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1 Introduction

Economists increasingly use quantitative spatial models to evaluate urban policies such as infras-

tructure investments and land-use planning decisions. The growing availability of economic data

observed at increasingly finer spatial scales offers tremendous potential for new insights. However,

if policymakers are to rely on these models to inform their decisions, researchers must establish

that they reliably capture relevant features of the data and perform well in making counterfactual

predictions.

Quantitative spatial models characterize spatial linkages by the gravity equation, which says that

the volume of interactions between any two locations increases with their sizes and decreases with

the bilateral frictions between them (Redding and Rossi-Hansberg, 2017). The gravity equation, in

turn, is derived under the assumption that the volume of interactions between any two locations is

large enough to wash out any idiosyncratic choices of individuals. But when locations are defined at

fine spatial scales, the interactions between them are “granular.” That is, individual decision makers

are large relative to the economic outcomes being analyzed. In such settings, the idiosyncratic

choices of individual decision makers do not wash out. By assuming a continuum of individuals,

the extant literature has neglected granularity’s influence on its counterfactual predictions.

In this paper, we examine the application of quantitative spatial models to granular settings.

In doing so, we make three main contributions. First, we show that granularity is common in

the spatial settings that researchers study and that the most popular procedure used to com-

pute counterfactual outcomes suffers from severe overfitting problems in granular settings. We

demonstrate this procedure’s inability to predict counterfactual outcomes in both Monte Carlo

simulations and event studies of neighborhood employment booms in New York City. Second, we

develop a quantitative spatial model that features a finite number of individuals and is suitable for

counterfactual analysis. While incumbent models assume a continuum of individuals as a modeling

convenience, our granular framework is just as tractable. Third, we show that counterfactual

predictions are accompanied by “granular uncertainty,” owing to the idiosyncratic components

of equilibrium outcomes, and propose a simple approximation of this dispersion. Applying this

approach to an evaluation of Amazon’s proposed HQ2 in New York City suggests that the predicted

counterfactual changes for most census tracts are small compared to the granular uncertainty of

these outcomes.

Section 2 reviews the conventional continuum model and describes two methods for computing

counterfactual outcomes in quantitative spatial models. The covariates-based approach makes the

cost of commuting between a residence and a workplace a function of observed characteristics.

In this approach, the model does not fit the observed data perfectly. By contrast, the popular

calibrated-shares procedure for computing counterfactual outcomes selects commuting costs and

other parameters to exactly fit the initial data. As a result, any idiosyncratic noise in observed

outcomes is incorporated into the calibrated parameter values.

Section 3 examines the performance of quantitative spatial models with a continuum of indi-

viduals in granular empirical settings. We first establish that empirical settings of interest are
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often granular. Tract-to-tract commuting matrices used in prior research are sufficiently granular

that they are sparse: half or more of tract pairs have zero commuters. Small flows constitute a

substantial share of total commuting: more than 40% of New York City commuters have a residence-

workplace pairing populated by five or fewer individuals. We then show that the calibrated-shares

procedure, which equates observed shares and underlying probabilities, predicts counterfactual

outcomes poorly in these settings. A Monte Carlo simulation shows that granularity alone is

sufficient to seriously impair the calibrated-shares procedure’s predictive power when the model is

otherwise correctly specified. While the procedure works in Monte Carlo simulations as the number

of individuals becomes arbitrarily large, it produces uninformative predictions in simulations using

the actual number of individuals in New York City.

Next, we examine how well these approaches predict changes in commuting flows using event

studies. Commuting flows are the key spatial linkage between neighborhoods in many models of

cities. We study events in which there is a large, discrete increase in employment in a single census

tract, often arising from the arrival or expansion of a large employer. We increase the productivity

parameter for that tract to match the increase in total employment and compare the predicted

changes in bilateral commuting flows to those observed in the data. When examining 83 tract-level

employment booms in New York City, we find that the covariates-based approach—–using transit

times as the only covariate—–predicts the observed changes in commuting flows better than the

conventional calibrated-shares procedure in 80 of these events. While predictive performance varies

across events, regressing the observed change in commuters on the covariates-based approach’s

prediction typically yields an estimated slope of one, whereas the median estimated slope for the

calibrated-shares procedure is negative. In other words, the counterfactual predictions from the

calibrated-shares procedure are negatively correlated with the observed changes in commuting in

more than half of the 83 events.

At first glance, it may be surprising that the covariates-based approach predicts changes in

commuter counts better than the procedure that calibrates parameters to perfectly fit the pre-

event flows. For intuition, note that each observation in the pre-event cross section has three

parts: a time-invariant component correlated with included covariates, a time-invariant component

uncorrelated with those covariates, and a time-varying component. On the one hand, the advantage

of the calibrated-shares procedure is its potential to capture real spatial linkages not predicted

by covariates like transit times, such as the fact that a very large share of Columbia University

employees reside in nearby university-owned residences. On the other hand, the calibrated-shares

procedure matches every bit of variation in the data, including transitory individual idiosyncrasies.

This risks overfitting the third component of the pre-event observations and failing to predict post-

event outcomes. In our event studies, the overfitting problem dominates. Pooling three years of

data or aggregating predictions to much larger spatial units does not alter the finding that the

covariates-based approach predicts changes in commuting flows better than the popular calibrated-

shares procedure.

Fundamentally, while a continuum model can produce predictions for granular settings, it
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cannot produce granular outcomes. In a granular economy, idiosyncratic individual decisions affect

both equilibrium quantities and prices. To capture the role of these idiosyncrasies, one needs a

model that admits a finite number of individuals. In Section 4, we propose a granular model in

which equilibrium outcomes depend in part on the idiosyncratic component of individuals’ choices.

Where the continuum model would yield a single equilibrium allocation, our framework produces

a distribution of economic outcomes. Notably, a single realization of the stochastic process often

produces zeros for equilibrium outcomes that have strictly positive probabilities.

Our granular model retains the general-equilibrium approach employed in prior quantitative

spatial models (e.g., Redding and Rossi-Hansberg, 2017), but the number of individuals in the

economy is finite. The key modeling challenge is that individual decisions affect wages and rents.

We assume that individuals act as price takers and optimize given their beliefs about wages

and rents. Employing standard discrete-choice methods (e.g., Train, 2009), we model individuals

choosing residence-workplace pairs on the basis of wage beliefs, rent beliefs, commuting costs, and

an individual-specific idiosyncratic preference shock. It is computationally infeasible to enumerate

all the possible labor allocations and resulting prices. To overcome this combinatorial challenge,

we assume that individuals have point-mass wage and rent beliefs that are equal to the equilibrium

prices in a model with the same parameters but a continuum of individuals. This simplification of

agents’ beliefs to solve an otherwise intractable decision problem is similar to the assumptions used

in industrial organization (Weintraub, Benkard, and Van Roy, 2008) or macroeconomics (Krusell

and Smith, 1998). In our application to New York City, decisions based on these beliefs are optimal

for the overwhelming majority of individuals. At realized wages and rents, which differ from the

point-mass beliefs about these prices, 96% of individuals would not change their residence-workplace

choice if given the opportunity. For the 4% who would want to switch, the foregone benefits of

switching are typically equivalent to an income increase of less than 1%.

Our granular model can be estimated using the same data used to estimate the covariates-based

continuum model. When individuals’ price beliefs are the continuum-case equilibrium prices, the

estimated parameters of this model are identical to those of the covariates-based continuum model.

Given the same parameter values, the mean equilibrium labor allocation of the granular model is

equal to the equilibrium labor allocation of the covariates-based continuum model. By contrast,

the granular model’s equilibrium prices solve a system of non-linear equations, so their mean values

are not necessarily equal to the continuum-case prices. Crucially, unlike the continuum model, the

granular model characterizes the dispersion in quantities and prices that arises from idiosyncrasies.

In Section 5, we illustrate how counterfactual predictions depend on both the estimation

procedure and granular uncertainty in the context of evaluating the local economic effects of

Amazon’s proposed—but later abandoned—HQ2 in New York City. The (mean) changes in the

labor allocation predicted by the granular model and covariates-based continuum model differ

considerably from the predictions of the calibrated-shares procedure. The granular model and

covariates-based continuum model predict similar (mean) changes in land rents, and, for some

neighborhoods, these predictions differ considerably from those of the calibrated-shares procedure.
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We also find that most predicted tract-level changes are small relative to the accompanying granular

uncertainty. We propose that researchers use a simple approximation based on the number of

decision makers and the (change in) modeled probabilities to quantify the magnitude of granular

uncertainty accompanying their predictions about counterfactual changes in residents and workers.

Our finding that granular uncertainty is large relative to the predicted neighborhood-level outcomes

induced by a headline-grabbing headquarters decision suggests that granular uncertainty is likely

important for counterfactual outcomes in many granular settings.

We contribute to the rapidly expanding literature on quantitative spatial economics.1 A growing

body of research aims “to provide an empirically relevant quantitative model to perform general

equilibrium counterfactual policy exercises” concerning topics such as transportation-infrastructure

investment, neighborhood revitalization programs, and local business tax incentives (Redding and

Rossi-Hansberg, 2017, p.23).2 As anticipated by Holmes and Sieg (2015, p.106), “[a]s research

in urban and regional applications takes advantage of new data sets at high levels of geographic

resolution, it permits the study of interactions at narrow levels, where there may be relatively few

decision makers,” but quantitative spatial models have largely abstracted from discreteness in the

underlying economic environment.

Our paper introduces a quantitative spatial model suitable for applications using small spatial

units, such as census tracts. Social scientists study neighborhoods to understand housing markets,

intergenerational mobility, racial segregation, and many other phenomena. Spatially precise satel-

lite imagery (Donaldson and Storeygard, 2016) and phone movement data (Couture et al., 2020)

will allow even finer investigations. Granular data are valuable in part because a growing body of

evidence shows highly localized agglomeration economies (Rosenthal and Strange, 2020). Arzaghi

and Henderson (2008) estimate that productivity gains from interactions among advertising firms

occur primarily within 500 meters. Ahlfeldt et al. (2015) estimate that production and residential

externalities are highly localized, decaying by more than half at distances of two minutes and

one minute of travel time, respectively. Rossi-Hansberg, Sarte, and Owens (2010) estimate that

externalities from non-market interactions decline by half approximately every 1,000 feet. We

provide tools for applying quantitative spatial models to these granular empirical settings.

Our event studies of neighborhood employment booms contribute to a much smaller literature

assessing the predictive power of quantitative spatial models using observed economic changes.

Ahlfeldt et al. (2015) demonstrate their quantitative model’s ability to capture how changes in

floor prices associated with Berlin’s division and reunification correlated with distance to the pre-

war central business district. Monte, Redding, and Rossi-Hansberg (2018) verify a qualitative

1In gravity-based quantitative models, a location’s access to all other locations’ goods and factors, which is impeded
by bilateral frictions, influences the magnitude and character of its economic activity. See Proost and Thisse (2019)
for a recent survey of these models, Donaldson (2015) on market access in goods trade, Redding and Turner (2015)
on transport costs for both goods and commuters, and Dingel (2017) on the income composition of goods market
access.

2Heblich, Redding, and Sturm (2020); Severen (2019); Tsivanidis (2019); and Zárate (2019) study transportation-
infrastructure investments. Allen, Arkolakis, and Li (2015) compute optimal zoning for each block of Chicago. Owens,
Rossi-Hansberg, and Sarte (2020) compute the value of revitalizing each of 52 vacant tracts in Detroit. Berkes and
Gaetani (2020) compare the effects of siting Amazon’s HQ2 in four different New York City neighborhoods.
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implication of their quantitative spatial model—larger employment responses to a local productivity

increase in counties more open to commuting—using the million-dollar-plant openings examined

by Greenstone, Hornbeck, and Moretti (2010). Adão, Arkolakis, and Esposito (2020) compare US

commuting zones’ actual and predicted changes in employment and wages in response to the “China

shock” of Autor, Dorn, and Hanson (2013) for different calibrations of spatial links. Kreindler and

Miyauchi (2020) use a gravity model and cell-phone–derived commuting flows to predict workplace

wage levels in developing-economy cities that lack conventional data coverage. We explore the

predictive power of quantitative spatial models in granular settings. Examining the “out-of-sample”

performance of quantitative spatial models is an important step in establishing their value as an

input into urban planning and other policymaking decisions.

Finally, our framework is related to prior research about granular economies. A growing

literature examines the importance of granularity for aggregate fluctuations in macroeconomics

(Gabaix, 2011; Carvalho and Grassi, 2019) and international economics (di Giovanni and Levchenko,

2012; di Giovanni, Levchenko, and Mejean, 2014; Gaubert and Itskhoki, 2018; Daruich, Easterly,

and Reshef, 2019). In addition to its relevance for aggregate fluctuations, firm-level granularity has

been studied as one explanation for zeros in international trade (Eaton, Kortum, and Sotelo, 2013;

Armenter and Koren, 2014). Ellison and Glaeser (1997) and Schoefer and Ziv (2020) address the

role of granular manufacturing plants when computing the geographic concentration of industries

and geographic variation in productivity, respectively. Mogstad et al. (2020) raise concerns about

inferring ranks in granular settings. Our paper makes two contributions to these various strands

of the literature. First, we demonstrate the importance of addressing granularity when making

predictions about counterfactual outcomes. Second, we introduce a tractable general-equilibrium

modeling approach that quantifies the granular uncertainty accompanying predictions.

2 Computing counterfactual outcomes in continuum models

This section describes two methods for computing counterfactual outcomes in quantitative spatial

models. We use a baseline model featuring a continuum of individuals making residential and

workplace location choices, as in Ahlfeldt et al. (2015) and Redding and Rossi-Hansberg (2017).

2.1 Setup

We consider a closed economy populated by a measure of L individuals who each supply one unit

of labor. There is a set of locations indexed by k or n. Each location has a fixed quantity of land,

Tk, owned by immobile landlords who consume only goods.3 Each location has the technology to

produce a differentiated good (i.e., the Armington assumption). For simplicity, we abstract from

trade costs.

Individuals have Cobb-Douglas preferences over these traded goods and land, devoting α of

their expenditure to the latter. They have constant elasticity of substitution (CES) preferences

3This simplifying assumption follows Monte, Redding, and Rossi-Hansberg (2018).
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over the set of differentiated goods, with elasticity of substitution σ > 1. Individuals (indexed by i)

have idiosyncratic preferences for pairs of residential and workplace locations, such that i’s indirect

utility from residing in k and working in n is

U ikn = ε ln

(
wn

rαkP
1−αδkn

)
︸ ︷︷ ︸

≡Ukn

+νikn, (1)

where wn denotes the wage in location n, rk denotes the land rent in k, P denotes the common

CES price index for goods, δkn ≥ 1 denotes the commuting cost between k and n, Ukn denotes the

mean utility of choice kn, and νikn is the idiosyncratic preference shock of individual i for residing

in k and working in n. The commuting elasticity ε governs the importance of mean utility relative

to the idiosyncratic preference shock. We assume that νikn is drawn from a type-1 extreme value

distribution.

Production of each location’s differentiated good is linear in labor. The goods market is perfectly

competitive.4 Commuting is costly because time spent commuting is not spent working, so that

individuals residing in k and working in n earn only wn/δkn because they only spend 1/δkn of their

time working.5 Goods output in location n is qn = AnLn, where An is that location’s productivity

and Ln is the quantity of labor supplied by workers working in n. Given this production function

and perfect competition, the price of location n’s output is wn/An for all consumers. Thus, the

CES price index is P =
[∑

n (wn/An)1−σ
]1/(1−σ)

.

2.2 Equilibrium

Let `kn denote the measure of people residing in k and working in n. Using the type-1 extreme

value distribution assumption, one can integrate over the idiosyncratic preference shocks to obtain

the fraction of people residing in k and working in n:

`kn
L

=
wεn (rαk δkn)−ε∑

k′,n′ w
ε
n′
(
rαk′δk′n′

)−ε . (2)

Goods market clearing equates each location’s output to the quantity demanded. Labor supplied

in location n is Ln =
∑

k `kn/δkn, and thus output there is An
∑

k `kn/δkn. Each individual

devotes 1−α of their expenditure to differentiated goods and α of their expenditure to land, while

immobile landlords spend all of their income on differentiated goods, such that total expenditure on

differentiated goods equals aggregate income. The demand for each differentiated good stemming

4Given established isomorphisms between perfect-competition and monopolistic-competition models of economic
geography (e.g., Allen and Arkolakis 2014), this assumption is not crucial to our results.

5Alternatively, we could assume that δkn represents a utility shifter that does not affect working time. Modeling
δkn as reduced working time facilitates the commuting-elasticity estimation discussed in Section 3.2.

6



from CES preferences means that equating quantity supplied and quantity demanded requires

An
∑
k

`kn
δkn

=
(wn/An)−σ

P 1−σ

∑
k′,n′

`k′n′

δk′n′
wn′ ∀n. (3)

Note that goods market clearing implies labor market clearing.

Similarly, land market clearing equates the fixed land endowment Tk to the quantity demanded

by individuals, who devote a constant fraction α of their expenditure to land:

Tk =
α

rk

∑
n

`kn
δkn

wn ∀k. (4)

Equilibrium is a set of wages {wn}, rents {rk}, and labor allocation {`kn} such that equations (2),

(3), and (4) hold. Appendix A.1 shows that if
(

1+ε
σ+ε

)(
αε

1+αε

)
≤ 1

2 , this equilibrium exists and is

unique by application of Theorem 1 of Allen, Arkolakis, and Li (2020).

2.3 Procedures for counterfactual predictions

Researchers employing quantitative spatial models aim to provide a parsimonious general-equilibrium

framework in order to predict counterfactual outcomes.6 The value of these quantitative models

for policy analysis therefore depends largely on their ability to predict the spatial distribution of

economic consequences of a shock.7

Two approaches have been used to compute counterfactual outcomes in this class of models.

They differ in how they parameterize commuting costs and whether equation (2) is satisfied. The

first approach parameterizes the commuting costs δkn as functions of observed characteristics. In

this covariates-based approach, equation (2) is generically not satisfied by the observed values of `kn

and the parameterization of δkn.8 After estimating the model, one can compute the counterfactual

equilibria associated with any counterfactual values of An, Tk, and δkn. A prominent example of

this covariates-based approach to counterfactual computations is Ahlfeldt et al. (2015), who observe

only a small sample of commuters relative to the population they study.9

A second approach infers the values of δkn and other model parameters by assuming that

6Redding and Rossi-Hansberg (2017, p.23): “[T]his research does not aim to provide a fundamental explanation for
the agglomeration of economic activity, but rather to provide an empirically relevant quantitative model to perform
general equilibrium counterfactual policy exercises.” Waddell and Sarte (2016, p.190): “The development of the new
quantitative equilibrium models has initiated a more robust and realistic framework with which to model cities. . . it
will also allow for more robust counterfactual policy exercises that can inform practitioners and policymakers regarding
strategies for urban development.”

7Bryan, Glaeser, and Tsivanidis (2019, p.31): “If quantitative models are to provide useful policy insights, their
results have to be trusted. First, researchers must establish that their model captures relevant features of the data
or (ideally) can replicate the real-world response to a policy change.” More broadly, Kehoe (2005) argues that “it is
the responsibility of modelers to demonstrate that their models are capable of predicting observed changes, at least
ex post.”

8One justification for the model not fitting the observed data would be that the observed set of commuters is a
sample from the population.

9Similarly, when using a sample describing domestic trade transactions, Holmes and Stevens (2014) employ a
covariates-based approach for trade costs.
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equation (2) is satisfied by the observed labor allocation. As shown in Appendix A.2, one can

compute the counterfactual equilibrium outcomes associated with proportionate changes in the

productivity, land-endowment, and commuting-cost parameters using only data on the initial labor

allocation and wages. This approach is known as “calibrated share form” or “exact hat algebra” in

the international trade literature (Rutherford, 1995; Dekle, Eaton, and Kortum, 2008; Costinot and

Rodŕıguez-Clare, 2014). This calibrated-shares procedure has been widely used in spatial economics

recently, often in granular settings where the number of residence-workplace pairs is large relative

to the number of decision makers.10

3 Counterfactual analysis in granular empirical settings

We assess the predictive performance of quantitative spatial models in granular empirical settings.

In Section 3.1, we show that granularity is common in empirical settings in which researchers and

policymakers are interested in the incidence of local economic shocks. After estimating the model

in Section 3.2, we present a Monte Carlo exercise in Section 3.3 that reveals that the calibrated-

shares procedure performs poorly in these settings because it overfits granular data. We further

assess the two approaches’ predictions using event studies of neighborhood employment booms in

New York City in Section 3.4. While the approach using commuting costs based on transit times

predicts the change in the number of people from each residential census tract who work in the

booming tract quite well, the calibrated-shares procedure’s predicted changes are in fact negatively

correlated with the observed changes in the majority of events.

3.1 Granularity in tract-level commuting flows

Urban economists often study empirical settings in which the fine spatial resolution of the geo-

graphic units employed makes the commuting matrix necessarily granular. Owens, Rossi-Hansberg,

and Sarte (2020) study 1.3 million people commuting between 1.3 million pairs of tracts in the

Detroit urban area. Roughly three-quarters of the cells in the Los Angeles metropolitan commuting

matrix studied by Severen (2019) are empty. Tsivanidis (2019) models the behavior of Bogotá’s

8 million residents commuting between almost 7 million pairs of tracts. Zárate (2019) examines

Mexico City, which has 9 million people commuting between 13 million pairs of tracts. At finer

spatial resolution, Ahlfeldt et al. (2015) model the behavior of about 3 million Berliners choosing

among about 254 million pairs of city blocks. In this section, we document the granularity of

tract-level commuting flows in New York City. Appendix B reports comparable summary statistics

for Detroit and Minneapolis-St. Paul.

We use data on commuting between census tracts in New York City taken from the Longitudinal

Employer-Household Dynamics, Origin-Destination Employment Statistics (LODES).11 One impli-

10Recent studies in spatial economics employing this technique include Allen, Arkolakis, and Li (2015); Perez-
Cervantes (2016); Waddell and Sarte (2016); Monte, Redding, and Rossi-Hansberg (2018); Heblich, Redding, and
Sturm (2020), Krebs and Pflüger (2019); Severen (2019); and Owens, Rossi-Hansberg, and Sarte (2020).

11 Davis et al. (2019) use the 2010 wave to compute the joint distribution of residences and workplaces for New
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cation of granularity is that some data providers perturb observations to protect confidentiality. For

example, the published LODES tract-level workplace employment counts are noise-infused. More-

over, the published LODES commuting matrices report synthetically generated residence-workplace

pairs.12 These confidentiality-protecting procedures are both a symptom of the granular setting

and an additional cause for caution when interpreting the value of any individual observation.13

Small flows constitute a large share of tract-to-tract commuting in New York City. New York

City has about 2.5 million resident-employees and 4.6 million tract pairs. Thus, its commuting

matrix is almost necessarily sparse, as the average cell contains about one-half of a commuter. In

fact, 85% of tract pairs have zero commuters between them, so the average positive cell contains

about three people. As shown in Figure 1, more than half of the tract pairs with a positive number of

commuters have only one commuter. Small flows constitute a substantial share of total commuting:

41.1% of New York City commuters have five or fewer commuters in their cell of the commuting

matrix. Furthermore, the commuting flows are impersistent over time and exhibit asymmetric

zeros, as we document in Appendix B.

Figure 1: Number of commuters between pairs of tracts in New York City

0
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.2
.3

.4
.5

D
en

si
ty

0 10 20 30 40

Number of individuals

Commuters between New York City tract pairs

Notes: This histogram reports the number of tract pairs in New York City by the number of individuals who reside
in the origin tract and work in the destination tract in 2010 LODES data. This histogram restricts the sample to the
15% of tract pairs that have a strictly positive number of commuters. Observations with more than 40 commuters
are winsorized to 40. There are 2,160 residential census tracts in New York City.

York City. Owens, Rossi-Hansberg, and Sarte (2020) use the 2014 wave of these data for the Detroit urban area to
estimate a gravity model of commuting. Following Owens, Rossi-Hansberg, and Sarte (2020), we use the primary-job
counts in LODES.

12Graham, Kutzbach, and McKenzie (2014): “For each job in a workplace cell, LODES draws from a Dirichlet
multinomial posterior distribution of possible residential locations. . . The prior adds uncertainty, so that even
commutes with few or no observed flows may appear to have a job. Conversely, even when there are commuters
from an origin in the likelihood, that residence may not be drawn and thus would not appear in LODES.”

13The econometric consequences of noise infusion and synthetic observations are specific to each use case. For
example, see the discussion of these issues in Couture and Handbury (2020). Calibration approaches that perfectly
match every (synthetic) observation are likely the research design that is most sensitive to these procedures.
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The sparsity of urban commuting matrices is driven in part by the fact that tracts are defined

by residential population, independent of employment. Tracts are defined by the US Census Bureau

to be relatively uniform in population size, such that the typical tract has 4,000 residents. Since

employment is spatially concentrated, many workplace destinations have fewer workers than the

number of residential origins. The median tract in New York City has 248 employees working in it.

Since New York City has 2,160 residential tracts, at least 89% of locations must have zero residents

commuting to this workplace.

Even when studying larger geographic units, the issue of granularity may be relevant. For

example, counties in the United States vary tremendously in their population sizes. While granu-

larity is unlikely to be relevant when examining US counties with millions of residents, Appendix B

documents that many county pairs have small commuting flows that represent granular outcomes.

3.2 Estimation

We estimate the continuum model using the tract-to-tract commuting data for New York City in

2010. We set the values of a few parameters prior to estimating those remaining. Following the

literature, we impose α = 0.24, based on Davis and Ortalo-Magne (2011), and σ = 4, following

Monte, Redding, and Rossi-Hansberg (2018).

For commuting costs, we distinguish between observed and unobserved components in order to

encompass both the covariates-based approach and the calibrated-shares procedure:

δkn = δ̄kn︸︷︷︸
observed

× λkn︸︷︷︸
unobserved

We construct the observed part of the commuting costs by assuming that each worker has H

hours that are spent either working or commuting. We compute δ̄kn = H
H−tkn−tnk , where H = 9

hours and tkn is the transit time from k to n according to Google Maps.14 Consistent estimation

of ε requires that the unobserved component λkn is appropriately mean-independent of δ̄kn, but,

beyond that, a variety of assumptions are possible.15 To emphasize the contrast with the calibrated-

shares procedure, we estimate the covariates-based model assuming that there is no unobserved

component, λkn = 1 ∀k, n.

One way to estimate the continuum model using the covariates-based approach is to interpret

observed data on residence-workplace choices as a finite sample from the continuum model. In

that case, given observed values of commuting costs δkn = δ̄kn, the remaining parameters can be

14Given H hours, 1/δ̄kn is the share of that time spent working if the individual resides in k and works in n. Using
H = 8 or H = 10 yields very little change in the model fit relative to the H = 9 results reported in Table 1. For New
York City, we use Google Maps public-transit times collected by Davis et al. (2019). We impute missing observations
by predicting transit times using physical distance, imputing transit times for fewer than 4.1% of tract pairs in New
York City. For both the covariates-based approach and the calibrated-shares procedure, we assume that labor supply
in location n is Ln =

∑
k `kn/δ̄kn. In other words, λkn affects the utility of commuting between k and n but not the

hours of commuting, which are observed and captured by δ̄kn.
15Among many intermediate cases, one might assume that λkn has a random-effects or an interactive-fixed-effects

structure. Similarly, one could enrich δ̄kn by introducing more observed covariates or more flexible functions of transit
times.
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estimated by maximum likelihood. Interpreting the right side of equation (2) as a probability and

denoting the number of individuals who chose the kn pair by `kn, the log likelihood function is

lnL ≡
∑
k,n

`kn ln
[
Pr(U ikn > U ik′n′ ∀(k′, n′) 6= (k, n))

]
=
∑
k,n

`kn ln

[
wεn
(
rαk δ̄kn

)−ε∑
k′,n′ w

ε
n′
(
rαk′ δ̄k′n′

)−ε
]
. (5)

This is the canonical conditional-logit likelihood of McFadden (1974) applied to location choices,

as in McFadden (1978). The k- and n-specific terms are captured by residence and workplace fixed

effects, respectively. As shown by Guimarães, Figueirdo, and Woodward (2003), the maximiza-

tion of this likelihood function is numerically equivalent to a Poisson pseudo-maximum-likelihood

estimator (PPMLE) that is available for a variety of software packages.16

To estimate the commuting elasticity ε for use in the calibrated-shares procedure, two distinct

mean-independence assumptions about the unobserved component λkn might be made. If one

assumes E
(
λ−εkn|rk, wn, δ̄kn

)
= 1, the constant-elasticity function can be estimated using PPMLE,

as shown in Silva and Tenreyro (2006). This yields the same estimate of the commuting elasticity

ε as the maximum likelihood estimate of equation (5). If one takes the logarithm of each side of

equation (2), assumes E
(
lnλkn|rk, wn, δ̄kn

)
= 0, and restricts the estimation sample to observations

for which `kn is strictly positive, then the commuting elasticity can be estimated by ordinary least

squares (OLS). As emphasized by Silva and Tenreyro (2006), these two estimators can yield very

different parameter estimates.

We apply both the PPML and OLS estimators to New York City in 2010. Our estimate of the

commuting cost elasticity is presented in column 1 of Table 1. The estimate of ε ≈ 8, which is

comparable to the value of 6.8 estimated by Ahlfeldt et al. (2015) for commuting within Berlin,

implies that idiosyncratic preference shocks are modestly dispersed. Estimating the commuting

elasticity using OLS yields a much lower elasticity, likely because of the well-understood selection

bias associated with omitting four-fifths of observations from the estimation sample.17 In what

follows, we use the estimate reported in column 1 for both the covariates-based approach and the

calibrated-shares procedure.

For the covariates-based approach, the remaining economic primitives {Tk} and {An} can be

inferred from the estimated fixed effects and the market-clearing conditions. In particular, the

residence fixed effect is proportionate to r−αεk , and the workplace fixed effect is proportionate to

wεn. Given α, σ, {δkn}, ε, {rk}, {wn}, and equation (2), equations (3) and (4) can be solved to

yield values of {Tk} and {An}.
As described in Appendix A.2, the calibrated-shares procedure does not separately identify the

parameters {Tk}, {An}, and {λkn}. Rather, one can compute counterfactual outcomes based on

16See Sotelo (2019) for a discussion of the relationship between the multinomial and Poisson pseudo-maximum-
likelihood estimators in the context of gravity models. In practice, we use the Stata package ppmlhdfe of Correia,
Guimarães, and Zylkin (2020).

17This selection bias also has substantial implications for the estimated fixed effects, as discussed in Appendix C.
Recent research in industrial organization draws attention to the problems associated with zero-valued market shares
(Quan and Williams, 2018; Gandhi, Lu, and Shi, 2019; Dubé, Hortaçsu, and Joo, 2020).
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Table 1: Commuting elasticity estimates

NYC (2010)
MLE OLS

Commuting cost -7.986 -2.307
(0.307) (0.0516)

Model fit (R2 or pseudo-R2) 0.662 0.561
Location pairs 4,628,878 690,673
Commuters 2,488,905 2,488,905

Notes: All specifications include residence fixed effects and workplace fixed effects. The “MLE” columns
present the results from the maximum likelihood estimation described in the text. The “OLS” columns present
the results of estimating the log version of equation (2) by ordinary least squares, omitting observations in
which `kn = 0. The model-fit statistic is the pseudo-R2 for MLE and R2 for OLS.

combinations of these parameters that are identified under the assumption that the continuum

model exactly replicates the observed commuter counts.

The calibrated-shares procedure is more data demanding than our covariates-based parame-

terization of the model. Let I denote the number of individuals and N the number of locations

in the economy. The covariates-based model estimates two parameters (An and Tn) for each of

the N locations, whereas the calibrated-shares procedure introduces an unobserved component for

each pair of locations and therefore implicitly estimates more than N2 parameters to rationalize

the observed commuting flows. There is a sharp contrast between the two approaches’ number of

parameters relative to the number of individuals whose decisions they model. For the case of New

York City, I/N exceeds one thousand, while I/N2 is about one-half. In this empirical setting, we

have limited concerns about residence and workplace fixed effects overfitting the data and much

greater concern about the calibrated-shares procedure overfitting the observed commuting flows.

3.3 Monte Carlo: The calibrated-shares procedure in a granular setting

We use a Monte Carlo simulation to assess how well the calibrated-shares procedure for computing

counterfactual outcomes performs in a granular setting. In anticipation of examining New York

City neighborhood employment booms in the next section, the data-generating process is the

estimated covariates-based model of New York City in 2010, and we impose a “counterfactual”

productivity increase in one workplace. As detailed in Appendix D.1, we assume commuting costs

are a function of transit times, take a finite number of draws from a multinomial distribution with

probabilities given by the right side of equation (2) to simulate the “2010” labor allocation, impose

a counterfactual 18% increase in productivity in one tract, and then take the same finite number of

draws to simulate the “counterfactual” labor allocation. We study how well the calibrated-shares

procedure predicts the counterfactual allocation when applied to the finite “2010” realization drawn

from the data-generating process. In short, our simulations examine the finite-sample behavior of

the calibrated-shares procedure using the actual number of individuals in New York City (I ≈
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2.5 million). Given infinite draws, equation (2) would hold true for the realized labor allocation

`kn, and the calibrated-shares procedure would perfectly predict the changes in commuting flows

associated with the productivity increase.

Figure 2: Monte Carlo: Calibrated-shares procedure performs poorly with granular data

A. Regression of observed on predicted changes
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Notes: This figure depicts the regression coefficients and RMSEs from 100 simulations in which I = 2, 488, 905,
the data-generating process is the estimated covariates-based model of New York City in 2010, and the
counterfactual change is an 18% increase in productivity in one workplace tract. See Appendix D.1 for a
detailed description of the simulation procedure.

To assess the calibrated-shares procedure’s predictive power, we compare the “observed” change

in the number of residents working in the “treated” tract to the change predicted by the procedure.

We do so by computing the root mean squared error (RMSE) and by regressing the observed

changes on the predicted changes. With an unbiased forecast, the regression of observed on

predicted changes would yield a slope coefficient of one and an intercept of zero. Of course, in

a granular setting, the estimated coefficients in a single simulation will also reflect finite-sample

noise. Simulating this process 100 times yields a distribution of regression coefficients and RMSEs,

as shown in Figure 2. The number of individuals in the simulated economy is large enough compared

to the number of locations that the covariates-based approach, which is correctly specified because

it matches the underlying data-generating process, delivers accurate predictions. Its slope and

intercept coefficients are centered on one and zero, respectively. The calibrated-shares procedure

has very limited predictive power when applied to finite samples (I ≈ 2.5 million) drawn from

the data-generating process. Regressing simulated observed changes on the change predicted by

the calibrated-shares procedure yields a slope of only 0.22 in the median simulation. The slope

from the covariates-based approach is centered on one, as expected, and its RMSE is 85% of the

calibrated-shares forecast error in the median simulation.

Since the only element of the data-generating process at odds with the assumptions of the

calibrated-shares procedure is the finite number of individuals, these simulation results demonstrate

that granularity alone can severely limit that procedure’s predictive power. The procedure suffers
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Table 2: Calibrated-shares procedure’s performance and granularity

I 2.5 5 12.5 25 50 125 250 2560

slope 0.22 0.55 0.82 0.90 0.95 0.98 0.99 1.00
intercept 2.01 1.15 0.47 0.25 0.12 0.05 0.03 0.00

Notes: This table reports the mean value of the slope and intercept
coefficients from 100 simulations as we vary I, the number of individuals in
the simulated economy. The column titles denote the number of individuals
in millions. The I = 2.5 million case corresponds to I = 2, 488, 905, which
is the number of individuals who reside and work in New York City in the
2010 LODES data.

from an overfitting problem when the number of individuals is small relative to the number of

parameters. As shown in Table 2, the calibrated-shares procedure performs better as we increase

the number of individuals.18 But only when the number of draws is one to two orders of magnitude

larger do the calibrated-shares procedure’s predictions become closely correlated with outcomes.19

In short, the calibrated-shares procedure is very data demanding because it implicitly estimates

millions of parameters. Thus, we have reason to expect that the calibrated-shares procedure will

perform poorly in granular empirical settings.

3.4 Event studies: Predicting commuting responses to a local shock

Given the concern that the calibrated-shares procedure may perform poorly in granular settings,

we now assess the two approaches’ predictions using neighborhood employment booms in New

York City. As in the Monte Carlo simulations, we investigate changes in commuting patterns to

workplace tracts that had large increases in employment. In particular, we conduct an “event

study” for each of the 83 workplace tracts in New York City that had a two-year increase in total

employment from 2010 to 2012 of at least 400 employees and at least 12.5% from a 2010 level

of at least 400 employees. We focus on local employment booms because these large changes are

likely driven by workplace-specific shocks, such as new office openings or an expansion by a large

employer, rather than resident-workplace-specific shocks. For example, in 2011, Tiffany & Co.

moved its corporate headquarters to 260,000 square feet of office space at 200 Fifth Avenue. In

late 2010, Google acquired a building of nearly 3 million square feet at 111 Eighth Avenue. These

locations are two of the 83 workplace tracts we examine.20

18Table D.1 in Appendix D.1 shows that, for a given number of individuals, the calibrated-shares procedure’s
performance improves relative to the covariates-based model as the share of variation in δkn orthogonal to the
included covariates increases.

19This finding also cautions against spatial aggregation as a strategy for addressing granularity. Reducing the
number of location pairs by two orders of magnitude would require reducing the number of locations by an order of
magnitude. We judge that using location pairs’ observed characteristics is a more attractive method of dimensionality
reduction than eliminating variation by grouping locations into larger units. We demonstrate the viability of the
covariates-based approach applied to real data from a granular setting in the following section. The difficulty of
estimating tract-pair-specific parameters seems little reason to ignore the tract-level variation studied by vast numbers
of social scientists.

20Figure D.1 depicts the employment changes for these two tracts.
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We estimate or calibrate the model for New York City based on 2010 data, as described in

Section 3.2. The calibrated-shares procedure perfectly rationalizes observed commuting flows and

wages, as described in Appendix A.21 Next, we compute the increase in productivity required

to match the observed 2010–2012 change in employment for the “treated” tract. Since the two

procedures fit the 2010 data differently, this productivity increase need not be the same, but in

practice they are very similar. Since the productivity increases are defined so that both procedures

match the observed increase in employment, we examine their predictions for the change in bilateral

commuter counts.

Figure 3 contrasts the two procedures’ predictions for the changes in commuter flows associated

with all 83 employment booms from 2010 to 2012. For each event and each procedure, we regress

the observed change in the number of residents from each residential tract who work in the treated

workplace tract on the predicted change. An unbiased prediction procedure should yield a slope

of one and an intercept of zero. Panel A of Figure 3 depicts the distribution of these coefficients

for both procedures. For the covariates-based approach, the slope coefficients are roughly centered

on one (median of 0.97) and the intercept coefficients are roughly centered on zero (median of

0.01). The calibrated-shares procedure does not perform as well. Across the 83 events, the median

slope coefficient is -0.25 and the median intercept coefficient is 0.60. That is, the calibrated-shares

procedure’s predictions are negatively correlated with observed outcomes in more than half of the

events. As a result, the covariates-based approach typically has a lower forecast error. Panel B of

Figure 3 contrasts the two models’ RMSEs for each event.22 The covariates-based approach has

a lower RMSE than the calibrated-shares procedure in 80 of the 83 events. While the calibrated-

shares procedure necessarily has a better in-sample fit, it performs poorly when predicting changes

in commuting flows.

The covariate-based approach’s superior predictive power is not due solely to the presence

of zeros in the commuting matrix. To illustrate this, we produce predictions using a hybrid

parameterization in which residence-workplace pairs that have zero commuters in the 2010 data

are assigned infinite commuting costs rather than the covariates-based values. This model with

no extensive margin produces predictions that have lower RMSEs than the predictions of the

calibrated-shares procedure, as shown in panel D of Figure 3. Since the two procedures depicted in

that panel handle zero-commuter flows identically, the superior predictive performance is a result

of the covariate-based approach’s intensive-margin predictions: it better predicts commuter-count

21The largest commuting flow in the 2010 LODES data for New York City is 827 commuters who reside between
110th and 114th Streets in Morningside Heights and work at adjacent Columbia University. The model that uses
transit times predicts only 70 of the 827 observed commuters, failing to capture the effect of the university’s dual
role as employer and landlord. The advantage of the calibrated-shares procedure is its potential to capture such
linkages.

22Comparing mean absolute errors (MAEs) yields the same conclusion. Characterizing forecast errors using RMSE
or MAE is preferable to a measure such as R2. As a squared correlation, R2 would not distinguish between forecasts
that are positively or negatively correlated with outcomes nor reveal a constant bias in a forecast. If expressed in
terms of the sum of squared prediction errors relative to the variance of the observed changes, this “R2” would be
negative when the sum of squared prediction errors is larger, obviating the analogy with the in-sample fit of a linear
regression.
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Figure 3: Comparison of models’ predictive performance across 83 events
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C. Regression of observed on predicted changes
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Notes: “Covariates-based approach” in panels A and B refers to the parameterization described in Section 3.2.
“Calibrated shares” refers to the procedure defined in detail in Appendix A. “No extensive margin” in panels C
and D is a hybrid parameterization in which δkn = δ̄kn if `kn > 0 in the 2010 data and δkn =∞ if `kn = 0 in the
2010 data. Vertical lines depict medians of slope coefficient distributions.

changes for residence-workplace pairs that have positive counts in the baseline data.

As an alternative to using observed covariates, one might try to “smooth” granular data to be

fed into the calibrated-shares procedure. For example, one might hope to eliminate idiosyncratic

elements of the data by averaging across multiple years of data. In many empirical settings,

particularly historical contexts, consecutive years of data are not available. In the case of the

LODES data, annual data are available since 2002, and pooling may average out noise introduced

by the confidentiality-protecting perturbations mentioned in Section 3.1. To explore the gain from

pooling multiple years of data, we average commuter and wage observations for 2008–2010 before

applying the observed-covariates approach and the calibrated-shares procedure.

As depicted in Figure 4, pooling the data yields a modest improvement for the calibrated-
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Figure 4: Models’ predictive performance across 83 events (pooled pre-event data)

A. Regression of observed on predicted changes
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Notes: In panel A, four outlying covariates-based observations and four outlying calibrated-shares
observations are not depicted. Vertical lines depict medians of slope coefficient distributions.

shares procedure. Its predictions are now positively correlated with observed outcomes for 64% of

the events. Nonetheless, the covariates-based approach typically forecasts the changes in commuter

counts much better. The covariates-based approach’s slope coefficients are closer to one (median of

0.99 vs. 0.14) and its intercept coefficients are closer to zero (0.01 vs. 0.39). The covariates-based

approach applied to the pooled data has a lower RMSE than the pooled calibrated-shares procedure

in 70 of the 83 events.

Aggregating predictions to larger spatial units has the potential to address the overfitting

problem, but the covariates-based model still outperforms the calibrated-shares procedure after

reducing the number of spatial units by an order of magnitude. In our view, analyzing a smaller

number of locations so as to reduce the number of location pairs would be both costly and

unnecessary. The cost is not addressing the many social science research questions that concern

small spatial units like neighborhoods. That is unnecessary because the covariates-based approach

reduces the dimensionality of the model parameters without incurring this cost. Regardless, when

we aggregate the predicted changes in commuting flows to the destination tract using spatial

units that are an order of magnitude larger, the covariates-based model still has smaller forecast

errors in the majority of events. In particular, we aggregate the 2,160 residential tracts into 195

Neighborhood Tabulation Areas defined by the New York City Department of City Planning. As

shown in Figure 5, we find that the covariates-based model has a lower RMSE than the calibrated-

shares procedure in 55 of the 83 events.

One difference between the data requirements of the covariates-based approach and the calibrated-

shares procedure is that the latter also uses data on wages. We have verified that using alternative

wage values—such as equal wages across locations—does little to alter the predictions of the

calibrated-shares procedure in the event studies.

The predictive power of the covariates-based approach could potentially be improved further.
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Figure 5: Models’ predictive performance across 83 events (larger spatial units)

A. Regression of observed on predicted changes
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Notes: This figure depicts predictive performance after aggregating the tract-level predictions underlying
panels A and B of Figure 3 up to 195 Neighborhood Tabulation Areas defined by the New York City
Department of City Planning. Panel A depicts the distributions of slope coefficients, and the vertical
lines denote the median slope coefficients.

Recall that our parameterization uses only transit times to characterize commuting costs, leaving

many unused degrees of freedom. Depending on the context, one could add borough-pair fixed

effects, interactive fixed effects, or additional covariates such as the frequency of public-transit

connections, vehicular transit times, and so forth. By contrast, the calibrated-shares procedure is

the extreme case of introducing a structural error λkn for each pair of locations, thereby overfitting

the observed data and failing to predict out of sample.

4 Granular model

In granular settings, individual choices affect economic outcomes. The previous section demon-

strated that this granularity affects parameter estimates and therefore shapes models’ counter-

factual predictions. Even given parameter values, individual decisions affect both equilibrium

quantities and prices in a granular setting. By contrast, the continuum model has deterministic

equilibrium outcomes. To capture the role of the idiosyncratic components in individuals’ decisions,

one needs a model that admits a finite number of individuals.

The key challenge in modeling a finite number of people is precisely that individual decisions

affect wages and rents. This raises two issues. First, do individuals internalize the effects of their

own choices on local labor supplies and land demands? Second, are individuals able to enumerate

the prices induced by every possible combination of others’ choices? In the interest of tractability,

we assume that individuals have common point-mass beliefs about wages and rents. Therefore,

individuals act as price takers, as in the granular economy of Gabaix (2011). In our application, we

assume that, given the model parameters, individuals have beliefs about wages and rents that are

the equilibrium prices of the conventional continuum model. We label these beliefs “continuum-case
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rational expectations” because they would be rational if there were a continuum of individuals.23

In a granular economy, these point-mass beliefs are not rational because the realized prices of a

granular equilibrium generically differ from them. In practice, we find that the resulting ex post

regrets are small.

This section introduces a granular model with the same preferences, technology, and commuting

costs as in the continuum model in Section 2. Model extensions that introduce trade costs,

residential amenities, local increasing returns, and production employing land are presented in

Appendix A. After defining equilibrium and discussing parameter estimation, we define ex post

regrets and granular uncertainty in the context of our granular model.

4.1 Setup

The granular model differs from the continuum model in two important respects. First, we consider

an economy populated by I individuals, each supplying L
I units of labor. Second, we introduce a

timing assumption: individuals first choose their residence-workplace pairs, and then all markets

clear given individuals’ residential and workplace locations. This timing assumption would be of

no consequence if there were a continuum of individuals.

We make the following assumptions about information and expectations. All workers know the

primitives of the model (L, {An}, {Tk}, {δkn}, α, ε, σ) and have (common) expectations about

the equilibrium variables rk and wn. We assume that the price expectations are point-mass beliefs,

such that each individual assigns 100% probability to a single vector of wages and a single vector

of land prices. Denote these belief vectors by {w̃n} and {r̃k}. Worker i knows her idiosyncratic

preference shocks {νikn}.
Decisions are made and markets clear in the following order. Based on beliefs {w̃n} and {r̃k},

each worker chooses the residential location and the work location that maximize expected utility

Ũ ikn = ε ln

(
w̃n

P̃ 1−αr̃αk δkn

)
︸ ︷︷ ︸

≡Ũkn

+νikn, (6)

where P̃ =
[∑

n (w̃n/An)1−σ
]1/(1−σ)

. After these decisions are made, workers are immobile and

cannot relocate.24 Realized equilibrium land prices rk and wages wn are those that clear goods,

labor, and land markets given individuals’ residential and workplace locations.

The assumption that individuals have point-mass beliefs about wages, {w̃n}, and rents, {r̃k},
23Similar simplifications to agents’ beliefs have been made in industrial organization (e.g., oblivious equilibrium in

Weintraub, Benkard, and Van Roy 2008) and macroeconomics (e.g., Krusell and Smith 1998).
24The assumption that individuals make irreversible decisions is common in static spatial models. For example, in

the open-city model of Ahlfeldt et al. (2015), individuals choose to live in Berlin based on expected utility, which is
equal to the reservation level of utility in the wider economy. Individuals who choose Berlin and realize utility below
the city-wide average cannot leave. Brinkman and Lin (2019), Redding and Rossi-Hansberg (2017), Heblich, Redding,
and Sturm (2020), and Owens, Rossi-Hansberg, and Sarte (2020) make the same irreversibility assumption. Similarly,
Allen and Arkolakis (2014) and Tsivanidis (2019) assume that residences and workplaces are chosen sequentially.
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considerably simplifies the analysis. Otherwise, individuals would need to compute the prices

associated with all possible residence-workplace allocations and then solve for the fixed-point

probabilities that each of these occurs. The set of feasible allocations is large. For example, a

granular economy with only 10 individuals and 16 residence-workplace pairs would have more than

3 million possible allocations.25 For empirically relevant magnitudes, computing the number of

possible allocations leads to such large numbers that they cause overflow problems in standard

software.

While our approach is general in the sense that it allows for any kind of point-mass beliefs about

wages and rents, in our analysis below we assume that the expected prices are the equilibrium wages

and rents of the continuum model with the same economic primitives (L, {An}, {Tk}, {δkn}, α, ε,

σ). The combination of these beliefs and our timing assumption is more palatable to the extent that

individuals would not change their decisions if given the opportunity to re-optimize after observing

realized prices. We compute the magnitude of “ex post regrets” in Section 4.4.

4.2 Equilibrium

For expositional clarity, we distinguish between a trade equilibrium, which clears markets taking

individuals’ locations as given, and a granular commuting equilibrium, in which a finite number of

individuals choose their locations based on beliefs about the trade equilibrium that will result.

The trade equilibrium clears markets given individuals’ location choices. Given a labor alloca-

tion {`kn}, goods market clearing is identical to the continuum model and given by equation (3).

Similarly, land market clearing is identical to the continuum model and given by equation (4).

Definition 4.1. Trade equilibrium. Given the labor allocation {`kn} and economic primitives (L,

{An}, {Tk}, {δkn}, α, ε, σ), a trade equilibrium is a set of wages {wn} and land prices {rk} such

that equations (3) and (4) are satisfied.

Remark. The trade equilibrium is unique. As shown in Appendix A.3, given the labor allocation

{`kn}, there is a unique set of relative wages satisfying equation (3). Equation (4) can be rewritten

as rk = α
Tk

∑
n
`kn
δkn
wn, so there is a unique set of land prices associated with that wage vector.

Individuals’ choices of location are made on the basis of their beliefs about the subsequent trade

equilibrium. Given belief vectors {w̃n} and {r̃k} and the distribution of {νikn}, equation (6) implies

that the probability of any individual choosing kn as her residence-workplace pair is

Pr(U ikn > U ik′n′ ∀(k′, n′) 6= (k, n)) =
w̃εn (r̃αk δkn)−ε∑

k′,n′ w̃
ε
n′
(
r̃αk′δk′n′

)−ε . (7)

With these probabilities in hand, we define a granular commuting equilibrium as the labor allocation

resulting from drawing I realizations of this process and clearing markets.

25With I individuals and N2 residence-workplace pairs, the set of possible allocations (the support of the

multinomial distribution) contains

(
I +N2 − 1
N2 − 1

)
= (I+N2−1)!

(N2−1)!I!
elements. For I = 10 and N = 4, this is about

3.27× 106.
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Definition 4.2. Granular commuting equilibrium. Given a number of individuals I, economic

primitives (L, {An}, {Tk}, {δkn}, α, ε, σ), and a set of point-mass beliefs ({w̃n}, {r̃k}), a granular

commuting equilibrium is a labor allocation {`kn}, wages {wn}, and land prices {rk} such that

• `kn = L
I

∑I
i=1 1{Ũ ikn > Ũ ik′n′ ∀(k′, n′) 6= (k, n)} is the labor allocation resulting from I

independent draws from the probability mass function in equation (7); and

• wages {wn} and land prices {rk} are a trade equilibrium, per Definition 4.1, given the labor

allocation {`kn}.

We now define a set of price beliefs that are the equilibrium prices of the continuum model from

Section 2 with the same parameters for economic primitives.

Definition 4.3. Rational expectations for the continuum case. Given economic primitives (L,

{An}, {Tk}, {δkn}, α, ε, σ), {w̃n} and {r̃k} are “continuum-case rational expectations” if {w̃n} and

{r̃k} constitute a trade equilibrium for the labor allocation {`kn} given in equation (2).

Distinguishing between the number of individuals I and the aggregate labor supply L allows

us to apply the law of large numbers to locational decisions as I →∞ without changing aggregate

labor supply. As Appendix A.4 shows, since I is the number of draws from the probability mass

function in equation (7), fixing L and taking I →∞ causes the labor allocation in the limiting case

to be the same as in the continuum model in equation (2).

For finite I, a given set of economic primitives (L, {An}, {Tk}, {δkn}, α, ε, σ) and point-mass

beliefs ({w̃n, r̃k}) generate a distribution of equilibria associated with realizations of the process

generating νikn and hence {`kn}.26 Importantly, the outcomes for wages and rents are random

variables in the granular model, whereas they are deterministic in the continuum model.

4.3 Estimation

The granular model can be estimated similarly to the covariates-based approach to estimating the

continuum model. The log likelihood function for the model derived from equation (7) is

lnL ≡
∑
k,n

`kn ln
[
Pr(U ikn > U ik′n′ ∀(k′, n′) 6= (k, n))

]
=
∑
k,n

`kn ln

[
w̃εn
(
r̃αk δ̄kn

)−ε∑
k′,n′ w̃

ε
n′
(
r̃αk′ δ̄k′n′

)−ε
]
. (8)

This matches equation (5), except these residence and workplace fixed effects depend on rent

and wage beliefs rather than the realized equilibrium rents and wages. The maximum-likelihood

estimate of the commuting elasticity ε is identical to that in the covariates-based continuum model

(in column 1 of Table 1). The remaining economic primitives {Tk} and {An} can be inferred from

the maximum-likelihood estimates using assumptions about the rent and wage beliefs. Given values

26Redding and Rossi-Hansberg (2017, p.38) anticipated this implication of granularity: “At smaller spatial scales
(e.g., blocks within cities), one might expect such random idiosyncratic factors to be more important relative to the
systematic deterministic components of a model (e.g., natural resource abundance) than at larger spatial scales (e.g.,
across regions or countries).”
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of the commuting elasticity ε and the land expenditure share α, individuals’ beliefs about land prices

and wages are transformations of the estimated fixed effects. In particular, the residence fixed effect

is proportionate to r̃−αεk and the workplace fixed effect is proportionate to w̃εn. If {r̃k} and {w̃n}
are continuum-case rational expectations, plugging these estimated beliefs into equation (2) yields

the continuum-case labor allocation. Given α, σ, {r̃k}, {w̃n}, {δkn} and that continuum-case labor

allocation, equations (3) and (4) can be solved to yield values of {Tk} and {An}. The estimated land

and productivity parameters are identical to the estimates from the covariates-based continuum

model.

4.4 Ex post regret

The granular model’s equilibrium rents and wages generically differ from the point-mass beliefs

about rents and wages that govern individuals’ choices of residences and workplaces. Figure E.1

in Appendix E presents histograms of the standard deviation of wages and rents across 100,000

simulations of our estimated model of New York City divided by the continuum-case rational

expectations of these prices. Across tracts, the median level of dispersion for wages is 0.016 and

for rents is 0.032. While this dispersion may be considered sizable, these differences between

expectations and realized prices do not necessarily imply that individuals would move if we relaxed

the irreversibility assumption. Individuals’ decisions depend on their idiosyncratic preference

shocks, so many are inframarginal.

Using our estimated model of New York City, we investigate how often individuals would choose

a different residence-workplace pair at the realized equilibrium prices. We define the magnitude

of “ex post regret” as the increase in income an individual would require as compensation to not

change their choice given the realized equilibrium rents and wages. In particular, at realized prices r

and w, for individual i who chose residence-workplace pair kn, ex post regret χi is defined implicitly

such that χi solves

max
k′,n′

(
ε ln

(
wn′

P 1−αrαk′δk′n′

)
+ νik′n′

)
=

(
ε ln

(
(1 + χi)wn
P 1−αrαk δkn

)
+ νikn

)
,

where the left side is the individual’s maximum utility at realized prices, the right side is the

individual’s utility from kn with their income multiplied by (1 + χi), and by definition kn was the

choice maximizing Ũ ik,n. Individual i’s regret is zero if kn is their optimal choice at realized prices.

In this setting, we find that ex post regret is quantitatively modest. Appendix E reports results

for 10 simulations.27 In those simulations, 96% of individuals would not want to change their

residence-workplace choice. For the 4% who would want to switch, the median ex post regret χi is

equl to 0.7%. Given the large return to making the model tractable and computationally feasible,

we judge the magnitude of ex post regret when using continuum-case rational expectations to be

27As discussed in Appendix E, these particular simulations are far more computationally expensive than simulating
the granular model, since they require explicitly simulating νikn. Table E.1 shows that the distribution of ex post
regret is very similar across the 10 simulations.
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quite modest.

4.5 Counterfactual predictions

A fundamental difference between the model with a finite number of individuals and the continuum

model is that individual idiosyncrasies affect equilibrium outcomes in the granular model. Given

economic primitives (L, {An}, {Tk}, {δkn}, α, ε, σ), the granular model produces a distribution of

outcomes associated with the distribution of idiosyncratic preference shocks, whereas the continuum

model delivers deterministic outcomes. We first compare and contrast the granular model’s mean

outcomes with those of the covariates-based continuum model and then turn to the consequences

of the dispersion in equilibrium outcomes.

Given the same parameter values, the mean equilibrium labor allocation of the granular model is

equal to the equilibrium labor allocation of the covariates-based continuum model. The multinomial

distribution of residence-workplace outcomes {`kn} defined by the probabilities in equation (7)

has expected values equal to the quantities in equation (2). By contrast, the granular model’s

equilibrium prices solve a system of non-linear equations, so their mean values are not necessarily

equal to the continuum-case prices. However, in the estimated model for New York City, we find

that the granular model’s mean wages and rents are reasonably close to the equilibrium wages and

rents of the continuum model with the same fundamental parameters.

Using the granular model, one can calculate the dispersion in predicted counterfactual equilib-

rium outcomes due to idiosyncratic preference shocks. While we consider the ex ante outcome to

be observed (i.e., either the mean outcome across many simulations of the granular model or the

covariates-based continuum model outcome), the ex post outcome (at counterfactual parameter

values) depends on individual idiosyncrasies.28 For example, when considering the predicted

counterfactual change in residents in k (i.e.,
∑

n `
′
kn −

∑
n `kn), the counterfactual outcome is a

random variable. We can characterize this granular uncertainty by simulating the granular model

at counterfactual parameter values to produce confidence intervals for outcomes of interest.29

While calculating these confidence intervals requires many simulations, there is a simple ap-

proximation of granular uncertainty for the labor allocation that is trivial to compute and valid

when the empirical setting is not “too granular.” This approximation only requires probabilities

that researchers already compute when predicting counterfactual outcomes. In the granular model,

the share of individuals who choose residence-workplace pair kn, `kn/L, is a realization of I draws

from a multinomial distribution over K × N outcomes with probabilities given by equation (7).

Let `′kn denote a counterfactual labor allocation, and let p′k denote the counterfactual probability

of choosing any pair in which the residence is k. The expected change in labor residing in k is

28The estimated residence and workplace fixed effects cause the mean numbers of residents and workers to match
the initial observed values.

29In principle, one might hope to use the continuum model as a data-generating process from which one could
draw finite-sample realizations, as we did for the labor allocation in our Monte Carlo simulations in Section 3.3. This
involved interpreting the share on the right side of equation (2) as a probability and sampling from this multinomial
distribution. However, equations (2), (3), and (4) in the continuum model do not define a probability distribution
for prices.
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p′kL −
∑

n `kn. The standard deviation of the labor residing in k,
∑

n `
′
kn, is L√

I

√
p
′
k(1− p

′
k), and

thus the standard deviation of the change from the initial observed equilibrium,
∑

n `
′
kn −

∑
n `kn,

when I = L is s
′
k ≡
√
I
√
p′k(1− p′k). Thus, we can approximate the 90% confidence interval for the

change in the number of residents in tract k in the I = L case by p′kL −
∑

n `kn ± 1.645s
′
k. Using

the normal distribution to approximate the distribution of outcomes for tract k works well when

I × p′k is sufficiently large, as turns out to be the case in our application to New York City. When

the expected value of the outcome is small, the approximation may suggest negative numbers of

people in counterfactual equilibria. These obviously infeasible outcomes would be evidence that the

empirical setting is so granular that the normal approximation is inappropriate, warranting further

investigation of the granular uncertainty.

To produce confidence intervals for equilibrium rents and wages, one must repeatedly simu-

late the granular model. These realized prices depend on outcomes in all other locations, per

equations (3) and (4). While producing these confidence intervals for prices therefore requires more

computations than producing the confidence intervals for quantities using the above approximation,

simulating a granular labor allocation and solving for equilibrium prices can be done quite quickly.

Note that small ex post regrets do not necessarily imply that the granular uncertainty accom-

panying counterfactual predictions will be small. Ex post regrets concern dispersion in realized

prices in levels. Granular uncertainty accompanying counterfactual changes concerns changes in

prices, which will be fractions of their initial levels in the typical counterfactual scenario. Thus,

one may find meaningfully large granular uncertainty accompanying counterfactual changes despite

quantitatively modest ex post regrets.

5 Application to Amazon’s HQ2 in Long Island City

We now examine the predictions of quantitative spatial models for the economic consequences

of Amazon’s aborted second headquarters (HQ2) in Long Island City, a controversial and widely

discussed proposal. We focus on understanding the different procedures’ contrasting predictions and

investigating the magnitude of granular uncertainty accompanying these predictions rather than

conducting an exhaustive examination of the potential effects of Amazon’s HQ2. We therefore

employ the assumptions on preferences and technologies made in Section 2, which abstract from

productivity spillovers or skill heterogeneity among workers.30

In September 2017, Amazon requested proposals for HQ2 locations from cities and states across

North America. Amazon received 238 proposals in a year-long competition. In November 2018,

the company announced two winners, saying that it would hire more than 25,000 employees each

in Long Island City in New York and Arlington in Virginia (Amazon, 2018). The former was

to have 4 million square feet office space, with anticipated expansion opportunities for another 4

million square feet and 15,000 more workers.31 However, Amazon scrapped the project in February

30Berkes and Gaetani (2020) introduce a model that features these mechanisms and analyze Amazon HQ2.
31More details can be found in the Memorandum of Understanding between New York State, New York City and

Amazon.
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2019 after facing a fierce backlash from local politicians and community members concerned about

corporate subsidies and gentrification.

We compare and contrast predictions about this counterfactual scenario produced by the granu-

lar model and the calibrated-shares procedure. As noted previously, the granular model’s expected

change for a quantity equals the change predicted by the covariates-based continuum model with the

same parameter values. Section 5.1 therefore reports the predicted changes in quantities produced

by the covariates-based continuum model and the mean predicted changes in prices produced by

the (covariates-based) granular model. Section 5.2 presents the granular uncertainty accompanying

predicted changes, which only arises in the granular model.

5.1 Predicting (mean) counterfactual outcomes

What general-equilibrium effects of Amazon HQ2 would quantitative spatial models predict? Using

both the covariates-based and calibrated-shares procedures, we analyze the consequences of a

productivity increase in the Long Island City tract that would cause employment to rise by 25,000

workers from the 2010 baseline levels.32 Figure 6A depicts New York City employment by tract

in 2010, which is particularly concentrated in lower Manhattan and Queens, near the center of

the map. Figure 6B depicts the distribution of residences among those workers employed in the

treated Long Island City tract in 2010. Notably, 49.3% of residential tracts have zero residents

employed at that workplace tract. The calibrated-shares procedure rationalizes those zeros with

infinite commuting costs.

Whether Amazon HQ2 is predicted to cause large changes in neighborhood residential popula-

tions depends on the method used: while the covariates-based approach predicts small changes in

all tracts, the calibrated-shares procedure predicts changes that vary more and are less spatially

correlated. The covariates-based model’s predicted changes in the number of residents in each tract,

shown in Figure 7A, are modest in size and closely related to transit times to Long Island City.

The calibrated-shares procedure’s predicted changes, shown in Figure 7B, are very large for some

residential tracts. The calibrated-shares procedure predicts increases in residents in neighborhoods

scattered across Queens and Staten Island, but very little increase in residents in Manhattan

neighborhoods with short commutes to Long Island City. These predictions are closely tied to

the initial numbers of residents working in the treated tract: the spatial patterns in Figure 6B and

Figure 7B are remarkably similar.33 On the whole, the calibrated-shares procedure suggests that

49% of the workers in Long Island City would reside in Queens, while the covariates-based model

suggests that only 33% of workers at Amazon’s HQ2 would reside in Queens.

The incidence of Amazon HQ2 on residential housing prices predicted by the two methods

differs considerably. The greater variation in changes in the number of residents predicted by the

calibrated-shares procedures is accompanied by greater variation in the predicted changes in rents.

32Following Berkes and Gaetani (2020), the “treated” tract is 36081000700.
33Figure F.1 in Appendix F depicts the close relationship between the initial number of residents working in the

treated tract and the calibrated-shares procedure’s predicted change in residents.
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Figure 6: New York City employment in 2010

A. Number of workers B. Number of residents working at the treatment tract

Notes: Panel A depicts the number of workers employed in each tract. Panel B depicts the number of
residents in each tract who work in the treatment tract in the LODES 2010 data. The legend of panel B
reports the percentiles corresponding to the integer number of residents, excluding the treatment tract.

The calibrated-shares procedure predicts rent increases of 1.6% to 10.4% for the top decile of tracts

(Figure 8B). By contrast, the (covariates-based) granular model predicts more modest increases

of 0.8% to 1.3% for the top decile of affected tracts (Figure 8A). The geographic incidence differs

notably. The calibrated shares-procedure predicts much larger rent increases in neighborhoods far

from Amazon HQ2, such as Staten Island. By contrast, the political opposition to Amazon HQ2

based on concerns about gentrification largely concerned housing prices in nearby constituencies

(Goodman, 2019).

Amazon HQ2 affects the predicted wages and number of workers in other workplaces through

substitution and general-equilibrium effects, which are similar across the two methods in this

application. The change in the number of workers by tract is depicted in Figures 7C and 7D.

The two methods’ predictions are very similar and are closely tied to the initial number of workers

employed in each tract, depicted in Figure 6A. Relatedly, the covariates-based and calibrated-shares

procedures predict somewhat similar real wage changes, all less than 1% for the non-treated tracts

(Figures 8C and 8D).
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Figure 7: Predicted change in the number of residents or workers

A. Change in residents, covariates-based B. Change in residents, calibrated-shares

C. Decrease in workers, covariates-based D. Decrease in workers, calibrated-shares

Notes: Panels A and B depict changes in the number of residents predicted by the covariates-based model and
calibrated-shares procedure, respectively. Panels C and D depict decreases in the number of workers predicted by
the covariates-based model and calibrated-shares procedure, respectively. As total population is fixed, the number
of workers decreases in all tracts except the Amazon HQ2 location. The legend percentile cutoffs in panels A and B
correspond to those in Figure 6B, those in panels C and D to Figure 6A.
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Figure 8: Predicted changes in prices

A. Rent changes, covariates-based B. Rent changes, calibrated-shares procedure

C. Wage changes, covariates-based D. Wage changes, calibrated-shares procedure

Notes: These maps depict percentage-point changes in prices. Panels A and C depict the mean
price across 100,000 simulations at the new parameter values relative to the mean price across 100,000
simulations at the old parameters. Panels B and D depict each tract’s predicted price change using the
calibrated-shares procedure.
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5.2 Granular uncertainty accompanying counterfactual predictions

Counterfactual predictions come with various forms of uncertainty. For example, to capture

uncertainty about the parameters used to produce counterfactual predictions, researchers can

bootstrap the counterfactual predictions of a continuum model by sampling from the distribution

of estimated parameters. In addition to parameter uncertainty, one important implication of

granularity is that there is a distribution of possible equilibrium outcomes associated with the

distribution of individuals’ idiosyncratic preference shocks. That is, counterfactual predictions

are subject to granular uncertainty even if the model parameters (L, {An}, {Tk}, {δkn}, α, ε,

σ) are known. The magnitude of this granular uncertainty relative to the predicted counterfactual

changes depends on both the empirical setting and the counterfactual shock examined. We consider

the creation of 25,000 jobs in one tract to be a large shock, as Amazon’s HQ2 choice was a

high-profile corporate decision that elicited numerous proposals from local policymakers. Are the

counterfactual changes in outcomes across different parts of New York City large relative to the

granular uncertainty driven by the idiosyncratic components of individuals’ location decisions?

The changes in residents predicted by the granular model are small relative to the granular

uncertainty in this setting. As shown in Figure 7A, the changes predicted by the covariates-based

approach overwhelmingly involve fewer than three residents. For the number of residents in the

typical census tract, the normal approximation yields a 90% confidence interval with a width of

about 112 residents.34 In this application, we find that the normal approximation is very similar

to the simulated distribution of outcomes, as shown in Figure F.2 in Appendix F. As Figure 9A

shows, the magnitude of granular uncertainty varies across residential tracts due to variation in

p′k, but every tract’s confidence interval has a positive upper bound and a negative lower bound.

In this sense, none of the changes in number of residents predicted by the granular model are

distinguishable from zero. Figure 9B plots the simulated 90% confidence interval for the predicted

change in prices from 100,000 simulations against the mean predicted change. For all residential

tracts, the confidence interval for the predicted change in land rent includes zero.

Since the predicted changes in the number of workers for some tracts are larger, some of them

are meaningfully large relative to the magnitude of granular uncertainty. As the number of workers

varies across tracts much more than the number of residents, the width of the approximated

confidence intervals also varies much more. Figure 9C depicts these approximated confidence

intervals for the changes in the number of workers. For tracts predicted to lose more than 250

workers, the predicted change is sufficiently large relative to granular uncertainty that even the 95th

percentile of changes is negative. For most workplaces, however, the approximated 90% confidence

interval includes both negative and positive values. While the mean predicted wage change is less

than 1% for all workplaces other than the Amazon HQ2 location, some of these predicted changes

are distinguishable from zero (Figure 9D). There are 43 tracts with sufficiently small granular

uncertainty accompanying the predicted wage change that the 5th percentile change is greater than

34Given 2,160 census tracts with similar residential populations, p′k ≈ 1
2160

and 2× 1.645×
√
I
√

1
2160
× 2159

2160
≈ 112.
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Figure 9: Dispersion of predicted changes in the granular model

A. Change in residents
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C. Change in workers
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D. Predicted wage changes
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Notes: The plots depict the 5th and 95th percentiles of predicted changes in quantities and prices across 100,000
simulations of the granular model. In panel B, upper bounds are winsorized at 30, and lower bounds are
winsorized at -30. In panel C, the treated tract and one outlying tract are excluded. For the outlier tract, the
granular model predicts a change of -1470 ± 612. In panel D, there are 43 tracts in which the 5th percentile
wage change is greater than zero. In that panel, the treated tract is excluded.

zero. Overall, the granular uncertainty involved in studying neighborhood-level outcomes is large

relative to the predicted consequences of the most hotly followed corporate headquarters decision in

recent memory. This notable uncertainty would be missed by the conventional continuum approach.

Given the magnitude of granular uncertainty that we document in the case of Amazon’s HQ2, we

believe granular uncertainty is likely relevant in many empirical applications.

6 Conclusion

Economists increasingly have access to spatially fine data and use quantitative spatial models

to compute counterfactual general-equilibrium outcomes. The smaller the number of individuals
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behind each economic outcome reported in these data, the less compelling the conventional modeling

assumption that there is a continuum of individuals. We need to evaluate the performance of these

applied general-equilibrium models in predicting observed changes if policymakers are going to

rely on them to inform their decisions (Kehoe, 2005; Bryan, Glaeser, and Tsivanidis, 2019; Adão,

Arkolakis, and Esposito, 2020). We document that empirical settings of interest exhibit granular

commuting matrices and discuss the consequences of such granularity for predicting counterfactual

outcomes. In short, applying the conventional calibrated-shares procedure to a granular setting

overfits the model, causing it to fail to predict out-of-sample outcomes in both Monte Carlo

simulations and event studies.

More broadly, we recommend that researchers use Monte Carlo simulations to assess the finite-

sample behavior of their procedures for producing counterfactual predictions. Since all data sets are

finite, in practice granularity is a matter of degree, not kind. A simulation specific to the empirical

setting of interest can quantify how much the procedure may overfit the granular data it employs.

We propose a granular model in which equilibrium outcomes depend in part on the idiosyncratic

component of individuals’ choices. This estimated model yields a distribution of equilibrium

outcomes when computing counterfactual scenarios. Evaluating the counterfactual consequences

of Amazon’s proposed HQ2 in Long Island City, we find that most of the predicted changes are an

order of magnitude smaller than the accompanying granular uncertainty.

Since all empirical settings feature a finite number of individuals, the continuum assumption

has been made in the interest of modeling convenience, not realism. Our granular model is equally

tractable and leverages the same data as the continuum approach, so it can be applied in the same

settings in which economists have thus far assumed a continuum.
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Appendix – For Online Publication

A Theory: Proofs and extensions

Section A.1 provides a condition on parameter values sufficient for the existence and uniqueness

of the continuum model’s equilibrium. Section A.2 details the calibrated-shares procedure for

computing counterfactual outcomes. Section A.3 shows the trade equilibrium of the granular model

is unique. Section A.4 shows that the continuum model is a limiting case of the granular model.

The following subsections present extensions of the bare-bones model in Section 4 that introduce

trade costs, the use of land in production, residential amenities, and local increasing returns.

A.1 Existence and uniqueness of continuum model’s equilibrium

We derive a set of parameter values sufficient for the existence and uniqueness of the continuum

model’s equilibrium, using Theorem 1 of Allen, Arkolakis, and Li (2020).

The equilibrium of the continuum model can be written as

r1+αε
k Tk
α

=
∑
n

Dknw
1+ε
n (A.1)

Lnw
−ε
n =

∑
k

Dknr
−αε
k (A.2)

A1−σ
n Lnw

σ
n = P σ−1

∑
n′

Ln′wn′ , (A.3)

where, for notational convenience, we define

Υ ≡
∑
k

∑
n

wεn(rαk δkn)−ε

Dkn ≡ LΥ−1δ
−(1+ε)
kn .

Equations (A.1)–(A.3) are 3×N equations in 3×N unknowns {rn, wn, Ln}n=1,2,...,N given values

for Υ and P . Although Υ and P are endogenous, they do not vary across locations. Accordingly,

they fall under the class of endogenous scalars discussed in Remark 2 of Allen, Arkolakis, and Li

(2020), which leave the conclusion of Theorem 1 Part ii.b unchanged and can therefore be treated

as if exogenous.

Following Remark 3 of Allen, Arkolakis, and Li (2020), we construct the intermediate matrices

Γ and B:

Γ =

1 + αε 0 0

0 −ε 1

0 σ 1

 B =

 0 1 + ε 0

−αε 0 0

0 1 1

 .
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Then we can construct the final matrix A defined by (A)hh′ ≡
∣∣(BΓ−1

)
hh′

∣∣:
BΓ−1 =

 0 1 + ε 0

−αε 0 0

0 1 1




1
1+αε 0 0

0 − 1
σ+ε

1
σ+ε

0 σ
σ+ε

ε
σ+ε

 , A =

 0 1+ε
σ+ε

1+ε
σ+ε

αε
1+αε 0 0

0 σ−1
σ+ε

1+ε
σ+ε


where we’ve assumed σ > 1.

We want to show that the spectral radius, the absolute value of the maximum eigenvalue, of

A (denoted ρ(A)) equals one. The reasoning in Appendix B.1.4 of Allen, Arkolakis, and Li (2020)

demonstrates that ρ(A) ≥ 1. Thus, it remains to show that ρ(A) ≤ 1. To do so, we will use

Lemma 2 from Allen, Arkolakis, and Li (2020). Consider the matrix

λI −A =

 λ − 1+ε
σ+ε − 1+ε

σ+ε

− αε
1+αε λ 0

0 −σ−1
σ+ε λ− 1+ε

σ+ε

 .
Define the function f(λ) ≡ det(λI −A), and denote its kth derivative by fk(λ):

f(λ) = λ3 − λ2

(
1 + ε

σ + ε

)
−
(

1 + ε

σ + ε

)(
αε

1 + αε

)(
λ− 1 + ε

σ + ε

)
+

(
1 + ε

σ + ε

)(
αε

1 + αε

)(
σ − 1

σ + ε

)
f1(λ) = 3λ2 − 2λ

(
1 + ε

σ + ε

)
−
(

1 + ε

σ + ε

)(
αε

1 + αε

)
f2(λ) = 6λ− 2(1 + ε)

σ + ε
.

Lemma 2 of Allen, Arkolakis, and Li (2020) states that ρ(A) ≤ 1 if and only if fk(1) ≥ 0 for

k = 0, 1, 2.

f(1) = 1− 1 + ε

σ + ε
−
(

1 + ε

σ + ε

)(
αε

1 + αε

)
+

(
1 + ε

σ + ε

)(
αε

1 + αε

)(
2 + ε− σ
σ + ε

)
f1(1) = 3− 2

(
1 + ε

σ + ε

)
−
(

1 + ε

σ + ε

)(
αε

1 + αε

)
f2(1) = 6− 2(1 + ε)

σ + ε
.

Both f1(1) ≥ 0 and f2(1) ≥ 0 for any σ > 1 and α, ε > 0. A sufficient condition for f(1) ≥ 0 is

1 ≥ 1+ε
σ+ε

[
1 + αε

1+αε

(
2(σ−1)
σ+ε

)]
, which can be restated as

(
1 + ε

σ + ε

)(
αε

1 + αε

)
≤ 1

2
. (A.4)

Note that condition (A.4) is satisfied by our baseline parameter values (α = 0.24, σ = 4, ε = 7.986).

Under condition (A.4), ρ(A) ≤ 1, which means that ρ(A) = 1. Thus, by Theorem 1 Part ii.b of

Allen, Arkolakis, and Li (2020), if condition (A.4) is true, the equilibrium exists and is unique up
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to scale.

A.2 The calibrated-shares procedure

This section describes a calibration procedure often applied in quantitative spatial economics that

is known as “exact hat algebra” or “calibrated share form” in the international trade literature

(Rutherford, 1995; Dekle, Eaton, and Kortum, 2008; Costinot and Rodŕıguez-Clare, 2014). This

procedure makes a quantitative spatial model perfectly match the observed spatial distribution of

economic outcomes and allows one to compute counterfactual equilibrium outcomes expressed as

proportionate changes from the initial equilibrium.

The procedure relies on rewriting the equilibrium equations to describe ratios of counterfactual

and initial equilibrium variables. In line with the parameterization discussed in Section 3.2, we

assume that δkn = δ̄knλkn. The term δ̄kn represents observed commuting times that affect the

hours of labor supply (we use this variable to estimate the commuting elasticity ε in Section 3.2).

We treat λkn as a preference shifter rather than a time cost that affects observed labor hours.

Therefore, λkn does not affect hours of labor supply conditional on `kn. One can emulate the

frequent practice of treating commuting costs as preference shifters by setting δ̄kn = 1.35 In this

specification, the three equations that jointly define the equilibrium of the model in Section 2,

equations (2), (3), and (4), can be rewritten as

An
∑
k

`kn
δ̄kn

=
(wn/An)−σ

P 1−σ

∑
k′,n′

`k′n′

δ̄k′n′
wn′

Tk = α
∑
n

`kn
δ̄kn

wn
rk

`kn = L×
wεn
(
rαk δ̄knλkn

)−ε∑
k′,n′ w

ε
n′
(
rαk′ δ̄k′n′λk′n′

)−ε .
The researcher knows the labor demand elasticity σ and commuting elasticity ε and observes the

initial equilibrium labor allocation `kn, reduction in labor supply from commuting times δ̄kn, and

wages wn. Denote the counterfactual equilibrium values of wages, rents, and labor allocation by

w′n, r′k, and `′kn. Denote the counterfactual-initial ratio of a variable x by x̂ ≡ x′

x . Assume that

`′kn = 0 if `kn = 0, so that, in a slight abuse of notation, we can write ˆ̀
kn = 1 if `kn = 0.

One can solve for the counterfactual equilibrium variables associated with combinations of

counterfactual-initial ratios of productivities Ân, land endowments T̂k, and commuting costs λ̂kn

and ˆ̄δkn. Tedious manipulation of the three equations above leads to the following three equations

35In that case, a different assumption would be needed to estimate the commuting elasticity ε.
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written in terms of elasticities, initial equilibrium values, and counterfactual-initial ratios:

ŵn = Â
σ−1
σ

n

(∑
n

(
ŵn

Ân

)1−σ
wn
∑
k

`kn
δ̄kn

)−1
σ

∑
k

ˆ̀
kn

ˆ̄δkn

`kn
δ̄kn∑
k′
`k′n
δ̄k′n

−1
σ
∑
k′,n′

ˆ̀
k′n′ŵn′

ˆ̄δk′n′

`k′n′

δ̄k′n′
wn′

 1
σ

(A.5)

r̂k = T̂−1
k

∑
n

ˆ̀
knŵn

`kn
δ̄kn
wn

ˆ̄δkn
∑

n′
`kn′
δ̄kn′

wn′
(A.6)

ˆ̀
kn =


1, if `kn = 0

ŵεn

(
r̂αk

ˆ̄δknλ̂kn

)−ε
∑

k′,n′ ŵ
ε
n′

(
r̂αk′

ˆ̄δk′n′ λ̂k′n′
)−ε

`kn
L

, if `kn > 0
(A.7)

These three equations deliver ŵn, r̂k, and ˆ̀
kn given the elasticities σ and ε, observed reductions

in labor supply δ̄kn, initial equilibrium values `kn and wn, and counterfactual-initial ratios Ân, T̂k,

λ̂kn, and ˆ̄δkn.

Note that this procedure implicitly rationalizes zero-commuters observations with infinite com-

muting costs, `kn = 0 ⇐⇒ δkn = ∞. This procedure cannot characterize cases in which `kn = 0

and `′kn 6= 0 because the object δ̂−εkn =
(
δ′kn
δkn

)−ε
is not sensibly defined if δ′kn 6= 0 and δkn =∞.

Note that this procedure does not identify the initial values of the parameters An, Tk, and δkn.

Given the elasticities σ and ε and the initial equilibrium values `kn and wn, equations (3), (4), and

(2) are insufficient to separately identify Tk and δkn. One would also need to observe land prices

rk to separate these parameters.

When implementing this procedure in Sections 3.4 and 5, we compute tract-level workplace

wages using LODES and ZIP Business Patterns data following Owens, Rossi-Hansberg, and Sarte

(2020).

A.3 The trade equilibrium of the granular model is unique

Recall that the trade equilibrium takes the labor allocation as given. Consequently, we just need

to solve for wage and land rent vectors that satisfy

An
∑
k

`kn
δkn

=
(wn/An)−σ

P 1−σ

∑
k′,n′

`k′n′

δk′n′
wn′ ∀n (A.8)

rk =
α

Tk

∑
n

`kn
δkn

wn ∀k (A.9)

P =

(∑
n

(wn/An)1−σ

)1/(1−σ)

. (A.10)
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For a given labor allocation and vector of wages, equation (A.9) will determine a unique vector of

land rents, so we can focus on solving for a unique vector of relative wages. Recall Ln ≡
∑

k
`kn
δkn

is

total labor supply in location n. Substituting Ln and equation (A.10) into equation (A.8) yields

AnLn =
(wn/An)−σ∑

m′(wm′/Am′)
1−σ

∑
k′,n′

`k′n′

δk′n′
wn′ ∀n.

Note that this equation is homogeneous of degree zero in the wage vector. Select w1 = 1 as the

numeraire and writing the expression in terms of relative wages yields

wn =

(
An
A1

)σ−1
σ
(
Ln
L1

)−1/σ

.

Since σ > 1, this defines a unique vector of relative wages. Plugging those wages into equation (A.9)

yields a unique vector of land rents.

A.4 Continuum model as limiting case of the granular model

We derive the result that the equilibrium of the granular model coincides with the equilibrium of

the continuum model as the number of individuals becomes infinite, I →∞. Note that aggregate

labor supply L is fixed, as each individual supplies L/I units of labor. The key step is to show that

equation (2) holds as I →∞. Conditional on the labor allocation {`kn}, granularity plays no role

in the trade equilibrium, which will coincide with that of a continuum model.

Definition 4.2 says that the share of labor supplied by residents of k who work in n is

`kn
L

=
1

I

I∑
i=1

1
{
Ũ ikn > Ũ ik′n′ , ∀(k′, n′) 6= (k, n)

}
.

Note that 1
{
Ũ ikn > Ũ ik′n′ , ∀(k′, n′) 6= (k, n)

}
is a binary random variable that is equal to one with

probability Pr(Ũ ikn > Ũ ik′n′ ,∀(k′, n′) 6= (k, n)). Thus, E
(
1
{
Ũ ikn > Ũ ik′n′ ,∀(k′, n′) 6= (k, n)

})
=

Pr
(
Ũ ikn > Ũ ik′n′ , ∀(k′, n′) 6= (k, n)

)
. Since the idiosyncratic preference shocks are independent and

identically distributed random variables, the law of large numbers implies that, using equation (7),

lim
I→∞

1

I

I∑
i=1

1
{
Ũ ikn > Ũ ik′n′ ,∀(k′, n′) 6= (k, n)

}
= E

(
1
{
Ũ ikn > Ũ ik′n′ , ∀(k′, n′) 6= (k, n)

})
=

w̃εn(r̃αk δkn)−ε∑
k′,n′ w̃

ε
n′(r̃

α
k′δk′n′)

−ε .

As a result, as I → ∞, `kn
L →

w̃εn(r̃αk δkn)−ε∑
k′,n′ w̃

ε
n′ (r̃

α
k′δk′n′ )

−ε . Since the continuum-case rational expectations

are the wages and land rents that clear markets for this labor allocation, the market-clearing prices

of the granular model converge to those values.
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A.5 Trade costs

Relative to the model in Section 4, we now assume that goods trade is subject to iceberg trade

costs: delivering a unit of the location-n variety to location k requires producing τnk ≥ 1 units in n.

Individuals consume differentiated goods at their residences, and the price of location n’s output

for consumers in location k is τnkwn/An. Thus, the price index in location k is rαkP
1−α
k , where the

local CES price index for goods is Pk =
[∑

n (τnkwn/An)1−σ
]1/(1−σ)

.

In this environment, the equivalent of equation (6) is such that, based on the beliefs {w̃n} and

{r̃k}, each worker chooses the residential location and the work location that maximize expected

utility,

Ũ ikn = ε ln

(
w̃n

r̃αk P̃
1−α
k δkn

)
︸ ︷︷ ︸

≡Ũkn

+νikn,

where P̃k =
[∑

n (τnkw̃n/An)1−σ
]1/(1−σ)

.

With trade costs, the goods-market-clearing condition, which is the equivalent of equation (3),

equates quantity supplied and quantity demanded:

An
∑
k

`kn
δkn

= (wn/An)−σ
∑
k

[(
τnk
Pk

)1−σ
(∑

n′

`kn′

δkn′
wn′

)]
. (A.11)

Equation (4), which clears the land market, is unchanged by the introduction of trade costs.

The definition of a trade equilibrium is akin to Definition 4.1, with equations (A.11) and (4)

serving as the relevant market-clearing conditions.

With trade costs, the expression for the probability of choosing residential-workplace pair kn

analogous to equation (7) is

Pr(U ikn > U ik′n′ ∀(k′, n′) 6= (k, n)) =
w̃εn

(
r̃αk P̃

1−α
k δkn

)−ε
∑

k′,n′ w̃
ε
n′

(
r̃αk′P̃

1−α
k′ δk′n′

)−ε . (A.12)

The definition of a granular commuting equilibrium is akin to Definition 4.2 with {τkn} added

to the list of economic primitives and expression (A.12) serving as the relevant probability mass

function.

A.6 Firms produce using land

Relative to the model in Section 4, we now assume that firms produce output using labor and

land inputs via a Cobb-Douglas production function. Workers produce in location n with a Cobb-

Douglas production technology:

qn = An

(
φnTn
β

)β ( Ln
1− β

)1−β
,
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where Ln is the labor supply of workers working in location n and φn is the share of land in

location n that is used in production. As a result, the unit cost of production in location n is

cn = 1
An
rβnw

1−β
n . Thus, the CES price index is P =

[∑
n c

1−σ
n

]1/(1−σ)
.

Since output in location n is An(φnTn)β (
∑

k `kn/δkn)1−β, equating quantity supplied and

quantity demanded requires

An(φnTn)β

(∑
k

`kn/δkn

)1−β

=
(cn)−σ

P 1−σ

∑
n′

(
rn′φn′Tn′ + wn′

∑
k′

`k′n′/δk′n′

)
. (A.13)

Equating the fixed land supply Tk to the sum of the quantities of land demanded by firms and by

residents requires

Tk = α
∑
n

`kn
δkn

wn
rk

+ β
1

1−β

(
wk
rk

)∑
k′

`k′k
δk′k

. (A.14)

The definition of a trade equilibrium is akin to Definition 4.1, with equations (A.13) and

(A.14) serving as the relevant market-clearing conditions. The definition of a granular commuting

equilibrium is akin to Definition 4.2 with the Cobb-Douglas production parameter β added to the

list of economic primitives.

A.7 Residential amenities

Relative to the model in Section 4, we now assume that each location is endowed with a residential

amenity Bk. Individual i’s utility from residing in k and working in n is now

U ikn = ε ln

(
Bkwn

rαkP
1−αδkn

)
+ νikn.

With residential amenities, the expression for the probability of choosing residential-workplace

pair kn analogous to equation (7) is

Pr(U ikn > U ik′n′ ∀(k′, n′) 6= (k, n)) =
(Bkw̃n)ε (r̃αk δkn)−ε∑

k′,n′ (Bk′w̃n′)
ε (r̃αk′δk′n′)−ε . (A.15)

The definition of a trade equilibrium in Definition 4.1 remains unchanged. The definition of a

granular commuting equilibrium is akin to Definition 4.2 with the residential amenities {Bk} added

to the list of economic primitives and expression (A.15) serving as the relevant probability mass

function.

A.8 Local increasing returns

Relative to the model in Section 4, we now assume that production exhibits local external economies

of scale. In particular, in each location n the linear production technology is qn = AnLn, where Ln

is the labor supply of workers working in location n and An ≡ ĀnL
η
n. Thus, the CES price index

is P =
[∑

n

(
wn/(ĀnL

η
n)
)1−σ]1/(1−σ)

.
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Since output in location n is Ān (
∑

k `kn/δkn)1+η, equating quantity supplied and quantity

demanded requires

Ān

(∑
k

`kn/δkn

)1+η

=
wn
−σĀσn (

∑
k `kn/δkn)ησ

P 1−σ

∑
k′,n′

`k′n′

δk′n′
wn′ . (A.16)

The remaining results are unchanged after appropriately substituting in equation (A.16). Equa-

tion (4), which clears the land market, and expression (7) are unchanged by the introduction

of local increasing returns. The definition of a trade equilibrium is akin to Definition 4.1, with

equations (A.16) and (4) serving as the relevant market-clearing conditions. The definition of a

granular commuting equilibrium is akin to Definition 4.2 with {Ān} and η added to the list of

economic primitives.

The model of perfect competition with local increasing returns should be isomorphic to a model

of monopolistic competition with free entry, per the logic in Allen and Arkolakis (2014).
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B Characterizing granular empirical settings

B.1 Tract-level commuting flows for Detroit and Minneapolis-St. Paul

This section presents summary statistics for tract-to-tract commuting counts in the Detroit urban

area and the Minneapolis-St. Paul metropolitan area in 2014 analogous to those reported for New

York City in Section 3.1. We chose these examples because Owens, Rossi-Hansberg, and Sarte

(2020) study the Detroit urban area and Minnesota is the only state that reports employment by

establishment rather than firm in the LODES data (Graham, Kutzbach, and McKenzie, 2014).

The Detroit urban area has about 1.3 million resident-employees and 1.4 million tract pairs,

so the average cell in its commuting matrix is near one. Among the tract pairs, 74% have zero

commuters between them. 42.6% of Detroit commuters have five or fewer commuters in their cell

of the commuting matrix.

The Minneapolis-St. Paul metropolitan area has about 1.5 million resident-employees and 0.6

million tract pairs, so the average cell in its commuting matrix has less than three commuters.

Among the tract pairs, 61% have zero commuters between them.

Figure B.1: Number of commuters between pairs of tracts in Detroit and the Twin Cities
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Notes: These histograms report the number of tract pairs in the Detroit urban area (left panel) and the
Minneapolis-St. Paul metropolitan area (right panel) by the number of individuals who reside in the origin tract
and work in the destination tract in 2014 LODES data. These histograms restrict the samples to pairs of tracts
with a strictly positive number of commuters. Observations larger than the 99th percentile are winsorized (40
commuters for Detroit urban area and 70 commuters for Minneapolis-St. Paul metropolitan area). Detroit has
1,166 residential census tracts. MSP has 789 residential census tracts.

The spatial concentration of employment contributes to the sparsity of these commuting ma-

trices. The median tract in Detroit has 465 employees working in it. Since Detroit has 1,166

residential tracts, at least 60% of locations must have zero residents commuting to this workplace.

B.2 Granularity in county-level commuting flows

Even when studying larger geographic units, the issue of granularity may be relevant. Consider US

counties, which vary greatly in population size. In the 2006–2010 American Community Survey
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(ACS) data, there are 136 million commuters (with commutes less than 120 kilometers).36 Of

those 136 million, 101 million live and work in the same county, so there are 35 million cross-

county commuters between 79,188 pairs of counties. Thus, the average off-diagonal element of the

county-to-county commuting matrix has 445 commuters. However, the distribution of commuters is

extremely uneven. The top 10 county pairs account for more than 2 million commuters alone. For

the bottom 90% of off-diagonal observations, the mean value is only 40 commuters. Almost half of

the county pairs report zero commuters. Among those reporting positive values, Figure B.2 shows

that this distribution is skewed, so that many thousands of county pairs have small numbers of

commuters. Thus, while granularity is unlikely to trouble studies examining US counties with

millions of residents, many county pairs have small commuting flows that represent granular

outcomes.

Figure B.2: Number of commuters between US counties
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Notes: This histogram depicts the number of county pairs by the estimated number of commuters in the 2006–2010
ACS. The sample is restricted to pairs of distinct counties within 120 kilometers, the smallest 90% of estimated
commuter counts among such counties, and only those pairs reporting a strictly positive number of commuters.

In practice, the granularity of this empirical setting is severely compounded by the fact that

the ACS is a 1-in-20 sample of the population. In three different five-year waves of the ACS, nearly

half of the county pairs within 120 kilometers of each other are reported to have zero commuters, as

shown in Table B.1. More than half of the county pairs report fewer than 100 commuters, therefore

representing the behavior of five or fewer respondents. As a consequence, as shown in the third

column of Table B.1, for more than one-third of the county pairs with positive commuting flows,

the Census-reported margin of error exceeds the reported number of commuters.37

36We follow Monte, Redding, and Rossi-Hansberg (2018) by restricting attention to county pairs that are less than
120 kilometers apart.

37At face value, this would seem to imply that one could not reject the null hypothesis that there were no commuters
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Table B.1: Zeros in US county-to-county commuting matrix

Dataset Zero Pairs Positive Pairs MOE >X (percent)

ACS 2006-2010 36,403 42,785 37
ACS 2009-2013 35,547 43,641 36
ACS 2011-2015 35,002 44,096 35

Notes: This table reports the number of county pairs with zero commuters and
non-zero commuters for three editions of the ACS. The sample is restricted to pairs
of counties within 120 kilometers of each other. The final column reports the share of
county pairs for which the Census-reported 90% margin of error exceeds the (strictly
positive) reported number of commuters.

Commuting data from other countries also exhibit granularity. For example, one-quarter of

Germany’s county (Kreisfreie Städte and Landkreise) pairs within 120 kilometers have fewer than

10 commuters (Krebs and Pflüger, 2019). In Brazil’s 2010 Censo Demográfico, which reports

estimates based on a 10% sample of the population, there are 81 million commuters (with commutes

less than 60 kilometers).38 There are 7 million cross-municipality commuters between 131,620

pairs of municipalities. Thus, the average off-diagonal element of the municipality-to-municipality

commuting matrix has only 56 commuters. About three-quarters of the cells in this commuting

matrix are empty.

B.3 Commuting counts are often impersistent

The integer values appearing in commuting matrices are not very persistent. A residence-workplace

pair may have three commuters one year and none the next. Another pair of locations may double

its number of commuters, from one to two. While the conventional continuum approach interprets

these changes as substantial economic shifts, the finite-sample perspective is that these changes are

not very informative if they are merely a symptom of granularity. We document substantial churn

in commuting counts from year to year, suggesting that there is considerable finite-sample noise in

addition to signal in these commuting counts.

Table B.2, which presents the transition matrix for pairs of tracts in the Detroit urban area and

New York City between the years 2013 and 2014, demonstrates considerable impersistence. In the

Detroit urban area, for pairs with one to four commuters in 2013, the percentages appearing on the

diagonal of the transition matrix are quite low. A pair of tracts with one commuter in 2013 was

almost three times as likely to have zero commuters in 2014 than to have one commuter. A pair with

four commuters in 2013 was more likely to appear in any other column in 2014 than to report four

commuters again. The 86% of pairs that had zero commuters in both years may appear to suggest

persistence, but this primarily is a symptom of the fact that in both years about three-quarters of

for such county pairs. The unsuitability of the normal approximation for the binomial distribution in this case is
another symptom of granularity.

38Dingel, Miscio, and Davis (2019) use these data to construct metropolitan areas based on commuting flows.
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observations are zero.39 More than 130,000 pairs of tracts that had zero commuters in 2013 had at

least one commuter in 2014. At the same time, 39% of Detroit tract pairs with positive flow in 2013

were zeros in 2014 . Thus, while zeros are pervasive in this commuting matrix, they are not very

persistent. The results for New York City in Table B.2 are very similar to those for Detroit. The

commuter counts are so impersistent that, for many tract pairs, a gravity-based estimate predicts

a tract pair’s commuter count in 2014 better than its observed count in 2013 does, as reported in

Appendix B.

Table B.2: The impersistence of commuting counts for tract pairs in Detroit and NYC

(a) Detroit

2014
2013 0 1 2 3 4 5+

0 0.86 0.10 0.02 0.01 0.00 0.00
1 0.60 0.22 0.10 0.04 0.02 0.02
2 0.37 0.25 0.16 0.09 0.06 0.08
3 0.23 0.22 0.18 0.13 0.08 0.16
4 0.15 0.17 0.17 0.14 0.11 0.26
5+ 0.04 0.06 0.07 0.08 0.08 0.68

(b) NYC

2014
2013 0 1 2 3 4 5+

0 0.91 0.07 0.01 0.00 0.00 0.00
1 0.65 0.20 0.08 0.04 0.02 0.02
2 0.39 0.25 0.15 0.09 0.05 0.07
3 0.24 0.22 0.17 0.12 0.08 0.16
4 0.15 0.17 0.17 0.14 0.11 0.27
5+ 0.03 0.05 0.06 0.07 0.07 0.71

Notes: This table describes pairs of tracts in the Detroit urban area (left panel) and New York City (right panel)
by reported number of commuters in the 2013 and 2014 LODES. It is a transition matrix, in which each cell lists the
share of tract pairs in that row (number of commuters in 2013) that belong to that column (number of commuters
in 2014). Each row sums to 100%, modulo rounding.

There is considerable churn even when using larger geographic units. Table B.3 shows that 22%

of the county pairs reporting zero commuters in the 2006–2010 ACS reported a positive number of

commuters in the following five-year interval. Conversely, about 15% of pairs reporting a positive

number of commuters had zero commuters in the following five-year interval. For pairs of counties

with a strictly positive number of commuters smaller than 111 in 2006–2011, the diagonal elements

of the transition matrix are less than half. For example, a pair of counties reported to have 71–90

commuters in 2006–2011 has only a 14% probability of appearing in the same bin in the following

five-year interval.

To the extent that the observed impersistence of commuting counts is a symptom of granu-

larity, these findings caution against procedures that infer structural parameters from the relative

magnitudes of these counts. The difference between one commuter and two commuters (or one

respondent and two respondents in a finite sample) is little evidence that the latter outcome

was twice as probable. Similarly, procedures that rationalize observations with zero commuters

by imposing infinite commuting costs so that these are zero-probability events rule out potential

margins of adjustment based on zeros that appear to be largely transitory.

39If p ∈ [0, 1] of the pairs were randomly independently assigned zero in each period, then p2 of those pairs would
lie in the upper left cell of the transition matrix. Thus, even if zeros were randomly independently assigned to three-
quarters of the tract pairs in each period, nine-sixteenths of the pairs would be zero in both periods. That would not
be evidence of persistence.
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Table B.3: The impersistence of commuting counts for pairs of US counties

45.97
19.66
5.47
3.43
2.50
1.86
12.03
5.01
4.07

0.78
0.35
0.16
0.08
0.05
0.02
0.00
0.00
0.00

0.18
0.45
0.36
0.26
0.16
0.11
0.02
0.00
0.00

0.02
0.10
0.19
0.18
0.15
0.12
0.03
0.00
0.00

0.01
0.05
0.12
0.15
0.16
0.15
0.04
0.00
0.00

0.00
0.02
0.07
0.10
0.14
0.12
0.05
0.00
0.00

0.00
0.01
0.04
0.08
0.12
0.13
0.05
0.00
0.00

0.00
0.02
0.07
0.15
0.23
0.35
0.74
0.13
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.07
0.81
0.06

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.06
0.94

0
1-30

31-50
51-70
71-90

91-110
111-500

501-1,500
>1,500

20
06

-2
01

0

Initial Share(%) 0 1-30 31-50 51-70 71-90 91-110 111-500 501-1,500 >1,500

2011-2015

Notes: This table presents a transition matrix for pairs of counties within 120 kilometers of each other by
reported number of commuters in two editions of the ACS. The first column reports the percentage of county
pairs that were in each row in the 2006–2010 data. The remaining columns report the share of county pairs
within the row that appeared in the corresponding bin in the 2011–2015 data. By definition, the shaded cells
in each row sum to one, modulo rounding. The bin boundaries are arbitrary, since Figure B.2 shows no obvious
bunching. We found similar impersistence when using alternative boundaries.

Tract-pair-level commuter counts are so impersistent that a gravity model estimated using an

observed bilateral characteristic like transit time or distance can sometimes predict future commuter

counts better than the observed value. Table B.4 shows that, for tract pairs with fewer than ten

commuters reported, a gravity-based estimate predicts the following year’s value better than its

current value does. The fitted values from a gravity model estimated using 2013 data have a higher

R2 for predicting observed 2014 values than the observed 2013 values in both Detroit and New

York City. Using the observed 2013 values yields better predictions only for the tract pairs with

the largest 2% of commuter counts.

B.4 Zeros are often asymmetric

The zeros in commuting matrices are often asymmetric. Denoting the number of commuters living

in residence k and working in workplace n by `kn, an observed zero is asymmetric when `nk = 0 and

`kn > 0. For US counties, `nk = 0 for 22% of county pairs with `kn > 0. In Detroit, `nk = 0 for

66% of tract pairs with `kn > 0. For Brazilian municipalities, `nk = 0 for 49% of municipio pairs

with `kn > 0. These asymmetric flows are not explained by asymmetric numbers of total workers

or residents: in Detroit, `nk = 0 for 47% of tract pairs for which `kn > 0 and total employment in

k and n differs by 10% or less.

The fact that commuting matrices’ zeros are often asymmetric poses a puzzle for calibration

procedures that rationalize zero-commuter observations by infinite commuting costs. This inter-

pretation of zeros implies severely asymmetric commuting costs, even though daily commutes are
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Table B.4: Gravity-based estimates predict 2014 values better than 2013 values do

# of commuters Share Gravity: time 2013 values Gravity: distance 2013 values

Panel A: Detroit

≤ 5 0.960 0.384 0.308 0.367 0.307
≤ 10 0.983 0.494 0.473 0.465 0.472
Panel B: NYC

≤ 5 0.978 0.362 0.306 0.373 0.306
≤ 10 0.990 0.474 0.475 0.477 0.473

Notes: Each row reports results for all tract pairs in Detroit (upper panel) or New York City (lower panel)
with fewer than 5 or 10 commuters in the 2013 LODES data. The “share” column reports the share of tract
pairs covered by the row. The “gravity” columns report the R2 obtained by regressing the 2014 number of
commuters on the number of commuters predicted by a gravity model estimated using 2013 data. The “gravity:
time” column estimates the gravity equation (7) as described in Section 4.3. The “gravity: distance” column uses
ln δkn = ln distancekn rather than commuting costs defined in Section 3.2. The “2013 values” columns report the
R2 obtained by regressing the 2014 number of commuters on the 2013 number of commuters. All estimated slope
coefficients are positive. The two “2013 values” columns differ because the regression sample is within observations
where predictions from the gravity model are available. In the distance specification, k = n observations are
dropped. For NYC, there are two observations where the commute is infeasible.

round-trip journeys. If we believe that commuting from n to k is impossible because we observe

`nk = 0, how do the individuals who live in k and work in n commute home at the end of the

day? The mechanisms generating prohibitive commuting costs would have to exhibit within-day

variation. But the most plausible source of intraday variation in commuting costs — congestion

caused by a large number of commuters — cannot explain residence-workplace pairs that have no

commuters.

In many empirical settings, asymmetric zeros may simply be a symptom of granularity rather

than evidence of very asymmetric commuting costs. When most pairs of locations have zero

commuters, and the modal pair with a positive number reflects the decision of only one commuter

or one survey respondent, the difference between zero and one isn’t particularly informative.
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C Estimation results

Figure C.1: Destination fixed effects from tract-to-tract gravity regressions
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Notes: This plot depicts the destination fixed effects estimated in Table 1’s column 1 (horizontal axis) and
column 2 (vertical axis). See the notes to Table 1 for details.

Figure C.1 shows that estimates of workplace fixed effects are biased by dropping observations

with zero commuters. When only using positive-commuter observations, the residence and work-

place fixed effects characterize the average number of commuters for a residence-workplace pair,

conditional on the number of commuters being strictly greater than zero. These conditional averages

are necessarily greater than the unconditional averages, and the difference is larger for workplace

locations with fewer workers.40 Figure C.1 contrasts the OLS (vertical axis) and maximum likeli-

hood (horizontal axis) estimates of the workplace fixed effects. The difference is stark: the range

of the OLS estimates is half that of the maximum-likelihood estimates because of considerable

truncation from below. In essence, the popular practice of omitting zero-commuter observations

attributes low-employment destinations’ lower employment counts to infinite commuting costs, not

lower wage beliefs (lower productivity). By contrast, our maximum likelihood estimator infers that

these destinations are less attractive workplaces from the fact that many origins have zero residents

working in these destinations.

40Census tracts are defined so that the number of residents is similar across tracts, while there is tremendous
heterogeneity in total employment. Thus, the selection bias is evident in the workplace fixed effects. When estimating
the analogous gravity regression for county-to-county commuting flows, we find that the selection bias manifests in
both the origin and destination fixed effects.
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D Details of Monte Carlo simulations and event studies

D.1 Monte Carlo exercise

A Monte Carlo exercise shows that granularity alone can substantially reduce the predictive power

of the calibrated-shares procedure. In this simulation, the data-generating process is our estimated

covariates-based model of New York City in 2010. We impose a counterfactual 18% increase in

productivity for the tract containing 200 Fifth Avenue, which generates an increase in employment

matching the observed change from 2010 to 2012. In the limiting case, as I → ∞, the calibrated-

shares procedure would perfectly describe the changes in commuting flows associated with this

productivity increase. Thus, any predictive failure when drawing granular (I = 2, 488, 905) realiza-

tions from this data-generating process are due to problems stemming from granularity.

Given our estimated model of New York City in 2010, we simulate 100 “event studies” as in

Section 3.4. For each event, we implement the following five steps:

1. To mimic “observed” data, draw one realization from the data-generating process at its 2010

parameter values and one realization at its counterfactual parameter values. Compute the

difference in employment in the tract containing 200 Fifth Avenue.

2. Estimate the covariates-based model using the realization drawn from the data-generating

process at its 2010 parameter values.

3. Compute the increase in productivity required to match the “observed” change in employment

for the “treated” tract for both the calibrated-shares procedure and the covariates-based

approach. These increases may differ from each other and the true 18% increase.

4. Compute the predicted change in commuter counts using the calibrated-shares procedure and

the covariates-based approach.

5. Regress the “observed” changes in commuter counts destined for the tract containing 200 Fifth

Avenue on the changes predicted by the calibrated-shares procedure. Regress the “observed”

changes in commuter counts destined for the tract containing 200 Fifth Avenue on the changes

predicted by the covariates-based approach.

We summarize the 100 simulations by plotting the coefficients and relative RMSEs in Figure 2.

The Monte Carlo simulation shows that our estimation procedure recovers model parameters

well enough when the granular model is the data-generating process to predict counterfactual

changes in commuter counts. By contrast, the calibrated-shares procedure has limited predictive

power when applied to granular data, as discussed in Section 3.3.

Next, we consider a data-generating process in which commuting costs have both an observed

and unobserved component in order to examine the relative predictive performance of the covariates-

based model and calibrated-shares procedure in granular settings. The commuting costs are now
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determined by

ln δkn = ln δ̄kn + lnλkn

lnλkn
iid∼ N

(
0,Λ× var(ln δ̄kn)

)
, Λ ∈ R+

The parameter Λ governs the variance of the unobserved component of commuting costs, stated

relative to the variance of the observed component. The simulations considered above are the case

in which Λ = 0, so that λkn = 1 ∀k, n. We now consider values of Λ > 0. When Λ > 0, the

covariates-based model omits an unobserved component of commuting costs that the calibrated-

shares procedure may, in principle, capture. Since ln δ̄kn and lnλkn are orthogonal by assumption,

the covariates-based model’s predictions will be unbiased, but its forecast errors will increase with

the magnitude of unobserved variation Λ.

Table D.1 presents the results of these simulations. As established in the Λ = 0 case, the

calibrated-shares procedure is very data demanding. For all values of Λ reported in Table D.1, the

calibrated-shares procedure’s predictions become unbiased (slope near one) only as the number

of individuals becomes orders of magnitude larger than the true value. Since the calibrated-

shares procedure can capture the unobserved component of commuting costs, its mean forecast

error becomes smaller than that of the covariates-based model when the unobserved variation is

sufficiently large. For the number of individuals in the empirical setting (I = 2, 488, 905), this

occurs only when the unobserved component of commuting costs varies at least half as much as the

observed component (Λ > 0.5).

D.2 Event studies

Figure D.1 depicts the time series of total employment in two New York City census tracts that

contain 200 Fifth Avenue and 111 Eighth Avenue. Between 2010 and 2012, Tiffany & Co. and

Google, respectively, substantially increased the employment in these two tracts. These tracts are

two of the 83 examined in the event studies in Section 3.4.
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Table D.1: Contrasting procedures’ predictive performance in Monte Carlo simulations

Slope (mean) RMSE (mean)
Λ I Covariates-based Calibrated-shares Covariates-based Calibrated-shares

0 2.5 0.9908 0.2161 3.9716 4.6661
0 5 0.9854 0.5493 2.7999 3.2893
0 12.5 1.0047 0.8162 1.7722 2.0839
0 25 0.9988 0.9022 1.2570 1.4777
0 50 1.0006 0.9520 0.8803 1.0352
0 125 1.0011 0.9813 0.5602 0.6586
0 250 0.9998 0.9896 0.3952 0.4650
0 2560 0.9998 0.9986 0.1241 0.1458

0.1 2.5 0.9960 0.2469 3.9889 4.6698
0.1 5 0.9983 0.5771 2.8364 3.3005
0.1 12.5 1.0035 0.8220 1.8098 2.0760
0.1 25 1.0029 0.9080 1.3113 1.4718
0.1 50 0.9991 0.9495 0.9698 1.0421
0.1 125 1.0030 0.9813 0.6828 0.6583
0.1 250 1.0016 0.9892 0.5566 0.4649
0.1 2560 1.0022 0.9988 0.4124 0.1455

0.25 2.5 0.9962 0.3570 4.0949 4.6690
0.25 5 1.0163 0.6595 2.9845 3.3043
0.25 12.5 1.0052 0.8506 2.0333 2.0857
0.25 25 1.0030 0.9218 1.5989 1.4720
0.25 50 1.0058 0.9629 1.3382 1.0425
0.25 125 1.0045 0.9831 1.1425 0.6586
0.25 250 1.0057 0.9927 1.0753 0.4665
0.25 2560 1.0056 0.9991 1.0062 0.1458

0.5 2.5 1.0075 0.6097 4.5128 4.6813
0.5 5 1.0104 0.7956 3.5131 3.2914
0.5 12.5 1.0069 0.9087 2.7525 2.0895
0.5 25 1.0080 0.9575 2.4606 1.4725
0.5 50 1.0061 0.9760 2.2954 1.0399
0.5 125 1.0080 0.9920 2.1997 0.6602
0.5 250 1.0086 0.9949 2.1549 0.4664
0.5 2560 1.0074 0.9978 2.1219 0.1459

1 2.5 1.0007 0.8657 6.3818 4.6525
1 5 0.9924 0.9232 5.7525 3.3021
1 12.5 0.9940 0.9575 5.3364 2.0837
1 25 0.9985 0.9729 5.1853 1.4704
1 50 1.0002 0.9778 5.1112 1.0488
1 125 1.0003 0.9809 5.0604 0.6825
1 250 1.0007 0.9827 5.0489 0.4923
1 2560 1.0001 0.9833 5.0328 0.2210

Notes: This table reports the mean outcomes across 100 simulated event studies for both the covariates-based
model and the calibrated-shares procedure. The data-generating process is the covariates-based model estimated
on data for New York City in 2010 augmented by an unobserved component of commuting costs, whose magnitude
is governed by Λ, as described in the text. The value of I is stated in millions of individuals. The value labeled as
2.5 million is in fact I = 2, 488, 905. Appendix - 18



Figure D.1: Employment in two of the event-study tracts
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Notes: This figure depicts the number of primary jobs held by New York City residents in tracts
36061005800 and 36061008300 in the LODES data.
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E Granular model: Price dispersion and “ex post regret”

E.1 Dispersion of real wages and rents relative to beliefs

Figure E.1 plots the dispersion of prices for each tract in New York City for the estimated granular

model. We define price dispersion as the standard deviation of the granular commuting equilibrium

price across 100,000 simulations divided by the continuum-case rational expectation of that price.

Figure E.1: Price dispersion across granular equilibria
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Notes: The plots depict the dispersion of prices (rk/P or wn/P ) for each tract in New York City using the granular
model estimated on 2010 data. We define price dispersion as the standard deviation of the granular commuting
equilibrium price across 100,000 simulations divided by the continuum-case rational expectation of that price.
Panel A depicts dispersion in tracts’ rents, which have a median value of 0.032 (p5 = 0.021, p95 = 0.051). Panel B
depicts dispersion in tracts’ wages, which have a median value of 0.016 (p5 = 0.004, p95 = 0.054).

The average realizations of wages and rents across 100,000 simulations of the granular model

are very close to the continuum-case rational expectation of these prices. Across tracts, the median

tract’s absolute percentage-point deviation of mean realized price from the continuum-case rational

expectations is 0.06% for wages and 0.02% for rents. The 95th percentiles of absolute percentage-

point deviations for wages and rents are 0.68% and 0.07%, respectively.

E.2 Ex post regret

We compute the share of individuals with ex post regret and their magnitudes as follows. As

discussed in the main text, we define ex post regret as the income gain an individual would accept

to not switch to their best choice under realized wages and rents. For individual i who chose

residence-workplace pair kn, at realized prices r and w ex post regret, χi is defined implicitly as

max
k′,n′

(
ε ln

(
wn′

P 1−αrαk′δk′n′

)
+ νik′n′

)
=

(
ε ln

(
(1 + χi)wn
P 1−αrαk δkn

)
+ νikn

)
,

where by definition kn was the choice maximizing Ũ ik,n. Denote k and n as the optimal choices of

k′ and n′ for individual i. Given kn, we can solve for the ex post regret χi based on the following
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equation:

ε ln

(
wn

P 1−αrαk δkn

)
+ νikn = ε ln

(
(1 + χi)wn
P 1−αrαk δkn

)
+ νikn,

which implies that

χi =

e
(

1
ε
νikn

)
wnr

−α
k δ−1

kn

e(
1
ε
νikn)wnr

−α
k δ−1

kn

 . (E.1)

We simulate 2.5 million individuals to compute this statistic. Each of these individuals uses

the point-mass beliefs from the continuum model. The realized wages and rents differ because of

idiosyncratic preference shocks that do not wash out in the aggregate. A practical challenge in

computing this value is that for each of the 2.5 million individuals, one needs to store the 4.6-

million-element vector of idiosyncratic νikn shocks. To get around this storage problem, we fix the

seed for each individual and re-draw the νikn term under the same seed in the counterfactual—which

is equivalent to storing the vector.

Table E.1 reports the distribution of ex post regrets.

Table E.1: Distribution of ex post regrets

Unconditional Conditional
Share with distribution distribution

s regret p95 p96 p97 p98 p99 Mean Median

1 0.0442 0.0000 0.0011 0.0042 0.0082 0.0150 0.0106 0.0073
2 0.0433 0.0000 0.0009 0.0039 0.0078 0.0143 0.0102 0.0071
3 0.0446 0.0000 0.0012 0.0043 0.0083 0.0150 0.0106 0.0072
4 0.0446 0.0000 0.0012 0.0043 0.0084 0.0152 0.0106 0.0073
5 0.0437 0.0000 0.0010 0.0040 0.0079 0.0144 0.0103 0.0071
6 0.0444 0.0000 0.0012 0.0042 0.0083 0.0150 0.0107 0.0073
7 0.0447 0.0000 0.0013 0.0043 0.0083 0.0150 0.0105 0.0072
8 0.0445 0.0000 0.0012 0.0043 0.0084 0.0150 0.0106 0.0073
9 0.0452 0.0000 0.0014 0.0045 0.0086 0.0154 0.0109 0.0074
10 0.0444 0.0000 0.0011 0.0042 0.0082 0.0148 0.0106 0.0072

mean 0.0444 0.0000 0.0012 0.0042 0.0083 0.0149 0.0106 0.0072
Notes: The table reports the share of individuals with ex post regret and the distribution of ex post regrets of
their desired switches in simulations of our estimated granular model. The first column identifies the simulation s.
The second column reports the fraction of individuals who have ex post regret and therefore would prefer a different
choice given realized prices. Columns under “Unconditional distribution” report the distribution of ex post regret
based on the full sample (I = 2, 488, 905). Columns under “Conditional distribution” report the distribution of
ex post regret among those who would want to switch. The “mean” row reports the mean value across the 10
simulations.

Table E.2 compares the price dispersion in 100,000 simulations of granular equilibria depicted

in Figure E.1 and 10 simulations of granular equilibria depicted in Table E.1. The simulations in
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Figure E.1 each require one draw from a multinomial distribution with 4.6 million outcomes whose

probabilities are given by equation (7). Generating the labor allocation for each simulation by this

method requires less than one second of computing. The simulations in Table E.1 involve more

than 11 trillion draws from the type-1 extreme value distribution. Generating the labor allocation

for each simulation by this method requires about 100 hours of computing. Hence, the latter

simulations are much more computationally expensive. It is heartening that the distributions of

price dispersion summarized in Table E.2 are very similar.

Table E.2: Price dispersion across simulation methods

Simulation count mean p5 p10 p25 p50 75 p90 p95

Wage
100,000 0.021 0.004 0.006 0.010 0.016 0.025 0.039 0.054
10 0.023 0.004 0.005 0.009 0.015 0.025 0.039 0.057

Rent
100,000 0.035 0.021 0.024 0.027 0.032 0.038 0.045 0.051
10 0.034 0.016 0.019 0.024 0.031 0.038 0.049 0.058

Notes: This table compares the price (rk/P or wn/P ) dispersion generated by the simulations
used in Section E.1 (100,000 simulations) and Section E.2 (10 simulations). As described in
the text, each tract’s price dispersion is the standard deviation of the granular commuting
equilibrium price across simulations divided by the continuum-case rational expectation of that
price. The first column reports the average price dispersion across all tracts. The remaining
columns report the level of price dispersion for tracts at selected percentiles.
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F Amazon HQ2 counterfactual

Comparing Figures 6B and 7B reveals that the spatial pattern of changes in residents is closely

related to the initial number of residents who work in the tract in which Amazon HQ2 would

be located. Figure F.1 depicts the relationship between these two variables more explicitly in a

scatterplot.

Figure F.1: Contrasting predicted change in residents and observed data
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Notes: This plot depicts the predicted change in the number of residents by calibrated-shares procedure against
the number of residents working at the treatment tract in 2010. The treated tract is excluded from the plot.

Figure F.2 depicts both the normal approximation and simulated distribution of outcomes for

the changes in the number of residents and workers for the application of the granular model in

the Amazon HQ2 counterfactual. The values are very similar.
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Figure F.2: Distribution of predicted change in the number of residents or workers

A. Change in residents, approximation
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B. Change in residents, simulation
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C. Change in workers, approximation
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D. Change in workers, simulation
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Notes: The plots depict the 5th and 95th percentiles of predicted change in the number of residents or workers
under the granular model, by the approximation method and simulation method mentioned in the main text.
For predicted change in residents, panel A plots under the approximation method and panel B plots under the
simulation method. For predicted change in workers, panel C plots under the approximation method and panel D
plots under the simulation method. In both panels, the treated tract and one outlying tract are excluded from the
plot.
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