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Abstract

We study the problem of learning about the effect of one market-level variable (e.g., price) on

another (e.g., quantity) in the presence of shocks to unobservables (e.g., preferences). We show

that economic intuitions about the plausible size of the shocks can be informative about the

parameter of interest. We illustrate with a main application to the grain market.
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1 Introduction

Consider the problem of learning about the effect of one observed market-level variable pt (e.g.,

log price) on another observed market-level variable qt (e.g., log quantity demanded) from a finite
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time series {(pt ,qt)}T
t=1 with at least T ≥ 2 periods. Economists often specify a linear model of the

form

qt = θ pt + εt , (1)

where θ is an unknown slope (e.g., the price elasticity of demand) and εt is an unobserved factor

(e.g., preferences). Models that can be cast into the form in equation (1) include Barro and Redlick’s

(2011, equation 1) model of the effect of fiscal policy on economic growth, Fiorito and Zanella’s

(2012, equation 3) model of the supply of labor, Roberts and Schlenker’s (2013a, equations 1 and

3) model of the supply and demand for food grains, and Autor, Goldin, and Katz’s (2020, equation

2) model of the demand for skill, among many others.

Absent further restrictions, the data are uninformative about the slope θ . Economists often

learn about θ by imposing restrictions on the evolution of εt , for example that it is unrelated to

an observable instrument (e.g., Fiorito and Zanella 2012; Roberts and Schlenker 2013a), or that

it is unrelated to pt after accounting for time trends (e.g., Autor, Goldin, and Katz 2020). These

restrictions are typically motivated by economic intuitions about the determinants of εt .

In this paper we show that economic intuitions about the size of fluctuations in εt can also be

informative about θ . Suppose, for example, that log prices pt for a good vary considerably from

year to year but log quantities qt do not. Because qt is stable, fluctuations in θ pt must be offset by

fluctuations in εt . It follows that a larger price elasticity of demand—a more negative θ—implies

larger fluctuations in εt than does a smaller price elasticity of demand. Large fluctuations in εt

may be plausible if the good in question is a particular brand of scarf, preferences for which may

change radically from year to year due to advertising campaigns, changes in fashion, etc. Large

fluctuations in εt may be less plausible if the good in question is a standard agricultural commodity,

preferences for which are likely more stable. In this latter case, economic intuitions about the size

of fluctuations in εt may suggest a smaller price elasticity of demand—a less negative value of θ .

We formalize this logic by supposing we can place an upper bound B≥ 0 on a generalized power

mean, with power at least one, of the vector (|∆ε2| , ..., |∆εT |) of absolute shocks to the unobserved

factor, where ∆εt = εt − εt−1 and ∆ is the first difference operator. We show that any feasible such

bound B implies that θ lies in a closed, bounded interval. We provide a computationally tractable

characterization of the endpoints of the interval. We further show that some bounds B can be

inconsistent with the data, implying that, in some settings, we can place a lower bound on the size

of the true shocks even with no knowledge of θ .

An economist interested in informing an audience (of, say, policymakers or other economists)
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about θ can exhibit the size of shocks necessary to rationalize different values of θ or, alternatively,

the values of θ consistent with each of a range of reasonable bounds B on the size of shocks.

Such an exhibit can serve as a standalone method of learning about θ , or as a sensitivity analysis

complementing another method.

We illustrate our approach with an application to the price elasticity of demand for staple grains

following Roberts and Schlenker (2013a). Roberts and Schlenker (2013a) impose a linear model

of the form in (1) and approach estimation and inference using orthogonality restrictions with re-

spect to excluded instruments. Values of the demand elasticity θ much larger than Roberts and

Schlenker’s (2013a) point estimate imply shocks ∆εt that we consider implausibly large. Accord-

ingly, a range of reasonable bounds on the size of shocks imply informative bounds on θ that are

consistent with Roberts and Schlenker’s (2013a) inferences. An online appendix includes a sec-

ond application to the crowding out of male employment by female employment following Fukui,

Nakamura, and Steinsson (2020), and an illustration of a data-driven approach to informing bounds

based on Ellison and Ellison (2009a).

Untestable restrictions on unobservable variables seem inherently subjective, and we find it

unlikely that all economists will agree on an exact bound B (Andrews, Gentzkow, and Shapiro

2020; Andrews and Shapiro 2021). It is for this reason that we advocate reporting the implications

of a range of bounds B for the parameter θ , much as Conley, Hansen, and Rossi (2012) advocate

reporting the implications of a range of violations of the exclusion restriction for the coefficient of

interest in a linear instrumental variables model.

We also think it is unlikely that, in settings such as those we consider, economists will be unable

to form useful intuitions about the plausible size of unobserved shocks to economic variables. Such

intuitions may be informed by everyday experience (as in our scarf example), economic theory, or

by prior evidence on the determinants of the outcome variable (as we illustrate in our application).

If such intuitions exist, failing to apply them means that the economist is leaving potentially useful

information on the table.

We extend our approach in a few directions. We show how to obtain bounds on an average slope

in the case where the model takes the nonlinear form qt = q(pt)+ εt . We discuss the implications

of mismeasurement of economic variables. An online appendix discusses further extensions, in-

cluding to incorporate covariates xt , to allow for a nonseparable model qt = q̃(pt ,εt), and to obtain

bounds on a function γ (·) of one or more slope parameters.

The main contributions of this paper are to demonstrate that economic intuitions about the
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plausible size of shocks to unobservables are available and useful in important applications, and to

propose a formal approach to exploiting these intuitions. We expect that our approach will be most

useful to economists analyzing a time-series or panel of well-measured aggregate or market-level

variables. Economists analyzing cross-sectional microdata, such as from a random sample survey

of individuals, may find it difficult to motivate restrictions on the size of unmeasured economic

variables analogous to those we consider here. Economists analyzing poorly measured variables

may be able to adopt our formal approach, but, as we discuss in more detail in the paper, may

require a statistical, in addition to economic, justification for restrictions on the size of shocks.

Our formal setup is closely related to a large literature, mainly in electrical engineering and op-

timal control, that considers bounds on the size of unobservable noise in a system (see, e.g., Walter

and Piet-Lahanier 1990; Milanese et al. 1996). The focus of much of this literature is on settings

in which, unlike ours, computation of exact parameter bounds is impossible, and approximations

are needed. In the paper, we highlight some specific connections between our characterizations and

those in this and other related work.

Within economics, proposals to impose restrictions on the variability of unobserved economic

variables go back at least to Marschak and Andrews (1944; see, e.g., equation 1.37),1 and are

related to (though distinct from) approaches based on bounded support of the outcome variable

(e.g., Manski 1990). More broadly, many canonical approaches to identification impose restrictions

on the distribution of unobserved variables (see, e.g., Matzkin 2007; Tamer 2010), such as the

assumption that the unobservables are uncorrelated with an observed instrument, have a correlation

with the observed instrument that can be bounded or otherwise restricted (e.g., Conley, Hansen,

and Rossi 2012; Nevo and Rosen 2012), or are independent of or uncorrelated with one another

(e.g., Leamer 1981; Feenstra 1994; Feenstra and Weinstein 2017; MacKay and Miller 2022).2 The

online appendix discusses some connections between these types of approaches and ours.

Our approach is also related to recent proposals to learn about parameters of interest by re-

stricting the realization of unobservables rather than their distribution. In the structural vector

autoregression setting, Ben Zeev (2018) considers restrictions on the time-series properties of an

unobserved shock including the timing of its maximum value, Antolín-Díaz and Rubio-Ramírez

1Wald (1940, section 7) considers related restrictions on the distribution of measurement errors.
2See also Leontief (1929). Morgan (1990, Chapter 6) quotes a 1913 thesis by Lenoir which discusses how the

relative variability of demand and supply shocks influences the correct interpretation of data on market quantities and
prices. Leamer (1981) also imposes that the demand (supply) elasticity is negative (positive). A large literature (re-
viewed, for example, in Uhlig 2017) develops the implications of sign restrictions in a variety of settings, and a related
literature (e.g., Manski 1997) considers the implications of restrictions on functional form, including monotonicity.
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(2018) consider restrictions on the relative importance of a given shock in explaining the change

in a given observed variable during a given time period (or periods), and Ludvigson, Ma, and Ng

(2020) consider inequality constraints on the absolute magnitude of shocks during a given period

(or periods), as well as inequality constraints on the correlation between a shock and an observed

variable. In the demand estimation setting, Mullin and Snyder (2021) obtain bounds on the price

elasticity of demand in a reference period under the assumption that demand is growing over time.3

Though related, none of these sets of restrictions coincides with those we consider here. In the

policy evaluation setting with a binary treatment, Manski and Pepper (2018) consider a set of re-

strictions, including a bound on the variation in a given unit’s counterfactual outcome between pairs

of years that coincides with the restrictions we study in the two-period case.

Also in the structural vector autoregression setting, Giacomini, Kitagawa, and Read (2021)

study inferential issues that arise in the presence of restrictions on the realizations of unobservables.

Our approach instead characterizes bounds on the parameter of interest that hold with certainty

under a given bound on the size of the realized shocks ∆εt . Therefore, in common with the closely

related engineering literature that we reference above, issues of probabilistic inference do not arise

in our main setup.

The remainder of the paper is organized as follows. Section 2 presents our setup and results.

Section 3 presents our application. Section 4 presents extensions. Section 5 concludes. An ap-

pendix includes proofs of results stated in the text. An online appendix discusses additional exten-

sions, applications, and connections.

2 Setup and Characterization of Sets of Interest

2.1 Setup

For any D−dimensional vector v and any k ≥ 1, write the generalized k−mean

Mk (v) =

(
1
D

D

∑
d=1

vk
d

)1/k

,

3In our leading example of log-linear demand, this corresponds to the assumption that ∆εt > 0 for all t. Mullin and
Snyder (2021) consider a variety of forms for demand in the reference period, including linear demand, demand known
up to a scalar parameter, and concave demand.
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with M∞ (v) = maxd {vd} denoting the maximum value of the elements of v and M2 (v) denoting

their root mean squared value. Let |v|= (|v1| , ..., |vD|) denote the absolute value of the vector v.

Now let M̂k (θ) =Mk (|∆ε (θ) |) denote the k−mean of the absolute value of the vector ∆ε (θ) =

(∆ε2 (θ) , ...,∆εT (θ)), where ∆εt (θ) = ∆qt − θ∆pt is the value of the shock to the unobserved

factor in period t implied by a given slope θ . Our main object of interest is the set of slopes

Θ̂k (B) =
{

θ ∈ R : M̂k (θ)≤ B
}

(2)

that are compatible with a given bound B ≥ 0 on the value of M̂k (θ). We focus on the case where

the bound B holds with certainty, but note that our characterizations extend naturally to the case

where the bound holds probabilistically.4

In some applications, we may wish to impose direct restrictions on the possible values of the

slope θ , for example that θ ≤ 0 in the case of a demand function. To capture these direct restrictions

we will suppose that θ ∈ Θ ⊆ R, where, for example, Θ = R≤0 in the case where we impose that

θ ≤ 0, and Θ = R in the case where we impose no direct restrictions. A slope θ is compatible

with the restriction that M̂k (θ) ≤ B and with the direct restrictions if and only if it is contained in

Θ̂k (B)∩Θ.

Given the model in equation (1), a bound B ≥ 0 is compatible with the data, and with the direct

restrictions on θ , if and only if Θ̂k (B)∩Θ is nonempty. We let

B
(
k,Θ

)
=
{

B ∈ R≥0 : Θ̂k (B)∩Θ ̸= /0
}

denote the set of bounds B that are compatible with the data and with the direct restrictions on θ .

We assume throughout that pt ̸= pt+1 for at least one t < T . This condition holds in our appli-

cation. If it fails, any bound that is compatible with the data is uninformative.5

2.2 Bounds on the Maximum Absolute Value of the Shock

We begin with the case of k = ∞, in which we bound the maximum absolute value of the shock.

This case yields a particularly simple form for the sets of interest.

4By (2), Mk (|∆ε|)≤ B implies θ ∈ Θ̂k (B) and vice versa. Therefore Pr
(
θ ∈ Θ̂k (B)

)
= Pr(Mk (|∆ε|)≤ B).

5Specifically, if ∆p = 0, then M̂k (θ) = Mk (|∆q|) for all θ ∈ R, so Θ̂k (B) = R if Mk (|∆q|) ≤ B and Θ̂k (B) = /0
otherwise. Thus, in this case B (k,R) = [Mk (|∆q|) ,∞).
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Proposition 1. Let

θ ∞ (B) = max
{t:∆pt ̸=0}

{
∆qt

∆pt
− B

|∆pt |

}
θ ∞ (B) = min

{t:∆pt ̸=0}

{
∆qt

∆pt
+

B
|∆pt |

}

and let B̃ ≥ 0 be the unique solution to θ ∞

(
B̃
)
= θ ∞

(
B̃
)
.

Then B (∞,R) = [B∞,∞) for B∞ = max
{

max{t:∆pt=0} {|∆qt |} , B̃
}

, and for any B ∈ B (∞,R)

Θ̂∞ (B) =
[
θ ∞ (B) ,θ ∞ (B)

]
.

All proofs are given in the Appendix. The objects B∞, θ ∞ (B), and θ ∞ (B) defined in Proposition

1 can be readily calculated on datasets of reasonable size. In the extreme case where the bounds on

the shocks are achieved, the limit points θ ∞ (B) and θ ∞ (B) coincide, and Θ̂∞ (B) is a singleton.6

Remark. The objects characterized in Proposition 1 have antecedents in prior work. The interval

Θ̂∞ (B) solves a special case of Milanese and Belforte’s (1982) Problem B. The limit points θ ∞ (B)

and θ ∞ (B) of the interval appear in the analysis of the linear regression model with uniformly dis-

tributed errors (Robbins and Zhang 1986). Walter and Piet-Lahanier (1996) study the computation

of B∞ in a case with multiple unknown slope parameters.

2.3 Bounds on Other Generalized Means of the Absolute Value of the Shock

We next consider the case of k ∈ (1,∞). Here we make use of the following properties of the

function M̂k (θ).

Lemma 1. For k ∈ (1,∞), the function M̂k (θ) is unbounded and strictly decreasing on
(
−∞, θ̆k

)
and unbounded and strictly increasing on

(
θ̆k,∞

)
for θ̆k = argminθ M̂k (θ) .

Lemma 1 implies that M̂k (θ) has a “bowl” shape, first decreasing to a unique global minimum

and then increasing. The following characterization of Θ̂k (B) is then immediate.

Proposition 2. For k ∈ (1,∞), the set B (k,R) is equal to [Bk,∞) for Bk = minθ M̂k(θ). Moreover,

6More precisely, if M̂∞ (θ) = B at the true θ , and in particular there are s, t such that ∆ps,∆pt ̸= 0, ∆εs =
Bsgn(−∆ps), and ∆εt = Bsgn(∆pt), then

∣∣Θ̂∞ (B)
∣∣= 1.
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for any B ∈ B (k,R) we have that

Θ̂k (B) =
[
θ k(B),θ k (B)

]
where θ k(B),θ k (B) are the only solutions to M̂k(θ) = B, with θ̆k=θ k(Bk) = θ k (Bk).

Proposition 2 shows that B (k,R) is a left-bounded interval whose limit point Bk can be calcu-

lated by minimizing the function M̂k(θ). The limit point Bk has a direct economic interpretation as

the minimum size of shocks necessary to rationalize the data.

Proposition 2 further shows that Θ̂k (B) is a closed, bounded interval whose limit points can be

calculated by solving the nonlinear equation M̂k(θ) = B. By Lemma 1, on either side of θ̆k and for

B > Bk the equation is strictly monotone and has a unique solution, which simplifies computation.

If we are in the extreme case where the bounds are achieved, i.e., M̂k(θ) = B at the true θ , then

either θ k(B) = θ or θ k (B) = θ , or both if M̂k(θ) = Bk. The sets characterized in Propositions 1

and 2 are related by the fact that Θ̂∞ (B) ⊆ Θ̂k (B) for any B ≥ 0 and k ∈ (1,∞). Online Appendix

D.1 extends the analysis to the case of k = 1 and shows that Θ̂1 (B) likewise takes the form of an

interval.

Figure 1 illustrates the logic of Proposition 2 in a hypothetical example. The function M̂k(θ)

reaches a minimum at Bk, implying that any bound B′ < Bk is incompatible with the data. A

horizontal line at B > Bk intersects the function M̂k(θ) twice, defining the endpoints θ k(B),θ k (B)

of the interval Θ̂k (B).

In the special case of k = 2, in which we bound the root mean squared shock, the equation

M̂2 (θ) = B is quadratic, and so the objects B2, θ 2 (B), θ 2 (B), and θ̆2 described in Proposition 2

are available in closed form. Towards a characterization, for any D−dimensional vector v ∈RD, let

∆v = (∆v2, ...,∆vD) ∈RD−1. For any v,w ∈RD, let ŝvw = M1 (∆v◦∆w), where ◦ is the elementwise

product. We then have the following.
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Corollary 1. For k = 2 we have that

θ 2 (B) =
ŝqp

ŝpp
−

√(
ŝqp

ŝpp

)2

− 1
ŝpp

(
ŝqq −B2

)
θ 2 (B) =

ŝqp

ŝpp
+

√(
ŝqp

ŝpp

)2

− 1
ŝpp

(
ŝqq −B2

)
B2 =

√
ŝqq −

(
ŝqp

ŝpp

)2

ŝpp

θ̆2 =
ŝqp

ŝpp
.

Observe that θ̆2 = θ 2 (B2) = θ 2 (B2) corresponds to the slope of the ordinary least squares regres-

sion of ∆qt on ∆pt with no intercept, i.e., the line through the origin with best least-squares fit

to the data {(∆pt ,∆qt)}T
t=2. Reporting Θ̂2 (B) for B ≥ B2 can therefore be seen as a form of sen-

sitivity analysis with respect to an ordinary least squares estimate, relaxing the orthogonality of

∆pt and ∆εt . Online Appendices E.1 and E.2 further discuss the connection between orthogonality

restrictions and those we consider here.

3 Application to the Price Elasticity of World Demand for Sta-

ple Food Grains

3.1 Setting

Roberts and Schlenker (2013a) estimate the price elasticity of world demand for staple food grains

using annual data from 1960 through 2007. We use their code and data (Roberts and Schlenker

2013b), supplemented with data from the World Bank (2019a; 2019b) on annual world population

and GDP. From these we construct a time series
{(

pD
t ,q

D
t
)}T

t=1, where pD
t is the log of the average

current-month futures price of grains delivered in year t, measured in 2010 US dollars per calorie,

and qD
t is the log of the quantity of grains consumed in the world in year t, measured in calories per

capita.7 We also construct a measure yt of the log of the annual world GDP per capita in 2010 US

dollars.8

7We use the definitions of price and total calories from Roberts and Schlenker (2013a, Table 1, Column 2c), and
divide total calories by world population (World Bank 2019a) to obtain calories per capita.

8We deflate to 2010 US dollars using the consumer price index from Roberts and Schlenker (2013b).
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Roberts and Schlenker (2013a, equation 3) assume that the demand curve takes a log-linear

form consistent with equation (1). Their analysis treats the log-linear demand model as structural,

using it, for example, to calculate the effect on equilibrium prices and consumer surplus of the US

ethanol mandate (pp. 2278-9).

Roberts and Schlenker (2013a) adopt an instrumental variables approach to estimating the price

elasticity of demand θ D, using the contemporaneous yield shock as an excluded instrument for

price. Their paper discusses the possibility that yields are endogenous to prices, for example be-

cause growers adjust crop densities in response to prices.9 Their paper includes extensive sensitiv-

ity analysis related to their choice of instrument (see, e.g., pp. 2274-5). Roberts and Schlenker’s

(2013a) inclusion of extensive discussion and sensitivity analysis related to the identifying assump-

tion suggests that, while reasonable, not all economists immediately accept it as true, and therefore

that there may be room for alternative approaches to learning about the parameter θ D.

3.2 Forming Intuitions about the Plausible Size of Shocks

Prior research can inform economic intuitions about the size of shocks to world demand for staple

grains. The major determinants of world demand for grain in the modern period are population

and income (Johnson 1999; Valin et al. 2014). We measure demand on a per capita basis, leaving

income as a major determinant. Engel’s law (Engel 1857; Houthakker 1957) holds that the income

elasticity of demand for food is less than one. Forecasts summarized in Valin et al. (2014, Table

3) imply an income elasticity of world food crop demand ranging from 0.09 to 0.37.10 Taking the

upper end of the range, the income-driven shock to log per-capita demand in year t has absolute

value |0.37∆yt |. The largest value of this shock over the sample period is M∞ (|0.37∆y|) ≈ 0.05.

The root mean squared value is M2 (|0.37∆y|) ≈ 0.02. Shocks substantially larger than these may

seem implausible.

This discussion illustrates some aspects of our approach that are worth highlighting. One is

that intuitions about the plausible size of shocks can be informed by data other than the data being

analyzed. For example, estimates of the income elasticity of food demand can be informed by

9They write that “A potential shortcoming...is that yields themselves may be endogenous to price” (p. 2267) and
that “...yields might themselves be endogenous, which would make yield deviations an invalid instrument” (Roberts
and Schlenker 2013a, p. 2272).

10The models summarized in Valin et al. (2014, Table 3) imply that an increase from $6,700 to $16,000 in world
GDP over the period 2005-2050 will cause an increase in per capita food demand of between 8 and 38 percent. The
implied income elasticities therefore range from ln(1.08)/ ln(16000/6700) ≈ 0.088 to ln(1.38)/ ln(16000/6700) ≈
0.370.
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comparisons across countries at a point in time.11 Another is that the choice of reasonable bounds

can be contextual. For example, in earlier historical periods the income elasticity of food demand

was likely larger (see, e.g., Logan 2006), so an economist studying data from such a period might

wish to consider larger bounds BD than an economist studying data from the modern period. A

final aspect is that intuitions about the plausible size of shocks are subjective. Although we find it

implausible that shocks to demand were much larger than those that can be explained by shocks

to income alone, we do not think it is possible to defend a single numerical bound as the most

reasonable one. We therefore explore the implications of a range of bounds.

3.3 Implications of Bounds on the Size of Shocks

Figure 2 illustrates why intuitions about the size of shocks to demand are informative about the

price elasticity of demand θ D. The figure plots the value of the shock ∆εt
(
θ D) in each year t

implied by two benchmark values of θ D: the point estimate θ̂ D
RS = -0.066 given in Roberts and

Schlenker (2013a, Table 1, Column 2c), and the value θ D =−1 implying unit price elasticity. The

shocks ∆εt (−1) to per capita world food grain demand implied by unit price elasticity are, to us,

implausible, reaching values as high as 0.55, more than 10 times the largest income-driven shock,

and implying that, at constant prices, the world changed its desired consumption of food grains

by 55 percent on a per-capita basis in a single year! By contrast, the shocks ∆εt (-0.066) implied

by Roberts and Schlenker’s (2013a) point estimate appear much more reasonable. An economist

interested in informing an audience about the price elasticity of demand θ D could present a plot

similar to Figure 2, allowing the audience to evaluate the plausibility of the shocks implied by

different values of θ D.

Following the logic of Section 2, we can also directly characterize the implications for the price

elasticity θ D of a given bound BD on the size of the shocks. Figure 3 illustrates the construction

of the bounds on θ D implied by a bound of BD = 0.07 on the maximum shock. This value of BD

is chosen to be about 1.4 times larger than the largest income-driven shock, M∞ (|0.37∆y|)≈ 0.05.

The figure depicts a scatterplot of the first-differenced data
{(

∆pD
t ,∆qD

t
)}T

t=2. In first differences, a

demand function is a line through the origin with nonpositive slope θ D ∈Θ
D
=R≤0. The figure also

11Muhammad et al. (2011) estimate a model of food demand using country-level data from 2005. Alexandratos
and Bruinsma (2012, pp. 56-57) use cross-country variation to determine the relationship between calorie demand and
per-capita expenditure in 2005/2007. Several of the models summarized in Valin et al. (2014, p. 56) use the studies
by Muhammad et al. (2011) and Alexandratos and Bruinsma (2012) as source information on the income elasticity of
demand for food.
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depicts a dotted interval with radius BD = 0.07 around each point. A demand function consistent

with a bound of BD = 0.07 on the maximum absolute value of the demand shock is one that passes

through all of the dotted intervals. The figure depicts a shaded region collecting all such demand

functions, i.e., those with slope θ D ∈ Θ̂∞ (0.07)∩Θ
D.

A bound of BD = 0.07 on the maximum absolute value of the demand shock is informative about

the price elasticity of demand θ D. Such a bound implies that θ D ∈ Θ̂∞ (0.07)∩Θ
D
= [-0.122,0].

This interval contains Roberts and Schlenker’s (2013a, Table 1, Column 2c) confidence interval of

[-0.107, -0.025] fairly tightly.

Not all readers may accept the same bound BD on the size of the shock. It is therefore appealing

to display the implications for the price elasticity θ D of many possible bounds BD. Figure 4 does

this. Panel A depicts the interval Θ̂∞

(
BD)∩Θ

D of elasticities compatible with each bound BD ∈
[0,0.10] on the maximum absolute shock. Panel B depicts the interval Θ̂2

(
BD)∩Θ

D of elasticities

compatible with each bound BD ∈ [0,0.04] on the root mean squared shock. In each case, we choose

the range of bounds so that the largest bound is around twice the size Mk (|0.37∆y|) of the income-

driven shocks, thus allowing for non-income-driven shocks to demand of about the same size as the

income-driven shocks. For comparison, we also depict the point estimate and confidence interval

from Roberts and Schlenker (2013a, Table 1, Column 2c). An economist interested in informing an

audience about the price elasticity of demand θ D could present a plot simililar to Figure 4, allowing

the audience to evaluate the implications of different plausible bounds BD on the size of the shocks,

and to compare these implications to those of other approaches to learning about θ D.

Figure 4 also illustrates the interpretation of the set B
(

k,ΘD
)

, depicted as the solid portion of

the x-axes. The data imply that the maximum absolute demand shock is at least 0.039 (Panel A)

and the root mean squared demand shock is at least 0.017 (Panel B). These implications may be of

direct economic interest, and rely only on equation (1) and the sign restriction that θ D ≤ 0.

Online Appendix A includes several extensions of our analysis of the grain market. Online Ap-

pendix A.1 develops bounds on the price elasticity of supply θ S of staple grains based on bounds BS

on the size of shocks to supply, illustrated in Online Appendix Figure 1. Online Appendix A.2 char-

acterizes bounds on a function of the elasticities θ D and θ S, illustrated in Online Appendix Figure 2

with an application to the “multiplier” parameter studied in Roberts and Schlenker (2013a). Online

Appendix A.3 discusses the possibility of orthogonalizing with respect to an observed covariate,

illustrated in Online Appendix Figure 3 with an application to time trends considered in Roberts

and Schlenker (2013a). Lastly, Online Appendix Figure 4 illustrates the role of k by showing how

12



Mk (|0.37∆y|), and the value of BD needed to obtain a given bound on the price elasticity, vary with

k.

4 Extensions and Discussion

4.1 Nonlinear Model

In the setting of Section 3 and many others, the authors assume a linear relationship between the

observed variables of interest, as in equation (1). In settings where the economic model instead

implies a nonlinear relationship via a known strictly monotone link function, qt = f (θ pt + εt), we

may proceed by inverting the link function, replacing qt with f−1 (qt) in (1), as in Berry (1994).

In some settings we may instead be interested in nonlinear relationships of the form

qt = q(pt)+ εt , (3)

where q(·) is an unknown function.

In such settings, a bound on the size of the shock can be used to derive a bound on the average

slope θs,t between any two periods s < t with ps ̸= pt . In particular, we can write

qt −qs = θs,t (pt − ps)+ εt − εs

where

θs,t =
q(pt)−q(ps)

pt − ps
.

If q(·) is everywhere differentiable, then by the mean value theorem θs,t = q′ (c) for some c strictly

between ps and pt .

If we are prepared to impose an upper bound of B on the size of the shock between periods s

and t, then we can obtain a bound on the average slope θs,t via the relation

{θs,t ∈ R : |εt − εs| ≤ B}=
[

qt −qs

pt − ps
− B

|pt − ps|
,

qt −qs

pt − ps
+

B
|pt − ps|

]
. (4)

The interval given in equation (4) has the same structure as the interval Θ̂k (B), for any k, in the

linear case with T = 2.

The interval in equation (4) is informative in our application to the price elasticity of world
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demand for staple foods. Panel A of Figure 5 depicts the bounds on the average price elasticity

θ D
t−1,t if we assume that the shock in each year is no greater than BD = 0.07, as in Panel A of Figure

4. In 80 percent of years t the analysis implies that demand is price-inelastic on average between

years t −1 and t in the sense that θ D
t−1,t >−1.

Even more informative statements are possible if we are prepared to assume that q(·) is a

polynomial of known degree. Panel B of Figure 5 shows that even allowing for a polynomial

of degree 6, a substantial generalization of linearity, in 89 percent of years we can conclude that

θ D
t−1,t >−0.3.

Online Appendix D.2 shows that in the case of a nonseparable model, an analogue of the char-

acterization in (4) can be obtained via a suitable reinterpretation of the economic quantities. Online

Appendix D.3 further shows how to obtain a bound on the mean of the average slopes between

adjacent periods by coupling a bound on the size of the shock with a bound on the variation in the

slope of the function q(·).

4.2 Mismeasured Variables

Suppose that the economist observes q̂t = qt + µt for µt an unobserved measurement error.12 The

economist can proceed as in Section 2, now treating B as a bound on the size Mk (|∆εt +∆µt |)
of the absolute value |∆εt +∆µt | of the shock to the composite unobservable comprised of both

the unobserved economic factor εt and the unobserved measurement error µt . The presence of

measurement error may necessitate using different values of B and k than would be appropriate

in its absence. For example, it may be that the economist is prepared to impose a bound B on

M∞ (|∆εt |) but not on M∞ (|∆εt +∆µt |), say because occasional extreme economic shocks are not

plausible but occasional severe mismeasurement is plausible. In such a setting, the economist may

prefer to impose a bound on, say, M2 (|∆εt +∆µt |), guided by intuitions about the plausible size of

measurement error in a typical period.

Suppose that measurement error is present but the economist fails to account for it. If some

bound B applies to the size Mk (|∆εt |) of the economic shock, but only a looser bound B′ ≥ B

is appropriate for the size Mk (|∆εt +∆µt |) of the composite shock, then the economist using the

bound B that is too tight will obtain an interval for θ that is too tight, because Θ̂k (B)⊆ Θ̂k (B′).

Suppose next that it is pt , rather than qt , that is potentially mismeasured. In general, this

situation does not fit in the framework of Section 2, and therefore requires a different approach or
12Starting from any true value qt and measured value q̂t , we can always define µt ≡ q̂t −qt .
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characterization. A partial exception is the case where the measurement error in pt takes a known

statistical form, such as when it comes from sampling variation. Online Appendix Section B.3

discusses such a situation in the context of a specific application.

5 Conclusions

Unobserved shocks to economic variables have economic meaning, and economists will in some

situations have intuitions about their size. We formalize an approach to using these intuitions to

bound a slope parameter in a linear economic model that nests many models used in empirical

research. We illustrate the utility of the approach with an application, where we argue that the

approach can usefully complement existing approaches to learning about the parameter of interest.

We extend the approach to the case of nonlinear models and show that it remains informative.
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Figure 1: Illustration of Proposition 2

0

Notes: The plot illustrates the logic of Proposition 2 for a hypothetical example. For some k ∈ (1,∞), the
plot shows the k-mean of the absolute value of the shocks, M̂k (θ), as a function of the unknown slope, θ .
Given an upper bound B on M̂k (θ), we can infer that the slope θ must lie in the shaded interval Θ̂k (B) =[
θ k(B),θ k (B)

]
. Moreover, any bound B that is below Bk = M̂k

(
θ̆k
)

is incompatible with the data because it
lies below M̂k (θ) for all θ .
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Figure 2: Implied Shocks to World Demand for Food Grain Under Different Elasticities

1965 1970 1975 1980 1985 1990 1995 2000 2005

Year
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Notes: The plot depicts the shocks to demand for grain implied by different values of the price elasticity of
demand in the setting of Roberts and Schlenker (2013a) described in Section 3. Each series corresponds to
the shocks ∆εt

(
θ D
)

to demand implied by a given value of the price elasticity of demand θ D. We depict the
shocks implied by the point estimate of Roberts and Schlenker (2013a, Table 1, Column 2c), denoted θ̂ D

RS,
and the shocks implied by unit-elastic demand, θ D =−1.
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Figure 3: Constructing Bounds on an Elasticity from Bounds on Shocks
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Notes: The plot illustrates the construction of bounds on the price elasticity of demand from bounds on the
size of shocks to the demand for grain in the setting of Roberts and Schlenker (2013a) described in Section
3. The cross-hatches depict a scatterplot of the data

{(
∆pD

t ,∆qD
t
)}T

t=2. The dotted interval around each
cross-hatch has radius BD = 0.07. The shaded region depicts all demand functions consistent with an upper
bound of BD = 0.07 on the maximum absolute value of the demand shock. These are the downward-sloping
lines that pass through the origin and through all of the dotted intervals, i.e., the lines through the origin with
slope θ D ∈ Θ̂∞ (0.07)∩Θ

D for Θ
D
= R≤0.
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Figure 4: Implications of Bounds on Shocks to World Demand for Food Grain

Panel A: All Bounds BD ∈ [0,0.10] on the Maximum Shock (k = ∞)
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Panel B: All Bounds BD ∈ [0,0.04] on the Root Mean Squared Shock (k = 2)
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Notes: The plots illustrate implications of bounds on the size of shocks to the demand for grain in the setting
of Roberts and Schlenker (2013a) described in Section 3. Panel A depicts the interval Θ̂∞

(
BD
)
∩Θ

D implied

by bounds BD ∈ [0,0.10] on the maximum shock, where Θ
D
= R≤0. The dashed vertical line is at twice the

maximum absolute income-driven shock M∞ (|0.37∆y|). Panel B depicts the interval Θ̂2
(
BD
)
∩Θ

D implied
by bounds BD ∈ [0,0.04] on the root mean squared shock. The dashed vertical line is at twice the root mean
squared income-driven shock M2 (|0.37∆y|). In each plot, the horizontal line depicts the point estimate θ̂ D

RS of
the price elasticity of demand in Roberts and Schlenker (2013a, Table 1, Column 2c), and the shaded region
depicts the associated 95% confidence interval. The solid portion of the x-axis corresponds to the bounds
BD ∈ B

(
k,Θ

D
)

that are compatible with the data.
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Figure 5: Relaxing Linearity of the Demand Function

Panel A: Bound BD = 0.07, Downward-Sloping Demand
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Panel B: Bound BD = 0.07, Polynomial Demand
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Notes: Each plot depicts bounds on the average price elasticity of demand θ D
t−1,t between each pair of adjacent years

based on the assumption that the absolute shock to world demand for staple food grains is no greater than BD = 0.07.
In Panel A, the depicted bounds are formed by intersecting the set in equation (4) with the sign restriction that the
average price elasticity is nonpositive. Each line segment represents the interval of possible average price elasticities,
with an arrow indicating that the interval contains price elasticities less than −1. In Panel B, we further impose that the
function q(·) is a polynomial of known degree whose derivative is nonpositive everywhere on the closed interval from
the lowest to the highest observed price. Each line segment represents the interval of possible average price elasticities
under the given polynomial degree (from one to six).
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Appendix: Proofs of Results Stated in the Text

Proof of Proposition 1

We have that

M̂∞ (θ) = max
t∈{2,...,T}

(|∆qt −θ∆pt |) .

Therefore M̂∞ (θ)≤ B if and only if

−B ≤ ∆qt −θ∆pt ≤ B

for all t ≥ 2. For a given t ≥ 2, if ∆pt = 0 this condition is equivalent to

∆qt ∈ [−B,B] ,

whereas if ∆pt ̸= 0 it is equivalent to

θ ∈
[

∆qt

∆pt
− B

|∆pt |
,

∆qt

∆pt
+

B
|∆pt |

]
.

Therefore if B < |∆qt | for some t ≥ 2 with ∆pt = 0 then Θ̂∞ (B) = /0. So take B ≥ max{t:∆pt=0} |∆qt |.
Let θ ∞ (B) and θ ∞ (B) be as defined in the statement of the proposition. If θ ∞ (B) > θ ∞ (B), then

Θ̂∞ (B) = /0; otherwise Θ̂∞ (B) =
[
θ ∞ (B) ,θ ∞ (B)

]
. Notice that θ ∞ (B) is continuous and strictly

decreasing in B with limB→∞ θ ∞ (B) =−∞ and that θ ∞ (B) is continuous and strictly increasing in

B with limB→∞ θ ∞ (B) = ∞. Notice further that

θ ∞ (0) = max
{t:∆pt ̸=0}

{
∆qt

∆pt

}
≥ min

{t:∆pt ̸=0}

{
∆qt

∆pt

}
= θ ∞ (0) .

Therefore there is a unique solution B̃ ≥ 0 to θ ∞

(
B̃
)
= θ ∞

(
B̃
)
. The proposition then follows

immediately.
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Proof of Lemma 1

We proceed by establishing several elementary properties of the function M̂k (θ):

M̂k (θ) =

(
1

T −1

T

∑
t=2

|∆qt −θ∆pt |k
)1/k

for k ∈ (1,∞).

Property (i). M̂k (θ) is continuous in θ for all θ ∈ R.

This property follows because M̂k (θ) is a composite of continuous elementary operations.

Property (ii). limθ→−∞ M̂k (θ) = limθ→∞ M̂k (θ) = ∞.

Observe that for t ′ such that ∆pt ′ ̸= 0,

lim
θ→−∞

|∆qt ′ −θ∆pt ′|k = lim
θ→∞

|∆qt ′ −θ∆pt ′|k = ∞

whereas for t ′′ such that ∆pt ′′ = 0,

lim
θ→−∞

|∆qt ′′ −θ∆pt ′′|k = lim
θ→∞

|∆qt ′′ −θ∆pt ′′|k = |∆qt ′′|k .

The property then follows immediately because limx→∞ x1/k = ∞ for k > 0, and by assumption

∆pt ̸= 0 for some t ∈ {2, ...,T}.

Property (iii).
(
M̂k (θ)

)k is strictly convex in θ on R.

We have that (
M̂k (θ)

)k
=

(
1

T −1

T

∑
t=2

|∆qt −θ∆pt |k
)
.

If ∆pt = 0, then the function |∆qt −θ∆pt |k is trivially weakly convex in θ . Therefore it suffices

to show that if ∆pt ̸= 0 then the function |∆qt −θ∆pt |k is strictly convex in θ . But this follows

from the strict convexity of |x|k in x on R for k > 1, because if f (x) is strictly convex in x then

so is f (ax+b) for a ̸= 0.

Property (iv). There is θ̆k ∈ R such that θ̆k = argminθ M̂k (θ) .

Pick some c′ > M̂k (0). By Properties (i) and (ii), there are at least two solutions to c′ = M̂k (θ).

By Property (iii), there are at most two solutions to (c′)k =
(
M̂k (θ)

)k. Hence there are exactly

two solutions to c′ = M̂k (θ); denote these θ (c′) ,θ (c′), with θ (c′) < θ (c′). Because the

interval
[
θ (c′) ,θ (c′)

]
is compact, by Properties (i) and (iii),

(
M̂k (θ)

)k has a minimum on

25



[
θ (c′) ,θ (c′)

]
at some unique θ̆k on the interior of

[
θ (c′) ,θ (c′)

]
. But also by Property (iii),(

M̂k (θ)
)k

>
(
M̂k
(
θ̆k
))k

for any θ /∈
[
θ (c′) ,θ (c′)

]
, establishing that θ̆k = argminθ

(
M̂k (θ)

)k

and hence θ̆k = argminθ

(
M̂k (θ)

)
.

Property (v). M̂k (θ
′)> M̂k (θ

′′) for any θ ′ < θ ′′ < θ̆k and M̂k (θ
′)< M̂k (θ

′′) for any θ̆k < θ ′ < θ ′′.

This is an immediate consequence of Property (iii), applying the strict monotonicity of xk on

R≥0 for k ∈ (1,∞).

Proof of Proposition 2

This follows immediately from Lemma 1.

Proof of Corollary 1

We have that

M̂2 (θ) =

(
1

T −1

T

∑
t=2

(∆qt −θ∆pt)
2

)1/2

.

By Lemma 1, M̂2 (θ) has a unique global minimizer θ̆2. Because M̂2 (θ) is nonnegative and is

differentiable in θ when M̂2 (θ)> 0, either M̂2
(
θ̆2
)
= 0 or M̂2

(
θ̆2
)
> 0 and d

dθ
M̂2 (θ) |θ=θ̆2

= 0. In

either case we have that

ŝqp − θ̆2ŝpp = 0.

Because ŝpp ̸= 0 we can also say that

θ̆2 =
ŝqp

ŝpp
.

It then follows that

B2 = M̂2
(
θ̆2
)
= M̂2

(
ŝqp

ŝpp

)

=

√
ŝqq −

(
ŝqp

ŝpp

)2

ŝpp.

Observe that, by the Cauchy-Schwarz inequality, this expression is real-valued.

Next, by Proposition 2, the bounds θ 2(B),θ 2 (B) solve M̂2 (θ) = B which is equivalent to the

quadratic equation (
ŝqq −B2)−2θ ŝqp +θ

2ŝpp = 0.
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The roots of this quadratic equation are given by

ŝqp

ŝpp
±

√(
ŝqp

ŝpp

)2

− 1
ŝpp

(
ŝqq −B2

)
.

Observe that these roots are real-valued whenever B ≥ B2, thus completing the proof.
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A Extensions of Analysis of World Market for Staple Food Grains

A.1 Price Elasticity of World Supply of Staple Food Grains

Here we explore the information about the price elasticity of supply θ S ∈ Θ
S
= R≥0 that can be

obtained from imposing a bound BS on the size of shocks to supply. From the data described in

Section 3 we construct the time series
{(

pS
t ,q

S
t
)}T

t=1, where pS
t is the log of the average one-year-

ahead futures price of grains delivered in year t, measured in 2010 US dollars per calorie, and qS
t is

the log of the quantity of grains produced in the world in year t, measured in calories per capita. We

also obtain from Roberts and Schlenker (2013b) a measure of the shock ∆gt to agricultural yields

in year t.1

A major source of shocks to the world supply of grain is variation in agricultural yields due to

the weather (Roberts and Schlenker 2013a). The maximum absolute value of the yield shock over

the sample period is 0.057, and the root mean squared value of the yield shock is 0.024. Allowing

for shocks that do not act through yield (e.g., changes in growing area), we consider bounds BS on

supply shocks in [0,0.20] for k = ∞ and in [0,0.08] for k = 2.

Online Appendix Figure 1 depicts the implications of the contemplated bounds for the price

elasticity of supply θ S. The structure parallels that of Figure 4. The contemplated bounds are

again informative. All of the contemplated bounds imply that supply is price-inelastic, θ S < 1.

Roberts and Schlenker (2013a, Table 1, Column 2c) estimate that the price elasticity of supply is

θ̂ S
RS = 0.097 with a confidence interval of [0.060,0.134], also depicted in the plot. A bound of

BS = 0.12 on the maximum shock—more than twice the maximum yield shock—implies a price

*E-mail: marco_stenborg_petterson@brown.edu, david.seim@ne.su.se, jesse_shapiro@fas.harvard.edu
1We use the definition of the yield shock underlying Roberts and Schlenker’s (2013a) Table 1, Column 2c.
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elasticity of at most 0.130. The same bound on the price elasticity arises from a bound of BS = 0.043

on the root mean squared shock, or more than 1.7 times the root mean squared yield shock.

A.2 Bounds on a Function of Two Elasticities

Roberts and Schlenker (2013a) devote attention to the “multiplier”
(∣∣θ D

∣∣+θ S)−1, which governs

the effect on equilibrium prices of an exogenous change in quantity. Roberts and Schlenker (2013a)

conclude that the estimated multiplier is economically substantial. We can determine the implica-

tions of bounds BD, BS for any known function γ
(
θ D,θ S), such as γ

(
θ D,θ S) = (∣∣θ D

∣∣+θ S)−1,2

by forming the set

Γ̂k

(
BD,BS

)
=
{

γ

(
θ

D,θ S
)

: θ
D ∈ Θ̂k

(
BD)∩Θ

D
,θ S ∈ Θ̂k

(
BS
)
∩Θ

S
}
.

Online Appendix Figure 2 shows that the bounds we contemplate are informative in that they imply

a large multiplier. Roberts and Schlenker (2013a, Table 1, Column 2c) estimate that the multiplier

has a value of 6.31 with a confidence interval of [4.6,9.1]. A bound of BD = 0.07 on the maximum

demand shock coupled with a bound of BS = 0.12 on the maximum supply shock implies a lower

bound on the multiplier of 3.97.

A.3 Orthogonalization with Respect to Covariates

Let {xt}T
t=1 be an observed sequence of values of a (possibly vector-valued) covariate. For any θ ,

let ∆ε⊥ (θ) be the component of ∆ε (θ) orthogonal to ∆x =
(

∆x
′
2, ...,∆x

′
T

)
.3 If we are prepared

to impose an upper bound of B⊥ ≥ 0 on the k−mean of |∆ε⊥ (θ)|, then we may form the set

{θ ∈ R : Mk (|∆ε⊥ (θ)|)≤ B⊥} of parameters θ that are consistent with this bound.

We may loosely think of B⊥ as a bound on the portion of the shocks that cannot be “explained”

(statistically) by the covariates. The economic interpretation of a bound B⊥ ≥ 0 on the size of the

orthogonalized shocks ∆ε⊥ (θ) is different from that of a bound B ≥ 0 on the size of the overall

shocks ∆ε (θ). Which type of bound will be of interest in a given application will therefore depend

on whether it is easier to form economic intuitions about the size of ∆ε⊥ (θ) or about the size of

∆ε (θ).

2Another prominent example is the function γ
(
θ D,θ S

)
= θ S

(∣∣θ D
∣∣+θ S

)−1
, which determines how the incidence

of a tax is shared between consumers and producers (see, e.g., Weyl and Fabinger 2013).
3That is, ∆ε⊥ (θ) = ∆ε (θ)−∆x(∆x′∆x)−1

∆x′∆ε (θ) .
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In their model of world food demand, Roberts and Schlenker (2013a, Table 1, Column 2c)

include as a control a restricted cubic spline. Panel A of Online Appendix Figure 3 depicts the

implications of imposing a bound B⊥ on the maximum absolute value of the component of the

demand shock that is orthogonal to the components of this spline. Panel B of Online Appendix

Figure 3 depicts the implications of imposing a bound B⊥ on the maximum absolute value of the

component of the supply shock that is orthogonal to the control variables included in Roberts and

Schlenker’s (2013a, Table 1, Column 2c) model of supply.

3



Online Appendix Figure 1: Implications of Bounds on Shocks to World Supply of Food Grain

Panel A: All Bounds BS ∈ [0,0.20] on the Maximum Shock (k = ∞)
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Panel B: All Bounds BS ∈ [0,0.08] on the Root Mean Squared Shock (k = 2)
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Notes: The plots illustrate implications of bounds on the size of shocks to the supply of grain in the ap-
plication of Roberts and Schlenker (2013a) described in Online Appendix A.1. Panel A depicts the interval
Θ̂∞

(
BS
)
∩Θ

S implied by bounds BS ∈ [0,0.20] on the maximum shock, where Θ
S
=R≥0. The dashed vertical

line is at three times the maximum absolute yield shock M∞ (|∆g|). Panel B depicts the interval Θ̂2
(
BS
)
∩Θ

S

implied by bounds BD ∈ [0,0.08] on the root mean squared shock. The dashed vertical line is at three times
the root mean squared yield shock M2 (|∆g|). In each plot, the horizontal line depicts the estimate θ̂ S

RS of
the price elasticity of supply in Roberts and Schlenker (2013a, Table 1, Column 2c), and the shaded region
depicts the associated 95% confidence interval. The solid portion of the x-axis corresponds to the bounds
BD ∈ B

(
k,Θ

S
)

that are compatible with the data.
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Online Appendix Figure 2: Implications of Bounds on Shocks for the Multiplier Parameter

Panel A: Bounds on the Maximum Shock (k = ∞)

Panel B: Bounds on the Root Mean Squared Shock (k = 2)

Notes: The plots illustrate implications of bounds on the size of shocks to the supply and demand of grain
in the application of Roberts and Schlenker (2013a) described in Online Appendix A.2. Panel A considers
bounds BD ∈ [0.035,0.10], BS ∈ [0.085,0.20] on the maximum value of the shock (k = ∞). Panel B considers
bounds BD ∈ [0.015,0.04], BS ∈ [0.040,0.08] on the root mean squared shock (k = 2). In each plot, the
black surface depicts the lowest value of the multiplier γ

(
θ D,θ S

)
=
(∣∣θ D

∣∣+θ S
)−1 that is compatible with

elasticities θ D ∈ Θ̂k
(
BD
)
∩Θ

D, θ S ∈ Θ̂k
(
BS
)
∩Θ

S, i.e. the smallest element of the set Γ̂k
(
BD,BS

)
. The gray

horizontal plane depicts the point estimate γ̂RS of the multiplier in Roberts and Schlenker (2013a, Table 1,
Column 2c).
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Online Appendix Figure 3: Implications of Bounds on Orthogonalized Shocks to World Demand and Supply
for Food Grain

Panel A: All Bounds BD
⊥ ∈ [0,0.10] on the Maximum Orthogonalized Demand Shock (k = ∞)
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Panel B: All Bounds BS
⊥ ∈ [0,0.20] on the Maximum Orthogonalized Supply Shock (k = ∞)
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Notes: The plot illustrates implications of bounds on the size of orthogonalized shocks to the demand and
supply for grain in the setting of Roberts and Schlenker (2013a), following the approach described in Online
Appendix A.3. Panel A depicts the interval

{
θ ∈ Θ

D : M∞

(∣∣∆εD
⊥ (θ)

∣∣)≤ BD
⊥

}
implied by bounds BD

⊥ ∈

[0,0.10] on the maximum absolute orthogonalized shock to demand, where Θ
D
= R≤0. Panel B depicts

the interval
{

θ ∈ Θ
S : M∞

(∣∣∆εS
⊥ (θ)

∣∣)≤ BS
⊥

}
implied by bounds BD

⊥ ∈ [0,0.20] on the maximum absolute

orthogonalized shock to supply, where Θ
S
= R≥0. In each plot, we orthogonalize with respect to the first

difference of the covariates xt specified in Roberts and Schlenker (2013a, Table 1, Column 2c). In Panel A,
xt consists of the components of a five-knot restricted cubic spline. In Panel B, xt additionally includes the
yield shock gt . In each plot, the horizontal line depicts the point estimate θ̂ D

RS or θ̂ S
RS of the price elasticity

of demand or supply, respectively, in Roberts and Schlenker (2013a, Table 1, Column 2c), and the shaded
region depicts the associated 95% confidence interval. The solid portion of the x-axis corresponds to the
bounds BD

⊥ or BS
⊥ that are compatible with the data.
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Online Appendix Figure 4: Bounds on Shocks to Demand and Supply of Grain, Varying k

Panel A: Demand for Grain
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Panel B: Supply of Grain
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Notes: The plots illustrate the bound B on the k−mean of the shock that implies a given bound on the slope
θ in the application of Roberts and Schlenker (2013a). The solid line in Panel A depicts the bound BD on
the k−mean of the absolute value of the demand shock that implies the same lower bound on the demand
elasticity θ D as a bound BD of 0.07 on the maximum absolute value of the shock. The dashed line in Panel
A depicts the k−mean Mk (|0.37∆y|) of the absolute value of the income shock. The solid line in Panel B
depicts the bound BS on the k−mean of the absolute value of the supply shock that implies the same upper
bound on the supply elasticity θ S as a bound BS of 0.12 on the maximum absolute value of the shock. The
dashed line in Panel B depicts the k−mean Mk (|∆g|) of the absolute value of the yield shock. In both panels,
values are plotted for k ∈ [1,200] and k = ∞.
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B Extension to Panel Data

B.1 Setup

Our approach extends readily to the case where we observe a finite time series {(pit ,qit)}Ti
t=1

for each of a cross-section of units i ∈ {1, ...,N}, such as countries or states. Let ∆εi (θ) =

(∆εi2 (θ) , ...,∆εiTi (θ)), where ∆εit = ∆qit −θ∆pit , and define M̂ik (θ) = Mk (|∆εi (θ) |) correspond-

ingly. Suppose we are prepared to impose a bound Bi on the size of the shocks in each unit i. If

a different slope θi is thought to apply to each unit i, so that qit = θi pit + εit , then we can repeat

the exercise in Section 2, defining one set Θ̂ik (Bi) =
{

θi ∈ R : M̂ik (θi)≤ Bi
}

for each unit i. If a

common slope θ is thought to apply to each unit i, so that qit = θ pit + εit , then we can form the

set ∩N
i=1Θ̂ik (Bi), which collects those slopes θ that are compatible with the bounds Bi on the size

of the shocks in each unit i. Note that this treatment allows for imposing the same bound for all

units (Bi = B for all i), different bounds for different units (Bi ̸= B j for some i ̸= j), or no bound for

some units (Bi = ∞ for some i). Note also that, because we treat all variables in first differences,

the analysis is unchanged if we envision that qit = αi +θi pit + εit for some unit-specific intercept

αi.

Our approach also extends readily to the case where the economist wishes to impose different

bounds on the size of shocks in different time periods. To see this, note that if we partition the set

{1, ...,T} of periods into cells i ∈ {1, ...,N}, each containing a contiguous set of periods {t i, ..., t i},

then we can proceed as in the case of panel data, with the cells i of the partition now playing the

role of the cross-sectional units.

B.2 Application to Crowding Out of Male Employment by Female Employ-

ment

Fukui, Nakamura, and Steinsson (2020) estimate the crowding out θC of male employment by fe-

male employment using data on US states for 1970 and 2016. We use the code and data underlying

Fukui, Nakamura, and Steinsson’s (2020) Table 3, provided to us by the authors. From these we

obtain the cross-section {(∆ fi,∆mi)}N
i=1 consisting of the change ∆ fi in the female employment-

to-population ratio and the change ∆mi in the male employment-to-population ratio in each state i

between 1970 and 2016.

Fukui, Nakamura, and Steinsson (2020, equation 5) specify a homogenous linear relationship
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between ∆mi and ∆ fi of the form ∆mi = θC∆ fi +∆εi.4 Fukui, Nakamura, and Steinsson (2020)

adopt an instrumental variables approach to estimating the crowding out parameter θC, using var-

ious shifters of female employment as excluded instruments for ∆ fi. Here we explore what we

can learn about the crowding out parameter by imposing bounds on the size of shocks to male

employment.

During the study period, female labor force participation expanded greatly. Across US states,

the median change ∆ fi in the female employment-to-population ratio was 0.27, and the largest

change was 0.44. The major cultural and technological forces that contributed to this trend have

been widely studied and documented (see, for example, the review in Greenwood, Guner, and

Vandenbroucke 2017). Although prime-age male labor force participation declined over this period

(e.g., Binder and Bound 2019), the forces affecting male participation were arguably less dramatic

than those affecting female participation.5 Shocks to male employment on the same scale as those

to female employment may therefore seem implausible.

Imposing that the absolute shock to male employment-to-population is less than or equal to

some value B in all states means that θC ∈∩N
i=1Θ̂i (B), where the choice of k is now irrelevant as we

only observe a single difference (T = 2) in each state i.6 Imposing that crowding out is nonpositive

means that θC ∈Θ=R≤0. Online Appendix Figure 5 depicts the interval ∩N
i=1Θ̂i (B)∩Θ for all B∈

[0,0.23], or up to just over half of the largest change in ∆ fi across all states. The figure shows that

the bounds are informative. Suppose, for example, that we impose that no state’s male employment-

to-population would have changed by more than B = 0.14 in the absence of changes in female

employment-to-population. This bound is about half the median change in ∆ fi and a bit under a

third of the maximum change in ∆ fi. Then the depicted set is ∩N
i=1Θ̂i (0.14)∩Θ = [-0.33,0], which

is contained within the confidence interval of [-0.35,0.09] from Fukui, Nakamura, and Steinsson’s

(2020, Table 3, Column 2) preferred specification, as is the set ∩N
i=1Θ̂i (0.14) = [-0.33,0.03]. With

bounds B < 0.13, the interval ∩N
i=1Θ̂i (B)∩Θ implies that there must be crowding out, i.e. that

θC < 0. The interval ∩N
i=1Θ̂i (B)∩Θ contains Fukui, Nakamura, and Steinsson’s (2020, Table 3,

Column 2) preferred point estimate θ̂C
FNS = -0.13 unless B is less than 0.09.7

4To cast this into the form in equation (1), suppose that male employment in each state obeys mit = θC
i fit +εit , with

θC
i = θC for all i.

5Juhn and Potter (2006, p. 32) write, “The biggest story in labor force participation rates in recent decades involves
the labor force attachment of women.”

6That is, for any feasible bound B, we have that Θ̂ik (B) = Θ̂i (B) for all k ≥ 1.
7Fukui, Nakamura, and Steinsson (forthcoming, Table 3, Column 2) report a revised point estimate of θ̂C

FNS =−0.18
with a confidence interval of [−0.34,−0.02].
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It is also instructive to examine the shocks to male employment-to-population implied by

a given value of θC. Suppose, for example, that θC = −0.5, implying substantial crowding out.

Then to rationalize the data, six states (Iowa, Wisconsin, Alaska, Nebraska, South Dakota, and Min-

nesota) must have experienced positive shocks to male employment-to-population of between 10

and 20 percentage points, and one (North Dakota) must have experienced a positive shock of over

20 percentage points. Recall that these shocks represent the implied change in male employment-

to-population absent a change in female employment-to-population. Although there were some

important positive influences on male employment over this period (such as the fracking boom,

see, e.g., Bartik et al. 2019), such large, positive shocks to male employment across so many states

seem difficult to square with the prevailing economic understanding of influences on male labor

force participation over this period (e.g., Binder and Bound 2019).

Fukui, Nakamura, and Steinsson (2020, Section 4.3) devote significant attention to discussion

and analysis of sources of possible correlation between their instrument and unobserved shocks to

male employment. Our analysis shows that arguing that shocks to male employment were mean-

ingfully smaller than shocks to female employment over the study period, or that very negative

values of θC imply implausibly large shocks to male employment, provides another way to inform

conclusions about θC.

B.3 Accounting for Sampled Data

Fukui, Nakamura, and Steinsson (2020, Section 2) measure the variables ∆ fi and ∆mi using sur-

vey microdata. Because the survey microdata come from a random sample we can approximate

the sampling variation in the measured variables. Online Appendix Figure 6 depicts a bootstrap

estimate of the variation in the computed bounds on the crowding out parameter θC induced by

sampling variation in the measures of ∆ fi and ∆mi. Because the survey sample is fairly large, in

this application we estimate that the influence of sampling variation is modest compared to the

information contained in the bounds.
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Online Appendix Figure 5: Implications of Bounds on Shocks to Male Employment

All Bounds B ∈ [0,0.23] on the Shock
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Notes: The plot illustrates implications of bounds on the size of shocks to male employment in the setting
of Fukui, Nakmura, and Steinsson (2020) described in Online Appendix B.2. The plot depicts the interval
∩N

i=1Θ̂i (B)∩Θ implied by bounds B ∈ [0,0.23] on the shock where Θ = R≤0. The dashed vertical line
is at half the maximum absolute change in female employment-to-population maxi |∆ fi|. The horizontal
line depicts the point estimate θ̂C

FNS of the crowding out of male employment by female employment in
Fukui, Nakmura, and Steinsson (2020, Table 3, Column 2), and the shaded region depicts the associated
95% confidence interval. The solid portion of the x-axis corresponds to the bounds B ∈ B

(
k,Θ

)
that are

compatible with the data.
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Online Appendix Figure 6: Implications of Bounds on Shocks to Male Employment, Accounting for Sam-
pled Data

All Bounds B ∈ [0,0.23] on the Shock
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Notes: The plot illustrates the implications of sampling uncertainty for the bounds on the size of shocks to
male employment in the setting of Fukui, Nakmura, and Steinsson (2020) described in Online Appendix B.2.
Following Online Appendix Figure 5, the solid lines depict the interval ∩N

i=1Θ̂i (B)∩Θ implied by bounds
B ∈ [0,0.23] on the shock where Θ =R≤0. The dotted lines around the bounds depict, respectively, the 2.5th
and 97.5th percentiles of the upper and lower bounds in the sampling distribution of the variables ∆ fi and
∆mi. We obtain these percentiles from a nonparametric bootstrap with 1000 replicates. In each replicate,
we draw individuals with replacement from the survey microdata from which ∆ fi and ∆mi are calculated,
and recompute the variables on the resampled data. The dashed vertical line is at half the maximum absolute
change in female employment maxi |∆ fi|. The horizontal line depicts the point estimate θ̂C

FNS of the crowding
out of male employment by female employment in Fukui, Nakmura, and Steinsson (2020, Table 3, Column
2), and the shaded region depicts the associated 95% confidence interval. The solid portion of the x-axis
corresponds to the bounds B ∈ B

(
k,Θ

)
that are compatible with the data in the full sample. We depict the

interval ∩N
i=1Θ̂i (B)∩Θ only for B ∈ ∩N

i=1Θ̂i (B)∩Θ. We compute percentiles only among those bootstrap
replicates in which the respective bound is well-defined.
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C Data-driven Bounds with Infrequent Changes

C.1 Setup

In cases where pt changes infrequently it may be possible to inform the bound B using the

data. Divide the periods {2, ...,T} into two mutually exclusive and exhaustive groups, with

S = {t ∈ 2, ...,T : ∆pt = 0} collecting periods in which there has been no change in pt and

T = {t ∈ 2, ...,T : ∆pt ̸= 0} collecting the rest. We have already assumed that T is nonempty;

for the purpose of this section we further assume that S is also nonempty.

Now let

M̂S
k =

(
1

|S | ∑
t∈S

|∆qt |k
)1/k

=

(
1

|S | ∑
t∈S

|∆εt |k
)1/k

,

where the second equality uses the property of (1) that if ∆pt = 0 for some t, then ∆qt = ∆εt

regardless of θ . Further let

M̂T
k (θ) =

(
1

|T | ∑
t∈T

|∆εt (θ)|k
)1/k

.

Then it may be reasonable to use the value of M̂S
k to inform a choice of bound on M̂T

k (θ), for

example by supposing that M̂T
k (θ)≤ λM̂S

k for some scalar λ ≥ 1. We caution that if pt depends

on εt , for example due to optimization or market equilibrium, direct restrictions such as λ = 1 need

not be economically appealing.8

C.2 Application to Online Sales of Memory Modules

Ellison and Ellison (2009a) study the elasticity of demand for computer memory modules sold by

an internet retailer using daily data for dates in the period from May 2000 through May 2001. We

focus on the demand for low-quality memory modules from a single website owned by the retailer.

From Ellison and Ellison’s (2009b) code and data, we construct a time series {(pt ,qt)}T
t=1, where

pt is the log of the average transaction price of low-quality 128MB PC100 memory modules sold

by the website on day t, and qt is the log of the daily quantity sold, undefined for the 7 out of

T = 343 days on which no modules in this category were sold.

8Ottonello and Song (2022) discuss approaches to identification based on changes in the variability of unobserved
shocks.
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Ellison and Ellison (2009a, p. 440) assume that, when demand is positive, the demand curve

takes a log-linear form consistent with equation (1), though with εt including a function of the

price’s rank on a price-search website, which in turn depends on the price pt , as well as functions

of the prices of other types of memory modules sold by the retailer. Ellison and Ellison (2009a)

approach identification by assuming that an unobserved multiplicative structural error is mean-

independent of a vector of covariates including either prices or excluded instruments. Ellison and

Ellison (2009a, p. 441) discuss the interpretation of these identifying assumptions in a market with

infrequent price changes. Here we explore using the size of shocks on dates without price changes

to inform beliefs about the size of shocks on dates with price changes.

On the|S | = 171 days in which the price of the modules is unchanged from the preceding

day we find that the size of shocks is M̂S
∞ = 2.89 and M̂S

2 = 0.72. Online Appendix Figure 7 uses

these as a point of reference for the construction of bounds on the shocks M̂T
k (θ) during periods

with price changes. The vertical axis exhibits the bounds on θ and the horizontal axis exhibits the

multiple λ that we use in constructing the bounds. In the case of both k = ∞ and k = 2, the data

imply that M̂T
k (θ)> M̂S

k , meaning that the bound M̂T
k (θ)≤ λM̂S

k for λ = 1 is inconsistent with

the data. We find, however, that allowing λ in a neighborhood of one yields informative bounds on

θ ; these bounds exclude Ellison and Ellison’s (2009a, Table III) point estimate up to λ = 1.58.

Unlike in the application in Section 3, the setting here is one in which bounds on the size of

shocks can imply a lower bound on the absolute value |θ | of the price elasticity. Indeed, for k = 2

and λ ≤ 1.38, we find that demand must be elastic.

14



Online Appendix Figure 7: Implications of Bounds on Shocks to Memory Module Demand

Panel A: All Bounds λ ∈ [1,1.5] on the Relative Maximum Shock (k = ∞)
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Panel B: All Bounds λ ∈ [1,1.5] on the Relative Root Mean Squared Shock (k = 2)
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Notes: The plot illustrates implications of bounds on the relative size of shocks to memory module demand in
the setting of Ellison and Ellison (2009a) described in Online Appendix C.2. The plot depicts the nonpositive
values of θ consistent with bounds M̂T

k (θ)≤ λM̂S
k on the shock where M̂S

k is the k−mean of the shock in
periods with no price change, M̂T

k (θ) is the k−mean of the shock in periods with a price change, and we
consider values λ ∈ [1,1.5]. The horizontal line depicts the point estimate θ̂EE of the elasticity in Ellison
and Ellison (2009a, Table III). The solid portion of the x-axis corresponds to the relative bounds λ that are
compatible with the data.
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D Extensions of Formal Approach

D.1 Bounds on the Mean Absolute Deviation (k = 1)

Proposition 3. For k = 1, the set B (1,R) is equal to [B1,∞) for B1 = minθ M̂1(θ). Moreover, for

any B ∈ B (B1,R) we have that

Θ̂1 (B) =
[
θ 1(B),θ 1 (B)

]
where θ 1(B),θ 1 (B) are finite.

The proof is similar to that of Lemma 1 and Proposition 2, but accounts for the fact that the

function M̂1(θ) need not have a unique minimum.

Proof of Proposition 3

We begin by establishing several elementary properties of the function M̂1 (θ):

M̂1 (θ) =

(
1

T −1

T

∑
t=2

|∆qt −θ∆pt |
)
.

Property (i). M̂1 (θ) is continuous in θ for all θ ∈ R.

This property follows because M̂1 (θ) is a composite of continuous elementary operations.

Property (ii). limθ→−∞ M̂1 (θ) = limθ→∞ M̂1 (θ) = ∞.

Observe that for t ′ such that ∆pt ′ ̸= 0,

lim
θ→−∞

|∆qt ′ −θ∆pt ′|= lim
θ→∞

|∆qt ′ −θ∆pt ′|= ∞

whereas for t ′′ such that ∆pt ′′ = 0,

lim
θ→−∞

|∆qt ′′ −θ∆pt ′′|= lim
θ→∞

|∆qt ′′ −θ∆pt ′′|= |∆qt ′′| .

The property then follows immediately because by assumption ∆pt ̸= 0 for some t ∈ {2, ...,T}.

Property (iii). M̂1 (θ) is convex in θ on R.

This follows from the convexity of |x| in x on R, because if f (x) is convex in x then so is

f (ax+b).
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Now pick c > M̂1 (0). The set
{

θ ∈ R : M̂1 (θ)≤ c
}

is closed by (i) and convex by (iii), and so

min{θ∈R:M̂1(θ)≤c} M̂1 (θ) must exist. But by (i), (ii), and (iii), M̂1 (θ)≥ min{θ∈R:M̂1(θ)≤c} M̂1 (θ),

so that minθ M̂1 (θ) must exist. Therefore let B1 = minθ M̂1 (θ) and note that B (1,R) = [B1,∞).

Next pick B ∈ B (B1,R). The set Θ̂1 (B) =
{

θ ∈ R : M̂1 (θ)≤ B
}

is closed by (i), so define

θ 1(B),θ 1 (B) as its extreme points. The set Θ̂1 (B) is convex by (iii), so Θ̂1 (B) =
[
θ 1(B),θ 1 (B)

]
.

D.2 Nonseparable Model

Relative to Section 4.1, a further relaxation of the model in equation (1) can be written as

qt = q̃(pt ,εt) (5)

where εt may now be non-scalar or even infinite-dimensional. The model in equation (5) can

accommodate any functional relationship between qt and pt , including relationships that depend

on the time period t.9

It is again possible to bound the average slope θ̃s,t between any two periods s < t with ps ̸= pt ,

where now

qt −qs = θ̃s,t (pt − ps)+ ε̃t,t − ε̃t,s

with

θ̃s,t =
q̃(pt ,εs)− q̃(ps,εs)

pt − ps

and

ε̃t,t − ε̃t,s = q̃(pt ,εt)− q̃(pt ,εs) .

Here θ̃s,t describes the average slope of q̃(·,εs) between ps and pt , fixing the unobserved factor at

εs. The shock ε̃t,t − ε̃t,s describes the effect on qt of changing the unobserved factor from εs to εt ,

fixing the value of pt .

If we are prepared to impose an upper bound of B on the size of |ε̃t,t − ε̃t,s|, then the resulting

bounds on θ̃s,t follow an analogous structure to the set in equation (4).10 In the context of our ap-

plication to the price elasticity of world demand for staple food grains, this means that the intervals

9Fixing any such relationship qt = q̃t (pt ,ζt) for ζt an unobserved factor, let εt = (ζt , t) and define q̃(·, ·) so that
q̃(pt ,εt) = q̃t (pt ,ζt) for all ζt and t.

10Specifically, {
θ̃s,t ∈ R : |ε̃t,t − ε̃t,s| ≤ B

}
=
[

qt −qs

pt − ps
− B

|pt − ps|
,

qt −qs

pt − ps
+

B
|pt − ps|

]
.
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depicted in Panel A of Figure 5 can be interpreted as showing the bounds on θ̃s,t implied by a bound

of BD = 0.07 on the change in quantity demanded at given prices pt between periods t −1 and t.

D.3 Bounds on an Average Slope

In the setting of Section 4.1, a bound on the size of the shock, coupled with a bound on the variation

in the slope of the function q(·), can be used to bound the mean θ = M1

(
θ⃗

)
of the average slopes

θ⃗ = (θ1,2, ...,θT−1,T ) between adjacent periods. Specifically, we can write that

∆qt = θ∆pt +
(
θt−1,t −θ

)
∆pt +∆εt .

By the Minkowski inequality we have that

Mk

(∣∣∣(θ⃗ −θ

)
◦∆p+∆ε

∣∣∣)≤ Mk

(∣∣∣(θ⃗ −θ

)
◦∆p

∣∣∣)+Mk (|∆ε|) .

Therefore if we are prepared to impose a bound Mk (|∆ε|)≤ B on the size of the shocks and a bound

Mk

(∣∣∣(θ⃗ −θ

)
◦∆p

∣∣∣) ≤ V on the scaled deviation of the average slopes from θ , then we can say

that θ ∈ Θ̂k (B+V ).11

11If q(·) is linear, as in equation (1), then V = 0.
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E Connections to Other Approaches

E.1 Orthogonality Restrictions

Let zt be some observed variable transformed so that M1 (∆z) = 0 and M2 (∆z) = 1.12 Consider a

restriction of the form

|M1 (∆ε (θ)◦∆z)| ≤C (6)

where C ≥ 0 is a scalar. An orthogonality restriction is such a restriction that takes C = 0.13

Restrictions of the form in (6) are related to those we consider in the sense that, from the

Cauchy-Schwarz inequality and the fact that ∆z is standardized,

(M1 (∆ε (θ)◦∆z))2 ≤ (M2 (∆ε (θ)))2 .

Hence M2 (∆ε (θ)) = M̂2 (θ)≤ B implies that |M1 (∆ε (θ)◦∆z)| ≤ B.

As a further connection, observe that, by the same argument as in the proof of Corollary 1,

θ̆2 = argminθ M̂2 (θ) solves
1

T −1

T

∑
t=2

∆εt (θ)∆pt = 0. (7)

For ∆pt standardized, equation (7) is equivalent to an orthogonality restriction with ∆zt = ∆pt .

E.2 Cross-Equation Restrictions

Let ∆εD
t
(
θ D) = ∆qD

t − θ D∆pD
t and ∆εS

t
(
θ S) = ∆qS

t − θ S∆pS
t , and assume in the spirit of static

competitive equilibrium that ∆qD
t = ∆qS

t = ∆qt and ∆pD
t = ∆pS

t = ∆pt .14 Then

{
θ

D,θ S : Mk
(∣∣∆ε

D (
θ

D)∣∣)≤ BD,Mk

(∣∣∣∆ε
S
(

θ
S
)∣∣∣)≤ BS

}
= Θ̂k

(
BD)× Θ̂k

(
BS
)
.

Intuitively, because any pair
(
θ D,θ S) ∈ Θ̂k

(
BD)× Θ̂k

(
BS) is consistent with the data, and by

assumption the data are consistent with equilibrium, any such pair must also be consistent with

12Beginning with a variable z̃t we can take zt = M2 (∆z̃−M1 (∆z̃)JT−1,1)
−1 (z̃t − (t −1)M1 (∆z̃)), for JT−1,1 the

(T −1)−dimensional vector of ones.
13When C = 0, the inequality in (6) implies that θ = M1 (∆q◦∆z)/M1 (∆p◦∆z) when this ratio—the linear

instrumental-variables estimator—is well-defined.
14In the world market for staple food grains, the quantity demanded and quantity supplied need not be equal at a

given point in time (and likewise for the demand price and the supply price) because grain can be stored and planting
decisions are made in advance of consumption (Roberts and Schlenker 2013a).
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equilibrium. In this sense, given a bound BD on the size of the shocks ∆εD (θ D), there is no further

information about θ D to be obtained by placing a bound BS on the size of the shocks ∆εS (θ S), and

vice versa.

The situation is different if we are prepared to restrict the relationship between the shocks

∆εD
t
(
θ D) and the shocks ∆εS

t
(
θ S). For illustration, suppose that M1 (∆q) = M1 (∆p) = 0 and take

the restriction that ∣∣∣M1

(
∆ε

D (
θ

D)◦∆ε
S
(

θ
S
))∣∣∣≤ R. (8)

If R = 0 then (
θ

D − θ̆2
)(

θ
S − θ̆2

)
=

( ŝqp√
ŝppŝqq

)2

−1

 ŝqq

ŝpp

which is analogous to Leamer (1981, equation 6). If θ S ≥ 0 and θ D ≤ 0, then, again following

Leamer (1981), if θ̆2 < 0, then θ D ≤ θ̆2, and if θ̆2 > 0, then θ S ≥ θ̆2.
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