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1 Introduction

Economists increasingly use quantitative models to evaluate urban policies such as infrastructure

investments and land-use planning. The growing availability of economic data observed at fine

spatial scales offers tremendous potential for new insights. However, to inform policy, these models

need to produce credible counterfactual predictions when applied to granular settings.

Quantitative spatial models feature links between pairs of locations that shape the geography

of economic outcomes (Redding and Rossi-Hansberg, 2017; Proost and Thisse, 2019). In many of

these models, individuals choose a residence and a workplace based on locations’ characteristics,

the links between them, and an idiosyncratic component. A setting with granular geographic units

has many locations and therefore a great number of links between pairs of locations. Two concerns

arise when the number of links is large relative to the number of decision makers. First, if one uses a

high-dimensional parameterization of spatial linkages, such as one parameter per pair of locations,

the modeler runs the risk of fitting the model to the idiosyncratic components of decisions rather

than capturing spatial linkages. Second, counterfactual changes in local economic outcomes are

uncertain because they depend on individuals’ idiosyncratic preferences.

In this paper, we examine the application of quantitative spatial models to granular settings.

In doing so, we make three main contributions. First, we show that the calibration procedure

most often used, which perfectly matches the observed baseline outcomes, predicts changes in

outcomes poorly in granular settings. We show how to use simulations that require only the

inputs typically used in this procedure to diagnose the problem. We confirm the poor predictive

performance using event studies of neighborhood employment booms in New York City. Second,

we demonstrate that both a parsimonious parameterization using only a transit-time covariate

and parameterizations using matrix approximations to capture unobserved spatial linkages deliver

better counterfactual predictions in this high-dimensional setting. Third, we develop a spatial

model with a finite number of individuals that we use to quantify the variability of counterfactual

outcomes induced by individual idiosyncrasies. Applying this model to Amazon’s proposed second

headquarters in New York City shows that counterfactual changes for most census tracts vary

considerably.

Section 2 reviews the computation of counterfactual outcomes in quantitative spatial models.

With a continuum of individuals, counterfactual changes can be characterized by a system of

equations containing counterfactual endogenous outcomes relative to baseline endogenous out-

comes, counterfactual exogenous parameters relative to baseline exogenous parameters, constant

elasticities, and baseline equilibrium shares (a formulation known as “exact hat algebra”). When

parameterizing the spatial links between residences and workplaces that determine the baseline

equilibrium shares, researchers have used two starkly different approaches. The covariates-based

approach makes the cost of commuting a function of pair-specific covariates, such as transit time.

The calibrated-shares procedure calibrates a cost parameter for each pair of locations to match

the observed commuting shares. The contrast in baseline equilibrium shares produces contrasting

predictions about counterfactual outcomes.
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Calibrating pair-specific commuting costs to match observed commuting shares offers advan-

tages and disadvantages. The number of commuters between a pair of locations in a finite sample

depends on three components: spatial links correlated with included covariates, orthogonal spatial

links, and individual-specific idiosyncrasies. The potential advantage of calibrating pair-specific

costs to match observed shares is that this can capture spatial links not predicted by covariates

like transit times, such as many Columbia University employees living in nearby university-owned

residences. The potential disadvantage is that parameterizing the model’s spatial links by matching

all observed variation means overfitting the model: the calibrated parameters conflate the spatial

links common to all individuals and individual-specific idiosyncrasies in the observed data.

Section 3 examines the application of these models to granular empirical settings. The commut-

ing matrices used in urban economics often have so many more pairs of locations than commuters

that many of the cells must contain zero commuters. Small flows constitute a substantial share

of total commuting: more than 40% of New York City commuters have a residence-workplace

pairing populated by five or fewer individuals. Such settings can pose small-sample problems for

the calibrated-shares procedure, which equates observed shares and underlying probabilities. This

procedure’s expected squared error for a baseline share is its finite-sample variance.

Errors in baseline shares generate errors in predicted changes in counterfactual scenarios. We

illustrate this in a special case in which the error in the predicted change in commuters is pro-

portional to the error in the corresponding baseline share. More generally, counterfactual changes

are a non-linear function of all baseline shares. We use Monte Carlo simulations to examine the

finite-sample behavior of the calibrated-shares procedure in a realistic setting. The data-generating

process is the parsimonious covariates-based parameterization of New York City in 2010, which

uses the same covariate employed to estimate the commuting elasticity for the calibrated-shares

procedure. These simulations show that small-sample bias can seriously impair the calibrated-shares

procedure when the model is otherwise correctly specified. While the procedure works well as the

number of individuals becomes arbitrarily large, it produces much worse predictions in simulations

using the actual number of individuals in New York City.

Next, we use event studies to examine how well the incumbent approaches predict changes in

commuting flows, the key spatial linkage between neighborhoods in many models of cities. We study

large employment increases in a single census tract that often stem from the arrival or expansion of

a large employer. We increase the productivity parameters for these tracts to match their increases

in total employment and compare the predicted changes in bilateral commuting flows to those

observed in the data. When examining 83 tract-level employment booms in New York City, we find

that the covariates-based approach—–using transit times as the only bilateral covariate—–predicts

the observed changes in commuting flows better than the calibrated-shares procedure in 80 of these

events. Regressing the observed change in commuters on the covariates-based approach’s prediction

typically yields a slope near one, whereas the predictions from the calibrated-shares procedure are

negatively correlated with the observed changes in more than half of the events.

We explore two additional approaches that offer the advantage of a more flexible specification
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while guarding against the disadvantage of overfitting. One specification augments the covariates-

based approach to capture unobserved spatial linkages that have an interactive fixed effects structure

(Bai, 2009; Chen, Fernández-Val, and Weidner, 2021). This more flexible specification modestly

improves predictive performance. An alternative approach computes baseline shares used in the

exact hat algebra from rank-restricted matrix approximations without using covariates. This

simple, computationally cheap transformation delivers substantially better predictions than using

the observed shares.1 Both these approaches allow one to incorporate unobserved components when

applying continuum models to granular settings.

The noisy-shares problem is relevant for a number of fields in which economists rely on a “shares

inversion” to estimate or calibrate models. Market shares computed from consumer surveys, region-

to-region trade shares computed from shipment surveys, and migration shares computed from

household surveys that cover a fraction of the population can be noisy.2 Shares computed using

the universe of commuting flows, sectoral exports, firm-to-firm sales, or employee-employer matches

are noisy when there are few decisions or transactions made among the many possibilities so that

the observed shares contain a substantial idiosyncratic component.3

In Section 4, we depart from treating the data as a finite sample from the continuum model

and introduce a model with a finite number of individuals. We use it to quantify the variability

of counterfactual outcomes induced by individual idiosyncrasies. Where the continuum model

yields a single equilibrium allocation, this model produces a distribution of economic outcomes.

Notably, outcomes with strictly positive probabilities may not occur in a particular realization.

The key modeling challenge is that individual decisions affect equilibrium wages and rents, but it

is computationally infeasible to enumerate all the possible labor allocations and resulting prices.

To overcome this combinatorial challenge, we assume that individuals make choices based on wage

and rent beliefs that are the equilibrium prices from the continuum model with the same economic

primitives.

Our model with finite individuals can be estimated using the same data used to estimate the

continuum model. When individuals’ price beliefs are the continuum-case equilibrium prices, the

estimated parameters of this model coincide with those of the covariates-based continuum model.

Given the same parameter values, the mean equilibrium labor allocation equals the allocation of

the continuum model. By contrast, equilibrium prices solve a system of non-linear equations, so

their mean values are not necessarily equal to the continuum-case prices. Crucially, the model with

a finite number of individuals characterizes the dispersion in quantities and prices that arises from

1Smoothing the observed shares using rank-restricted matrix approximations before employing them in exact
hat algebra is reminiscent of, yet distinct from, practices such as applying the Hodrick and Prescott (1997) filter
before calibrating macroeconomic models, grouping firms into classes using k-means clustering before estimating a
model of workers and firms (Bonhomme, Lamadon, and Manresa, 2019), and smoothing observations before inverting
conditional choice probabilities in dynamic models (e.g., Kalouptsidi, 2014; Hsiao, 2022).

2The US Commodity Flow Survey, for example, samples about one in seven establishments in the industries it
covers and asks them to report at most 40 of the shipments sent during each of four weeks within the year. See
Appendix D.5 for the case of state-to-state migration shares.

3For example, Gaubert and Itskhoki (2021) report that sectoral trade flows dominated by a small number of firms
exhibit greater mean reversion.
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idiosyncrasies.

In Section 5, we contrast methods for evaluating the local economic effects of Amazon’s proposed—

but later abandoned—HQ2 in New York City. The tract-level changes in residents and land rents

across New York City predicted by the covariates-based approach differ considerably from the

predictions of the calibrated-shares procedure. We find considerable uncertainty generated by

individual idiosyncrasies for these outcomes at the neighborhood level and meaningful uncertainty

even for groups of tracts. The uncertainty about aggregate outcomes is negligible. The variation

in local counterfactual outcomes due to individual idiosyncrasies in the model with a finite number

of individuals is larger than that due to parameter uncertainty in the covariates-based continuum

model. This sizable uncertainty regarding the local effects of a headline-grabbing potential employ-

ment boom suggests that detailed counterfactual predictions would be highly uncertain in many

granular settings.

Our paper introduces a quantitative spatial model suitable for application to small spatial

units, such as census tracts. Social scientists study neighborhoods to understand housing markets,

intergenerational mobility, racial segregation, and many other phenomena. Spatially precise satel-

lite imagery (Donaldson and Storeygard, 2016) and phone movement data (Couture et al., 2022;

Kreindler and Miyauchi, 2023) allow even finer investigations where there are few decision makers,

as anticipated by Holmes and Sieg (2015, p.106). Granular data are valuable in part because a

growing body of evidence shows highly localized agglomeration economies (Rosenthal and Strange,

2020).4 We provide tools for modeling these granular settings.

Our event studies of neighborhood employment booms contribute to a small literature assessing

the predictive power of quantitative spatial models. These studies compare model-predicted changes

to observed outcomes using plausibly exogenous shocks (Ahlfeldt et al., 2015; Monte, Redding,

and Rossi-Hansberg, 2018; Adão, Arkolakis, and Esposito, 2022). More broadly, economists have

evaluated the predictions of quantitative trade models about changes in trade policy (Kehoe,

2005; Kehoe, Pujolàs, and Rossbach, 2017; Adão, Costinot, and Donaldson, 2024). We show that

predictions about the “ripple effects” of a local economic shock on other locations perform poorly

when economic linkages are calibrated to match noisy shares. In granular settings, this noise stems

from the idiosyncratic components of individual choices.

Finally, our work relates to prior studies of how idiosyncrasies affect economic outcomes and

parameter estimation. A growing literature examines how firm-specific shocks influence aggregate

fluctuations in macroeconomics (Gabaix, 2011; Carvalho and Grassi, 2019) and trade (di Giovanni,

Levchenko, and Mejean, 2014; Gaubert and Itskhoki, 2021). Our paper joins research examining

how individual idiosyncrasies affect economists’ inferences. Ellison and Glaeser (1997) and Schoefer

and Ziv (2022) address the role of individual manufacturing plants when computing the geographic

concentration of industries and geographic variation in productivity, respectively. Mogstad et al.

4Arzaghi and Henderson (2008) estimate that productivity gains from interactions among advertising firms occur
primarily within 500 meters. Ahlfeldt et al. (2015) estimate production and residential externalities that decay by
more than half within two minutes of travel time. Rossi-Hansberg, Sarte, and Owens (2010) estimate that externalities
from non-market interactions decline by half approximately every 1,000 feet.
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(2024) raise concerns about inferring ranks of small geographic units. The finite numbers of firms

and shipments have been studied as one explanation for zeros in international trade (Eaton, Kortum,

and Sotelo, 2013; Armenter and Koren, 2014), and the finite number of consumers is one explanation

for zeros in product-level sales data (Quan and Williams, 2018; Hortaçsu et al., 2023; Gandhi, Lu,

and Shi, 2023). Similar to our framework, Panigrahi (2022) models a finite set of firms that form

links based on beliefs from a limiting economy with a continuum of firms. Our paper makes two

contributions to these various strands of the literature. First, we demonstrate the importance of

avoiding overfitting when using continuum models to predict counterfactual outcomes. Second, we

introduce a spatial model with a finite number of individuals that quantifies the uncertainty about

counterfactual outcomes induced by individual idiosyncrasies.

2 Computing counterfactual outcomes in continuum models

This section describes the computation of counterfactual outcomes in quantitative spatial models.

We use a baseline model with a continuum of individuals making residential and workplace location

choices, as in Ahlfeldt et al. (2015) and Redding and Rossi-Hansberg (2017).

2.1 Primitives

We consider a closed economy populated by a measure of L individuals who each supply one unit

of labor. Discrete locations are indexed by k or n. Each location has a fixed quantity of land,

Tk, owned by immobile landlords who consume only goods.5 Each location has the technology to

produce a differentiated good (i.e., the Armington assumption). These goods are freely traded.

Individuals have Cobb-Douglas preferences over goods and land, devoting α of their expenditure

to the latter. They have constant elasticity of substitution (CES) preferences over the differentiated

goods, with elasticity of substitution σ > 1. Individuals (indexed by i) have idiosyncratic prefer-

ences for pairs of residential and workplace locations, such that i’s indirect utility from residing in

k and working in n is

U ikn = ϵ ln

(
wn

rαkP
1−αδkn

)
︸ ︷︷ ︸

≡Ukn

+νikn, (1)

where wn is the wage in location n, rk is the land rent in k, P is the common CES price index for

goods, δkn is the commuting cost between k and n, Ukn is the mean utility of choice kn, and νikn
is the idiosyncratic preference of individual i for residing in k and working in n. The commuting

elasticity ϵ governs the importance of mean utility relative to the idiosyncratic preference, which is

drawn from the standard Gumbel distribution.6

Commuting costs have two components: time (δ̄kn) and disutility (λkn), so δkn = δ̄kn × λkn.

Time spent commuting is not spent working, so individuals residing in k and working in n earn

5This simplifying assumption follows Monte, Redding, and Rossi-Hansberg (2018).
6The cumulative distribution function of the Gumbel (type-1 extreme value) distribution with a location parameter

of zero and scale parameter of one is F (νikn) = exp
(
− exp

(
−νikn

))
.
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only wn/δ̄kn because they only spend 1/δ̄kn of their time working.

Production of each location’s differentiated good is linear in labor. Output in n is qn = AnLn,

where An is that location’s productivity and Ln is the quantity of labor supplied by workers working

in n. The goods market is competitive, so the price of location n’s output is wn/An. Thus, the

CES price index is P =
[∑

n (wn/An)
1−σ
]1/(1−σ)

.

2.2 Equilibrium

Let ℓkn denote the measure of people residing in k and working in n. Using the Gumbel distribution

assumption, one can integrate over the idiosyncratic preferences to obtain the fraction of people

residing in k and working in n:

ℓkn
L

=
wϵn (r

α
k δkn)

−ϵ∑
k′,n′ wϵn′

(
rαk′δk′n′

)−ϵ . (2)

Goods market clearing equates each location’s output to the quantity demanded. Labor supplied

in location n is Ln =
∑

k ℓkn/δ̄kn, and thus output there is An
∑

k ℓkn/δ̄kn. Each individual

devotes 1−α of their expenditure to differentiated goods and α of their expenditure to land, while

immobile landlords spend all of their income on differentiated goods, such that total expenditure

on differentiated goods equals aggregate income. Aggregate income is Y ≡
∑

k,n ykn, where

ykn ≡ wnℓkn/δ̄kn is labor income earned in workplace n by workers residing in k. The CES demand

for each differentiated good means that equating quantity supplied and quantity demanded requires

An
∑
k

ℓkn
δ̄kn

=
(wn/An)

−σ

P 1−σ Y ∀n. (3)

Note that goods market clearing implies labor market clearing.

Similarly, land market clearing equates the fixed land endowment Tk to the quantity demanded

by individuals, who devote a constant fraction α of their expenditure to land:

Tk =
α

rk

∑
n

ykn ∀k. (4)

Equilibrium is a set of wages {wn}, rents {rk}, and labor allocation {ℓkn} such that equations (2),

(3), and (4) hold. Appendix C.1 shows that if
(

1+ϵ
σ+ϵ

)(
αϵ

1+αϵ

)
≤ 1

2 , this equilibrium exists and is

unique (by Theorem 1 of Allen, Arkolakis, and Li 2023).

2.3 Procedures for counterfactual predictions

In this model, counterfactual changes can be characterized by a system of equations containing

counterfactual endogenous outcomes relative to baseline endogenous outcomes, counterfactual ex-

ogenous parameters relative to baseline exogenous parameters, constant elasticities, and baseline

equilibrium shares. This is known as “exact hat algebra” in the trade literature (Dekle, Eaton, and
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Kortum, 2008; Costinot and Rodŕıguez-Clare, 2014). Denote the counterfactual value of a variable

x by x′ and denote the counterfactual-baseline ratio of a variable x > 0 by x̂ ≡ x′

x (and impose

x̂ = 0 if x = 0). As shown in Appendix C.2, tedious manipulation of equations (2), (3), and (4)

yields the following system of equations characterizing the counterfactual equilibrium:

ŵn = Ân

(∑
k

ŷkn
ykn∑
k′ yk′n

) 1
1−σ

P̂ Ŷ
1

σ−1 (5)

r̂k = T̂−1
k

∑
n

ŷkn
ykn∑
n′ ykn′

(6)

ℓ̂kn =
ŵϵn

(
r̂αk

ˆ̄δknλ̂kn

)−ϵ
∑

k′,n′ ŵϵn′

(
r̂αk′

ˆ̄δk′n′ λ̂k′n′

)−ϵ ℓk′n′
L

if ℓkn > 0. (7)

This system defines the relative endogenous outcomes ŵn, r̂k, and ℓ̂kn in terms of relative exogenous

parameters Ân, T̂k,
ˆ̄δkn, and λ̂kn, elasticities σ, α, and ϵ, and baseline shares ℓkn

L and ykn
Y .

There are many ways to estimate or calibrate the model’s parameters to deliver the baseline

shares. At one end of the spectrum, one can parsimoniously parameterize the time and disutility

components of commuting costs as functions of only observed covariates (e.g., Ahlfeldt et al. 2015).7

To compute counterfactual equilibria, one would plug the fitted model’s values of ℓknL and ykn
Y into

equations (5)–(7).8 At the other end of the spectrum, one can calibrate millions of commuting-cost

parameters so that the model’s baseline equilibrium matches the observed shares. In this case, one

would plug the observed ℓkn
L and ykn

Y into equations (5)–(7) to compute counterfactual outcomes.

The latter calibrated-shares procedure has been widely used in spatial economics recently, often in

granular settings with as many residence-workplace pairs as decision makers.9 Between these two

extremes lie a host of strategies to determine the baseline equilibrium shares, some of which we

discuss in detail below.

We emphasize the distinction between using the comparative statics defined by equations (5)–(7)

to compute counterfactual outcomes and fitting the model’s parameters. Because equations (5)–(7)

show that computing counterfactual outcomes only requires knowing the model’s parameters up

to the point where the model delivers the shares ℓkn
L and ykn

Y , others have used the phrase “exact

hat algebra” to refer to both rewriting the equations in hats and calibrating combinations of model

7In this approach, equation (2) is generically not satisfied by the observed values of ℓkn and the parameterization
of δkn. One justification for the model not fitting the observed data would be that the latter is a sample from the
population. Section 3.2 describes estimation of model parameters in this covariates-based approach.

8Given a parameterized model, one could also solve the system of equations (2)–(4) at counterfactual parameter
values. However, the system of equations (5)–(7) is instructive because it indicates that any parameter combination
yielding the same baseline shares and elasticities would make the same counterfactual predictions. In that sense,
these are sufficient statistics for the counterfactual outcomes. Appendix Section C.2.1 provides an example.

9The calibrated-shares procedure has decades-deep roots in computable general equilibrium models of international
trade (Rutherford, 1995). Studies in spatial economics employing this technique include Allen, Arkolakis, and Li
(2016); Perez-Cervantes (2016); Waddell and Sarte (2016); Monte, Redding, and Rossi-Hansberg (2018); Heblich,
Redding, and Sturm (2020), Krebs and Pflüger (2019); Severen (2021); and Owens, Rossi-Hansberg, and Sarte
(2020).
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parameters to rationalize observed shares. In fact, the system of equations defines counterfactual

outcomes regardless of how one estimates or calibrates the parameters of the baseline equilibrium.

The key question is how to fit the model’s parameters to data.

3 Counterfactual analysis in granular settings

We assess the predictive performance of quantitative spatial models in granular empirical settings.

In Section 3.1, we introduce data on tract-to-tract commuting in New York City. This empirical

setting, like many studied in prior research, has many location pairs relative to the number of

decision makers. After Section 3.2 describes how we estimate model parameters, Section 3.3

contrasts the nature of the estimation errors made by the covariates-based and calibrated-shares

procedures. The covariates-based specification omits unobserved commuting costs, whereas the

calibrated-shares procedure includes finite-sample noise in parameter values. We examine this

trade-off when modeling New York City using Monte Carlo simulations in Section 3.4 and event

studies of neighborhood employment booms in Section 3.5. There is a stark contrast between the

two incumbent approaches in predicting the changes in tract-to-tract commuting flows. While

the covariates-based specification using transit times predicts quite well, the calibrated-shares

procedure’s predicted changes are in fact negatively correlated with the observed changes in the ma-

jority of events. We also propose and assess alternative specifications that can capture unobserved

components of spatial linkages while guarding against overfitting.

3.1 Commuting flows in granular settings

Urban economists often study empirical settings with a modest number of decision makers relative

to the number of pairs of locations. It is common for these numbers to be roughly equal.10 At even

finer resolution, Ahlfeldt et al. (2015) model about 3 million Berliners choosing among about 254

million pairs of city blocks. Here, we examine tract-to-tract commuting flows in New York City.

Appendix D.1 reports comparable statistics for Detroit and Minneapolis-St. Paul.

We use data on commuting between census tracts in New York City taken from the Longitudinal

Employer-Household Dynamics, Origin-Destination Employment Statistics (LODES).11 Tracts are

defined by the US Census Bureau to be relatively uniform in population size, such that the typical

tract has 4,000 residents. One implication of granularity is that some data providers perturb

observations to protect confidentiality. For example, the published LODES tract-level workplace

employment counts are infused with noise. Moreover, the published LODES commuting matrices

10Owens, Rossi-Hansberg, and Sarte (2020) study 1.3 million people commuting between 1.3 million pairs of tracts
in the Detroit urban area. Severen (2021) studies the Los Angeles metropolitan area, which has 6.7 million commuters
and more than 6 million pairs of tracts. Tsivanidis (2023) models Bogotá’s 8 million residents commuting between
almost 7 million pairs of tracts. Zárate (2023) examines Mexico City, which has 9 million people and 13 million pairs
of tracts.

11Davis et al. (2019) use the 2010 wave to compute the joint distribution of residences and workplaces for New
York City. Owens, Rossi-Hansberg, and Sarte (2020) use the 2014 wave of these data for the Detroit urban area to
estimate a gravity model of commuting.

8



report synthetically generated residence-workplace pairs.12 These confidentiality-protecting pro-

cedures are both a symptom of the granular setting and an additional cause for caution when

interpreting the value of any individual observation.

Small flows constitute a large share of tract-to-tract commuting in New York City. The city

has about 2.5 million resident-employees and 4.6 million tract pairs. Thus, its commuting matrix is

almost necessarily sparse, as the average cell contains about one-half of a commuter. In fact, 85% of

tract pairs have zero commuters between them, so the average positive cell has about three people.

As shown in Figure 1, more than half of the tract pairs with a positive number of commuters have

only one. Crucially, Figure 1 shows that small flows are a substantial share of the total: 41.1%

of New York City commuters have five or fewer commuters in their cell of the commuting matrix.

Furthermore, the commuting flows are impersistent over time and exhibit asymmetric zeros (see

Appendices D.3 and D.4). Introducing multiple worker types would exacerbate these patterns by

reducing the number of decision makers per choice for each type.13

Figure 1: Number of commuters between pairs of tracts in New York City

0
.2

.4
.6

.8
1

0
.2

.4
.6

.8
1

0 10 20 30 40

Number of individuals

Fraction of tract pairs Cumulative share of commuters

Notes: This figure describes tract pairs in New York City by the number of individuals who reside in the origin
tract and work in the destination tract in 2010 LODES data. The sample is restricted to the 15% of tract pairs that
have a strictly positive number of commuters. The blue histogram depicts the fraction of tract pairs reporting each
number of commuters, for each value from 1 to 39 and values of 40 or greater. The black increasing step function
depicts the cumulative share of commuters by the number of commuters between the pair of tracts. New York City
has 2,160 residential census tracts.

Even when studying larger geographic units, there may be few decision makers per pair of

locations, particularly when the data describe only a sample of respondents. For example, while

12Graham, Kutzbach, and McKenzie (2014): “For each job in a workplace cell, LODES draws from a Dirichlet
multinomial posterior distribution of possible residential locations. . . . The prior adds uncertainty, so that even
commutes with few or no observed flows may appear to have a job. Conversely, even when there are commuters from
an origin in the likelihood, that residence may not be drawn and thus would not appear in LODES.”

13For example, individuals in each of the four educational attainment categories reported in the LODES data live
in all but one or two residential tracts and are employed in more than 99% of workplace tracts, so each type would
have a choice set with more than 4.5 million elements.
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some US counties have millions of residents, Appendix D.2 documents that more than half of

the positive commuting counts between pairs of counties represent the behavior of five or fewer

survey respondents. More broadly, small-sample bias may complicate the analysis of other spatial

phenomena, such as migration. Appendix D.5 shows that state-to-state migration flows reported

in American Community Survey (ACS) data also represent a small number of respondents, are

frequently zero, and are impersistent across time (see Foschi et al. (2023) for related findings).

3.2 Estimation

We estimate the continuum model using the tract-to-tract commuting data for New York City

in 2010. Following the literature, we set α = 0.24 and σ = 4 prior to estimating the remaining

parameters.14

We assume that the time component of commuting costs, δ̄kn, is observed, while the disutility

component, λkn, is unobserved. We construct the observed part of the commuting costs by assuming

that each worker has H hours that are spent either working or commuting. We compute δ̄kn =
H

H−tkn−tnk
, where H = 9 hours and tkn is the transit time from k to n according to Google Maps.15

Assumptions about the unobserved disutility component, λkn, vary widely across methods, as

described below.

One way to estimate the continuum model using the covariates-based approach is to interpret

observed data on residence-workplace choices as a finite sample from the continuum model. The

covariates-based specification assumes there is no unobserved disutility component of commuting

costs, λkn = 1 ∀k, n. Given observed values of commuting costs δkn = δ̄kn, the remaining parameters

can be estimated by maximum likelihood. Interpreting the right side of equation (2) as a probability

and denoting the number of individuals who chose the kn pair by ℓkn, the log likelihood function is

L ≡
∑
k,n

ℓkn ln
[
P(U ikn > U ik′n′ ∀k′n′ ̸= kn)

]
=
∑
k,n

ℓkn ln

[
wϵn
(
rαk δ̄kn

)−ϵ∑
k′,n′ wϵn′

(
rαk′ δ̄k′n′

)−ϵ
]
. (8)

This is the canonical conditional-logit likelihood of McFadden (1974) applied to location choices,

as in McFadden (1978). The k- and n-specific terms are captured by residence and workplace fixed

effects, respectively. Maximizing this likelihood function is numerically equivalent to a Poisson

pseudo maximum likelihood (PPML) estimator that is available for a variety of software packages

(Guimarães, Figueiredo, and Woodward, 2003).16

14Davis and Ortalo-Magne (2011) suggest α = 0.24. Monte, Redding, and Rossi-Hansberg (2018) use σ = 4
when examining goods trade between US counties, citing estimates for international trade between countries. Absent
estimates of tract-level labor demand elasticities, we also report results for σ = 1.1 and σ = ∞. None of our main
conclusions are sensitive to the value of σ.

15Given H hours, 1/δ̄kn is the share of that time spent working if the individual resides in k and works in n. The
semi-elasticity of commuting flows with respect to transit time tkn = tkn + tnk is −ϵ/ (H − tkn). Using H = 8 or
H = 10 yields very little change in the model fit relative to the H = 9 results reported in Table 1. For New York
City, we use Google Maps public-transit times collected by Davis et al. (2019). We impute missing observations for
fewer than 4.1% of tract pairs in New York City by predicting transit times using physical distance.

16See Sotelo (2019) for a discussion of the relationship between the multinomial and PPML estimators in the
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The calibrated-shares procedure, which calibrates λkn, also requires an estimate of the com-

muting elasticity ϵ. One might make two distinct assumptions about the unobserved component

λkn. If E
(
λ−ϵkn|rk, wn, δ̄kn

)
= 1, the constant elasticity function (2) can be estimated using the

PPML estimator (Silva and Tenreyro, 2006). This yields the same estimate of the commuting

elasticity ϵ as maximizing equation (8). If one takes the logarithm of each side of equation (2),

assumes E
(
lnλkn|rk, wn, δ̄kn

)
= 0, and restricts the estimation sample to observations for which

ℓkn is strictly positive, then the commuting elasticity can be estimated by ordinary least squares

(OLS). As stressed by Silva and Tenreyro (2006), these two estimators can yield very different

parameter estimates.

We apply both the PPML and OLS estimators to New York City in 2010. Our estimate

of the commuting cost elasticity is presented in column 1 of Table 1. The estimate of ϵ ≈ 8,

which is comparable to the value of 6.8 estimated by Ahlfeldt et al. (2015) for commuting within

Berlin, implies that idiosyncratic preferences are modestly dispersed. Estimating the commuting

elasticity using OLS yields a much lower elasticity, largely because of the well-understood selection

bias associated with omitting four-fifths of observations from the estimation sample.17 In what

follows, we use the ϵ estimate reported in column 1 for both the covariates-based approach and the

calibrated-shares procedure.

Table 1: Commuting elasticity estimates

PPML/MLE OLS

Commuting cost -7.986 -2.307
(0.307) (0.00768)

Model fit (R2 or pseudo-R2) 0.662 0.561
Location pairs 4,628,878 690,673
Commuters 2,488,905 2,488,905

Notes: All specifications include residence fixed effects and workplace fixed effects. The “PPML/MLE” column
presents the results from maximum likelihood estimation of equation (8). The “OLS” column presents the results of
estimating the log version of equation (2) by ordinary least squares, omitting observations in which ℓkn = 0. The
model-fit statistic is the pseudo-R2 for MLE and R2 for OLS. We report the PPML standard errors (clustered by k
and by n), which are larger than the logit MLE standard errors associated with maximizing equation (8).

Given the elasticities σ, α, and ϵ, one only needs the model-implied baseline shares ℓkn
L and

ykn
Y to compute counterfactual outcomes using equations (5)–(7). The calibrated-shares procedure

sets the parameters {An}, {Tk}, and {λkn} such that the model-implied baseline shares ℓkn
L and

ykn
Y equal their observed values. For the covariates-based approach, the model parameters {An}
and {Tk} can be computed from the estimated fixed effects and the market-clearing conditions. In

particular, the residence and workplace fixed effects are proportional to r−αϵk and wϵn, respectively.

context of gravity models. In practice, we use the Stata package ppmlhdfe of Correia, Guimarães, and Zylkin (2020).
17Applying the PPML estimator to the OLS sample of strictly positive flows yields an estimate of ϵ = 4.4. Thus

about two-thirds of the discrepancy between the OLS and MLE estimates reflects the omission of the zero flows. This
selection bias also affects the fixed effects (see Appendix D.6).
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Given α, σ, ϵ, {δkn}, {rk}, and {wn}, equations (2), (3), and (4) can be solved to obtain {Tk} and

{An}, and one can compute the model-implied baseline shares ℓkn
L and ykn

Y .

3.3 Errors in estimated baseline shares and prediction errors

In practice, each estimation method will imperfectly recover the data-generating process. Esti-

mation error is important because errors in baseline shares translate into errors in counterfactual

predictions through their roles in equations (5)–(7). For example, consider an economy in which

σ = ∞ and α = 0 with exogenous residential amenities that has a productivity change at one

workplace. In this special case, the error in the predicted change in commuters ∆ℓkn is simply

proportional to the error in the baseline share ℓkn/L (see Appendix C.4).

The two approaches’ estimation errors stem from different sources, so researchers face a trade-

off. If there are unobserved links (λkn ̸= 1), the covariates-based model is misspecified. If observed

shares ℓkn/L are noisy, the calibrated-shares procedure will yield noisy estimates of λkn.
18 Thus,

the trade-off depends on the magnitude of unobserved commuting costs and the number of decision

makers per pair of locations. To justify applying the calibrated-shares procedure to a granular

setting, the researcher must believe unobserved spatial links play a large role.

The potential advantage of the calibrated-shares procedure is its ability to capture links that

covariates miss. For example, the largest commuting flow in the 2010 LODES data for New York

City is 827 commuters who reside between 110th and 114th Streets in Morningside Heights and

work at adjacent Columbia University. The specification that uses transit times predicts only 70 of

the 827 observed commuters, failing to capture the effect of the university’s dual role as employer

and landlord.

The disadvantage of this approach is the sheer number of parameters to be estimated. If the

economy has N locations, the calibrated-shares procedure estimates N2 commuting-cost parame-

ters, whereas the covariates-based specification only estimates 2N fixed effects (and the coefficients

on the covariates).19 In New York City, 2N ≪ I ≪ N2 (because I is 2.5 million and N2 is

4.6 million), so the calibrated-shares procedure will produce estimates incorporating substantial

finite-sample noise. The parsimonious covariates-based specification exhibits much less sampling

error.20

We examine the predictions made by these two approaches using two metrics. One way to assess

predictions is to regress the changes in outcomes on the predicted changes. An unbiased forecast

would yield a slope coefficient of one. In an otherwise correctly specified model, finite-sample noise

18We focus on the finite-sample noise stemming from a granular setting. Sanders (2024) considers how other forms
of measurement error affect counterfactual outcomes in quantitative spatial models.

19While we focus on finite-sample properties, this difference in dimensionality has implications for asymptotic
properties like consistency as both the number of individuals and the number of locations grow. Suppose the number
of locations N is an exponential function of the number of individuals I: N ∝ Ia. The ratio of individuals to
parameters grows at rate 1− a for the covariates-based approach and 1− 2a for the calibrated-shares procedure. For
a ∈ (0.5, 1), I

N
goes to infinity and I

N2 goes to zero. In the United States, the Census Bureau aims for Census tracts
to have constant size of about 4,000 residents, so a is about one.

20Appendix C.6 presents a simple example for the NYC setting in which sampling errors differ by orders of
magnitude.
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will typically attenuate the slope coefficient on the calibrated-shares procedure’s predicted changes

towards zero.21 The covariates-based specification’s omission of the unobserved commuting cost

does not necessarily attenuate its slope coefficient because the omitted residual is orthogonal to the

covariates by construction. Appendix C.5 provides analytical expressions for the slope coefficient

in the special case mentioned above in which predicted changes are proportional to baseline shares.

A second way to assess predictions is to compute their mean squared errors. In the special case,

the expected squared error for a predicted change in commuters is proportional to the expected

squared error for the corresponding baseline share. The calibrated-shares procedure’s expected

squared error for a baseline share is its finite-sample variance, which vanishes as I goes to infinity.

By imposing more structure, a covariates-based approach typically has lower finite-sample variance

but omits the unobserved commuting cost that contributes to its expected squared error for a

baseline share. Their relative performance depends on how many commuters are observed per

residence-workplace pair and the magnitudes of the unobserved commuting costs. Appendix C.6

derives this result in a simple example.

Errors in baseline shares generate errors in predicted changes in counterfactual scenarios.

The magnitude of the resulting errors hinges on two key questions: how large are the errors

in the baseline shares and how sensitive is the counterfactual outcome of interest to individual

linkages? Appendix C.4 uses the special case to illustrate that residential responses to a workplace

productivity shock are more sensitive to sampling errors in baseline shares ℓkn/L than employment

responses. This is because the former depends on the baseline share of a single residence-workplace

pair, whereas the latter depends only on the workplace’s share of total employment. Beyond

this special case, the predicted changes in these models are generally a non-linear function of the

economy’s baseline equilibrium quantities. To explore a more typical case, we turn to Monte Carlo

simulations.

3.4 Monte Carlo: The calibrated-shares procedure in a granular setting

This section uses Monte Carlo simulations to assess how well the calibrated-shares procedure for

computing counterfactual outcomes performs in a granular setting. In anticipation of examining

New York City neighborhood employment booms in the next section, the data-generating process is

the estimated covariates-based model of New York City in 2010. We imagine the researcher observes

equilibrium wages and a finite-sample labor allocation drawn from a multinomial distribution

defined by probabilities given by the right side of equation (2). The researcher then uses the

calibrated-shares procedure to predict the consequences of a “counterfactual” productivity increase

in one workplace tract. The “true” consequences of this productivity change are given by the

counterfactual labor allocation and prices in the covariates-based continuum model. If the observed

sample had an infinite number of individuals, the realized labor allocation would equal the true

21To gain intuition, consider a regression of the true probabilities on finite-sample shares. Because the frequency
estimator is an unbiased estimator of the true probability, the finite-sample share is equal to the true probability plus
finite-sample error. With infinite observations, the slope coefficient would be one, and in a typical finite sample, the
slope coefficient would suffer attenuation bias, akin to classical measurement error.
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shares (because the frequency estimator is consistent), and the calibrated-shares procedure would

perfectly predict the changes caused by the productivity increase. In short, our simulations examine

the finite-sample behavior of the calibrated-shares procedure using the actual number of individuals

in New York City (I ≈ 2.5 million).

Figure 2: Calibrated-shares procedure overfits in Monte Carlo simulations

A. Regression of true on predicted changes

0
1

0
2

0
3

0
4

0

0
1

0
0

2
0

0
3

0
0

D
en

si
ty

0 .2 .4 .6 .8 1

Covariates−based: slope Covariates−based: intercept

Calibrated−shares: slope Calibrated−shares: intercept

B. Ratio of models’ prediction errors

0
.1

.2
.3

.4
F

ra
ct

io
n

0 .002 .004 .006 .008
Covariates−based MSE / Calibrated−shares MSE

Notes: This figure depicts the regression coefficients and mean squared errors from 100 simulations in which
I = 2, 488, 905, the data-generating process is the estimated covariates-based model of New York City in 2010,
and the counterfactual change is a 9% increase in productivity in one workplace tract. See Appendix A.1
for a detailed description of the simulation procedure. “Covariates-based” means estimating the covariates-
based parameterization described in Section 3.2 using the simulated data. “Calibrated-shares” means using the
observed (simulated) shares in the exact hat algebra defined by equations (5)–(7). In Panel A, the densities for
the covariates-based model are on the left vertical axis and the densities for the calibrated-shares procedure are
on the right vertical axis.

We contrast the true and predicted changes in the number of commuters from each residential

origin to the workplace with increased productivity. As detailed in Appendix A.1, the modeled

productivity increases for both the covariates-based model and the calibrated-shares procedure

are engineered so that the total employment increase in the “treated” tract is perfectly predicted.

We assess the predictive power by contrasting true and predicted changes in bilateral commuting

flows and rents. We do so by computing the mean squared error (MSE) and by regressing the

observed changes on the predicted changes. With an unbiased forecast, the regression of observed

on predicted changes would yield a slope coefficient of one and an intercept of zero. Of course,

the estimated coefficients in a single simulation will also reflect finite-sample noise. Simulating this

process 100 times yields a distribution of regression coefficients and MSEs, as shown in Figure 2.

Before assessing the calibrated-shares procedure’s predictive performance, we note that the

covariates-based model is well-behaved in the finite sample. The covariates-based model is correctly

specified because λkn = 1 ∀k, n in the data-generating process. It delivers accurate predictions

when applied to a finite sample: its slope and intercept coefficients are centered on one and zero,

respectively. It also accurately predicts the changes in rents (see Appendix Figure A.1).
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The calibrated-shares procedure makes worse predictions. While it perfectly fits the commuting

shares from the finite sample, it produces less accurate predictions about the changes in commuters

and rents caused by the productivity increase. This illustrates an overfitting problem: a more

flexible parameterization improves in-sample fit but worsens out-of-sample performance (Hastie,

Tibshirani, and Friedman 2009, p. 221; Belloni, Chernozhukov, and Hansen 2014, p. 30). Consis-

tent with the attenuation bias mentioned in Section 3.3, regressing the true change in commuters

on the change predicted by the calibrated-shares procedure yields a slope of only 0.78 in the median

simulation in Figure 2. Its forecast error is larger than that of the covariates-based model, which

has a mean squared error that is 1% of the calibrated-shares forecast error in the median simulation.

Its predictions about rents are similarly inferior: the regression slopes for rents are centered on 0.19,

and the covariates-based model’s mean squared error for rents is 0.003% of the calibrated-shares

forecast error (see Appendix Figure A.1).

Table 2: Calibrated-shares procedure’s finite-sample performance

A. Regressand is continuum change in commuters

I 2.5 5 12.5 25 50 125 250 2560

Calibrated-shares: slope 0.782 0.876 0.948 0.974 0.986 0.995 0.997 1.000
Calibrated-shares: intercept 0.269 0.153 0.064 0.032 0.017 0.007 0.004 0.000
Calibrated-shares: MSE 0.225 0.113 0.045 0.023 0.011 0.005 0.002 0.000

B. Regressand is finite-sample change in commuters

I 2.5 5 12.5 25 50 125 250 2560

Calibrated-shares: slope -0.408 0.194 0.669 0.835 0.913 0.968 0.982 0.998
Calibrated-shares: intercept 1.724 0.982 0.404 0.202 0.106 0.040 0.022 0.002
Calibrated-shares: MSE 17.022 8.486 3.400 1.699 0.851 0.340 0.169 0.017

Notes: This table reports the average values of the slope coefficient, intercept coefficient, and mean squared
error from 100 simulations as we vary I, the number of individuals in the simulated economy. The column
titles denote the number of individuals in millions. The “2.5” million case corresponds to I = 2, 488, 905, which
is the number of individuals who reside and work in New York City in the 2010 LODES data. In Panel A,
the regressand is the change in commuters with a continuum of individuals. This change does not vary across
simulations. In Panel B, the regressand is the simulation-specific change in commuters from a realization drawn
from the model using pre-shock parameter values to a realization drawn from the model using post-shock
parameter values.

Since the only element of the data-generating process at odds with the assumptions of the

calibrated-shares procedure is the finite number of individuals, these simulation results demonstrate

that finite-sample bias can severely limit that procedure’s predictive power. The procedure suffers

from an overfitting problem when the number of individuals is small relative to the number of

parameters. As shown in Panel A of Table 2, the calibrated-shares procedure performs better

as we increase the number of individuals. Its mean squared error is inversely proportional to

the number of people.22 Only when this number is one to two orders of magnitude larger do

22The covariates-based model exhibits the same speed of convergence, as can be seen in Appendix Tables A.2
and A.3.
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the calibrated-shares procedure’s predictions become closely correlated with outcomes. Its rent

predictions become closely correlated with outcomes only when the number of individuals is two

to three orders of magnitude larger (Appendix Table A.1).

In any empirical application, the researcher does not observe changes in outcomes for a con-

tinuum of individuals. The observed changes in outcomes come from finite-sample draws from

the pre- and post-shock data-generating processes. We simulate this setting by drawing two labor

allocation realizations, the first from the estimated model of New York City in 2010 and the

second from that model after the productivity increase in one workplace tract. Because the two

realizations are independent draws, commuter counts are mean reverting: absent a shock, the

changes are negatively correlated with the initial counts. This does not change the slope coefficient

for the covariates-based model’s predictions (see Appendix Figure A.2), but it severely degrades the

predictive performance of the calibrated-shares procedure. For the smallest number of individuals

in Panel B of Table 2, the calibrated-shares procedure’s predicted changes are negatively correlated

with the simulated changes. As explained in Appendix C.12, this particular symptom of overfitting

is a case of Galton’s fallacy.23

In the simulations described thus far, the covariates-based model is correctly specified. This

neglects the calibrated-shares procedure’s potential advantage over the covariates-based specifica-

tion: it can capture spatial links that covariates do not. In Appendix A.3, we conduct simulations

in which the covariates-based model is misspecified because λkn ̸= 1 in the data-generating process.

Tables A.2 and A.3 show that, for a given number of individuals, the calibrated-shares procedure’s

performance improves relative to the covariates-based model as the share of variation in δkn

orthogonal to the included covariates increases. With sufficiently large unobserved commuting

costs, the calibrated-shares procedure outperforms the covariates-based model. It achieves this by

calibrating λkn for each pair of locations, which is highly data demanding. For the actual number

of individuals in this empirical setting, the calibrated-shares procedure performs better when the

unobserved component of commuting costs has a standard deviation at least half as large as that

of the observed component (equivalent to a standard deviation of 15 minutes of transit time each

way). As the number of individuals grows, the overfitting problem diminishes and the advantage

of a more flexible parameterization is realized.

3.5 Event studies: Predicting commuting responses to a local shock

We now examine how various approaches are able to predict changes in commuting flows using

neighborhood employment booms in New York City. As in the Monte Carlo simulations, we

investigate changes in commuting patterns to workplace tracts that had large increases in em-

ployment. In particular, we conduct “event studies” in which we examine the commuting flows

to the 83 workplace tracts in New York City that had a two-year increase in total employment

23One can use the model of Section 4 to take finite-sample draws from a pre- and post-shock data-generating
process without inducing mean reversion. One does so by fixing the idiosyncratic preferences {νikn} to be the same in
the two draws. A Monte Carlo exercise using this assumption shows that the calibrated-shares procedure still suffers
from an overfitting problem and predicts outcomes worse than the covariates-based specification (see Appendix A.4).
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from 2010 to 2012 of at least 400 employees and at least 12.5% from a 2010 level of at least 400

employees. We focus on local employment booms because these large changes are likely driven

by workplace-specific shocks, such as new office openings or an expansion by a large employer,

rather than resident-workplace-specific shocks. For example, in 2011, Tiffany & Co. moved its

corporate headquarters to 260,000 square feet of office space at 200 Fifth Avenue. In late 2010,

Google acquired a building of nearly 3 million square feet at 111 Eighth Avenue. These locations

are two of the 83 workplace tracts we examine.24

To assess the predictive performance of a model parameterization, we use its baseline shares

for New York City in 2010 and equations (5)–(7) to compute the increase in productivity required

to match the observed 2010–2012 change in employment for the “treated” tracts.25 Since different

procedures fit the 2010 data differently, these productivity increases could vary, but in practice they

are very similar. Since the productivity increases are defined so that both procedures match the

observed increase in employment, we examine their predictions for the change in bilateral commuter

counts.

3.5.1 Covariates-based model outperforms calibrated-shares procedure

Figure 3 contrasts the changes in commuter flows predicted by the covariates-based model and the

calibrated-shares procedure for all 83 employment booms from 2010 to 2012. For each booming

tract and each counterfactual procedure, we regress the observed change in the number of residents

from each residential tract who work in the treated workplace tract on the predicted change. An

unbiased prediction procedure should yield a slope of one and an intercept of zero. Panel A of

Figure 3 depicts the distribution of these coefficients for both procedures. For our covariates-

based model, the slope coefficients are roughly centered on one (median of 0.99), and the intercept

coefficients are roughly centered on zero (median of 0.01).

The calibrated-shares procedure does not perform as well. Across the 83 events, the median

slope coefficient is -0.28, and the median intercept coefficient is 0.60. That is, the calibrated-shares

procedure’s predictions are negatively correlated with observed outcomes in more than half of the

events. As a result, the covariates-based approach typically has a lower forecast error. Panel B

of Figure 3 contrasts the two models’ MSEs for each event. The covariates-based approach has a

lower MSE than the calibrated-shares procedure in 80 of the 83 events.

Looking at in-sample fit for the 2010 commuting flows would suggest a very different contrast

between the two approaches: the χ2 test statistic for in-sample fit for the calibrated-shares proce-

dure is literally zero, while the estimated covariates-based model would be rejected by a χ2 test

(see Appendix B.6). This warns against evaluating model specifications by in-sample fit. The

covariates-based specification, while not perfectly describing the observed outcomes in 2010, is

24Figure B.1 depicts the employment changes for these two tracts.
25Because the 83 employment booms simultaneously occurred from 2010 to 2012, we compute the vector of 83

productivity increases that matches the observed changes in employment in these 83 workplace tracts. The results
obtained when computing 83 separate productivity increases, which neglects the simultaneity, are virtually identical
to those in Figure 3.

17



Figure 3: Comparison of models’ predictive performance across 83 events
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Notes: “Calibrated-shares” refers to using the observed shares in the exact hat algebra defined by equations (5)–
(7). “Covariates-based” in Panels A and B refers to the parameterization described in Section 3.2. “No extensive
margin” in Panels C and D retains only the intensive-margin predictions of the covariates-based model. This case
uses the covariates-based model’s predictions for residence-workplace pairs with ℓkn > 0 in the 2010 data and
predicts zero change for pairs with ℓkn = 0 in the 2010 data. In Panel A, 3 slope and 1 intercept coefficients are
not depicted for the calibrated-shares procedure. In Panel C, 3 slope and 1 intercept coefficients are not depicted
for the calibrated-shares procedure. Vertical lines depict the medians of the slope coefficient distributions.

much more informative about how commuting flows change with local employment booms. The

calibrated-shares procedure predicts changes in commuting flows very poorly.

The covariate-based approach’s superior predictive power is not due solely to the presence of

zeros in the commuting matrix. To illustrate this, we produce predictions using a hybrid approach

that uses the covariates-based model’s predictions for residence-workplace pairs that have non-zero

commuters in the 2010 data and predicts zero change for pairs where the baseline flow is zero

(as in the calibrated-shares procedure). This hybrid approach, which retains only the intensive-

margin predictions of the covariates-based model, still substantially outperforms the calibrated-
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shares procedure (Figure 3C and Figure 3D).

3.5.2 Temporal aggregation and geographic aggregation

One may try to smooth out idiosyncratic elements of the data before fitting the model. For example,

one might pool multiple years of data. In many empirical settings, particularly historical contexts,

consecutive years of data are not available. In the case of LODES, annual data are available since

2002. We average commuter and wage observations for 2008–2010 before applying each approach.

Pooling three years of data yields a modest improvement for the calibrated-shares procedure

(see Figure B.2). Its predictions are now positively correlated with observed outcomes for 69% of

the events. Nonetheless, the covariates-based approach typically forecasts the changes in commuter

counts much better. The covariates-based approach’s slope coefficients are closer to one (median of

0.98 vs. 0.16), and its intercept coefficients are closer to zero (0.03 vs. 0.35). The covariates-based

approach applied to the pooled data has a lower MSE than the pooled calibrated-shares procedure

in 74 of the 83 events.

Using larger spatial units is another potential way to address the overfitting problem. We can

aggregate the 2,160 residential tracts into 195 Neighborhood Tabulation Areas (NTAs) defined by

the New York City Department of City Planning. We consider both aggregating the tract-level

predictions up to NTA-level predictions and defining locations in the model to be NTAs.

When we aggregate the predicted changes in number of commuters to the booming workplace

tracts from residential tracts up to residential NTAs, the covariates-based model still outperforms

the calibrated-shares procedure (see Figure B.2). When aggregating predictions, the covariates-

based model has a lower MSE than the calibrated-shares procedure in 55 of the 83 events.

Estimating the model using NTAs reduces the number of locations by an order of magnitude and

thus the number of location pairs by two orders of magnitude. 35 NTAs had 2010–2012 employment

booms. As described in Appendix B.3, the covariates-based approach and the calibrated-shares

procedure perform similarly well when they are applied to NTAs. The covariates-based model has

a lower MSE than the calibrated-shares procedure in 18 of the 35 events. In line with our Monte

Carlo results, the calibrated-shares procedure is viable when locations are defined as NTAs such

that there are more than 50 individuals per pair of locations.

Using larger spatial units avoids the overfitting problem that arises when the calibrated-shares

procedure is applied to granular settings. But doing so leaves one unequipped to address the many

research questions that concern small spatial units such as neighborhoods. Research does not need

to avoid granular settings: the covariates-based approach performs well when applied to small

spatial units.

3.5.3 Exact hat algebra using shares from an approximated matrix

Temporal and geographic aggregation are simply two of many statistical tools that researchers

could use to reduce idiosyncratic noise in granular settings. We now consider a noise-reduction

strategy that can be applied to a single year of data from a granular setting (without geographic
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aggregation). The idea is to use the shares from an approximation of the commuting matrix in

the exact hat algebra, which will reduce overfitting to the extent that the approximation reduces

idiosyncratic noise.

In particular, we use a rank-restricted singular value decomposition (SVD) of the observed

commuting matrix. The truncated SVD is widely used both to remove noise and compress data

(Eldén, 2007, Ch. 6). Low-rank models are pervasive in data science and effective because matrices

from many different data domains – movie preferences, text documents, medical records – are

approximately low rank (Udell and Townsend, 2019). In economics, Conlon, Mortimer, and Sarkis

(2023) explore using a low-rank approximation of the substitution matrix in demand estimation.

The commuting matrix L = {ℓkn} of dimension K ×N can be decomposed into three separate

matrices U, Σ, and V such that L = UΣVT . This is an SVD of the commuting matrix where U is

a K×K orthonormal matrix (the left singular vectors matrix), Σ is a non-negative K×N diagonal

matrix with diagonal elements representing the singular values sorted in descending order, and V

is an N × N orthonormal matrix (the right singular vectors matrix). The rank-r-restricted SVD

retains only the r largest singular values and sets the remaining singular values to zero. We replace

negative elements of this rank-restricted matrix by zeros and rescale all values so that the total

number of individuals in the resulting approximation is equal to that in the observed commuting

matrix.26

This approximation requires the researcher to choose the rank r. The rank-1 approximation

would underfit the data because it is merely the product of a k component and an n component,

lacking a bilateral kn component. Using a full-rank matrix would mean using the observed

commuting matrix. The statistics literature suggests computationally cheap rules of thumb for

selecting the rank, such as visually identifying a point in a “scree plot” in which adjacent singular

values differ little or selecting all SVD layers that explain more than a given share of the total

variation (Cohen, 2021, p.496). Alternatively, one could also use a Monte Carlo analysis to pick the

optimal rank. We discuss these approaches in Appendix B.4 and use them in our application to New

York City. More importantly, it is computationally trivial to vary the rank in this approximation,

making it easy to conduct sensitivity analyses.

When studying neighborhood employment booms in New York City, using such an approxima-

tion of the commuting matrix yields substantially improved predictive performance over calibrating

the model to the observed shares. We use an approximation derived from a rank-16 SVD, selected

by a 0.5% threshold for the share of singular values. A Monte Carlo simulation using the covariates-

based model as the data-generating process would have selected a rank of 18 (see Appendix B.4.2).

Comparing the observed and rank-approximated commuting matrices visualized in Appendix Fig-

ure B.4 suggests that these approximations capture much of the relevant observed variation.27

26This replacement means the approximated matrix may not be rank r. A non-negative rank-r approximation,
which is costlier to compute, delivers very similar counterfactual predictions. See Appendix B.4.3.

27For example, the rank-16 SVD predicts 815 commuters for the Columbia University outlier, quite close to the
observed 827 commuters and much larger than the covariates-based model’s prediction of 70. One feature of the
observed matrix that these low-rank approximations do not capture is the large counts on the diagonal of the matrix:
the proclivity for individuals to reside and work in the same tract. Appendix Figure B.4 shows that both an
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Plugging this approximation of the shares into equations (5)–(7) yields counterfactual predictions

that are much closer to the predictions from the covariates-based model estimated on the full data.

As shown in Figure 4, the median regression slope is 0.81, and the mean squared error is similar

to that of the covariates-based approach. The regression slope coefficient from the rank-16 SVD is

closer to 1.0 in 46 of the 83 events. This performance is not very sensitive to the precise choice

of rank used in the approximation. Appendix Table B.1 reports the slope and MSE for a range of

ranks. The MSE for the median event is similar for ranks 5 through 20.

Figure 4: Predictive performance across 83 events using low-rank approximation

A. Regression of observed on predicted changes
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Notes: This figure depicts the predictive performance of using an approximation of the commuting
matrix in exact hat algebra. The approximation is derived from a rank-16 singular value decomposition
of the observed commuting matrix, as described in Appendix B.4. The covariates-based model is the
same as in Figure 3. Panel A depicts the distributions of slope and intercept coefficients, and the vertical
lines denote the median slope coefficients.

Using a noise-reducing approximation of the matrix of spatial outcomes in exact hat algebra

may be fruitful in other contexts. The approximation guards against overfitting the spatial linkages

between pairs of locations even in the absence of a high-quality covariate that predicts bilateral

flows. Moreover, the computational costs of our suggested approximation are very low, as any

modern linear algebra library allows one to compute the SVD of million-element matrices very

quickly.

3.5.4 Interactive fixed effects

One can leverage the explanatory power of observed covariates while allowing for more flexibility

by extending the covariates-based approach to have an explicitly modeled unobserved component

of commuting costs. As detailed in Appendix B.5, we estimate an interactive-fixed-effects (IFE)

specification that assumes the disutility component of commuting costs has an R-dimensional factor

structure, λkn = exp(ψ′
kγn) (Bai, 2009; Chen, Fernández-Val, and Weidner, 2021). For intermediate

approximation derived from a rank-200 SVD and the covariates-based model do capture this pattern.
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values of R, this specification is more flexible than the covariates-based model (R = 0) without going

to the extreme of one parameter per pair of locations (the full-rank case). As with the covariates-

based model, one can use the equilibrium shares of the estimated IFE model with equations (5)–(7)

to compute counterfactual outcomes.

A rank-1 IFE specification offers a modest improvement over the covariates-based model in the

event studies. As an encompassing specification, the IFE necessarily outperforms the covariates-

based model (CBM) in terms of in-sample fit (see pseudo-R2 in Appendix Table B.4 and χ2 test in

Appendix B.6). The event studies, summarized in Figure 5, examine its out-of-sample predictive

performance. In Panel A, the IFE slope coefficient for the median event is 0.85, which is farther

from 1.0 than the CBM. While not centered on 1.0, its distribution of slope coefficients is narrower

such that the IFE slope coefficient is closer to 1.0 in 42 of the 83 events. The IFE’s forecast

error is smaller than that of the CBM in the typical event: Panel B shows that its MSE is lower

in 47 of the 83 events. Thus, the more flexible interactive-fixed-effects specification offers a

modest improvement in predictive performance. Rank-2 and rank-3 IFE specifications perform

very similarly (see Appendix Figure B.6).

Figure 5: Predictive performance of the rank-1 IFE specification across 83 events

A. Regression of observed on predicted changes
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Notes: This figure summarizes the predictive performance of the covariates-based model and the rank-1
IFE specification. Panel A depicts the distributions of slope coefficients, and the vertical lines denote the
median slope coefficients.

3.5.5 Sensitivity analysis

One difference between the approaches described above is in their use of estimated or observed

wages. The covariates-based model and interactive-fixed-effects specification estimate wages using

workplace fixed effects. By contrast, observed wages are used in the calibrated-shares procedure

and in the exact hat algebra with the SVD-approximated shares. We have verified that using

alternative wage values—such as equal wages across locations—does little to alter the predictions
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of the calibrated-shares procedure in the event studies.

We find similar event-study results when employing different assumptions about preferences

and production. Thus far, we have assumed idiosyncratic preferences are spatially independent, as

in prior research. Making residential locations in the same NTA closer substitutes in a nested-logit

demand system has little effect on the predictions produced by either method (see Appendix B.7).

Similarly, the changes in commuters predicted by both methods are not sensitive to the elasticity

of substitution between goods σ (see Appendix B.8) nor to introducing local increasing returns at

workplaces (see Appendix B.9).

3.6 Counterfactuals in continuum models: Takeaways

The predictive performance of quantitative spatial models applied to granular empirical settings

is highly sensitive to the baseline equilibrium shares used in the exact hat algebra. The incum-

bent methods—the covariates-based approach and calibrated-shares procedure—produce sharply

contrasting predictions for bilateral commuting flows because they parameterize spatial linkages

very differently. Using shares from a covariates-based model predicts changes in commuting

flows remarkably well. Using observed shares to calibrate millions of parameters suffers from an

overfitting problem. Aggregating data across a few years does not remedy this problem. Using

shares produced from a low-rank approximation of the commuting matrix alleviates the overfitting

problem and produces predictions comparable to the covariates-based approach. An interactive-

fixed-effects specification that extends the covariates-based approach offers modest improvements

in predictive performance at greater computational cost.

When are the counterfactual predictions from the calibrated-shares procedure likely to suffer an

overfitting problem? Generally, this depends on the magnitude of errors in the baseline shares and

the sensitivity of counterfactual outcomes of interest to these errors. To examine the calibrated-

shares procedure’s finite-sample performance in a specific context, we recommend using a covariates-

based model as the data-generating process in Monte Carlo simulations, as in Section 3.4.28 The

inputs necessary for such simulations are the same as those used in the calibrated-shares procedure,

assuming the researcher has used a covariate to estimate the commuting elasticity. Verifying

finite-sample performance is relevant beyond spatial economics, as calibrating model parameters to

match observed market shares is also common in fields such as international trade and industrial

organization. Whether perfectly matching the market shares is a feature or a bug depends on

the context. In settings with noisy observed shares, using shares produced by data-smoothing

procedures, such as low-rank approximations, or using more parsimonious models is likely to deliver

better counterfactual predictions.

28Our code to simulate quantitative urban models is at https://github.com/jdingel/DingelTintelnotSEGS.
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4 A spatial model with a finite number of individuals

Thus far, we studied the continuum model assuming that the observed data were a finite sample

drawn from that model. The overfitting problem that troubles the calibrated-shares procedure

in granular settings stems from substantial idiosyncratic noise embodied in the observed baseline

shares. These idiosyncrasies matter because there are few decision makers per spatial link, even

when we observe, as researchers often do, the universe of decision makers. In this section, we

explore a related implication: when baseline outcomes depend on individual idiosyncrasies, so

do counterfactual outcomes. In such settings, the patterns of substitution elicited by changes

in economic primitives are shaped by individuals’ idiosyncratic preferences. Unfortunately, the

continuum model discussed in Sections 2 and 3 does not capture this. Contrary to individual

idiosyncrasies affecting outcomes in granular settings, the premise of the continuum model is that

they are integrated away.

We introduce a spatial model with a finite number of individuals in which equilibrium outcomes

depend on individual idiosyncrasies. Its outcomes differ from the continuum model in two ways.

First, because these models are not linear, the equilibrium prices in a continuum model need not

equal the average equilibrium prices from a model with finite individuals. Second, counterfactual

changes in quantities and prices depend on which individuals change their decisions in response to

the exogenous shock, which depends on their vectors of unobserved idiosyncratic preferences. There

is therefore uncertainty about realized counterfactual outcomes, as the distribution of idiosyncrasies

induces a distribution of counterfactual changes.

In a model with a finite number of people, individuals’ decisions affect wages and rents, raising

two issues. First, do individuals internalize the effects of their own choices on local labor supplies

and land demands? Second, are individuals able to enumerate the prices induced by every possible

combination of others’ choices? For tractability, we assume that individuals have common point-

mass beliefs about wages and rents. Therefore, individuals act as price takers, as in Gabaix (2011).

In our application, we assume that, given the model parameters, individuals have beliefs about

wages and rents that are the equilibrium prices of the conventional continuum model. We label

these beliefs “continuum-case rational expectations” because they would be rational if there were a

continuum of individuals.29 This model with a finite number of individuals is intentionally similar to

the conventional continuum model: they coincide as the number of individuals becomes arbitrarily

large and can be estimated similarly.

29Similar simplifications to agents’ beliefs have been made in industrial organization (e.g., oblivious equilibrium
in Weintraub, Benkard, and Van Roy 2008) and macroeconomics (e.g., Krusell and Smith 1998). Specifically, in
an oblivious equilibrium, a finite number of firms optimize assuming that the industry state always equals its long-
run expected value, even though the industry state is not constant given a finite number of firms and idiosyncratic
shocks. In the Krusell and Smith (1998) model, heterogeneous agents condition their choices on moments from the
distribution of state variables (rather than tracking the entire distribution).
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4.1 Setup

Our model with a finite number of individuals features the same utility function, technology, and

commuting costs as in Section 2, so the set of primitives Υ ≡ {L, {An}, {Tk}, {δ̄kn}, {λkn}, α,
ϵ, σ} is the same.30 It differs in two important respects. First, the aggregate labor endowment

L is embodied in I individuals each supplying L
I units of labor. Second, we introduce a timing

assumption: individuals first choose their residence-workplace pairs, and then all markets clear given

individuals’ locations. This timing would not matter if there were a continuum of individuals.

We denote the set of all idiosyncratic preferences νikn by νI . As before, these are i.i.d. draws

from the standard Gumbel distribution. The superscript I indicates that the set grows with the

number of individuals.

We make the following assumptions about information and expectations. All workers know the

economic primitives Υ and have (common) expectations about equilibrium prices rk and wn. The

price expectations are point-mass beliefs, such that each individual assigns 100% probability to a

vector of wages {w̃n} and a vector of land prices {r̃k}. Worker i knows her idiosyncratic preferences

{νikn}.
Decisions are made and markets clear in the following order. Based on beliefs {w̃n} and {r̃k},

each worker chooses the residential location and the work location that maximize expected utility

Ũ ikn = ϵ ln
(
w̃n/

(
P̃ 1−αr̃αk δkn

))
︸ ︷︷ ︸

≡Ũkn

+νikn, (9)

where P̃ =
[∑

n (w̃n/An)
1−σ
]1/(1−σ)

. After these decisions are made, individuals cannot relocate.31

As detailed below, realized equilibrium land prices rk and wages wn are those that clear goods,

labor, and land markets given individuals’ residential and workplace locations.

Assuming point-mass beliefs about prices considerably simplifies the analysis. Otherwise,

individuals would need to compute expectations using (equilibrium) probabilities for an enormous

set of feasible allocations. For example, an economy with only 10 individuals and 16 residence-

workplace pairs has more than 3 million possible allocations.32 For empirically relevant magnitudes,

this is infeasible. While our approach permits arbitrary point-mass beliefs about wages and rents,

in our analysis below we assume that the expected prices are the equilibrium wages and rents of

the continuum model with the same economic primitives Υ.

30Model extensions that introduce trade costs, residential amenities, local increasing returns, and production
employing land are presented in Appendix C.11.

31The assumption that individuals make irreversible decisions is common in static spatial models. For example,
in the open-city model of Ahlfeldt et al. (2015), individuals choose to live in Berlin based on expected utility, which
is equal to the reservation level of utility in the wider economy. Individuals who choose Berlin and realize utility
below the city-wide average cannot leave. Redding and Rossi-Hansberg (2017), Heblich, Redding, and Sturm (2020),
Owens, Rossi-Hansberg, and Sarte (2020), and Brinkman and Lin (2022) make the same irreversibility assumption.
In dynamic location choice models (e.g., Diamond, McQuade, and Qian 2019), moving costs cause agents to not
necessarily change locations in response to shocks.

32With I individuals and N2 residence-workplace pairs, the set of possible allocations (the support of the

multinomial distribution) contains
(
I+N2−1
N2−1

)
= (I+N2−1)!

(N2−1)!I!
elements. For I = 10 and N = 4, this is about 3.27× 106.
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4.2 Equilibrium

We distinguish between a trade equilibrium, which clears goods and land markets taking individuals’

locations as given, and a commuting equilibrium with finitely many individuals, in which individuals

choose locations based on beliefs about the trade equilibrium that will result.

Definition 4.1. Trade equilibrium. Given the labor allocation {ℓkn} and economic primitives Υ,

a trade equilibrium is a set of wages {wn} and land prices {rk} satisfying equations (3) and (4).

Note that these market-clearing conditions are the same as in the continuum model.33 Given

point-mass beliefs {w̃n} and {r̃k} and idiosyncratic preferences νI , individuals choose the residence-

workplace pair that maximizes their utility in equation (9).

Definition 4.2. Commuting equilibrium with finitely many individuals. Given a number of

individuals I, economic primitives Υ, idiosyncratic residence-workplace preferences νI , and a set of

point-mass beliefs ({w̃n}, {r̃k}), a commuting equilibrium with finitely many individuals is a labor

allocation {ℓkn}, wages {wn}, and land prices {rk} such that

� ℓkn = L
I

∑I
i=1 1{Ũkn + νikn > Ũk′n′ + νik′n′ ∀(k′, n′) ̸= (k, n)}; and

� wages {wn} and land prices {rk} are a trade equilibrium given the labor allocation {ℓkn}.

We now define a set of price beliefs that are the equilibrium prices of the continuum model from

Section 2 with the same economic primitives.34

Definition 4.3. Rational expectations for the continuum case. Given economic primitives Υ, {w̃n}
and {r̃k} are “continuum-case rational expectations” if {wn} = {w̃n} and {rk} = {r̃k} constitute

an equilibrium of the continuum model defined in Section 2.2 for the same economic primitives Υ.

Distinguishing between the number of individuals I and aggregate labor L allows us to study

locational decisions as I → ∞ without changing aggregate labor supply. As Appendix C.9 shows,

the labor allocation in the I → ∞ limit is the same as in the continuum model in equation (2).

Note that given idiosyncratic preferences and point-mass beliefs, the commuting equilibrium with

finitely many individuals is unique.

4.3 Estimation of economic primitives

One can estimate a covariates-based specification of this model in the same way we estimated its

continuum-model counterpart in Section 3.2. We take α, σ, δ̄kn as given, impose λkn = 1 ∀kn, and
33The trade equilibrium is unique. Given the labor allocation, there is a unique set of relative wages satisfying

equation (3), as shown in Appendix C.8. Equation (4) can be rewritten as rk = α
Tk

∑
n

ℓkn
δ̄kn

wn, so there is a unique

set of land prices associated with that wage vector.
34The wage and rent beliefs in Definition 4.3 are unique if the parametric condition for uniqueness in the continuum

model in Section 2.2 is satisfied.
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assume that νikn are i.i.d draws from a standard Gumbel distribution.35 The resulting log likelihood

function is

L ≡
∑
k,n

ℓkn ln
[
P(Ũ ikn > Ũ ik′n′ ∀k′n′ ̸= kn)

]
=
∑
k,n

ℓkn ln

[
w̃ϵn
(
r̃αk δ̄kn

)−ϵ∑
k′,n′ w̃ϵn′

(
r̃αk′ δ̄k′n′

)−ϵ
]
. (10)

This is equation (8) with rent and wage beliefs instead of equilibrium rents and wages. The

maximum-likelihood estimate of the commuting elasticity ϵ is identical to that in the covariates-

based continuum model (in column 1 of Table 1). The remaining economic primitives {Tk} and

{An} can be obtained from the estimated rent and wage beliefs: the residence and workplace fixed

effects are proportional to r̃−αϵk and w̃ϵn, respectively. If {r̃k} and {w̃n} are continuum-case rational

expectations, plugging these estimated beliefs into equation (2) yields the continuum-case labor

allocation. Given α, σ, {r̃k}, {w̃n}, {δkn}, and that labor allocation, equations (3) and (4) can be

solved to obtain {Tk} and {An}. These estimated land and productivity parameters are identical

to those of the covariates-based continuum model.

4.4 Price dispersion and ex post regret

The realized equilibrium rents and wages vary with individual idiosyncrasies, so they generically

differ from the point-mass beliefs about rents and wages that govern individuals’ choices of resi-

dences and workplaces. How often would individuals choose a different residence-workplace pair

at the realized equilibrium prices if they were able? In our New York City setting, ex post regret

is rare: 96% of individual have idiosyncratic preferences such that they would not want to switch.

See Appendix E for details of these results. Given the return to making the model tractable and

computationally feasible, we judge this magnitude to be modest.

4.5 Contrasts with the continuum model

With a finite number of individuals, individual idiosyncrasies affect equilibrium outcomes. Given

economic primitives Υ, this model produces a distribution of outcomes associated with the distri-

bution of idiosyncratic preference shocks νI , whereas the continuum model delivers deterministic

outcomes. Such a contrast has been emphasized by studies of how aggregate outcomes depend on

firm-level productivity shocks (e.g., Gabaix 2011; di Giovanni, Levchenko, and Mejean 2014; Eaton,

Kortum, and Sotelo 2013; Gaubert and Itskhoki 2021).

Given the same primitives Υ, the expected equilibrium labor allocation of this model equals

that of the continuum model. This is because the multinomial distribution of residence-workplace

outcomes {ℓkn} defined by the probabilities in equation (10) has expected values equal to the

quantities in equation (2). By contrast, the model’s equilibrium prices solve a system of non-linear

35The assumption that λkn = 1 can be relaxed by allowing the unobserved disutility component of commuting costs
to have a factor structure, λkn = exp(ψ′

kγn), as in Section 3.5.4 and Appendix B.5. If individuals have continuum-case
rational expectations, the economic primitives of this specification of the model with a finite number of individuals
match those of the interactive-fixed-effects specification of the continuum model.
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equations, so their expected values need not equal the continuum-case prices. For our baseline

parameter values, these differences are small (Appendix E.1).

We focus on the implications of these idiosyncrasies for counterfactual outcomes. We compute

the change in outcomes induced by a change in economic primitives from Υ to Υ′ given idiosyncratic

preferences νI .36 In special cases, one can analytically characterize the uncertainty stemming from

idiosyncrasies. In Appendix C.10, we describe a two-workplace economy. Let p denote the share of

individuals expected to switch workplaces in response to a productivity change in the continuum

model. In the model with a finite number of individuals, the variance of the share of individuals who

switch workplaces is p(1−p)
I . In the general case, simulating realizations of νI yields a distribution of

counterfactual changes. The dispersion in counterfactual changes represents uncertainty stemming

from individual idiosyncrasies. Although the analytical result describes a special case, it will turn

out to approximate the uncertainty about the share of individuals switching workplaces in our

Amazon HQ2 application well.

5 Application to Amazon HQ2 in Long Island City

We now examine the predictions of quantitative spatial models for the economic consequences

of Amazon’s aborted second headquarters (HQ2) in Long Island City, a controversial and widely

discussed proposal. In November 2018, the company announced it would hire more than 25,000

employees in 4 million square feet of office space.37 However, Amazon scrapped the project

in February 2019 after facing a fierce backlash from local politicians and community members

concerned about corporate subsidies and gentrification.

This large counterfactual change to a single workplace allows us to illustrate how choices of

methods affect predictions. Section 5.1 shows how the geographic incidence of a productivity shock

on local rents is governed by the parameterization of spatial linkages. Section 5.2 uses the model

with a finite number of individuals to quantify the uncertainty about these counterfactual outcomes.

Individual idiosyncrasies make neighborhood-level counterfactual changes considerably uncertain,

even when examining a productivity shock shifting 1% of employment to a single tract.

5.1 Geographic incidence of Amazon HQ2

We analyze the consequences of a productivity increase in the Long Island City tract that would

cause employment to rise by 25,000 workers from its 2010 level. Figure 6A depicts the distribution

of residences among workers employed in that tract in 2010. To contrast the predictions of the

36This is akin to the computation of counterfactual changes holding a realization of firms’ idiosyncratic unit costs
fixed in Eaton, Kortum, and Sotelo (2013, Section 6.1).

37Amazon had requested proposals for HQ2 locations from cities and states across North America. In November
2018, it announced two winners, saying that it would hire more than 25,000 employees each in Long Island City in New
York and Arlington in Virginia (Amazon, 2018). More details can be found in the Memorandum of Understanding
between New York State, New York City and Amazon. Berkes and Gaetani (2023) introduce a model that features
productivity spillovers and skill heterogeneity to analyze Amazon HQ2. Following Berkes and Gaetani (2023), the
“treated” tract in our counterfactual scenario is 36081000700.
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continuum model when using the covariates-based model and the calibrated-shares procedure, we

find the productivity increases ÂCBM
n∗ and ÂCSP

n∗ that raise employment by 25,000 in the Amazon

workplace tract n∗, holding all other economic primitives fixed.38 Appendix F.1 reports additional

results from using alternative values of the labor demand elasticity σ, from using a nested-logit

demand system, and from the SVD-based and IFE specifications of the continuum model.

Figure 6: Amazon HQ2 counterfactual change in residents

A. Residents working in HQ2 tract B. Covariates-based predictions C. Calibrated-shares predictions

Notes: Panel A depicts the number of residents in each tract who work in the treated Long Island City tract
in the 2010 LODES data. The legend of Panel A reports the percentiles corresponding to the integer number of
residents, excluding the treatment tract. Panels B and C depict changes in the number of residents predicted by the
covariates-based model and calibrated-shares procedure, respectively. The legend percentile cutoffs in Panels B and
C correspond to those in Panel A. The covariates-based predictions for residents describe both the continuum model
and the model with finite individuals because the change in the former equals the expected change in the latter.

The counterfactual changes in residential populations are sensitive to the method used: while

the covariates-based approach predicts small changes in all tracts, the calibrated-shares procedure

predicts more varied and less spatially correlated changes. The covariates-based model’s predicted

changes in the number of residents in each tract, shown in Figure 6B, are modest in size and closely

related to transit times to Long Island City. The calibrated-shares procedure’s predicted changes,

shown in Figure 6C, are very large for some residential tracts. The calibrated-shares procedure

predicts increases in residents in neighborhoods scattered across the city, but little increase in

residents in adjacent neighborhoods with short commutes to Long Island City. The calibrated-

shares procedure’s predictions are closely tied to the initial numbers of residents working in the

treated tract: the spatial patterns in Figure 6A and Figure 6C are remarkably similar.

The incidence of Amazon HQ2 on residential rents predicted by the two methods differs consider-

38That is, we find the value of ÂCBM
n∗ such that the solution to equations (5)–(7) yields ℓ̂CBM

kn so that
∑

k(ℓ̂
CBM
kn∗ −

1)ℓCBM
kn∗ = 25, 000 and similarly for the CSP case.
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ably. The greater variation in changes in the number of residents predicted by the calibrated-shares

procedure is accompanied by greater variation in the predicted changes in real rents, r̂k/P̂ . The

calibrated-shares procedure predicts rent increases of 1.6% to 10.4% for the top decile of tracts

(Figure 7C). It suggests that in 12 census tracts, real rents would increase by at least 5%. By

contrast, the covariates-based model predicts more modest increases of 0.8% to 1.3% for the top

decile of affected tracts (Figures 7A and 7B).39 The geographic incidence differs notably. Figure 7

shows that the calibrated-shares procedure predicts much larger rent increases in neighborhoods

far from Amazon HQ2, such as Staten Island in the southwest corner of the map.40 By contrast,

the political opposition to Amazon HQ2 based on concerns about gentrification largely concerned

housing prices in nearby constituencies (Goodman, 2019).

Figure 7: Predicted changes in rents

A. Covariates-based: Continuum B. Covariates-based: Finite C. Calibrated shares

Notes: These maps depict percent changes in rents, (r̂k/P̂ − 1)× 100. Panel A depicts the change in the
covariates-based continuum model. Panel B depicts the mean change across 100 simulations of the model
with finite individuals. Panel C depicts each tract’s predicted rent change using the calibrated-shares
procedure.

Unlike the changes in residents and rents, the changes in workers, wages, and welfare predicted

by the two methods are quite similar. Appendix Figures F.1 and F.2 show the changes in workers

and wages. These predictions are similar because the geographic pattern of employment changes in

response to a productivity shock is closely tied to the initial number of workers employed in each

tract, which the two methods agree upon. Similar to the special case presented in Appendix C.4 and

summarized in Section 3.3, residential responses to a workplace productivity shock largely depend

on the baseline share of a single residence-workplace pair, which differs between the two methods,

39The covariates-based continuum model and model with a finite number of individuals predict very similar rent
changes (compare Panels A and B).

40Appendix Figure F.3 plots rent changes against distance to the treated tract for both methods.
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whereas employment responses depend on the workplace’s share of total employment. The citywide

welfare consequence of the productivity shock, derived in Appendix C.7, is also very similar across

methods. This occurs because the welfare effect of this single-tract employment boom is largely

invariant to spatial linkages: computing counterfactual changes using a parameterization with no

spatial linkages, δkn = 1 ∀kn, also yields a very similar welfare consequence.41

5.2 Uncertainty about counterfactual predictions induced by idiosyncrasies

Counterfactual predictions come with various forms of uncertainty. For example, to capture

uncertainty about parameter values, researchers can bootstrap the counterfactual predictions of

a continuum model. Beyond parameter uncertainty, when the number of individuals is finite,

there is a distribution of equilibrium outcomes associated with the distribution of individuals’

idiosyncratic preferences. To capture the uncertainty stemming from individual idiosyncrasies that

accompanies a change in economic primitives, we simulate the counterfactual change from Υ to

Υ′ for 100 realizations of idiosyncratic preferences νI and construct a 90% confidence interval by

reporting the 5th and 95th percentiles of the distributions of changes.

The predicted tract-level changes in residents and rents are small relative to the idiosyncratic

variation. Figure 8A plots the 90% confidence interval for each tract’s predicted change in residents

against its mean predicted change. Every tract’s 90% confidence interval for the change in residents

has a positive upper bound and a negative lower bound. In this sense, none of the predicted changes

in residents are distinguishable from zero. Figure 8C depicts the results for rents. For about 15%

of residential tracts, the predicted changes in real rents are distinguishable from zero.

Since the predicted changes in the number of workers for some tracts are larger, many of them

are meaningfully large relative to the idiosyncratic variation. As the number of workers varies

across tracts much more than the number of residents, so too do the widths of the confidence

intervals. Figure 8B depicts these confidence intervals for the changes in the number of workers.

For hundreds of workplace tracts, the 90% confidence interval includes both negative and positive

values.42 For tracts predicted to lose many workers, the predicted change is sufficiently large relative

to the uncertainty that even the 95th percentile of changes is negative. It out turns that a binomial

distribution with I draws and p equal to the expected change in the share of employment (the

analytical result for uncertainty for the two-workplace case mentioned in Section 4.5), is a good

approximation of the 90% confidence intervals depicted in Figure 8B.43 For the vast majority of

41This finding does not imply that the two methods will always yield similar welfare conclusions. For counterfactual
scenarios where spatial linkages matter for citywide welfare consequences, they may differ. For example, the citywide
welfare benefit of faster commuting between two tracts that had zero commuters in the 2010 data would be
zero under the calibrated-shares procedure but positive when using the baseline shares from the covariates-based
parameterization.

42While workplaces are generically substitutes for one another, the Amazon expansion alters the pattern of
residential rents, which can cause some individuals to choose a new residence-workplace pair that includes a non-
Amazon workplace. An (idiosyncratic) increase in labor supply can even reduce real wages in such workplaces, as
shown in Figure 8D.

43For example, for I = 2, 488, 905 and the workplace with an expected decrease of 300 employees (p × I = 300),
the binomial distribution’s 90% confidence interval for the employment decrease, pI ± 1.64

√
p(1− p)I ≈ [272, 328],
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Figure 8: Variation in counterfactual changes: Idiosyncrasies vs. parameter uncertainty

A. Changes in residents
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Notes: These plots depict variation in counterfactual changes induced by individual idiosyncrasies in the model
with a finite number of individuals alongside variation attributable to parameter uncertainty about {An}, {Tk},
and ϵ in the covariates-based continuum model. We summarize the former by plotting the 5th and 95th percentiles
of predicted changes in quantities and prices across 100 simulations of the model with a finite number of
individuals. In Panels A, B, C, and D, the horizontal axes correspond to the values depicted in Figures 6B,
F.1B, 7B, and F.2B, respectively. Panels B and D exclude the Amazon HQ2 workplace tract. In Panel A, the
90% confidence interval for the change in residents includes zero for all tracts. In Panel B, one outlier with an
employment decline of 1,483 is not depicted, and the 90% confidence interval for the change in employment
includes zero for 413 of the 2142 non-Amazon workplaces. The 90% confidence interval for the change in
employment for the Amazon workplace tract is 24,777 to 25,349. In Panel C, real rent changes are (r̂k/P̂−1)×100,
and 322 out of 2160 origin tracts have a positive change in rents at the 5th percentile. In Panel D, the real wage
changes are (ŵn/P̂ −1)×100, and 1950 out of 2143 destination tracts have a positive change in wages at the 5th

percentile. We quantify parameter uncertainty by producing 100 counterfactual predictions by sampling with
replacement 2,488,905 individuals from the observed commuting matrix 100 times. For each of these 100 samples,
we estimate the covariates-based continuum model and compute its counterfactual predictions. The plots depict
the 5th and 95th percentiles of predicted changes in quantities and prices across these 100 bootstrap samples.
The variation attributable to parameter uncertainty is considerably smaller than the variation attributable to
individual idiosyncrasies: the bootstrap 5th and 95th percentiles are almost indistinguishable.

aligns closely with that in Figure 8B.
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workplace tracts, the uncertainty over real wages is sufficiently small that the 5th-percentile change

for the real wage is greater than zero (see Figure 8D).44

The uncertainty stemming from individual idiosyncrasies in the model with finitely many

individuals is larger than the variation in counterfactual predictions associated with parameter

uncertainty in the continuum model in this setting. To compute the latter, we sample with replace-

ment 2.5 million individuals from the observed commuting matrix 100 times. For each of these

100 samples, we estimate the covariates-based continuum model and compute its counterfactual

predictions. Figure 8 shows that the variation in counterfactual changes induced by parameter

uncertainty is much smaller than the variation induced by different realizations of idiosyncrasies.

We also investigate the uncertainty stemming from time-varying fundamentals by re-doing the

counterfactual analysis using 2008 data (instead of 2010 data). When using the covariates-based

parameterization, the counterfactual predictions are not very sensitive to the choice of baseline

year: all the real rent changes and more than 95% of the real wage changes produced by the 2008

estimated model are inside the 90% confidence intervals of the predictions from the 2010 estimated

model depicted in Figure 8.45

As we move from tract-level outcomes to examining larger geographic units, the uncertainty

about counterfactual outcomes induced by individual idiosyncrasies diminishes but remains sub-

stantial. If we aggregate tract-level changes into 20 bins based on distance to the Amazon HQ2 tract,

the mean predicted changes in residents and rents decline with distance to the Amazon HQ2 tract.

For all but the first and twentieth ventiles, the 90% confidence interval for the change in residents

includes zero (see Figure F.7). For every ventile, the 90% confidence interval for the rent change

includes the citywide change. The uncertainty about the change in real aggregate output stemming

from individual idiosyncrasies is negligible.46 When we apply the model with a finite number of

individuals to 195 Neighborhood Tabulation Areas rather than tracts, the 90% confidence interval

for the change in residents includes zero for 193 of the 195 NTAs. The confidence intervals for the

predicted change in real rent include the citywide change for 132 NTAs (see Appendix Figure F.9).

The uncertainty about counterfactual tract-level changes in residents and rents is similar when

residential locations are more substitutable and when labor demand is more elastic. Uncertainty is

similar when we employ a nested-logit specification in which residential locations in the same NTA

are closer substitutes (see Appendix Figure F.10). When labor demand is perfectly elastic (σ = ∞),

wages are invariant to individual idiosyncrasies. Uncertainty about rent changes is similar to the

uncertainty in the baseline case (σ = 4), though the mean rent increase is smaller so more tracts

have confidence intervals that include zero (see Appendix Figure F.11).

The predicted consequences of the most closely followed corporate headquarters decision in

recent memory for local economic outcomes are subject to considerable uncertainty stemming from

44If labor demand were perfectly elastic σ = ∞, equilibrium wages would be independent of residual labor supply
and would exhibit no uncertainty: wn ∝ An.

45By contrast, the calibrated-shares procedure’s predictions are much more sensitive to the use of 2008 versus 2010
data. The correlation between the real rent changes shown in Figure 7C and those obtained using the 2008 data is
only 0.23 (0.73 for real wages).

46The 90% confidence interval for the increase in aggregate output is 0.41% to 0.43%.
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individual idiosyncrasies. This notable uncertainty would be missed by the conventional continuum

approach. Given the magnitude of uncertainty stemming from individual idiosyncrasies that we

document in this case, we believe this uncertainty is likely relevant in many empirical applications

that consider the geographic distribution of economic outcomes.

When should a researcher quantify the uncertainty about counterfactual predictions attributable

to individual idiosyncrasies? Our results suggest the geographic scale of the predicted changes is

key: individual idiosyncrasies induce little uncertainty about aggregate outcomes. When studying

spatially fine outcomes, the answer depends on the empirical setting, such as the size and nature of

the counterfactual shock and the expected number of individuals choosing a pair of locations. To

assess whether they can rule out uncertainty attributable to individual idiosyncrasies, researchers

can repeatedly draw finite labor allocations from the continuum model at counterfactual parameters

Υ′ to compute a distribution of differences between finite-sample counterfactual outcomes and the

expected outcome at baseline parameters Υ. This distribution of differences is more dispersed than

the distribution of counterfactual changes from the model with a finite number of individuals that

fixes the vector of idiosyncratic preferences νI .47 If the dispersion of the former is small, then the

uncertainty stemming from individual idiosyncrasies is small. For example, if the distribution of

continuum-model differences does not include zero, then the confidence interval from the model with

finite individuals excludes zero. When uncertainty attributable to individual idiosyncrasies cannot

be ruled out, computing and reporting this uncertainty will produce more informative predictions

about local economic outcomes.

6 Conclusion

Economists increasingly use spatially fine data and quantitative spatial models to compute coun-

terfactual general-equilibrium outcomes. The smaller the number of individuals behind each

economic outcome reported in these granular settings, the less compelling the conventional modeling

assumption that there is a continuum of individuals. These applied general-equilibrium models

need to reliably predict economic changes if policymakers are to use them to inform their decisions

(Kehoe, 2005; Bryan, Glaeser, and Tsivanidis, 2020; Adão, Arkolakis, and Esposito, 2022).

We document that some conventional methods perform poorly when applied to granular settings.

Calibrating pair-specific parameters when there are many pairs of locations relative to the number

of decision makers fits the model to the idiosyncratic component of individual decisions. We

recommend that researchers use Monte Carlo simulations to verify the finite-sample behavior of

their procedures for producing counterfactual predictions in their empirical setting. We show how

to use low-rank matrices to capture unobserved spatial linkages without overfitting when computing

47This distribution of differences is more dispersed than the distribution of counterfactual changes because an
idiosyncratically high outcome at counterfactual parameters Υ′ would also be higher at baseline parameters Υ given
the same idiosyncratic preferences νI . This can be seen by contrasting Figure 9 in Dingel and Tintelnot (2021),
which depicted such differences, to Figure 8 above. Sampling from the continuum model is computationally cheaper
than computing counterfactual outcomes holding idiosyncratic preferences fixed in the model with a finite number of
individuals.
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counterfactual outcomes using exact hat algebra.

Counterfactual outcomes for particular locations vary with individual idiosyncrasies. We intro-

duce a model with a finite number of individuals in which equilibrium outcomes depend in part

on the idiosyncratic component of individuals’ choices. This estimated model yields a distribution

of equilibrium outcomes when computing counterfactual scenarios. Evaluating the counterfactual

consequences of Amazon’s proposed second headquarters in Long Island City, we find that there is

considerable uncertainty about most of the predicted changes in local outcomes. Since all empirical

settings feature a finite number of individuals, the continuum assumption has been made in the

interest of modeling convenience, not realism. The model with a finite number of individuals is

tractable and features a covariates-based specification that can be estimated using the same data

as its continuum counterpart. Thus, it can be applied in the same settings in which economists

have thus far assumed a continuum.
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Proost, Stef, and Jacques-François Thisse. 2019. “What Can Be Learned from Spatial Economics?”

Journal of Economic Literature, 57(3): 575–643.

Quan, Thomas W., and Kevin R. Williams. 2018. “Product variety, across-market demand

heterogeneity, and the value of online retail.” The RAND Journal of Economics, 49(4): 877–

913.

Redding, Stephen J., and Esteban Rossi-Hansberg. 2017. “Quantitative Spatial Economics.” Annual

Review of Economics, 9(1): 21–58.

Ridout, Martin S. 2009. “Generating random numbers from a distribution specified by its Laplace

transform.” Statistics and Computing, 19: 439–450.

Rosenthal, Stuart S., and William C. Strange. 2020. “How Close Is Close? The Spatial Reach of

Agglomeration Economies.” Journal of Economic Perspectives, 34(3): 27–49.

Rossi-Hansberg, Esteban, Pierre-Daniel Sarte, and Raymond Owens. 2010. “Housing Externalities.”

Journal of Political Economy, 118(3): 485–535.

Rutherford, Thomas F. 1995. “Constant Elasticity of Substitution Functions: Some Hints and

Useful Formulae.” Notes prepared for GAMS General Equilibrium Workshop held December,

1995 in Boulder Colorado.

Sanders, Bas. 2024. “Counterfactual Sensitivity in Quantitative Trade and Spatial Models.”

Schoefer, Benjamin, and Oren Ziv. 2022. “Productivity, Place, and Plants.” The Review of

Economics and Statistics, 1–46.

Severen, Christopher. 2021. “Commuting, Labor, and Housing Market Effects of Mass Transporta-

tion: Welfare and Identification.” The Review of Economics and Statistics, 1–99.

Silva, J. M. C. Santos, and Silvana Tenreyro. 2006. “The Log of Gravity.” The Review of Economics

and Statistics, 88(4): 641–658.

Sotelo, Sebastian. 2019. “Practical Aspects of Implementing the Multinomial PML Estimator.”

Working paper.

Train, Kenneth. 2009. Discrete Choice Methods with Simulation. Cambridge University Press.

40



Tsivanidis, Nick. 2023. “Evaluating the Impact of Urban Transit Infrastructure: Evidence from

Bogota’s TransMilenio.” Working paper.

Udell, Madeleine, and Alex Townsend. 2019. “Why Are Big Data Matrices Approximately Low

Rank?” SIAM Journal on Mathematics of Data Science, 1(1): 144–160.

Waddell, Sonya Ravindranath, and Pierre Daniel Sarte. 2016. “From Stylized to Quantitative

Spatial Models of Cities.” Economic Quarterly, 169–196.

Weintraub, Gabriel Y., C. Lanier Benkard, and Benjamin Van Roy. 2008. “Markov Perfect Industry

Dynamics With Many Firms.” Econometrica, 76(6): 1375–1411.
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Appendix

A Monte Carlo simulations

We conduct a Monte Carlo simulation to examine the finite-data performance of the covariates-

based approach and the calibrated-shares procedure. In these simulations, the data-generating

process is our estimated covariates-based model of New York City in 2010. We impose a coun-

terfactual 9% increase in productivity (Ân = 1.09) for the “treated” tract containing 200 Fifth

Avenue, which generates an increase in employment matching the observed change from 2010 to

2012.48 There are no changes in the productivity of other workplace tracts (Ân = 1), no changes

in land endowments (T̂k = 1 ∀k), and no changes in commuting costs (ˆ̄δkn = 1 ∀k, n). In the

limiting case, as I → ∞, the calibrated-shares procedure would perfectly describe the changes

in commuting flows associated with this productivity increase. Thus, any predictive failure when

drawing finite-sample realizations from this data-generating process are due to problems stemming

from the finite number of individuals.

A.1 Monte Carlo exercise: Continuum changes

In the continuum model with parameter values estimated in Section 3.2, the “true” change in

outcomes is given by combining the relative changes in exogenous parameters and the baseline

shares using equations (5)–(7).

We compute predicted changes using the covariates-based model and the calibrated-shares

procedures in 100 simulations of finite-sample data. In each of the 100 simulations, we implement

the following steps:

1. To generate “observed” baseline data, draw a finite-sample realization of the labor allocation

from the parameterized continuum model.

2. Estimate ϵ and other parameters of the covariates-based model using the “observed” real-

ization. Compute baseline shares ℓkn and ykn for the covariates-based model using these

parameter estimates. Compute baseline shares ℓkn and ykn = ℓknwn/δ̄kn for the calibrated-

shares procedure using the finite-sample realization of ℓkn drawn in the previous step and the

“true” values of wn and δ̄kn used in the data-generating process.

3. Using equations (5)–(7), compute the increase in productivity required to match the true

change in employment for the “treated” tract for both the covariates-based approach and the

calibrated-shares procedure.

4. Compute the predicted change in commuter counts (ℓkn(A
′)− ℓkn(A)) and rents (r̂k/P̂ − 1)

using both the covariates-based approach and the calibrated-shares procedure.

48In 2011, Tiffany & Co. moved its corporate headquarters to 260,000 square feet of office space at 200 Fifth
Avenue.
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5. Regress the true change in commuters destined for the treated tract on the changes predicted

by the covariates-based approach. Regress the true change in commuters destined for the

treated tract on the changes predicted by the calibrated-shares procedure. Regress the true

change in real rents on the changes predicted by the covariates-based approach and calibrated-

shares procedure, respectively. Compute the mean squared error of each set of predictions.

The results of these 100 simulations are reported in Figure 2, Panel A of Table 2, Figure A.1,

and Table A.1. Figure A.1 shows that the calibrated-shares procedure predicts changes in rents

poorly with the number of individuals in the data. Table A.1 shows that the slope coefficient

becomes close to one when the number of individuals is two or three orders of magnitude larger.

Figure A.1: Monte Carlo: Calibrated-shares procedure predict rents poorly
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Notes: This figure describes predicted rent changes from the same simulations that produced the predicted commuter
changes in Figure 2 and Panel A of Table 2. This figure depicts the regression coefficients and mean squared errors
from 100 simulations in which I = 2, 488, 905, the data-generating process is the estimated covariates-based model of
New York City in 2010, and the counterfactual change is an 9% increase in productivity in one workplace tract. The
predicted change in real rents is compared to the continuum-model change in real rents.

Table A.1: Calibrated-shares procedure’s finite-sample performance predicting rent changes

I 2.5 5 12.5 25 50 125 250 2560

Calibrated-shares: slope 0.187 0.312 0.535 0.695 0.822 0.918 0.959 0.996
Calibrated-shares: intercept 0.814 0.689 0.465 0.306 0.178 0.082 0.041 0.004
Calibrated-shares: MSE 444.852 219.325 85.426 42.944 21.375 8.708 4.310 0.420

Notes: This table describes predicted rent changes from the same simulations that produced the predicted commuter
changes in Panel A of Table 2.

A.2 Monte Carlo exercise: Finite-sample changes

In any empirical application, the researcher does not observe changes in outcomes for a continuum

of individuals. The observed changes in outcomes come from finite-sample draws from the pre- and
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post-shock data-generating processes. We simulate this setting by drawing two labor-allocation

realizations for each simulation, the first from the estimated model of New York City in 2010 and

the second from that model with 9% higher productivity for the treated workplace tract. For each

simulation, we execute six steps. The first four are identical to those described in the previous

section, Appendix A.1. The last two are

5. Generate “observed” post-shock data by drawing a finite-sample realization of the labor

allocation from the continuum model at the counterfactual productivity vector, which has

9% higher productivity for the treated workplace tract. Compute “observed” changes in

commuter counts by subtracting the step-1 baseline realization of commuter counts from

these realized post-shock commuter counts.

6. Regress the “observed” changes in commuter counts destined for the treated workplace tract

on the changes predicted by the calibrated-shares procedure. Regress the “observed” changes

in commuter counts destined for the treated workplace tract on the changes predicted by the

covariates-based approach.

The results of these simulations are reported in Panel B of Table 2 and Figure A.2. The

additional finite-sample noise raises the MSEs for both methods relative to the simulations described

in Section A.1.

Figure A.2: Calibrated-shares procedure overfits in finite-sample simulations

A. Regression of finite-sample changes on predicted
changes
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Notes: This figure depicts the regression coefficients and MSEs from 100 simulations in which I = 2, 488, 905,
the data-generating process is a finite-sample realization from the estimated covariates-based model of New
York City in 2010, and a finite-sample realization from that model with a 9% increase in productivity in
one workplace tract. “Covariates-based” means applying the parameterization described in Section 3.2 to the
simulated data. “Calibrated-shares” means using the observed (simulated) shares in the exact hat algebra
defined by equations (5)–(7).

A.3 Monte Carlo simulations with unobserved disutility, λkn ̸= 1

Next, we consider a data-generating process in which commuting costs have both an observed and

unobserved component in order to examine the relative predictive performance of the covariates-
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based model and calibrated-shares procedure in granular settings. The commuting costs are now

determined by

ln δkn = ln δ̄kn + lnλkn

lnλkn
iid∼ N

(
0,Λ2 ×Var(ln δ̄kn)

)
, Λ ∈ R+.

The parameter Λ scales the standard deviation of the unobserved component of commuting costs,
stated relative to the standard deviation of the observed component. The simulations shown in

Table 2 are the case in which Λ = 0, so that λkn = 1 ∀k, n. When Λ > 0, the covariates-based

model omits an unobserved component of commuting costs that the calibrated-shares procedure

may, in principle, capture. Since ln δ̄kn and lnλkn are orthogonal by assumption, the covariates-

based model’s predictions will be unbiased, but its forecast errors will increase with the magnitude

of unobserved variation Λ. For Λ = 0.1, 0.25, 0.5, and 1.0, we compute 100 simulations using 100

realizations of the λkn matrix.

Tables A.2 and A.3 present the results of these simulations for continuum-model changes and

finite-sample changes, respectively. As established in the Λ = 0 case, which appears in Table 2, the

calibrated-shares procedure is highly data demanding. For all values of Λ reported in Tables A.2

and A.3, the calibrated-shares procedure’s predictions become unbiased (slope near one) only as the

number of individuals becomes orders of magnitude larger than the true value. Since the calibrated-

shares procedure can capture the unobserved component of commuting costs, its mean forecast

error becomes smaller than that of the covariates-based model when the unobserved variation is

sufficiently large. For the number of individuals in the empirical setting (I = 2, 488, 905), this

occurs only when the unobserved component of commuting costs varies at least a quarter as much

as the observed component (Λ ≥ 0.25) when we evaluate continuum-model changes and more than

half as much as the observed component (Λ > 0.5) when we evaluate finite-sample changes.

A.4 Monte Carlo simulations: Finite-sample changes with fixed νI

This appendix revisits the Monte Carlo investigation of Section 3.4 using a data-generating process

in which the economic primitives change from Υ to Υ′ but the set of idiosyncratic preferences

νI is fixed. This leverages the model introduced in Section 4 as the data-generating process.

Contrasted with the finite-sample outcomes with iid-ν idiosyncrasies, these finite-sample simulations

are substantially closer to the continuum-change outcomes.

Figure A.3 is the fixed-ν analogue of Figure 2, depicting the distributions of the regression

coefficients and relative MSE for the covariates-based model and calibrated-shares procedure. The

covariates-based model outperforms the calibrated-shares procedure. The regression coefficient

results are very similar to Figure 2. The covariates-based model remains an unbiased predictor,

while the calibrated-shares procedure has a median slope of 0.79. The ratio of mean squared errors

is closer to one in these simulations because the noisy finite-sample outcomes mean that both

approaches have larger forecast errors than in the continuum-outcomes case. The MSE ratio in the

median simulation is about 84%.
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Table A.2: Monte Carlo simulations with λkn ̸= 1: Regressand is continuum change

Slope (mean) MSE (mean)
Λ I Covariates-based Calibrated-shares Covariates-based Calibrated-shares

0 2.5 0.9984 0.7793 0.0014 0.2280
0 5 0.9992 0.8759 0.0007 0.1133
0 12.5 0.9997 0.9483 0.0003 0.0451
0 25 0.9998 0.9725 0.0001 0.0227
0 50 0.9999 0.9868 0.0001 0.0113
0 125 1.0000 0.9951 0.0000 0.0045
0 250 1.0000 0.9973 0.0000 0.0023
0 2560 1.0000 0.9997 0.0000 0.0002

0.1 2.5 0.9968 0.7869 0.0380 0.2269
0.1 5 0.9977 0.8810 0.0373 0.1129
0.1 12.5 0.9983 0.9501 0.0370 0.0453
0.1 25 0.9984 0.9731 0.0368 0.0226
0.1 50 0.9985 0.9865 0.0368 0.0113
0.1 125 0.9986 0.9944 0.0367 0.0045
0.1 250 0.9986 0.9971 0.0367 0.0023
0.1 2560 0.9986 0.9996 0.0367 0.0002

0.25 2.5 0.9957 0.8199 0.2405 0.2262
0.25 5 0.9961 0.9025 0.2399 0.1129
0.25 12.5 0.9969 0.9581 0.2395 0.0454
0.25 25 0.9971 0.9787 0.2393 0.0226
0.25 50 0.9971 0.9889 0.2393 0.0113
0.25 125 0.9972 0.9954 0.2393 0.0045
0.25 250 0.9972 0.9978 0.2393 0.0023
0.25 2560 0.9972 0.9997 0.2392 0.0002

0.5 2.5 0.9954 0.8923 1.1084 0.2271
0.5 5 0.9962 0.9451 1.1076 0.1130
0.5 12.5 0.9969 0.9782 1.1071 0.0448
0.5 25 0.9971 0.9877 1.1071 0.0223
0.5 50 0.9972 0.9944 1.1070 0.0113
0.5 125 0.9973 0.9980 1.1069 0.0045
0.5 250 0.9973 0.9986 1.1069 0.0022
0.5 2560 0.9973 0.9999 1.1069 0.0002

1 2.5 1.0057 0.9691 7.0808 0.2186
1 5 1.0063 0.9847 7.0806 0.1090
1 12.5 1.0065 0.9946 7.0809 0.0435
1 25 1.0069 0.9958 7.0802 0.0219
1 50 1.0068 0.9985 7.0805 0.0109
1 125 1.0070 0.9992 7.0803 0.0044
1 250 1.0071 0.9994 7.0803 0.0022
1 2560 1.0070 0.9998 7.0803 0.0002

Notes: This table reports the mean outcomes across 100 simulated event studies for both the covariates-based
model and the calibrated-shares procedure. The data-generating process is the covariates-based model estimated
on data for New York City in 2010 augmented by an unobserved component of commuting costs of magnitude Λ
(see text). The regressand is the continuum change in commuters. The value of I is stated in millions of individuals.
The value labeled “2.5” million is in fact I = 2, 488, 905. The Λ = 0 results also appear in Panel A of Table 2.
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Table A.3: Monte Carlo simulations with λkn ̸= 1: Regressand is finite-sample change

Slope (mean) MSE (mean)
Λ I Covariates-based Calibrated-shares Covariates-based Calibrated-shares

0 2.5 0.9744 -0.4372 14.4853 17.1252
0 5 0.9981 0.2281 7.1769 8.5177
0 12.5 1.0060 0.6695 2.8879 3.4181
0 25 0.9939 0.8216 1.4331 1.6968
0 50 1.0035 0.9169 0.7146 0.8463
0 125 1.0034 0.9687 0.2872 0.3402
0 250 1.0007 0.9832 0.1432 0.1696
0 2560 0.9997 0.9979 0.0140 0.0166

0.1 2.5 0.9938 -0.3548 14.5123 17.1386
0.1 5 0.9901 0.2324 7.2340 8.5081
0.1 12.5 1.0004 0.6782 2.9092 3.4009
0.1 25 0.9994 0.8340 1.4768 1.7056
0.1 50 0.9978 0.9148 0.7557 0.8522
0.1 125 0.9932 0.9606 0.3234 0.3398
0.1 250 0.9977 0.9813 0.1795 0.1704
0.1 2560 0.9983 0.9979 0.0505 0.0164

0.25 2.5 0.9709 -0.1494 14.6285 17.0442
0.25 5 1.0028 0.3911 7.4322 8.5047
0.25 12.5 0.9930 0.7333 3.1229 3.4121
0.25 25 0.9940 0.8639 1.6771 1.6987
0.25 50 0.9915 0.9270 0.9570 0.8495
0.25 125 0.9947 0.9693 0.5244 0.3405
0.25 250 0.9987 0.9875 0.3820 0.1687
0.25 2560 0.9968 0.9977 0.2524 0.0166

0.5 2.5 0.9973 0.3116 15.6180 17.1638
0.5 5 1.0082 0.6617 8.4153 8.5620
0.5 12.5 1.0039 0.8589 4.0031 3.4027
0.5 25 0.9925 0.9212 2.5287 1.6891
0.5 50 0.9990 0.9616 1.8189 0.8509
0.5 125 0.9991 0.9883 1.3973 0.3351
0.5 250 0.9950 0.9911 1.2505 0.1701
0.5 2560 0.9968 0.9989 1.1195 0.0166

1 2.5 0.9945 0.7774 20.9828 17.1174
1 5 1.0069 0.9059 14.2812 8.4447
1 12.5 1.0080 0.9710 10.3390 3.3886
1 25 1.0083 0.9688 8.4068 1.7038
1 50 1.0082 0.9929 7.8493 0.8545
1 125 1.0054 0.9971 7.4572 0.3435
1 250 1.0059 0.9976 7.1958 0.1702
1 2560 1.0075 0.9996 7.0915 0.0163

Notes: This table reports the mean outcomes across 100 simulated event studies for both the covariates-based
model and the calibrated-shares procedure. The data-generating process is the covariates-based model estimated
on data for New York City in 2010 augmented by an unobserved component of commuting costs of magnitude Λ
(see text). The regressand is the simulation-specific change in commuters from a realization drawn from the model
using pre-shock parameter values to a realization drawn from the model using post-shock parameter values. The
value of I is stated in millions of individuals. The value labeled “2.5” million is in fact I = 2, 488, 905. The Λ = 0
results also appear in Panel B of Table 2. Appendix - 6



Figure A.3: Calibrated-shares procedure performs poorly in fixed-νI simulations

A. Regression of observed on predicted changes

0
2

4
6

8

0
5

1
0

D
en

si
ty

−.5 0 .5 1 1.5

Covariates−based: slope Calibrated−shares: slope

Covariates−based: intercept Calibrated−shares: intercept

B. Ratio of models’ prediction errors

0
.1

.2
.3

.4
F

ra
ct

io
n

.7 .75 .8 .85 .9
Covariates−based MSE / Calibrated−shares MSE

Notes: This figure depicts the regression coefficients and MSEs from 100 simulations in which I = 2, 488, 905,
the data-generating process is the estimated covariates-based model of New York City in 2010 with fixed
idiosyncratic preferences νI , and the counterfactual change is a 9% increase in productivity in one workplace
tract.

Fixing the idiosyncratic preferences reduces the excess churn in simulations with iid ν draws:

across 100 simulations, the standard deviation of the total employment increase in the “treated

tract” is about 185 in the iid-ν case and 51 in the fixed-ν case. Eliminating excess churn reduces

the forecast error for both approaches, but their relative predictive performance is similar to the

iid case. Across 100 simulations, the covariates-based model’s average MSEs with iid and fixed

idiosyncratic shocks are 14.49 and 1.23, respectively. The calibrated-shares procedure’s average

MSEs are 17.13 and 1.45, respectively.

B Event studies

This appendix presents additional details regarding the event studies examined in Section 3.5.

B.1 Two employment booms

Figure B.1 depicts the time series of total employment in two New York City census tracts that

contain 200 Fifth Avenue and 111 Eighth Avenue. Between 2010 and 2012, Tiffany & Co. and

Google both substantially increased their employment in these two tracts. These tracts are two of

the 83 examined in the event studies in Section 3.5.

B.2 Event studies using temporal and geographic aggregation

Figure B.2 present the results of pooling multiple years of data and aggregating the predicted

changes in number of commuters to the booming workplace tracts from residential tracts up to

residential NTAs.
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Figure B.1: Employment in two of the event-study tracts
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Notes: This figure depicts the number of primary jobs held by New York City residents in tracts
36061005800 and 36061008300 in the LODES data.

B.3 Estimating the model using larger spatial units

One may try to avoid the calibrated-shares procedure’s overfitting problem by analyzing larger

spatial units. Studying New York City’s 195 Neighborhood Tabulation Areas (NTAs) instead of

tracts reduces the number of locations by an order of magnitude and the number of location pairs

by two orders. To do so, we aggregate tract-to-tract commuter counts up to NTA-to-NTA flows,

compute NTA-to-NTA commuting costs as the average of tract-to-tract commuting costs δ̄kn, and

compute NTA-level wages using employment-weighted averages of tract-level wages. We use both

the covariates-based model and the calibrated-shares procedure to predict changes in NTA-to-NTA

commuting flows for the 35 NTAs that had 2010-2012 employment growth of at least 12.5% and at

least 2,000 employees in 2010.

When analyzing these substantially larger spatial units, the covariates-based approach and the

calibrated-shares procedure perform similarly. Figure B.3 shows that the covariates-based model’s

median slope coefficient is closer to one. The covariates-based model has a lower MSE than the

calibrated-shares procedure in 18 of the 35 events.

B.4 Noise reduction via low-rank approximation

B.4.1 The approximation procedure

One method for guarding against idiosyncratic noise in the observed commuting matrix is to use

values of ℓkn derived from a low-rank approximation of the matrix rather than the observed values

when plugging ℓkn and ykn = ℓknwn/δ̄kn into equations (5)–(7). That is, for some particular rank

r, replace the commuting matrix L = [ℓkn] with

L̃ = arg min
M∈RK×N

∥L−M∥2F , subject to rank(M) ≤ r, (B.1)

where ∥ · ∥F is the Frobenius matrix norm. The solution to this problem can be computed from

the singular value decomposition (SVD) of the original matrix L. In particular, the optimal

approximation L̃ is given by the following algorithm (Hastie, Tibshirani, and Wainwright, 2015):
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Figure B.2: Models’ predictive performance with temporal and geographic aggregation
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B. Temporal aggregation: Prediction errors
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C. Geographic aggregation: Regressions
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Notes: This figure contrasts the covariates-based model and calibrated-shares procedure’s predictions
for 83 tract-level employment booms when employing temporal aggregation or geographic aggregation.
Panels A and B depict results when using baseline data for 2008-2010 instead of only 2010. Panels C
and D depict predictive performance after aggregating the tract-level predictions underlying Panels A and
B of Figure 3 up to 195 Neighborhood Tabulation Areas. We sum the predicted change in commuters to
the booming workplace tract across all residential tracts in an NTA. In panel A,
In Panel C, only the slope coefficients are depicted. Vertical lines depict the medians of the slope coefficient
distributions.

� Compute the SVD of L = UΣVT , where U is a K × K orthonormal matrix, Σ is a non-

negativeK×N diagonal matrix with diagonal elements representing the singular values sorted

in descending order, and VT is an N ×N orthonormal matrix.

� Keep only the first (largest) r singular values in Σ, to obtain L̃ := U

(
Σr 0

0 0

)
V T , where Σr

is the upper left r× r block in Σ.

However, this approximation is imperfect for our purposes on two accounts: first, while the

original matrix L is non-negative (as it consists of counts), there is no guarantee that the rank-r

approximation is also non-negative. We therefore set all negative entries in L̃ to 0. Additionally,

L̃ must be rescaled so that the sum across its entries matches the original; that is, we obtain L̃SVD
r
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Figure B.3: Models’ predictive performance across 35 NTA-level employment booms
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Notes: This figure depicts predictive performance when fitting both approaches using data aggregated up
to the 195 Neighborhood Tabulation Areas defined by the New York City Department of City Planning. In
panel A, 10 intercept coefficients are not depicted for the covariates-based model. 5 intercept coefficients
are not depicted for the calibrated-shares procedure. Panel A depicts the distributions of slope coefficients,
and the vertical lines denote the median slope coefficients.

by replacing negative entries in the rank-r SVD approximation with zeros, then rescaling such that∑
k,n

(
L̃SVD
r

)
kn

=
∑

k,n ℓkn.

Figure B.4 visualizes the approximated matrices derived from three choices of rank. alongside

the observed 2010 data and the fitted values from the covariates-based and rank-1 interactive-

fixed-effects specifications. (The IFE procedure is described in detail in Appendix B.5.) The

SVD-approximated commuting matrices preserve many features of the observed commuting matrix

even under fairly stringent rank restrictions. In particular, workplaces with a large number of

commuters are preserved, as are clusters of tracts with comparatively high or low commuting

shares. Some features, however, are discarded by the approximation. Most notably, the higher

values on the diagonal of the matrix (which corresponds with commuters who choose to live and

work in the same tract) are missing from low-rank approximations (e.g., rank 5 and rank 16) but are

contained in higher-rank approximations (e.g., rank 200). This is because the diagonal of a matrix

is a fundamentally “high-rank” phenomenon and cannot in general be replicated by a low-rank

approximation.

Table B.3 summarizes the sparsity generated by approximations derived from various ranks,

including both the SVD-based procedure described above and the non-negative factorization pro-

cedure described in Section B.4.3.

B.4.2 Selecting the rank

When applying any rank-restricted algorithm, the rank of the approximation is a key choice.

Since we are using low-rank approximation to reduce idiosyncratic noise, the choice of the rank

parameter r balances the trade-off between the signal and noise in observed commuting flows. We
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Figure B.4: Approximations of the commuting matrix
A. Observed commuting matrix B. Fitted values, CBM C. Rank-5 SVD

D. Rank-16 SVD E. Rank-200 SVD F. Fitted values, IFE rank 1

Notes: This figure depicts the observed 2010 commuting matrix, the fitted covariates-based model (CBM) of ℓkn,

approximations derived from rank-5, rank-16, and rank-200 singular value decompositions, and a rank-1 interactive-

fixed-effects specification. Rows and columns are ordered by FIPS codes, so that all but eight adjacent entries are in

the same county.

present multiple procedures from which a researcher can select to choose the rank used; some are

computationally and conceptually simple (drawing from the established norms in machine learning),

while a Monte Carlo simulation is more complex and tailored to a particular context. We describe

each procedure in turn and present results, including their suggested rank.

Selecting the rank by simple methods After computing the SVD of the commuting matrix

(which takes only seconds), we obtain an ordered list of singular values σ1, σ2, . . . , σN with σi ≥ σj

for i < j. These are depicted in a scree plot in Figure B.5, which normalizes the singular values by

dividing each by the sum of all singular values (i.e.,
σi′∑
i σi

) and restricts attention to the 25 largest

singular values. This normalization allows us to interpret each singular value as representing a

fraction of the matrix’s total variation (Cohen, 2021, p.499).

Figure B.5 allows us to evaluate two distinct rank criteria. The first is an informal procedure
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Figure B.5: Scree plot (ordered singular values) for NYC 2010 commuting matrix

Notes: This figure shows the magnitude of successive singular values for the NYC 2010 commuting matrix. The

dashed line indicates the threshold of 0.5% of the sum of the singular values.

known as the “elbow” method, which is a method of visual inspection that attempts to identify

the singular values that are substantially larger than the rest. The second, the variance criterion,

is numerically founded but nonetheless requires a cutoff chosen by the researcher (Cohen, 2021,

p.496). For the variance criterion, we compare the magnitude of each singular value with 0.5%

of the sum of singular values; that is, we identify the set {σi |σi ≥ 0.005
∑

j σj}. This cutoff is

shown with a dashed horizontal line in the scree plot. The two methods offer substantially different

answers in our case, with the elbow method suggesting a lower rank of 4 and the 0.5% variance

criterion suggesting a rank of 16. We select the more generous of these values and use rank 16 as

our preferred specification in the main text.

Selecting the rank using Monte Carlo simulations Another method for selecting the rank

is dependent on the research setting permitting Monte Carlo simulations. One can select the

rank based on ranks’ performance across Monte Carlo simulations (using regression coefficients

and MSEs summarizing commuting-flow predictions). While substantially more computationally

complex than the simple methods above, this procedure yields results that are more closely tied to

the particular structure of the empirical setting.

Starting from the steps outlined in Appendix A.1 across 100 Monte Carlo draws from the

continuum model, we follow steps 1 through 5 with two exceptions. First, we consider only changes

in commuter flows, not rents; and second, we substitute the SVD-approximated commuting counts

ℓ̃SVD
kn for the “observed” counts, ℓkn, which are drawn from the data-generating process. Note that

this requires us to approximate the commuting matrix separately for each of the Monte Carlo draws.

As in Appendix A.1, we estimate the commuting elasticity ϵ for each of the Monte Carlo draws.

The inputs into this commuting elasticity estimation are the “observed” values as in the covariates-

based model, not the SVD-approximated commuting matrix. Finally, we raise productivity in the

same tract (containing 200 Fifth Avenue) as in the Appendix A.1 simulations.
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Table B.1 reports the performance across ranks in these Monte Carlo simulations. Rank 18

performs best in these simulations based on MSEs and is nearly best based on regression coefficients.

Rank 16, which is suggested by the variance criteria shown in Figure B.5, performs very similarly.

The lower panel of Table B.1 presents the event study performance (for the same 83 employment

booms as in Section 3.5.3) for approximations derived from a wide variety of ranks. The rank-16

results are shown in Figure 4.

B.4.3 Non-negative matrix factorization

While the previously outlined SVD procedure is one means of implementing noise reduction,

truncating the commuting shares to be non-negative means that the resulting approxmiation is

not necessarily low-rank. Another approach is to use an algorithm that imposes the non-negativity

constraint. That is, we find a solution to the problem

L̃NNMF = arg min
M∈RK×N

∥L−M∥2F subject to rank(M) ≤ r, and [M]kn ≥ 0. (B.2)

Solving this problem is more difficult and, unlike in the unconstrained case in which the

solution is uniquely determined by SVD, there may be multiple (local) optima. We use the

Greedy Coordinate Descent algorithm from Hsieh and Dhillon (2011) with a fixed initialization as

implemented in the Julia package NMF. This procedure produces low-rank approximated matrices

that deliver very similar performance as the computationally simpler SVD procedure described

above. The results for event studies are shown in Table B.2.

B.4.4 Results

Table B.1 reports the event study and Monte Carlo performance of the SVD-approximated matrices.

Table B.2 reports the event study performance of the non-negative matrix factorization (NNMF)

approximations across ranks. As the non-negative matrix factorization appears to provide no

meaningful improvement over the simpler SVD approximation procedure, we do not present any

further analysis via Monte Carlo simulations for that procedure. Finally, Table B.3 reports the

proportion of the approximated commuting matrix’s entries that are zero across ranks for both

approximation methods. While we used δ̄kn to calculate ykn = wnℓkn/δ̄kn in line with the rest of

the paper, we have verified that the SVD approximation predictions are nearly identical when using

ykn = wnℓkn.

B.5 Interactive fixed effects

B.5.1 Modeling unobserved commuting costs

This section extends the covariates-based model to incorporate unobserved disutility components of

commuting costs. We assume that λkn has a low-rank factor structure. Specifically, we parameterize

Appendix - 13



Table B.1: Summary of SVD Monte Carlo and event study results by rank

Rank
1 2 3 4 5 6 8 10 12 14 15 16 18 20 50 100 500 1000 1500 full rank

Monte Carlo performance

Slope 1.03 1.05 1.04 1.04 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .99 .91 .78 .78 .78 .78 .78
Int. -.041 -.059 -.056 -.049 -.021 -.012 .001 -.002 -.002 -.001 -.001 .001 .003 .014 .116 .268 .271 .271 .272 .272
MSE .1579 .0461 .0460 .0460 .0372 .0357 .0333 .0322 .0323 .0320 .0318 .0315 .0311 .0311 .0930 .2241 .2279 .2280 .2280 .2280

Event study performance

Slope .73 .70 .71 .80 .83 .86 .85 .83 .83 .82 .82 .81 .80 .79 .62 .32 -.43 -.47 -.47 -.46
Int. .06 .14 .14 .09 .08 .08 .10 .13 .13 .14 .14 .15 .16 .17 .30 .51 .80 .82 .82 .82
MSE 10.53 10.38 10.37 10.29 10.27 10.26 10.27 10.30 10.32 10.32 10.38 10.40 10.45 10.48 10.96 11.71 12.94 13.23 13.35 13.39

Notes: This table reports the predictive performance, measured by the average values of the regression slope and
intercept coefficients and MSE, using SVD approximations of various ranks across two cases: a) 100 Monte Carlo
simulations, with each drawn from the parameterized continuum model with a 9% productivity shock to the tract
containing 200 Fifth Avenue, where the performance is evaluated relative to the continuum model’s predictions;
and b) the 83 event studies examined in Section 3.5.

Table B.2: Summary of NNMF event study results by rank

Rank
1 2 3 4 5 6 8 10 12 14 16 18 20 15 50

Event study performance

Slope .73 .70 .71 .78 .78 .81 .85 .87 .87 .87 .87 .86 .83 .81 .71
Int. .06 .14 .14 .11 .12 .10 .10 .10 .10 .10 .10 .11 .13 .15 .25
MSE 10.53 10.38 10.37 10.28 10.27 10.29 10.30 10.24 10.25 10.25 10.26 10.31 10.34 10.42 10.88

Notes: This table reports the predictive performance, as measured by the average values of the regression slope
and intercept coefficients and MSE, across the 83 event studies examined in Section 3.5 using various ranks of
NNMF low-rank approximated commuting matrices.

Table B.3: Percentage (%) of approximated commuting matrix entries equal to zero

Rank
1 2 3 4 5 6 8 10 12 14 15 16 18 20 50 100 500 1000 1500 2143

SVD 0 1.9 2 6 11 12 15 15 16 17 17 17 17 18 22 26 37 41 42 85
NNMF 0 .4 .1 3 4.1 3.9 3.6 1.9 1.6 1.5 1.4 1.4 1 1.1 .5

Notes: This table reports the proportion of entries in the approximated commuting matrices, across ranks, that
are equal to zero. These values are shown for both the SVD and the NNMF procedures, though we omit high-rank
approximations via NNMF because of computational burden. The SVD procedure results in many more zeros,
particularly for larger ranks, than the NNMF, largely due to the generation of negative values by SVD prior to our
truncating them to zero.

the overall commuting costs δkn as

δkn = δ̄kn × exp(ψ′
kγn)︸ ︷︷ ︸

=λIFE
kn

,

where ψk and γn are R × 1 vectors that give rise to an R-dimensional factor structure. The log

likelihood function then becomes

lnLIFE =
∑
k,n

ℓkn ln

[
wϵn
(
rαk δ̄kn exp(ψ

′
kγn)

)−ϵ∑
k′,n′ wϵn′

(
rαk′ δ̄k′n′ exp(ψ′

k′γn′)
)−ϵ
]
. (B.3)
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In practice, to implement the estimation of the parameters, we follow Chen, Fernández-Val,

and Weidner (2021), who estimate interactive fixed effects in a Poisson model. Here, multiple

practical difficulties arise. Most critically, the likelihood is no longer convex; in particular, there is

the possibility of multiple local optima. To guard against this, we use multiple randomized starting

points and select the parameter estimates that produce the highest likelihood. Another difficulty

is that the computational cost of this procedure rises rapidly with the factor dimension R. We

consider R ≤ 3. Note that in all specifications, additive fixed effects are already included to obtain

estimates for wϵn and rαk ; that is, R gives the dimension of the “purely” interactive fixed effects.49

In the main text, we show the estimates from the model with R = 1 for two reasons. First, we

take advantage of the relative computational ease of the R = 1 case to estimate from a large number

of starting points and find a consistent convergence pattern that suggests our estimate is the true

optimum. Second, the eigenvalue ratio test suggested by Chen, Fernández-Val, and Weidner (2021)

indicates that R = 1 is the optimal factor structure among the set of options {1, 2}. Possible choices
of R span the range from the covariates-based specification (when R = 0) to the calibrated-shares

procedure (the full-rank case).50 The event study results for rank R = {2, 3} are very similar to

those for rank R = 1 and are shown below.

B.5.2 Estimation results

Table B.4 presents the estimates from maximizing the log likelihood function in equation (B.3)

using the algorithm outlined by Chen, Fernández-Val, and Weidner (2021). We show results for

R = 0, 1, 2, 3, where R = 0 is identical to the covariates-based model and the OLS column is

included for the sake of comparison. The magnitude of the commuting elasticity ϵ diminishes

with the rank of the factor structure. As expected, the model fit metrics increase with the factor

structure rank, as higher ranks correspond to more free parameters to attain better (in-sample) fit.

B.5.3 Event study results for rank R = {2, 3}

In Figure B.6, we display the event study performance for IFE factor structure ranks 2 and 3. The

extreme similarity in performance across the ranks suggests that rank 1 is sufficient to capture most

of the expected gains from using IFE over the CBM.

49This differs from the notation in Chen, Fernández-Val, and Weidner (2021), who include the additive fixed effects
in the factor dimension R. Our purely interactive factor dimension is, in their notation, R2.

50Consider the case of a 2× 2 commuting matrix A. This matrix can be decomposed into two 2× 2 matrices (e.g.,
AI). However, there are many such decompositions, illustrating a failure of identification when fitting the commuting
matrix with full-rank interactive fixed effects. Notice also that simply limiting the dimensions of the decomposition is
not sufficient. In the 2× 2 case, the only matrices A that can be written as the product of a 2× 1 with a 1× 2 vector
are those with rank 1. As our commuting matrix is full rank, this suggests why a very high rank (and accompanying
identification issues) would be needed to reproduce the calibrated-shares procedure using only high-rank interactive
fixed effects.
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Table B.4: Commuting elasticity estimates from IFE specification

OLS MLE
R = 0 R = 1 R = 2 R = 3

Commuting cost -2.307 -7.986 -7.177 -6.654 -6.36
(pseudo-)R2 0.561 0.662 0.685 0.694 0.701

Location pairs 690,673 4,628,880
Commuters 2,488,905 2,488,905

Notes: All specifications include residence fixed effects and workplace fixed effects. The columns under

“MLE” present the results from the maximum likelihood estimation described in the text, with R denoting the

interactive fixed effects factor structure rank. The “OLS” column presents the results of estimating the log

version of equation (2) by ordinary least squares, omitting observations where ℓkn = 0. The model-fit statistic

is pseudo-R2 for MLE and R2 for OLS.

Figure B.6: Event study performance: varying factor structure rank, IFE

A. Rank 2
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B. Rank 3
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Notes: This figure summarizes the predictive performance of the covariates-based model and the ranks 2 and

3 IFE specifications, analogous to Figure 5. Panel A depicts the distributions of slope coefficients, and the

vertical lines denote the median slope coefficients.
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B.6 Tests of in-sample fit

In this appendix section, we assess the in-sample fit of different model parameterizations. The χ2

test contrasts the expected and observed frequencies of outcomes and compares this difference to a

critical value from the test-statistic distribution. Since in our application the expected frequencies

of outcomes are small, the test statistic may not follow the asymptotic χ2 distribution. We therefore

construct the test statistic’s distribution using a parametric bootstrap.

The test statistic is χ2 =
∑

kn
(ℓobskn −E[ℓkn])2

E[ℓkn] , where ℓobskn is the observed number of individuals

who reside in k and work in n in the data and E[ℓkn] is the expected number of commuters (given

by ℓkn in equation (2)). We construct the model-implied distribution of this test statistic from a

parametric bootstrap in the following way:

1. We calculate the test statistic using

χ2 simulated =
∑
kn

(ℓsimkn − E[ℓkn])2

E[ℓkn]
, ℓsimkn

iid∼ Multinomial(I, {pkn})

where pkn ≡ Pr(U ikn > U ik′n′ ∀(k′, n′) ̸= (k, n)) is the model-implied probability of choosing

kn defined in equation (8) and I = 2, 488, 905 is the total number of commuters.

2. We repeat the first step 1,000 times to obtain the parametric-bootstrap-based distribution

f̂
(
χ2 simulated

)
.

The χ2 test statistic for the covariates-based model is extremely large (calculated as 8.445e299,

though numerical error may be sizable). This very large value of the test statistic is driven by outlier

observations for which the model’s expected number of commuters is extremely small (i.e., nearly

equal to zero). By comparison, the test statistics for the interactive-fixed-effects specifications are

much smaller: 1.006e7, 1.268e7, and 8.962e6 for ranks R = 1, 2, and 3, respectively. Nonetheless,

all these test statistics exceed the 99th percentiles of the distributions of the χ2 test statistics shown

in Figure B.7A.

By contrast, the calibrated-shares procedure has perfect in-sample fit by construction and a χ2

test statistic of zero. This fit is too good to be true: the test statistic of zero for the observed data

is lower than all simulated values in the distribution generated by the parametric bootstrap.

We also assess the in-sample fit produced by the rank-restricted singular value decomposition

(SVD) introduced in Section 3.5.3. One issue for this specification is that the rank-restricted

SVD assigns zeros to some residence-workplace pairs that have positive counts in the data. A

zero-probability event occurring rejects the parameterized model. We calculate the mean squared

error (MSE) as an alternative test statistic that sidesteps the divide-by-zero issue. Specifically, we

calculate MSE = 1
K×N

∑
kn(ℓ

obs
kn − E[ℓkn])2, where K is number of residence tracts and N is the

number of workplace tracts. The parameterized bootstrapped distributions of MSE test statistics

are shown in Figure B.7B. The approximated commuting matrix derived from a rank-110 SVD

would lie within the 99-percent confidence interval, whereas higher-rank approximations exhibit an

in-sample fit that is too good to be true.
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Figure B.7: Distributions of χ2 and MSE test statistics

A. Distributions of χ2 test statistics
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B. Distributions of MSE test statistics
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Notes: The test statistic in the left panel is χ2 =
∑

kn

(ℓobskn −E[ℓkn])2

E[ℓkn]
, where ℓobskn is the number of commuters from k

to n and E[ℓkn] is the expected value of commuters from k to n (given by ℓkn in the continuum model’s equation (2)).
We depict the distributions between their 0.5th and 99.5th percentiles. The test statistics using the commuter counts
in the 2010 LODES data are 8.445e299, 1.006e7, 1.268e7, and 8.962e6 for the CBM, rank-1 IFE, rank-2 IFE, and
rank-3 IFE, respectively. The test statistic in the right panel is MSE = 1

K×N

∑
kn(ℓ

obs
kn − E[ℓkn])2, where ℓobskn is the

number of commuters from k to n, E[ℓkn] is the expected value of commuters, K is number of residence tracts, and N
is the number of workplace tracts. We depict the distributions between their 0.5th and 99.5th percentiles. The test
statistics using the commuter counts in the 2010 LODES data are 1.467, 0.5725, 0.3581, and 0.1799 for the rank-16,
rank-100, rank-200, and rank-500 singular value decompositions, respectively.

B.7 Spatially correlated idiosyncratic preferences

This appendix section relaxes the assumption that idiosyncratic preferences are independent across

granular spatial units. In particular, preferences for residence-workplace pairs have a nested-logit

structure, such that individual i’s indirect utility of residing in k and working in n is

Ů ikn = ϵ̊ ln

(
wn

rαkP
1−αδkn

)
︸ ︷︷ ︸

≡Ůkn

+ν̊ikn, (B.4)

where Ůkn denotes the mean utility of choice kn and the parameter ϵ̊ governs the importance of

mean utility relative to idiosyncratic preferences in the nested-logit specification. We allow the

idiosyncratic preferences ν̊ikn to be correlated across residences within Neighborhood Tabulation

Areas (NTAs). We assume that the vector of idiosyncratic preferences has a cumulative distribution

F (̊νi) = exp

{
−
∑

z

(∑
(k,n)∈Bz

e−ν̊
i
kn/ζ

)ζ}
, where Bz denotes the set of residence-workplace kn

pairs with the residence k in NTA z, and ζ governs the correlation of idiosyncratic preferences

among alternatives in the set Bz. Whereas draws of idiosyncratic preferences between residence-

workplace pairs with residences in distinct NTAs remain uncorrelated, the within-residence-NTA

correlation of idiosyncratic preferences is 1 − ζ2. Given equation (B.4) and this distribution of
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idiosyncratic preferences, the fraction of people residing in k and working in n is

Pkn =
w
ϵ̊/ζ
n (rαk δkn)

−̊ϵ/ζ∑
(k′,n′)∈Bz

w
ϵ̊/ζ
n′ (rαk′δk′n′)−̊ϵ/ζ︸ ︷︷ ︸

=Pkn|Bz

×

[∑
(k′,n′)∈Bz

w
ϵ̊/ζ
n′
(
rαk′δk′n′

)−̊ϵ/ζ]ζ
∑

z′

[∑
(k′,n′)∈Bz′

w
ϵ̊/ζ
n′
(
rαk′δk′n′

)−̊ϵ/ζ]ζ︸ ︷︷ ︸
=PBz

,

where PBz denotes the probability of residing in NTA z and Pkn|Bz
denotes the probability of

selecting residence-workplace pair kn among residents of NTA z.

Under the assumption of nested-logit preferences and no unobserved disutility (δkn = δ̄kn∀kn),
the counterfactual-baseline ratio of commuters is

ℓ̂kn =

(
ŵn

r̂αk
ˆ̄δkn

)ϵ̊/ζ
×

[∑
(k′,n′)∈Bz

(
ŵn′

r̂α
k′
ˆ̄δk′n′

)ϵ̊/ζ
× Pk′n′|Bz

]ζ−1

∑
z′ PBz′

[∑
(k′,n′)∈Bz′

(
ŵn′

r̂α
k′
ˆ̄δk′n′

)ϵ̊/ζ
× Pk′n′|Bz′

]ζ if ℓkn > 0.

This specification yields the following log likelihood function:

lnL ≡
∑
k,n

ℓkn lnPkn =
∑
k,n

ℓkn ln

wϵ̊/ζn (rαk δkn)
−̊ϵ/ζ ×

[∑
(k′,n′)∈Bz

w
ϵ̊/ζ
n′
(
rαk′δk′n′

)−̊ϵ/ζ]ζ−1

∑
z′

[∑
(k′,n′)∈Bz′

w
ϵ̊/ζ
n′
(
rαk′δk′n′

)−̊ϵ/ζ]ζ
 .

We sequentially estimate the parameters of the nested-logit model (Train, 2009). In the first

step, we maximize the log likelihood with respect to ϵ̊/ζ, residence fixed effects, workplace fixed

effects, and nest-specific fixed effects. Given the fixed effects, the estimate of ϵ̊/ζ will be equal to

the estimate of ϵ in the logit case. Note that the residence fixed effects are unique only up to a

nest-specific normalization. We normalize the residence fixed effects relative to r
−α̊ϵ/ζ
k for some

residence k in each NTA z. We index the baseline residence within a NTA as k̄(z). Once we impose

the normalization, we have residence fixed effects
(

rk
rk̄(z)

)−α̊ϵ
. We can therefore write

Pkn|Bz
=

[(
rk
rk̄(z)

)−α̊ϵ
wϵ̊nδ̄

−̊ϵ
kn

]1/ζ
∑

(k′,n′)∈Bz

[(
rk′
rk̄(z)

)−α̊ϵ
wϵ̊n′ δ̄

−̊ϵ
k′n′

]1/ζ =

[(
rk
rk̄(z)

)−α̊ϵ
wϵ̊nδ̄

−̊ϵ
kn

]1/ζ
Iz

, and PBz =
r−α̊ϵ
k̄(z)

Iζz∑
z′ r

−α̊ϵ
k̄(z′)

Iζz′
,

where Iz is the inclusive value of nest z. In the second step, we compute the inclusive values using

the estimates from the first step. Having the estimates of the inclusive values, Îz, we maximize the
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following log likelihood function with respect to rk̄(z):

ln L̃ ≡
∑
z

 ∑
(k,n)∈Bz

ℓkn

 lnPBz =
∑
z

 ∑
(k,n)∈Bz

ℓkn

× ln

 r−α̊ϵ
k̄(z)

Îζz∑
z′ r

−α̊ϵ
k̄(z′)

Îζz′


Note that we cannot simultaneously identify rk̄(z) and parameter ζ because the number of

parameters exceeds the number of alternatives. We assume that the value of parameter ζ is known,

in order to estimate rk̄(z) up to a proportionality coefficient. We compute the equilibrium prices

and the remaining economic primitives {Tk} and {An} from the estimated fixed effects and the

market-clearing conditions.

We estimate the model for two values of parameter ζ: 0.25 and 0.75. We estimate each stage of

the model by using the Poisson pseudo maximum likelihood estimator described in Section 3.2.When

ζ is 0.75, the elasticity parameter ϵ̊ is 5.99 (= 7.99× ζ). The implied productivities are unchanged,

and the implied land endowments have a correlation of 0.99 with the land endowments in the

baseline model. When ζ is 0.25, the elasticity parameter ϵ̊ is 2.0. The implied productivities are

unchanged, and the implied land endowments have a correlation of 0.61 with the land endowments

in the baseline model.

As long as the nested-logit model and the logit-model agree on the unconditional choice prob-

abilities (i.e., they imply the same Pk′n′), we note that in the nested-logit model there is greater

within-nest substitution in response to a change in commuting costs than in the simple logit model.

This can be seen in the second of the following three elasticities, noting that Pk′n′|Bz
> Pk′n′ :

∂ lnPkn
∂ ln δk′n′

=


−ϵ(1− Pk′n′|Bz

)− ϵ̊(Pk′n′|Bz
− Pk′n′) if k′ = k, n′ = n and (k, n) ∈ Bz

ϵ
(
ζPk′n′ + (1− ζ)Pk′n′|Bz

)
if k′ ̸= k, (k′, n′) ∈ Bz and (k, n) ∈ Bz

ϵ̊Pk′n′ if (k′, n′) /∈ Bz and (k, n) ∈ Bz

We use the model to compare the predictive performance of the covariates-based model and

the calibrated-shares procedure in 83 employment booms that are detailed in Section 3.5. Fig-

ure B.8 contrasts the predictions of the two procedures for each value of the parameter ζ. As the

figure shows, the results are robust to the alternative assumptions about preferences. Even when

idiosyncratic preferences are highly correlated within residence NTAs, the covariates-based model

considerably outperforms the calibrated-shares procedure.

B.8 Alternative labor demand elasticities

We compare the predictive performance of the covariates-based model and the calibrated-shares

procedure for varying values of σ, the local labor demand elasticity. For both σ = 1.1 and σ = ∞,

the covariates-based model has a lower mean squared error than the calibrated-shares procedure

in 80 of the 83 events.51 The covariates-based model outperforms the calibrated-shares procedure

51Note that the specification with σ = 1.1 does not satisfy the sufficient condition for uniqueness.
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Figure B.8: Comparison of methods’ predictive performance with nested-logit νi

A. ζ = 0.75: Regression coefficients
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C. ζ = 0.25: Regression coefficients
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D. ζ = 0.25: Ratio of prediction errors
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Notes: The pairs of panels in this figure depict results analogous to those in Figure 3 for the nested-logit model
introduced in this appendix with nesting parameter ζ = 0.75 (Panels A and B) and ζ = 0.25 (Panels C and D).
The results for ζ = 0.75 and ζ = 0.25 are not numerically identical, but they typically coincide to two decimal
places and are visually indistinguishable.

regardless of the value of σ because their predictions are not very sensitive to σ. Varying σ does

not meaningfully change the slope, intercept, or MSEs. As an example, Figure B.9 shows that the

slope coefficients obtained when using σ = 1.1 or σ = ∞ are very similar to those for σ = 4.0 in

the calibrated-shares procedure.

B.9 Local increasing returns to scale

This appendix section details the process for computing counterfactual predictions with local

increasing returns and shows the results of such an exercise. In short, the predictions from both

the covariates-based model and the calibrated-shares procedure are not sensitive to local increasing

returns over the range of relevant values.

Per Appendix C.11.4, we assume that the increasing returns are external to the firm and that the
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Figure B.9: Event-study slope coefficients by local labor demand elasticity σ

A. Slope coefficients for σ = 1.1 versus σ = 4.0
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B. Slope coefficients for σ = ∞ versus σ = 4.0
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Notes: The slope coefficients come from regressions of the observed change in commuters on the predicted
change in commuters for each of the 83 tract-level employment booms.

production function in location n is given by qn = ĀnL
η+1
n . This implies the goods-market-clearing

condition is

Ān

(∑
k

ℓkn/δ̄kn

)1+η

=
w−σ
n Āσn

(∑
k ℓkn/δ̄kn

)ησ
P 1−σ Y.

This can be rearranged to solve for wn:

wn = Ā
σ−1
σ

n

(∑
k

ℓkn/δ̄kn

)ση−1−η
σ

P
σ−1
σ Y

1
σ .

To express the counterfactual outcomes via exact hat algebra, take ratios to obtain:

ŵn = ˆ̄A
1

η+1
n

(∑
k

ŷkn
ykn∑
k′ yk′n

)1− σ
(σ−1)(η+1)

P̂
1

η+1 Ŷ
1

(σ−1)(η+1) .

This expression for changes in wages generalizes equation (5) to the case of local increasing returns.

Equations (6) and (7) are unchanged. The change in the CES price index is

P̂ =

∑
n

(
ŵn
ˆ̄AnL̂

η
n

)1−σ ∑
k ykn
Y

 1
1−σ

.

In the event studies of 83 local employment booms, the covariates-based model outperforms the

calibrated-shares procedure regardless of the value of η; varying η does not meaningfully change the

slope, intercept, or MSEs. The differences in predicted commuting flows typically differ only on the

order of 10−2 relative to the baseline, even when using values of η larger than the sufficient condition

for the equilibrium uniqueness. As an example, Figure B.10 shows that the slope coefficients

obtained when using η = .0028 or η = 0.1 are very similar to those for η = 0 in the calibrated-
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Figure B.10: Event-study slope coefficients by local increasing returns η

A. Slope coefficients for η = 0.0028 versus η = 0
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B. Slope coefficients for η = 0.1 versus η = 0
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Notes: The slope coefficients come from regressions of the observed change in commuters on the predicted
change in commuters for each of the 83 tract-level employment booms. The baseline case, η = 0, is the
model without increasing returns.

shares procedure.
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C Theory: Proofs and extensions

Section C.1 provides a condition on parameter values sufficient for the existence and uniqueness

of the continuum model’s equilibrium. Section C.2 details the exact hat algebra for computing

counterfactual outcomes. Section C.3 provides further details on the calibrated-shares procedure.

Section C.4 presents a special case in which each counterfactual change is simply proportional to the

corresponding baseline share. Section C.5 provides analytical expressions for the slope coefficients in

this special case. Section C.6 derives expected squared errors for baseline shares. Section C.7 derives

expressions for welfare changes. Section C.8 shows that the trade equilibrium of the model with a

finite number of individuals is unique. Section C.9 shows that the continuum model is a limiting

case of the model with a finite number of individuals. Section C.10 analytically characterizes

the uncertainty in counterfactual changes caused by individuals’ idiosyncratic preferences in a

two-workplace economy. The following subsection presents extensions of the bare-bones model in

Section 4 that introduce trade costs, the use of land in production, residential amenities, and local

increasing returns.

C.1 Existence and uniqueness of continuum model’s equilibrium

We derive a set of parameter values sufficient for the existence and uniqueness of the continuum

model’s equilibrium. As shown in Theorem 1 of Allen, Arkolakis, and Li (2023), the spectral radius

of the elasticity matrix characterizes the existence and uniqueness properties of the system.

The equilibrium of the continuum model can be written as

r1+αϵk Tk
α

=
∑
n

Dknw
1+ϵ
n (C.1)

Lnw
−ϵ
n =

∑
k

Dknr
−αϵ
k (C.2)

A1−σ
n Lnw

σ
n = P σ−1

∑
n′

Ln′wn′ , (C.3)

where, for notational convenience, we define

Θ ≡
∑
k

∑
n

wϵn(r
α
k δkn)

−ϵ

Dkn ≡ LΘ−1δ−ϵkn δ̄
−1
kn .

Equations (C.1)–(C.3) are 3×N equations in 3×N unknowns {rn, wn, Ln}n=1,2,...,N given values

for Θ and P . Although Θ and P are endogenous, they do not vary across locations. Accordingly,

they fall under the class of endogenous scalars discussed in Remark 4 of Allen, Arkolakis, and Li

(2023), which leave the conclusion of their Theorem 1 Part ii.b unchanged.

Following Remark 5 of Allen, Arkolakis, and Li (2023), we construct the intermediate matrices
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Γ and B:

Γ =

1 + αϵ 0 0

0 −ϵ 1

0 σ 1

 B =

 0 1 + ϵ 0

−αϵ 0 0

0 1 1

 .
Then we can construct the final matrix A defined by (A)hh′ ≡

∣∣(BΓ−1
)
hh′

∣∣:
BΓ−1 =

 0 1 + ϵ 0

−αϵ 0 0

0 1 1




1
1+αϵ 0 0

0 − 1
σ+ϵ

1
σ+ϵ

0 σ
σ+ϵ

ϵ
σ+ϵ

 , A =

 0 1+ϵ
σ+ϵ

1+ϵ
σ+ϵ

αϵ
1+αϵ 0 0

0 σ−1
σ+ϵ

1+ϵ
σ+ϵ


where (A)hh′ denotes the (h, h

′)th entry of the matrix A, which is the absolute value of the (h, h′)th

entry of the matrix BΓ−1. We assume σ > 1.

We want to show that the spectral radius, the absolute value of the maximum eigenvalue, of A

(denoted ρ(A)) equals one. The reasoning in Remark 6 in Appendix B.1.5 of Allen, Arkolakis, and

Li (2023) demonstrates that ρ(A) ≥ 1. Thus, it remains to show that ρ(A) ≤ 1. To do so, we will

use Lemma 1 in Appendix B.1.6 from Allen, Arkolakis, and Li (2023). Consider the matrix

λI −A =

 λ − 1+ϵ
σ+ϵ − 1+ϵ

σ+ϵ

− αϵ
1+αϵ λ 0

0 −σ−1
σ+ϵ λ− 1+ϵ

σ+ϵ

 .
Define the function f(λ) ≡ det(λI −A), and denote its kth derivative by fk(λ):

f(λ) = λ3 − λ2
(
1 + ϵ

σ + ϵ

)
−
(
1 + ϵ

σ + ϵ

)(
αϵ

1 + αϵ

)(
λ− 1 + ϵ

σ + ϵ

)
−
(
1 + ϵ

σ + ϵ

)(
αϵ

1 + αϵ

)(
σ − 1

σ + ϵ

)
f1(λ) = 3λ2 − 2λ

(
1 + ϵ

σ + ϵ

)
−
(
1 + ϵ

σ + ϵ

)(
αϵ

1 + αϵ

)
f2(λ) = 6λ− 2(1 + ϵ)

σ + ϵ
.

Lemma 1 of Allen, Arkolakis, and Li (2023) states that ρ(A) ≤ 1 if and only if fk(1) ≥ 0 for

k = 0, 1, 2.

f(1) = 1− 1 + ϵ

σ + ϵ
−
(
1 + ϵ

σ + ϵ

)(
αϵ

1 + αϵ

)
+

(
1 + ϵ

σ + ϵ

)(
αϵ

1 + αϵ

)(
2 + ϵ− σ

σ + ϵ

)
f1(1) = 3− 2

(
1 + ϵ

σ + ϵ

)
−
(
1 + ϵ

σ + ϵ

)(
αϵ

1 + αϵ

)
f2(1) = 6− 2(1 + ϵ)

σ + ϵ
.

Both f1(1) ≥ 0 and f2(1) ≥ 0 for any σ > 1 and α, ϵ > 0. Inequality f(1) ≥ 0 can be restated as(
1 + ϵ

σ + ϵ

)(
αϵ

1 + αϵ

)
≤ 1

2
. (C.4)
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Note that condition (C.4) is satisfied by our baseline parameter values (α = 0.24, σ = 4, ϵ = 7.986).

Under condition (C.4), ρ(A) ≤ 1, which means that ρ(A) = 1. Thus, by Theorem 1 Part ii.b of

Allen, Arkolakis, and Li (2023), if condition (C.4) is true, the equilibrium exists and is unique up

to scale.

C.2 Exact hat algebra

This section shows how to express a counterfactual equilibrium of the model in terms of counter-

factual endogenous outcomes relative to baseline endogenous outcomes, counterfactual exogenous

parameters relative to baseline exogenous parameters, constant elasticities, and baseline equilibrium

shares. This method has been dubbed “exact hat algebra” in the international trade literature.

One can solve for the counterfactual equilibrium variables associated with combinations of

counterfactual-to-baseline ratios of productivities Ân, land endowments T̂k, and commuting costs

λ̂kn and ˆ̄δkn.

The derivation of ŵn starts from equation (3):

An
∑
k

ℓkn
δ̄kn

=
(wn/An)

−σ

P 1−σ Y ∀n.

Rearranging terms to isolate wn and then taking ratios yields

ŵn = Â
σ−1
σ

n

∑k
ℓ′kn
δ̄′kn∑

k
ℓkn
δ̄kn


−1
σ

︸ ︷︷ ︸
≡L̂

−1
σ

n

(
P ′

P

)σ−1
σ

︸ ︷︷ ︸
≡P̂

σ−1
σ

(∑
k′,n′ y′k′n′∑
k′,n′ yk′n′

) 1
σ

︸ ︷︷ ︸
≡Ŷ

1
σ

. (C.5)

Next, we rewrite this in terms of ℓ̂kn
ˆ̄δkn

and baseline shares:

ŵn = Â
σ−1
σ

n


∑

k
ℓ̂kn
ˆ̄δkn

ℓkn
δ̄kn∑

k
ℓkn
δ̄kn


−1
σ

P̂
σ−1
σ Ŷ

1
σ

= Â
σ−1
σ

n

(∑
k

ℓ̂kn
ˆ̄δkn

ℓkn
δ̄kn∑
k
ℓkn
δ̄kn

)−1
σ

P̂
σ−1
σ Ŷ

1
σ
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Multiply both sides by ŵ
− 1

σ
n , simplify, and take both sides to the power σ

σ−1 to obtain

ŵ
σ−1
σ

n = Â
σ−1
σ

n

(∑
k

ŷkn
ykn∑
k′ yk′n

)− 1
σ

P̂
σ−1
σ Ŷ

1
σ

ŵn = Ân

(∑
k

ŷkn
ykn∑
k′ yk′n

) 1
1−σ

P̂ Ŷ
1

σ−1 ,

which is equation (5).

To derive P̂ , rearrange terms and employ goods market clearing:

P̂ 1−σ =
∑
n

(
w′

n
A′

n

)1−σ
∑

n′

(
wn′
An′

)1−σ =
∑
n

(
ŵn

Ân

)1−σ
(
wn
An

)1−σ
∑

n′

(
wn′
An′

)1−σ =
∑
n

(
ŵn

Ân

)1−σ∑
k

ykn
Y
.

This implies

P̂ =

(∑
n

(
ŵn

Ân

)1−σ∑
k

ykn
Y

) 1
1−σ

.

This shows that relative goods price index P̂ can be written in terms of relative endogenous wages,

relative exogenous productivities, and baseline (earnings) shares.

The ratio of counterfactual nominal output Y ′ to baseline nominal output Y is

Ŷ =
Y ′

Y
=

∑
k,n y

′
kn∑

k,n ykn
=

∑
k,n ŷknykn∑
k,n ykn

=
∑
k,n

ŷkn
ykn
Y

With the changes in output, changes in prices, and changes in wages, equation (5) is expressed

entirely in terms of hats and shares.

Next, we derive r̂k. Dividing the counterfactual version of equation (4) by the baseline version

yields

T̂k = r̂−1
k

∑
n y

′
kn∑

n ykn
.

Rearranging this expression yields

r̂k = T̂−1
k

∑
n y

′
kn∑

n ykn
= T̂−1

k

∑
n ŷknykn∑
n ykn

= T̂−1
k

∑
n

ŷkn
ykn∑
n′ ykn′

,

which is equation (6).

Finally, taking the ratio of counterfactual ℓ′kn to baseline ℓkn using equation (2) yields, after
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considerable manipulation, equation (7):

ℓ̂kn =

w
′ϵ
n (r

′α
k δ̄

′
knλ

′
kn)

−ϵ∑
k′,n′ w

′ϵ
n′ (r

′α
k′ δ̄

′
k′n′λ

′
k′n′ )

−ϵ

wϵ
n(r

α
k δ̄knλkn)

−ϵ∑
k′,n′ wϵ

n′ (r
α
k′ δ̄k′n′λk′n′ )−ϵ

=
ŵϵn(r̂

α
k
ˆ̄δknλ̂kn)

−ϵ∑
k′,n′ w

′ϵ
n′ (r

′α
k′ δ̄

′
k′n′λ

′
k′n′ )

−ϵ∑
k′,n′ wϵ

n′ (r
α
k′ δ̄k′n′λk′n′ )−ϵ

=
ŵϵn(r̂

α
k
ˆ̄δknλ̂kn)

−ϵ∑
k′,n′

w
′ϵ
n′ (r

′α
k′ δ̄

′
k′n′λ

′
k′n′ )

−ϵ

wϵ
n′ (r

α
k′ δ̄k′n′λk′n′ )−ϵ

wϵ
n′ (r

α
k′ δ̄k′n′λk′n′ )−ϵ∑

k′,n′ wϵ
n′ (r

α
k′ δ̄k′n′λk′n′ )−ϵ

=
ŵϵn(r̂

α
k
ˆ̄δknλ̂kn)

−ϵ∑
k′,n′ ŵϵn′(r̂αk′

ˆ̄δk′n′ λ̂k′n′)−ϵ
ℓk′n′
L

.

Together, equations (5), (6), and (7) deliver ŵn, r̂k, and ℓ̂kn given the elasticities σ, α, and ϵ,

commuting costs δ̄kn, baseline equilibrium values ℓkn and wn, and counterfactual-to-baseline ratios

Ân, T̂k, λ̂kn, and
ˆ̄δkn.

C.2.1 An example of baseline shares (and elasticities) as sufficient statistics

Suppose that each residential location has an exogenous amenity level Bk such that i’s indirect

utility from residing in k and working in n is

U ikn = ϵ ln

(
Bkwn

rαkP
1−αδkn

)
+ νikn.

In the model presented in the main text, residential amenities are do not vary across locations:

Bk = 1 ∀k. The probability of choosing residential-workplace pair kn is now

P(U ikn > U ik′n′ ∀(k′, n′) ̸= (k, n)) =
wϵn
(
B−1
k rαk δkn

)−ϵ∑
k′,n′ wϵn′

(
B−1
k′ r

α
k′δk′n′

)−ϵ .
A residence is more attractive when it has higher amenities or greater land supply (lower rents).

Separating these amenities and land supplies is unnecessary for some counterfactual analysis.

Infinitely many combinations of amenity and land-supply parameters could deliver the same baseline

shares, but one does not need to identify all the model parameters in levels in order to compute

counterfactual changes. Suppose that residential amenities vary across locations but are unchanged

in the counterfactual scenario: B̂k = 1 ∀k. Following the same steps as above, one can derive a

system of equations characterizing the counterfactual equilibrium that is identical to equations (5)–

(7). Given the baseline shares and elasticities (the sufficient statistics), counterfactual changes do

not depend on distinguishing between amenities Bk and land supply Tk.
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C.3 Calibrated-shares procedure

The calibrated-shares procedure uses the observed ℓkn and ykn = wnℓkn/δ̄kn in equations (5)–(7).

This implicitly calibrates combinations of model parameters. For example, this procedure implicitly

rationalizes zero-commuters observations with infinite commuting costs, ℓkn = 0 ⇐⇒ δkn = ∞.

This procedure cannot characterize cases in which ℓkn = 0 and ℓ′kn ̸= 0 because the object δ̂−ϵkn =(
δkn
δ′kn

)ϵ
is not sensibly defined if δkn = ∞ and δ′kn <∞.

This procedure does not identify the parameters An, Tk, and δkn. Given the elasticities σ, α,

and ϵ and the baseline equilibrium shares ℓkn and ykn, equations (2), (3), and (4) are insufficient

to separately identify Tk and δkn. One would also need to observe land prices rk.

When implementing this procedure in Sections 3.5 and 5.1, we compute tract-level workplace

wages using LODES and ZIP Business Patterns data following Owens, Rossi-Hansberg, and Sarte

(2020).

C.4 Special case relating counterfactual errors to baseline-share errors

In the continuum model with exogenous residential amenities (see Appendix C.2.1), no housing

consumption (α = 0), and perfectly elastic labor demand (σ = ∞), there is a linear mapping from

baseline shares to predicted changes caused by a productivity change.

If individuals do not consume housing, α = 0, the model simplifies. The endogenous variable

rk and the land-market-clearing condition are no longer part of the model. (For the counterfactual

outcomes of interest, this is isomorphic to land being perfectly elastically supplied at a fixed rent rk.)

The price index is P in all residential locations. The labor-market-clearing condition is unchanged.

The labor-allocation equation is now

P(U ikn > U ik′n′ ∀(k′, n′) ̸= (k, n)) =
(Bkwn)

ϵ δ−ϵkn∑
k′,n′ (Bk′wn′)ϵ δ−ϵk′n′

.

Given this, the PPML estimator’s residential and workplace fixed effects are proportionate to ϵ lnBk

and ϵ lnwn, respectively.

For this special case with perfectly elastic labor demand, the system of two equations defining

counterfactual changes is

ŵn = Ân and ℓ̂kn =
ŵϵnB̂

ϵ
k

(
ˆ̄δknλ̂kn

)−ϵ
∑

k′,n′ ŵϵn′B̂ϵ
k′

(
ˆ̄δk′n′ λ̂k′n′

)−ϵ ℓk′n′
L

if ℓkn > 0.

If workplace n∗ alone has a productivity increase (Ân∗ > 1, Ân = 1 ∀n ̸= n∗) and there are no

changes to amenities nor commuting costs (B̂k = 1 ∀k, ˆ̄δkn = λ̂kn = 1 ∀kn), then ℓ̂kn∗ is constant
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across k and changes in commuters to workplace n∗ vary only with baseline shares:

ℓ̂kn∗ =
Âϵn∗

Âϵn∗

∑
k′ ℓk′n∗
L +

L−
∑

k′ ℓk′n∗
L

= L̂n∗ ∀k

∆ℓkn∗ =
(
ℓ̂kn∗ − 1

)
ℓkn∗ =

(
L̂n∗ − 1

)
ℓkn∗ .

Because the counterfactual change ∆ℓkn∗ is proportional to the baseline employment ℓkn∗ in

this simple case, if the baseline share ℓkn∗/L contains estimation error, a counterfactual change

computed using that share will inherit that error proportionally.

The change in the number of workers employed at workplace n∗ in this simple example is∑
k

∆ℓkn∗ =
(
L̂n∗ − 1

)∑
k

ℓkn∗ .

If the estimation error in ℓkn∗ is sampling error, workplace-level employment will be less noisy than a

single residence-workplace pair: the coefficient of variation for a binomial distribution with I draws

and probability p is
√

1−p
pI , which is decreasing in p, and the probability of choosing workplace n is

greater than the probability of choosing residence-workplace pair kn (pn =
∑

k pkn ≥ pkn).

By contrast, changes in residents caused by a productivity shock are sensitive to pair-specific

linkages. The change in the number of residents at residence k∗ in this simple example is

∑
n

∆ℓk∗n =
L̂n∗ − 1

L−
∑

k ℓkn∗

∑
n

ℓk∗n

[
ℓk∗n∗∑
n ℓk∗n

L−
∑
k

ℓkn∗

]
.

This expression says that the change in residents is governed by the difference (in brackets) between

a gross increase in residents, which is proportional to the share of residents who work at the treated

workplace n∗ in the baseline equilibrium, and a gross decrease in residents that is common across

residential locations.

C.5 Slope coefficients from regressing true probabilities on estimated shares

This section discusses the slope coefficients for the calibrated-shares procedure and the covariates-

based approach. In the special case (α = 0, σ = ∞, and exogenous residential amenities), regressing

the true changes in outcomes on the predicted changes is equivalent to regressing the true baseline

shares on the estimated baseline shares (see Appendix C.4). Thus, the object of interest is the

slope coefficient β from regressing the true probability pkn on the estimated probability p̂kn in

a given finite realization, where the true probability from the continuum model pkn ≡ P(U ikn >
U ik′n′ ∀(k′, n′) ̸= (k, n)) is the right side of equation (2). Define the error ekn ≡ pkn − p̂kn. We

denote the variance in errors across elements of the choice set (across residence-workplace pairs
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indexed by kn) within a finite realization by

V̂ar(ekn) ≡
1

KN

∑
k,n

e2kn.

This definition exploits the fact that
∑

k,n ekn = 0 in any finite realization. Thus, V̂ar(ekn) is the

mean squared error (MSE). Similarly, denote the covariance of pkn and ekn across elements of the

choice set within a finite realization by Ĉov(pkn, ekn) ≡ 1
KN

∑
k,n pknekn and the covariance of pkn

and p̂kn by Ĉov(pkn, p̂kn) ≡ 1
KN

∑
k,n pknp̂kn − 1

K2N2

∑
k,n pkn

∑
k,n p̂kn . Finally, the variance of

pkn across kn pairs within a realization is V̂ar(pkn) ≡ 1
KN

∑
k,n

(
pkn − 1

KN

)2
, where we exploit the

fact that the average pkn must be 1
KN because

∑
k,n pkn = 1. Note that pkn is a fixed feature of

the data-generating process that does not vary across realizations, so V̂ar(pkn) = Var(pkn).

The slope coefficient of interest is

β̂ =
Ĉov(pkn, p̂kn)

V̂ar(p̂kn)
=

Ĉov(pkn, pkn − ekn)

V̂ar(pkn − ekn)
=

Var(pkn)− Ĉov(pkn, ekn)

Var(pkn) + V̂ar(ekn)− 2Ĉov(pkn, ekn)
.

First, consider the calibrated-shares procedure, which uses p̂kn = skn, the realized share in

the observed sample. Because the calibrated-shares procedure is the frequency estimator that

simply uses the observed shares as its estimate of the true probability, Ĉov(pkn, ekn) ≈ 0 (this is

true in expectation and typically close to zero in our simulations of finite realizations).52 If the

errors are uncorrelated with the true probabilities, Ĉov(pkn, ekn) = 0, then the slope coefficient

is Var(pkn)
Var(pkn)+MSE . Given the data-generating process (given Var(pkn)) and orthogonal errors, the

attenuation of the slope coefficient is increasing in the mean squared error. That is, here the

calibrated-shares procedure’s finite-sample errors manifest as both a lower slope coefficient and a

higher mean squared error.

Second, consider the two-way fixed-effects estimator as an example of a covariates-based spec-

ification. Suppose that the data-generating process is pkn = pkpnλ
−ϵ
kn with

∑
n pnλ

−ϵ
kn = 1 and∑

k pkλ
−ϵ
kn = 1. The probabilities of choosing residence k and of choosing workplace n are pk

and pn, respectively.53 The two-way fixed-effects estimator is p̂kn = sksn, where sk =
∑

n skn

and sn =
∑

k skn. The two-way fixed-effects estimator misses the contribution of λ−ϵkn to the true

probability pkn, so typically Ĉov(pkn, ekn) > 0. This need not attenuate the slope coefficient,

however. Intuitively, the estimator’s omission of the (orthogonal) unobserved commuting cost

reduces the R2 of the regression, not the slope coefficient. Note that the slope coefficient can be

written as

β̂ =
V̂ar(pkn)− Ĉov(pkn, ekn)

V̂ar(pkn)− Ĉov(pkn, ekn)−
(
Ĉov(pkn, ekn)− V̂ar(ekn)

) .
52The population expectation of Ĉov(pkn, ekn) ∝

∑
kn pknekn −

∑
kn pkn

∑
kn ekn =

∑
kn pknekn over realizations

is zero for the calibrated-shares procedure, because E
(∑

kn pknekn
)
=

∑
kn pknE (ekn) = 0 given that E(skn) = pkn.

53This requires
∑

n pnλ
−ϵ
kn = 1 ∀k so that pk =

∑
n pkn ∀k and similarly

∑
k pkλ

−ϵ
kn = 1 ∀n so that pn =

∑
k pkn ∀n.

These normalize λkn without loss of generality: common k- and n-level components (“fixed effects”) are in pk and
pn, not λ

−ϵ
kn.
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If the numerator Var(pkn) − Ĉov(pkn, ekn) is much larger than Ĉov(pkn, ekn) − V̂ar(ekn), then the

slope coefficient is close to one. Consider the case in which the fixed effects are reliably estimated

(assume sk ≈ pk, sn ≈ pn, and sksn ≈ pkpn). (If sk and sn are not reliable estimators of pk and pn,

then the frequency estimator skn will estimate pkn very poorly.) In this case, the two differences of

interest are approximately

Var(pkn)− Ĉov(pkn, ekn) ≈
1

KN

∑
kn

p2kp
2
nλ

−ϵ
kn − 1

K2N2

Ĉov(pkn, ekn)− V̂ar(ekn) ≈
1

KN

∑
kn

[pkpn]
2(λ−ϵkn − 1).

Therefore, the numerator is much larger (≫) than the other difference if

Var(pkn)− Ĉov(pkn, ekn) ≫
[
Ĉov(pkn, ekn)− V̂ar(ekn)

]
⇐⇒ 0 ≪ K2N2Var(pk)Var(pn) +K2Var(pk) +N2Var(pn)

This implies that the slope coefficient for the two-way fixed-effects estimator will be close to

one so long as there is substantial variation in the residence and employment shares (Var(pk) ≫
0,Var(pn) ≫ 0).

If one ran this regression for a subset of location pairs, such as a single workplace n∗, the same

expression for the slope coefficient would apply. Note that in this case, the sum of the prediction

errors for a single workplace n∗,
∑

k ekn∗ , need not equal zero, so that V̂ar(ekn) equals the MSE plus

the mean prediction error squared. Similarly, the definitions of Ĉov(pkn, ekn) and V̂ar(pkn) must be

extended to allow for means not equal to zero and 1
KN , respectively. In the Monte Carlo simulations

of Section 3.4 and event studies of Section 3.5, we match the change in total employment in the

workplace of interest, so that by construction the sum of the prediction errors is indeed zero.

C.6 Simple example of expected squared error for baseline shares

This section contrasts the expected squared errors for baseline shares produced by the calibrated-

shares procedure and the covariates-based approach. Researchers face a familiar trade-off: a more

flexible model with more parameters requires more data to be estimated precisely. The calibrated-

shares procedure estimates a saturated model with an arbitrary commuting cost for each residence-

workplace pair, while the covariates-based specification assumes that bilateral commuting costs

depend on few observables. Their relative performance depends on how many commuters are

observed per residence-workplace pair and the magnitudes of the unobserved commuting costs.

Consider an arbitrary data-generating process with true probabilities pkn ≡ P(U ikn > U ik′n′ ∀(k′, n′) ̸=
(k, n)). The expected squared error for a baseline share ℓkn

L produced by an estimator p̂kn is

E (pkn − p̂kn)
2. The calibrated-shares procedure uses the frequency estimator p̂kn = skn, where

skn is the realized share in the observed sample. The covariates-based approach imposes more

structure. Consider a simple example in which the data-generating process is pkn = pkpnλ
−ϵ
kn, so
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bilateral commuting costs are entirely unobserved. The probabilities of choosing residence k and

of choosing workplace n are pk and pn, respectively. The covariates-based specification for this

example is the two-way-fixed-effects estimator: p̂kn = sksn, where sk is the share of residence k

and sn is the share of workplace n.

The calibrated-shares procedure is an unbiased estimator (E(skn) = pkn), so its expected

squared error for baseline share ℓkn
L is its finite-sample variance. With I observed commuters,

this is E (pkn − skn)
2 = var (skn) = 1

I pkn(1 − pkn). This variance goes to zero as the number of

observations goes to infinity, limI→∞ var (skn) = 0, so the only shortcoming of the calibrated-shares

procedure here is its finite-sample performance.

By imposing more structure, the covariates-based approach delivers an estimator that typically

has much lower variance but is biased to the extent that it omits unobserved commuting costs. In

the simple example, because the estimator p̂kn = sksn uses residence- and workplace-level shares

rather than the share of a single residence-workplace pair skn, the covariates-based specification

has a much smaller variance in granular settings with finite individuals.54 Unless λ−ϵkn = 1, the

two-way-fixed-effects estimator is biased because E(sksn) ̸= pkn. Its expected squared error is

E
[
(pkn − p̂kn)

2
]
= [E(pkn − sksn)]

2 + var(sksn) =

[
I − 1

I
pkpn(1− λ−ϵkn)

]2
+ var(sksn),

where the first term is the square of the bias of the estimator and the second term is its sample

variance.55 As I → ∞, the bias term goes to
[
pkpn(1− λ−ϵkn)

]2
and the variance term goes to zero.

Which estimator has a smaller expected squared error depends on the contrast between the vari-

ance of the calibrated-shares procedure (governed by sample size I) and the bias of the covariates-

based specification (governed by unobserved commuting cost (1 − λ−ϵkn)
2). The variance of the

covariates-based specification is unimportant because var(sksn) is orders of magnitude smaller than

var(skn) (see footnote 54). The relevant comparison is that the squared bias of the covariates-based

specification is smaller than the variance of the frequency estimator if

[E(sksn − pkn)]
2 ≤ var(skn)

⇐⇒
[
I − 1

I
pkpn(1− λ−ϵkn)

]2
≤ 1

I
λ−ϵknpkpn(1− λ−ϵknpkpn)

⇐⇒ (I − 1)2

I
pkpn ≤

λ−ϵkn(
1− λ−ϵkn

)2 (1− λ−ϵknpkpn).

As I becomes arbitrarily large, the left side becomes arbitrarily large and the inequality is necessarily

false when λ−ϵkn ̸= 1. For a given I, as λ−ϵkn approaches 1, the right side becomes arbitrarily large and

54Given thousands of residences and workplaces, var(sksn) is two or three orders of magnitude smaller

than var(skn). It can be shown that var(sksn) = 1
I
pkpn(1 − pk)(1 − pn)

(
1
I
+ pn

1−pn
+ pk

1−pk

)
+

1
I3
pkpn

(
λ−ϵ
kn − 1

) [
1 + 2(I − 1)(pk + pn) +

(
(I − 2)(2I + λ−ϵ

kn − 3)− 2I
)
pkpn

]
. For example, given the NYC setting

with I ≈ 2.5×106 and pk ≈ pn ≈ 0.5×10−3, var(sksn) is on the order of 10−16 and var(skn) is on the order of 10−13.
55Note that p̂kn = sksn is an unbiased estimator when I = 1 because with a single observation sksn equals skn.
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the inequality is necessarily true. Denoting dkn ≡ (I−1)2

I pkpn, the roots of the quadratic equation

associated with the right side of the inequality are 1+2dkn
2pkpn+2dkn

±
√

1+4dkn(1−pkpn)
2pkpn+2dkn

, and the inequality

above is true when λ−ϵkn is close enough to one to lie between these roots.56 Recall that the pk-

and pn-weighted mean values of λ−ϵkn equal one, so its distribution must have substantial variance

to make the inequality false for many kn pairs.57

These results describe the expected squared error for a given residence-workplace pair kn. The

Monte Carlo simulations of Section 3.4 and event studies of Section 3.5 examine errors in predicted

changes in the number of commuters to a specific workplace of interest. There, we report the mean

squared error for each simulation (each event), which is the average of the squared errors over all

residences paired with the workplace of interest.

C.7 Welfare changes in the continuum model

Recall from equation (1) that the indirect utility of an individual i residing in k and working in n

is

U ikn = ϵ log

(
wn

rαkP
1−αδkn

)
+ νikn.

Following equation (3.10) in Train (2009), one can show that the expected utility Ū of each (ex

ante identical) worker, each of whom selects her utility-maximizing residence-workplace pair, is

Ū = Eνi
[
U ikn|U ikn ≥ U ik′n′ , ∀k′, n′

]
= log

∑
k′,n′

wϵn′
(
rαk′P

1−αδk′n′
)−ϵ+ c ∀k, n, (C.6)

where c is a constant. Note that c is unknown since the level of utility cannot be measured. Denote

Ckn = wn/
(
rαkP

1−αδ̄kn
)
as the real consumption for individuals residing in k and working in n.

We can rewrite equation (C.6) in terms of real consumption:

Ū = log

∑
k,n

Cϵknλ
−ϵ
kn

+ c,

where we use the decomposition of commuting costs δkn into time δ̄kn and disutility λkn with

δkn = δ̄knλkn.

Now, consider a counterfactual equilibrium. Recall that the counterfactual-to-baseline ratio of

a variable x > 0 is denoted by x̂ ≡ x′

x . The expected utility in the counterfactual equilibrium is

Ū ′ = log
(∑

k,n(C
′
kn)

ϵ(λ′kn)
−ϵ
)
+ c. We define 1 + ψ as the equivalent variation in consumption

56When the right side equals dkn, the associated quadratic equation is 0 = (dkn+pkpn)
(
λ−ϵ
kn

)2−(1+2dkn)λ
−ϵ
kn+dkn.

57For example, consider the NYC setting in which I ≈ 2.5× 106, the average residential tract has pk ≈ 0.5× 10−3,
and the workplace tract containing 200 Fifth Avenue has pn ≈ 0.5 × 10−2, so that dkn is about 6.25. When
dkn = 6.25, the inequality is true when ϵ lnλkn ∈ [−0.397, 0.397]. For a log-normal distribution with unit mean,

lnx
iid∼ N (−σ2

2
, σ2), to have half of its draws lie outside that interval, lnx ̸∈ [−0.397, 0.397], its standard deviation

must exceed approximately 0.56. For comparison, in our setting with NYC tracts, the observable ϵ ln δ̄kn has a
standard deviation of 1.255.
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such that

Ū ′ = log

∑
k,n

(C ′
kn)

ϵ(λ′kn)
−ϵ

+ c = log

∑
k,n

[(1 + ψ)Ckn]
ϵ λ−ϵkn

+ c = ϵ log(1 + ψ) + Ū .

In other words, the equivalent variation in consumption is defined such that multiplying the real

consumption of individuals in all residence-workplace pairs by 1 + ψ in the baseline equilibrium

(holding prices and other allocations fixed) would generate the same welfare outcome as the

counterfactual equilibrium with new prices and allocations. Re-arranging the equation above yields

an expression for 1 + ψ in terms of welfare difference Ū ′ − Ū :

1 + ψ = exp

(
1

ϵ

[
Ū ′ − Ū

])
,

which is our measure of equivalent variation.

In practice, 1 + ψ can be calculated from changes in wages (ŵn), rents (r̂k), and price index

(P̂ ), given exogenous changes in productivities (Ân), land endowments (T̂k), and commuting costs

(δ̂kn = ˆ̄δknλ̂kn), as well as initial wages (wn) and commuting flows (ℓkn). One can show that

1 + ψ =

∑
k,n

ℓkn
L
ŵϵn

(
r̂αk P̂

1−αδ̂kn

)−ϵ 1
ϵ

, (C.7)

where ŵn, r̂k, and P̂ can be solved from equations (5), (6), and (7) (with detailed derivations

described in Appendix C.2).

C.8 The trade equilibrium is unique

Recall that the trade equilibrium takes the labor allocation as given. Consequently, we just need

to solve for wage and land rent vectors that satisfy equations (3) and (4) given arbitrary labor

allocation ℓkn. Given a labor allocation and vector of wages, equation (4) determines a unique

vector of land rents, so we can focus on solving for a unique vector of relative wages. Recall

Ln ≡
∑

k
ℓkn
δ̄kn

is total labor supply in location n. Substituting Ln and P =
(∑

n(wn/An)
1−σ)1/(1−σ)

into equation (3) yields

AnLn =
(wn/An)

−σ∑
n′(wn′/An′)1−σ

Y ∀n.

Note that this equation is homogeneous of degree zero in the wage vector. Selecting w1 = 1 as the

numeraire and writing the expression in terms of relative wages yields

wn =

(
An
A1

)σ−1
σ
(
Ln
L1

)−1/σ

.
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This defines a unique vector of relative wages. Plugging those wages into equation (4) yields a

unique vector of land rents.

C.9 Continuum model as limiting case of the model with a finite number of

individuals

We derive the result that the equilibrium of the model with a finite number of individuals coincides

with the equilibrium of the continuum model as the number of individuals becomes infinite, I → ∞.

Note that aggregate labor supply L is fixed, as each individual supplies L/I units of labor. The

key step is to show that equation (2) holds as I → ∞. Conditional on the labor allocation {ℓkn},
the number of individuals plays no role in the trade equilibrium, which will coincide with that of a

continuum model.

Definition 4.2 says that the share of labor supplied by residents of k who work in n is

ℓkn
L

=
1

I

I∑
i=1

1
{
Ũ ikn(ν

I) > Ũ ik′n′(νI), ∀(k′, n′) ̸= (k, n)
}
.

Since the idiosyncratic preferences are drawn from an independent and identically distributed ran-

dom variable, the law of large numbers implies that 1
I

∑I
i=1 1

{
Ũ ikn(ν

I) > Ũ ik′n′(νI), ∀(k′, n′) ̸= (k, n)
}

converges to the mean of a binary random variable that is equal to one with probability P(Ũ ikn >
Ũ ik′n′ , ∀(k′, n′) ̸= (k, n)). Thus,

E
(
1
{
Ũ ikn > Ũ ik′n′ , ∀(k′, n′) ̸= (k, n)

})
= P

(
Ũ ikn > Ũ ik′n′ , ∀(k′, n′) ̸= (k, n)

)
.

Using the probability in equation (10),

lim
I→∞

1

I

I∑
i=1

1
{
Ũ ikn(ν

I) > Ũ ik′n′(νI), ∀(k′, n′) ̸= (k, n)
}
= E

(
1
{
Ũ ikn > Ũ ik′n′ , ∀(k′, n′) ̸= (k, n)

})
=

w̃ϵn(r̃
α
k δkn)

−ϵ∑
k′,n′ w̃ϵn′(r̃αk′δk′n′)−ϵ

.

As a result, as I → ∞, ℓknL → w̃ϵ
n(r̃

α
k δkn)

−ϵ∑
k′,n′ w̃ϵ

n′ (r̃
α
k′δk′n′ )−ϵ . Since the continuum-case rational expectations

are the wages and land rents that clear markets for this labor allocation, the market-clearing prices

of the model with a finite number of individuals converge to those values.

C.10 Uncertainty about counterfactual changes due to idiosyncrasies: Analyt-

ical example

To analytically characterize the uncertainty in counterfactual changes caused by individuals’ id-

iosyncratic preferences, consider an economy with one residential location and two workplaces. We

compute the change in quantities associated with a change in economic primitives from Υ to Υ′ for a

given realization of idiosyncratic preferences νI . An individual’s utility from choosing workplace n
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is Ũ ikn = Ũkn+ν
i
kn in the baseline equilibrium and Ũ

′i
kn = Ũ

′
kn+ν

i
kn in the counterfactual equilibrium.

Because there is only one residential location, we suppress the k subscript for convenience (e.g.,

denote Ũk1 by Ũ1).

Suppose the counterfactual change improves the attractiveness of workplace n = 1 relative to

n = 2: Ũ ′
1 − Ũ ′

2 > Ũ1 − Ũ2. Individuals with νi1 − νi2 < Ũ ′
2 − Ũ ′

1 choose workplace 2 in both the

baseline and counterfactual equilibria. Individuals with νi1 − νi2 > Ũ2 − Ũ1 choose workplace 1 in

both the baseline and counterfactual equilibria. Those individuals who drew idiosyncratic shocks

such that νi1 − νi2 ∈
[
Ũ ′
2 − Ũ ′

1, Ũ2 − Ũ1

]
will change their workplace from n = 2 in the baseline to

n = 1 in the counterfactual. This interval is smaller if the counterfactual change is smaller.

The unconditional probability of leaving workplace 2 is p ≡ P
(
Ũ ′
2 − Ũ ′

1 < νi1 − νi2 < Ũ2 − Ũ1

)
=

F
(
Ũ2 − Ũ1

)
−F

(
Ũ ′
2 − Ũ ′

1

)
where F () denotes the cumulative distribution function of the logistic

distribution. This probability equals the share of switchers in the continuum model. In the model

with a finite number of individuals, the unconditional number of switchers follows a binomial

distribution with I independent outcomes and probability p of switching. The expected share of

the population that switches is p. The variance of the share that switches is p(1−p)
I . With more

independent draws, there is less uncertainty about the share who switch.

C.11 Model extensions

C.11.1 Trade costs

Relative to the model in Section 4, we now assume that goods trade is subject to iceberg trade

costs: delivering a unit of the location-n variety to location k requires producing τnk ≥ 1 units in n.

Individuals consume differentiated goods at their residences, and the price of location n’s output

for consumers in location k is τnkwn/An. Thus, the price index in location k is rαkP
1−α
k , where the

local CES price index for goods is Pk =
[∑

n (τnkwn/An)
1−σ
]1/(1−σ)

.

In this environment, the equivalent of equation (9) is such that, based on the beliefs {w̃n} and

{r̃k}, each worker chooses the residential location and the work location that maximize expected

utility,

Ũ ikn = ϵ ln

(
w̃n

r̃αk P̃
1−α
k δkn

)
︸ ︷︷ ︸

≡Ũkn

+νikn, (C.8)

where P̃k =
[∑

n (τnkw̃n/An)
1−σ
]1/(1−σ)

.

With trade costs, the goods-market-clearing condition, which is the equivalent of equation (3),

equates quantity supplied and quantity demanded:

An
∑
k

ℓkn
δkn

= (wn/An)
−σ∑

k

[(
τnk
Pk

)1−σ
(∑

n′

ykn′

)]
. (C.9)

Equation (4), which clears the land market, is unchanged by the introduction of trade costs.
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The definition of a trade equilibrium is akin to Definition 4.1, with equations (C.9) and (4)

serving as the relevant market-clearing conditions. The definition of a commuting equilibrium with

finitely many individuals is akin to Definition 4.2 with {τkn} added to the list of economic primitives

and Ũ ikn being defined in equation (C.8).

C.11.2 Production uses land

Relative to the model in Section 4, we now assume that production of goods uses a Cobb-Douglas

combination of labor and land inputs. In particular, the quantity of output in workplace location

n is

qn = An

(
Ln

1− β

)1−β (TPn
β

)β
,

where Ln is labor and TPn is land used in production. Therefore, the unit cost of production in

location n is

cn =
1

An
w1−β
n rβn

and the CES price index is P =
(∑

n c
1−σ
n

)1/(1−σ)
.

Labor supplied in location n is given by Ln =
∑

k
ℓkn
δkn

. From the first-order condition, land

demanded for use in production in location n can be expressed as

TPn =
β

1− β

(
wn
rn

)∑
k

ℓkn
δ̄kn

.

Substituting this expression into the production technology, output in location n is

qn =
1

1− β
An

(
wn
rn

)β∑
k

ℓkn
δ̄kn

.

As in Section 4, each individual devotes 1−α of their expenditure to differentiated goods and α

of their expenditure to land, while immobile landlords spend all of their income on differentiated

goods, such that total expenditure on differentiated goods equals aggregate income. With land used

in production, however, aggregate income now includes the income that accrues to each factor. Total

income that accrues to labor is
∑

nwnLn. Total income that accrues to land used in production

equals ∑
n′

rn′TPn′ =
β

1− β

∑
n′

wn′
∑
k′

ℓk′n′

δ̄k′n′
=

β

1− β

∑
n′

wn′Ln′ .

The demand for each differentiated good stemming from CES preferences means that demand is

proportional to aggregate income. Goods market clearing requires that quantity demanded equals

quantity supplied in each location n:

1

1− β
An

(
wn
rn

)β∑
k

ℓkn
δ̄kn

=
c−σn
P 1−σ

[(
1

1− β

)∑
n′

wn′
∑
k′

ℓk′n′

δ̄k′n′

]
.
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Writing the left-hand side in terms of the unit cost and simplifying yields

wn
∑
k

ℓkn
δ̄kn

=
c1−σn

P 1−σ

[∑
n′

wn′
∑
k′

ℓk′n′

δ̄k′n′

]
. (C.10)

Residents spend a fraction α of their income on land, so their demand for land, denoted TRn , is

given by

TRn = α
∑
k

ℓnn′

δ̄nn′

wn′

rn
=

α

rn

∑
n′

ynn′ .

Clearing the land market means equating the fixed land supply Tn to the sum of the quantities of

land demanded by producers and residents:

Tn = TPn + TRn =
1

rn

[
β

1− β

∑
k

ℓkn
δ̄kn

wn + α
∑
n′

ℓnn′

δ̄nn′
wn′

]
. (C.11)

The definition of a trade equilibrium is akin to Definition 4.1, with equations (C.10) and (C.11)

serving as the relevant market-clearing conditions. The definition of a commuting equilibrium with

finitely many individuals is akin to Definition 4.2 with the Cobb-Douglas production parameter β

added to the list of economic primitives.

C.11.3 Residential amenities

Relative to the model in Section 4, we now assume that each location is endowed with a residential

amenity Bk. Individual i’s utility from residing in k and working in n is now

Ũ ikn = ϵ ln

(
Bkw̃n

r̃αkP
1−αδkn

)
+ νikn. (C.12)

Note that local amenities can depend on local residential density as in Allen and Arkolakis (2014):

Bk = B̄k (
∑

n ℓkn)
−θ, where B̄k is the fundamental amenities in location k,

∑
n ℓkn is the total

number of individuals residing in k, and θ ≥ 0 governs the strength of the congestion force. When

θ = 0, local amenities are exogenous.

The definition of a trade equilibrium in Definition 4.1 remains unchanged. The definition of a

commuting equilibrium with finitely many individuals is akin to Definition 4.2 with the fundamental

residential amenities {B̄k} and θ added to the list of economic primitives and Ũ ikn being defined in

equation (C.12).

C.11.4 Local increasing returns

Relative to the model in Section 4, we now assume that production exhibits local external economies

of scale. In particular, in each location n the linear production technology is qn = AnLn, where Ln

is the labor supply of workers working in location n and An ≡ ĀnL
η
n. Thus, the CES price index

is P =
[∑

n

(
wn/(ĀnL

η
n)
)1−σ]1/(1−σ)

.
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Since output in location n is Ān
(∑

k ℓkn/δ̄kn
)1+η

, equating quantity supplied and quantity

demanded requires

Ān

(∑
k

ℓkn/δ̄kn

)1+η

=
wn

−σĀσn
(∑

k ℓkn/δ̄kn
)ησ

P 1−σ Y. (C.13)

The remaining results are unchanged after replacing equation (3) with equation (C.13). The

definition of a trade equilibrium is akin to Definition 4.1, with equations (C.13) and (4) serving as

the relevant market-clearing conditions. The definition of a commuting equilibrium with finitely

many individuals is akin to Definition 4.2 with {Ān} and η added to the list of economic primitives.

Local increasing returns enter the sufficient conditions for the existence and uniqueness of the

equilibrium in the continuum model and thereby the uniqueness of the continuum-case rational

expectations. We assume that η < 1
σ−1 . We define ψ = 1+ η − ησ. Following the same steps as in

Appendix C.1, the relevant matrix whose spectral radius we need to evaluate is

A =

 0 ψ(1+ϵ)
σ+ψϵ

1+ϵ
σ+ψϵ

αϵ
1+αϵ 0 0

0 |σ−ψ|
σ+ψϵ

1+ϵ
σ+ψϵ

 .
As in Appendix C.1, ρ(A) ≥ 1 and ρ(A) ≤ 1 if and only if fk(1) ≥ 0 for k = 0, 1, 2.

f(1) = 1− 1 + ϵ

σ + ψϵ
− ψ

(
1 + ϵ

σ + ψϵ

)(
αϵ

1 + αϵ

)(
1− 1 + ϵ

σ + ψϵ

)
−
(

1 + ϵ

σ + ψϵ

)(
αϵ

1 + αϵ

)(
|σ − ψ|
σ + ψϵ

)
f1(1) = 3− 2

(
1 + ϵ

σ + ψϵ

)
− ψ

(
1 + ϵ

σ + ψϵ

)(
αϵ

1 + αϵ

)
f2(1) = 6− 2

(
1 + ϵ

σ + ψϵ

)
.

Notice that f2(1) > f1(1) under the parametric assumptions. We proceed by numerically finding

the values of η that satisfy f(1) ≥ 0 and f1(1) ≥ 0 given values of α, σ, and ϵ. Under the baseline

parameter values (α = 0.24, σ = 4, ϵ = 7.986), f(1) ≥ 0 and f1(1) ≥ 0 are satisfied when η ≤ 0.0029.

The equilibrium exists and is unique up to scale when agglomeration forces are modest.

C.12 Galton’s fallacy for Poisson counts

When a process is serially uncorrelated or mean reverting, changes will be negatively correlated

with prior levels. Consider an AR(1) process such that

yt = (1− ρ̃)µ̃+ ρ̃yt−1 + ϵt,

where µ̃ is the unconditional mean of yt, ρ̃ ∈ [0, 1) is its serial correlation, and ϵt is iid white noise

with mean zero and variance σ2ϵ . If ρ̃ = 0, yt is independently and identical distributed.
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This process can be rewritten by iterating and then taking the difference:

yt = (1− ρ̃)µ̃+ ρ̃yt−1 + ϵt

= µ̃+

∞∑
i=0

ρ̃iϵt−i

yt+1 − yt = ϵt+1 + (ρ̃− 1)

∞∑
i=0

ρ̃iϵt−i.

As a result, the initial level and subsequent change are negatively correlated: Cov (yt, yt+1 − yt) =
−1
1+ρ̃σ

2
ϵ < 0.

We now consider commuter counts, which, unlike the AR(1) process above, must be integers.

Consider a Poisson process with an AR(1)-style mean:

yt+1 ∼ Poisson ((1− ρ)µ+ ρyt)

y0 ∼ Poisson (µ) ,

where ρ ∈ [0, 1) is the serial correlation coefficient and ρ = 0 is the iid case. We define the initial

condition to define the unconditional mean.

The following identities are helpful in showing the relationship between a count and its subse-

quent change:

E[yt+1] = µ, E
[
y2t
]
= µ2 +

µ

1− ρ2
, E[yt+1yt] = µ2 +

ρµ

1− ρ2
.

Using these, we can show that the covariance is negative:

Cov (yt, yt+1 − yt) = Cov (yt, yt+1)−Var (yt) =
ρ

1− ρ2
µ− µ

1− ρ2
=

ρ− 1

1− ρ2
µ =

−1

1 + ρ
µ < 0.

This matches the expression for the continuous-valued distributions above.
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D Descriptive statistics and data sources

Section D.1 presents descriptive statistics for Detroit and Minneapolis-St. Paul analogous to those

for New York City presented in the main text. Section D.2 examines commuting flows between

counties. Section D.3 shows that commuting flows are often impersistent. Section D.4 shows that

zero commuting flows are often asymmetric. Section D.5 shows that small and zero flows are a

large proportion of cells in the migration matrix and that these flows are impersistent over time.

Section D.6 shows that estimates of workplace fixed effects are biased by dropping observations

with zero commuters. Section D.7 describes the data sources we employ.

D.1 Tract-level commuting flows for Detroit and Minneapolis-St. Paul

This section presents summary statistics for tract-to-tract commuting counts in the Detroit urban

area and the Minneapolis-St. Paul metropolitan area in 2014 analogous to those reported for New

York City in Section 3.1. We chose these examples because Owens, Rossi-Hansberg, and Sarte

(2020) study the Detroit urban area and Minnesota is the only state that reports employment by

establishment rather than firm in the LODES data (Graham, Kutzbach, and McKenzie, 2014).

The Detroit urban area has about 1.3 million resident-employees and 1.4 million tract pairs,

so the average cell in its commuting matrix is near one. Among the tract pairs, 74% have zero

commuters between them. In Detroit, 42.6% of commuters have five or fewer commuters in their

cell of the commuting matrix.

The Minneapolis-St. Paul metropolitan area has about 1.5 million resident-employees and 0.6

million tract pairs, so the average cell in its commuting matrix has less than three commuters.

Among the tract pairs, 61% have zero commuters between them. In the Twin Cities, 24.3% of

commuters have five or fewer commuters in their cell of the commuting matrix.

The spatial concentration of employment contributes to the sparsity of these commuting ma-

trices. The median tract in Detroit has 465 employees working in it. Since Detroit has 1,166

residential tracts, at least 60% of locations must have zero residents commuting to this workplace.

D.2 County-level commuting flows

Even when studying larger geographic units, many pairs of locations may have small flows. Consider

US counties, which vary greatly in population size. In the 2006–2010 American Community Survey

(ACS) data, there are 136 million commuters (with commutes less than 120 kilometers).58 Of

those 136 million, 101 million live and work in the same county, so there are 35 million cross-

county commuters between 79,188 pairs of counties. Thus, the average off-diagonal element of the

county-to-county commuting matrix has 445 commuters. However, the distribution of commuters

is extremely uneven. The top 10 county pairs account for more than 2 million commuters alone.

For the bottom 90% of off-diagonal observations, the mean value is only 40 commuters. Almost

58We follow Monte, Redding, and Rossi-Hansberg (2018) by restricting attention to county pairs that are less than
120 kilometers apart.
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Figure D.1: Number of commuters between pairs of tracts in Detroit and the Twin Cities
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Notes: These histograms report the number of tract pairs in the Detroit urban area (left panel) and the
Minneapolis-St. Paul metropolitan area (right panel) by the number of individuals who reside in the origin tract
and work in the destination tract in 2014 LODES data. These histograms restrict the samples to pairs of tracts
with a strictly positive number of commuters. Observations larger than the 99th percentile are winsorized (40
commuters for Detroit urban area and 70 commuters for Minneapolis-St. Paul metropolitan area). Detroit has
1,166 residential census tracts. The Twin Cities has 789 residential census tracts.

half of the county pairs report zero commuters. Among those reporting positive values, Figure D.2

shows that this distribution is skewed, so that many thousands of county pairs have small numbers

of commuters. Unlike census tracts, however, these small flows constitute a small share of the total

number of commuters. That is, US counties with tens of thousands of residents do not exhibit the

patterns we described for granular settings, but many county pairs have small commuting flows

and show similar patterns.

In practice, the uncertainty accompanying these small flows is severely compounded by the

fact that the ACS is a 1-in-20 sample of the population. In three different five-year waves of the

ACS, nearly half of the county pairs within 120 kilometers of each other are reported to have zero

commuters, as shown in Table D.1. More than half of the non-zero county pairs report fewer than

100 commuters, therefore representing the behavior of five or fewer respondents. As a consequence,

as shown in the third column of Table D.1, for more than one-third of the county pairs with positive

commuting flows, the Census-reported margin of error exceeds the reported number of commuters.

Commuting data from other countries show similar features of granular settings. For example,

one-quarter of Germany’s county (Kreisfreie Städte and Landkreise) pairs within 120 kilometers

have fewer than 10 commuters (Krebs and Pflüger, 2019). In Brazil’s 2010 Censo Demográfico,

which reports estimates based on a 10% sample of the population, there are 81 million commuters

(with commutes less than 60 kilometers).59 There are 7 million cross-municipality commuters

between 131,620 pairs of municipalities. Thus, the average off-diagonal element of the municipality-

to-municipality commuting matrix has only 56 commuters. About three-quarters of the cells in

this commuting matrix are empty.

59Dingel, Miscio, and Davis (2021) use these data to construct metropolitan areas based on commuting flows.
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Figure D.2: Number of commuters between US counties
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Notes: This histogram depicts the number of county pairs by the estimated number of commuters in the 2006–2010
ACS. The sample is restricted to pairs of distinct counties within 120 kilometers, the smallest 90% of estimated
commuter counts among such counties, and only those pairs reporting a strictly positive number of commuters.

D.3 Commuting counts are often impersistent

The integer values appearing in commuting matrices are not very persistent. A residence-workplace

pair may have three commuters one year and none the next. Another pair of locations may double

its number of commuters, from one to two. While the conventional continuum approach interprets

these changes as substantial economic shifts, the finite-sample perspective is that these changes

are not very informative if they are merely a symptom of small counts. We document substantial

churn in commuting counts from year to year, suggesting that there is considerable finite-sample

noise in addition to signal in these commuting counts.

Table D.2, which presents the transition matrix for pairs of tracts in the Detroit urban area and

New York City between the years 2013 and 2014, demonstrates considerable impersistence. In the

Table D.1: Zeros in US county-to-county commuting matrix

Dataset Zero Pairs Positive Pairs MOE >X (%)

ACS 2006-2010 36,403 42,785 37
ACS 2009-2013 35,547 43,641 36
ACS 2011-2015 35,002 44,096 35

Notes: This table reports the number of county pairs with zero commuters and
non-zero commuters for three editions of the ACS. The sample is restricted to pairs
of counties within 120 kilometers of each other. The final column reports the share of
county pairs for which the Census-reported 90% margin of error exceeds the (strictly
positive) reported number of commuters.
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Detroit urban area, for pairs with one to four commuters in 2013, the percentages appearing on the

diagonal of the transition matrix are quite low. A pair of tracts with one commuter in 2013 was

almost three times as likely to have zero commuters in 2014 than to have one commuter. A pair with

four commuters in 2013 was more likely to appear in any other column in 2014 than to report four

commuters again. The 86% of pairs that had zero commuters in both years may appear to suggest

persistence, but this is primarily a symptom of the fact that in both years about three-quarters of

observations are zero.60 More than 130,000 pairs of tracts that had zero commuters in 2013 had at

least one commuter in 2014. At the same time, 39% of Detroit tract pairs with positive flow in 2013

were zeros in 2014 . Thus, while zeros are pervasive in this commuting matrix, they are not very

persistent. The results for New York City in Table D.2 are very similar to those for Detroit. The

commuter counts are so impersistent that, for many tract pairs, a gravity-based estimate predicts

a tract pair’s commuter count in 2014 better than its observed count in 2013 does.

Table D.2: The impersistence of commuting counts for tract pairs in Detroit and NYC

(a) Detroit

2014
2013 0 1 2 3 4 5+

0 0.86 0.10 0.02 0.01 0.00 0.00
1 0.60 0.22 0.10 0.04 0.02 0.02
2 0.37 0.25 0.16 0.09 0.06 0.08
3 0.23 0.22 0.18 0.13 0.08 0.16
4 0.15 0.17 0.17 0.14 0.11 0.26
5+ 0.04 0.06 0.07 0.08 0.08 0.68

(b) NYC

2014
2013 0 1 2 3 4 5+

0 0.91 0.07 0.01 0.00 0.00 0.00
1 0.65 0.20 0.08 0.04 0.02 0.02
2 0.39 0.25 0.15 0.09 0.05 0.07
3 0.24 0.22 0.17 0.12 0.08 0.16
4 0.15 0.17 0.17 0.14 0.11 0.27
5+ 0.03 0.05 0.06 0.07 0.07 0.71

Notes: This table describes pairs of tracts in the Detroit urban area (left panel) and New York City (right panel)
by reported number of commuters in the 2013 and 2014 LODES. It is a transition matrix, in which each cell lists the
share of tract pairs in that row (number of commuters in 2013) that belong to that column (number of commuters
in 2014). Each row sums to 100%, modulo rounding.

We note considerable churn even when using larger geographic units. Table D.3 shows that 22%

of the county pairs reporting zero commuters in the 2006–2010 ACS reported a positive number of

commuters in the following five-year interval. Conversely, about 18% of pairs reporting a positive

number of commuters had zero commuters in the following five-year interval. For pairs of counties

with a strictly positive number of commuters smaller than 111 in 2006–2011, the diagonal elements

of the transition matrix are less than half. For example, a pair of counties reported to have 71–90

commuters in 2006–2011 has only a 14% probability of appearing in the same bin in the following

five-year interval.

To the extent that the observed impersistence of commuting counts is a small-sample problem,

these findings caution against procedures that infer structural parameters from the relative magni-

60If p ∈ [0, 1] of the pairs were randomly independently assigned zero in each period, then p2 of those pairs would
lie in the upper left cell of the transition matrix. Thus, even if zeros were randomly independently assigned to three-
quarters of the tract pairs in each period, nine-sixteenths of the pairs would be zero in both periods. That would not
be evidence of persistence.
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Table D.3: The impersistence of commuting counts for pairs of US counties

45.88

19.64

5.47

3.42

2.50

1.86

12.02

5.01

4.07

0.78

0.35

0.16

0.08

0.05

0.02
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0.35
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0.00

0.00
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0.00

0.00

0.00

0.00

0.07

0.81

0.06

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.06

0.94

0

1−30

31−50

51−70

71−90

91−110
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2
0
0
6
−

2
0
1
0

Initial Share(%) 0 1−30 31−50 51−70 71−90 91−110 111−500 501−1,500 >1,500

2011−2015

Notes: This table presents a transition matrix for pairs of counties within 120 kilometers of each other by
reported number of commuters in two editions of the ACS. The first column reports the percentage of county
pairs that were in each row in the 2006–2010 data. The remaining columns report the share of county pairs
within the row that appeared in the corresponding bin in the 2011–2015 data. By definition, the shaded cells
in each row sum to one, modulo rounding. The bin boundaries are arbitrary, since Figure D.2 shows no obvious
bunching. We found similar impersistence when using alternative boundaries.

tudes of these counts. The difference between one commuter and two commuters (or one respondent

and two respondents in a finite sample) is little evidence that the latter outcome was twice as

probable. Similarly, procedures that rationalize observations with zero commuters by imposing

infinite commuting costs so that these are zero-probability events rule out potential margins of

adjustment based on zeros that appear to be largely transitory.

Tract-pair-level commuter counts are so impersistent that a gravity model estimated using an

observed bilateral characteristic like transit time or distance can sometimes predict future commuter

counts better than the observed value. Table D.4 shows that, for tract pairs with fewer than ten

commuters reported, a gravity-based estimate predicts the following year’s value better than its

current value does. The fitted values from a gravity model estimated using 2013 data have a higher

R2 for predicting observed 2014 values than the observed 2013 values in both Detroit and New

York City. Using the observed 2013 values yields better predictions only for the tract pairs with

the largest 2% of commuter counts.

D.4 Zeros are often asymmetric

The zeros in commuting matrices are often asymmetric. Denoting the number of commuters living

in residence k and working in workplace n by ℓkn, an observed zero is asymmetric when ℓnk = 0 and

ℓkn > 0. For US counties, ℓnk = 0 for 22% of county pairs with ℓkn > 0. In Detroit, ℓnk = 0 for

66% of tract pairs with ℓkn > 0. For Brazilian municipalities, ℓnk = 0 for 49% of municipio pairs

with ℓkn > 0. These asymmetric flows are not explained by asymmetric numbers of total workers

or residents: in Detroit, ℓnk = 0 for 47% of tract pairs for which ℓkn > 0 and total employment in
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Table D.4: Gravity-based estimates predict 2014 values better than 2013 values do

# of commuters Share Gravity: time 2013 values Gravity: distance 2013 values

Panel A: Detroit

≤ 5 0.960 0.384 0.308 0.367 0.307
≤ 10 0.983 0.494 0.473 0.465 0.472
Panel B: NYC

≤ 5 0.978 0.362 0.306 0.373 0.306
≤ 10 0.990 0.474 0.475 0.477 0.473

Notes: Each row reports results for all tract pairs in Detroit (upper panel) or New York City (lower panel)
with fewer than 5 or 10 commuters in the 2013 LODES data. The “Share” column reports the share of tract
pairs covered by the row. The “Gravity” columns report the R2 obtained by regressing the 2014 number of
commuters on the number of commuters predicted by a gravity model estimated using 2013 data. The “Gravity:
time” column estimates the gravity equation as described in Section 3.2. The “Gravity: distance” column uses
ln δkn = ln distancekn rather than commuting costs defined in Section 3.2. The “2013 values” columns report the
R2 obtained by regressing the 2014 number of commuters on the 2013 number of commuters. All estimated slope
coefficients are positive. The two “2013 values” columns differ because the regression sample is within observations
where predictions from the gravity model are available. In the distance specification, k = n observations are
dropped. For NYC, the commute is infeasible for two observations.

k and n differs by 10% or less.

The fact that commuting matrices’ zeros are often asymmetric poses a puzzle for calibration

procedures that rationalize zero-commuter observations by infinite commuting costs. This inter-

pretation of zeros implies severely asymmetric commuting costs, even though daily commutes are

round-trip journeys. If we believe that commuting from n to k is impossible because we observe

ℓnk = 0, how do the individuals who live in k and work in n commute home at the end of the

day? The mechanisms generating prohibitive commuting costs would have to exhibit within-day

variation. But the most plausible source of intraday variation in commuting costs — congestion

caused by a large number of commuters — cannot explain residence-workplace pairs that have no

commuters.

In many empirical settings, asymmetric zeros may simply reflect small flows rather than evidence

of very asymmetric commuting costs. When most pairs of locations have zero commuters, and

the modal pair with a positive number reflects the decision of only one commuter or one survey

respondent, the difference between zero and one isn’t particularly informative.

D.5 State-to-state migration flows in ACS data

Using ACS data from 2001 and 2002, we show that small and zero flows are a large proportion of

cells in the migration matrix and that these flows are impersistent over time. The ACS 2001 dataset

has 644,427 prime-age individuals out of the total sample of 1,192,206 individuals. Of these, 73,101

individuals moved residences. Of the 73,101 individuals who moved, 80.6% migrated within their

states. We observe a total of 14,215 between-state movers out of the 644,427 prime-age individuals
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in the 2001 ACS.

Figure D.3: Histogram of migration flows between US states, 2001
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Given the 14,125 between-state movers in 2001 across 2,550 state pairs, the average cell in the

migration matrix has 5.6 movers. About one-third are zero. The histogram of the positive state-

to-state migration counts in Figure D.3 exhibits features similar to the histogram of tract-to-tract

commuting counts: a large number of very small flows and a long right tail. About 73% of cells

have fewer migrants than the average value of 5.6. Values of 1 to 5 each account for about 10% of

cells in the migration matrix.

Table D.5: Transition matrix for state migration flows between 2001 and 2002

2002
2001 0 1 2 3 4 5 6+

0 0.59 0.16 0.13 0.05 0.03 0.01 0.02
1 0.40 0.17 0.17 0.10 0.06 0.05 0.06
2 0.32 0.16 0.21 0.09 0.07 0.07 0.09
3 0.23 0.16 0.21 0.09 0.08 0.09 0.14
4 0.26 0.13 0.15 0.10 0.06 0.06 0.25
5 0.13 0.09 0.12 0.14 0.14 0.06 0.31
6+ 0.03 0.03 0.06 0.06 0.06 0.07 0.69
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The 2001–2002 transition matrix in Table D.5 shows considerable impersistence in migration

flows. The particular value of a small state-to-state flow is not stable from year to year, similar to

the transition matrix for commuting counts. In Table D.5, migration flows are winsorized at 6 and

values are given as a percentage of 2001 migration flows, so the rows sum to one. The diagonal

elements, for which the number of migrants is the same across the two years, are quite small. A

significant portion of the positive migration flows in 2001 are zero in 2002, as shown in the first

column of the table.

Foschi et al. (2023) also report that the ACS migration data exhibit finite-sample problems and

suggest using Internal Revenue Service migration counts instead.

D.6 OLS estimation bias

Figure D.4: Destination fixed effects from tract-to-tract gravity regressions
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Notes: This plot depicts the destination fixed effects estimated in Table 1’s column 1 (horizontal axis) and
column 2 (vertical axis). See the notes to Table 1 for details.

Figure D.4 shows that estimates of workplace fixed effects are biased by dropping observations

with zero commuters. When only using positive-commuter observations, the residence and work-

place fixed effects characterize the average number of commuters for a residence-workplace pair,

conditional on the number of commuters being strictly greater than zero. These conditional averages

are necessarily greater than the unconditional averages, and the difference is larger for workplace

locations with fewer workers.61 Figure D.4 contrasts the OLS (vertical axis) and maximum likeli-

hood (horizontal axis) estimates of the workplace fixed effects. The difference is stark: the range

61Census tracts are defined so that the number of residents is similar across tracts, while there is tremendous
heterogeneity in total employment. Thus, the selection bias is evident in the workplace fixed effects. When estimating
the analogous gravity regression for county-to-county commuting flows, we find that the selection bias manifests in
both the origin and destination fixed effects.
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of the OLS estimates is half that of the maximum likelihood estimates because of considerable

truncation from below. In essence, the popular practice of omitting zero-commuter observations

attributes low-employment destinations’ lower employment counts to infinite commuting costs, not

lower wage beliefs (lower productivity). By contrast, our maximum likelihood estimator infers that

these destinations are less attractive workplaces from the fact that many origins have zero residents

working in these destinations.

D.7 Data sources

This subsection describes the data sources we employ.

Longitudinal Employer-Household Dynamics, Origin-Destination Employment Statis-

tics (LODES). The block-level origin-destination data for New York City, Detroit, and Minneapolis-

St. Paul and the block-level workplace area characteristics data for New York City are obtained

from LODES version 7.4, published by the US Census Bureau.62 Following Owens, Rossi-Hansberg,

and Sarte (2020), we use the primary job counts.

The origin-destination data for NYC, Detroit, and Minneapolis-St. Paul are in the following

files:

Geography filepath within https://lehd.ces.census.gov/data/lodes/LODES7/

NYC from ny/od/ny od main JT01 2002.csv.gz

to ny/od/ny od main JT01 2017.csv.gz

Detroit from mi/od/mi od main JT01 2009.csv.gz

to mi/od/mi od main JT01 2014.csv.gz

Minneapolis-St. Paul from mn/od/mn od main JT01 2010.csv.gz

to mn/od/mn od main JT01 2014.csv.gz

from mn/od/mn od aux JT01 2010.csv.gz

to mn/od/mn od aux JT01 2014.csv.gz

from wi/od/wi od main JT01 2010.csv.gz

to wi/od/wi od main JT01 2014.csv.gz

from wi/od/wi od aux JT01 2010.csv.gz

to wi/od/wi od aux JT01 2014.csv.gz

The Minneapolis-St. Paul core-based statistical area includes counties in both Minnesota and

Wisconsin. The LODES aux files describe jobs in which the workplace is in the state and the

residence is outside the state.

The workplace area characteristic data for NYC are downloaded from https://lehd.ces.

census.gov/data/lodes/LODES7/ny/wac/, from ny wac S000 JT01 2002.csv.gz to

ny wac S000 JT01 2017.csv.gz for primary jobs.

In these files, the relevant variables are

62See the official documentation for details of the data structure.
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� w geocode 15-digit workplace census block code. We aggregate it into 11-digit FIPS census

tract code as the workplace identifier.

� h geocode 15-digit residence census block code. We aggregate it into 11-digit FIPS census

tract code as the residence identifier.

� S000 Total number of jobs.

� SE01, SE02, SE03 Number of jobs with earnings $1250/month or less, $1,251/month to

$3,333/month, and greater than $3,333/month. We use the three variables and the maximum

wage obtained from ZIP Code Business Statistics to calculate the annual average payroll per

employee in the workplace tract.

Five-Year American Community Survey Commuting Flows and Employment Data. We

summarize 2006-2010 county-level commuting statistics using data from the American Community

Survey. It can be downloaded from Table 1. Residence County to Workplace County Flows for the

United States and Puerto Rico Sorted by Residence Geography: 2006-2010.

� StateID h, StateID w 2-digit FIPS state code for residence or workplace.

� CountyID h, CountyID w 3-digit FIPS county code for residence or workplace.

� E The tract-to-tract number of commuters.

NYC tract-to-tract transit time. We use data from Davis et al. (2019) describing pairs of New

York City tracts in terms of the travel times by public transport. It can be downloaded from https:

//github.com/jdingel/DavisDingelMonrasMorales/raw/master/initialdata/input/tractpairs.

dta.zip.

� geoid11 orig Origin 11-digit FIPS geographic identifier.

� geoid11 dest Destination 11-digit FIPS geographic identifier.

� traveltime public Travel time by public transportation in minutes from Google Maps. We

use it to compute the commuting cost δ̄kn.

Detroit tract-to-tract transit time. Our data on tract-to-tract transit time in Detroit come

from Kij GoogleTime.xlsx and Tract Classification.xlsx in the Owens, Rossi-Hansberg, and

Sarte (2020) replication files. Note that the benchmark year in our analysis is 2014. Our analysis

covers the 297 census tracts in Detroit, as well as the surrounding adjacent metro area (Wayne

County, Oakland County, and Macomb County), which includes 866 additional tracts.

� duration minutes Tract-to-tact travel time in minutes. We reshape the data and obtain

the IDs for workplace and residence tracts. We then use the travel time to compute the

commuting cost δ̄kn.
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� work ID Workplace identifier.

� tract str 11-digit FIPS geographic identifier that maps workplace and residence IDs to

census tract code.

US census tract-level geographical information. The distance information for Detroit and

NYC are retrieved from the US census tract-level geographical information.

� geoid 11-digit FIPS census tract ID.

� intptlat, intptlong Current latitude and longitude of the interior point, used to calculate

geodesic distance between the centroids.

ZIP Code Business Statistics. We apply the method in Owens, Rossi-Hansberg, and Sarte

(2020) to calculate a weighted wage from ZIP Code Business Patterns. The yearly employed data are

from https://www2.census.gov/: econ2006/CB/sector00/CB0800CZ1.zip to econ2010/CB/sector00/CB0600CZ1.zip

for data between 2008 and 2010, and from

econ2011/CB/sector00/CB1100CZ11.zip to econ2013/CB/sector00/CB1100CZ11.zip for data

between 2011 and 2013.

� zipcode 5-digit zip code.

� emp f Flag for the range of the number of employees.

� emp Number of employees, replaced with the midpoint of the associated bins indicated by

emp f if censored.

� payqtr1 f, payann f Flags for first-quarter payroll and annual payroll, used for dropping

observations if classified as missing data.

� payann Annual payroll ($1,000).

ZIP-tract crosswork. To aggregate the zip-level weighted wage to the tract level, we join the ZIP

data with the HUD-USPS Zip-to-Tract crosswalk. The annual ZIP-to-tract crosswalks are available

from https://www.huduser.gov/portal/datasets/usps/:

ZIP TRACT 122010.xlsx to ZIP TRACT 122013.xlsx.

� ZIP 5-digit zip code.

� TRACT 11-digit FIPS census tract code.

� BUS RATIO The ratio of business addresses in the ZIP-tract intersection to the total number of

business addresses in the entire ZIP. It is used as the proportion to reweight the employment

and annual payroll data. We sum by census tract to arrive at the tract-level employment and

annual payroll for each census tract. Then, we divide payroll by employment to obtain the

tract-level average payroll per employee and its maximum value.
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NYC Neighborhood Tabulation Areas (NTA)-tract crosswalk. To aggregate the NYC

census tract level data to the Neighborhood Tabulation Areas defined by the New York City

Department of City Planning, we use the 2010 census tract to 2010 NTA equivalency.

� NeighborhoodTabulationAreaNT 4-digit NTA code.

� CensusBureauFIPSCountyC 3-digit FIPS census county code.

� CensusTract 9-digit FIPS census tract code.

E Finite model: Price dispersion and “ex post regret”

E.1 Contrast with prices from continuum model

The realized equilibrium rents and wages differ generically from the point-mass beliefs about rents

and wages that govern individuals’ choices of residences and workplaces. Because equilibrium prices

solve a system of non-linear equations, the average realized equilibrium prices may differ from the

point-mass beliefs. As described below, these differences are small at our baseline parameter values:

the 95th-percentile tract’s absolute percent deviation of mean realized price from the continuum-case

rational expectation is 0.72% for wages and 0.03% for rents.63

Equilibrium prices in the model with a finite number of individuals solve a system of non-linear

equations, so their expected values are not necessarily equal to the continuum-case prices. The

labor supply to workplace n is Ln =
∑

k
ℓkn
δ̄kn

. This is a random variable whose realized value

depends on the realization of νI . Labor demand in workplace n, when there are local increasing

returns, can be written as a rearrangement of equation (C.13):

wn = Ā
σ−1
σ

n L
η− (1+η)

σ
n

(
Y

P 1−σ

)1/σ

.

For brevity, define the inverse labor demand elasticity η̃ ≡ η− (1+η)
σ . Choose the numeraire so that

Y
P 1−σ = 1.

The equilibrium wage is given by the intersection of the labor demand curve and the randomly

realized quantity of labor supplied Ln. The equilibrium wage in workplace n as a function of this

random variable Ln is

wn (Ln) = Lη̃nĀ
σ−1
σ

n .

The equilibrium wage in the continuum model is wn (E [Ln]), while the mean equilibrium wage

in the model with a finite number of individuals is E [wn (Ln)]. These values coincide when demand

is perfectly elastic (η̃ = 0) or when increasing returns are so large that wages are linear in quantity

supplied (η̃ = 1), but otherwise wn() is not a linear operator and thus these values differ by Jensen’s

63These differences are larger when the labor demand elasticity σ is lower: 3.61% for wages and 0.05% for rents
when σ = 1.1.
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inequality. Similarly, rearranging equation (4) shows that equilibrium rents, rk =
α
Tk

∑
n ykn, are a

non-linear function of realized labor quantities and wages.

Using fn(Ln) to denote the probability mass function of supplied labor, the difference between

the continuum model’s wage and the mean wage in the model with a finite number of individuals

is
E [w(Ln)]

w(E [Ln])
− 1 =

∫ ∞

0

[(
Ln

E[Ln]

)η̃
− 1

]
f(Ln)dLn.

As noted above, this difference is zero when labor demand is perfectly elastic (η = 0 & σ = ∞).

To quantify how the difference in wages varies with the labor demand elasticity, we compute

100,000 simulations of equilibrium outcomes in the model with a finite number of individuals for

100,000 realizations of νI when σ = 4 and when σ = 1.1. We compute the average wage in each

tract across these 100,000 equilibria, excluding the rare instances in which a tract’s equilibrium

wage is undefined because its realized labor supply Ln is zero. The average realizations of wages

and rents across 100,000 simulations of the model with a finite number of individuals are very close

to the continuum-case rational expectation of these prices at our baseline parameter values. The

gap between the two model’s prices is larger when the labor demand elasticity is lower. Figure E.1

shows the two distributions of the wage difference across the 2,143 workplace tracts for the two

labor demand elasticities. The median tract’s absolute percentage point deviation of mean realized

price from the continuum-case rational expectation is 0.06% for wages and 0.01% for rents. When

σ = 1.1, these differences are 0.32% for wages and 0.03% for rents. The values of the 95th-percentile

differences are reported in Section 4.4.

Figure E.1: Gap between mean wage and continuum-case expectation of wage
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Notes: This figure depicts the absolute percentage-point deviation of the mean realized wage from the continuum-
case rational expectation of the wage across the 2,143 workplace tracts. We compute the mean wage using 100,000
simulations of the model with a finite number of individuals. This mean excludes the rare instances in which
a tract’s equilibrium wage is undefined because its realized labor supply Ln is zero. Deviations larger than five
percentage points are winsorized to five.
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E.2 Dispersion of real wages and rents relative to beliefs

Realized equilibrium prices vary with individual idiosyncrasies. Figure E.2 plots the dispersion of

prices for each tract in New York City for the estimated model with a finite number of individuals.

We define price dispersion as the standard deviation of the price in the commuting equilibrium

with finitely many individuals across 100,000 simulations divided by the continuum-case rational

expectation of that price. Across tracts, the median level of this measure of dispersion, akin to

the coefficient of variation, is 0.016 for wages and is 0.032 for rents. While this dispersion may be

considered sizable, these differences between expectations and realized prices do not necessarily im-

ply that individuals would move if we relaxed the irreversibility assumption. Individuals’ decisions

depend on their idiosyncratic preferences, so many are inframarginal.

Figure E.2: Price dispersion across equilibria
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Notes: The plots depict the dispersion of prices (rk/P or wn/P ) for each tract in New York City using the model
with a finite number of individuals estimated on 2010 data. We define price dispersion as the standard deviation
of the price in the commuting equilibrium with finitely many individuals across 100,000 simulations divided by the
continuum-case rational expectation of that price. Panel A depicts the dispersion in tracts’ rents, which have a
median value of 0.032 (p5 = 0.021, p95 = 0.051). Panel B depicts the dispersion in tracts’ wages, which have a
median value of 0.016 (p5 = 0.004, p95 = 0.054).

E.3 Ex post regret

How often would individuals choose a different residence-workplace pair after observing the realized

equilibrium prices if they were able? We compute the share of individuals with ex post regret

and their magnitudes as follows. Realized equilibrium rents and wages are observed for locations

with positive residents and positive employment, the sets K and N , respectively. We define the

magnitude of “ex post regret” as the increase in income an individual would require as compensation

to not change their choice given these realized prices. In particular, at realized rents {rk} and wages

{wn}, for individual i who chose residence-workplace pair kn, ex post regret χi is implicitly defined
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such that χi solves

max
k′∈K,n′∈N

(
ϵ ln

(
wn′

P 1−αrαk′δk′n′

)
+ νik′n′

)
=

(
ϵ ln

(
(1 + χi)wn
P 1−αrαk δkn

)
+ νikn

)
,

where the left side is the individual’s maximum utility at observed realized prices, the right side is

the individual’s utility from kn with their income multiplied by (1 + χi), and by definition kn was

the choice maximizing Ũ ik,n. Denote k and n as the optimal choices of k′ and n′ for individual i.

Given kn, we can solve for the ex post regret χi based on the following equation:

ϵ ln

(
wn

P 1−αrαk δkn

)
+ νikn = ϵ ln

(
(1 + χi)wn
P 1−αrαk δkn

)
+ νikn,

which implies that

χi =

e
(

1
ϵ
νikn

)
wnr

−α
k δ−1

kn

e(
1
ϵ
νikn)wnr

−α
k δ−1

kn

− 1. (E.1)

Individual i’s regret is zero if kn is their optimal choice at realized prices.

We simulate 2.5 million individuals to compute this statistic. Each of these individuals uses

the point-mass beliefs from the continuum model. The realized wages and rents differ because of

idiosyncratic preference shocks that do not wash out in the aggregate.

Table E.1 reports the distribution of ex post regrets. In this setting, we find that ex post regret

is quantitatively modest. 96% of individuals would not want to change their residence-workplace

choice. For the 4% who would want to switch, the median ex post regret χi is equal to 0.7%.

Table E.2 compares the price dispersion in the 100,000 simulations depicted in Figure E.2

and the 10 simulations depicted in Table E.1. The simulations in Figure E.2 each require one

draw from a multinomial distribution with 4.6 million outcomes whose probabilities appear in

equation (10). Generating the labor allocation for each simulation by this method requires less

than one second of computing. The simulations in Table E.1 involve more than 11 trillion draws

from the type-1 extreme value distribution. Generating the labor allocation for each simulation by

this method requires about 100 hours of computing. Hence, the latter simulations are much more

computationally expensive. It is heartening that the distributions of price dispersion summarized

in Table E.2 are very similar.

Appendix - 56



Table E.1: Distribution of ex post regrets

Unconditional Conditional
Share with distribution distribution

s regret p95 p96 p97 p98 p99 Mean Median

1 0.0442 0.0000 0.0011 0.0042 0.0082 0.0150 0.0106 0.0073
2 0.0433 0.0000 0.0009 0.0039 0.0078 0.0143 0.0102 0.0071
3 0.0446 0.0000 0.0012 0.0043 0.0083 0.0150 0.0106 0.0072
4 0.0446 0.0000 0.0012 0.0043 0.0084 0.0152 0.0106 0.0073
5 0.0437 0.0000 0.0010 0.0040 0.0079 0.0144 0.0103 0.0071
6 0.0444 0.0000 0.0012 0.0042 0.0083 0.0150 0.0107 0.0073
7 0.0447 0.0000 0.0013 0.0043 0.0083 0.0150 0.0105 0.0072
8 0.0445 0.0000 0.0012 0.0043 0.0084 0.0150 0.0106 0.0073
9 0.0452 0.0000 0.0014 0.0045 0.0086 0.0154 0.0109 0.0074
10 0.0444 0.0000 0.0011 0.0042 0.0082 0.0148 0.0106 0.0072

mean 0.0444 0.0000 0.0012 0.0042 0.0083 0.0149 0.0106 0.0072
Notes: The table reports the share of individuals with ex post regret and the distribution of ex post regrets
over their desired switches in simulations of our estimated model with a finite number of individuals. The first
column identifies the simulation s. The second column reports the fraction of individuals who have ex post regret
and therefore would prefer a different choice given realized prices. Columns under “Unconditional distribution”
report the distribution of ex post regret based on the full sample (I = 2, 488, 905). Columns under “Conditional
distribution” report the distribution of ex post regret among those who would want to switch. The “Mean” row
reports the mean value across the 10 simulations.

Table E.2: Price dispersion across simulation methods

Simulation count mean p5 p10 p25 p50 75 p90 p95

Wage
100,000 0.021 0.004 0.006 0.010 0.016 0.025 0.039 0.054
10 0.023 0.004 0.005 0.009 0.015 0.025 0.039 0.057

Rent
100,000 0.035 0.021 0.024 0.027 0.032 0.038 0.045 0.051
10 0.034 0.016 0.019 0.024 0.031 0.038 0.049 0.058

Notes: This table compares the price (rk/P or wn/P ) dispersion generated by the simulations
used in Section E.2 (100,000 simulations) and Section E.3 (10 simulations). As described in
the text, each tract’s price dispersion is the standard deviation of the price in the commuting
equilibrium with finitely many individuals across simulations divided by the continuum-case
rational expectation of that price. The first column reports the average price dispersion across
all tracts. The remaining columns report the level of price dispersion for tracts at selected
percentiles.

Appendix - 57



F Amazon HQ2 counterfactual

F.1 Geographic incidence of Amazon HQ2

Figure F.1: Amazon HQ2 counterfactual decreases in workers

A. Employment in 2010 B. Covariates-based decreases C. Calibrated-shares decreases

Notes: Panel A depicts the number of workers employed in each tract in 2010. Panels B and C depict decreases
in the number of workers predicted by the covariates-based model and calibrated-shares procedure, respectively.
As total population is fixed, the number of workers decreases in all tracts except the Amazon HQ2 location. The
covariates-based predictions for workers describe both the continuum model and the model with finite individuals
because the change in the former equals the expected change in the latter.
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Figure F.2: Predicted changes in wages

A. Covariates-based: Continuum B. Covariates-based: Finite C. Calibrated shares

Notes: These maps depict percent changes in wages, (ŵn/P̂−1)×100. Panel A depicts the change in the
covariates-based continuum model. Panel B depicts the mean change across 100 simulations of the model
with finite individuals. Panel C depicts each tract’s predicted wage change using the calibrated-shares
procedure.

Figure F.3: Rent changes by distance to Amazon HQ2

−
.5

0
.5

1
1
.5

C
h
an

g
e 

in
 R

en
ts

 (
%

)

0 1 2 3 4
Log kilometers to AHQ2

95% CI Covariates−based model

95% CI Calibrated−shares procedure

Notes: This figure plots the changes in rents predicted by the covariates-based continuum model and the
calibrated-shares procedure as functions of (log) distance to the Amazon HQ2 tract. The percent change

in rents is
(
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)
× 100.
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As alternatives to σ = 4, we consider the values σ = 1.1 and σ = ∞. The predicted changes

in commuters to the Amazon HQ2 tract from both the covariates-based model and the calibrated-

shares procedure are invariant to the labor demand elasticity σ: regressing predictions for one value

of σ on predictions from another yields a slope of one and an intercept of zero to the fifth or sixth

decimal place. The predicted changes in real rents by residential tract from both the covariates-

based model and the calibrated-shares procedure are almost perfectly correlated (R2 ≥ 0.997),

but their scale changes with σ: a lower labor demand elasticity implies a higher average real rent

increase (see Figure F.4 contrasting σ = 4 and σ = ∞). The predicted changes in wages by

workplace tract necessarily vary with the labor demand elasticity: a lower labor demand elasticity

implies a higher average wage increase and range of wage changes. When σ = ∞, there is no spatial

variation in wage changes.

Figure F.4: Comparison of predictions of the change in real rents for σ = 4.0 and σ = ∞

A. CBM comparison of real rents for σ = 4.0 and
σ = ∞
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B. CSP comparison of real rents for σ = 4.0 and σ =
∞
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Notes: These plots compare the percent change in real rents, (r̂/P̂−1)×100, predicted by the covariates-
based model (left panel) and calibrated-shares procedure (right panel) for the labor demand elasticities
of σ = 4.0 and σ = ∞. In both panels, the predicted real rent changes associated with different values of
σ are almost perfectly correlated and only differ by a constant.

Appendix - 60



Figure F.5: Predicted changes in commuters to the AHQ2 tract from SVD, IFE, and nested-logit
specifications
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Notes: This figure compares the predicted changes in commuters to the Amazon HQ2 tract from the
approximated matrix derived from a rank-16 singular value decomposition (left panel), from the rank-1
interactive-fixed-effects specification (center panel), and from the nested-logit specification with ζ = 0.25
(right panel) to the predictions from the covariates-based specification.

Figure F.6: Predicted changes in residents from SVD, IFE, and nested-logit specifications

A. Rank-16 SVD B. Rank-1 IFE C. Nested logit

Notes: These maps depict the changes in residents predicted by the approximated matrix derived from a rank-16
singular value decomposition (left panel), the rank-1 interactive-fixed-effects specification (center panel), and the
nested-logit specification with ζ = 0.25 (right panel). They should be compared to the predictions depicted in
Figure 6B.

F.2 Uncertainty about Amazon HQ2 predictions due to idiosyncrasies
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Figure F.7: Changes in residents and rents by distance ventile
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Notes: This figure depicts the distribution of average tract-level outcomes by ventile of distance to the Amazon
HQ2 tract. Each ventile contains about 108 residential tracts. Citywide average outcomes are shown with a dashed
red line. Each point is the mean value of the ventile’s outcomes across 100 simulations. The confidence intervals are
constructed for each ventile from the 5th and 95th percentile outcomes of the 100 simulations. The percent change

in real rents is defined as
(

r̂k
P̂

− 1
)
× 100. Shorter-distance ventiles tend to have larger increases in both residents

and rents on average. For all but the first and twentieth ventiles, the 90% confidence interval for the change in
residents across 100 simulations includes zero. The rent increase in the first ventile in the mean simulation is about
double that in the 20th ventile. The 90% confidence interval of every ventile includes 0.6%, the citywide average
rent increase.

Figure F.8: Changes in employment and wages by distance ventile
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Notes: This figure depicts the distribution of average tract-level outcomes by ventile of distance to the Amazon
HQ2 tract. Each ventile contains about 107 workplace tracts. Citywide average outcomes are shown with a dashed
red line. Each point is the mean value of the ventile’s outcomes across 100 simulations. The confidence intervals are
constructed for each ventile from the 5th and 95th percentile outcomes of the 100 simulations. The percent change

in real wages is defined as
(

ŵn

P̂
− 1

)
× 100.
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Figure F.9: Uncertainty about counterfactual changes induced by idiosyncrasies (NTAs)
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Notes: These plots depict variation in counterfactual changes induced by individual idiosyncrasies in the NTA-
level model with a finite number of individuals. The panel depicts the 5th and 95th percentiles of predicted changes
in quantities and prices across 100 simulations of the NTA-level model with a finite number of individuals.
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Figure F.10: Uncertainty about counterfactual changes induced by idiosyncrasies (nested logit)
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Notes: These plots depict variation in counterfactual changes induced by individual idiosyncrasies in the nested-
logit specification (with parameter ζ = 0.25) of the model with a finite number of individuals. The panel depicts
the 5th and 95th percentiles of predicted changes in quantities and prices across 100 simulations of the model
with a finite number of individuals. To simulate draws from a nested-logit distribution F (̊νi), we first represent
ν̊i ∼ F (̊νi) using a standard Gumbel distribution G(0, 1) and a positive stable distribution (PSD) P(ζ), based
on Galichon (2022): ν̊ikn = ζ

(
νikn + logZi

Bz

)
, where νikn follows G(0, 1), and Zi

Bz
follows P(ζ). Second, we apply

Ridout (2009)’s method to simulate Zi
Bz

∼ P(ζ) for ζ = 0.25. Finally, we combine the standard Gumbel draws
and the PSD draws to construct the draws from the nested-logit distribution.
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Figure F.11: Uncertainty about counterfactual changes induced by individual idiosyncrasies (σ =
∞)
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Notes: The plots depict the 5th and 95th percentiles of predicted changes in quantities and prices across 100
simulations of the model with a finite number of individuals in which σ = ∞. In Panel A, the 90% confidence interval
for the change in residents includes zero for all tracts. In Panel B, the 90% confidence interval for the change in
employment includes zero for 505 of the 2142 non-Amazon workplaces. Panel B excludes the Amazon HQ2 workplace
tract. The 90% confidence interval for the change in employment for the Amazon workplace tract is 24,777 to 25,349.
In Panel C, real rent changes are (r̂k/P̂ − 1)× 100, and 0 out of 2160 origin tracts have a positive change in rents at
the 5th percentile.
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