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I. Introduction 

 

Much of modern empirical asset pricing has been devoted to documenting and testing whether 

expected asset returns vary through time. A typical predictive regression involves the researcher 

regressing asset returns, ,  on some lagged predictive variable, , using T periods of data. 

is often a price-based measure of some underlying asset (such as a valuation ratio or yield), 

which itself is persistent and mean-reverting. For example: 

, 1 1 1 1

1 1

t t t t

t t t

R X u
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+ +

+ +

= + +

= + +
                                                    (1)                                                           

In highly impactful research, Stambaugh (1999) shows that if  (which is common in the 

stock return prediction literature) then the OLS estimator  will be biased. Indeed, for the model 

in equation (1), he derives the result,  . It is now standard 

to adjust the  coefficient estimator for this bias (e.g., see also Amihud and Hurvich (2004)).  

 

Once the above estimators have been biased-adjusted, predictability regressions are quite 

disappointing, exhibiting low R2s and insignificant t-statistics. In an attempt to generate greater 

test power and motivated by theories of low frequency mean-reversion in expected returns (either 

behavioral or risk-based), researchers have looked to predict long-horizon returns. A typical long-

horizon regression involves the researcher regressing J horizon returns of an asset, ,  on some 

lagged predictive variable, , using T periods of data: 

                                                                                           (2) 

If the researcher estimates equation (2) by sampling every Jth period, using nonoverlapping sample 

length  (denote as nol), standard ordinary least squares (OLS) applies.  For large J, however, 

the sample size is often small, leading researchers to estimate regression (2) using all available 

overlapping data (denote as ol). Using more data increases the asymptotic efficiency of the 

estimators but also leads to the misspecification of OLS standard errors due to autocorrelated 

errors. As a consequence, researchers adjust the standard errors using one of the various 
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heteroscedasticity and autocorrelation (HAC) adjusted estimators that have been developed, with 

Newey and West (1987) being the preferred choice in the finance literature. 

 

Fama and French (1988, 1989) were the first to examine equation (2) using dividend yields as their 

original predictive variable. In his AFA presidential address, Cochrane (2011) chooses dividend-

price ratios to highlight the large amounts of time-variation of discount rates. Indeed, he argues all 

price-dividend variation corresponds to expected return variation. As an illustration of his findings, 

using his sample period (1947-2009), Figure 1 below graphs 𝛽̂𝐽
𝑜𝑙 (red) for forecasting horizons of 

one month (J=1) to five years (J=60). While recognizing issues with estimated standard errors, 

Cochrane (2011) points out that the regression coefficients are nevertheless economically large 

and increasing with the horizon. This view of the evidence is the prevailing one in the literature. 

 

While it is known that long-horizon predictive regression coefficient estimators are biased in small 

samples, existing studies make this point using simulation evidence.1 There is no analytical result 

analogous to Stambaugh (1999). Possibly because of the lack of a theoretical result, researchers 

rarely adjust long horizon regressions for the bias, an example being Cochrane (2011).  

 

In this paper, we derive the analytical small-sample bias for long-horizon regressions. Similar to 

Stambaugh’s formula, the bias of the coefficient estimator of the long-horizon overlapping 

regression is a function of  the correlation between the innovation in returns and the predictive 

variable (
uv

 ), the autocorrelation of the predictive variable , and the sample size T, but now also 

the horizon J. Specifically,  𝐸[𝛽̂𝐽
𝑜𝑙 − 𝛽𝐽] =  

1

𝑇
[𝐽(1 + 𝜌) + 2𝜌 (

1−𝜌𝐽

1−𝜌
)]

𝜎𝑢𝑣

𝜎𝑣
2  . Using this formula to 

adjust 𝛽̂𝐽
𝑜𝑙 for its small sample bias, the black line in Figure 1 below shows that these bias-adjusted 

coefficients are in fact not economically significant, but rather small in magnitude. As Cochrane 

(2011) puts it, “discount rate variation is the central question of current asset pricing research”. 

Figure 1 suggests a rethink of arguably our most important stylized fact describing this variation. 

 

 

 
1 See, for example, Goetzmann and Jorion (1993), Nelson and Kim (1993) and Torous, Valkanov and Yan (2000). 
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Figure 1: Overlapping Regression Beta and Bias-Adjusted Beta for DP 

Figure 1 graphs 𝛽̂𝐽
𝑜𝑙 (red) and the bias-adjusted beta, 𝛽̂𝐽

𝑜𝑙 − 𝐸[𝛽̂𝐽
𝑜𝑙] (black), for forecasting horizons of one month  

(J=1) to five years (J=60), where the bias is calculated under an AR1 Assumption for DPt using the estimated 

𝐸[𝛽̂𝐽
𝑜𝑙 − 𝛽𝐽] =

1

𝑇
[𝐽(1 + 𝜌) + 2𝜌 (

1−𝜌𝐽

1−𝜌
)]

𝜎𝑢𝑣

𝜎𝑣
2 . Data is obtained from Amit Goyal’s website (see Goyal Welch (2008)). 

Sample period is 1947-2009 (corresponding to the period used by Cochrane (2011)), T=732m, 𝜎̂𝑢𝑣 = −0.00178,  

𝜎̂𝑢 = 0.042, 𝜎̂𝑣 = 0.043 and 𝜌̂𝑎𝑑𝑗=0.9996. 

 

 

The above formula implies the bias is monotonically increasing, albeit nonlinearly, in J and . It 

is fairly standard to show results for multiple long horizon regressions with increasing J. Note that, 

for large J, the bias is linearly increasing in J T with a slope ( ) 21 uv

v




+  and, importantly, the bias 

never asymptotes.  

 

Because of problems associated with estimation of HAC standard errors in small samples, such as 

Newey and West (1987) 2, researchers have used alternative long-horizon regression equations to 

those in equation (2), including nonoverlapping regressions; single period return regressions on 

lagged sums of the predictive variable 
1

J

t j

j

X
−

=

  (e.g., see Jegadeesh (1991) and Hodrick (1992)); 

 
2 See, for example, Richardson and Stock (1989), Andrews (1991), Nelson and Kim (1993), Goetzmann and Jorion 

(1993), Newey and West (1994), Bekaert, Hodrick and Marshall (1997), Valkanov (2003), Hjalmarsson (2011), 

Britten‐Jones, Neuberger, and Nolte (2011), Chen and Tsang  (2013) and Boudoukh, Israel and Richardson (2019)  

for the use of Newey and West (1987) standard errors. 
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and implied long-horizon coefficients using the structure of equation (1) (e.g., see Kandel and 

Stambaugh (1989), Campbell (1991) and Hodrick (1992)). In this paper, we derive the small 

sample biases of these variants of long-horizon regressions. Some interesting results emerge. Most 

surprising, for all  and J, the small sample bias is more severe for overlapping versus 

nonoverlapping regressions. In addition, we show that the popular Jegadeesh (1991)/Hodrick 

(1992) alternative long-horizon regression is severely biased. We explain why and relate it to 

common empirical methodologies employed in the finance and macroeconomics literature. The 

theoretical results suggest the need to reexamine common approaches to return forecasting. 

 

What effect do these small sample biases have on existing evidence of long-horizon predictability? 

Focusing on a representative list of popular valuation ratio predictors, we study the impact of small 

sample biases on predictability evidence. Aside from a couple of surprising departures, the 

evidence in favor of predictability mostly disappears. 

 

II. Small Sample Bias in Long-Horizon Predictive Regressions 

 

The coefficient estimates from long-horizon regressions of equation (2) are rarely adjusted for 

small sample bias. Past researchers have provided Monte Carlo or bootstrapped p-values to capture 

the idea that the distribution of the estimators does not conform to the consistent asymptotic normal 

distributions implied by the theory (e.g., Goetzmann and Jorion (1993) and Kim and Nelson 

(1993)). This literature finds that the point estimates deserve less confidence (i.e., are less 

“statistically significant”). To employ as much of the data as possible, researchers often use 

overlapping observations. The use of overlapping observations requires estimates of HAC standard 

errors, and researchers frequently employ the procedure of Newey and West (1987). Yet, there is 

a body of simulation evidence that documents biases in small samples associated with HAC 

standard error calculations and their effect on “t-statistics” (e.g., see footnote 2). But, importantly, 

typically in this area of research, the point estimates remain untouched. 

 

As an alternative to regression equation (2), researchers often choose to reverse the regression 

utilizing the fact that the covariance between J-period returns and a lagged predictor is identical to 
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the covariance between a one-period return and a lagged J-sum of the same predictor (e.g., 

Jegadeesh (1991) and Hodrick (1992)): 

                                                    , 1 , , 1t t J J t j t t t
R X  

+ − +
= + +                                                  (3) 

Since there are no overlapping errors, one advantage of equation (3) is that standard OLS applies. 

Boudoukh and Richardson (1994) show that the asymptotic efficiency of ˆ ol

J
  and ˆ

J
  are identical 

though they argue ˆ
J

 is likely to have worse small sample properties due to its required estimation 

of the long-horizon variance estimator, ( ),
var

t J J
X

−
. They show that, for small persistence in Xt, 

i.e., low , both ˆ ol

J
  and ˆ

J
 are much more asymptotically efficient than ˆ nol

J
 . However, for  close 

to 1, all the estimators are similar on the efficiency front. If this is the case in small samples, then 

the bias magnitude of these estimators should play an even larger role with respect to the 

researcher’s choice of estimator. 

 

Figure 2 below provides simulated boxplots of the distribution of the long-horizon estimators - 

ˆ ol

J
 (red), ˆ nol

J
 (black) and ˆ

J
 (green). The boxplots are shown at the 5%, 25%, 50%, 75% and 95% 

levels for =0.7, 0.90, 0.95 and 0.99 for J=12, 36 and J=60 and T=600. While the distribution of 

ˆ nol

J
 is wider than ˆ ol

J
 for less persistent predictors (e.g., =0.7 and 0.9), there is little difference 

between ˆ nol

J
  and ˆ ol

J
 for highly persistent variables (e.g., =0.99) such as commonly found for 

valuation ratios. Interestingly, ˆ
J

 is a particularly poor estimator in terms of efficiency for large . 

Figure 2 also demonstrates the underlying bias of the estimators. The median of the distribution is 

substantially above the zero line (yellow) for each horizon J and persistence .  Moreover, the 

medians are increasing in the horizon and can generally be ordered in magnitude from ˆ nol

J
 to ˆ ol

J


to ˆ
J

 for different ’s and J’s. In this section, we derive the analytical small sample bias of the 

above estimators in long-horizon predictive regressions. 
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Figure 2: Box Plot of Long Horizon Estimators 

Figure 2 below provides simulated boxplots of the distribution of the long-horizon estimators - ˆ ol

J
 (red), ˆ nol

J
 (black) 

and ˆ
J

 (green). The boxplots are shown at the 5%, 25%, 50%, 75% and 95% levels for =0.7, 0.90, 0.95 and 0.99 for 

J=12, 36 and J=60 and T=600. 

 

  

  
 

 

A. Analytical Bias Calculations for Long-Horizon Estimators 

 

Given the process for Xt in equation (1) and the long-horizon regression of equation (2), we 

derive the following proposition for the small sample bias of the nonoverlapping and overlapping 

OLS estimators, nol

J
 and ol

J
 , under the null

1
0 = : 

Proposition 1: 𝐸[𝛽̂𝐽
𝑛𝑜𝑙 − 𝛽𝐽] = −

𝐽

𝑇

(1+𝜌)(1+3𝜌𝐽)

1+𝜌𝐽  
𝜎𝑢𝑣

𝜎𝑣
2  

Proof (see Appendix) 

 

Proposition 2: 𝐸[𝛽̂𝐽
𝑜𝑙 − 𝛽𝐽] = −

1

𝑇
[𝐽(1 + 𝜌) + 2𝜌 (

1−𝜌𝐽

1−𝜌
)]

𝜎𝑢𝑣

𝜎𝑣
2  

Proof (see Appendix) 
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Figure 3 graphs the small sample bias terms, 
𝐽(1+𝜌)(1+3𝜌𝐽)

1+𝜌𝐽  and  𝐽(1 + 𝜌) + 2𝜌 (
1−𝜌𝐽

1−𝜌
), as a function 

of the horizon J  for different levels of persistence,  namely 0.70, 0.9 0.95, and 0.99. The reason 

for choosing high values of  reflects the high persistence level of most stock return predictive 

variables. The theoretical 𝛽̂𝐽
𝑛𝑜𝑙 biases are depicted as thin lines in Figure 3, while the theoretical 

𝛽̂𝐽
𝑜𝑙 biases are given by thick lines. 

 

Several observations are in order. First, the ol and nol biases are always increasing in the horizon 

J and persistence . Second, this increase (at least theoretically) is generally nonlinear in shape, 

starting out as a concave function and eventually (as J increases) turning linear. This conversion 

from a concave to linear function depends on how quickly 𝜌𝐽 goes to zero. Third, to this point, for 

values of  and large J such that 𝜌𝐽 ≈ 0, the biases are approximately 
𝐽(1+𝜌)

𝑇
 
𝜎𝑢𝑣

𝜎𝑣
2  and 

𝐽(1+𝜌)+2( 𝜌
1−𝜌

)

𝑇
 
𝜎𝑢𝑣

𝜎𝑣
2  for the nonoverlapping and overlapping regresssions respectively. Note that for 

both types of regressions the biases are increasing in  
𝐽

𝑇
 with slope  

(1+𝜌)𝜎𝑢𝑣

𝜎𝑣
2 . In other words, the 

slope varies between 1 to 2 times 
𝜎𝑢𝑣

𝜎𝑣
2  depending on the value of . Fourth, the aforementioned 

approximation (for 𝜌𝐽 ≈ 0)  and exact calculations provided in Figure 3 show that the ol estimator 

is everywhere more biased than the nol estimator for a given  and J. This result is surprising given 

that researchers estimate equation (2) using all available overlapping data. While the ol estimator 

in theory improves the asymptotic efficiency of the estimator though less so for highly persistent 

variables (as shown in Figure 2), little is known about its small sample bias relative to the 

nonoverlapping case. It may have been logical to believe, however, that the use of “J”-times the 

data should reduce the bias, but propositions 1 and 2 show this is not the case. 
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Figure 3: Analytical Bias of Estimators in Nonoverlapping and Overlapping Long-Horizon 

Return Regressions 

Figure 3 depicts the small sample bias terms of the coefficient estimators for nonoverlapping and overlapping J-

horizon return regressions on a variable Xt with AR(1) coefficient : 𝐸[𝛽̂𝐽
𝑛𝑜𝑙 − 𝛽𝐽] =

𝐽

𝑇

(1+𝜌)(1+3𝜌𝐽)

1+𝜌𝐽  
𝜎𝑢𝑣

𝜎𝑣
2   (nol, thin 

lines) and 𝐸[𝛽̂𝐽
𝑜𝑙 − 𝛽𝐽] =

1

𝑇
[𝐽(1 + 𝜌) + 2𝜌 (

1−𝜌𝐽

1−𝜌
)]

𝜎𝑢𝑣

𝜎𝑣
2  (ol, thick lines). For simplicity of interpretation, we use 

𝜎𝑢𝑣

𝜎𝑣
2 =

1, T=600, and different levels of persistence, , namely 0.70, 0.9 0.95, and 0.99. 

 

 

 

Richardson and Stock (1989) and Valkanov (2003), among others, show that standard fixed J 

asymptotic theory (
𝐽

𝑇
→ 0) provides a poor approximation to the true distribution of 𝛽̂𝐽, instead 

arguing for an alternative asymptotic theory based on (
𝐽

𝑇
→ 𝛿).3  As Richardson and Stock (1989) 

argue, the point of asymptotic theory is to provide an approximation to the small sample 

distribution, so it is irrelevant whether the econometrician’s choice of J is influenced by . 

Practically, for large J relative to T, the (
𝐽

𝑇
→ 𝛿) theory provides a better approximation to the 

sampling distribution of 𝛽̂𝐽 than the fixed J-asymptotics (
𝐽

𝑇
→ 0) theory, resulting in more accurate 

critical values. The results of Propositions 1 and 2 provide an explanation. While the slope of this 

 
3 See also Campbell and Yogo (2006) and Hjalmarsson (2011). Most of the asymptotic theory is derived under local-

to-unity asymptotics in which 1 c

T
 = − , so that  approaches one as T goes to infinity (e.g., Elliott and Stock 

(1994)). 
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linear relationship varies across , the bias is nevertheless increasing in 
𝐽

𝑇
, so  𝛿 is a sufficient 

statistic. In other words, the small sample bias is similar for  
𝐽

𝑇
=

𝐽∗

𝑇∗
= 𝛿. Importantly, this result 

has nothing to do with J being large relative to T; it holds for all J and T. 

 

As pointed out by Stambaugh (1999), his small sample bias is an approximation, so there will be 

a departure between the small sample bias and the empirical sampling distribution. For his 

application, Stambaugh (1999) shows the difference is nonzero but relatively small. Stambaugh 

(1999) relies on Kendall’s (1954) and Marriott and Pope’s (1954) approximation for sample 

autocorrelation estimators, which is valid only up to order 
1

𝑇
. Sawa (1978) and Nankervis and Savin 

(1988) derive the exact distribution of the autocorrelation estimators.4 They also document a 

relatively small error between the exact distribution and the Kendall (1954) approximation except 

for relatively low T and/or  close to 1 (e.g., see also MacKinnon and Smith (1988)). Nevertheless, 

it is important to analyze how well these approximations work for the long-horizon predictive 

regression studied here.  

 

Table 1 documents the empirical small sample bias for different values of  (0.70, 0.9, 0.95 and 

0.99), horizon J (1,12,60) and sample size T (300, 600 and 1200) in regression equation (2) using 

overlapping and nonoverlapping data. The simulation involves 100,000 replications of the time-

series process described in equations (1) and (2). Table 1 compares the simulated values to the 

analytical bias calculations of Propositions 1 and 2.  For the most part, the analytical and simulated 

results are quite similar. For example, consider J-period horizons of 12 and 60 and  =0.95 across 

the four sample sizes. For J=12, the ratios of simulated to analytical bias for nonoverlapping and 

overlapping data for sample size 300 is 12.00/11.95=1.00 and 12.72/12.26=1.04 respectively. 

Across T’s the ratios are (1.00, 1.01, and 1.01) and (1.04, 1.02, and 1.01), respectively again. 

Moreover, the ratio of simulated bias of overlapping to nonoverlapping varies from 1.06 (for 

T=300) to 1.02 (for T=1200) compared to the analytical ratio of 1.03. As a comparison, for J=60, 

the ratios of simulated to analytical bias for nonoverlapping and overlapping data respectively are 

 
4 De Gooijer (1980) and Shaman and Stine (1988) study the bias properties of autocorrelation estimators under more 

general ARMA processes than equation (1) and the ones studied in the aforementioned papers. Kiviet and Phillips 

(2012) extend Kendall (1954) and Marriott and Pope (1954) to approximations of order 2

1

T
. 
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(0.95, 0.98, and 1.02) and (1.02, 1.02, and 1.01). The ratio of simulated bias of overlapping to 

nonoverlapping varies from 1.29 (for T=300) to 1.19 (for T=1200) compared to the analytical ratio 

of 1.20. As expected, the bias declines as the horizon increases. Consistent with the above papers 

documenting the autocorrelation bias, the differences between the theoretical and simulated also 

decline with the horizon. Indeed, Table 1 suggests that the only real differences between the theory 

and simulated exist for very small samples such as T=300, which for J=60 represents just 5 

nonoverlapping observations, particularly for highly persistent variables such as =0.99. 

 

In order to pin down the comparison between the analytical and simulated results, consider one of 

our key findings, namely that the overlapping bias exceeds that of the nonoverlapping bias for a 

given J and for =   and  (as can be seen in Table 1). Figure 4 graphs the ratio of 

the overlapping to nonoverlapping bias for both the theoretical values from Proposition 1 and 2 

and the simulated values described above for T=600. The theoretical lines are graphed as solids 

while the simulated ones are represented as dashed lines. Consider first the theoretical (solid) lines. 

In comparing Proposition 1 versus 2, the functional forms are clearly not the same - the small 

sample biases are different and, most surprising, the bias in the overlapping regression is 

everywhere greater than that of the nonoverlapping regression. The increase ranges from between 

0% to 20%, depending on J and . Moreover, the ratio is hump-shaped, starting at 1 for J=1, 

increasing with J until it eventually turns and then forever decreasing with J, eventually going 

back to 1. Of some note, this pattern is true across all  though the humped shape itself varies with 

. For lower values of  the shape is tight, increasing rapidly and then, with relatively low J, the 

ratio begins to asymptote back towards 1. In contrast, for very persistent values of , the relative 

bias of the overlapping estimator increases more slowly but is present at many more horizons. 

Importantly, at least based on this small sample bias metric, the results here put into question the 

use of overlapping data.  

 

Now consider the simulated dashed lines of Figure 4. The ratio of the ol and nol estimates are 

graphed as a function of the horizon J for different levels of persistence,  at T=600. The simulated 

small sample biases of the ol and nol estimators follow a very similar pattern to those implied by 

theory. The bias in the overlapping regression is greater than that of the nonoverlapping regression 

for different J and , and similarly hump-shaped with the shape tighter (wider) for low (high) . 
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However, as J gets large relative to T, the analytical and simulated biases do begin to diverge. This 

result is consistent with that of Table 1 and the previous literature on autocorrelation bias. This 

point aside, Table 1 and Figure 4 suggest a close link between the theory and simulated values. 

Importantly, the large biases of long-horizon estimators (for large J) that depend on  are generally 

worse for overlapping versus nonoverlapping regressions. 

 

Figure 4: The Ratio of Biases Between Overlapping and Nonoverlapping OLS 

Estimators in Long-Horizon Return Regressions 

Figure 4 depicts the ratio of biases, overlapping to non-overlapping for various forecast horizons J using analytical 

formulae in Proposition 1 (solid lines) as well as simulations (averages of 100,000 simulations, dashed lines), across 

various persistence parameters  of the predictive variable. The sample size for both the analytical calculations as 

well as for the simulation is T=600. The forecast horizon J is on the X axis and the ratio of the biases is on the Y 

axis.  

 

 

 

B. Analytical Bias Calculations for Alternative Long-Horizon Estimators 

 

Given the process for Xt in equation (1) and the alternative long-horizon regression of equation 

(3), we can derive the small sample bias of the OLS estimator, ˆ
J

 . In comparing regression 
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equations (1) and (3), note that 
, 1 1

1 1

cov , cov ,
J J

t i t t t t i

i i

R X R X
+ + + −

= =

   
=   

   
  . Thus, the regression 

coefficient 
J

  is related to 
J

 via:   

( )

( )

( )

1 1

1
1 1

1

1 1

1 1

cov ,

cov ,
var

var var

var

J

J t t J

i
t t J

i t J

J J J

J

t J t J

i i

t

R X

R X
X

VR X
X X

X




+ + −

=
+ + −

=

+ − + −

= =

 
    

 
 

=  =
   
   
   




 

 

where ( )J
VR X is the J-period variance ratio of X. In effect, 

J
 equals 

J
 scaled down by 

( )J
VR X . The expected value of the estimator, ˆ

J
 , is given by  

( )

ˆ
ˆ

ˆ
J

J

J

E E
VR X




 
=  

  

. In the 

appendix, under the null of no predictability, we prove: 
 

 

Proposition 3:  
( )

( )( )
( )

( )( )

( )
2

ˆˆ ˆ ˆcov , var
ˆ 1

ˆ ˆ ˆ ˆ

J JJ J

J

J J J J

VR XE VR X
E

E VR X E E VR X E VR X






  
    − +

                

 

where 𝐸[𝛽̂𝐽] = −
1

𝑇
[𝐽(1 + 𝜌) + 2𝜌 (

1−𝜌𝐽

1−𝜌
)]

𝜎𝑢𝑣

𝜎𝑣
2  

𝐸𝑉𝑅̂𝐽(𝑋) = 𝐽 + 2 ∑(𝐽 − 𝑖) [𝜌𝑗 −
1

𝑇
[(1 + 𝜌)

1 − 𝜌𝑗

1 − 𝜌
+ 2𝑗𝜌𝑗]]

𝐽−1

𝑖=1

 

 

( )( ) ( ) ( ) ( )
1 1 1

2

1 1 1

ˆ ˆ ˆ ˆ ˆ ˆcov , 2 cov( , ) 2(1 ) cov ,
J J J

uv

J J i J i k

i i kv

VR X J i J i


     


− − −

= = =

 
= − + − − 

 
     

 

( )( ) ( ) ( ) ( )
1 1

1 1

ˆ ˆ ˆvar 4 cov ,i

J J

J k

i k

VR X J i J k  
− −

= =

= − −   

 

( )
( ) ( )

( ) ( )

( )
( ) ( )

2 2

2

2 2

2

2

1 11 1
ˆ ˆcov , ,    

1

1 11 2
ˆand var

1

i

i

i

k i i k

k

i

i

k i i k k i
T T

i
T T

 
   



 
 



− +
 + −
 = + − − + 

−  

 + −
 = −

−  

 

 

Proof (see Appendix)  
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As unwieldly as Proposition 3 looks, note that  ˆ
J

E   is closed form and is a specific function of 

, J and T.  
 
 

Figure 5 graphs the ratio of the bias of the alternative long-horizon estimator ˆ
J

 to the standard 

long-horizon estimator 𝛽̂𝐽
𝑜𝑙 for both the theoretical values from Proposition 2 and 3 and the 

simulated values for T=600 and =0.7, 0.9, 0.95 and 0.99. The theoretical lines are graphed as 

solids while the simulated ones are represented as dashed lines. In order to make the estimators 

comparable, note that ˆ
J

  is scaled up by the true ( )J
VR X which is a known function of  and J. 

 

Consider first the theoretical (solid) lines. In comparing Propositions 2 versus 3, the bias of the 

alternative regression estimator ˆ
J

 is everywhere greater than that of the standard overlapping 

long-horizon estimator 𝛽̂𝐽
𝑜𝑙. Some consistent patterns emerge. First, the ratio of the biases is 

increasing in the horizon J. This is bad news for this estimator; its main purpose is precisely for 

large J when HAC estimators, like those of Newey and West (1987), have particularly poor 

properties. Second, though still worse, the ratio of the biases is generally closer for high levels of 

persistence  However, this finding is not because the alternative long-horizon estimator is in 

some sense getting “less biased” but rather the bias of the standard long-horizon estimators, both 

overlapping or 𝛽̂𝐽
𝑜𝑙 and nonoverlapping  𝛽̂𝐽

𝑛𝑜𝑙, are getting considerably worse (e.g., see Figure 3).  

Finally, consider the simulated dashed lines of Figure 5. The ratio of the simulated bias of ˆ
J

 to 

𝛽̂𝐽
𝑜𝑙 maps closely to the analytical small sample biases of these estimators. This is true both in 

terms of magnitudes and the underlying patterns across different  and J.  

 

The bottom line from this analysis is that if the researcher wants to estimate long-horizon 

regression equation (2), the regression equation (3) is not a very good alternative. While the 

methodology avoids HAC standard calculations, Figure 2 shows that it is likely not a very efficient 

estimator. Its small sample distribution is wide relative to the overlapping regression estimator. 

Even worse, the bias of this estimator is a magnitude greater than that of the overlapping regression 

estimator which is already not superior to its nonoverlapping counterpart. For example, for J=60, 

these biases range from 25% (for high , such as 0.99) to 100% (for lower , such as 0.90). As 
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shown in Figure 1, the long-horizon biases are already sufficiently large to effectively reduce the 

magnitude of the estimates. These results should not be a surprise. This alternative regression 

estimator ˆ
J

  is effectively the long horizon estimator 𝛽̂𝐽
𝑜𝑙 scaled by the long-horizon variance ratio 

estimator of the predictive variable, ( )ˆ
J

VR X . The variance-ratio estimator suffers from similar 

biases, thus compounding the problem in estimating ˆ
J

 . 

 

Figures 5: The Ratio of the Bias of Long-Horizon Estimators ( ˆ
J

  to ˆ ol

J
 ) 

Figure 5 depicts the ratio of biases of ˆ
J

  regressions (see (3)) relative to ˆ ol

J
 regressions (see (2)) for various 

forecast horizons J using analytical formulae in propositions 3 and 2 respectively (solid lines) as well as simulations 

(averages of 100,000 simulations, dashed lines), across various persistence parameters  of the predictive variable. 

The sample size for both the analytical calculations as well as for the simulation is T=600. The forecast horizon J is 

on the X axis and the ratio of the biases is on the Y axis.  

 

 

While our results comment on the viability of the popular transformation of the long-horizon 

equation (2) to equation (3), our findings also allow us to comment on a much larger literature in 

finance and macroeconomics that is not interested in long-horizon regressions per se. It is quite 

common to regress single period changes in the variable of interest, like stock returns, on a 

predictive variable, constructed from a long-run smoothed out series. This long-run series often 

takes the form of a moving-average or a stochastic trend. Examples of popular predictors include 

cyclically adjusted price earnings (CAPE) ratio (e.g., Campbell and Shiller (1988)); long-term (i.e., 
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5-year) reversals as a measure of value (e.g., De Bondt and Thaler (1985) and Fama and French 

(1988), among many others); stock return momentum (i.e., 1 year) (e.g., Jegadeesh and Titman 

(1993), Asness (1994) and Carhart (1997), among many others); moving averages of inflation 

(e.g., Cieslak and Povala (2015) and Bauer (2017) in fixed income); volume (e.g., in 

microstructure); risk-return regressions using measures of volatility and beta; and so forth. Two 

points of note are (i) many of these analyses are effectively long-horizon regressions (i.e., going 

from equation (3) to equation (2)) and thus subject to the large biases documented in this paper, 

and (ii) to the extent these regressions are long-horizon regressions, the methodological approach 

of using equations like (3) are especially problematic. 

 

Given the efficiency issues underlying the estimators in equations (2) and (3), researchers have 

proposed a structural modelling approach to long-horizon predictability. In particular, the 

estimation strategy is to jointly estimate the short-horizon return process and autoregressive 

process for the predictive variable. Given this joint estimation of ( )
ttt

XR ,
1, +  based on 

( )
mttt

XXX
−−

,,
1

 where m is small relative to J, the researcher can infer a long-horizon J-period 

return forecast. (See, for example, Kandel and Stambaugh (1989), Campbell (1991), Hodrick 

(1992) and Boudoukh and Richardson (1994)). Given equation (1), the researcher estimates J
  

from 
1

 and 
X

 . Boudoukh and Richardson (1994) show that a consistent estimator is 

1

ˆ1ˆ ˆ
ˆ1

J

imp

J


 



−
=

−
 where imp refers to the J-period estimator implied from the nonlinear function of

1
̂  and ̂ . They show that in comparison to the other aforementioned  long-horizon estimators,

ˆ ol

J
 , ˆ nol

J
  and ˆ

J
 , the asymptotic variance of ˆ imp

J
 can be magnitudes lower, especially for less 

persistent Xt.  

 

Putting aside the important issue that, in contrast to the estimators ˆ ol

J
 , ˆ nol

J
  and ˆ

J
 , ˆ imp

J
 will be 

an inconsistent estimator of 
J

  if equation (1) is misspecified, there has been no analysis to date 

of the small sample bias of ˆ imp

J
 . On the one hand, the bias might be small since the estimation 

requires estimates of only 1
̂  and ̂ which are much less biased than their long-horizon 
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counterparts. On the other hand, ˆ imp

J
 is a nonlinear function of these estimators and thus any small 

sample bias could be amplified. In the appendix, we derive the small sample bias of ˆ imp

J
 :5 

Proposition 4: 
( )

1 2

2

1 1 3 1 1 1

1 2 1 1

ˆ
J J J

imp

J J

J
E

T T

    

  
 

−
− + − −

 − − −
− − −

     −             

 

Proof (see Appendix) 

 

Figure 6 below graphs the ratio of the bias of the implied long-horizon estimator ˆ imp

J
 to the 

standard long-horizon estimator 𝛽̂𝐽
𝑜𝑙 for both the theoretical values from Proposition 2 and 4 and 

the simulated values for T=600 and =0.7, 0.9, 0.95 and 0.99. The theoretical lines are graphed as 

solids while the simulated ones are represented as dashed lines.  

 

Some observations are in order. First, in comparing Propositions 2 versus 4, the bias of the implied 

long horizon regression estimator ˆ imp

J
 is everywhere smaller than that of the standard overlapping 

long-horizon estimator 𝛽̂𝐽
𝑜𝑙. Second, this ratio declines with J and . This is mixed news for this 

estimator in terms of its applications to finance. Given that the biases are problematic for long-

horizon estimators for large J, ˆ imp

J
 provides a viable option to these more standard estimators. 

However, as Figure 6 shows, the bias improvement is considerably smaller for ˆ imp

J
 for  close to 

1, a common feature of stock return predictors. Finally, the differences between the analytical 

(solid lines) and simulated (dashed lines) demonstrate the efficacy of the small sample bias 

approximations. In other words, given equation (1), Proposition 4 can be used to adjust ˆ imp

J
 in 

small samples. 

  

 

5 Marriott and Pope (1954) derive the asymptotic variance of the autocorrelation estimator to order T, i.e., 
2

1

T

 −
 
 
 

. 

Subsequent to Marriott and Pope (1954), a number of authors have provided small sample approximations to this 

variance (e.g., see White (1961), Shenton and Johnson (1965), Sawa (1978) and De Gooijer (1980)). For the simulation 

results to follow, we use Shenton and Johnson’s (1965) approximation which performs better for the , J and T faced 

in our problems, i.e., 
2 2 2 2 4

1 1 1 14 5 78 76
ˆvar( )

2 3 2
(1 )T T T T

    




       − − − − +
       =  − +
       −       

. 
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Figures 6: The Ratio of the Bias of Long-Horizon Estimators ( ˆ imp

J
 to ˆ ol

J
 ) 

Figure 6 depicts the ratio of biases of  ˆ imp

J
  relative to ˆ ol

J
 regressions for various forecast horizons J using 

analytical formulae in propositions 4 and 2 respectively (solid lines) as well as simulations (averages of 100,000 

simulations, dashed lines), across various persistence parameters  of the predictive variable. The sample size for 

both the analytical calculations as well as for the simulation is T=600. The forecast horizon J is on the X axis and 

the ratio of the biases is on the Y axis.  

 

 

 

III. Extensions 

 

The above theoretical results for the biases of various estimators in long-horizon predictive 

regressions provide closed form solutions as a function of 2

uv

v




 , J and T. Simulation results above 

show that these small sample bias formulas approximate well in small samples. The formulas are 

derived assuming the model structure of equation (1) under the null hypothesis of 
1

0 = . This 

latter assumption may seem innocuous given Stambaugh’s (1999) result, 

1 1 2

1 3ˆ uv

v

p
E

T


 



+ 
 − = −   

 
 . That is, the bias is fixed for all 

1
 . It turns out, however, that this 

result just holds for the single horizon case, J=1. For 1J  , the bias has two components, one 

shrinking the magnitude of 
1

  and the other a fixed bias along the lines of Propositions 1 and 2. 
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Another key assumption that may be violated in the data is that the bias depends only on 

contemporaneous correlations of the innovation terms,  2

uv

v




, that is, assuming no lead-lag effects, 

( )cov , 0  0
t t k

u k
−

=   . Finally, equation (1) describes a univariate regression of returns on a 

predictive variable following an AR(1). It may be of interest to consider multivariate models with 

more elaborate AR(p) representations of the predictive variables. For example, Shaman and Stine 

(1988) provide an extension to Kendall (1954) and Marriott and Pope (1954) for the case of AR(p), 

and Nicholls and Pope (1988) and Pope (1990) consider the multivariate case. Amihud and 

Hurvich (2008, 2010) apply some of these results to the single horizon framework of equation (1). 

In theory, these results also extend to the multiple horizon case albeit with a fair degree of 

complication. We leave this extension to future research, but below explicitly solve for the 
1

0   

case and describe procedures for dealing with ( )cov , 0
t t k

u 
−

 . 

 

A. Analytical Bias Calculations for Long-Horizon Estimators (assuming 
1

0  ) 

  

The proofs of Propositions 1 and 2 in the appendix derive formulas for the bias of estimators

ˆ ol

J
 and ˆ nol

J
 under the alternative hypothesis of predictability, i.e., 

1
0  in equation (1).  

 

Specifically, 

                  𝐸[𝛽̂𝐽𝑁𝑂𝐿 − 𝛽𝐽] = −
1+3𝜌𝐽

𝑇
𝐽⁄

[
1+𝜌

1+𝜌𝐽  
𝜎𝑢𝑣

𝜎𝑣
2 + 𝛽𝐽

𝜌−𝜌𝐽

(1−𝜌2𝐽)
]                                                                     (4) 

𝐸[𝛽̂𝐽𝑂𝐿 − 𝛽𝐽] = −
1

𝑇
[𝐽(1 + 𝜌) + 2𝜌 (

1 − 𝜌𝐽

1 − 𝜌
)] [

𝜎𝑢𝑣

𝜎𝑣
2 + 𝛽𝐽 (

1

1 − 𝜌𝐽
−

1

𝐽(1 − 𝜌)
)] 

The first term of equation (4) is a fixed bias adjustment as a function of 2

uv

v




 , J and T. The second 

term is the adjustment under the alternative hypothesis of predictability. Interestingly, this second 

term scales down the magnitude of 𝛽𝐽 by a factor, independent of  𝛽𝐽. Thus, the larger the 𝛽𝐽 the 

greater is the magnitude in adjustment to 𝛽𝐽. For 1J = , the biases in equation (4) reduce to the 

Stambaugh bias, and, for  𝛽𝐽 = 0, the bias equals those given in Propositions 1and 2. Note that if  

𝛽𝐽 and 
uv

  are of the same sign, then the bias gets amplified. In contrast, if  𝛽𝐽 and 
uv

  are of 

different signs, then the bias gets offset, reducing the overall effect. For many finance applications, 
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e.g., those involving valuation ratios as predictors, the latter case is more relevant. Thus, the 

estimation bias will be less for 
1

0  . 

 

Table 2 documents the empirical small sample bias of 𝛽̂𝐽𝑂𝐿for different values of  (0.70, 0.9, 0.95 

and 0.99), horizon J (12, 36, and 60) and sample size T (300, 600  and 1200) in regression equation 

(2) using overlapping data for different values of 
1

  in equation (4). The simulation involves 

100,000 replications of the time-series process described in equations (1) and (2). One question is 

what values of 
1

 should be chosen to illustrate the bias of  𝛽̂𝐽𝑂𝐿for nonzero 
1

 ? We choose R2s of 

0.25% to 0.75% (in the first column) for the single horizon regression in equation (1) to match 

those documented empirically at long horizons (in the last column). This range of short horizon R2 

values then correspond to a range of
1

  (for different ) used in the simulation. Before analyzing 

the bias calculations, it is important to point out that Table 2’s very high R2s at long horizons across 

all 
1

 s (even zero) can be explained by the well-known small sample bias in R2 (e.g., see Cramer 

(1987)). As an illustration, consider the 
1

0 =  case for =0.95, J=60 and T=300, 600, and 1200. 

The simulated average R2s are 29.6%, 14.7% and 7.3% even though there is no predictability by 

construction. The bias of long horizon R2 is driven by both the bias of the coefficient estimators 

documented in Section II and the variation of 𝛽̂𝐽𝑂𝐿. Because R2 is a squared measure and thus 

truncated at 0%, ( )ˆvar
JOL

  plays an important role in the R2 bias. The simulations of Table 1 and 

Figure 3 demonstrate the large bias of  𝛽̂𝐽𝑂𝐿for large J and Figure 2 similarly shows the large small 

sample variance of  𝛽̂𝐽𝑂𝐿. For 
1

0  , the average R2s increase, but only marginally compared to 

the 
1

0 =  case. For example, using =0.95 and J=60, for 
1

0.25,  0.5 and 0.75 = , the R2s are 

respectively 31.6%, 33.0% and 34.7% for T=300; 17.0%, 19.2% and 21.8% for T=600; and 9.6%, 

12.2% and 15.2% for T=1200. In other words, a significant fraction of reported R2s are likely bias-

related. 

 

Table 2 also compares the simulated values to the analytical bias calculations of equation 4 above.  

First, for the most part, the analytical and simulated biases are quite similar. For example, consider 

1
0.5 = , =0.95 and J-period horizons of 12 and 60 across the three sample sizes. For J=12 
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(J=60), the ratios of simulated to analytical bias for sample size 300, 600 and 1200 are respectively 

11.04/10.31=1.07 (0.89), 5.49/5.29=1.04 (0.95) and 2.69/2.68=1.00 (0.95).  Second, as implied by 

equation (4), the biases are greater for the 
1

0 =  versus 
1

0  cases given  𝛽𝐽 and 
uv

  are of the 

opposite sign in our simulation. As an illustration, for J=60 and T=600, the ratio of the analytical 

bias for
1

0.5 =  against 
1

0 =  for  = 0.70, 0.9, 0.95 and 0.99 are 14.5/17.6=0.82, 15.2/21.2=0.72, 

15.8/23.8=0.66 and 20.3/28.3=0.72. Consistent with the first point above, the simulated bias ratios 

of the 
1

0 =  versus 
1

0.5 =  cases are almost identical to those implied by the analytical formulas, 

i.e., 0.82, 0.70, 0.64 and 0.69 respectively for  = 0.70, 0.9, 0.95 and 0.99. Finally, as expected, 

while the bias declines with 
1

  and with the number of observations T, the bias increases with the 

horizon J and persistence . Consistent with Table 1, the differences between the theoretical and 

simulated also decline with T. The simulation results here provide comfort for researchers 

requiring a plug-in bias adjustment like equation (4) above. If the researcher is not focused solely 

on the null of no predictability, and instead has priors over a range of 
1

 , then equation (4) allows 

the researcher to infer the possible ex ante bias of the regression estimators by integrating over 

possible values of 
1

 . 

 

 

 

B. Analytical Bias Calculations for Long-Horizon Estimators (assuming 

( )cov , 0 for k 1
t t k

u v
+

   ) 

 

Stambaugh’s (1999) model given by equation (1) assumes ( )cov , 0 for k 1
t t k

u v
+

=  . For some 

applications in finance, this assumption may be a poor one. As an illustration, consider equation 

(1) with 
t t k

X Z
−

= , i.e., a lagged predictive variable. In this case, ( )cov ,
t t k uv

u v 
+

= , and the usual 

assumption no longer holds. Thus, even if ( )cov , 0
t t

u v = , the coefficient estimators will still be 

biased. (Note that we explore this case empirically in Section IV below when comparing long-

horizon return predictability using dividend-price ratios rather than dividend yields.) 
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In particular, in the appendix, for 
t t k

X Z
−

= , we derive the following result: 

Proposition 5: 𝐸[𝛽̂𝐽
𝑜𝑙 − 𝛽𝐽] = −

1

𝑇
[𝐽(1 + 𝜌) + 2𝜌𝑘+1 (

1−𝜌𝐽

1−𝜌
)]

𝜎𝑢𝑣

𝜎𝑣
2  

Proof (see Appendix)  

 

When J=1, Proposition 5 extends the Stambaugh (1999) bias to lagged predictors with the formula:  

( )1

1

1ˆ 1 2
k

E
T

  
+  = − + +

 
. The difference between the bias for Stambaugh’s (1999) 0k =  

versus the 1k   case is 
( )2 1

k

T

 − −
. Note that this difference is not monotonic in  for large k. 

For very high , there is little difference in bias because 
t k

Z
−

and 
t

Z are effectively the same. For 

low , the horizon k gets drowned out and the difference is effectively 
2

T

−
. In contrast, for high 

, there is a mix of these two effects, and the difference may no longer be small. The same intuition 

carries through for all J and thus the long-horizon estimator given by Proposition 5, i.e., for the 

case 1J  . 

 

The above example serves to illustrate the importance of modeling assumptions for the magnitude 

of the bias resulting from equations (1) and (2). As an illustration, assume 
1

1 1 , 1

0

K

t k t k K t

k

v u 
−

+ + − +

=

= +  

in equation (1). This equation is a representative model if asset return innovations forecast future 

realizations of the predictive variable. For example, future changes in valuation ratios based on 

cash flows (CFt) and the corresponding asset price (Pt), 

1

1 1

ln ln ln lnt k t t k t k

t k t k t t

CF CF CF P

P P CF P

+ + + +

+ + + +

       
−  −       

       

 , may be predictable because although current 

returns, 1ln t

t

P

P

+
 
 
 

, do not forecast future returns, 
1

ln t k

t

P

P

+

+

 
 
 

,  1ln t

t

P

P

+
 
 
 

does have news for future 

cash flow growth, 
1

ln t k

t

CF

CF

+

+

 
 
 

. (See, for example, Kothari, Lewellen and Warner (2006), Sadka 

and Sadka (2009), and He and Hu (2014).) In Section IV below, we empirically discuss the case 

of earnings-to-price ratios which fall into the above class of predictors.  
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In addition, it is a common perception that the Stambaugh (1999) bias is less relevant for 

macroeconomic predictors due to the lower contemporaneous correlation between asset returns 

and macro innovations. The above discussion puts this view into question. If returns on assets, 

such as stocks and bonds, are leading indicators for future macroeconomic realizations, then 

macroeconomic shocks (implied by univariate time-series models) will not be uncorrelated with 

past returns. The mechanics of the problem correspond to those of Proposition 5 above albeit with 

a different specification. The bias of the estimator ˆ
J

  using macroeconomic predictors will equal 

the cumulative sum of the biases associated with each ( )cov ,
t t k

u v
+

and then summed up over the 

multiple horizons for J-period return regressions. As with the AR(1) representation in equation 

(1), the plug-in formulas will be tied to the specified model as ˆ
j j

E    −   will change with the 

model (e.g., see Shaman and Stine (1988)). Importantly, for future research, the calculation of the 

bias of ˆ
J

 follows the methodological approach used for Propositions 2 and 5. 

 

IV. Empirical Application  

 

Sections II above documents large small-sample biases of the coefficient estimators in long-

horizon predictive regressions. The asymptotic distribution of the t-statistic, 
1

√𝑇

𝛽̂𝐽

𝜎̂(𝛽̂𝐽)
 , in the long-

horizon regression equation (2) is normally distributed with mean zero and variance 1. In terms of 

the small sample properties of this statistic, however, it is natural that the aforementioned biases 

distort the distribution of this test statistic. In this section, we analyze the bias-adjusted long-

horizon coefficients and corresponding t-statistics for stock return predictors based on valuation 

ratios. The question is: what implications do the bias results have for long horizon stock return 

predictability regressions?  

 

A large literature has emerged since Fama and French’s (1988) original long-horizon stock return 

regression on dividend yields. This literature is partially summarized by Campbell, Lo and 

Mackinlay (1997), Ang and Bekaert (2007) and Cochrane (2011). A particularly well-known paper 

in this literature is Welch and Goyal (2007) who perform both short- and long-horizon return 

regressions using various predictive variables dating back to 1965. While Welch and Goyal (2007) 



 

24 
 

evaluate the performance of these predictors out-of-sample, we focus on in-sample results. We 

document the results for valuation ratio-based predictors taken from Amit Goyal’s website, 

including dividend-to-price, dividend yield, earnings yield, cyclically adjusted earnings yield 

using nominal and real earnings, and book to market. Note that each predictor comes with its own 

unique 𝜌̂ and 𝜎̂𝑢𝑣

𝜎̂𝑣
2  given the specification in equation (1). Furthermore, in terms of the discussion 

in Section III.b, each predictor also may have a lead-lag structure with its innovations, i.e., 

( )cov ,  for 1.
t t k

u v k
+

  

 

Table 3 documents the results for each of these predictors for ˆ
JOL

  (i.e., regression equation (2)). 

To coincide with Welch and Goyal (2007), the results are reported for horizons of J=1, 12, 36 and 

60 months over the period 1968 to 2017 (i.e., 600 monthly observations). We report ˆ
JOL

 and 

( )ˆ ˆ
JOL JOL

E  −
 

, and the t-statistics associated with these estimates, 
1

√𝑇

𝛽̂𝐽𝑂𝐿

𝜎̂(𝛽̂𝐽)
 and 

1

√𝑇

𝛽̂𝐽𝑂𝐿−𝐸[𝛽̂𝐽𝑂𝐿]

𝜎̂(𝛽̂𝐽)
. 

In the simulations of Sections II and III, we knew the true  for approximating the bias. In practice, 

we follow Amihud and Hurvich (2004) and plug-in the bias-adjusted value,
ˆ1 3

ˆ
T




+
+ .6 As 

reported elsewhere, typical HAC standard error calculations of ( )ˆˆ
J

   have poor small sample 

properties (see footnote 2). In order to correct for these small sample problems, we use the 

analytical asymptotic value under an AR(1) in equation model (1)  (see  Boudoukh, Richardson 

and Whitelaw (2008)),  ( ) ( )
( ) ( ) ( )( ), 1var2 12

1 1var

ˆ 1 1 1
t t

t

J ROL J

J JT X
J

 

 
  

+ −

− −
= + − − − . Table 3 also 

documents the empirical p-value of the ˆ
JOL

 estimate under two different simulation models: (i) 

equation (1) with parameters to match those of the predictors, and (ii) equation (1) with the 

additional assumption 
1

1 1 , 1

0

K

t k t k K t

k

v u 
−

+ + − +

=

= + , again parameters chosen to match those of the data. 

The last three columns of Table 3 correspond to this latter assumption. 

 

 

6 Note that this bias adjusted estimate could be iterated down further, e.g., 

ˆ1 3
ˆ1 3

ˆ
T

T






+ 
+ + 

 
+ and so forth. Amihud and 

Hurvich (2004) find that these adjustments make little difference for the sample sizes used in finance. 
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Several observations are in order. First, and foremost, the headline result of Figure 1, namely that 

the bias-adjusted coefficient on dividend price ratios is essentially zero, comes through. For J=1, 

12, 36 and 60, the coefficient (and t-value) drop from 0.005 (1.33), 0.074 (1.54), 0.203 (1.44) and 

0.354 (1.54) to -0.001 (-0.28), -0.004 (-0.081), -0.030 (-0.23) and -0.034 (-0.15). The simulated p-

values range from 0.38 to 0.42, that is, in the center of the distribution. Second, the standard 

overlapping estimator does not produce any significant t-statistics for the six predictors. Of course, 

part of the explanation is due to overlapping data providing little benefit for highly persistent 

regressors (i.e., Figure 2). In effect, the sample sizes are too small to generate statistically 

significant results. What we also document here, however, is that the coefficients are small once 

they are bias adjusted. Indeed, the simulated p-values are mostly towards the center of the 

distribution of the ˆ
JOL

 across J. And, importantly, the evidence for predictability does not show 

up more strongly at the 60-month horizon. This finding is in contrast to the common view in the 

literature on long-horizon predictability.  

 

That said, there are three interesting, and surprising, results that emerge from the empirical analysis 

of Table 3. First, Welch and Goyal (2007) differentiate dividend yields from dividend-to-price 

ratios via the lag of the price variable, in other words, 𝐷𝑌𝑡 ≈ 𝐷𝑃𝑡−12. Consider the horizons J=12 

and 60. The unadjusted coefficient estimates 𝛽̂12 and 𝛽̂60 are respectively 0.069 and 0.311 with t-

statistics 1.40 and 1.33, and, when adjusting for contemporaneous correlation 𝜎𝑢𝑣, barely changes 

to 0.064 and 0.291 with t-statistics 1.32 and 1.24. However, when we use Proposition 5 to correctly 

adjust the bias because 𝑐𝑜𝑣(𝑢𝑡, 𝑣𝑡+𝑘) = 𝜎𝑢𝑣  for 𝑘 = 12 and not k = 0, the bias-adjusted 

estimates 𝛽̂12 − 𝐸[𝛽̂12] and  𝛽̂60 − 𝐸[𝛽̂60] (in column 7) are now -0.028 and  -0.101 with t-

statistics -0.58 and -0.43. Second, as described in Section III.b, stock returns are known to forecast 

future earnings growth. Taking equation (1) and estimating the lead-lag structure of the 

innovations of Rt and Xt (i.e., 𝜆𝑘 in the above model) for each of the predictors, only EP shows 

sufficient structure. For example, for k=0 to 6, corr(𝑣𝑡+1, 𝑢𝑡+1−𝑘) = -0.58, 0.11, 0.16, 0.12, 0.11, 

0.06 and 0.14 (not reported in Table 3). Now consider the horizons J=12 and 60. The unadjusted 

coefficient estimates 𝛽̂12 and 𝛽̂60 are respectively 0.044 and 0.140, and, when adjusting for 

contemporaneous correlation 𝜎𝑢𝑣, are 0.014 and -0.006, but, when including the lead-lag structure, 
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increase to 0.046 and 0.152 (in column 7).7 In words, estimates using EP have effectively little 

bias given the structure 
1

1 1 , 1

0

K

t k t k K t

k

v u 
−

+ + − +

=

= + . Nevertheless, the estimates themselves are still 

insignificant at conventional levels, partly due to the magnitude of the coefficients being smaller 

for EP and also the large standard errors due to large J relative to T. Of all the predictors, however, 

EP estimates are furthest out in the distribution, ranging from 0.72 to 0.81. Finally, a quick look 

at Table 3 shows that without any adjustments the “weakest” predictor is B/M in term of t-statistics. 

Ironically, when adjusting for the bias, the B/M results flip sign from positive to negative 

coefficients and t-statistics. Though still insignificant, B/M is now the “strongest” of the predictors 

(the above lead-lag adjustment for EP aside) but with the opposite sign to the conventional 

estimates. This finding illustrates how the magnitude of the bias, and thus ignoring the bias, can 

very much steer the researcher away from the potentially interesting results. 

 

V. Conclusion 

 

Expected return variation is at the center of modern financial asset pricing. Much of this 

literature hinges on the large documented regression coefficients at long horizons. This paper 

extends Stambaugh’s (1999) famous bias result for stock return predictability to long-horizons. 

We provide a plug-in estimator which is a closed-form function of only the parameters 2

uv

v




 , J and 

T. The biases increase with  and linearly in J (for large J). While there is a long literature debating 

the statistical significance of long horizon estimators given the typical horizons and sample sizes 

employed, our point is very different. Our analytical calculations put into serious question the 

magnitude of the return predictability.  

 

The applicability of our method is widespread. We show the link between the typical long-horizon 

regression estimator and one based on short-horizons with moving-averages of the predictors. We 

discuss bias approximations under the null and alternative of return predictability and describe 

how more general models of the econometric structure between return innovations and those of 

 
7 Recall from Section II.b that, given the model structure of the errors, the analytical bias calculations require a new 

formula for 𝜌̂𝑗 − 𝐸[𝜌̂𝑗]. The lead-lag bias adjustments therefore in Table 3 use simulated rather than analytical values. 
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the predictive variable may impact the results. We provide empirical examples using valuation 

ratios for forecasting stock returns. Many of the issues and results brought up in this paper are 

especially applicable to predictability results in the fixed income and exchange rate area. We hope 

to document important findings in future research. 
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Appendix - Proofs 

 
Proposition 1: 

Based on equation (1), we can write the two nonoverlapping J-period equations for ∑ 𝑅𝑡+𝑖
𝐽
𝑖=1  and 𝑋𝑡 as: 

                                 ∑ 𝑅𝑡+𝑖
𝐽
𝑖=1 = 𝛼𝐽 + 𝛽𝐽𝑋𝑡 + 𝜀𝑡:𝑡+𝐽                                                                                        ( 𝐴1) 

                                         𝑋𝑡+𝑗 = 𝜇𝐽 + 𝜌𝐽𝑋𝑡 + (1𝑣𝑡+𝐽 + 𝜌𝑣𝑡+𝐽−1 + 𝜌2𝑣𝑡+𝐽−2 + ⋯ + 𝜌𝐽−1𝑣𝑡+1) 

where 

                                                                                                          (A2) 

 

Regression equation (A1) is run every J sampling periods. Following Stambaugh (1999), assume  

 and   , and , then 

 

                                                𝑏̂1:𝐽
𝑁𝑂𝐿 − 𝑏1:𝐽 = (𝑋′𝑋)−1𝑋′𝜀𝑡:𝑡+𝐽                                                                (𝐴3)  

                                                𝑏̂2:𝐽
𝑁𝑂𝐿 − 𝑏2:𝐽 = (𝑋′𝑋)−1𝑋′𝑣𝑡:𝑡+𝐽                                                                      (𝐴4) 

 

Decompose  into a function of  and , i.e., 

𝜀𝑡,𝑡+𝐽 =
𝑐𝑜𝑣(𝜀𝑡,𝑡+𝐽, 𝑣𝑡,𝑡+𝐽)

𝑣𝑎𝑟(𝑣𝑡,𝑡+𝐽)
𝑣𝑡,𝑡+𝐽 + 𝜂𝑡,𝑡+𝐽 

 

Rewrite 𝑏̂1:𝐽 − 𝑏1:𝐽  in terms of the above equation and taking expectations yields: 

𝐸[𝑏̂1:𝐽
𝑁𝑂𝐿 − 𝑏1:𝐽] =

𝑐𝑜𝑣(𝜀𝑡,𝑡+𝐽, 𝑣𝑡,𝑡+𝐽)

𝑣𝑎𝑟(𝑣𝑡,𝑡+𝐽)
 𝐸[𝑏̂2:𝐽

𝑁𝑂𝐿 − 𝑏2:𝐽] 

 

Under the model in equation (1), 

𝑐𝑜𝑣(𝜀𝑡,𝑡+𝐽, 𝑣𝑡,𝑡+𝐽) =
1 − 𝜌𝐽

1 − 𝜌
𝜎𝑢𝑣 +

𝜌 − 𝜌𝐽

(1 − 𝜌2)
𝜎𝑣

2 

𝑣𝑎𝑟(𝑣𝑡,𝑡+𝐽) = (1 + 𝜌2 + 𝜌4 + ⋯ + 𝜌2(𝐽−1))𝜎𝑣
2 =

1 − 𝜌2𝐽

1 − 𝜌2
𝜎𝑣

2 

 

Substituting these covariances and variances into the above equation results in: 

 

𝐸[𝛽̂𝐽
𝑁𝑂𝐿 − 𝑏1:𝐽] = 𝐸[𝑏̂2:𝐽

𝑁𝑂𝐿 − 𝑏2:𝐽] [
1 + 𝜌

1 + 𝜌𝐽
 
𝜎𝑢𝑣

𝜎𝑣
2 + 𝑏1:𝐽

𝜌 − 𝜌𝐽

(1 − 𝜌2𝐽)
] 

 

Applying the autocorrelation bias for a first order autocorrelation from Kendall (1954) and Marriott and 

Pope (1954), and again under the null of ,  

𝐸[𝛽̂𝐽
𝑁𝑂𝐿] = −

1 + 𝜌

1 + 𝜌𝐽
 
1 + 3𝜌𝐽

𝑇
𝐽⁄

𝜎𝑢𝑣

𝜎𝑣
2  

( )

1

1 1

1
1

, 1 1

1 1

( 1)

, ( 1)

1

J

i

J

J J

t t J t i t J i

i i

J
i

t t J t J i

i

u v

v p v









 

 

−

−

−
−

+ + + −−

= =

−

+ + − −

=

=

= +



 



( )1:
,

J J J
b  = ( )2:

,
J J J

b  = ( )1 ,  1, 1, ,
t

X X t J T J= = + −

,t t J


+ ,t t J
v

+ ,t t J


+

1
0 =
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Proposition 2: 

Based on equation (A1) in Proposition 1, we can run the regression of the J-period return ∑ 𝑅𝑡+𝑖
𝐽
𝑖=1  on 𝑋𝑡 

using overlapping data, that is, by sampling every period. In other words, we run the regressions using 

: 

 

                                                        𝑏̂1:𝐽
𝑂𝐿 − 𝑏1:𝐽 = (𝑋′𝑋)−1𝑋′𝜀𝑡:𝑡+𝐽                                                          (𝐴5)                                                                   

        ( 𝑏̂2:𝑗 − 𝜌 𝑏̂2:𝑗−1) − (𝑏2:𝑗 − 𝜌𝑏2:𝑗−1) = (𝑋′𝑋)−1𝑋′𝑣𝑡+𝑗                                                           (𝐴6)  

 

Note that (A6) therefore implies . We can then 

decompose  into a function of  and : 

𝜀𝑡,𝑡+𝐽 =

𝑐𝑜𝑣 (𝜀𝑡,𝑡+𝐽, )

𝐽𝑣𝑎𝑟(𝑣𝑡)
+ 𝜂𝑡,𝑡+𝐽 , 

 

with 
( ) ( )

,

1

2

cov ,
1 1

var 1 1

J

t t J t i J

i uv

J J

t v

v

J v J


 


  

+ +

=

 
   − 

= + − 
− − 


 . 

 

 

Rewriting 𝑏̂1:𝐽 − 𝑏1:𝐽  in terms of the above equation and taking expectations yields: 

𝐸[𝑏̂1:𝐽
𝑂𝐿 − 𝑏1:𝐽] =  

𝑐𝑜𝑣 (𝜀𝑡,𝑡+𝐽, )

𝐽𝑣𝑎𝑟(𝑣𝑡)
𝐸 [ ] 

 

Applying the ith order autocorrelation bias from Kendall (1954) and Marriott and Pope (1954), that is,

, 

 

𝐸[𝛽̂𝐽
𝑂𝐿 − 𝛽𝐽

𝑂𝐿] = −
1

𝑇
[𝐽(1 + 𝜌) + 2𝜌 (

1 − 𝜌𝐽

1 − 𝜌
)] [

𝜎𝑢𝑣

𝜎𝑣
2 + 𝛽𝐽

𝑂𝐿 (
1

1 − 𝜌𝐽
−

1

𝐽(1 − 𝜌)
)] 

 

Assuming the null of , yields the desired result: 

𝐸[𝛽̂𝐽
𝑂𝐿] = −

1

𝑇
[𝐽(1 + 𝜌) + 2𝜌 (

1 − 𝜌𝐽

1 − 𝜌
)]

𝜎𝑢𝑣

𝜎𝑣
2  

 

 

 

 

 

( )1 ,  1, 2, ,
t

X X t T J= = −

( ) ( )
1

1

2: 2: 2: 2:

1 1

ˆ ˆ1
J J

t i J J i i

i i

X X X v b b b b
−

−

+

= =

 
     = − + − −     

 
 

,t t J


+

1

J

t i

i

v
+

=

 
 
 
 ,t t J


+

1

J

t i

i

v
+

=

 
 
 


1

J

t i

i

v
+

=

 
 
 


1

J

t i

i

v
+

=

 
 
 


( )
1

2: 2: 2: 2:

1

ˆ ˆ1
J

J J iOL i

i

b b b b
−

=

   − + − −
   

  ( )
1 1

ˆ 1 2
1

i

i

i i
E i

T


   



 −
− = − + + 

− 

1
0 =
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Proposition 3: 

 

From equations (1) to (3), the expected value of then alternative long horizon estimator ˆ
J

  can be written 

as  
( )

ˆ
ˆ

ˆ
J

J

J

E E
VR X




 
=  

  

. Taking a second-order Taylor series expansion of the ratio yields: 

( ) ( )

( )( )
( )

( )( )

( )
2

ˆˆ ˆ ˆcov , varˆ
1

ˆ ˆ ˆ ˆ ˆ

J JJ J
J

J J J J J

VR XE VR X
E

VR X E VR X E E VR X E VR X





       = − + 
                    

 

Note that ˆ
J

E  
 

 is given by Proposition 2 above. The estimator of the J-period variance-ratio of Xt can 

be written as ( ) ( )
1

1

ˆ ˆ2
J

J i

i

VR X J J i 
−

=

= + − . Using the results of Marriott and Pope (1954), w can write 

the mean and variance of the autocorrelation estimator as:  

( )
1 1

1 2
1

ˆ
j

j j

j
E j

T


  




−
− + +

−

 
  =   

 
 and       ( )

2

22

2

1 1
1 2

1
ˆvar

j

j

j
j

T


 




−
+

−

 
  = −  

 
. 

Note that the closed form ( ) ( )
1

1

2
J

i

J

i

VR X J J i 
−

=

= + − = 𝐽 −  
2𝑝(1+𝐽(−1+𝑝)−𝑝𝐽)

(−1+𝑝)2 . Thus, we can derive the 

expected value of the estimator of ( )J
VR X : 

( ) ( ) ( )
1

1

1 1
1 2

1

ˆ 2

j

j j

J

J

i

j
T

EVR X J J i


  


−

=

−
− + +

−

  
= + −   

  
  

= 𝐽 − 
2𝑝(1+𝐽(−1+𝑝)−𝑝𝐽)

(−1+𝑝)2  + 
2

𝑇
 
𝐽2(−1+𝑝)2(1+𝑝)+2𝑝(1+𝑝)(−1+𝑝𝐽)+𝐽(−1+𝑝)(1−2𝑝+𝑝2−4𝑝1+𝐽)

2(−1+𝑝)3  

 

Note also we can write the covariance between ( )ˆ
J

X and ( )ˆ
J

VR X , as well as the variance of ( )ˆ
J

VR X

: 

 

( ) ( )( ) ( ) ( )

( ) ( ) ( )

1 1

2

1 1

1 1 1

2

1 1 1

ˆ ˆ ˆ ˆcov , cov 1 , 2

ˆ ˆ ˆ ˆ2 cov( , ) 2(1 ) cov ,

J J

uv

J J J i i

i iv

J J J

uv

i J i k

i i kv

X VR X J i

J i J i


    




    



− −

= =

− − −

= = =

    
= + − −    

    

 
= − + − − 

 

 

  

 

( )( ) ( )

( ) ( ) ( )

1

1

1 1

1 1

ˆ ˆvar var 2

ˆ ˆ4 cov ,i

J

J i

i

J J

k

i k

VR X J J i

J i J k



 

−

=

− −

= =

 
= + − 

 

= − −



 
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where the correlation between ˆ
s

  and ˆ
s t


+

 is (e.g., Bartlett (1946))8: 

( )
( ) ( )

( )

( )
( ) ( )

2 2

2

2

2 2

2

2

1 11 1
cov , 2

1

1 11 2
var

1

s

t s t

s s t

s

s

s

r r t s t
T T

r s
T T

 
 



 




+

+

 + −
 = + − +

−  

 + −
  = −

−  

 

Putting all of these results together yields the closed-form solution of Proposition 3. 

 

Proposition 4: 

Taking a 2nd order bivariate Taylor expansion of the long-horizon implied estimator from equation (1), i.e.,  

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

  ( )

( )

1

2 2

1
1

: 1

1

1 1 1

2 2
1

1 1 1 12

: 1 1

1

12

ˆ ˆ ˆ,

ˆ1
ˆ

ˆ1

ˆ ˆ,

ˆ ˆ ˆ ˆ ...

1
ˆ ˆ0  (under null) + 0  (under null) + 0 

1

1 1
ˆ-  

2 1 1

J imp

J

f f

f f f

J

J imp

J J

f

f

E E

J
E

 

 
 

  






     

       


  



 
 

 

 

 

  


 

−

=

−
=

−

 + − + −

+ − + − − + − +

−
 − +

−

−
− −

− −

 
 

 
  

( ) ( ) 

( )
( )

1

1 2

2

ˆ 0  (under null)

1 1 3 1 1 1

1 2 1 1

J J J

J

T T

 

    

  

−

− +

− + − −
 − − −

− − −

   
     

 

where we can replace 

2 2 2 2 4

2 3 2

1 1 1 14 5 78 76
ˆvar( )

(1 )T T T T

    




       − − − − +
=  − +       

−       
 

 

 

 
8 Note that Bartlett (1946) contains some errors which are corrected in an errata contained in the same journal in 

1949. The formulas provided above are correct. 
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Proposition 5: 

Consider the following extension to regression equation (1): 

                                                           
, 1 1 1 1

1 1

k

t t t k t

t t t

R X u

X X v

 

 

+ − +

+ +

= + +

= + +
                                                 (A7) 

Using similar logic to that of Proposition 2, we can run the regression of , 1t t
R

+ on 𝑋𝑡−𝑘. Defining 

( )1   X
t k

X
−

= , the regression coefficients for (A7) are: 

                                                        𝑏̂1 − 𝑏1 = (𝑋′𝑋)−1𝑋′𝑢𝑡+1
𝑘      

                                                       ( 𝑏̂2:𝑘 − 𝜌 𝑏̂2:𝑘−1) − (𝑏2:𝑘 − 𝜌𝑏2:𝑘−1) = (𝑋′𝑋)−1𝑋′𝑣𝑡+1     

Assuming no predictability (i.e., 1 1

k

t t
u u

+ +
 ) and, as with Propositions 1 and 2, decomposing 

1t
u

+
 into a 

function of 
1t

v
+

 and 
1t


+

, we can rewrite  𝑏̂1 − 𝑏1 in terms of ( 𝑏̂2:𝑘 − 𝜌 𝑏̂2:𝑘−1) − (𝑏2:𝑘 − 𝜌𝑏2:𝑘−1). Taking 

expectations, we derive an extension to Stambaugh (1989) related to equation (A7): 

 

( )

( )

1

1

2 1 1

2

ˆ

1
1 2

ˆ  )

k

k

uv

k

v

uv

k

v

k
E E

T



 





  







+

+ +
=

= − + +

 − −  
−


 

where the kth order autocorrelation bias is   ( )
1 1

ˆ 1 2
1

k

k

k k
E k

T


   



 −
− = − + + 

− 

 (e.g., see Kendall 

(1954) and Marriott and Pope (1954)). In terms of the analogous regression to equation (3), 

, :

k

t t J J J t k t t J
R X  

+ − +
= + + , summing up over the J ˆ

j
E s   yields the desired result: 

𝐸[𝛽̂𝐽
𝑜𝑙 − 𝛽𝐽] = −

1

𝑇
[𝐽(1 + 𝜌) + 2𝜌𝑘+1 (

1 − 𝜌𝐽

1 − 𝜌
)]

𝜎𝑢𝑣

𝜎𝑣
2

 

  



 

33 
 

References 

Amihud, Yakov, and Clifford M. Hurvich. "Predictive regressions: A reduced-bias estimation 

method." Journal of Financial and Quantitative Analysis 39.4 (2004): 813-841. 

 

Amihud, Yakov, Clifford M. Hurvich, and Yi Wang, 2008, "Multiple-predictor regressions: Hypothesis 

testing." The Review of Financial Studies 22, no. 1:13-434. 

 

Amihud, Yakov, Clifford M. Hurvich, and Yi Wang, 2010, "Predictive regression with order-p 

autoregressive predictors." Journal of Empirical Finance 17, no. 3: 513-525. 

 

Andrews, Donald WK. 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix 

Estimation." Econometrica: Journal of the Econometric Society, 817-858. 

 

Andrews, Donald WK, and J. Christopher Monahan. 1992. "An improved heteroskedasticity and 

autocorrelation consistent covariance matrix estimator." Econometrica: Journal of the Econometric 

Society, 953-966. 

 

Ang, Andrew, and Geert Bekaert. 2007. "Stock return predictability: Is it there?." Review of Financial 

studies 20.3: 651-707. 

 

Bekaert, Geert, Robert J. Hodrick, and David A. Marshall. 1997. "On biases in tests of the expectations 

hypothesis of the term structure of interest rates." Journal of Financial Economics 44.3: 309-348. 

 

Boudouk, Jacob, and Matthew Richardson. "THE STATISTICS OF LONG‐HORIZON REGRESSIONS 

REVISITED 1." Mathematical Finance 4.2 (1994): 103-119. 

 

Boudoukh, Jacob, Matthew Richardson, and Robert F. Whitelaw. "The myth of long-horizon 

predictability." The Review of Financial Studies 21.4 (2008): 1577-1605. 

 

Britten‐Jones, Mark, Anthony Neuberger, and Ingmar Nolte. 2011. "Improved inference in regression with 

overlapping observations." Journal of Business Finance & Accounting 38.5‐6: 657-683. 

 

Campbell, John Y, 1991, "A variance decomposition for stock returns." The economic journal 101, no. 405: 

157-179. 

 

Campbell, John Y., Anrew Lo, and Craig MacKinlay, 1997, The Econometrics of Financial Markets, 

Princeton: Princeton University Press. 

 

Campbell, John Y., and Motohiro Yogo. 2006 "Efficient tests of stock return predictability." Journal of 

financial economics 81, no. 1: 27-60. 

 

Chen, Yu-chin, and Kwok Ping Tsang, 2013. "What does the yield curve tell us about exchange rate 

predictability?." Review of Economics and Statistics 95.1: 185-205. 

 

Cochrane, John H. 2011. "Presidential address: Discount rates." The Journal of finance 66, no. 4: 1047-

1108. 

 

De Gooijer, Jan G. 1980 "Exact moments of the sample autocorrelations from series generated by general 

ARIMA processes of order (p, d, q), d= 0 or 1." Journal of Econometrics 14, no. 3: 365-379. 

 



 

34 
 

Elliott, Graham, and James H. Stock. 1994. "Inference in time series regression when the order of 

integration of a regressor is unknown." Econometric theory 10, no. 3-4: 672-700. 

 

Fama, Eugene F., and Kenneth R. French. 1988. "Dividend yields and expected stock returns." Journal of 

financial economics22, no. 1: 3-25. 

 

Goetzmann, William N., and Philippe Jorion. "Testing the predictive power of dividend yields." The 

Journal of Finance 48.2 (1993): 663-679. 

 

Hansen, Lars Peter, and Robert J. Hodrick. "Forward exchange rates as optimal predictors of future spot 

rates: An econometric analysis." Journal of political economy 88.5 (1980): 829-853. 

 

He, Wen, and Maggie Rong Hu, 2014,  "Aggregate earnings and market returns: International 

evidence." Journal of Financial and Quantitative Analysis 49, no. 4: 879-901. 

 

Hjalmarsson, Erik. 2011. "New methods for inference in long-horizon regressions." Journal of Financial 

and Quantitative Analysis 46.03: 815-839. 

 

Hodrick, Robert J. "Dividend yields and expected stock returns: Alternative procedures for inference and 

measurement." The Review of Financial Studies 5.3 (1992): 357-386. 

 

Kendall, Maurice G. "Note on bias in the estimation of autocorrelation." Biometrika 41.3-4 (1954): 403-

404. 

 

Nelson, Charles R., and Myung J. Kim. "Predictable stock returns: The role of small sample bias." The 

Journal of Finance 48.2 (1993): 641-661. 

 

Kiviet, Jan F., and Garry DA Phillips. 2012. "Higher-order asymptotic expansions of the least-squares 

estimation bias in first-order dynamic regression models." Computational Statistics & Data Analysis 56, 

no. 11: 3705-3729. 

 

Kothari, S. P., Jonathan Lewellen, and Jerold B. Warner, 2006, "Stock returns, aggregate earnings surprises, 

and behavioral finance." Journal of Financial Economics 79, no. 3 (2006): 537-568. 

 

MacKinnon, James G., and Anthony A. Smith Jr. 1998 "Approximate bias correction in 

econometrics." Journal of Econometrics 85, no. 2: 205-230. 

 

Marriott, F. H. C., and J. A. Pope. 1954.  "Bias in the estimation of autocorrelations." Biometrika 41, no. 

3/4 (1954): 390-402.  

 

Nankervis, John C., and N. Eugene Savin. 1988. "The exact moments of the least-squares estimator for the 

autoregressive model corrections and extensions." Journal of Econometrics37, no. 3: 381-388. 

 

Newey, Whitney K., and Kenneth D.West, 1987, A simple, positive definite, heteroskedasticity and 

autocorrelation consistent covariance matrix, Econometrica 55, 703-708. 

 

Newey, Whitney K., and Kenneth D.West, 1994, Automatic lag Selection in Covariance Matrix Estimation, 

A Review of Economic Studies, vol. 61, issue 4, 631-653 

 

Richardson, Matthew, and James H. Stock. "Drawing inferences from statistics based on multiyear asset 

returns." Journal of Financial Economics 25.2 (1989): 323-348. 

http://econpapers.repec.org/article/ouprestud/


 

35 
 

 

Sadka, Gil, and Ronnie Sadka, 2009, "Predictability and the earnings–returns relation." Journal of 

Financial Economics 94, no. 1: 87-106. 

 

Sawa, Takamitsu. 1978. "The exact moments of the least squares estimator for the autoregressive 

model." Journal of Econometrics 8, no. 2: 159-172. 

 

Shaman, Paul, and Robert A. Stine. 1988. "The bias of autoregressive coefficient estimators." Journal of 

the American Statistical Association 83, no. 403: 842-848. 

  

Stambaugh, Robert F. "Predictive regressions." Journal of Financial Economics 54.3 (1999): 375-421. 

 

Torous, Walter, Rossen Valkanov, and Shu Yan. 2004. "On predicting stock returns with nearly integrated 

explanatory variables." The Journal of Business 77, no. 4: 937-966. 

 

Valkanov, Rossen. "Long-horizon regressions: theoretical results and applications." Journal of Financial 

Economics 68.2 (2003): 201-232. 

 

Welch, Ivo, and Amit Goyal. 2007. "A comprehensive look at the empirical performance of equity premium 

prediction." The Review of Financial Studies 21, no. 4: 1455-1508. 

 

 

 



 

36 
 

Table 1: Analytical vs. Simulated Bias for Long-Horizon Regression Estimators 

Table 1 presents analytical betas and simulation-based mean betas under the null. Sample size is T=300, 600 and 1200. 
nol

J
AB denotes the analytical nol bias  

𝐽

𝑇

(1+𝜌)(1+3𝜌𝐽)

1+𝜌𝐽  
𝜎𝑢𝑣

𝜎𝑣
2   (Proposition 1) while 

nol

J
SB is its simulated counterpart using 100,000 simulations. The corresponding ol counterparts are 

ol

J
AB  for the analytical bias 

using overlapping data 
1

𝑇
[𝐽(1 + 𝜌) + 2𝜌 (

1−𝜌𝐽

1−𝜌
)]

𝜎𝑢𝑣

𝜎𝑣
2   (Proposition 2) and 

ol

J
SB  for the mean ol simulated beta.   Other simulation parameters are u=v=1, uv=-0.9. All 

numbers are multiplied by 100.  

 

      J=12     J=36     J=60   

 T 
nol

J
AB  

nol

J
SB  

ol

J
AB  

ol

J
SB  

nol

J
AB  

nol

J
SB  

ol

J
AB  

ol

J
SB  

nol

J
AB  

nol

J
SB  

ol

J
AB  

ol

J
SB  

0.70 300 6.29 6.44 7.50 7.62 18.36 18.85 19.76 21.10 30.60 30.32 32.00 35.05 

0.70 600 3.14 3.04 3.75 3.72 9.18 9.45 9.88 10.17 15.30 13.86 16.00 16.73 

0.70 1200 1.57 1.59 1.88 1.96 4.59 4.82 4.94 5.09 7.65 7.28 8.00 8.19 

0.90 300 9.85 9.50 10.72 10.69 21.42 22.01 25.80 26.46 34.32 33.83 39.59 41.76 

0.90 600 4.93 4.83 5.36 5.33 10.71 10.88 12.90 13.10 17.16 16.92 19.80 20.52 

0.90 1200 2.46 2.52 2.68 2.72 5.36 5.46 6.45 6.57 8.58 8.68 9.90 10.19 

0.95 300 11.95 12.00 12.26 12.72 26.80 26.47 30.66 31.05 38.19 36.42 45.98 47.12 

0.95 600 5.97 6.01 6.13 6.27 13.40 13.48 15.33 15.51 19.10 18.76 22.99 23.42 

0.95 1200 2.99 3.03 3.07 3.10 6.70 6.72 7.67 7.67 9.55 9.74 11.49 11.57 

0.99 300 13.90 15.12 13.91 15.69 39.14 37.73 39.53 40.29 61.16 50.44 62.72 58.62 

0.99 600 6.95 7.54 6.96 7.69 19.57 20.35 19.76 20.88 30.58 28.79 31.36 32.01 

0.99 1200 3.47 3.65 3.48 3.69 9.78 10.01 9.88 10.28 15.29 14.99 15.68 16.10 

 

  



 

37 
 

Table 2: Analytical vs. Simulated Bias for Long-Horizon Regression Estimators Under the Alternative 
Table 2 presents analytical and simulation-based bias adjustment comparison under the alternative. The columns record the ‘R2’ in percent terms (for example 0.50 

corresponds to a simulated ½% per month) used for calibrating 1, the single period beta, where parentheses ‘’ are used since the finite sample R2 , denoted ER2, is higher 

due to the finte sample bias of R2. The serial correlation of Xt is  , and T is the simulated sample length. The “true” J-period beta given nonzero 1, denoted TruJ
olp, is 

compared with its finite sample biased mean simulated counterpart, SimJ
olp. The difference, = Diff= SimJ

olp-TruJ
olp is the finite sample bias, to be compared with Bias 

calculated using Proposition 2. The first block is a set of simulations under the null of no predictability, then each block uses a larger R2, all else equal, hence increasing the 

degree of predictability. Other simulation parameters are u=v=1, uv=-0.9. All numbers are multiplied by 100.  

      J=12 J=36 J=60  

'R2' 1  T TruJ
olp  SimJ

olp  Diff  Bias ER2 TruJ
olp  SimJ

olp  Diff  Bias ER2 TruJ
olp  SimJ

olp  Diff  Bias ER2 

0.00 0.00 0.70 300 0.00 7.61 7.61 7.63 5.51 0.00 20.71 20.71 21.96 13.95 0.00 34.78 34.78 39.12 22.21 

0.00 0.00 0.70 600 0.00 3.74 3.74 3.78 2.75 0.00 9.99 9.99 10.39 6.97 0.00 16.46 16.46 17.57 11.08 

0.00 0.00 0.70 1200 0.00 1.83 1.83 1.88 1.37 0.00 4.98 4.98 5.07 3.45 0.00 8.21 8.21 8.38 5.49 

0.00 0.00 0.90 300 0.00 10.80 10.80 10.47 6.86 0.00 26.32 26.32 27.31 16.95 0.00 41.91 41.91 46.20 25.92 

0.00 0.00 0.90 600 0.00 5.42 5.42 5.29 3.43 0.00 13.12 13.12 13.23 8.48 0.00 20.47 20.47 21.22 12.88 

0.00 0.00 0.90 1200 0.00 2.76 2.76 2.66 1.70 0.00 6.65 6.65 6.53 4.20 0.00 10.20 10.20 10.24 6.39 

0.00 0.00 0.95 300 0.00 12.52 12.52 11.69 7.69 0.00 30.95 30.95 30.50 19.55 0.00 46.87 46.87 50.14 29.58 

0.00 0.00 0.95 600 0.00 6.22 6.22 5.98 3.75 0.00 15.41 15.41 15.23 9.67 0.00 23.31 23.31 23.81 14.70 

0.00 0.00 0.95 1200 0.00 3.10 3.10 3.03 1.85 0.00 7.72 7.72 7.63 4.82 0.00 11.60 11.60 11.67 7.32 

0.00 0.00 0.99 300 0.00 15.62 15.62 12.77 10.01 0.00 40.10 40.10 33.71 26.46 0.00 58.43 58.43 53.52 39.81 

0.00 0.00 0.99 600 0.00 7.72 7.72 6.66 4.65 0.00 21.05 21.05 18.08 12.89 0.00 32.39 32.39 28.31 20.14 

0.00 0.00 0.99 1200 0.00 3.75 3.75 3.41 2.18 0.00 10.42 10.42 9.44 6.18 0.00 16.26 16.26 14.83 9.80 

0.25 3.58 0.70 300 11.75 18.61 6.86 6.90 5.86 11.92 30.26 18.34 19.33 14.18 11.92 42.23 30.31 34.24 22.43 

0.25 3.58 0.70 600 11.75 15.12 3.37 3.42 3.04 11.92 20.77 8.85 9.15 7.07 11.92 26.55 14.63 15.38 11.09 

0.25 3.58 0.70 1200 11.75 13.47 1.72 1.70 1.65 11.92 16.25 4.33 4.46 3.57 11.92 18.98 7.06 7.33 5.55 

0.25 2.18 0.90 300 15.66 25.38 9.72 9.43 8.19 21.33 42.88 21.55 22.47 18.11 21.78 54.68 32.90 36.84 26.82 

0.25 2.18 0.90 600 15.66 20.44 4.78 4.77 4.67 21.33 31.95 10.62 10.90 9.49 21.78 38.03 16.25 16.96 13.71 

0.25 2.18 0.90 1200 15.66 18.05 2.39 2.40 2.96 21.33 26.58 5.25 5.38 5.22 21.78 29.70 7.92 8.18 7.16 

0.25 1.56 0.95 300 14.37 25.78 11.41 10.73 9.55 26.33 50.82 24.48 24.82 21.91 29.82 64.60 34.78 38.23 31.58 

0.25 1.56 0.95 600 14.37 20.08 5.71 5.49 5.70 26.33 38.65 12.32 12.40 12.28 29.82 47.17 17.34 18.15 16.99 

0.25 1.56 0.95 1200 14.37 17.24 2.87 2.78 3.82 26.33 32.60 6.27 6.21 7.44 29.82 38.65 8.83 8.90 9.62 

0.25 0.71 0.99 300 8.02 23.02 14.99 12.21 12.49 21.44 56.18 34.74 29.28 31.31 31.98 77.43 45.44 42.46 44.70 

0.25 0.71 0.99 600 8.02 15.42 7.39 6.38 7.30 21.44 39.65 18.21 15.79 18.95 31.98 57.25 25.27 22.67 27.77 

0.25 0.71 0.99 1200 8.02 11.59 3.57 3.26 4.90 21.44 30.46 9.02 8.27 12.84 31.98 44.84 12.86 11.93 18.89 
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0.50 5.06 0.70 300 16.64 23.20 6.56 6.59 6.19 16.87 34.14 17.26 18.23 14.36 16.87 45.30 28.43 32.19 22.56 

0.50 5.06 0.70 600 16.64 19.82 3.18 3.27 3.37 16.87 25.22 8.34 8.63 7.24 16.87 30.47 13.60 14.47 11.24 

0.50 5.06 0.70 1200 16.64 18.25 1.60 1.63 1.96 16.87 21.05 4.18 4.20 3.71 16.87 23.60 6.73 6.89 5.66 

0.50 3.09 0.90 300 22.17 31.39 9.22 9.01 9.45 30.20 49.59 19.39 20.48 19.08 30.84 60.25 29.41 32.99 27.52 

0.50 3.09 0.90 600 22.17 26.77 4.60 4.56 6.01 30.20 39.84 9.63 9.93 10.56 30.84 45.27 14.43 15.17 14.45 

0.50 3.09 0.90 1200 22.17 24.53 2.36 2.29 4.34 30.20 34.99 4.79 4.89 6.28 30.84 37.95 7.11 7.30 7.90 

0.50 2.21 0.95 300 20.35 31.39 11.04 10.31 11.43 37.28 59.28 22.00 22.39 24.10 42.23 71.82 29.59 33.16 33.00 

0.50 2.21 0.95 600 20.35 25.84 5.49 5.29 7.69 37.28 48.41 11.12 11.22 14.95 42.23 57.24 15.01 15.79 19.22 

0.50 2.21 0.95 1200 20.35 23.04 2.69 2.68 5.86 37.28 42.72 5.43 5.64 10.33 42.23 49.63 7.40 7.76 12.20 

0.50 1.00 0.99 300 11.36 26.02 14.65 11.98 14.88 30.36 62.70 32.34 27.48 35.94 45.28 85.03 39.75 37.96 49.41 

0.50 1.00 0.99 600 11.36 18.58 7.22 6.27 9.93 30.36 47.34 16.98 14.85 24.98 45.28 67.63 22.35 20.34 35.41 

0.50 1.00 0.99 1200 11.36 14.85 3.49 3.20 7.63 30.36 38.81 8.45 7.78 19.57 45.28 56.73 11.45 10.73 28.13 

0.75 6.21 0.70 300 20.41 26.57 6.17 6.36 6.51 20.69 37.08 16.38 17.39 14.55 20.69 47.71 27.01 30.63 22.72 

0.75 6.21 0.70 600 20.41 23.51 3.11 3.15 3.71 20.69 28.68 7.99 8.23 7.42 20.69 33.70 13.01 13.76 11.38 

0.75 6.21 0.70 1200 20.41 21.94 1.54 1.57 2.30 20.69 24.61 3.92 4.01 3.85 20.69 27.06 6.37 6.56 5.76 

0.75 3.79 0.90 300 27.19 35.90 8.71 8.69 10.72 37.04 54.55 17.52 18.95 20.01 37.82 64.00 26.18 30.03 28.09 

0.75 3.79 0.90 600 27.19 31.59 4.40 4.40 7.41 37.04 45.86 8.82 9.19 11.70 37.82 50.79 12.96 13.81 15.26 

0.75 3.79 0.90 1200 27.19 29.36 2.17 2.21 5.75 37.04 41.39 4.36 4.53 7.50 37.82 44.25 6.42 6.65 8.78 

0.75 2.71 0.95 300 24.95 35.71 10.76 10.00 13.38 45.72 65.65 19.93 20.56 26.47 51.79 77.23 25.45 29.34 34.68 

0.75 2.71 0.95 600 24.95 30.25 5.30 5.13 9.75 45.72 55.82 10.09 10.31 17.88 51.79 64.75 12.97 13.98 21.75 

0.75 2.71 0.95 1200 24.95 27.57 2.62 2.60 7.99 45.72 50.72 5.00 5.17 13.54 51.79 58.29 6.51 6.86 15.15 

0.75 1.23 0.99 300 13.93 28.36 14.43 11.81 17.34 37.23 67.82 30.59 26.09 40.50 55.53 90.95 35.42 34.46 53.91 

0.75 1.23 0.99 600 13.93 21.04 7.11 6.18 12.52 37.23 53.30 16.07 14.12 30.73 55.53 75.64 20.11 18.54 42.46 

0.75 1.23 0.99 1200 13.93 17.36 3.43 3.16 10.32 37.23 45.24 8.01 7.40 25.99 55.53 65.88 10.35 9.80 36.62 
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Table 3: Empirical Application of Long-Horizon Stock Return Predictability 

This table presents equity excess return forecast regressions using overlapping monthly observations for horizons of one month and one, three and five years. Data is from 

Amit Goyal’s website.  The Sample period is January 1968 to December 2017, for a total of 600 monthly observations. We use six common predictors: (i) dividend price 

ratio: DP=Dt-12,t/Pt , (ii) dividend yield: DY=Dt-12,t/Pt-12 , (iii) earnings to price ratio: EP=Et-12,t/Pt, (iv) Shiller’s CAPE, the cyclically-adjusted PE: CapeN=(jlog(E12t-

j)/log(Pt))/120 averaging over nominal earnings, (v) Real CAPE: CapeR=(jlog(e12t-j πt-j,t) /log(Pt))/120 where earnings in year t-j are adjusted by inflation from t-j to t, and 

(vi) book to market ratio: B/M=Bookt/Mktt .  

The regression estimate 
ol

J
 is the OLS estimate using overlapping data and no bias adjustment, t-AR1 is the t-statistic using analytical AR1 standard errors  (seAR1=T-1/2 

(1-2)1/2 u/v{j+[2/(1-)][j-1-((1- j-1)/(1- ))]}1/2 ), J
Adj adjusts the OLS beta using the analytical overlapping bias under the null bias, [ ]

ol

J
E  =(uvu/v ) [j(1+)+2 

(1-j)/(1-)]/T ), and SimPval is the simulated probability value of the empirical 
ol

J
 over the distribution of simulated 

ol

J
s  under the null using the estimated adjusted 

parameters. The J
Adj12 adjusts not only for the contemporaneous 𝜌𝑢𝑣 but also for the 𝜌𝑢𝑣(𝑖)’s up to lag 12 using simulations to match the actual parameters, with the 

following specification 𝑣𝑡+1 = ∑ 𝜌𝑢𝑣(𝑖) 𝑢𝑡+1−𝑖
𝑘
𝑖=0 + 𝜀𝑡+1 where  𝜎𝜀

2 = (1 − ∑ 𝜌𝑢𝑣(𝑖)2)𝜎𝑣
2 𝑘

𝑖=0 . 

 

 

(i) DP         

J J t-AR1 J
Adj t-AR1 SimPval J

Adj12 t-AR1 SimPval12 

1 0.005 1.329 -0.001 -0.280 0.379 -0.003 -0.785 0.392 

12 0.074 1.544 -0.004 -0.081 0.436 -0.024 -0.508 0.449 

36 0.203 1.444 -0.030 -0.213 0.401 -0.069 -0.493 0.411 

60 0.354 1.541 -0.034 -0.147 0.422 -0.066 -0.287 0.439 

(ii) DY         

J J t-AR1 J
Adj t-AR1 SimPval J

Adj12 t-AR1 SimPval12 

1 0.006 1.574 0.006 1.491 0.881 -0.002 -0.462 0.454 

12 0.069 1.404 0.064 1.320 0.861 -0.028 -0.580 0.401 

36 0.185 1.289 0.173 1.204 0.839 -0.083 -0.579 0.359 

60 0.311 1.325 0.291 1.238 0.848 -0.101 -0.430 0.370 

(iii) EP         

J J t-AR1 J
Adj t-AR1 SimPval J

Adj12 t-AR1 SimPval12 

1 0.004 1.003 0.001 0.330 0.633 0.004 1.051 0.807 

12 0.044 0.990 0.014 0.310 0.629 0.046 1.040 0.804 

36 0.107 0.834 0.018 0.140 0.566 0.113 0.885 0.766 

60 0.140 0.679 -0.006 -0.027 0.503 0.151 0.732 0.724 
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(iv) CapeR         

J J t-AR1 J
Adj t-AR1 SimPval J

Adj12 t-AR1 SimPval12 

1 0.096 1.329 0.001 0.017 0.468 -0.026 -0.355 0.490 

12 1.274 1.488 0.136 0.159 0.513 -0.130 -0.152 0.539 

36 2.932 1.172 -0.479 -0.191 0.401 -0.955 -0.382 0.423 

60 5.487 1.349 -0.195 -0.048 0.464 -0.500 -0.123 0.488 

(v) CapeN         

J J t-AR1 J
Adj t-AR1 SimPval J

Adj12 t-AR1 SimPval12 

1 0.151 1.576 0.039 0.405 0.613 0.013 0.131 0.630 

12 1.951 1.731 0.616 0.546 0.655 0.359 0.319 0.674 

36 4.465 1.366 0.506 0.155 0.546 0.054 0.017 0.562 

60 8.004 1.517 1.480 0.280 0.593 1.207 0.229 0.619 

(vi) B/M         

J J t-AR1 J
Adj t-AR1 SimPval J

Adj12 t-AR1 SimPval12 

1 0.003 0.484 -0.005 -0.753 0.242 -0.007 -1.200 0.245 

12 0.056 0.789 -0.033 -0.459 0.334 -0.060 -0.846 0.334 

36 0.096 0.455 -0.171 -0.815 0.235 -0.227 -1.082 0.237 

60 0.233 0.679 -0.211 -0.614 0.302 -0.263 -0.767 0.303 

 




