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1 Introduction

A number of recent studies have investigated the evolution of markups and the growth of concentra-

tion in U.S. industries, finding that both markups and concentration have increased; see Autor et al.

(2020); De Loecker et al. (2020). These studies find that the ascent in average markups was driven

by rising markups of the largest firms and market share reallocation from low- to high-markup firms.

Contemporaneously, the labor share declined. We develop a model of firm dynamics that generates

these patterns, as well as rich predictions about the unfolding of the cross-section of firms. Our

theory focuses on the evolution of a sector rather than on long-run growth of the entire economy.

An industry has a continuum of varieties of a differentiated product and it is populated by

a continuum of single-product firms and a finite number of large multi-product firms. While the

turnover of single-product firms is very high, the large multi-product firms have long life spans.

Large firms lose some products over time, but they can invest in innovation in order to replenish

or expand the range of their products. Free entry of the single-product firms, which engage in

monopolistic competition, creates a competitive fringe that impacts the oligopolistic competition of

the large firms. The interaction between the single- and multi-product firms plays a key role in the

dynamics of this industry, both during transition and in steady state.1

Our assumptions capture salient feature of the data. According to Cao et al. (2019), 95% of

firms in the U.S. economy are single-establishment firms, but their share in employment is only

45%. Furthermore, Kehrig and Vincent (2019) report that during 1972-2007 an average of 72%

of the plants in manufacturing belonged to single-plant firms and 28% belonged to multi-plant

firms (see their Table A1). At the same time, single-plant firms manufactured 22% of value added

compared to 78% of the value added manufactured by multi-plant firms. Both studies point out

that firm growth took place mostly through the extensive margin, by opening new plants that

often produced new products. In addition Hsieh and Rossi-Hansberg (2020) provide evidence that

firm growth through the acquisition of new product lines played an important role in the business

strategies of U.S. corporations in three major sectors: services, retail and wholesale. Growth of

firms in these sectors was driven by expansions to new locations, i.e., new product lines. Finally,

studying the size distribution of firms between 1995 and 2014, Cao et al. (2019) conclude that the

largest contributors to the increase in the number of establishments per firm were declining costs of

innovation and declining exit rates.

The theory developed in this paper predicts that large multi-product firms grow through inno-

vation that expands their product lines, eventually reaching a steady state. In the processes, these

firms raise their markups and reduce their labor share. As a result, the aggregate markup rises and

the aggregate labor share declines. The aggregate markup rises as a result of rising markups of

1Interactions between a monopolistically competitive fringe of single-product firms and oligopolistic large firms
have been studied in a static framework by Shimomura and Thisse (2012) in a closed economy and by Parenti (2018)
in an open economy. Cavenaile et al. (2019) develop a model of endogenous growth with quality-ladders, in which
there is a fringe of competitive small firms that produce a homogenous good. In addition, there are single-product
large firms that produce different varieties of a product. Their model is mostly quantitative, used to study the
relationship between innovation and competition.
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the multi-product firms and the reallocation of market shares from single- to multi-product firms.

The steady state size distribution of firms is driven by heterogeneity of labor productivity, with

more productive firms having larger market shares. Nevertheless, this monotonic relationship does

not translate into a monotonic relationship between productivity and product span. The reason

is that the marginal profitability of investment in innovation is larger when manufacturing costs

are lower, but larger market shares reduce the incentives to invent new products. We show this

tension can produce an inverted-U relationship between labor productivity and product span in the

cross-section of firms. Using the Compustat data for 2018, we provide evidence that supports this

prediction. Our model also predicts that improvements in the technology of single-product firms,

which raise the competitive pressure on the multi-product oligopolies, lead to a decline in the market

share of every large firm on impact. Still, the resulting transition dynamics to a new steady state

vary across the large firms according to size. In particular, multi-product firms with large market

shares compensate for the initial loss of competitiveness, as reflected in the loss of market share, by

gradually expanding their product span and raising their market share over time, while firms with

small market shares further reduce their product span and market shares over time. As a result,

the size distribution of multi-product firms becomes more unequal in the new steady state.

We describe some basic elements of the model in the next section. In Section 3 we detail the

entry decisions of single-product firms and their impact on the pricing strategy of large firms. These

results are then used in Section 4 to study the innovation decisions of large firms and the resulting

transition dynamics. We show that whenever multi-product firms widen their product span in the

transition, they grow in size and so do their markups, while the labor share declines. In the following

Section 5 we study comparative dynamics, some of which were described above. Section 6 concludes.

2 Preliminaries

We consider an economy with a continuum of individuals of mass 1, each one providing l units of

labor. The labor market is competitive and every individual earns the same wage rate.

There are two sectors. One sector produces a homogeneous good with one unit of labor per unit

output and there is always positive demand for its product. We normalize the price of this good to

equal one. Therefore the competitive wage also equals one. The other sector produces varieties of

a differentiated product.2

Every individual has a utility function:

u = x0 +
ε

ε− 1

[∫ N

0
x(ω)

σ−1
σ dω

]

(ε−1)σ
ε(σ−1) , σ > ε > 1, (1)

where x0 is consumption of the homogeneous good, x(ω) is consumption of variety ω of the differ-

entiated product, σ is the elasticity of substitution between varieties of the differentiated product

and ε gauges the degree of substitutability between varieties of the differentiated product and the

2It is straightforward to generalize the analysis to multiple sectors with differentiated products.
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homogeneous good. The assumption σ > ε asserts that brands of the differentiated product are

better substitutes for each other than for the homogeneous good. The assumption ε > 1 ensures

that aggregate spending on the differentiated product declines when its price rises (see below).

Real consumption of the differentiated product is:

X =

[∫ N

0
x(ω)

σ−1
σ dω

]

σ
σ−1 .

Using this definition, the price index of X is:

P =

[∫ N

0
p(ω)1−σdω

]

1
1−σ ,

where p(ω) is the price of variety ω. In this setup utility maximization subject to the budget

constraint x0 + PX = I yields X = P−ε, where I is income, as long as consumers purchase the

homogenous good and varieties of the differentiated product, which we assume always to be the

case (this requires l to be large enough). The demand for variety ω is:

x(ω) = P δp(ω)−σ, δ = σ − ε > 0. (2)

Aggregate spending on the differentiated product equals PX = P 1−ε, which declines in P , because

ε > 1. An individual’s consumption choice yields the indirect utility function

V = I +
1

ε− 1
P 1−ε,

where the second term on the right-hand side represents consumer surplus. Aggregating across all

individuals we obtain the aggregate indirect utility function

VA = IA +
1

ε− 1
P 1−ε, (3)

where IA is aggregate income.

Two types of firms operate in sector X: atomless single-product firms and large multi-product

firms, each one with a positive measure of product lines (recall the discussion in the introduction

of evidence in support of this specification). Single-product firms produce r > 0 varieties, each one

specializing in a single brand. Large firm i has ri > 0 product lines, i = 1, 2, ...,m, where m is the

number of large firms. All the brands supplied to the market are distinct from each other.

All single-product firms share the same technology, which requires ā unit of labor per unit out-

put.3 Facing the demand function (2), a single-product firm maximizes profits P δp(ω)−σ [p(ω)− ā],

taking as given the price index P . Therefore, a single-product firm prices its brand ω according to

3It is straightforward to allow for heterogeneity of the single-product firms, by assuming that each one of them
draws a unit labor requirement from a known distribution. Since this type of heterogeneity plays no essential role in
our analysis, we have chosen to work with the simpler formulation.
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p(ω) = p, where:

p =
σ

σ − 1
ā. (4)

This yields the standard markup µ = σ/ (σ − 1) for a monopolistically competitive firm.

A large firm i has a technology that requires ai units of labor per unit output, and it faces the

demand function (2) for each one of its brands. As a result, it prices every brand equally. We

denote this price by pi. The firm chooses pi to maximize profits riP
δp−σ

i (pi − ai). However, unlike

a single-product firm, a large firm does not view P as given, because it recognizes that

P =



r p1−σ +

m
∑

j=1

rjp
1−σ
j





1
1−σ

, (5)

and therefore that its pricing policy has a measurable impact on the price index of the differentiated

product. Accounting for this dependence of P on the firm’s price, the profit maximizing price is:

pi =
σ − δsi

σ − δsi − 1
ai, (6)

where si is the market share of firm i and:4

si =
rip

1−σ
i

P 1−σ
=

rip
1−σ
i

r p1−σ +
∑m

j=1 rjp
1−σ
j

. (7)

Equations (6) and (7) jointly determine prices and market shares of large firms. The markup factor

of firm i is µi = (σ − δsi)/(σ − δsi − 1), which is increasing in its market share. When the market

share equals zero the markup is σ/(σ − 1), the same as the markup of a single product firm. The

markup factor varies across firms as a result of differences in either the product span, ri, or the

marginal production cost, ai. We analyze the dependence of prices, market shares and markups on

marginal costs and product spans in the next section.

3 Entry of Single-Product Firms

We take as given the number of large firms, and focus the analysis on the evolution of their product

spans, ri, in the next section. Unlike large firms, single-product firms enter the industry until their

profits equal zero. Firms in this sector play a two-stage game: in the first stage single-product

firms enter; in the second stage all firms play a Bertrand game as described in the previous section.

Under these circumstances, (4) and (6) portray the equilibrium prices, except that the number of

single product firms, r̄, is endogenous. We seek to characterize a subgame perfect equilibrium of

this game.

To determine the equilibrium number of single-product firms, assume that they face an entry

cost f and they enter until profits equal zero. In a subgame perfect equilibrium every entrant

4Note that σ − δsi − 1 = σ (1− si) + εsi − 1 > 0 and σ − δsi = σ (1− si) + εsi > 0.
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correctly forecasts the number of entrants, and the price that will be charged for every variety in

the second stage of the game. Therefore, every single-product firm correctly forecasts the price index

P . Using the optimal price (4) and the profit function P δp−σ (p− ā), this free entry condition can

be expressed as:
1

σ
P δ

(

σ

σ − 1
ā

)1−σ

= f. (8)

The left-hand side of this equation describes the operating profits, which equal a fraction 1/σ of

revenue, while the right-hand side represents the entry cost. In these circumstances the price index

P is determined by f and ā, and it is rising in both f and ā. Importantly, it does not depend on

the number of large firms nor on their product spans.

We now use (6) and (7) to calculate the response of prices and market shares to changes in the

number of product lines, changes in marginal costs, and changes in the price index P . Denoting by a

hat the proportional rate of change of a variable, i.e., x̂ = dx/x, differentiating these two equations

yields the solutions:

p̂i =
βi

1 + (σ − 1)βi
r̂i +

1

1 + (σ − 1)βi
âi +

(σ − 1)βi
1 + (σ − 1)βi

P̂ , (9)

ŝi =
1

1 + (σ − 1)βi
r̂i −

σ − 1

1 + (σ − 1)βi
âi +

σ − 1

1 + (σ − 1)βi
P̂ . (10)

where:

βi =
δsi

(σ − δsi − 1)(σ − δsi)
> 0. (11)

Due to the fact that the price index P responds neither to changes in ri nor changes in ai, an

increase in ri raises pi and si, but it has no impact on prices and market shares of the other large

firms. For the same reason, an increase in ai raises pi and reduces si, but has no impact on prices

and market shares of the other large firms. Moreover, an increase in ai raises the price of firm i less

than proportionately, and therefore there is only partial pass-through of marginal costs to prices.

The extent of the pass-through is smaller for a firm with a larger βi, which is a firm with a larger

market share. Finally, an increase in the price index P , which represents a decline in the competitive

pressure in the industry, raises the price and the market share of every large firm. However, the

price rises proportionately more and the market share rises proportionately less in firms with larger

βis, which are firm with larger market shares. Finally, the market share of a firm is larger the larger

is its product span or the lower is its marginal cost of production. Noting again that the markup

of every firm i is larger the larger its market share, we summarize these findings in

Proposition 1. Suppose that the number of large firms and their product spans are given, but there

is free entry of single-product firms. Then: (i) an increase in ri raises the price, markup and market

share of firm i, but has no impact on prices, markups and market shares of the other large firms;

(ii) a decline in ai reduces the price and raises the markup and market share of firm i, but has no

6



impact on prices, markups and market shares of other large firms; (iii) a decline in the price index

P , either due to a decline in ā or a decline in f , reduces the price, markup and market share of every

large firm, with prices changing proportionately more and market shares changing proportionately

less for firms with initially larger market shares.

It is clear from this proposition that free entry of single-product firms leads large firms to

compete for market share with single-product firms rather than with each other.5 An increase in

ri or a decline in ai, each of which raises the market share of firm i, does not impact the market

share of other large firms, but do reduce the market share of single-product firms. Since the price

index P does not change in response to changes in the number of product lines ri or the marginal

cost ai, the decline in the market share of the single-product firms is attained via a decline in their

joint product span r̄. We therefore have

Proposition 2. Suppose that the number of large firms and their product spans are given, but there

is free entry of single-product firms. Then a decline in ai or an increase in ri reduces the number

of single-product firms and their market share.

4 Transition Dynamics

We next study the dynamics that arise when large firms can expand their product lines. Time is

continuous and the economy starts at time t = 0. The range of products of firm i at time t is ri (t)

for t ≥ 0 and ri (0) = r0i is given.

Similarly to Klette and Kortum (2004), at every point in time firm i can invest in innovation in

order to increase the number of its product lines. An investment flow of ιi per unit time expands ri

by φ (ιi) units per unit time, where φ (ιi) is the innovation function, assumed to be increasing and

concave and φ (0) = 0. Furthermore, ri depreciates at the rate θ per unit time, which randomly

hits the continuum of available brands. It follows that the product span ri satisfies the differential

equation:

ṙi = φ(ιi)− θri, for all t ≥ 0, (12)

where we have suppressed the time index t in ṙi, ri and ιi.

The endogenous expansion of product lines plays an important role in our theory. Hsieh and

Rossi-Hansberg (2020) provide evidence that it also played an important role in the business strate-

gies of U.S. corporations in three key sectors—services, retail and wholesale—where firm growth

was dominated by expansion to new locations, i.e., new product lines. Cao et al. (2019) make a

similar argument more broadly; firms grew predominantly on the extensive margin, through new

establishments that often represented new product lines.6

5This is different, for example, from Atkeson and Burstein (2008), who have a continuum of industries, each one
populated by a finite number of large single-product firms, and no small firms. Nevertheless, our and their pricing
formulas have common elements.

6Aghion et al. (2019) develop a model of economic growth in which the total number (measure) of product lines is
constant, but a single firm can operate multiple product lines. They focus on explaining the decline in the long-run
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At every point in time the firms play a two stage game. In the first stage single-product firms

enter and large firms invest in innovation. Single-product firms live only one instant of time. For

this reason they make profits only in this single instant. This assumption captures in extreme form

the empirical property that the turnover of plants of small firms is much larger than the turnover

of plants of large firms. In the second stage all firms choose prices, in the manner described in

the previous section. Under the circumstances the price index P is determined by the free entry

condition (8), and it remains constant as long as the cost of entry and the cost of production of the

single-product firms do no change. It follows that the profit flow of large firm i is:

πi = riP
δp−σ

i (pi − ai)− ιi, for all t ≥ 0,

where P is the same at every t while πi, ri, pi and ιi change over time, and pi is given by (6).

In this economy the state vector is r = (r1, r2, ..., rm), a function of time t, and the price pi is a

function of r. Note, however, from (9) and (10) that pi and si depend only on the element ri of r.

We therefore can express the profit function as:

πi (ιi, ri) = riP
δpi (ri)

−σ [pi (ri)− ai]− ιi, for all t ≥ 0, (13)

where pi (ri) is the price of firm i’s brands as a function of ri. This firm’s market share is also a

function of ri, si (ri). From (9) and (10) we obtain the elasticities of the functions pi (ri) and si (ri):

∂pi
∂ri

ri
pi

=
βi

1 + (σ − 1)βi
, (14)

∂si
∂ri

ri
si

=
1

1 + (σ − 1)βi
, (15)

where βi is defined in (11). Note that βi is increasing in si and that, due to (10), si is increasing

in ri. Therefore βi is increasing in ri. As a result, the elasticity of the price function is larger the

larger is si while the elasticity of the market share function is smaller the larger is si.

Next assume that the interest rate is constant and equal to ρ. This interest rate can be derived

from the assumption that individuals discount future utility flows (1) with a constant rate ρ, so that

they maximize the discounted present value of utility
∫∞
0 e−ρtu(t)dt. Under these circumstances

firm i maximizes the discounted present value of its profits net of investment costs. It therefore

solves the following optimal control problem:

growth rate. The key trigger of their dynamics is a decline in a static cost function c(n) that describes a firm’s
overhead cost of operating n product lines. They argue that a fall in these costs was caused by the IT revolution.
Their firms have constant unit costs and the quality of products can be improved by investing in innovation, as in
standard models of endogenous growth with quality ladders (see Grossman and Helpman (1991) and Aghion and
Howitt (1992)). A firm acquires new product lines by gaining leadership positions through quality competition.
They characterize a steady state of an economy with two types of firms—high- and low-productivity (unit labor
requirements)—and study the impact of a decline in c(n) on concentration, labor shares, the reallocation of market
shares and the long-run growth rate.

8



max
{ιi(t),ri(t)}t≥0

∫ ∞

0
e−ρtπi [ιi (t) , ri (t)] dt

subject to (12), (13), ri(0) = r0i , and a transversality condition to be described below. In this

problem ιi is a control variable while ri is a state variable. The current-value Hamiltonian of this

problem is:

H(ιi, ri, λi) =
{

riP
δpi (ri)

−σ [pi (ri)− ai]− ιi

}

+ λi [φ (ιi)− θri] ,

where λi is the co-state variable of constraint (12). The co-state variable λi varies over time. The

first-order conditions of this optimal control problem are:

∂H
∂ιi

= −1 + λiφ
′ (ιi) = 0,

−∂H
∂ri

= −∂
[

riP
δp−σ

i (pi − ai)
]

∂ri
+ θλi = λ̇i − ρλi,

and the transversality condition is:

lim
t→∞

e−ρtλi (t) ri(t) = 0.

In addition, the optimal path of (ιi, ri) has to satisfy the differential equation (12).

The above first-order conditions can be expressed as:

λiφ
′ (ιi) = 1, (16)

λ̇i = (ρ+ θ)λi − P δpi (ri)
−σ
{

pi (ri)− ai − ri

(

σpi (ri)
−1 [pi (ri)− ai]− 1

)

p′ (ri)
}

. (17)

From (16) we obtain the investment level ιi as an increasing function of λi, which we represent as

ιi (λi). Substituting this function into (12) yields the autonomous differential equation:

ṙi = φ [ιi (λi)]− θri. (18)

Next we substitute (6), (11) and (14) into (17) to obtain a second autonomous differential equation:

λ̇i = (ρ+ θ)λi − Γi (ri) , (19)

where:

Γi (ri) ≡ a1−σ
i P δσ

[

σ − δsi (ri)

σ − δsi (ri)− 1

]−σ 1

[σ − δsi (ri)− 1]σ + si (ri)
2 δ²

. (20)

The function Γi (ri) represents the profitability of a new product line, given the firm’s product span

ri; that is, it represents the marginal profitability of ri. We show in the Appendix that this marginal

profitability declines in ri, i.e., Γ′
i (ri)< 0.
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Figure 1: Transition Dynamics

A solution to the autonomous system of differential equations (18) and (19) that satisfies the

transversality condition is also a solution to the firm’s optimal control problem, because H(ιi, ri, λi)

is concave in the first two arguments. This can be seen by observing that the Hamiltonian is

additively separable in ιi and ri, and it is strictly concave in ιi and in ri. The steady state of these

differential equations is characterized by:

φ [ιi (λi)] = θri, (21)

(ρ+ θ)λi = Γi (ri) . (22)

The left-hand side of (21) is an increasing function of λi. Therefore the curve in (ri, λi) space

along which ri is constant is upward sloping. The right-hand side of (22) is declining in ri, because

Γ′
i (ri) < 0. Therefore the curve in (ri, λi) space along which λi is constant is downward sloping.

These curves are depicted in Figure 1. Based on the differential equations (18)-(19), the figure also

depicts the resulting dynamics. There is a single stable saddle-path along which (ri, λi) converge

to the steady state and the transversality condition is satisfied in this steady state. On this saddle

path either ri rises and λi declines or ri declines and λi rises, depending on whether r0i is below or

above its steady-state value.

Now suppose that all the r0i s are below their steady state values (this case arises, for example,

when the economy is in steady state and innovation costs decline; see below). Then every large firm

expands its range of products over time. As a result, the number of single-product firms shrinks.

This process continues until the economy reaches a steady state.

If at some point in time the number of single-product firms drops to zero, the dynamics change.7

7From that point on the optimal strategy of large firm i depends on the entire state vector r. As a result, the firms
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We focus, however, on the case in which r̄ > 0 for all t ≥ 0. In this case the price index P remains

constant as long as f and ā do not change.

What can be said about the dynamics of profits of a large firm i? Changes of profits over time

can be expressed as:
∂πi (ιi, ri)

∂t
= −∂ιi

∂t
+

∂
[

riP
δp−σ

i (pi − ai)
]

∂ri

∂ri
∂t

.

From (16) we see that ιi is an increasing function of λi, and since for a firm that expands its product

range λi declines, it follows that the investment level ιi also declines over time, raising profits net

of investment costs. From (17) and (19) we see that:

∂
[

riP
δp−σ

i (pi − ai)
]

∂ri
= Γi (ri) > 0.

Therefore, profits grow in a firm that adds new product lines. We conclude that profits net of

investment costs rise in growing firms. Since wages are constant, this implies that in an economy

in which all large firms grow, the share of labor in national income declines.

While the share of labor declines over time, average markups are rising. To see the sources of

variation in average markups, note that the average markup µav can be expressed as a weighted

average of the markups of all single- and multi-product firms:

µav =

(

1−
m
∑

i=1

si

)

µ̄+

m
∑

i=1

siµi,

where the markup of a single product firm is µ̄ = σ/ (σ − 1) and the markup of large firm i is

µi = (σ − δsi) / (σ − δsi − 1). Since the markup of every large firm is higher than the markup

of every single-product firm and the market share of every large firm rises over time, the average

markup also increases. The increase in the average markup is driven by two forces: rising markups

of the large firms and market share reallocation from low-markup (single-product) to high-markup

(multi-product) firms.8 We summarize these findings in

engage in a differential game. Since no firm can commit to the entire path of its investments ιi, one needs to adopt
the closed loop solution to this game, in which the investment level ιi is a function of the state vector r. There do
not exist user-friendly characterizations of solutions to such games. Instead, we provide in the Appendix an analysis
of the impact of changes in the state variables ri on prices, markups and market shares of the large firms.

8Using a dynamic model of monopolistic competition with a Kimball aggregator, Edmond et al. (2019) decompose
the welfare cost of markups into three sources of influence: (i) aggregate markup; (ii) misallocation of inputs; and
(iii) inefficiently low entry of firms. Their quantitative model implies that (i) accounts for 3/4 of the welfare cost while
(ii) accounts for 1/4. The impact of entry is negligible. They show that in the Compustat data the sales-weighted
aggregate markup is higher than the cost-weighted aggregate markup and that the gap between them has widened
over time (see their Figure 8). In their model the cost-weighted aggregate markup turns out to be the relevant
measure for (i). Our aggregate markup µav has been constructed using sales shares, which seems to be suited for our
purpose. Nevertheless, we discuss in the Appendix a cost-weighted measure of the aggregate markup:

µc
av =

(

1−

m
∑

i=1

̺i

)

µ̄+

m
∑

i=1

̺iµi,

where ̺i is the variable cost share of firm i. This measure does not necessarily rise on the transition path, but neither
does it play a distinct role in our analysis. We show in the Appendix that the cost weight ̺i is rising in ri if and

11



Proposition 3. Consider an economy in which the initial range of products r0i is smaller than its

steady state value for every i, and in which r̄ > 0 at all times. Then over time: (i) every large firm

i widens its product span, raises its markup, and experiences rising profits net of investment costs;

(ii) the average markup rises and the labor share declines.

Since wages are constant, so is wage income. Nonetheless, in view of Proposition 3(i), aggregate

income—which consists of labor income plus aggregate profits net of investment costs—is rising

during the transition to a steady state. In view of the indirect utility function (3), this implies

that aggregate utility rises over time (recall that P remains constant). Moreover, if this economy is

populated by some individuals who own shares in large firms and other individuals who do not, the

growth of large multi-product firms widens the disparity of well-being between these two groups.

We summarize this finding in

Corollary 1. Consider an economy in which the initial range of products r0i is smaller than its

steady state value for every i, and in which r̄ > 0 at all times. Then over time the well-being of

individuals who derive income from labor only is constant while the well-being of individuals who

own shares in large firms rises.

5 Comparative Dynamics

For an economy that is initially in steady state, we study in this section the dynamics that arise

in response to changes in the cost of inventing new product lines, the marginal costs of production

and the cost of entry of single-product firms.

First, consider a change in the cost of innovation, as reflected in a shift of the function φ (ιi).

We take κ > 0 to be a productivity measure of innovation and express the modified innovation

function as κφ (ιi). Initially κ = 1. An upward shift in κ represents a rise in the productivity of

investment in innovation or a decline in innovation costs, while a decline in κ represents a decline in

the productivity of investment in innovation or a rise in innovation costs. The latter may arise when

it becomes harder to invent new product lines. With the new innovation function the dynamics of

product span, (12), become:

ṙi = κφ(ιi)− θri, for all t ≥ 0. (23)

In this case the first-order condition of the optimal control problem (16) becomes:

λiκφ
′ (ιi) = 1, (24)

while the differential equation (19) does not change. From (24) we obtain the investment level ιi as

an increasing function of κλi, which we express as ιi (κλi). This is the same ιi (·) function that we

only if βi < 1 and it is declining in rj , j 6= i, if and only if βj < 1. As a result, µc
av is rising due to increases in the

markups of the large firms, µi, i = 1, 2, ...,m, but the shifts in the cost shares may bring it down.

12



had before. Substituting this function into (23) yields the autonomous differential equation:

ṙi = κφ [ιi (κλi)]− θri.

The steady state of this differential equations is characterized by:

κφ [ιi (κλi)] = θri,

while the second steady state equation, (22), does not change, because the differential equation (19)

remains the same. For κ = 1, the steady state and the dynamics depicted in Figure 1 remain the

same.

Now consider an increase in κ, which represents a decline in the costs of inventing new product

lines. Since κφ [ιi (κλi)] is increasing in κ, this leads to a downward shift of the ṙi = 0 curve

without changing the λ̇i = 0 curve. As a result, λi declines on impact to a new saddle path, starting

transition dynamics with declining values of λi and rising values of ri. This process takes place in

every large firm, leading to a new steady state in which every large firm has a larger product span,

a larger market share and a higher markup. The average markup rises during the transition and it

is higher in the new steady state. The flow of aggregate utility also rises during this transition and

is higher in the new steady state. The flow utility rises because profits net of investment costs rise

while the price index P remains the same. We therefore have

Proposition 4. Suppose that every large firm i is in steady state and r̄ > 0 at all times. Then a

decline in the cost of innovation, i.e., an increase in κ, leads all large firms to expand their product

range, raise their market shares and raise their markups. Contemporaneously, average markups

increase and so does the aggregate flow of utility.

We next turn to changes in the marginal costs of production and the cost of entry of single-

product firms. As is evident from (21) and (22), such changes impact the new steady state through

the function Γi (ri) only. A change that raises Γi (ri) shifts upward the λ̇i = 0 curve in Figure 1.

After the impact effect, which results from the upward jump in λi, the dynamic process leads to a

gradual widening of the span of products and increases in the markup and profits net of investment

costs. In contrast, a change that reduces Γi (ri) shifts downward the λ̇i = 0 curve. After the

downward jump of λi on impact, the dynamic process then leads to a gradual narrowing of the span

of products and declines in markups and profits net of investment costs.

First, consider a decline in ai, resulting from a technical improvement in the firm’s technology.

We show in the Appendix that the impact of ai on Γi can be expressed as:

Γ̂i = − (σ − 1) âi +

(

∂Γi

∂si

si
Γi

)(

∂si
∂ai

ai
si

)

âi (25)

=
(σ − 1) s2i δ² − (σ − δsi − 1)2

(

σ2 − δ2s2i
)

[

(σ − δsi − 1)σ + s2i δ²
]2 (σ − 1) âi.

13



The relationship between ai and Γi portrayed by this equation does not depend on the cost structure

of other firms. Moreover, it implies that a decline in ai shifts upward the λ̇i = 0 curve if and only

if:

(σ − δsi − 1)2
(

σ2 − δ2s2i
)

> (σ − 1) s2i δ². (26)

The potential ambiguity of the response of Γi to changes in ai results from the existence of two

channels through which the marginal cost impacts the profitability of a new variety (the marginal

profitability of ri), as can be seen from (20). A decline in ai raises Γi for a given market share si,

due to cost savings in production. But, as shown in (10), a decline in ai raises the market share

of firm i and a rise in the firm’s market share reduces the profitability of a new variety. It follows

that the shift of the λ̇i = 0 curve depends on the strength of these two effects: if the response of

the market share dominates, the curve shifts down; and if the response of the market share does

not dominate, the curve shifts up. The strength of the market share effect depends in turn on the

firm’s initial size. For low values of si the impact through the market share channel is small, and

(26) is satisfied. But (26) is less likely to be satisfied the larger si is, because the left-hand side of

this inequality is declining in si while the right-hand side is increasing. This leads to the following

Lemma 1. If (σ − δ − 1)2
(

σ2 − δ2
)

> (σ − 1) δ², then (26) is satisfied for all market shares

siǫ [0, 1]. And if (σ − δ − 1)2
(

σ2 − δ2
)

< (σ − 1) δ², then there exists a market share soǫ (0, 1),

defined by:

(σ − δso − 1)2
[

σ2 − δ2 (so)2
]

= (σ − 1) (so)2 δ²,

such that (26) is satisfied for si < so and violated for si > so.

Given the assumption σ > ε > 1, the inequality (σ − δ − 1)2
(

σ2 − δ2
)

> (σ − 1) δ² is satisfied

when ε is close to σ and violated when ε is close to one (recall that δ = σ − ε). We therefore have

Proposition 5. Suppose that firm i is in steady state and r̄ > 0 at all times. Then a decline in

ai triggers an adjustment process that gradually raises ri as well as i’s markup and profits net of

investment costs if either (σ − δ − 1)2
(

σ2 − δ2
)

> (σ − 1) δ² or (σ − δ − 1)2
(

σ2 − δ2
)

< (σ − 1) δ²

and si < so, where so is defined in Lemma 1. Otherwise, this technical improvement triggers an

adjustment process that gradually reduces ri while i’s markup and profits net of investment costs

decline gradually after increasing on impact.

Using these results, we can examine the dynamics of firm i’s market share. Since on impact

the span of products does not change (ri is a state variable), (10) implies that the decline in the

marginal cost raises on impact firm i’s market share. Moreover, if the adjustment process leads

to a gradual expansion of its product span, i’s market share rises over time until it reaches a new

steady state. In this case the firm has a larger market share in the new steady state. If, however,

the adjustment process leads to a narrowing of the firm’s product span, then (10) implies that the

initial upward jump in firm i’s market share is followed by a gradual decline in its market share. A

14
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Figure 2: Dynamics of the market share in response to a decline in the marginal cost ai

question then arises whether this firm’s market share is larger or smaller in the new steady state.

We prove the following

Proposition 6. Suppose that firm i is in steady state and r̄ > 0 at all times. Then a decline in ai

triggers an adjustment process that raises si in the new steady state.

Proof. We have shown that the market share is larger in the new steady state when the adjustment

process involves expansion of the firm’s product span. It therefore remains to show that this is also

true when the adjustment process involves contraction of the product span. To this end note that

a decline in ri on the transition path is triggered by a decline in the marginal profitability of ri in

response to a decline in ai, which leads in turn to a downward shift in the λ̇i = 0 curve in Figure

1. In this case the new steady state has a lower ri as well as a lower λi. Next note from the steady

state condition (22) that a lower λi implies a lower Γi. Recall, however, that for a constant si a

fall in ai raises Γi, and therefore Γi can be lower in the new steady state only if si is higher. In

sum, independently of whether a decline ai shifts upward or downward the λ̇i = 0 curve, the market

share si is larger in the new steady state.

This result yields the following

Corollary 2. Consider an economy in steady state with active single-product firms. Then large

firms with lower marginal costs have larger market shares.

The dynamic patterns of the market share that have been uncovered by this analysis are depicted

in Figure 2, where s1i is the market share in the initial steady state. First, the market share jumps up

to simi on impact when ai declines. Afterward, the market share rises continuously until it reaches

s2i , as portrayed by the upper curve, or it declines continuously until it reaches s3i , as portrayed

15
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Figure 3: Average Number of Product Lines vs. Labor Productivity Deciles

by the lower curve. In both cases the new steady state market share exceeds s1i . The former case

applies when (σ − δ − 1)2
(

σ2 − δ2
)

> (σ − 1) δ² or (σ − δ − 1)2
(

σ2 − δ2
)

< (σ − 1) δ² and s1i < so,

and the latter case applies otherwise.

These results suggest three possible steady state patterns for the relationship between ai and

ri in the cross section of multi-product firms: lower-cost firms have larger product spans, lower-

cost firms have smaller product spans, or the relationship between marginal costs and product

spans has an inverted U shape. The first pattern holds for all marginal cost structures when

(σ − δ − 1)2
(

σ2 − δ2
)

> (σ − 1) δ². In the opposite case, when (σ − δ − 1)2
(

σ2 − δ2
)

< (σ − 1) δ²,

there exist high values of ai at which si < so, and among firms with such high marginal costs firms

with lower marginal costs have larger product spans. Moreover, there exist low values of ai at which

si > so, and among firms with such low marginal costs lower-cost firms have smaller product spans.

Combining these results we have

Proposition 7. Consider an economy in steady state with active single-product firms. Then, in the

cross section of multi-product firms ri is declining in si, rising in si, or rising in si among firms

with low market shares and declining in si among firms with high market shares.

Combining this Proposition with Corollary 2, we note that our model raises the possibility of an

inverted-U relationship between labor productivity, as measured by 1/ai, and the number of product

lines, ri. We now show that this prediction is not only a theoretical possibility, but that there is

suggestive evidence for such a relationship in the Compustat data set. To this end we collected

data on revenue, employment, the number of sectors in which a firm operated and the number of

segments in which a firm operated, all for 2018. We computed labor productivity as revenue per
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Figure 4: Number of Segments vs. Labor Productivity

worker and we treat the number of segments as a proxy for the number of product lines. As a

robustness check, we also consider the number of industries in which a firm operated as a proxy

for the number of its product lines.9 Figure 3 depicts the relationships between our two proxies

for ri and our proxy for 1/ai. On the horizontal axis the firms are divided into deciles, based on

their labor productivity. On the vertical axis we report the mean number of segments and the mean

number of industries in each decile. As is evident, these relationships exhibit an inverted-U.

To further examine these relationships, we regressed the number of segments or the number

of sectors in which a firm operates on a second-order polynomial of the log of labor productivity.

We report in the Appendix the resulting OLS estimates. The coefficient on log labor productivity

is positive and the coefficient on the log of labor productivity squared is negative in both case.

Moreover, all four coefficients are significantly different from zero. Figure 4 plots the data points

that we have used (more than 4,000 observations) as well as the fitted quadratic curve. The first

thing to note is that there are many firms with similar numbers of segments and different labor

productivity levels, especially when the number of segments is low. Nevertheless, the estimated

curve has the shape of an inverted-U. We report in the Appendix a similar graph for the number

of industries in which a company operates. In conclusion, while we view this paper as a theoretical

contribution, we have also provided suggestive evidence for the inverted-U curve predicted by our

model.

9About 70% of the firms in the Compustat database breakdown the company into segments. Segments include
different business lines or geographic locations. We use a company’s number of business segments as a proxy for the
number of product lines. Within each segment, the firm can list up to two SIC codes in which the business segment
operates. The total number of unique SIC codes listed across business segments is what we define as the number of
industries in which a firm operates. This is our second proxy for the number of product lines.
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5.1 Costs of Single-Product Firms

We next examine the impact of the cost structure of single-product firms. As is evident from (8), a

decline in either the marginal cost or the entry cost of single-product firms reduces the price index

P , thereby raising the competitive pressure in the economy. How do the large firms respond to this

rise in competition? To answer the question, suppose that all firms are in steady state. Equation

(20) implies:

Γ̂i = δP̂i +

(

∂Γi

∂si

si
Γi

)(

∂si
∂P

P

si

)

P̂ . (27)

A decline in the price index P , which elevates the competitive pressure on every large firm, reduces

the marginal value of ri. For this reason the first term on the right-hand side of this equation is

negative when P̂i < 0. In response, firm i reduces its price and market share (see (9) and (10)) and

the fall in market share raises the marginal value of ri. For this reason the second term on the right-

hand side is positive when P̂i < 0. It follows that a decline in P shifts the λ̇i = 0 curve downward

in Figure 1 if the competition effect dominates and upward if the market share effect dominates.

Using (10), it is evident that for ε → 1 (27) is similar to (25), except for the opposite sign on their

right-hand sides. Therefore, in this case a decline in P shifts down the λ̇i = 0 curve if and only if a

decline in ai shifts it up. Under these conditions a lower P may lead to a lower or higher value of

ri in steady state, and moreover, its impact may vary across firms with different marginal costs and

therefore different market shares si. For ε → 1 the inequality (σ − δ − 1)2
(

σ2 − δ2
)

> (σ − 1) δ² is

violated, implying that there exists an soP such that the decline in P shifts the λ̇i = 0 curve down

for si < soP and up for si > soP . Therefore, in this case a rise in the competitive pressure shrinks the

product span of multi-product firms with si < soP and expands the product span of multi-product

firms with si > soP . As a result, the gaps in market shares between large and small multi-product

firms widens, thereby increasing the inequality in the size distribution of firms.10 Alternatively, for

ε → σ, the competition effect is negligible and the shift in the market share dominates the impact

on Γi. As a result, the λ̇i = 0 curve shifts up for all multi-product firms, raising their product spans.

Finally, note that a decline in P reduces the steady state market share of every large firm.

This is clearly the case when every firm’s product span declines because in this case both P and

ri diminish the market share (see (10)). Alternatively, for a firm that expands its steady state ri,

the value of λi is higher in the new steady state (see (21)). Therefore this firm’s Γi is also larger in

the new steady state (see (22)). But the direct impact of the decline in P on Γi is negative, and

therefore si has to be smaller for Γi to be larger. We therefore have

Proposition 8. Consider an economy in steady state with r̄ > 0 at all times. Then, a technical

improvement that reduces either f or ā may raise ri in the new steady state for all i, reduce ri

for all i, or reduce ri of the small multi-product firms and raise ri of the large multi-product firms.

Nevertheless, si is smaller in the new steady state for all large firm i.

Figure 5 depicts the dynamics of two firms, i and j, for the case in which si < soP and sj > soP ,

10From (10), ŝi − ŝj = (r̂i − r̂j) / [1 + (σ − 1)βi]. Therefore ŝi > ŝj if and only if r̂i > r̂j .
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Figure 5: Dynamics of market shares in response to a decline in P

where soP is the cutoff market share for the opposite firm dynamics. Firm i starts with si = s1i while

firm j starts with sj = s1j . In both firms the market share jumps down on impact as a result of the

decline in P , to simi and simj , respectively. After that, the market share of the smaller firm declines

while the market share of the larger firm rises. Yet in both cases, the market share is lower in the

new steady state.

Gutierrez and Philippon (2019) find that the elasticity of the number of firms with respect to

Tobin’s Q declined during 1995-2010. They argue that this resulted from increased entry costs due

to regulation rather than due to technological developments or financial frictions. In our model an

increase in f generates the above described dynamics independently of the source of variation in the

fixed cost of entry. According to Proposition 8, an increase in f raises the long-run market share of

all large multi-product firms and reduces the joint market share of the small single product firms.

Yet, it may have an uneven impact on the span of products of the large firms. That is, it may

increase the number of product lines of the smaller multi-product firms and reduce the number of

product lines of the large ones, thereby flattening the relationship between labor productivity (i.e.,

1/ai) and product span.

6 Conclusion

We have developed a parsimonious model of industry evolution, in which large multi-product firms

grow via investment in new product lines. While these firms are oligopolies, they face competitive

pressure from small single-product firms that engage in monopolistic competition. These features

accord with the evidence discussed in the introduction. Our model generates time patterns of

markups, concentration, and labor shares that are consistent with the data. Moreover, it predicts
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rich patterns for the cross-section of firms. In particular, it predicts an inverted-U relation between

labor productivity and product span, for which we provide supportive evidence. It also predicts that

rising competitive pressure from small single-product firms flattens the cross-sectional relationship

between labor productivity and product span among the large multi-product firms. Although this

study consists of a theoretical contribution, we believe that our model delivers valuable insights into

industry dynamics, which can be empirically studied. There are few data sets containing information

on product span of individual firms, and these data are mostly confidential. Nevertheless, we hope

that the predictions of our model will eventually be examined with some of the existing rich data

sets.
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Appendix

Comparative Dynamics

We first derive the slope of the λ̇i=0 curve. Differentiation of the right-hand side of (22) yields:

Γ̂i = − (σ − 1) âi + δP̂ − σδsi
(σ − δsi − 1) (σ − δsi)

ŝi +
δsi (σ − 2δsi)

(σ − δsi − 1)σ + δ2s2i
ŝi.

This equation implies that the right-hand side of (22) is declining in ri because Γi is declining

in si and si is rising in ri (see (10)). The former is seen from this equation by observing that

σδsi > δsi (σ − 2δsi) and (σ − δsi − 1) (σ − δsi) <(σ − δsi − 1)σ + s2i δ². Collecting terms we can

rewrite this equation as:

Γ̂i = − (σ − 1) âi + δP̂ − δ2s2i
2 (σ − δsi − 1) (σ − δsi) + σ (σ − 1)

(σ − δsi − 1) (σ − δsi)
[

(σ − δsi − 1)σ + δ2s2i
] ŝi. (28)

Next consider the total effect of a shift in the marginal cost ai on Γi. From (10) we have:

ŝi = − σ − 1

1 + (σ − 1)βi
âi = − (σ − 1) (σ − δsi − 1) (σ − δsi)

(σ − δsi − 1) (σ − δsi) + (σ − 1) δsi
âi.

Substituting this expression into (28) we obtain the total impact of ai on Γi:

Γ̂i

(σ − 1) âi
= −1 + δ2s2i

2 (σ − δsi − 1) (σ − δsi) + σ (σ − 1)
[

(σ − δsi − 1)σ + s2i δ²
]2

=
(σ − 1) s2i δ² − (σ − δsi − 1)2

(

σ2 − δ2s2i
)

[

(σ − δsi − 1)σ + s2i δ²
]2 .

It follows that a decline in the marginal cost ai shifts upward the λ̇i=0 curve if and only if

(σ − 1) s2i δ² < (σ − δsi − 1)2
(

σ2 − δ2s2i
)

.

Now consider the cost-wighted average markup:

µc
av =

(

1−
m
∑

i=1

̺i

)

µ̄+

m
∑

i=1

̺iµi,

where ̺i is the variable cost share of firm i. The variable cost of firm i is:

airixi = airiP
δp−σ

i

= a1−σ
i riP

δ

(

σ − δsi
σ − δsi − 1

)−σ
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and the variable costs of the small firms are:

ār̄x̄ = ār̄P δp̄−σ

= ā1−σ r̄P δ

(

σ

σ − 1

)−σ

.

Therefore:

̺i =
a1−σ
i riµ

−σ
i

ā1−σ r̄
(

σ
σ−1

)−σ

+
∑m

j=1 a
1−σ
j rjµ

−σ
j

=
a1−σ
i ri

(

σ−δsi
σ−δsi−1

)−σ

ā1−σ r̄
(

σ
σ−1

)−σ

+
∑m

j=1 a
1−σ
j rj

(

σ−δsj
σ−δsj−1

)−σ .

On the dynamic path with a constant P , the market share of firm i rises with ri according to

(see (10) and (11)):

ŝi =
1

1 + (σ − 1)βi
r̂i,

where:

βi =
δsi.

(σ − δsi − 1)(σ − δsi)
> 0.

It follows that:

d
(

riµ
−σ
i

)

riµ
−σ
i

=

d

[

ri

(

σ−δsi
σ−δsi−1

)−σ
]

ri

(

σ−δsi
σ−δsi−1

)−σ

= r̂i − σβiŝi

= r̂i

[

1− σβi
1 + (σ − 1)βi

]

.

The expression in the square bracket in the last line of this equation is positive if and only if βi < 1.

Therefore, during the transition with rising product spans of all large firms ̺i is rising in response

to the increase in ri if and only if βi < 1 and declining in response to the increase in rj if and only

if βj < 1. Note, however, that βi < 1 if and only if:

δsi < (σ − δsi − 1)(σ − δsi),

or:

(σ − δsi)
2 > σ.
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Using δ = σ − ε, this implies that βj < 1 if and only if:

siε+ (1− si)σ >
√
σ.

This inequality is always satisfied for ε >
√
σ.

Table 1: Average Number of Product Lines vs. Productivity Deciles
Decile Log(Prod) MeanInd MeanSegs

1 10.05 1.89 2.93
2 11.54 2.14 3.65
3 12.04 2.27 4.00
4 12.31 2.48 4.47
5 12.54 2.64 4.84
6 12.77 2.67 4.98
7 13.06 2.63 4.83
8 13.42 2.53 4.79
9 13.91 2.29 4.57

10 15.31 1.92 3.99
Note: This table shows the deciles of average log labor productivity for firms in the Compustat database for the year 2018, available
through WRDS. Labor productivity is defined as the ratio of total sales to employment. It also shows the mean number of industries
and business segments that are reported in the Compustat Segments Data. The data was accessed on June 2, 2020.

Table 2: Regression of the Number of Product Lines on Labor Productivity
Industries Segments

log(Prod) 2.36∗∗∗ 2.99∗∗

(0.61) (0.99)

[log(Prod)]2 -0.07∗∗ -0.09∗

(0.02) (0.04)

Obs 4123 4123
R2 0.048 0.022

Standard errors in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: This table shows the results of an OLS quadratic regression of the number of industries or segments on
the log of labor productivity. The data includes all firms with positive sales and employment in the Compustat
database for the year 2018. Labor productivity is defined as the ratio of total sales to employment. Segments
refers to the total number of business segments listed in the Compustat Segments Data by firm. The number
of industries is the number of primary and secondary SIC codes listed across all business segments. The data
was accessed on June 2, 2020.

We now provide addition information on the empirical analysis in this section. Table 1 presents

the data that has has been used to construct Figure 4 while Table 2 presents the regression results.

As pointed out in the main text, the coefficient for log productivity is positive and significantly

different from zero and the coefficient for the square of log productivity is negative and significantly

different from zero in both specifications; i.e., when we use the number of industries or the number

of segments to measure a firm’s product span. While in the main text we reported in Figure 3 the

curvature of this quadratic form for the number of segments as a proxy for the number of product

lines, we now report a similar figure when the number of industries is used as a proxy for the number

of product lines. As is evident, the two figures are quite similar.
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Figure 6: Number of Industries vs. Labor Productivity

Comparative Statics: Given Number of Brands

In this section we examine the case in which the number of single-product firms, r, as well the

number of products available to each one of the large firms, ri, are given. Equations (6) and (7)

imply:

p̂i = âi +
δsi

(σ − δsi − 1)(σ − δsi)
ŝi, (29)

ŝi = r̂i −
m
∑

j=1

sj r̂j − (σ − 1)(p̂i −
m
∑

j=1

sj p̂j).

Substituting the last equation into (29) yields:

[1 + βi(σ − 1)]p̂i − βi(σ − 1)
m
∑

j=1

sj p̂j = âi + βi(r̂i −
m
∑

j=1

sj r̂j), for all i.

These equations can also be expressed as:

Bp̂ = Rr̂+ â, (30)

where B is an m×m matrix with elements:

bii = 1 + βi(σ − 1)(1− si),
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bij = −βi(σ − 1)sj , for j 6=i,

p̂ is an m× 1 column vector with elements pi, where a hat represents a proportional rate of change

(i.e., p̂i = dpi/pi), R is an m×m matrix with elements:

rii = βi(1− si),

rij = −βisj , for j 6= i,

r̂ is an m× 1 column vector with elements r̂i, where a hat represents a proportional rate of change,

and â is an m × 1 column vector with elements âi, where a hat represents a proportional rate of

change.

Since

|bii| −
∑

j 6=i

|bij | = 1 + βi(σ − 1)(1−
m
∑

j=1

sj) > 1,

B is a diagonally dominant matrix with positive diagonal and negative off-diagonal elements. It

therefore is an M -matrix and its inverse has all positive entries. This inverse, denoted by B̃ = B−1,

is therefore an m×m matrix with elements b̃ij > 0. Next note that B can be expressed as:

B = I+ (σ − 1)R,

where I is the identity matrix. Therefore:

B−1B = B̃+ (σ − 1)B̃R = I. (31)

It follows from this equation that:

b̃ii + (σ − 1)

m
∑

j=1

b̃ijrji = 1,

b̃ik + (σ − 1)

m
∑

j=1

b̃ijrjk = 0, for k 6=i.

Summing these up yields:

m
∑

k=1

b̃ik + (σ − 1)

m
∑

j=1

b̃ij

m
∑

k=1

rjk = 1, for all i. (32)

Since:
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m
∑

k=1

rjk = βj(1−
m
∑

k=1

sk) > 0

and b̃ik > 0 for all i and k, it follows from (32) that:

0 < b̃ik < 1 for all i and k.

Equation (31) implies:

(σ − 1)B̃R = I− B̃,

and therefore B̃R has positive diagonal elements and negative off-diagonal elements.

Going back to the comparative statics equations (30), we have:

p̂ = B̃Rr̂+ B̃â.

It follows from the properties of B̃ that a decline in ai reduces every price pj , but less than pro-

portionately. Equation (29) than implies that all market share sj , j 6= i, decline while the market

share si rises. And it follows from the properties of B̃R and (29) that an increase in ri raises the

price and market share of firm i and reduces the price and market share of every other firm j 6= i.

Noting that the markup of every firm i is larger the larger its market share, we therefore have:

Proposition 9. Suppose that the number of firms and their product range are given. Then: (i) an

increase in ri raises the price, markup and market share of firm i, and reduces the price, markup

and market share of every other large firm; (ii) a decline in ai reduces the price of every large firm

less than proportionately, raises the markup and market share of firm i, and reduces the markup and

market share of every other large firms.
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