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sample sizes, so estimates of treatment effects are imprecise. Seeing imprecision, clinicians 
reading research articles may find it difficult to decide when to treat patients with experimental 
drugs. Whatever decision criterion one uses, there is always some probability that random 
variation in trial outcomes will lead to prescribing sub-optimal treatments. A conventional 
practice when comparing standard care and an innovation is to choose the innovation only if the 
estimated treatment effect is positive and statistically significant. This practice defers to standard 
care as the status quo. To evaluate decision criteria, we use the concept of near optimality, which 
jointly considers the probability and magnitude of decision errors. An appealing decision criterion 
from this perspective is the empirical success rule, which chooses the treatment with the highest 
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COVID-19 trials, we show that the empirical success rule yields treatment results that are much 
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1. Introduction 

 

 As the COVID-19 pandemic progresses, researchers are reporting findings of randomized trials 

comparing standard care with care augmented by experimental drugs. The trials to date have small sample 

sizes, so estimates of treatment effects are statistically imprecise. Seeing imprecision, clinicians reading 

research articles may find it difficult to decide when to treat patients with experimental drugs. Whatever 

decision criterion one uses, there is always some probability that random variation in trial outcomes will 

lead to prescribing sub-optimal treatments. 

 A conventional practice when comparing standard care and an innovation is to choose the innovation 

only if the estimated treatment effect is positive and statistically significant. This practice defers to standard 

care as the status quo. To evaluate decision criteria, we use the concept of near optimality, which jointly 

considers the probability and magnitude of decision errors. An appealing decision criterion from this 

perspective is the empirical success rule, which chooses the treatment with the highest observed average 

patient outcome in the trial. 

 The contributions of this paper are both applied and methodological. We apply to recent COVID-19 

trials the methodology for study of two-arm trials developed earlier in Manski (2004) and Manski and 

Tetenov (2016, 2019). We extend the computational reach of the methodology to enable practical analysis 

of multi-arm trials, such as the ongoing Recovery Trial in the United Kingdom. We show that the empirical 

success rule yields treatment results that are much closer to optimal than those generated by prevailing 

decision criteria based on hypothesis tests. 
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2. Background 

 

 A core objective of randomized trials is to inform treatment choice. When comparing standard care with 

an innovation, the prevailing statistical practice has been for researchers to conclude that the innovation is 

better than standard care only if the estimated average treatment effect comparing the innovation with 

standard care is statistically significant by conventional criteria. Equivalently, a conventional statistical 

hypothesis test must reject the null hypothesis that the innovation is no better than standard care. 

 Statistical analysis commonly examines each pre-declared primary and secondary outcome of a trial in 

isolation from one another rather than the joint effect of all outcomes. Articles reporting trials often report 

subgroup findings only when they are statistically significant. They often discuss side effects of treatments 

without performing statistical analysis. We further consider these practices in Section 5.  

 To illustrate, Box 1 summarizes a trial comparing standard-care treatment for severe COVID-19 with 

standard care augmented by prescription of lopinavir–ritonavir. A clinician might reasonably view the 

estimated reductions in median time to clinical improvement and in mortality to be suggestive, albeit not 

definitive, evidence that treatment with lopinavir–ritonavir is beneficial relative to standard care alone. Yet  

the study authors conclude (p. 1) “no benefit was observed with lopinavir–ritonavir treatment beyond 

standard care.” This conclusion was reached because the estimated treatment effects were not statistically 

significant, having confidence intervals that cover zero. Subsequently, COVID-19 treatment guidelines 

issued by the National Institute of Health (NIH) cited the absence of statistical significance when it 

characterized the study as having negative findings.1 

 

1 The NIH document states: “The Panel recommends against the use of lopinavir/ritonavir (AI) or other 
HIV protease inhibitors (AIII) for the treatment of COVID-19, except in the context of a clinical trial. It 
later remarks: “There was a lower, but not statistically significant, mortality rate (lopinavir/ritonavir 19.2%, 
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 Requiring statistical significance to prescribe a treatment an innovation shows deference to standard 

practice, placing the burden of proof on the innovation. From a clinical perspective, one might argue that it 

is reasonable to place the burden on an innovation when standard care is known to yield good patient 

outcomes. However, this argument lacks appeal in the COVID-19 setting. Current standard practice for 

treating COVID-19 has developed rapidly to cope with an emergency. It has not been shown to yield notably 

good patient outcomes. How might clinicians act with imprecise evidence such as in the Cao et al. study? 

 The statistical analysis of the Cao et al. study is not unusual. A much-anticipated preliminary report on 

a large trial comparing standard care augmented by the drug remdesivir with standard care alone concludes 

that remdesivir reduces time to recovery, but the report states no conclusion regarding mortality (Beigel et 

al. 2020). The report states that remdesivir reduces median time to recovery from 15 days to 11 days and 

reduces 14-day mortality from 11.9% to 7.1%. A clinician might reasonably consider both findings to be 

relevant to treatment choice, but the research team stated a conclusion only for time to recovery. The 

rationale was that the former finding was statistically significant by conventional criteria and the latter was 

insignificant.2 

 Consider the major new Recovery Trial under development in the United Kingdom 

(https://www.recoverytrial.net/). This trial will compare standard care alone with standard care augmented 

by various experimental drugs. The statistical analysis plan calls for application of hypothesis tests to 

compare patient outcomes under alternative treatments. 

 

on SOC 25.0%) and shorter ICU stay compared to those given SOC (6 days vs. 11 days; difference = -5 
days; 95% CI, -9 to 0).” 
https://covid19treatmentguidelines.nih.gov/therapeutic-options-under-investigation/antiviral-therapy/, 
accessed May 24, 2020. 
2 The reported 95% confidence intervals for the rate ratio for recovery and the hazard rate for death were 
[1.12, 1.55] and [0.47, 1.04] respectively. The former interval is deemed a statistically significant treatment 
effect by conventional criteria because the lower bound 1.12 is slightly larger than 1. The latter interval is 
deemed an insignificant treatment effect because the upper bound 1.04 is slightly larger than 1. 

https://www.recoverytrial.net/
https://covid19treatmentguidelines.nih.gov/therapeutic-options-under-investigation/antiviral-therapy/
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3. Measuring the Near-Optimality of Criteria Using Trial Data to Choose a Treatment 

 

 The results observed in any randomized trial have random variation. Whatever criterion one uses to 

make treatment decisions based on the results of a trial, there is always some probability that this random 

variation will lead to prescribing a sub-optimal treatment to patients. Considering the probability of error 

alone is insufficient. The same error probability should be less tolerable when the impact of sub-optimal 

treatment on patient welfare is larger. To evaluate treatment choice based on trial data, we use the concept 

of near-optimality (Manski and Tetenov, 2016, 2019), which jointly considers the probability of errors and 

their magnitudes. 

Box 1: Statistical Analysis in a Trial Comparing Treatments for COVID-19 

 

 Cao et al. (2020) report on a randomized trial in China comparing standard-care treatment of severe 

cases of COVID-19 with standard-care combined with the drug pair lopinavir–ritonavir. The trial 

assigned 99 hospitalized adult patients to the lopinavir–ritonavir group and 100 to the standard-care 

only group. The pre-declared primary endpoint measured time to clinical improvement. A secondary 

outcome was mortality within 28 days. 

 The authors summarized the primary finding as follows (p. 1): “In a modified intention-to-treat 

analysis, lopinavir–ritonavir led to a median time to clinical improvement that was shorter by 1 day 

than that observed with standard care (hazard ratio, 1.39; 95% CI, 1.00 to 1.91). Regarding mortality, 

19 of the 99 patients assigned to lopinavir-ritonavir died within 28 days and 25 of the 100 receiving 

only standard care died. The authors characterized this finding as follows (p. 1): “Mortality at 28 days 

was similar in the lopinavir–ritonavir group and the standard-care group (19.2% vs. 25.0%; difference, 

−5.8 percentage points; 95% CI, −17.3 to 5.7).” They reported raw findings on side effects, but they 

performed no statistical analysis. They concluded (p. 1): In hospitalized adult patients with severe 

Covid-19, no benefit was observed with lopinavir-ritonavir treatment beyond standard care. 
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The concept is as follows. Consider specified possible values for average patient outcomes under each 

treatment. Presuming the common medical focus on average patient outcomes, the ideal clinical decision 

would be to prescribe a treatment that maximizes average outcome. Trial data do not reveal the best 

treatment with certainty, so one cannot achieve this ideal. Suppose then that one applies some decision 

criterion to the trial data. The criterion may be a hypothesis test or another one that we will introduce 

shortly. 

For every treatment that is not best, we compute the probability that it would be prescribed when the 

criterion is applied to the results of a trial. We multiply this error probability by the magnitude of the loss 

from prescribing this treatment, measured by the difference in average patient outcomes compared to the 

best treatment. This product measures the expected loss from prescribing the inferior treatment, also called 

its regret. The sum of these expected losses across all inferior treatments measures the gap between the 

ideal of prescribing the best treatment and the reality of having to prescribe the treatment based on trial data 

that is subject to random variation. 

The above calculations are made using specified possible values for average patient outcomes with each 

treatment. However, trial data do not reveal the true values for average patient outcomes; they only enable 

one to estimate them. The final measurement step is to look across all a priori possible values for average 

patient outcomes for all treatments to find the values where the expected loss from prescribing inferior 

treatments is largest. This measures the nearness to optimality of the proposed criterion for clinical decision 

making. Nearness to optimality is also called maximum regret. See the Technical Appendix for a 

mathematical statement. 

To illustrate how measurement of nearness to optimality works in practice, Table 1 applies two different 

decision criteria to the trial design in Cao et al. (2020), which assigned 100 patients to standard care and 99 

to care augmented by lopinavir–ritonavir. We focus on the outcome of 28-day mortality, presuming that 
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this is the most important outcome for patients with severe COVID-19. Each column in the table specifies 

one scenario for average patient outcomes, combining a mortality rate of standard care, fixed at 0.25, with 

a mortality rate of the new treatment, ranging from 0.4 to 0.1.  

Panel A shows what would happen if the trial data were used to make treatment decisions with a 

conventional two-sided hypothesis test at 5% level. Thus, the new treatment would be prescribed if the 

results of the hypothesis test show the new treatment to be statistically significantly better than standard 

care. If the new treatment is better, prescribing standard care is an error. The loss from this error is the 

difference in average patient outcomes, in this example mortality. 

The table shows that if the new treatment has a mortality rate of 0.15, compared to 0.25 for the standard 

care, a trial with the design of Cao et al. will erroneously reach a negative conclusion about the new 

treatment in 57.4% of trials, leading clinicians to continue using standard care. The magnitude of the error 

is 0.1, the difference between 0.25 and 0.15. Multiplying the probability of error by its magnitude gives an 

expected loss of 0.0574. 

Suppose instead that the new treatment has mortality rate 0.2. Then the hypothesis test would reach a 

negative conclusion about the new treatment in 86.8% of trials. While the error probability in this scenario 

is higher, it is less consequential for clinical outcomes because the difference in mortality rates between 

treatments is 0.05. In this case, expected loss is 0.868 x 0.05 = 0.0434. 

If the new treatment has mortality rate 0.3 (0.05 higher than standard care), the hypothesis test would 

reach a positive conclusion about the new treatment only in 0.3% of trials, leading to expected loss of 0.003 

x 0.05 = 0.00015. Expected loss is also extremely low in other scenarios where the new treatment has a 

considerably higher mortality rate than standard care because the probability of Type I error of a hypothesis 
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test is dramatically lower than its nominal size. The nominal size 0.05 of the test is the error probability in 

the borderline case where the two treatments have the same mortality rate.3 

We measure nearness to optimality by considering all possible scenarios for the average outcomes of 

treatments in the trial, which can take any values in the [0, 1] interval, not just the few scenarios illustrated 

in Table 1. We report nearness to optimality for treatment choice based on hypothesis tests in two-arm trials 

with different sample sizes in Table 2. The table shows that choosing treatments based on a hypothesis test 

following a two-arm trial in which 100 patients receive each treatment (as in Cao et al.) achieves near-

optimality of 0.071. Specifically, the maximum value of expected loss across all possible values of average 

mortality rates occurs when the new treatment has mortality rate 0.548 and standard care has rate 0.661. 

Then the expected loss (0.661 − 0.548) multiplied by the error probability 0.624 equals 0.071.  

Hypothesis tests by design treat standard care and the new treatment asymmetrically. An appealing 

alternative decision criterion is the empirical success rule, which we have previously studied in Manski 

(2004) and Manski and Tetenov (2016, 2019). This criterion chooses the treatment with the highest 

observed average patient outcome in the trial, regardless of the statistical significance of the result. Whereas 

hypothesis testing favors standard care and places the burden of proof on innovations, the empirical success 

rule assesses the evidence on each treatment symmetrically. 

The properties of the empirical success rule are illustrated in Panel B of Table 1. If the new treatment 

has mortality rate 0.2 and standard care has rate 0.25, using the empirical success rule will result in 

prescribing the new treatment in 78.8% of trials, whereas the hypothesis testing approach of Panel A would 

only do so in 13.2% of trials. Given that the empirical success rule treats both treatments symmetrically, 

 

3 A two-sided hypothesis test rejects the null hypothesis both if the new treatment performs sufficiently 
better and if the new treatment performs sufficiently worse than standard care. The allowed Type I error 
probability is split between these two cases, but rejection of the statistical null hypothesis only leads to the 
prescription of the new treatment in the first case. 
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the expected losses in situations when the new treatment is better and when standard care is better are also 

symmetric. 

Table 2 compares near-optimality of the empirical success rule and the hypothesis test-based decision 

criterion in two-arm trials for a wide range of sample sizes. These calculations consider all possible values 

for the average mortality rates of the two treatments. The Technical Appendix describes the algorithm used 

to compute near-optimality. 

The empirical success rule is about 6 times nearer to optimality than the test-based decision criterion. 

For example, in a trial with 100 patients in each arm (similar to Cao et al.), the empirical success rule 

achieves near-optimality of 0.012. The maximum value of expected loss occurs when standard care and the 

new treatment have mortality rates of 0.527 and 0.473. In this case, standard care is erroneously prescribed 

with probability 0.226. The empirical success rule is symmetric, so the same expected loss occurs when 

standard care has mortality rate 0.473 and the new treatment has rate 0.527. Then the new treatment is also 

erroneously prescribed with probability 0.226. 

Good near-optimality properties of the empirical success rule in two-arm trials are well established in 

the theoretical literature. Given any specified sample size, the empirical success rule has been shown to 

achieve the lowest possible value of near-optimality in trials with binary outcomes that assign an equal 

number of patients to each arm (Stoye, 2009). It has also been shown to do so asymptotically in general 

trials comparing two treatments (Hirano and Porter, 2009). 

What are the implications of near-optimality for clinical decision making and trial design? Suppose that 

a clinician were to choose between standard care and standard care augmented with lopinavir/ritonavir 

based solely on the results of Cao et al., using standard hypothesis testing methodology. Then the average 

mortality rate of these patients could be up to 0.071 higher than under the better of the two treatments. (The 
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average here is taken over different possible outcomes the trial could produce.) Given the gravity of the 

patient outcomes at stake, this may be an unacceptably high expected loss in welfare. 

There are two ways of reducing maximum expected loss: (i) increase the sample size of the trial and (ii) 

change the way the trial results are translated into clinical practice. Table 2 shows that a trial enrolling 4000 

patients into each arm, followed by treatment choice using standard hypothesis testing, would achieve near-

optimality of 0.0115. About the same level of near-optimality (0.0120) could be achieved by using the 

empirical success rule in a trial with 100 patients in each arm. Thus, the empirical success rule yields a 

dramatic improvement in near-optimality relative to hypothesis testing. 

Medical research evaluating pharmaceuticals has traditionally shown deference to standard care.4 

Hence, one might question the empirical success rule on the grounds that it evaluates the treatments in the 

trial symmetrically, and thus has the same levels of Type I and Type II errors. We think symmetric 

evaluation of standard care and innovations is justified in the COVID-19 setting when considering trials 

that compare carefully chosen treatments, without a financial conflict of interest, and that report all patient-

relevant outcomes. 

First, standard care for COVID-19 patients has not itself been perfected through clinical trials. Hence, 

it is unclear why it should get the “benefit of the doubt.” Second, it would be unethical to participants to 

conduct clinical trials of a new treatment if they were ex ante expected to yield worse outcomes than 

standard care. This suggests an ex ante ethical symmetry between the possibilities that the new treatment is 

better, and that standard care is better. It is logical, then, to evaluate the two treatments symmetrically. 

 

4 The specific form of deference differs between superiority trials and non-inferiority trials. The null 
hypothesis used in the former trials defers to standard care somewhat more than that used in the latter trials. 
See U. S. Food and Drug Administration (2016). 
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4. Near-Optimality in Multi-Arm Trials 

 

 A number of promising pharmaceutical treatments for COVID-19 are currently undergoing clinical 

trials. Most of them are two-arm trials, comparing one experimental treatment with standard care. It is 

important for clinicians to learn not only which treatments are better than standard care, but also which 

treatments are the most effective. 

 Running multiple two-arm trials has a significant drawback when there are concurrently several 

treatments under investigation: the performance of alternative treatments cannot easily be compared 

between trials because the populations from which different trials recruit patients usually are not the same. 

Trials may also differ in the characteristics of standard care they provide and in the outcomes they report. 

These problems are addressed by multi-arm trials that randomize the same patients either to standard care 

or to one of several experimental treatments. 

 Two large-scale multi-arm trials of treatments for COVID-19 are currently under way. The Recovery 

Trial in the United Kingdom is comparing standard care with at least four alternatives: Lopinavir-Ritonavir, 

low-dose Dexamethasone, Hydroxychloroquine, and Azithromycin. The international Solidarity Trial 

organized by the World Health Organization is comparing standard care with Remdesivir, Chloroquine or 

Hydroxychloroquine, Lopinavir-Ritonavir, and Lopinavir-Ritonavir plus Interferon beta-1a. We will 

consider the design of the Recovery Trial, which assigns patients to standard care and alternative treatments 

in a 2:1:1:1:1 ratio. 

 The standard way to analyze the results of multi-arm trials has been to compute a t-statistic for the 

difference in average trial outcomes between each new treatment and standard care. Each t-statistic is then 
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compared to a critical value adjusted for multiplicity of hypotheses. The aim of this adjustment is to 

guarantee that in a scenario when all new treatments have the same true average outcome as standard care, 

there is only a 0.05 probability that any of the differences will be found to be statistically significant in a 

trial. The protocol of the Recovery Trial, for example, specifies that its results will be reported this way. 

The protocol specifically states that Dunnett’s test of multiple hypotheses will be used. The intention to use 

Dunnett’s test may have motivated the study team to assign patients in a 2:1:1:1:1 ratio, which has been 

recommended when applying this test (Dunnett, 1964). 

 The concept of near-optimality is well-suited to interpret the findings of a multi-arm clinical trial, as it 

takes into account both the probability and the magnitude of different types of errors: prescribing standard 

care when one of the new treatments is superior, prescribing a new treatment that is inferior to standard 

care, or prescribing one new treatment when another new treatment is superior. 

 Table 3 illustrates how the near-optimality of a decision criterion is evaluated in a multi-arm trial. We 

consider a trial, similar in design to the Recovery Trial, randomizing 1500 patients: 500 to standard care 

and all others to one of four new treatments (250 to each). The table shows what happens in one specific 

scenario when the mortality rate of standard care is 0.25 and the mortality rates of treatments A, B, C, and 

D are 0.15, 0.2, 0.3, and 0.35. 

 Panel A shows what would happen if the trial data were used to make treatment decisions based on a 

two-sided Dunnett’s test at 5% level. We assume that standard care will be prescribed if none of the new 

treatments has a lower mortality rate that is statistically significantly better. If one or more new treatments 

is considered statistically significantly better, then the new treatment with the lowest mortality rate among 

them will be prescribed. 

 Treatment A has the lowest mortality rate in this scenario and will be prescribed after 70.6% of trials. 

Standard care will be prescribed after 25.7% of trials. Since standard care has mortality rate that is 0.1 
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higher than the best treatment (A), this error will lead to a loss of 0.1. The expected loss from prescribing 

standard care is the product of the error probability and its magnitude: 0.257 x 0.1 = 0.0257. Treatment B 

will be prescribed after 3.8% of trials. Since its mortality rate is 0.05 higher than that of the best treatment, 

the expected loss from prescribing treatment B is 0.038 x 0.05 = 0.0019. Prescribing treatment B does not 

increase patient mortality rate as much as prescribing standard care and the expected loss reflects that. 

Treatments C and D will be prescribed after fewer than 0.01% trials and the expected loss from these errors 

is negligible. Overall expected loss in this scenario is 0.0275, 0.0257 resulting from prescribing standard 

care and 0.0019 from prescribing treatment B. Although standard care is only the third-best option, it is 

prescribed much more frequently than the second-best option (B) due to the status-quo deference inherent 

in hypothesis testing. 

 Panel B shows what would happen if the empirical success rule were used to prescribe treatments based 

on trial results. Treatment A would be prescribed after 93% of trials. The second-best treatment B would 

be prescribed after 7% of trials, resulting in expected loss of 0.07 x 0.05 = 0.0035. Standard care would be 

prescribed only after 0.02% of trials, and treatments C and D after fewer than 0.01% of trials. The overall 

expected loss when using the empirical success rule in this scenario is 0.0035.  

 Near-optimality is measured by considering all possible scenarios for the average outcomes of 

treatments in the trial. The Technical Appendix describes the algorithm used to compute near-optimality. 

In Table 4 we compare near-optimality of prescribing treatments using standard multiple hypothesis testing 

approach and of prescribing them using the empirical success rule in five-arm trials with different sample 

sizes. We report results both for trials with a 2:1:1:1:1 treatment-assignment ratio (as in the Recovery Trial) 

and for trials with the same total sample size, but balanced assignment of patients to treatments. In each 

case considered, the empirical success rule is more than 3 times nearer to optimality than the test-based 

decision criterion.  
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5. Near-Optimality of the Empirical Success Rule with Patient-Specific Treatment and Multiple Outcomes 
 

 The numerical calculations of near-optimality presented in Tables 1 through 4 concern relatively simple 

settings where patients are observationally identical and trial outcomes are binary, such as mortality. In 

clinical practice, trial outcomes may take multiple values. For example, trials of experimental drugs for 

COVID-19 may report both mortality outcomes and time to recovery for patients who survive. Patients who 

vary in age, gender, and comorbidities may vary in their response to treatment. 

 It has been common in analysis of trial data to designate primary and secondary outcomes. The latter 

are often called side effects. Research articles focus attention on the primary outcome. This is reasonable 

when the primary outcome is the dominant determinant of patient welfare or, put another way, when there  

is little variation in secondary outcomes across treatments. It is not reasonable otherwise. When the 

secondary effects of treatments are serious, it is more reasonable to consider how the primary and secondary 

outcomes jointly determine patient welfare. This is easy to accomplish with the empirical success rule. Box 

2 uses the protocol for the Recovery Trial5 to illustrate. 

 Methodological research has shown how to compute or bound the near-optimality of the empirical 

success rule when applied in a broad range of settings. We summarize the findings below. 

 

 

 

5 https://www.recoverytrial.net/files/recovery-protocol-v5-0-2020-04-24.pdf , accessed May 21, 2020. 

https://www.recoverytrial.net/files/recovery-protocol-v5-0-2020-04-24.pdf
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Near-Optimality with Binary Primary and Secondary Outcomes 

 Manski and Tetenov (2019) study the near-optimality of the empirical success rule when there are two 

feasible treatments and patient welfare is a weighted sum of binary primary and secondary outcomes. The 

primary outcome is patient survival for a specified time period. The secondary one denotes whether the 

patient suffers a specified side effect of treatment. 

Box 2: Possible Application of the Empirical Success Rule to Data from the Recovery Trial 

 

 The protocol for the Recovery Trial states “For each pairwise comparison with the ‘no additional 

treatment’ arm, the primary objective is to provide reliable estimates of the effect of study treatments 

on all-cause mortality at 28 days after first randomisation . . . . The secondary objectives are to assess 

the effects of study treatments on duration of hospital stay; the need for . . . . ventilation; and the need 

for renal replacement therapy. Data from routine healthcare records . . . . and from relevant research 

studies . . . . will allow subsidiary analyses of the effect of the study treatments on particular non-fatal 

events . . . . the influence of pre-existing major co-morbidity . . . . and longer-term outcomes . . . . as 

well as in particular sub-categories of patient . . . . .” 

 Thus, the researchers intend to study multiple outcomes and to examine heterogeneity of treatment 

response across patients who vary in co-morbidities and other covariates. The analysis plan calls for 

pairwise comparison of each experimental treatment with ‘no additional treatment;’ that is, with 

standard care. The plan refers to use of hypothesis tests to make these comparisons, particularly the 

Dunnett test for multiple comparisons. 

 We suggest application of the empirical success rule. A simple approach would be to model overall 

patient welfare as a weighted sum of the multiple outcomes described in the protocol, each outcome 

weighted appropriately to reflect its contribution to welfare. A clinician might, for example, find it 

desirable to give large positive weight to survival and some negative weight to duration of hospital 

stay, the need for ventilation, and the need for renal replacement therapy. Considering patients who 

share similar observed comorbidities and other covariates, each treatment would be evaluated by its 

empirical success in achieving overall patient welfare in this covariate group.  
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 When a patient does not suffer the side effect, we let welfare equal 1 if a patient survives and equal 0 if 

he does not survive. When a patient experiences the side effect, welfare is lowered by a specified fraction 

h, whose value expresses the harm associated with the side effect. Thus, a patient who experiences the side 

effect has welfare 1 − h if he survives and –h if he does not survive. 

 In this setting, we develop an algorithm to compute the near-optimality of the empirical success rule, 

which evaluates trial data by the frequencies of survival and the side effect observed with each treatment. 

We present numerical findings for alternative values of sample size and the value h expressing the harm of 

the side effect. 

 

Near-Optimality with Bounded Outcomes 

 Exact computation of near-optimality is feasible when trial outcomes are binary or take only a few 

values, but it becomes more onerous when outcomes can take many values or are continuous. When 

outcomes are bounded, large-deviations inequalities of probability theory yield upper bounds on the near-

optimality of the empirical success rule. These upper bounds provide conservative measures of near-

optimality. Their value is that they are simple to compute and are sufficiently informative to provide useful 

guidance to clinicians. 

 Research of this type was initiated by Manski (2004), who used a large-deviations inequality for sample 

averages of bounded outcomes to derive an upper bound on the near-optimality of the empirical success 

rule when used to choose between two treatments.  Manski and Tetenov (2016) extend the analysis to multi-

arm trials. Their Proposition 1 extends the early finding of Manski (2004) from two to multiple treatments. 

Proposition 2 derives a new large-deviations bound for multiple treatments. 

Let L be the number of treatment arms and let V be the range of the bounded outcome. When the 

trial has a balanced design, with n subjects per treatment arm, the upper bounds on near-optimality proved 
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in Propositions 1 and 2 have particularly simple forms, being (2e) –½V(L − 1)n–½ and V(ln L)½n–½. The former 

result provides a tighter bound than the latter for two or three treatments, while the latter result gives a 

tighter bound for four or more treatments. In both cases, the upper bound decreases toward zero at rate √n 

as the number n of subjects per arm increases. 

 

Near-Optimality with Heterogeneous Patients 

 Patient response to treatments for COVID-19 may be heterogenous, varying with observable covariates 

including age, gender, and comorbidities. Hence, a clinician may want to assess the near-optimality of a 

decision criterion when applied to patients who share similar observed covariates. 

 In principle, this is easy to do. The clinician may view each group of patients who share similar 

covariates as a separate patient population. Accordingly, the clinician may apply the empirical success rule 

separately to each group, choosing a treatment that yields the highest average outcome among the trial 

participants who have the group covariates. In this manner, patient care may recognize heterogeneity of 

treatment response. 

 In practice, the ability of clinicians to differentially treat patients with different covariates is sometimes 

limited by the failure of medical researchers to report how trial findings vary with patient covariates. A 

common rationale is concern with statistical significance. Stratifying trial participants into covariate groups 

usually reduces the statistical precision of estimates of treatment effects. Research articles often report only 

findings that are statistically significant by conventional criteria. 

 Information is lost when reporting research findings is tied to statistical significance. It is important to 

study and report observable heterogeneity in treatment response to the extent feasible. The analysis of this 

paper makes clear that estimates of treatment effects need not be statistically significant to be clinically 

useful. 
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6. Discussion 

 

 A central objective of empirical research on treatment response is to inform treatment choice. Yet 

researchers analyzing trial data have used concepts of statistical inference whose foundations are distant 

from treatment choice. It has been common to use hypothesis tests to choose treatments. We evaluate 

decision criteria by near-optimality and suggest this way to analyze findings of trials comparing COVID-

19 treatments. From this perspective, the empirical success rule performs much better than hypothesis 

testing. 

 In contrast to hypothesis tests, the empirical success rule views treatments symmetrically. Of course, 

use of the rule does not guarantee that the optimal treatment is always chosen. No decision criterion can 

achieve this ideal with finite trial data. Evaluation of criteria by near-optimality appropriately recognizes 

how the probability and magnitude of errors in decision making combine to affect patient welfare.  

 For simplicity, we have considered randomized trials having full internal and external validity. Internal 

validity may be compromised by non-compliance and loss to follow up. External validity may be 

compromised by measurement of surrogate outcomes and by administration of trials to types of patients 

who differ from those that clinicians treat in practice. The concept of near-optimality is applicable when 

analyzing data from trials with limited validity, but the specific numerical calculations made in this paper 

would require modification. 

 A limitation of this paper is that it only considers treatment choice using data from one trial. In practice, 

a clinician may learn the findings of multiple trials and may also be informed by observational data. The 
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concept of near-optimality is well-defined in these more complex settings, but methods for practical 

application are yet to be developed. 

 A further issue beyond the scope of this paper concerns the dynamics of treatment choice when new 

trials and observational evidence may emerge in the future. The concept of near-optimality should be 

extendable to such settings. However, methodology for application is yet to be developed. 

 Dynamic analysis of treatment choice made with hypothesis tests may be especially difficult to perform, 

because testing views standard care and new treatments asymmetrically. As new evidence accumulates over 

time, the consensus designation of standard care may change, leading to a change in the null hypothesis 

when new trials are evaluated. The implications for patient welfare are unclear. 

 

 

Technical Appendix 

 

General setup 

 We use concepts and notation like those in Manski (2004) and Manski and Tetenov (2016, 2019). The 

clinician must assign one of L treatments studied in the clinical trial to each member of a treatment 

population, denoted J. Denote the set of treatments by T = {1, 2, …, L}, treatment 1 being standard care. 

Each individual j ∈ J has a response function yj(⋅): T → Y mapping treatments t ∈ T into individual patient-

relevant outcomes yj(t) ∈ Y. In general, outcomes could be multi-valued and multi-dimensional. For 

example, the relevant outcomes for COVID-19 treatment may be survival, taking the value 0 or 1, and time 

to recovery for those who survive, measured in number of days. 

 The probability distribution P[y(⋅)] of the random function y(⋅): T → Y describes treatment response 

across the population. The distribution P is unknown. The set of all feasible distributions P is {Ps, s ∈ S}, 
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where S indexes all feasible states of nature. When computing near-optimality in Tables 2 and 4, we include 

in S all logically possible outcome distributions. 

 We assume that patient welfare is a known function u: Y → R of individual outcomes. For binary 

outcomes Y = {0, 1}, with 1 denoting success. In this special case, it is without loss of generality to set u(y) 

= y. For two-dimensional patient outcomes y = (yp, yse), where yp denotes the primary outcome and yse the 

side effect, Manski and Tetenov (2019) considered patient welfare that is a weighted sum of the two 

outcomes: u(y) = yp − hyse, where h expresses the harm of the side effect relative to the primary outcome. 

 Now consider data generation. Let Ψ denote the sample space; that is, Ψ is the set of data samples that 

could be generated by the trial. Let Qs denote the sampling distribution on Ψ in state of nature s. That is, Qs 

is the probability distribution of different trial outcomes. 

 We consider trials that randomize a predetermined number of subjects nt to each treatment t. The set nT 

≡ [nt, t ∈ T] of stratum sample sizes defines the design. The total number of subjects in the trial is then 𝑁𝑁 ≡

∑ 𝑛𝑛𝑡𝑡𝑡𝑡∈𝑇𝑇 . The data ψ are the N pairs of individual treatment assignments ti and outcomes yi:  ψ = [(ti, yi), i = 

1, 2, …, N]. 

 The sampling distribution Qs is determined by the probability distribution of treatment response Ps and 

the trial design, with Qs(yi|ti) = Ps(y(ti)). We assume that treatment response is individualistic; that is, patient 

outcomes are statistically independent of the outcomes of other patients in the trial. 

A statistical treatment rule maps sample data into a treatment allocation. A feasible treatment rule is a 

function that randomly allocates persons across the different treatments. Let Δ now denote the space of 

functions that map T into the unit interval and that satisfy the adding-up condition: δ ∈ Δ  ⇒   ∑ t ∈ T δ(t, ψ) 

= 1,  ∀ ψ  ∈  Ψ. Then each function δ ∈ Δ defines a statistical treatment rule. 

 The mean welfare outcome of treatment t in state of nature s is denoted by μst ≡ Es[u(y(t))]. The maximum 

average patient welfare achievable in state s is max
𝑡𝑡∈𝑇𝑇

𝜇𝜇𝑠𝑠𝑡𝑡. After trial data ψ are observed, the fraction δ(t, ψ) 
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of patients will be treated with treatment t, resulting in mean patient welfare  ∑ �𝜇𝜇𝑠𝑠𝑡𝑡𝛿𝛿(𝑡𝑡,𝜓𝜓)�𝑡𝑡∈𝑇𝑇 . The mean 

welfare of patients treated according to statistical treatment rule δ over repeated realizations of the trial is 

then ∫ ∑ �𝜇𝜇𝑠𝑠𝑡𝑡𝛿𝛿(𝑡𝑡,𝜓𝜓)�𝑡𝑡∈𝑇𝑇 𝑑𝑑𝑄𝑄𝑠𝑠(𝜓𝜓)Ψ = ∑ 𝜇𝜇𝑠𝑠𝑡𝑡𝐸𝐸𝑠𝑠[𝛿𝛿(𝑡𝑡,𝜓𝜓)]𝑡𝑡∈𝑇𝑇 , where 𝐸𝐸𝑠𝑠[𝛿𝛿(𝑡𝑡,𝜓𝜓)] = ∫ 𝛿𝛿(𝑡𝑡,𝜓𝜓)𝑑𝑑𝑄𝑄𝑠𝑠(𝜓𝜓)Ψ  is the 

expected (across potential samples) fraction of persons who will be assigned to treatment t. 

 Application of statistical treatment rule δ in state of nature s leads to an expected loss (regret) equal to 

 

(A1) max
𝑡𝑡∈𝑇𝑇

𝜇𝜇𝑠𝑠𝑡𝑡 − ∑ 𝜇𝜇𝑠𝑠𝑡𝑡𝐸𝐸𝑠𝑠[𝛿𝛿(𝑡𝑡,𝜓𝜓)]𝑡𝑡∈𝑇𝑇 .  

  

The near-optimality (maximum regret) of statistical treatment rule δ is the maximum value of (A1) over all 

feasible states of nature: 

 

(A2) max
𝑠𝑠 ∈ 𝑆𝑆

�max
𝑡𝑡∈𝑇𝑇

𝜇𝜇𝑠𝑠𝑡𝑡 − ∑ 𝜇𝜇𝑠𝑠𝑡𝑡𝐸𝐸𝑠𝑠[𝛿𝛿(𝑡𝑡,𝜓𝜓)]𝑡𝑡∈𝑇𝑇 �.  

 

Hypothesis Testing Rules 

 First, we consider statistical treatment rules based on hypothesis tests for univariate outcomes y. Denote 

the sample mean of y observed in arm t of the trial by 𝑦𝑦�𝑡𝑡 = 1
𝑛𝑛𝑡𝑡
∑ 𝑦𝑦𝑖𝑖𝑖𝑖:𝑡𝑡𝑖𝑖=𝑡𝑡 . To test the null hypothesis that all 

treatments have the same outcome distribution, we use  𝜎𝜎�2 = 1
𝑁𝑁−𝐿𝐿

∑ ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑡𝑡)2𝑖𝑖:𝑡𝑡𝑖𝑖=𝑡𝑡𝑡𝑡∈𝑇𝑇  as the estimator 

of common variance. Then the t-statistic for comparing the mean outcome of treatment t = 2,…,L with that 

of standard care (treatment 1) equals 𝜏𝜏𝑡𝑡 = 𝑦𝑦�𝑡𝑡−𝑦𝑦�1
𝜎𝜎��1/𝑛𝑛𝑡𝑡+1/𝑛𝑛1

 . Let c be the critical value adjusted for multiplicity. 

Specifically, we use the Student’s t-distribution for two-arm trials and the Dunnett’s test critical value for 

multiple comparisons for multi-arm trials. 
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 The hypothesis test rule prescribes treatment 1 (standard care) to everyone if all t-statistics are below 

the critical value.: 

 𝛿𝛿𝐻𝐻(1,𝜓𝜓) ≡ 1 � max
𝑡𝑡∈{2,…,𝐿𝐿}

𝜏𝜏𝑡𝑡 ≤ 𝑐𝑐�. 

If some t-statistics comparing treatments 2,…,L to standard care exceed the critical value, these treatments 

are considered statistically significantly better than standard care. We assume that among these treatments 

the one with the largest mean outcome in the trial will be prescribed (with equal probability if there is a 

tie).  

 𝛿𝛿𝐻𝐻(𝑡𝑡,𝜓𝜓) ≡
1�𝜏𝜏𝑡𝑡>𝑐𝑐,   𝑦𝑦�𝑡𝑡= max

𝑡𝑡′∈{2,…,𝐿𝐿}
𝑦𝑦�𝑡𝑡′�

∑ 1�𝜏𝜏𝑡𝑡>𝑐𝑐,   𝑦𝑦�𝑡𝑡= max
𝑡𝑡′∈{2,…,𝐿𝐿}

𝑦𝑦�𝑡𝑡′�𝑡𝑡′∈{2,…,𝐿𝐿}

. 

When treatment arms 2,…,L have equal sample sizes, as in our Table 4, the t-statistics τt have the same 

ranking as the sample means 𝑦𝑦�𝑡𝑡. Hence, prescribing the treatment with the largest mean outcome in the trial 

is equivalent in this case to prescribing the treatment with the largest t-statistic. 

 

The Empirical Success Rule 

 Let 𝑢𝑢�𝑡𝑡 = 1
𝑛𝑛𝑡𝑡
∑ 𝑢𝑢(𝑦𝑦𝑖𝑖)𝑖𝑖:𝑡𝑡𝑖𝑖=𝑡𝑡  denote the mean patient welfare observed in treatment arm t = 1, 2, …, L. The 

empirical success rule considers all treatments in the trial symmetrically and prescribes the treatment with 

the largest observed mean patient welfare. If there is a tie, all treatments with the largest observed mean 

patient welfare are prescribed with equal probability. 

 𝛿𝛿𝐸𝐸𝑆𝑆(𝑡𝑡,𝜓𝜓) ≡
1�𝑢𝑢�𝑡𝑡= max

𝑡𝑡′∈{1,…,𝐿𝐿}
𝑢𝑢�𝑡𝑡′�

∑ 1�𝑢𝑢�𝑡𝑡= max
𝑡𝑡′∈{1,…,𝐿𝐿}

𝑢𝑢�𝑡𝑡′�𝑡𝑡′∈{1,…,𝐿𝐿}

. 

For binary outcomes, we take u(y) = y. 
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Computation of near-optimality for two-arm trials with binary outcomes 

 When computing the near-optimality results reported in Table 2, we consider the set of all possible 

distributions of binary outcomes with means p1 ≡ E[y(1)], p2 ≡ E[y(2)], (p1, p2) ∈ [0, 1]2. 

Let m1 and m2 denote the number of positive outcomes in each arm of the trial. For binary outcomes, ψ 

= (m1, m2) is a sufficient statistic for the sample. Hence, it is sufficient to consider the sample space Ψ = {0, 

1, …, n1}×{0, 1, …, n2}. The probability density function of ψ is a product of two binomial density 

functions. This sample space is sufficiently small, so we compute (A1) exactly. 

The function (A1) is continuous in (p1, p2) but may have multiple global and local maxima. We 

approximate the maximum in (A2) by grid search using 1000 possible values for each parameter equally 

spaced on [0,1]: {0.0005, 0.0015, …, 0.9995}. 

 

Computation of near-optimality for multi-arm trials with binary outcomes 

To compute the results reported in Table 4, we consider the set of all possible distributions of binary 

outcomes with means pt ≡ E[y(t)], t = 1, …, L, (p1, …, pL) ∈ [0, 1]L. Let mt denote the number of positive 

outcomes in arm t of the trial. For binary outcomes, ψ = (m1, …, mL) is a sufficient statistic for the sample. 

Hence, we consider the sample space Ψ = {0, 1, …, n1}×…×{0, 1, …, nL}. The large size of the sample 

space makes it impractical to evaluate (A1) exactly. Instead, given each value of (p1, …, pL) we simulate a 

large number of trial outcomes to approximate the sampling distribution Qs. Our computations of the 

maximum of (A2) proceed in three steps. 

First, we conduct a grid search using 51 possible values for each parameter pt∈[0, 0.02, …, 1]. For each 

combination of parameters, we approximate the sampling distribution Qs by simulating 100,000 trial 

outcomes. The results of this grid search suggest that the largest expected loss for the empirical success rule 
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occurs when the parameters have the form p1 = a, p2 = p3 = p4 = p5 = b, a > b. The largest expected loss for 

the Dunnett’s test rule occurs when p1 = a, p2 = b, p3 = p4 = p5 = c, b > a, b > c. 

In the second step, we conduct a grid search over these two lower-dimensional parameter spaces using 

101 possible parameter values from [0, 0.01, …, 1] for a, b, and c. In this step we approximate Qs by 

simulating 1,000,000 trial outcomes. 

In the last step, we take 10 parameter combinations yielding the largest estimated expected loss for each 

decision rule in step 2 and re-compute expected loss by simulating 100,000,000 trial outcomes. We do this 

to verify that our results are not affected by bias resulting from approximating Qs by simulation. 

The MATLAB code used to perform the computations is available from Aleksey Tetenov. 
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Mortality rates: 

       

    standard care alone 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

    with new treatment 0.4 0.35 0.3 0.25 0.2 0.15 0.1 

Panel A: What happens if treatment decisions are made using a two-sided 5% hypothesis test 

% of trials after which standard care will be prescribed 100.00% 99.98% 99.70% 97.50% 86.76% 57.36% 18.92% 

Loss from prescribing standard care 0 0 0 0 0.05 0.1 0.15 

% of trials after which new treatment will be prescribed 0.00% 0.02% 0.30% 2.50% 13.24% 42.64% 81.08% 

Loss from prescribing new treatment 0.15 0.1 0.05 0 0 0 0 

Expected loss: 0.0000 0.0000 0.0002 0.0000 0.0434 0.0574 0.0284 

Panel B: What happens if treatment decisions are made using the empirical success rule 

% of trials after which standard care will be prescribed 98.95% 94.28% 79.61% 51.64% 21.18% 4.22% 0.26% 

Loss from prescribing standard care 0 0 0 0 0.05 0.1 0.15 

% of trials after which new treatment will be prescribed 1.05% 5.72% 20.39% 48.36% 78.82% 95.78% 99.74% 

Loss from prescribing new treatment 0.15 0.1 0.05 0 0 0 0 

Expected loss: 0.0016 0.0057 0.0102 0.0000 0.0106 0.0042 0.0004 

   
Table 1: Illustrative scenarios for a trial assigning 100 patients to standard care and 99 to a new treatment, 
as in Cao et al. (2020). 
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Sample size per 
arm: 

Near-optimality if treatment decisions are made using a two-
sided 5% hypothesis test 

Near-optimality if treatment decisions are made using the 
empirical success rule 

20 0.1685 0.0269 

30 0.1304 0.0220 

50 0.0990 0.0170 

100 0.0705 0.0120 

200 0.0510 0.0085 

500 0.0319 0.0054 

1000 0.0228 0.0038 

2000 0.0161 0.0027 

4000 0.0115 0.0019 

5000 0.0102 0.0017 

10000 0.0073 0.0012 

15000 0.0059 0.0010 

 

Table 2: Near-optimality of hypothesis test and empirical success decision rules for two-arm trials with 
equal number of patients in each arm. 
  



27 

 

 
Standard care A B C D 

Sample size in each arm 500 250 250 250 250 

Mortality rate of each treatment 0.25 0.15 0.20 0.30 0.35 

Panel A: What happens if treatment decisions are made using two-sided Dunnett's test at 5% significance 

% of trials after which new treatment will be prescribed 25.65% 70.60% 3.75% 0 0 

Loss from prescribing each treatment 0.1 0 0.05 0.15 0.2 

Probability of error times the magnitude of loss 0.0257 0 0.0019 0 0 

Expected loss given these mortality rates     0.0275 

Panel B: What happens if treatment decisions are made using the empirical success rule 

% of trials after which new treatment will be prescribed 0.02% 92.95% 7.03% 0 0 

Loss from prescribing each treatment 0.1 0 0.05 0.15 0.2 

Probability of error times the magnitude of loss 0 0 0.0035 0 0 

Expected loss given these mortality rates     0.0035 

 
 
Table 3: Illustrative scenario for a multi-arm clinical trial assigning 500 patients to receive standard care 
and 250 patients each to four alternative treatments. 
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Sample sizes for each arm: 
Near-optimality if treatment decisions are made 
using a two-sided 5% Dunnett’s test 

Near-optimality if treatment decisions are made 
using the empirical success rule 

100:50:50:50:50 0.1224 0.0362 

60:60:60:60:60 0.1251 0.0343 

200:100:100:100:100 0.0855 0.0256 

120:120:120:120:120 0.0859 0.0243 

500:250:250:250:250 0.0532 0.0160 

300:300:300:300:300 0.0563 0.0153 

1000:500:500:500:500 0.0380 0.0112 

600:600:600:600:600 0.0390 0.0107 

2000:1000:1000:1000:1000 0.0274 0.0080 

1200:1200:1200:1200:1200 0.0291 0.0076 

 

Table 4: Near-optimality of multiple hypothesis testing and empirical success decision rules for five-arm 
trials with specified sample sizes. 
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