 (this shock ap-

pears in the interest-rate feedback rule (9)), and to a positive permanent technology shock,

z0 ≡ a0 − a−1 = 1, with persistence equal to 0.3 (at appears for the first time in the pro-

duction function, equation (6)). The impulse responses are computed for three values of χ,

0, 0.1, and 0.2. The fraction of prices that remain unchanged each period is kept constant

and equal to 66% (θ = 0.66), in accordance with the available micro evidence. The param-

eterization of the model is described in detail in the notes to the figure. The key message

of this exercise is that, in line with the intuition given at the beginning of this section, an

increase in the degree of staggered price indexation, χ, causes a smaller and flatter short-run

response of inflation and a more pronounced response of output.

The result that the short-run response of inflation to aggregate shocks becomes more

muted as the degree of staggered price indexation increases suggests that inflation persis-

tence could be increasing in χ, the parameter measuring the fraction of prices that are

indexed to past inflation each period. Figure 2 shows that this is indeed the case under the

illustrative parameterization we are considering in this section. It displays the serial corre-

lation of inflation as a function of χ. The economy continues to be driven by the monetary

shock, ψt, and the permanent technology shock. zt = at − at−1, which, as before, follow

AR(1) processes with serial correlations of 0.5 and 0.3, respectively. The innovations to both

processes are assumed to have standard deviations equal to 0.01. All other parameter values

are as described in the notes to Figure 1. Figure 2 shows that staggered price indexation

can have a significant effect on the persistence of inflation. In this illustration, the serial

correlation of πt almost doubles as χ increases from 0 to 0.33.
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Figure 1: Impulse Responses of Inflation and Output to Monetary and Technology Shocks:
A Numerical Illustration
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Notes. The top panels display impulse responses to a unit increase in ψt, and the bottom panels
display impulse responses to a unit increase in zt ≡ at − at−1. The underlying parameterization of

the model is as follows: U(c, h) = ln c − h2/2; β = 1.03−1/4; απ = 1.5; αy = 0; θ = 0.66; η = 6;
π = 0; ψt is AR(1) with mean 0 and serial correlation 0.5; zt is AR(1) with mean 0.0041 and serial

correlation 0.3.

Table 1: Staggered Price Indexation, the Phillips Curve, and the Policy Function of Inflation

Phillips Curve Inflation Policy Function
χ γπ γµ γx γ̃x γ̃z γ̃ψ
0 0.993 0.169 0 0 0.108 -0.552
0.1 0.835 0.061 0.054 0.128 0.054 -0.292
0.2 0.770 0.017 0.076 0.215 0.019 -0.110
0.3 0.747 0.001 0.084 0.280 0.002 -0.011

Notes. The Phillips curve is given by π̂t = γπEtπ̂t+1 +γµµ̂t+γxπ̂
x
t , and the inflation policy function

by π̂t = γ̃xπ̂
x
t + γ̃z ẑt + γψψ̂t,. The parameterization of the model is as described in the notes to

Figures 1 and 2.
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Figure 2: Inflation Persistence as a Function of the Degree of Staggered Price Indexation
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Notes. The economy is driven by a monetary shock, ψt and a technology shock, zt ≡ at−at−1, both
of which follow AR(1) processes with serial correlations 0.5 and 0.3, respectively, and innovations

with standard deviations of 0.01. The parameterization of the model is as shown in the notes to
Figure 1.

The degree of staggered price indexation, χ, affects inflation persistence not only by

increasing the loading of the state variable πxt on inflation in the Phillips curve, but also

by affecting the slope of the Phillips curve (the loading of marginal cost, µt, on inflation),

and the loading of expected inflation on inflation itself. To see this, Table (1) displays the

coefficients of the Phillips curve, π̂t = γπEtπ̂t+1 + γµµ̂t + γxπ̂
x
t , for χ = 0, 0.1, 0.2, and 0.3.

As the degree of staggered price indexation increases, the Phillips curve becomes flatter (γµ

falls) and less responsive to expected inflation (γπ falls). Intuitively, as χ increases, holding

constant the total number of firms that can change prices each period, 1 − θ, fewer firms

will update their prices in response to current or future expected disturbances and more will

simply limit themselves to charging past inflation.

The last three columns of table 1 show that this effect is reflected in the policy func-

tion of inflation. The present model features one endogenous state, πxt , and two exogenous

states, namely, the permanent technology shock, zt, and the monetary shock, ψt.
2 Thus, the

equilibrium dynamics of inflation are a function of these three variables and up to first order

can be written as π̂t = γ̃xπ̂
x
t + γ̃z ẑt + γψψ̂t,. The table displays the parameters of this policy

function for the three values of χ considered. In line with the intuition given above, as the

degree of staggered price indexation increases, inflation becomes more sensitive to changes in

π̂xt , the inflation rate of the basket of goods whose prices are indexed in t, and less sensitive

2The model also includes the state variables st and sx

t
, measuring price dispersion. However, It can be

shown that with zero steady-state inflation, these state variables are irrelevant up to first order.
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to exogenous shocks to technology or monetary policy.

The effects of staggered price indexation on the slope of the Phillips curve (γµ) and on

the persistence coefficient (γx) characterized in this section are relevant in light of the fact

that existing empirical studies of price dynamics based on micro data do not provide much

information on which fraction of observed price changes are optimal and which indexatory.

In other words, based on the information provided by existing empirical studies, the four

economies shown in table 1 have the same degree of price stickiness. This observation

motivates the need to gauge the value of χ. The next section uses aggregate data to infer

the value of this parameter.

5 Estimating the Degree of Staggered Price Indexation

This section estimates a version of the new-Keynesian model of section 2 on U.S. data, with

the aim to extract information about χ, the new parameter introduced in the proposed model

of staggered indexation. To make the model amenable to estimation, it is augmented with

three additional sources of uncertainty, a real friction taking the form of habit formation,

and a more realistic monetary policy rule, which incorporates interest-rate smoothing,

Specifically, the model is now driven by five shocks: a preference shock, denoted ξt, a

labor-supply shock, denoted φt, a government purchases shock, denoted gt, a technology

shock, denoted at, and a monetary shock, denoted ψt. The technology and monetary shocks

were introduced already in section 2. The technology shock is assumed to have a nonsta-

tionary component. Specifically, the law of motion of at is assumed to be

at = at−1 + zt,

where zt, the growth rate of technology is assumed to be a stationary random variable with

mean z.

With habit formation, the period utility function takes the form

eξt
[
ln(Ct − δC̃t−1) − Φeφt

h1+ν
t

1 + ν

]
,

where Ct denotes nondetrended consumption, C̃t denotes the cross-sectional average of Ct,

which individual households take as exogenous, δ is a parameter measuring the degree of

(external) habit formation, 1/ν is the Frisch labor supply elasticity, and Φ is a scaling

parameter. Upper case letters are used to indicate variables that have a stochastic trend

inherited from at. In equilibrium, all households consume identical quantities of goods, so
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C̃t equals Ct.

Government spending is assumed to be exogenous and given by

Gt = ḡeat+gt ,

where gt is a stationary random variable with mean 0, and ḡ is a parameter. Scaling Gt by

the nonstationary productivity factor, eat , is necessary to prevent public consumption from

vanishing over time.

The interest-rate feedback rule is augmented to allow for interest-rate smoothing. This

feature has become a standard component of monetary policy in estimated new-Keynesian

models. Specifically, the Taylor rule (9) now takes the form

1 + it
1 + i

=

(
1 + it−1

1 + i

)γI
[(

1 + πt
1 + π

)απ
(
yt
y

)αy
]1−γI

eψt ,

where γI ∈ [0, 1) is the interest-rate smoothing parameter. As explained next, the estimated

model allows for persistence in all shocks, including the monetary shock, ψt. Since this shock

is indistinguishable from trend inflation (i.e., from replacing the constant π that divides

πt in the Taylor rule by a random variable), the econometric estimation makes staggered

indexation and trend inflation, among other shocks and frictions, compete for the data.

This race is motivated by the work of Cogley and Sbordone (2008).

All five shocks are assumed to follow exogenous AR(1) processes. Formally, for v =

ξ, φ, ψ, z, g it is assumed that

vt+1 = ρvvt + σvε
v
t+1,

where ρv and σv are parameters and εvt is an i.i.d. disturbance with standard normal distri-

bution.

The equilibrium conditions of the model are identical to those listed in Definition 1 in

section 2, except for the household’s optimality condition (1), which in stationary form be-

comes (ct − δe−ztct−1)
−1 = λt, and the resource constraint (equations (30) and (31)) which

becomes yt = estht = ct + ḡegt . To render the equilibrium conditions stationary, all endoge-

nous variables other than ht, πt, and it are detrended by the nonstationary productivity

shock, eat. So, for example, ct ≡ Cte
−at .

As in much of the DSGE literature, the estimation strategy consists of estimating a subset

of the parameters of the model and calibrating the remaining ones using standard values in

business-cycle analysis. The set of estimated parameters includes the degree of staggered

price indexation, χ, which is the focus of the present section, along with other parameters

that play a central role in determining the model’s implied short-run dynamics, such as those
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Table 2: Calibrated Parameters

Parameter Value Description
β 0.9926 subjective discount factor (3%/yr.)
θ 0.67 fraction of unchanged prices per quarter
η 6 intratemporal elast. of subst.
z 0.0041 mean output growth rate (1.65%/yr.)
π 0.005 inflation target (2%/yr.)
Φ 1.11 preference parameter

Note. The time unit is one quarter.

governing habit formation, monetary policy, and the stochastic properties of the underlying

sources of uncertainty.

Table 2 displays the values assigned to the calibrated parameters. The probability of

not being able to change prices, θ, is set to 0.67, following the evidence from micro data

(Nakamura and Steinsson, 2008). The subjective discount factor, β, is set equal to 0.9926,

or 3% per year. The intratemporal elasticity of substitution across varieties of intermediate

goods, η, is set to 6 (Gaĺı, 2008). The unconditional mean of per capita output growth, z,

takes the value 0.0041 (or 1.65 percent per year), which matches the average growth rate of

real GDP per capita in the United States since the beginning of the great moderation. The

parameter ν is fixed at unity, to ensure a unit Frisch elasticity of labor supply (Gaĺı, 2008),

and the scaling parameter Φ at 1.11 to normalize hours work to 1. Unlike in the numerical

example of section 3, the inflation target, π, is now set at the more realistic value of 0.005,

or 2% per year.

The remaining parameters of the model are estimated on three observables: the logarithm

of real output, proxied by the logarithm of real GDP per capita; inflation, proxied by the

growth rate of the GDP deflator; and the nominal interest rate, proxied by the federal funds

rate. The sample is quarterly U.S. data from 1984:1 to 2008:1. Thus, the data ranges

from the beginning of the great moderation to the onset of the global financial crisis. This

is a period during which arguably monetary policy was relatively homogeneous, providing

some degree of control for the possibility that inflation persistence be affected by changes

in the policy regime (Woodford, 2007; Benati, 2008, Cogley and Sbordone, 2008). The data

is detrended by first differencing. Appendix D provides data sources and a more detailed

description of the construction of each series.

The econometric estimation employs Bayesian techniques. Table 3 displays means and

standard deviations of the prior distributions of the estimated parameters. All estimated
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Table 3: Prior and Posterior Parameter Distributions:

Prior Distribution Posterior Distribution

Parameter Distribution Mean Std Mean Std 5% 95%
χ Uniform 0.167 0.0962 0.187 0.0205 0.151 0.212
δ Beta 0.5 0.2 0.763 0.0994 0.577 0.895
απ Gamma 1.5 0.25 1.48 0.228 1.179 1.902
αy Gamma 0.125 0.1 0.394 0.159 0.152 0.675
γI Uniform 0.5 0.289 0.744 0.0489 0.656 0.817
ρx Beta 0.3 0.2 0.309 0.191 0.0409 0.655
ρg Beta 0.5 0.2 0.759 0.175 0.363 0.926
ρξ Beta 0.5 0.2 0.759 0.0769 0.625 0.869
ρφ Beta 0.5 0.2 0.324 0.145 0.107 0.58
ρψ Beta 0.5 0.2 0.567 0.139 0.324 0.781
σx Uniform 0.025 0.0144 0.00366 0.00127 0.00177 0.00577
σξ Uniform 0.025 0.0144 0.0195 0.00518 0.0125 0.029
σφ Uniform 0.025 0.0144 0.0388 0.00954 0.0198 0.0493
σψ Uniform 0.025 0.0144 0.000881 0.000126 0.000687 0.00108
σg Uniform 0.025 0.0144 0.0175 0.00292 0.0124 0.0221
R11 Uniform 1.41e-06 8.16e-07 1.49e-06 8.16e-07 1.62e-07 2.71e-06
R22 Uniform 1.38e-07 7.98e-08 1.73e-07 7.21e-08 3.74e-08 2.68e-07
R33 Uniform 8.33e-08 4.81e-08 7.57e-08 4.79e-08 6.3e-09 1.56e-07

Note. The time unit is one quarter. The parameters Rii, for i = 1, 2, 3, are the diagonal elements
of the diagonal matrix R, denoting the variance-covariance matrix of measurement errors.
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Figure 3: Posterior Properties of the Degree of Staggered Price Indexation, χ
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parameters have relatively loose priors. In particular, the novel parameter χ, measuring

the degree of staggered price indexation is given a uniform distribution with the maximum

possible support, namely, [0, 1−θ], to allow the data to freely pick the feature that constitutes

the focal point of the present analysis. As is standard in the related literature, the estimation

allows for i.i.d. measurement error in the observables. The prior distribution of the variances

of measurement errors are assumed to be uniform with an upper bound of 10% of the variance

of the data.

The last four columns of Table 3 displays means, standard deviations, and 5-95 percent

intervals of the estimated posterior distributions, based on a Random Walk Metropolis Hast-

ings MCMC chain of length one million after discarding (burning in) another one million

draws. A number of parameters are estimated with significant uncertainty, a feature that

is common in estimates of small-scale New Keynesian models. Nonetheless, the data speaks

with a clear voice on the parameters χ, δ, and γI , governing nominal and real frictions in

the model.

Of particular interest is the estimate of the staggered indexation parameter χ. It’s pos-

terior mean is 0.187, which means that each period about 19% of all prices change due to

indexation and 14% change optimally. The degree of staggered price indexation is estimated

with relative precision, with a posterior standard deviation of χ is 0.02. Figure 3 provides

additional posterior information on χ. The left panel displays its prior and posterior dis-

tributions. The latter is significantly more concentrated than the former, suggesting that

the data contains relevant information about this parameter. The right panel displays the

MCMC chain of χ. Its relatively flat aspect indicates convergence.

In sum, the estimation of the model suggests that there is substantial staggered indexation

in the United States, with more than half of all price changes being indexatory in nature.

To gauge the fit of the model, Table 4 displays selected actual and predicted second

moments. The model does well in matching the standard deviations and serial correlations
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Table 4: Actual and Predicted Unconditional Second Moments

dyt πt it
Std. Dev.
data 0.005 0.002 0.006
model 0.006 0.002 0.004
Autocorr.
data 0.14 0.71 0.97
model 0.12 0.72 0.94
Corr. w. πt
data -0.13 1.00 0.42
model 0.15 1.00 0.46

Note. Theoretical second moments are computed at the posterior means of the estimated parame-
ters.

Table 5: Serial Correlations: Predicted, Actual, and Counterfactual

dyt πt it
data 0.14 0.71 0.97
model 0.12 0.72 0.94
model, χ = 0 0.09 0.30 0.86

Note. Theoretical serial correlations are computed at the posterior means of the estimated param-

eters (Table 3), except for the third row, in which all parameters other than χ take their posterior
mean values and χ is set to zero.

of output growth, inflation, and the nominal interest rate. It also replicates well the correla-

tion of inflation with the interest rate, and the low correlation between output growth and

inflation, but it misses its sign.

6 Staggered Price Indexation and Inflation Persistence

The illustrative numerical exercise of section 4 (see in particular Figure 2), suggests that

staggered price indexation has the potential to induce substantial inflation persistence. We

can now address this question in the context of the estimated model.

To this end, Table 5 presents a counterfactual exercise consisting in computing serial

correlations when χ is restricted to be 0 and all other estimated parameters are set at their

posterior means shown in Table 3. For convenience, the table reproduces from Table 4 the

actual and predicted serial correlations.
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When χ is set to zero, the predicted serial correlation of inflation falls by more than half,

from 0.71 to 0.30. The intuition behind this result is clear. When χ = 0, all price changes (33

percent of all prices, the fraction 1−θ) are optimal. Because firms are forward looking, in this

case all price changes are linked to current and future expected changes in marginal costs,

aggregate demand, and the price level. By contrast, when χ takes its posterior mean value

of 0.187, only 14 percent of prices are changed in an optimal, forward-looking fashion, and

almost 19 percent in a backward-looking fashion, by incorporating the cumulative inflation

rate since the last price change. Thus, in the latter case current inflation has a tighter link

to past inflation, which makes it more serially correlated.

7 Conclusion

This paper introduces staggered price indexation in a model of staggered price setting. This

theoretical contribution is motivated by the observation, based on micro evidence, that only

about one third of all prices change each quarter, and by the fact that the same evidence is

not informative as to whether the price changes that do occur are optimal or not. Staggered

price indexation is an environment in which each period a random fraction of prices is allowed

to incorporate the cumulative inflation since the last price change.

The main theoretical result derived from the present analysis is that under staggered

price indexation the Phillips curve features an additional term, given by the inflation rate of

the basket of goods that are indexed to past inflation. This is a state variable that carries

information about all past rates of inflation. Its persistence is dictated by the degree of price

stickiness, that is, by the fraction of goods whose prices do not change each period. The

loading of this variable on the Phillips curve depends on a new parameter, χ, measuring the

random fraction of goods that are indexed each period. Staggered price indexation is also

shown to flatten the slope of the Phillips curve and to lower the loading of expected inflation

on current inflation.

Given the degree of price stickiness (that is, the fraction of prices that are not allowed

to change each period), staggered price indexation has the potential to affect inflation per-

sistence in a significant way. Fixing the fraction of prices that are sticky each quarter at

two thirds, in accordance with the available micro data, a small-scale new-Keynesian model

estimated on U.S. data yields an estimate of the staggered indexation parameter χ of about

0.19, which, interpreted through the lens of the model means that each quarter more than

half of all price changes are indexations to past inflation and less than half are optimal up-

dates. The estimated model predicts that staggered price indexation is responsible for more

than half of the inflation persistence observed in the United States.
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8 Appendix

A Derivation of equation (14)

The variable z12
t is defined as

z12
t = Et

∞∑

j=0

(θβ)j
λt+j
λt

ct+j
η − 1

η




j∑

k=1

(
θ

θ + χ

)
−k
(
P̃tPt+k−1

Pt+jPt−1

)1−η


 ,

Noting that the j counter ranges from 0 to ∞ whereas the k counter ranges from 1 to j, we

have that the term corresponding to j = 0 is nil. So we can write

z12
t = Et

∞∑

j=1

(θβ)j
λt+j
λt

ct+j
η − 1

η




j∑

k=1

(
θ

θ + χ

)
−k
(
P̃tPt+k−1

Pt+jPt−1

)1−η




Defining j′ = j − 1 one can write

z12
t = θβEt

λt+1

λt

(
P̃t

P̃t+1

Pt
Pt−1

)1−η
∞∑

j′=0

(θβ)j
′ λt+1+j′

λt+1
ct+1+j′

η − 1

η



j′+1∑

k=1

(
θ

θ + χ

)
−k
(
P̃t+1Pt+k−1

Pt+1+j′Pt

)1−η



Define k′ = k − 1 to write

z12
t = β(θ + χ)Et

λt+1

λt

(
P̃t

P̃t+1

Pt
Pt−1

)1−η
∞∑

j′=0

(θβ)j
′ λt+1+j′

λt+1
ct+1+j′

η − 1

η

×




j′∑

k′=0

(
θ

θ + χ

)
−k′
(
P̃t+1Pt+1+k′−1

Pt+1+j′Pt

)1−η




= β(θ + χ)Et
λt+1

λt

(
P̃t

P̃t+1

Pt
Pt−1

)1−η
∞∑

j′=0

(θβ)j
′ λt+1+j′

λt+1
ct+1+j′

η − 1

η




(

P̃t+1

Pt+1+j′

)1−η

+

j′∑

k′=1

(
θ

θ + χ

)
−k′
(
P̃t+1Pt+1+k′−1

Pt+1+j′Pt

)1−η




= β(θ + χ)Et
λt+1

λt

(
P̃t

P̃t+1

Pt
Pt−1

)1−η



∞∑

j′=0

(θβ)j
′ λt+1+j′

λt+1
ct+1+j′

η − 1

η

(
P̃t+1

Pt+1+j′

)1−η

+
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j′=0

(θβ)j
′ λt+1+j′

λt+1
ct+1+j′

η − 1

η

j′∑

k′=1

(
θ

θ + χ

)
−k′
(
P̃t+1Pt+1+k′−1

Pt+1+j′Pt

)1−η


 ,
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which can be written as

z12
t = β(θ + χ)Et

λt+1

λt

(
pt
pt+1

1 + πt
1 + πt+1

)1−η [
z11
t+1 + z12

t+1

]

B Derivation of Equation (22)

Beginning with equation (21) we have

P x1−η
t = (1 − θ − χ)

∞∑

j=1

(θ + χ)j−1

(
P̃t−jPt−1

Pt−j−1

)1−η

= (1 − θ − χ)




(
P̃t−1Pt−1

Pt−2

)1−η

+
∞∑

j=2

(θ + χ)j−1

(
P̃t−jPt−1

Pt−j−1

)1−η




= (1 − θ − χ)




(
P̃t−1Pt−1

Pt−2

)1−η

+
∞∑

j′=1

(θ + χ)j
′

(
P̃t−1−j′Pt−1

Pt−2−j′

)1−η




= (1 − θ − χ)

(
Pt−1

Pt−2

)1−η


P̃ 1−η
t−1 + (θ + χ)

∞∑

j′=1

(θ + χ)j
′
−1

(
P̃t−1−j′Pt−2

Pt−2−j′

)1−η




= (1 + πt−1)
1−η
[
(1 − θ − χ) (pt−1Pt−1)

1−η
+ (θ + χ)P x1−η

t−1

]
,

where j′ ≡ j − 1.

C Zero-Inflation Steady State

For any variable, say, xt, let x denote its deterministic steady-state value. Consider a steady

state in which inflation is zero, π = 0. Then, by equations (23) and (24) we have that

p = 1 + πx = 1.

Then, from equation (13) we get

z11 =
(η − 1)/η

1 − βθ
c,

and from equation (14)

z12 =
β(θ + χ)

1 − β(θ+ χ)
z11
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Similarly, from equations (16) and (17), respectively, we obtain

z21 =
µ

1 − βθ
c

z22 =
β(θ + χ)

1 − β(θ+ χ)
z21

The above steady-state conditions and equations (11), (12), and (15) then yield

z1 = z2 =
1 − βθ

1 − β(θ + χ)
z11 =

(η − 1)/η

1 − β(θ + χ)
c,

µ =
η − 1

η
,

z21 = z11,

and

z22 = z12

From (28) and (29) we have

s = sx = 1.

From (30) we have

c = h.

This expression together with (1), (2), and (10) implies that h is given by

−
Uh(h, h)

Uc(h, h)
= µ.

Finally, the Euler equation (3) implies that

i =
1

β
− 1.

D The Data

The proxy for output is the logarithm of real GDP seasonally adjusted in chained dollars of

2012 minus the logarithm of the civilian noninstitutional population 16 years old or older.

The proxy for the inflation rate is the growth rate of the implicit GDP deflator expressed

in percent per year. In turn, the implicit GDP deflator is constructed as the ratio of GDP

in current dollars and real GDP both seasonally adjusted. The proxy for it is the monthly

Federal Funds Effective rate converted to quarterly frequency by averaging and expressed in
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percent per year. The source for nominal and real GDP is the Bureau of Economic Analysis

(bea.gov), the source for population is the Bureau of Labor Statistics (bls.gov), and the

source for the Federal Funds rate is the Board of Governors of the Federal Reserve System

(federalreserve.gov).
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