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substantial negative serial correlation at long horizons. We examine this 

finding with a series of Monte Carlo simulations in order to demonstrate 

that it is consistent with an equilibrium model of asset pricing. When 

investors display only a moderate degree of risk aversion, commonly used 

measures of mean reversion in stock prices calculated from actual returns 

data nearly always lie within a 60 percent confidence interval of the median 

of the Monte Carlo distributions. From this evidence, we conclude that the 

degree of serial correlation in the data could plausibly have been generated 

by our model. 
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1. Introduction 

Recent research into the behavior of the stock market reports evidence 

that returns are negatively serially correlated. Poterba and Summers (1987) 

find that variance ratio tests reject the hypothesis that stock prices 

follow a random walk, and Fama and French (1988) show that there is 

significant autocorrelation in long—horizon returns.1 It is well known 

[see Leroy (1973), Lucas (1978), and Mlchener (1982)1 that serial 

correlation of returns does not in itself imply a violation of market 

efficiency.2 Nevertheless, there is a tendency to conclude that evidence of 

mean reversion in stock prices constitutes a rejection of equilibrium models 

of rational asset pricing. Fama and French suggest this interpretation as a 

logical possibility, while Poterba and Summers argue that the serial 

correlation in returns should be attributed to "price fads". In this paper 

we demonstrate that the empirically estimated serial correlation of stock 

returns is consistent with an equilibrium model of asset pricing. 

The method and organization of the paper is as follows. The next 

section discusses the equilibrium asset pricing model that we study. We 

1. Poterba and Summers find negative serial correlation for stock returns 

over long horizons using monthly and annual data. Interestingly, Lo and 

MacKinlay (forthcoming) find that stock returns are positively correlated, 

using weekly observations. 

2. Grossman and Shiller (1981) make this same point in showing that the 

"excess" volatility implied by variance bounds tests can be partly explained 

by risk aversion in a consumption beta model. More recently, Black (1988) 
has discussed the relation between mean reversion and consumption smoothing. 
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begin with Lucas' (1978) model of an exchange economy and adopt parametric 

representations for preferences and the stochastic process governing the 

exogenous forcing variable (i.e., the endowment stream) which admit a closed 

form solution to the asset pricing problem. The period utility function we 

work with is the constant relative risk aversion function. For preferences 

of this sort, the coefficient of relative risk mversion is also the inverse 

of the elasticity of intertemporal substitution in consumption so that it is 

difficult to seperate agents' tolerance for risk from their desire to have 

smooth consumption. However, in a setting where agents confront an 

intertemporal consumption/investment problem It makes more sense to 

interpret the concavity of the utility function in terms of the consumption 

smoothing motive, and that is the interpretation we make. The exogenous 

forcing variable is assumed to obey Hamilton's (1988) Markov trend in 

logarithms model. This model conveniently incorporates important business 

cycle properties which are characteristic of many economic time series. In 

particular, Hamilton's representation is able to capture stochastic 

switching between positive and negative growth regimes of the time series 

and its asymmetric growth over the course of the cycle [Neftci (1984)1. 

Next, the parameters of the Markov trend in logarithms nodel are 

estimated by maximum likelihood using annual observations on the U.S. 

economy. This is done so that we can calibrate the asset pricing model by 

setting the parameters of the exogenous forcing process equal to these 

maximum likelihood estimates. Unfortunately, the theory provides little 

guidance regarding the appropriate time series on which to calibrate the 

model because in the Lucas model, equilibrium consumption equals output 

which also equals dividends. Empirically, none of these tine series appear 

to be more appropriate than the others ! priori, so we calibrate the model 
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seperately to each of the three series. It turns out that our results are 

robust to variations in the time series on which we calibrate the model. 

The maximum likelihood estimates of the Markov trend in logarithms model for 

dividends, consumption, and GNP are reported in section 3. 

In section 4, we study the measures of mean reversion which have 

appeared in the literature. These are the variance ratio statistics used by 

Poterba and Summers and the regression coefficients calculated by Fama and 

French.3 First, we caluclate these statistics from historical data on the 

Standard and Poors 500 returns. Next, a Monte Carlo distribution of these 

statistics is generated under the assumption that our equilibrium model of 

asset pricing is true. Inferences regarding the equilibrium model are then 

drawn using classical hypothesis testing procedures and the Monte Carlo 

distribution as the null. We are principally interested in two hypotheses. 

The first is the random walk model of stock prices, which is an implication 

of the Lucas model when agents have linear utility. The second hypothesis 

is that observed asset prices are determined in equilibrium but agents 

attempt to smooth their consumption. In this setting, asset returns can be 

negatively serially correlated even though they rationally reflect market 

fundamentals. 

To summarize our results, we find, for all return horizons longer 

than one year, that the variance ratio statistics and regression 

coefficients calculated from the actual Standard and Poors returns lie near 

3. We might also have examined variance bounds tests. But as Campbell and 

Shiller (1988) point out, there is an equivalence between variance ratio 

tests of the type in Poterba and Summers and variance bounds tests pioneered 
by Shiller (1981). 
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the 60 percent confidence band of the median of the Monte Carlo distribution 

generated under the linear utility (random walk) model. When investors 

display only a moderate desire to smooth their consumption, these same 

statistics calculated from the data lie at or near the median of the Monte 

Carlo distribution. When we test the null hypothesis against a diffuse 

alternative, we cannot reject the random walk model at the standard 5 

percent significance level. However, the marginal significance levels of 

the test are much smaller when the null distribution is generated assuming 

the utility function is concave. We conclude that much of the serial 

correlation in actual stock returns can be attributed to small sample bias 

but a full explanation requires concavity of the utility function. 

2. The Equi1ibriu Model. 

2.1 A Case of the Lucas Model. 

Consider the economy studied by Lucas (1978) in which there are a 

large number of infinitely lived and identical agents and a fixed number of 

assets which exogenously produce units of the same nonstoreable consumption 

good. Let there be K agents and N productive units. Each assec has a 

single perfectly divisible claim outstanding on it, and these claims are 

traded in a competitive equity market. The first—order necessary conditions 

for a typical agent's optimization problem are, 

Pj,U'(Ct) tU'(C+i)[P,t+i+ D+i] j=1,2,...,M (1) 

where = The real price of asset j in terms of the consumption good. 
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U'(C) — Marginal utility of consumption, C, for a typical 

consumer/investor. 

8 = A subjective discount factor, 0 < 0 < 1. 

= The payoff or dividend from the jth productive unit. 

Et 
= The mathematical expectation conditioned on information 

available at time t. 

In equilibrium, per capita ownership of asset j is 1/K. It follows 

that equilibrium per capita consumption, C, is the per capita claim to the 

total endowment in that period, (l/K)ZN1D. 
Now, make this substitution in 

equation (1) and sum over j to obtain an equilibrium condition involwing 

economy wide or market prices and quantities on a per capita basis. That 

P U'(D) = 0 EU' (D i)(Pt i + DtiJ, (2) 

where P (1,'K)E is the share of the market's value owned by a typical 

agent and Dt 
• (l/K)L Since each productive unit has only a single 

share outstanding, and the number of productive units are fixed, these are 

the theoretical value weighted market indices adjusted for population. 

Let preferences be given by constant relative risk aversion utility: 

TJ(C) = 
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where —o < y < 0 is the coefficient of relative risk aversion. Now (2) 

simplifies to a stochastic difference equation which is linear in PD. That 

is, 

PD = 6 EP 1D1 + (3) 

Iterating (3) forward, the current market value, P' can be expressed as a 

nonlinear function of current and expected future payoffs, 

P D E E (4) 
k=1 

To obtain a closed form solution, we must specify the stochastic process 

governing CDt) 
and this is done in the next subsection. We will refer to 

the exogenous forcing variable as dividends in the next two subsections. We 

do this because it helps to clarify the exposition, not because we restrict 

our attention to dividends when assessing the performance of the model. In 

fact, we consider alternative processes as well. 

2.2 A Nonlinear Stochastic Model for the Exogenous Forcing Process. 

Hamilton (1987) has suggested modeling the trends in nonstationary 

time series as Markov processes, and has applied this approach to the study 

of post—World War II real GNP. One of the attractive features of this 

approach is its ability to account for the asymmetric behavior that many 

macroeconomic time series display over the business cycle. Hamilton reports 
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estimates of the U.S. economy's growth state which coincide closely with 

NBER dating of postwar recessions, and Lam (1988) shows that the model 

forecasts real GNP better at short horizons than either the random walk 

model or autoregressions of low order. Since the observations we use are 

cyclical and display asymmetries characteristic of economic time series over 

the cycle, they are natural candidates for this specification. Let 
dt 

denote the logarithm of the exogenous forcing variable The Karkov trend 

in logarithms model can be written as, 

d di + + + u, s1 ' (5) 

where is a sequence of independent and identically distributed normal 

variates with zero mean and variance e2, and (s} is a sequence of Markov 

random variables which take on values of 0 or 1 with transition 

probabilities, 

Pr[s_ lIs_1 11 

Pr[s OIs_1 1] l—p, (6) 

Pr[s OIsi 

and 
Pr[st_ lI5t_ 01 l—q. 

The exogenous forcing process thus follows a random walk in logarithms 

(d=di+ t) with stochastic 
drift + o At this point, we make 

a normalization by requiring > 0 and < 0. We are said to be in a high 
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growth (boom) state when sO, and in a low growth (depression) State when 

sl. The probability of a boom next period given that the economy currently 

enjoys a boom is q, while the probability of a depression next period given 

a current depression state is p. The probabilities of transition from boom 

to depression and depression to boom are then l—q and i—p respectively. The 

exogenous forcing variable grows at the rate during a boom, and + 

during a depression. The process {s} 
can be represented as a first—order 

autoregression with an autocorrelation coefficient of (p+q—l) which can be 

interpreted as a measure of persistence in the forcing process. 

It is also useful to think of the process loosely within the 

following context. The theory relates dividends to asset prices. In actual 

economies, future nominal dividend payments are announced in advance so a 

good deal of next period's dividend growth is currently known. This is 

captured by the timing of the state in the Markov trend and in the next 

subsection, agents in the artificial economy will be assumed to observe the 

current state of the economy. From (5), the forecastable part of dividend 

growth during period t—l is + 5_' which is revealed at t—l. The 

unforecastable part of real dividend growth, c, might be thougbt of as a 

combination of unanticipated inflation and productivity shocks. 

We note at this point that it is the data, and not the discretion of 

the Investigator which will choose the regime. That is, when we calculate 

the Monte Carlo distributions implied by the model, the parameters 

of the forcing process will be set equal to maximum likelihood 

estimates obtained from the data. 
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2.3 Equi1ibriu Asset Prices. 

Assuming that the process driving the exogenous forcing variable is 

given by (5) and (6), we show in the appendix that the solution to (4) is, 

= 
Dt, (7) 

B g(s) [1 — B I 

where 
P(st) 

= - - — - 
1 — B(p + q] + B (p + q — 1) 

8 • B exp[u0(l÷-r) + (1+y)2a2/2J, 

• 
exp((1+y)1, 

1 0 

g(s) 
= 1 

(p + q — 1) = 0 

f(s) = 

p+q—l s=l 
A number of interesting features of the equilibrium price function 

emerge. First, asset prices are proportional to the forcing variable.4 

4. In the simple model studied here this implies that the price dividend 
ratio takes on one of two values, p(O) or p(l). This is a consequence of 

assuming that agents observe s. In the more realistic case in which s is 
unobserved and must be estimated, the price dividend ratio would be a 
continuous variable fluctuating between the two bounds of p(O) and p(l). 
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Second, the factor of proportionality depends on investors' the inverse of 

the elasticity of intertemporal substitution and whether the economy is 

currently in the high-growth state or low growth state according to, 

> < 

p(O) = p(l) as y = —1. 
< > 

The interpretation of this is straightforward. For a giwen level of 

current dividends, suppose that the economy is known to be in a high growth 

state (s=O). By (6), this implies that the economy is likely to remain in 

a high growth state into the future, and hence anticipated future dividends 

are high. This has two effects on asset prices that work in opposite 

directions. First, there is what we refer to as a wealth effect in which 

higher expected future dividends cause agents to want to increase their 

asset holdings. The increased asset demand arising from the wealth effect 

works to raise current asset prices. Working in the opposite direction is a 

substitution effect arising from agents' attempts to smooth their 

consumption paths. When expected future dividends are high, the consumption 

smoothing motive leads agents to want to increase current consumption in 

anticipation of higher future investment income. To finance higher current 

consumption, agents attempt to sell off part of their asset holdings, which, 

in equilibrium results in falling asset prices. Log utility (-y = —1) is a 

borderline case in which the wealth effect and the substitution effect 

exactly cancel out. This can be seen, perhaps, more clearly from (4) in 

which the solution for y = —l is Pt 
= (8,'[l—ØJ) Dt. In this case, the 

factor of proportionality relating prices to dividends is a constant. When 
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the concavity of the utility function is less than it is in the log case, 

the wealth effect assumes greater importance, so that p(O) > p(l). In the 

limiting case of linear utility (yO), the wealth effect is all that 

matters, since agents have no desire to smooth consumption. Conversely, 

when the utility function is more concave than is implied by log utility, 

the intertemporal substitution effect dominates the wealth effect causing 

p(l) > p(O). 

From (5) and (7), equilibrium gross returns are computed as, 

R = (P+ D)/Pt 1 = ([P(5)441/P(st_i)}exp(0 + 5i+ (8) 

Notice that because the gross return depends on it is a continuous random 

variable on [O,), and not a two point process. 

3. 1axi.u Likelihood Estimates of the flarkov Trend in Logarith.s Process. 

This section presents estimation results for the Markov trend in 

logarithms model of the exogenous forcing variable. The Markov trend model 

is nonlinear in the sense that current values of the forcing variable cannot 

be expressed as a linear function of past values. Even though the state, s, 

is unobservable to the econometrician, given the normality assumption on the 

t's, the parameters of the process, (p,q,a,a1,a) 
can be estimated by 

maximum likelihood. The Interested reader is directed to Hamilton (1987) 

for details on estimation or Lam (1988) who generalizes the Hasilton niodel. 

When we proceed to generate the Monte Carlo distributions from which we draw 

statistical inference regarding the model, the parameters of the model will 
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be set to the maximum likelihood estimates to match the process driving our 

model to U.S. historical data. 

The theory offers little guidance regarding the appropriate 

empirical counterpart to the exogenous forcing variable. That is because 

equilibrium consumption of section 2.1 equals output which also equals 

dividends. Consequently, we consider three time series, all in per capita 

terms5: real dividends, real consumption, and real GNP. 

The dividend data are annual observations from the Standatd and 

Poors 500 index deflated by the CPI from 1871 to 1985.6 We use these data 

as a benchmark because they represent the longest available time series, and 

we believe that the characteristics of these data are representative of 

equity returns and dividend disbursements in general. Also, the Standard 

and Poors 500 index is one of the data sets used by Poterba and Summers, so 

a direct comparison can be made with some of their results. We follow both 

Poterba and Summers and Fama and French in deflating returns by the CPI.7 

5. In an earlier version of this paper, the adjustment for population 
growth was not made. There is virtually no difference between the results 
with and without this adjustment. 

6. This is the Standard and Poors historical data used by Summers and 
Poterba. Observations on returns and the CPI from 1871 to 1926 are from 
Wilson and Jones (1987), and from Ibbotson and Sinquefield (1982) from 1926 
to 1985. Observations on nominal dividends are those used by Campbell and 
Shiller (1987). 

7. The choice of deflator is not innocuous. As both Poterba and Summers 
and Fama and French state, there is little difference between using nominal 
returns and real returns deflated by the CPI. However, we found little 
evidence of mean reversion in the Standard and Poors data when returns were 

(Footnote continues on next page) 
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The consumption data are constructed by splicing the Kendrick consumption 

series, published in Balke and Gordon (1986), from 1889 to 1928 to the 

National Income and Product Accounts data from 1929 to 1985. The real GNP 

data is constructed by combining observations from 1869 to 1908 from Romer 

(1989) with data from 1909 to 1928 from Rouser (1985), and observations from 

1929 to 1985 from the National Income and Product Accounts. per capita 

observations on each of these time—series are then obtained by dividing them 

by annual population estimates from the Historical Statistics of the United 

States and the Economic Report of the President. 

The estimation results and some summary statistics are reported in 

Table 1. For the most part, the parameters are accurately estimated. When 

the economy is in a boom this year, the estimated probability that it 

continues in a boom next year is q. As can be seen, this is .95 for 

dividends, .98 for GNP and .98 for consumption. The estimated rate of 

growth during a boom, is .013, .016, and .015 for dividends, 

GNP, and consumption, respectively. When in a boom, the estimated 

probability of a transition to a negative growth state next period, 1—q, is 

.05 for dividends, and .02 for GNP and consumption. This implies that we 

might expect to observe a crash once every 20 years or so for dividends, and 

every 50 years for consumption and GNP. While in a depression state, 

(Footnote continued from previous page) 

deflated by the FF1. This is not surprising given the difference between 

the two measures of inflation. It is well known that the CPI tends to be 

very persistent, while the PPI, which behaves more like an asset price, 
tends to be very noisy. 
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expected growth, + , is -.36 for dividends, —.16 for GNP and —.08 for 

consumption. At first glance, the expected rate of decline in dividends 

seems quite large. Sut, negative growth rates of this magnitude have 

actually occured with some degree of regularity. In fact, real dividends 

fell by more than 36 percent during 4 of the 116 years of our sample.8 

Once the economy finds itself in a depression, the probability that 

it will be in a depression the following year, p, is estimated to be .1748 

for dividends, .5096 for GNP and .5279 for consumption. We note that the 

likelihood function is flat for variations in p in estimation of the process 

using the dividend data. This is not surprising given the asymmetric 

behavior of dividends over the business cycle. That is, downturns have 

generally been short lived, lasting between 4 and 6 quarters. This makes it 

difficult to obtain a good estimate of p using annual observations.9 

We nov turn to the study of equilibrium asset prices implied by this 

nonstationary dividend process. 

4. The Serial Correlation of Equilibrium and Actual Returns. 

In this section, returns obtained from the equilibrium model of 

Section 2 are used to generate Monte Carlo distributions of the variance 

8. There were 9 years in the sample in which dividends fell between 10 and 

20 percent, and 4 years in which they fell between 20 and 30 percent. 

9. These estimates also appear reasonable in that they produce artificial 

sample paths (generated as described in the next section) that look 

remarkably like the actual time series. 
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ratio statistic used by Poterba and Summers, and the regression coefficients 

calculated by Fama and French. These distributions are generated both for 

the case of linear utility and for a case in which the utility function is 

concave. They are then used to draw inference about the equilibrium model 

and the model driving the exogenous forcing variable. For each assumption 

about the degree of investor risk aversion, the model is calibrated to the 

estimated dividend, consumption, and GNP processes reported in table 1. 

That is, the parameters of the forcing process, are set to 

the values in the columns of table 1 and each case is considered in turn. 

The subjective discount factor is assumed to be 0.98 throughout. The 

procedure is as follows: First, given p and q, we generate a sequence of 

116 's according to (6). Second, given a, we 116 independent draws from 

a normal distribution with zero mean and variance a2 are taken to form a 

sequence of Third, given ,ai,B,y,(s), and {c}, we generate 
a 

sample of 116 returns according to equation (7). For each sample of returns 

the variance ratio and regression coefficient are calculated for horizons 1 

through 10. This experiment is repeated 10,000 times. The tabulation of 

these calculations is the Monte Carlo distribution of the statistic from 

which we draw inference. The sample size of 116 is chosen to correspond to 

the 116 annual observations available in the actual Standard and Poors 

returns. To facilitate the exposition, we report the results in figures.1° 

We calculate the median and 60 percent confidence intervals about the median 

10. An appendix presenting the results in tabular form is available upon 

request. 
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of the distribution for the statistic under investigation. A median is also 

calculated from 1,000 time series samples of 1160 returns each to get an 

idea of the "true" or large sample value of the variance ratio or regression 

coefficient statistics. We refer to this as the "large" sample median. In 

the case of linear utility, the true values are known, and this calculation 

gives us a loose idea of the rate of convergence of these statistics to 

their true values. When the utility function is concave, analytic 

calculation of the true values is difficult and we take this calculation to 

be the true large sample values. Each figure displays the large and small 

sample medians, the 60 percent confidence intervals about the small sample 

median and the point estimates calculated from actual Standard and Poors 

returns. 

Given the Monte Carlo distributions of the variance ratio statistic 

and the autocorrelation coefficient on returns, we can determine the 

likelihood that the estimates obtained from actual data were drawn from the 

Monte Carlo distribution implied by equilibrium returns. 

4.1 Variance Ratios. 

Let be the one period real rate of return, and R be the simple 

k—period return. That is, Rk = R .. The variance ratio for returns 
t j0 t-j 

at the kth horizon is defined as, 

Var(R) 
VR(k) k Var(R) 

(12) 
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It is easy to show that the the variance ratio can be expressed in terms of 

the return's autocorrelations. That is, 

2 
k-i 

VR(k) = 1 + E (k-j) p., (13) 
j=i 

3 

where 
Pj 

is the jth autocorrelation on returns. When returns are serially 

uncorrelated, the variance ratio is equal to one for all k in large 

samples)1 This is usually taken as the null hypothesis in tests of "market 

efficiency," corresponds to the case where stock prices follow a random 

walk, and is true in the equilibrium model of Section 2 only when investors 

have linear utility. Stock prices are said to be "mean reverting" If 

returns are negatively correlated and evidence of mean reversion is inferred 

from variance ratios which lie below unity. This is the finding of Poterba 

and Summers. 

We consider first the case of linear utility. Figures 1—3 display 

the results under linear utility for models calibrated to the dividend, 

GNP, and consumption processes respectively. Since these returns are 

uncorrelated by construction, all of the deviation of the median of the 

variance ratio's distribution from unity is due to small sample bias. The 

serial correlation of returns, and hence their predictability is only 

apparent. This result can be viewed in the same light as the business cycle 

11. In small samples, as Poterba and Summers point out, the sample 
autocorrelations of returns are biased so E[VR(k)J 1 even when returns are 

independent. 
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in which recessions occur with random periodicity. Although real GNP may 

appear to be mean reverting, this does not imply that business cycle turning 

points are predictable. In the equilibrium model of asset prices, the 

exogenous forcing variable has a business cycle interpretation. Since 

equilibrium asset prices are proportional to the forcing variable, and its 

stochastic process implies that a boom is usually followed by a boom, the 

appearance of mean reversion in asset prices is produced, but this does 

not mean that returns are predictable. In the large sample (T=l160), most 

of the bias has dissappeared. In Figure 1, it is seen that the variance 

ratios calculated from the Standard and Poors data fall within the 60 

percent confidence interval of the Monte Carlo distribution except at the 7, 

8, and 9 year horizons when the model is calibrated to the dividend 

process.12 However, these outliers are still within the traditional 95 

percent confidence interval. The evidence is more favorable to the model 

when the forcing process is matched to consumption and GNP. Figures 2 and 3 

display variance ratios calculated from the actual data which lie uniformly 

within the 60 percent confidence interval of the median of the Monte Carlo 

distribution. 

When agents' utility function is concave, the results re even more 

favorable to the model. Figure 4 reports the results of the above 

calculations assuming concave utility with y = —1.4 and the forcing process 

matched to the dividends. Now the median of both the small and large sample 

12. These estimates of the variance ratios are smaller than those reported 

by Poterba and Summers because they make a bias correction assuming a null 

hypothesis of a homoskedastic random walk for asset prices. The bias 
correction is irrelevant for our purposes. 
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distributions of the variance ratio statistics are well below 1.0 at every 

horizon. The median of the small sample (T=116) distribution is actually 

below the variance ratios calculated from the annual returns on the S & P 

500, which implies that the equilibrium model with y = -1.4 generates more 

negative serial correlation in returns than is found in the actual data.13 

We find that the general pattern of the variance ratios calculated from the 

data is replicated rather well by the large sample median of the Monte Carlo 

distribution at all but the first horizon. The discrepancy at the first 

horizon occurs because there is almost no first order serial correlation in 

the annual returns data, while the equilibrium model produces some negative 

first order serial correlation. 

Figures 5 and 6 display the results when the forcing process is 

calibrated to the GNP process where the coefficient of relative risk 

aversion is —1.6, and the consumption process where the coefficient of 

relative risk aversion is —1.7 respectively. Here, the variance ratios 

calculated from the S & P returns lie close to the median of the 

distribution, and are uniformly within the 60 percent confidence interval 

about the median)4 We conclude that the model cannot be rejected at less 

than the 60 percent level whether the consumption smoothing motive is 

present or not. 

13. When y—2, the model yields much more mean reversion than is in the 

data. The entire 60% confidence band lies below the sample values. 

14. The above calculations were also performed for y = —4.0. As investors 
become more risk averse, the negative serial correlation in returns 

increases at a decreasing rate, and so the median of the Monte Carlo 

distribution of the variance ratio statistics moves further below 1.0. 
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4.2 Regression Coefficients on Returns of Varying Horizons. 

Consider estimating the first—order serial correlation coefficient 

on i—period returns b running the following regression: 

= a + bRt_,t + ' = l,2,...,lO (14) 

where is the continuously compounded real stock return from t to t+t. 

It is easy to show that the relation between the autocorrelations of one— 

period returns and the autocorrelation of the i—period return is, 

b 
+ 2p2 

+ . + + (t_l)Pi+ . + 2t—2 + 2r—l 
= 

+ 2(t—l)p1 + 2(t—2)p2 + 
. + 

Using monthly returns on the CRSP index, Fama and French find that the slope 

coefficient b is negative for t greater than one year. From this they 

infer that stock prices are mean reverting. Ve examine their result by 

computing the empirical distribution of these regression coefficients 

implied by the model in Section 2. 

We begin with the linear utility (y=O) case. Figures 7-9 display 

for the model calibrated to dividends, GNP, and consumption respectively, 

the median and 60 percent confidence intervals of the Monte Carlo 

distribution of the regression coefficient b, the large sample (T=1160) 

median, the estimates obtained from the Standard and Poors returns, and the 

Monte Carlo distribution function evaluated at these estimated values. 

Again, the deviation of the median of the small sample (T=116) distribution 



—21— 

from zero is due to small sample bias. This bias increases as t gets 

larger, because the effective sample size, as measured by the number of 

independent pieces of information (non—overlapping observations), decreases 

with t. For example, at the 10 year horizon, there are only 10 non— 

overlapping observations available in the Standard and Poors data, and 6 

non-overlapping observations available in the CRSP returns! The median of 

the large sample distribution (T=1160) on the other hand, Is reasonably 

close to the true value of zero. The regression coefficients calculated 

from the Standard and Poors data generally lie below the median of the small 

sample Monte Carlo distribution. For the dividend model, they are within 

the 60 percent confidence interval about the median except for the estimate 

obtained using 2 year returns. For the consumption and GNP models, the 

estimates lie uniformly within the 60 percent confidence Intervals. 

Figures 10—12 display the details of the Monte Carlo distributions 

of the regression coefficients obtained from the equilibrium returns when y 

is —1.4 in the dividend model, —1.6 in the GNP model and —1.7 in the 

consumption model. Here, it is the regression coefficient for one year 

returns which falls outside the 60 percent confidence Interval of the small 

sample median of the dividend model but lie uniformly within this interval 

for the consumption and GNP models. The distance between the small sample 

medians and the actual estimates tend to be smaller here than when agents 

have linear utility. 

4.3 Mean Reversion, S.al1 Sample Bias, and Consumption Smoothing. 

The results of the previous two subsections show that small sample 

bias and concavity of the utility function work to generate returns which 

appear mean reverting. Table 2 isolates the contribution of each of these 
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effects. For each of the forcing processes on which the model is 

calibrated, we report the deviation of the small sample median from the 

theoretical value when agents have linear utility (column 1), and the 

difference of the median generated under concave utility from the median 

generated under linear utility (column 2). When the model is calibrated to 

the dividend process, consumption smoothing seems to be the dominant effect 

in the calculation of the variance ratio. In every other case, however, the 

small sample bias dominates at the longer horizon while consumption 

smoothing dominates at the short horizons. 

5. Conclusion. 

Is mean reversion in stock prices evidence of market inefficiency? 

We investigate this question by asking whether the empirically observed time 

series properties of stock returns can be generated by an equilibrium model 

of asset pricing. Monte Carlo distributions of variance ratio statistics 

and long horizon return regression coefficients are generated using 

equilibrium returns derived from the Lucas (1978) model and a nonstationary 

Markov process governing dividends, consumption, and GNP. We conclude that 

the equilibrium model cannot be rejected in the sense that the estimates of 

serial correlation in stock returns using actual data could reasonably have 

been drawn from our Monte Carlo distribution. This result is stronger when 

agents in the equilibrium model care about smoothing their consumption 

paths. In fact, if the coefficient of relative risk aversion is betveen 1.4 

and 1.7, implying an intertemporal elasticity of substitution in consumption 

is between .58 and .71, the median of the simulated distributions conforms 

very well to the actual estimates. Perhaps surprisingly, a reasonably high 

elasticity of intertemporal substitution has substantive effects on the 
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serial correlation exhibited by simulated return series. It does not take 

much for the desire to smooth consumption to dominate any wealth effects 

produced by changes in dividends and lead to mean reversion in asset prices. 

Furthermore, our results are robust to a variety of assumptions regarding 

the properties of the exogenous forcing variable. 

We make two final points regarding our results. The first concerns 

the time series properties of the exogenous forcing variable. We believe 

that this process, whether it be dividends, consumption, or GNP, is properly 

modeled as a nonlinear stochastic process. If we are correct, this induces 

the standard specification error into computations that are based on 

assuming that this time series is some sort of linear process.15 While this 

error could lead an investigator to find either too much or too little 

serial correlation, given the process which we estimate, it is more likely 

the error will lead to too little. 

The second point concerns small sample bias and the implications of 

this bias for power in hypothesis testing. When computing statistics based 

on returns at five or ten year horizons, 116 annual observations is very 

little data. The bias is also seen to grow as the effective sample size gets 

smaller. The implication for testing the null against local alternatives is 

complementary to Summer's (1986) point that most tests of market efficiency 

have virtually no power against what he calls fad alternatives. Since we 

have shown that a properly constructed equilibrium model can generate 

rational asset prices which exhibit a very wide range of time series 

15. The recent paper by West (1988) is an example. 
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properties, it follows that, given the available data, the test of any fad 

model will have very little power against the rather wide class of 

equilibrium alternatives. More precise estimates and more powerful tests 

can only come through the passage of time and not by sampling the data more 

frequently.16 If there had been a well functioning asset market since the 

time of the Norman invasion (1066 A.D.) and we had all the necessary price 

and dividend data, then we might begin to distinguish among some of the 

competing theories. 

16. That is, in computing the autocorrelation of ten year returns, what is 
needed is more ten year time periods and not weekly or daily observations. 
All we can do is wait. 
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Appendix 

In this appendix we derive the equilibrium price function (7). 

Lower case letters are used to denote variables in logarithmic form (i.e., 

• log(X)). Given the stochastic process for the exogenous forcing variable 

in equations (5)—(6), the problem is to find the solution to (4), which we 

reproduce here for convenience. 

= D1 
k=l 

(a.1) 

We proceed in two steps. 

I. It is useful to write 
dt 

as the sum of a trend, and noise, c. That 

is, 

dt1 = n1 + (a.2) 

= n + a + a1s (a.3) 

From equations (a.2), (a.3), and (6) in the text, it follows that 

dt+k 
= d + (nf+k_ n) + jl ' k = 1,2,... (a.4) 

(a.4) can then be manipulated to obtain, 

= 6kLDtNNt+kexp 
j=l 

(a.5) 
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Now take expectations on both sides of (a.5) conditioned on time 

information. Exploit the independence and normality of the (Ct) sequence to 

obtain, 

= (DN)' 6k EtN. (a.6) 

where . ,exp[(l+y)2u2/2J. Now sum (a.6) to obtain, 

kl 
$kEDl:v (DtN') 5k EN: . (a.7) 

The problem now is to evaluate t d 
k=l 

+ 

II. From equation (a.2), it follows that, 

n+k = n + k + Ullt,k_l + k=l,2,... (a.8) 

k 
where i e £ s is the total number of "ones" realized from t+l to t+k, t,k 

j=l 

and i0 e 0. (a.8) can be manipulated to obtain, 

d = 3 (3 exp[(1+y)((k—i)0÷ lt k—11 (a.9) 

Now sum (aS) and take expectations conditioned on time t information to 

obtain, 

k=l 
EN: = N:r B EZ&exPI(l4r)(%i 't,)1 (a.l0) 



—29— 

To evaluate (a.1O), we use a result due to Hamilton (see his equation 3.17), 

which we paraphrase as follows: 

Result 1. Let 
(sr) 

be a Markov random variable which assumes values 

of 0 or 1 according to the transition probabilities given by (6), and let 

k 
i E s ., where j e 0. Then for 0 < 6 < 1, 
t,k . t+j t,0 

EtE 8exp[(aj 
+ ii)1 (a.11) 

Jo 

1 — f(s) 8 exp(m) 
1 — 8 

exp(m0) (p exp(m.) 
+ q) + &2exp(20+ ct.1))(p + q 

— 1) 

(p + q — 1) exp() s 0 

where f(s) 
p÷q—l 5tl 

Now use Result 1 to obtain, 

z 8k EtN = 
[1 — f() , (a.l2) 

k=l 
+ 

1 — (p + q) + (p + q — 1) 

where as in the text, 0 • exp(a(l+y) + (1÷y)2r2/2j and 

exp(u(l+r)J. 
Notice that for given values of Result 1 

places an upper bound on agent's subjective discount factor, . The value 

used in all of our simulations (0.98) is within the admissible region. 

Finally, substitution of (a.12) into (a.7) and (a.l) yields, 



-30— 

5 exp[(1+y) sj 11 — 5] 

t 1 - + q) + (p + q - 1) 
(a.13) 

which is equation (7) in the text. 



—31— 

Table 1. 

Maximum Likelihood Estimates and Sum mary Statistics of the Forcing Process 

yt+l 
= yt - + i St + Ct+l 

Prob [sri list 
= 1] = p 

Prob 
[St1 

= 0s = 11 1 — p 

Prob [s1 = 0i = 01 = q 
Prob [sri list 01 1 — q 

c i.i.d. — N(0, 2) 

Series 

Summary Statistics for Growth Rates of the Data: 

Mean Std. Dcv. Maximum Minimum 

Dividends —0.0038 0.1359 0.4056 —0.4673 

GNP 0.0183 0.0547 

Consumption 0.0184 0.0379 
0.1662 
0.0989 

—0.2667 
—0.1044 

Parameter Dividends GNP Consumption 

p 0.1748 0.5096 0.5279 

(0.832) (2.034) (1.985) 

q 0.9508 0.9817 0.9761 

(40.785) (76.705) (46.525) 

0.1050 0.0433 0.0320 

(13.682) (14.932) (12.297) 

a 0.0131 0.0157 0.0151 
0 

(1.579) (5.950) (6.467) 

a1 
—0.3700 —0.1760 —0.0926 

(—6.548) (—7.116) (—4.894) 



A. Variance Ratios. 

Exogenous forcing process calibrated to 

Dividends Output 
2 2 

Consumption — 
2 

1 Contri— 1 Contri— 1 Contri— 
Bias bution Bias bution Bias bution 

r y=O of y=—l.4 y=O of y=-l.6 yO of y=—l.7 
1 O.OO0 0.0000 0.0000 0.0000 0.0000 0.0000 
2 —0.0118 —0.1180 -0.0195 —0.0460 —0.0134 -0.0434 
3 -0.0301 -0.1639 -0.0580 —0.0773 —0.0382 —0.0753 
4 —0.0456 -0.1806 -0.0935 —0.0906 —0.0605 -0.1013 
5 —0.0594 —0.1925 —0.1211 —0.1039 —0.0877 —0.1110 
6 —0.0717 —0.2062 —0.1416 —0.1195 —0.1027 —0.1237 
7 —0.0866 —0.2018 —0.1478 —0.1371 —0.1298 —0.1216 
8 —0.1012 —0.2068 -0.1769 —0.1229 —0.1469 —0.1248 
9 —0.1162 —0.2097 —0.1916 -0.1248 —0.1597 —0.1325 

10 —0.1242 —0.2091 —0.2022 —0.1362 —0.1760 —0.1287 

B. Regression Coefficients. 

Exogenous forcing process calibrated to 

Consumption Dividends 
2 2 2 

1 Contri— 1 Contri— 1 Contri— 
Bias bution Bias bution Bias bution t yO of y=—l.4 y=O of y=-l.6 y=O of y-l.7 

1 —0.0156 —0.1135 —0.0201 -0.0448 -0.0120 -0.0475 
2 —0.0250 —0.0828 —0.0577 —0.0580 -0.0396 —0.0599 
3 —0.0357 —0.0566 -0.0703 —0.0542 —0.0534 —0.0575 
4 -0.0504 —0.0438 —0.0766 -0.0459 -0.0661 -0.0496 
5 —0.0634 —0.0336 -0.0829 -0.0450 -0.0778 -0.0385 
6 —0.0720 —0.0323 —0.0947 -0.0401 —0.0846 -0.0374 
7 —0.0886 —0.0282 -0.1041 -0.0282 -0.0988 -0.0317 
8 —0.1022 —0.0204 —0.1178 —0.0262 —0.1155 —0.0211 
9 —0.1222 —0.0145 —0.1234 —0.0257 —0.1252 —0.0269 
10 —0.1389 —0.0171 —0.1417 -0.0251 -0.1335 -0.0296 

1. . . Median from Monte Carlo distribution generated under assumption that y=O 
less the theoretical value. 

2. 
Difference between median of Monte Carlo distribution generated with y<O 
and the median generated with y=O. 
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Table 2 
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u
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Y
E

A
R

S
 

S
olid: 

M
e
d
i
a
n
 

o
f
 

s
.
a
l
l
 

s
a
m
p
l
e
 

M
o
n
t
e
 

C
a
r
l
o
 

d
i
s
t
r
i
b
u
t
i
o
n
 

(
1
=
1
1
6
)
.
 

D
o
t
t
e
d
:
 

6
0
 

p
e
r
c
e
n
t
 

c
o
n
t
i
d
e
n
c
e
 

i
n
t
e
r
v
a
l
 

a
b
o
u
t
 

the 
s
m
a
l
l
 

sam
ple 

m
e
d
i
a
n
.
 

T
r
i
a
n
g
l
e
:
 

M
e
d
i
a
n
 

o
t
 

t
h
e
 

l
a
r
g
e
 

s
a
m
p
l
e
 

M
o
n
t
e
 

C
a
r
l
o
 

d
i
s
t
r
i
b
u
t
i
o
n
 

(
1
=
1
1
6
0
)
.
 

S
t
a
r
:
 

g
s
t
i
.
a
t
e
s
 

u
s
i
n
g
 

S
t
a
n
d
a
r
d
 

a
n
d
 

P
o
o
r
s
 

r
e
t
u
r
n
s
 

d
e
f
l
a
t
e
d
 

b
y
 

t
h
e
 

c
o
n
s
u
m
e
r
 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 



1
.
0
8

1
.
0
3

.
9
8
0

.
9
3
0

.
8
8
0

.
8
3
0

.
7
8
0

.
7
3
0

6
8
0

.
6
3
0

•
 
5
8
0

.
5
3
0

.
4
8
0

F
i
g
u
r
e
 
6
-
-
V
a
r
i
a
n
c
e

r
a
t
i
o
s

o
n

a
c
t
u
a
l

a
n
d
 
e
q
u
i
l
i
b
r
i
u
m
 
r
e
t
u
r
n
s
.

T
h
e

e
q
u
i
l
i
b
r
i
u
m
 
m
o
d
e
l
 
a
s
s
u
m
e
s
 
t
h
a
t
 
a
g
e
n
t
s
 
h
a
v
e
 
c
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u
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c
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c
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p
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b
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c
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c
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p
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p
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b
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i
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r
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c
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.
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a
g
e
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b
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p
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c
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p
l
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b
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p
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.
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p
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b
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i
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r
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u
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i
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p
l
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p
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.
 

T
r
i
a
n
g
l
e
:
 

M
e
d
i
a
n
 

o
f
 

t
h
e
 

l
a
r
g
e
 

s
a
m
p
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r
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c
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c
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c
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p
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b
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p
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p
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b
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i
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r
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r
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u
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p
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