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1 Introduction

Given the veritable explosion in data availability and product complexity, consumers of-
ten face an overwhelming amount of information when deciding between products. This
is true for important decisions such as health care coverage and retirement investments,
but also lower-stakes decisions such as choosing cellular plans or entertainment bundles.
Not surprisingly, there is increasing evidence that individuals can be poorly informed when
making such decisions (for example, see Handel 2013, Handel and Kolstad 2015, and Bhar-
gava, Loewenstein, and Sydnor 2017).1 One of the primary policymaking tools available
to address consumer misinformation is the framing of decision-relevant information. For
instance, policymakers can present decision-relevant information, or require firms to present
decision-relevant information, in a way that makes it easier for consumers to understand the
characteristics of an option (Hastings and Tejeda-Ashton 2008, Choi, Laibson, and Madrian
2009), to navigate the decision problem they face (Abeler and Jager 2015, Esponda and
Vespa 2016), or to compare options (Carrera and Villas-Boas 2015, Ericson and Starc 2016,
Carpenter, Huet-Vaughn, Matthews, Robbett, Beckett, and Jamison 2019).

These interventions have provided a growing sense that framing can reduce consumer
misinformation. However, in the absence of a general theoretical approach for assessing the
value of information in each frame, it has been necessary to take a case-by-case approach to
figure out which frame is best. In a limited number of cases, there is an objectively correct
choice, so whichever frame gets consumers to make that choice more often is clearly best.
For example, Handel (2013) and Bhargava, Loewenstein, and Sydnor (2017) leverage settings
where some health care plans dominate others. Outside of these special cases, choice options
have tradeoffs, and consumers have private knowledge about their tastes and requirements
that allow them to negotiate these tradeoffs. To determine the best frame, researchers have
built models of how consumers balance these tradeoffs that are specific to each case.

In this paper, we provide a general theoretical approach by characterizing when and
how a policymaker can determine the highest welfare frame without ex-ante assumptions
about consumer preferences. We introduce an information-theoretic framework and use it to
identify two testable conditions that reveal whether one frame has a robustly higher value of
information than another.2 If the data satisfy either of these conditions, then one frame has
a higher value of information for all utility functions and information structures consistent
with the data. If the data do not satisfy one of these conditions, then it is impossible to
robustly rank frames based on the value of information.

Our first condition precisely identifies when the policymaker can rank frames without
ex-ante assumptions on utility or information. In technical terms, this condition requires

1See Handel and Schwartzstein (2018) for an extensive review of this evidence.
2Robustness also plays a key role in the information design literature (see Bergemann and Morris 2017).

2



that a vector representing the difference between the frames in terms of outcomes falls in
the cone generated by the restrictions for a utility function to be consistent with the data.
This condition corresponds to solving a system of linear equations, so is simple to check,
and MATLAB programs that implement it are provided.3 We first show that this condition
is both necessary and sufficient for data to reveal that one frame has a robustly higher
value of information. We then show that whenever some options are clearly dominant, this
condition can easily be amended to account for the additional restrictions that dominance
provides. Because it is testable, adaptable, and both necessary and sufficient, this condition
is an effective tool both for determining whether frames are robustly welfare ranked in a
particular data set and also for determining the overall proportion of data sets in which
frames can be so ranked.4

Our second condition for identifying higher welfare frames arises from applying the classic
Blackwell approach within our framework. Because the actual information that decision-
makers possess is unobservable to the policymaker, we rank frames based on a summary
statistic for how well informed decision-makers are when taking each action. The revealed
experiment for a frame is the distributions of actions in each state. We say a frame has been
revealed to have better informed actions if the revealed experiment for the other frame is a
garbling of the revealed experiment for that frame. This condition is also simple to check
and MATLAB programs are provided that implement it as well.

We show that for any arbitrary decision problem, a frame being revealed to have better
informed actions is sufficient to reveal that frame has a robustly higher value of information.
However, it is not always necessary. For three standard classes of decision problems, we
show there exists data sets where a frame is revealed to have a robustly higher value of
information even though neither frame is revealed to have better informed actions. Given
this, the condition based on a garbling of revealed experiments is in general only sufficient
for determining which frame provides robustly higher welfare.

Finally, we illustrate our approach and testable conditions by considering the framing
health care plans. Imagine the choice between a low-premium, high-deductible health care
plan (“Value PPO”) and high-premium, low-deductible plan (“Premium PPO”). Imagine
further that these plans are identical in every way, except that the Value PPO is more
cost effective no matter an individual’s health outcomes (see Handel 2013 and Bhargava,
Loewenstein, and Sydnor 2017 for examples of such dominance in practice). Given this
dominance, if plain language framing of deductibles increases the probability that the Value
PPO is chosen from 80% to 90%, then this framing is clearly better.

Now imagine that around half of the time, the company offers a version of the Premium
3Programs available at https://github.com/danieljosephmartin/framinginformationwelfare.git.
4Thus, it could be used to assess if an experimental design has sufficient power to identify the best frame.
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PPO that has better doctor availability, but with plain language framing, the Value PPO
is still chosen more often (70% of the time). If we assume that Value PPO is still better
even when it has worse doctor availability, it would appear that the plain language framing
has benefited decision-makers by leading the Value PPO to be chosen more often than the
Premium PPO. However, resolving tradeoffs on the behalf of individuals could be misleading
in this case.

Imagine that with normal framing, the Premium PPO is chosen more often when it
has better doctor availability (80% of the time). This has revealed there is a tradeoff that
individuals face between cost effectiveness and doctor availability: the Value PPO is preferred
when plans have the same doctor availability, but the Premium PPO is preferred when it
has better doctor availability. Because of this tradeoff, it is less clear if plain language
framing has improved decision-making. In Section 4.2 we use our second condition to show
this particular pattern of choice has revealed that actions are better informed with normal
framing, so normal framing is revealed to provide robustly higher welfare in this example.

In fact, it is often possible to determine if one frame provides robustly higher welfare.
As noted previously, our first condition is both necessary and sufficient, so it can be used
to identify the proportion of data sets in which one frame is robustly welfare ranked. We
use this condition to show that two-thirds of all rationalizable data sets in the PPO choice
setting allow us to identify that one frame provides a robustly higher value of information.
We also show that an additional utility restriction based on the clear dominance of some
plans decreases the proportion of data sets that are rationalizable, but does not increase the
fraction of rationalizable data sets where a welfare dominant frame can be identified.

Taken together, our approach and two testable conditions show it is possible for a pol-
icymaker determine which frame produces the highest welfare, even in which preference
tradeoffs are not resolved for decision-makers ex-ante. In additional to its practical benefits,
this approach may appeal to policymakers who do not feel comfortable in resolving prefer-
ence trade-offs on the behalf of individuals because doing so runs the risk of violating norms
against paternalism. This is why it is common for policymakers who use frames to provide
“nudges” to take a libertarian perspective in which they avoid forcing a particular choice on
individuals (Thaler and Sunstein 2008).

The rest of the paper is organized as follows. Section 2 discusses related literature in more
detail. Section 3 provides our framework and the first testable condition and shows that this
condition is both necessary and sufficient for identifying higher welfare frames. Section 4
provides the second testable condition based on applying the Blackwell approach within our
framework and shows that this condition is sufficient for identifying higher welfare frames.
Section 5 shows that while sufficient, this condition is not necessary. Section 6 provides the
application of our framework to the choice of health care plans. Section 7 concludes.
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2 Related Literature

2.1 Framing and Welfare

Our paper contributes to a growing literature that asks whether a welfare relation can be
inferred from choices despite the distortions produced by frames (Salant and Rubinstein 2008,
Bernheim and Rangel 2009, Rubinstein and Salant 2011) and whether these approaches can
be used to rank frames based on the welfare they generate (Benkert and Netzer 2018).5

We extend this literature to a large class of additional applications by asking whether a
welfare ranking of frames can be inferred from misinformed choices. This includes choices
that are distorted by non-rational mental gaps in the processing of information (Handel and
Schwartzstein 2018) and rational information frictions such as rational inattention (Sims
2003) and the drift diffusion model (Ratcliff 1978).

Like Salant and Rubinstein (2008) and Bernheim and Rangel (2009), we make one small,
but important, addition to the primitives of a decision problem: a frame f . However, unlike
these papers, we allow decision-makers to have incomplete information about the value of
available options, and we use information structures to model the impact that frames have
on beliefs about the value of available options. With existing approaches, such as Salant and
Rubinstein (2008) and Bernheim and Rangel (2009), there is no uncertainty about the value
of available options, so framing has no impact on beliefs.

Another substantive differences between our approach and existing approaches to framing
effects is that we allow for stochastic choice within frames,6 which is particularly useful in
the context of framing effects because important effects can have subtle effects, such as
swinging the probability of making a choice from 10% to 30%.7 This feature of our approach
complements a growing literature that considers stochastic choice to be an essential data
set for studying information and utility (e.g., Manzini and Mariotti 2014, Apesteguia and
Ballester 2018). Rehbeck (2019) follows our approach by considering stochastic choice in
frames, but he departs from this paper by considering the testable implications for our
model when data on states is not available.

5This is related to a literature on performing welfare assessments in the presence of behavioral biases
(Manzini and Mariotti 2007, Apesteguia and Ballester 2015).

6Stochastic choice in frames also appears in a concurrent paper by Bhattacharya, Mukherjee, and Sonal
(2017).

7This is particularly true when taking the perspective that stochastic choice arises from the choices of
many individuals, as many framing effects are measured by the change in the fraction of individuals making
each choice.
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2.2 Framing and Information

Our paper draws motivation from a growing literature on the importance of framing on
informativeness.

Early evidence of the connection between framing and informativeness was provided by
Tversky and Kahneman (1989), who demonstrated that the framing of a lottery could make
it harder or easier to spot that one lottery was dominant. They presented two groups of
subjects with the equivalent lottery choice framed in different ways (A or B and C or D):

A: 90% white $0; 6% red win $45; 1% green win $30; 1% blue lose $15; 2% yellow lose $15

B: 90% white $0; 6% red win $45; 1% green win $45; 1% blue lose $10; 2% yellow lose $15

C: 90% white $0; 6% red win $45; 1% green win $30; 3% yellow lose $15

D: 90% white $0; 7% red win $45; 1% green lose $10; 2% yellow lose $15

The difficulty in identifying dominance with the second framing of the lotteries had a
substantial impact on choice. All 88 participants who were offered A and B chose the
dominant alternative B, but 58% of the 124 participants who were offered C and D chose the
dominated alternative C. Tversky and Kahneman (1989) did not view this framing effect as
reflecting a change in preference, but instead a change in how well informed subjects were
about the lotteries. They conclude: “Dominance is masked by a frame in which the inferior
option yields a more favorable outcome in an identified state of the world (e.g., drawing
a green marble).” Kahneman (2003) generalizes this phenomenon when he explains that
framing can impact information because some framings are more “perceptually accessible.”

In addition to changing how well options are understood, frames can impact informa-
tiveness by changing the number of options considered. Aguiar, Boccardi, Kashaev, and
Kim (2018) find evidence in a large online experiment that fewer lottery options are consid-
ered when the prizes are made harder to identify by requiring subjects to add and subtract
more numbers to determine the size of the prize. In a setting where choice options are just
monetary prizes, Caplin, Dean, and Martin (2011) use choice process data from a laboratory
experiment to show that making prizes harder to identify in a similar way leads fewer options
to be considered.

Not only can framing impact the extent to which experimental subjects understand the
value of available choice options, it can also impact how well informed they are more broadly
about the choice problem they face. Abeler and Jager (2015) run a lab experiment in which
they keep the effective tax rate nearly identical between a simple and complex framing of
the tax regime, and they find that with the complex framing, subjects choose the output
level further from the payoff-maximizing levels and earn about 23 percent less on average.
Ambuehl, Bernheim, and Lusardi (2014) provide experimental subjects with paired valuation
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tasks in which compound interest payments are presented in either a “simple frame” or a
“complex frame,” and they find a 10% to 15% difference in valuations within-subject without
further educational interventions. Esponda and Vespa (2016) show that the re-framing of
classic decision problems appears to improve the extent of contingent thinking. Building
on this work and the finding from Cason and Plott (2014) that subjects fail to recognize
the game form of the BDM mechanism, Martin and Munoz-Rodriguez (2019) implement a
new experimental protocol in which the BDM mechanism is re-framed without changing the
underlying extensive form, and this results in twice as many subjects choosing the dominant
action.

There is also substantial evidence of the importance of framing on information from the
field. Ericson and Starc (2016) show the impact of moving from unregulated health plan de-
scriptions to a standardized format for presenting health care plans. Carrera and Villas-Boas
(2015) study alternative ways of framing information about the relative proportion of people
buying branded or generic drugs. Choi, Laibson, and Madrian (2009) provide participants in
company retirement plans a simplified choice procedure called “Quick Enrollment” in which
one option is framed as the default option. This framing is designed to increase how well
informed they are by “reducing complexity by allowing employees to focus on evaluating
a smaller subset of options (e.g., nonenrollment and the default).” Hastings and Tejeda-
Ashton (2008) manipulate the framing of fees in Mexico’s privatized social security system.
They find that when fees are framed in terms of pesos instead of annual percentage rates,
financially illiterate workers focus more on fees, which increases their price sensitivity. Car-
penter, Huet-Vaughn, Matthews, Robbett, Beckett, and Jamison (2019) study choice among
reloadable prepaid cards under three different framings of the card attributes: the status
quo framing, a framing in line with regulatory reforms, and a new proposal designed to more
strongly reduce attribute overload. They use structural estimates of individual preferences
to conclude that many consumers are misinformed under the status quo framing, are able
to identify (and choose) the best card with the regulatory reform framing, and are able to
identify (and avoid) the worst card with the proposed framing. Based on these estimates,
they find non-trivial welfare gains in the latter frames. Bhargava, Loewenstein, and Sydnor
(2017) run an experiment in which the framing of health care plans is varied. Specifically,
they introduce a high-clarity condition in which subjects were given a plain-language descrip-
tion of plan deductibles, such as: “You pay the first $500, then the plan covers remaining
expenses.” They find that in comparison with a condition in which subjects faced the same
descriptions as employees did in the field, the fraction of subjects choosing dominated options
fell from 48% to 18%.
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3 Framework

In this section, we first introduce all of the formal objects we will need to determine which
frame produces the highest welfare: the elements of each decision problem, the data sets, and
the components of our information-theoretic model of framed choice. Next, we determine
the information structures, decision rules, and utility functions that are consistent with the
data. Finally, we identify a necessary and sufficient condition for all data-consistent utility
functions to agree on which frame produces the highest welfare.

3.1 Framed Decision Problems and Framed Data

A decision problem contains three parts: states, actions, and prizes. The finite set of states
Ω with cardinally K > 1 has arbitrary element ω, ν, or if indexing is useful, ωk. The finite
set of actions A with cardinally J > 1 has arbitrary element a, b, c, or aj. The consequences
of actions in each state are elements of a finite set of prizes X with cardinally M > 1 has
arbitrary element x or xm. The decision-maker (DM) receives prize x(a, ω) ∈ X when action
a ∈ A is chosen in state ω ∈ Ω.

The combination of actionsA, states Ω, and prizesX can capture a wide array of economic
settings. Labor market decisions can be modeled with the number of hours to work as actions,
the possible income tax regimes as states, and the take-home pay received and leisure hours
as prizes. Consumption decisions can be modeled with the possible bundle choices as actions,
the possible prices of goods as states, and the resulting goods received and expenditure lost
as prizes.

We generate framed versions of a decision problem by adding frames f and g to the
decision problem.8 We take frames to be elements of the choice environment that are varied
by the policymaker in an effort to influence choice, but that do not restrict the prizes available
to the DM or impact the DM’s preferences for those prizes. Because the DM’s preferences
over prizes determines their ex-post welfare, the frame does not alter the DM’s ex-post
welfare. For example, normal framing can cause individuals to sometimes pick lower welfare
health care coverage, which produces lower ex-ante welfare, but the framing does not impact
the ex-post welfare obtained from the coverage itself.

In many examples, the frame is the way that decision-relevant information is presented.
In the case of Hastings and Tejeda-Ashton (2008), the framing is whether fees are presented
in terms of pesos or APR. In the case Bhargava, Loewenstein, and Sydnor (2017), the framing

8While it is possible to extend our framework to settings with more than two frames, in virtually all of
the examples cited in this paper, the policy question involves a choice between one of two frames, so we
restrict our attention two frames in order to simplify the exposition. In section 7, we discuss the implications
of our framework for settings with more than two frames.
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is whether deductibles are presented with plain language or not. In the case of Beshears,
Choi, Laibson, and Madrian (2009), the framing is whether information about the mutual
fund options is presented with a summary or not.

In practice, there is a fair amount of latitude in defining the actions and frames for a given
economic setting. For example, imagine the choice between a low-premium, high-deductible
health care plan (“Value PPO”) and high-premium, low-deductible plan (“Premium PPO”).
In this setting, an action is selecting a health care plan. Let action aP be choosing the
Premium PPO and action aV be choosing the Value PPO. The labeling of these actions
(“Value” and “Premium”) might instead be considered to be part of the frame if they were
varied across decision problems in a way that impacted choice.

We imagine a policymaker who has access to framed data sets Pf (a, ω) and Pg(a, ω),
which specify for frames f and g the probability of choosing action a and being in state ω.9

As with other stochastic data sets, this data set can be interpreted as watching the decision-
maker face a decision infinitely often. In practice, one might estimate it from repeated but
finite choice data or by looking at a population rather than an individual, as in the literature
on discrete choice following McFadden (1973). For notational simplicity, we assume that all
prizes can be obtained by taking some action in some state, and that in each frame, each
action is chosen in some state and an action is chosen in each state.10

3.2 Information and Welfare

Frames can impact informativeness by making it easier or harder to internalize readily-
available information about the state or by directing information gathering through focusing
attention on certain actions or states, either rationally or due to mental gaps (Handel and
Schwartzstein 2018). To capture these possibilities, we use an information-theoretic approach
to model the choices made under different frames.

First, we assume that the DM starts with a strictly positive prior over states given by
µ ∈ Γ = ∆(Ω). Given the signal structure associated with a frame, the DM receives a signal
realization and forms posterior γ ∈ Γ = ∆(Ω), and this process is summarized in each frame
h ∈ {f, g} by the information structure πh : Ω→ ∆(Γ), where ∆(Γ) is the set of probability
distributions over Γ with finite support. Given their posterior belief, the DM implements
in each frame h ∈ {f, g} the decision rule σh : Γ → ∆(A). These decision rules maximize
expected utility based on utility function u : X → R, which does not vary across frames.

9This extends the state-dependent stochastic choice (SDSC) data set introduced by Caplin and Martin
(2015) to a setting with frames.

10Our main results would still go through without these assumptions, but doing so would require carefully
specifying the support of the data set for each frame and adding technical regularity conditions, which would
necessitate several pieces of additional notation while adding little additional economic insight.
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With these model objects in hand, we can formally define our primary welfare criterion
for evaluating frames. The value of information in frame h ∈ {f, g} is the average ex-post
utility in that frame:

∑
ω∈Ω

µ(ω)
∑

γ∈Γ(πh)
πh(γ|ω)

∑
a∈A

σh(a|γ)u(x(a, ω))

where µ(ω) is the prior probability of state ω, πh(γ|ω) is the probability in frame h of
reaching posterior γ in state ω, Γ(πh) is the set of posteriors where πh(γ|ω) > 0 for some
ω ∈ Ω, σh(a|γ) is the probability in frame h of the DM taking action a when holding posterior
belief γ, and u(x(a, ω)) is the DM’s utility from the prize received when choosing action a
in state ω.11

In this setup, the prior µ does not depend on the framing of the decision problem. We
make this assumption so that the starting level of informativeness is equal across frames,
which closely aligns the value of information in a frame with the information structure for
that frame. As a result, we can cleanly apply the Blackwell approach within our framework.12

However, the assumption of a fixed prior is not necessary for our other results. For instance,
the testable necessary and sufficient condition we derive with a fixed prior is identical to
the testable necessary and sufficient condition for a framework where the prior is allowed to
change with the frame.

The assumption of a fixed prior across frames is suitable for settings where the policy-
maker cannot condition the choice of frame on the realization of the state for technical, legal,
or political reasons. For example, the policymaker may not be able to adjust the frame to
account for variation in the state across time if altering the presentation of decision-relevant
information is too costly. With large-scale choice settings, such as the choice of Medicare
prescription plans, the financial outlay of printing and mailing new information packets to all
Medicare participants could make regular changes in those packets prohibitively expense. In
addition, the policymaker may be restricted to providing the same frame for all individuals
regardless of the state if variation in frames (outside of limited A/B testing) is viewed as
discriminatory or unfair. However, by fixing the prior, our framework does not capture cases
where the policymaker’s choice of frame directly signals to the decision maker something
about the distribution of states. For example, it is conceivable that a policymaker could
use the frame to signal that one action is more likely to provide a high utility prize, just as
information can be communicated by firms through their choice of product lines (Kamenica
2008).

11An alternative way to define the value of information is as the improvement over the utility from taking
actions at prior beliefs (see Lara and Gossner 2020 and Frankel and Kamenica 2018). Since the prior is fixed
across frames in our framework, this definition would provide the same relative welfare assessments.

12A fixed prior across experiments is also assumed in simplified proofs of Blackwell’s theorem (see Crémer
1982; Leshno and Spector 1992; Perez-Richet 2017; Oliveira 2018).
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3.3 Data Consistency

The policymaker wants to rank frames f and g based on the value of information, but many
important components of the value of information are unobservable to the policymaker: the
prior µ, the information structures πf and πg, the decision rules σf and σg, and the utility
function u.

To bridge the gap between these unobservables and the data, we define and characterize
a representation that places three restrictions on the unobservable components of the value
of information. First, the prior µ, information structures πf and πg, and decision rules σf
and σg generate specific predictions about the probability of choosing action a in state ω
in the corresponding frames, and these predictions must match the observed data. Second,
the information structures πf and πg must be Bayes plausible. Third, expected utility is
maximized given the information structures πf and πg, decision rules σf and σg, and utility
function u.

Definition 1. Utility function u, prior µ, information structures πf and πg, and decision
rules σf and σg provide a Bayesian Expected Utility representation (BEU) of the data sets
Pf and Pg if they satisfy:

1. Data Matching: For all h ∈ {f, g}, a ∈ A, and ω ∈ Ω,

Ph(a, ω) = µ(ω)
∑

γ∈Γ(πh)
πh(γ|ω)σh(a|γ)

2. Bayesian Updating: For all ω ∈ Ω,

γ(ω) = µ(ω)πh(γ|ω)∑
ν∈Ω µ(ν)πh(γ|ν) for all γ ∈ Γ(πh)

where γ(ω) is the probability of state ω in posterior γ.

3. Maximization: For all h ∈ {f, g}, a, b ∈ A, and γ ∈ Γ(πh) s.t. σh(a|γ) > 0,
∑
ω∈Ω

γ(ω)u(x(a, ω)) ≥
∑
ω∈Ω

γ(ω)u(x(b, ω))

with the inequality strict for some h ∈ {f, g}, a, b ∈ A, and γ ∈ Γ(πh) s.t. σh(a|γ) > 0.

We say that utility function u rationalizes data sets Pf and Pg if there exists a prior µ,
Bayes plausible information structures πf and πg, and decision rules σf and σg that together
provide a BEU of the data, and we say that Pf and Pg are rationalizable if there exists a u
that rationalizes them. In a BEU, one Maximization inequality is required to hold strictly

11



to prevent Pf and Pg from being trivially rationalized by a utility function that gives the
same utility to all prizes.

To identify the set of all rationalizing utility functions, we extend the approach of Caplin
and Martin (2015), who identify a necessary and sufficient condition for choosing optimally
given private information.

Condition 1 (No Improving Action Switches in any Frame (NIAS-F)). Utility function u
satisfies NIAS-F if ∑

ω∈Ω
Ph(a, ω)u(x(a, ω)) ≥

∑
ω∈Ω

Ph(a, ω)u(x(b, ω))

for all h ∈ {f, g} and a, b ∈ A, and the inequality is strict for some h ∈ {f, g} and a, b ∈ A.

Each NIAS-F inequality can be interpreted as it being better not to make a “wholesale”
switch from taking action a to taking action b. As the following theorem indicates, the set
of utility functions that satisfy NIAS-F is the set of all rationalizing utility functions.

Theorem 1. Utility function u rationalizes data sets Pf and Pg if and only if it satisfies
NIAS-F.

Proof. See Appendix.

The necessity of NIAS-F is immediate. To show the sufficiency of NIAS-F, we construct
Bayes plausible information structures that the utility function u rationalizes and that could
have predicted the data. These information structures put positive weight on a single poste-
rior for each action: the revealed posterior for that action. Formally, the revealed posterior
γah for action a in frame h is defined as the distribution of states when that action is taken:

γah(ω) = Ph(a, ω)∑
ν∈Ω Ph(a, ν) = Ph(a, ω)

Ph(a)

for each ω ∈ Ω. For a Bayesian DM, the revealed posterior γah represents the average posterior
belief held when taking action a in frame h. Because all revealed posteriors fall in the convex
hull of the actual posteriors held by the DM, the Bayes plausible information structure we
construct using revealed posteriors is weakly less informative than any information structure
consistent with the data. As a result, the information structure based on revealed posteriors
represents the minimal level of informativeness the DM can have given the data. Thus,
revealed posteriors provide a lower bound on how well informed the DM is in a frame, which
we will leverage later when applying the Blackwell approach within our framework.

NIAS-F plays two roles in the analysis that follows. First, when there is no utility
function that satisfies NIAS-F, then the data sets Pf and Pg cannot be rationalized, which
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means the value of information for DMs cannot be assessed using our model. Thus, we will
require NIAS-F to hold as a precondition for making a welfare comparison between frames.
If the policymaker wants to use our framework to rank frames, but the data does not satisfy
NIAS-F, then one possible way forward is to determine the maximal portion of the data
that satisfies NIAS-F and perform welfare analysis using only that portion of the data, as
proposed by Apesteguia and Ballester (2020).

Second, because NIAS-F provides the set of all rationalizing utility functions, it will
play a key role in identifying when the value of information is higher in one frame for all
rationalizing utility functions.

3.4 Identifying Higher Welfare Frames

We define the revealed value of information for frame h ∈ {f, g} as the average ex-post
utility in that frame, which is given by∑

a∈A

∑
ω∈Ω

Ph(a, ω)u(x(a, ω))

The revealed value of information in a frame is tightly connected to the actual value of
information in that frame. Because a BEU must satisfy Data Matching, if the revealed value
of information is higher in frame h for a given utility function u, then the value of information
is higher in frame h for every BEU that includes u.

To provide an ordering of frames based on the revealed value of information that holds for
all rationalizing utility functions, we say that frame f has been revealed to have a robustly
higher value of information than frame g (denoted as f %W g) if the revealed value of
information is at least as high in frame f than frame g for every utility function u that
satisfies NIAS-F. Formally, this means that f %W g if∑

a∈A

∑
ω∈Ω

Pf (a, ω)u(x(a, ω)) ≥
∑
a∈A

∑
ω∈Ω

Pg(a, ω)u(x(a, ω))

for every u such that for every a, b ∈ A,∑
ω∈Ω

Pf (a, ω)u(x(a, ω)) ≥
∑
ω∈Ω

Pf (a, ω)u(x(b, ω))

and ∑
ω∈Ω

Pg(a, ω)u(x(a, ω)) ≥
∑
ω∈Ω

Pg(a, ω)u(x(b, ω))

with one inequality strict.

We produce a testable necessary and sufficient condition for f %W g by showing that
these systems of linear inequalities have a simple geometric structure in the space of all
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dg(a, b)

dg(b, a)
d(f, g)

df (a, b)

df (b, a)

D

NIAS-F Cone

Figure 1: Illustration of the geometric structure of ranking frames for a decision problem
with 2 actions and 2 prizes.
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possible prize lotteries (RM), which is illustrated for a two prize decision problem in Figure
1. Because of this structure, we can reduce f %W g to a single system of linear equations.

First, each NIAS-F inequality can be represented as an M-dimensional vector ~dh(a, b)
that gives the prize lottery gained from not making a wholesale switch from action a to
action b in frame h. In other words, the additional probability of receiving each prize from
not making this wholesale switch. The convex cone D formed by all NIAS-F inequalities is

D = {α1~dh1(a1, b1) + ...+ αN ~dhN
(aN , bN)|αn ∈ R+, hn ∈ {f, g}, an, bn ∈ A}

A utility function can be represented as an M-dimensional vector ~u where element m
gives the utility of prize xm. A utility vector ~u satisfies NIAS-F if ~d • ~u ≥ 0 for every vector
~d ∈ D. We call the convex cone formed by all ~u that satisfy NIAS-F the NIAS-F Cone.

Let ~d(f, g) be an M-dimensional vector that gives the prize lottery gained from being in
frame f instead of frame g. In other words, the additional probability of receiving each prize
from being in frame f . Frame f being revealed to have a robustly higher value of information
(f %W g) is equivalent to ~d(f, g) • ~u ≥ 0 for all ~u in the NIAS-F Cone. Thus, f %W g if and
only if the vector ~d(f, g) is in D because a vector is in D if and only if it has a non-negative
dot product with all ~u in the NIAS-F Cone.

Finally, because ~d(f, g) is in D if and only if it is a non-negative weighted average of
vectors in D, a necessary and sufficient condition for f %W g corresponds to the prize
lottery gained from being in frame f being a non-negative weighted average of the prize
lotteries gained from not making wholesale switches from any action in either frame. This
condition, which we call Frame Improvement without Action Switches (FIAS) for frame f ,
is defined for a weighting function th : A × A → R+, which provides these non-negative
weights.

Condition 2 (Frame Improvement without Actions Switches (FIAS)). Weighting function
th satisfies FIAS for frame f if

∑
h∈{f,g}

∑
a∈A

∑
b∈A

∑
ω∈Ω

Ph(a, ω)(1{x(a,ω)=x} − 1{x(b,ω)=x})th(a, b)

=
∑
a∈A

∑
ω∈Ω

(Pf (a, ω)− Pg(a, ω))1{x(a,ω)=x}

for every x ∈ X.

The following lemma formally shows that FIAS provides a necessary and sufficient con-
dition for rationalizable data sets to reveal that one frame has a robustly higher value of
information. After restating NIAS-F and FIAS in terms of matrix multiplication, the proof
of this lemma follows as a direct consequence of Farkas lemma.

15



Lemma 1. Given that NIAS-F is satisfied, f %W g if and only if there exists a weighting
function th that satisfies FIAS for frame f .

Proof. See Appendix.

This lemma has an economic interpretation in terms of preferences over prize lotteries.
FIAS states that the difference in the prize lotteries offered by the frames can be represented
as the difference in two compound lotteries: one composed of the prize lotteries from taking
each action a in frame h and the other composed of prize lotteries from taking each action
b with the same probability as a. These compound lotteries have the same weights for all
h ∈ {f, g} and a, b ∈ A, which are given by a normalized version of th. Because NIAS-F
is satisfied, there exists a preference relation over lotteries such that every element of one
compound lottery is weakly preferred to every element in the other compound lottery and
strictly preferred for at least one element. Since all elements of the two compound lotteries
are preference ordered, the compound lotteries are also preference ordered, which means the
prize lotteries given by each frame are as well.

3.5 Testability

Determining whether or not there exists a th that satisfies FIAS corresponds to determining
whether there is a solution to a system of linear equations, so it is simple to check if frames
are welfare ranked. We provide MATLAB computer programs that determine whether a
solution to this linear system exists for a given set of data.13

Because NIAS-F must be satisfied as a precondition for ranking frames, it must be checked
as well. Fortunately, determining whether there exists a u that satisfies NIAS-F corresponds
to determining whether there is a solution to a system of linear inequalities, which is also
simple to check in practice. A potential wrinkle is that one inequality must hold strictly for
NIAS-F to be satisfied, and in principle, any inequality could hold strictly.

However, the following lemma indicates which NIAS-F inequalities must hold with equal-
ity and which must hold strictly. In words, it states that an NIAS-F inequality in frame
h for a, b ∈ A holds with equality if and only if the prize lottery representing that NIAS-F
inequality can be expressed as a non-positive combination of the prize lotteries representing
other NIAS-F inequalities.

Lemma 2. For every u that satisfies NIAS-F,
∑
ω∈Ω

Ph(a, ω)u(x(a, ω)) =
∑
ω∈Ω

Ph(a, ω)u(x(b, ω))

13Programs available at https://github.com/danieljosephmartin/framinginformationwelfare.git.
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for a, b ∈ A if and only if there exists a collection of N triples with generic element (hn, an, bn)
having h1, ..., hN ∈ {f, g}, a1, ..., aN ∈ A, b1, ..., bN ∈ A, and (hn, an, bn) 6= (h, a, b) and non-
positive weights w1, ..., wN such that for every x ∈ X∑

ω∈Ω
Ph(a, ω)(1{x(a,ω)=x} − 1{x(b,ω)=x})

=
N∑
n=1

wn ∗

∑
ω∈Ω

Phn(an, ω)(1{x(an,ω)=x} − 1{x(bn,ω)=x})
 (1)

Proof. See Appendix.

Since this can be expressed as a linear system of equations, NIAS-F can easily be restated
as a system of linear equations and strict linear inequalities. We also provide MATLAB
computer programs that determine whether a solution exists to these linear systems.

Finally, as mentioned previously, there are settings where some options are clearly dom-
inant, and NIAS-F and FIAS can be easily amended to account for these additional restric-
tions. Say for example, that prize x1 clearly dominates prize x2. This restriction on utility
can be incorporated into NIAS-F by generating an additional linear inequality given by∑

x∈X
(1x=x1 − 1x=x2)u(x) ≥ 0

Clearly, this restriction on the set of admissible utility functions can only reduce the propor-
tion of data sets where there exists a u that satisfies NIAS-F.

Although FIAS in not expressed in terms of utility, the dominance of prize x1 over prize
x2 can be incorporated into FIAS for frame f by requiring that, in addition to the weighting
function th, there is exists a non-negative t that solves∑

h∈{f,g}

∑
a∈A

∑
b∈A

∑
ω∈Ω

Ph(a, ω)(1{x(a,ω)=x} − 1{x(b,ω)=x})th(a, b)

+ (1x=x1 − 1x=x2) t
=

∑
a∈A

∑
ω∈Ω

(Pf (a, ω)− Pg(a, ω))1{x(a,ω)=x}

for every x ∈ X. If t is equal zero, this reduces to the requirement for FIAS, so this addition
can only increase the proportion of data sets where there exists a weighting function th that
satisfies FIAS. Sensibly, knowledge about dominance improves our ability to rank frames
according to their welfare.

Since accounting for the clear dominance of one prize over another can only reduce the
proportion of data sets that satisfy NIAS-F and only increase the proportion of data sets
that satisfy FIAS, the net effect of adding such restrictions on the proportion of data sets
where frames can be welfare ranked is ambiguous.
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4 Blackwell Within Our Framework

In this section, we generate an informativeness order by applying the Blackwell approach
within our framework, and this provides a second testable condition for a frame to be revealed
to have a robustly higher value of information.

4.1 Revealed Experiments and Better Informed Actions

Informativeness orders are typically generated using the information structures and decision
rules of DMs, but since these are unobservable to the policymaker, we instead generate
an informativeness order using the distribution of actions in each state, which we call the
revealed experiment for frame h.14 Revealed experiments can be interpreted as the outcome
of a signal structure that generates a signal at which each action is optimal, as in the “action
recommendation” approach used in the information design literature (see Bergemann and
Morris 2017). Thus, the revealed experiment reflects the minimal level of informativeness
that the DM can have given the distribution of actions in each state. Though the DM’s actual
level of informativeness is indeterminate, we show that frames being ordered according to
this summary statistic of their informativeness is sufficient for frames to be welfare ordered.

We say frame f is revealed to have better informed actions than frame g (denoted f %B g)
if the revealed experiment for frame g is a garbling of the revealed experiment for frame f .
Formally, this means there exists a function S : A × A → R+ with ∑a∈A S(c, a) = 1 for all
c ∈ A such that for all a ∈ A and ω ∈ Ω,

Pg(a, ω)
Pg(ω) =

∑
c∈A

Pf (c, ω)
Pf (ω) S(c, a)

The following lemma establishes that for any arbitrary decision problem, when NIAS-F
is satisfied, a frame being revealed to have better informed actions is sufficient for it to be
revealed to have a robustly higher value of information.

Lemma 3. Given that NIAS-F is satisfied, f %B g implies f %W g.

Proof. See Appendix.

Blackwell and Girshick (1954) show that there is a relationship between informativeness
orders based on experiments and posteriors, and a relationship exists between revealed ex-
periments and revealed posteriors as well. The following lemma shows that if there exists

14We know of no other papers that measure informativeness using the distribution of actions in each state.
If we interpret the DM’s action as a signal of their signal, then a related paper is Gossner and Tomala (2006),
who study the evolution of beliefs about the DM’s predictions of the next signal for an observer who only
observes signals of the DM’s signals.
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a garbling of revealed experiments then there exists a mean preserving spread of revealed
posteriors. It follows from this lemma that if the revealed posteriors in one frame are not a
mean preserving spread of the revealed posteriors in the other frame, then frame f cannot
be revealed to have better informed actions.

Lemma 4. Given that NIAS-F is satisfied, if f %B g, then there exists a function T :
A× A→ R+ with ∑c∈A T (c, a) = 1 for all a ∈ A such that for all a ∈ A and ω ∈ Ω,

γag (ω) =
∑
c∈A

γcf (ω)T (c, a)

Proof. See Appendix.

4.2 An Example of Better Informed Actions

Consider again the choice between a low-premium, high-deductible health care plan (“Value
PPO”) and high-premium, low-deductible plan (“Premium PPO”) that can be framed using
plain language descriptions of deductibles. We will now provide example data that reveal
one frame has better informed actions.15

In this example, when the Premium PPO has the same doctor availability, the Value PPO
is chosen 80% of the time with normal framing and 90% of the time with plain language
framing. When the Premium PPO has better doctor availability, the Value PPO is chosen
20% of the time with normal framing and 70% of the time with plain language framing. We
represent the corresponding data sets for normal framing (PN) and plain language framing
(PPL) as matrices where the actions of choosing the Premium PPO (aP ) or Value PPO (aV )
are given in the rows and states of same doctor availability (ωS) and better doctor availability
(ωB) are given in the columns:

PN =

ωS ωB( )10
100

40
100 aP

40
100

10
100 aV

& PPL =

ωS ωB( )5
100

15
100 aP

45
100

35
100 aV

The NIAS-F inequalities for frame N reveal there is a tradeoff that individuals face
between cost effectiveness and doctor availability: the Value PPO is preferred when plans
have the same doctor availability, but the Premium PPO is preferred when it has better
doctor availability. Formally,

10
100u(xPS) + 40

100u(xPB) ≥ 50
100u(xV )

15We analyze this choice setting in more detail and with more generality in Section 6.
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and
50
100u(xV ) ≥ 40

100u(xPS) + 10
100u(xPB)

Together, these directly imply u(xPB) ≥ u(xPS). We also know that u(xV ) ≥ u(xPS) because
if one plan was always preferred, there would be no reason to ever choose aP if there was
any uncertainty about the state.

Because of this tradeoff, it is less clear which framing produces higher welfare. However,
by examining the revealed posteriors, we can see why normal framing is revealed to have
better informed actions, and hence a robustly higher value of information. The revealed
posteriors in frame N are

γaP
N =

( )10
50 ωS
40
50 ωB =

( )
20% ωS
80% ωB & γaV

N =

( )40
50 ωS
10
50 ωB =

( )
80% ωS
20% ωB

and the revealed posteriors in frame PL are

γaP
PL =

( )5
20 ωS
15
20 ωB =

( )
25% ωS
75% ωB & γaV

PL =

( )45
80 ωS
35
80 ωB =

( )
56.25% ωS
43.75% ωB

These revealed posteriors reveal that on average, there is better information about the state
when actions are taken in frame N .

What kind of utility function and signal structure could have produced this data and
these revealed posteriors? Assume that the DM’s utility function is

u(xPS) = 3
2u(xV ) = 2u(xPB)

so is indifferent between choosing either plan if a fully uninformative signal is received. Now
imagine that the decision maker pays no attention and chooses randomly 40% of the time
in each state with normal framing. Also imagine that the plain language framing reduces
full inattention by 50%, but makes the deductibles dimension more salient, so 60% of the
time the decision maker only pays attention the high deductible dimension with the plain
language framing. In combination with the utility of each prize, this produces the data and
revealed posteriors given above.

5 Welfare Ranking Versus Informativeness Ranking

In this section, we show that a frame need not be revealed to have better informed actions
for it to be revealed to have a robustly higher value of information. In other words, there is
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a gap between the welfare order (%W ) and the informativeness order (%B). This is easy to
show in trivial cases such as when there are just two possible prizes or all actions give the
same prize in some state. However, it can also occur outside of these trivial cases.

For three standard classes of decision problems, we show there exist data sets where a
frame is revealed to have a robustly higher value of information even though neither frame
is revealed to have better informed actions. This includes decision problems where state-
dependent prizes are obtained when the action matches the state, where every action yields
a distinct prize in every state, and where each action has two types of outcomes. We also
assess whether such data sets are “rare” or “common” by estimating the proportion of data
sets where a frame is revealed to have a robustly higher value of information even though
neither frame is revealed to have better informed actions.16 In addition, for each decision
problem we examine one such data set in detail.

5.1 Tracking Problems

We first consider “tracking” decision problems in which the decision maker receives a state-
specific prize xk if their action matches state ωk and prize xB if they fail to match the action
to the state. For this class of decision problems, the map x(a, ω) between actions, states,
and prizes is given by

x(aj, ωk) =

 xk j = k

xB j 6= k

For the 3 action and 3 state version of this tracking problem, the map between actions,
states, and prizes can be represented as a matrix where actions a1 to a3 are given in the rows
and states ω1 to ω3 are given in the columns:

ω1 ω2 ω3
x1 xB xB a1

xB x2 xB a2

xB xB x3 a3

Using the MATLAB programs provided, we estimate that for this 3 action and 3 state
tracking problem, approximately 65% of rationalizable data sets Pf and Pg reveal that one
frame has a robustly higher value of information even though neither frame is revealed to
have better informed actions.

16We sample over the space of all possible data sets by taking 100,000 uniform random draws of the prior
over states and 100,000 uniform random draws for the distribution of actions in each frame.
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In this section, we describe such a Pf and Pg in detail.17 We represent these data sets
as matrices where actions a1 to a3 are given in the rows and states ω1 to ω3 are given in the
columns:

Pf =

ω1 ω2 ω3


20
100 0 0 a1

0 22
100

18
100 a2

0 18
100

22
100 a3

& Pg =

ω1 ω2 ω3


10
100

20
100

20
100 a1

5
100

20
100 0 a2

5
100 0 20

100 a3

In the analysis that follows, we will show that these data sets reveal the prizes from
matching actions to states are “good” and the prize from not matching actions is “bad”.
Formally, this means that for all utility functions that rationalize Pf and Pg, u(xk) ≥ u(xB)
for all k ∈ {1, 2, 3}. Given this, frame f will be revealed to have a robustly higher value
of information because in that frame the DM matches actions to states more often in every
state.

However, while the DM will be revealed to be perfectly informed when taking action a1

in frame f , the DM will be revealed to be somewhat better informed about the matching
state when taking actions a2 and a3 in frame g. As a result, the DM will not be revealed
to have better informed actions in either frame. In terms of signal structures, it is as if the
DM has a signal structure in frame f that is perfectly informative about whether the state
is ω1, but is not as informative about the other states as the signal structure in frame g.

Without loss of generality we set u(xB) = 0, so we can compute the revealed value of
information in frame f as

20
100u(x0) + 22

100u(x1) + 22
100u(x2)

and in frame g as
10
100u(x0) + 20

100u(x1) + 20
100u(x2)

Clearly, if u(x1), u(x2), or u(x3) are revealed to be non-negative for all rationalizing utility
functions, then frame f is revealed to have a robustly higher value of information.

The fact that these utilities are non-negative can established through the NIAS-F in-
equalities in frame f . The NIAS-F inequality in frame f for a1 chosen over action a2 gives
u(x1) ≥ 0 because ∑

ω∈Ω
Pf (a1, ω)u(x(a1, ω)) ≥

∑
ω∈Ω

Pf (a1, ω)u(x(a2, ω))

20
100u(x1) ≥ 20

100u(xB) = 0

17This example can be generalized to arbitrarily many actions with at least as many states as actions.
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Figure 2: Revealed posteriors for tracking example. Blue ovals give revealed posteriors for
frame f , red dots give revealed posteriors for frame g, and dashed lines provided the convex
hull of the revealed posteriors for each frame.

Likewise, the NIAS-F inequality in frame f for a2 chosen over action a1 gives u(x2) ≥ 0, and
the NIAS-F inequality for a3 chosen over action a1 gives u(x3) ≥ 0.

While the DM is revealed to have a robustly higher value of information in frame f , the
DM is also revealed to be less informed about the matching state when taking actions a2

and a3 in frame f . The revealed posteriors in frame f are

γa1
f =


1 ω1

0 ω2

0 ω3
& γa2

f =


0 ω1

22
40 ω2
18
40 ω3

& γa3
f =


0 ω1

18
40 ω2
22
40 ω3

and the revealed posteriors in frame g are

γa1
g =




10
50 ω1
20
50 ω2
20
50 ω3

& γa2
g =




5
25 ω1
20
25 ω2

0 ω3
& γa3

g =




5
25 ω1

0 ω2
20
25 ω3

These revealed posteriors are presented in Figure 2, which shows the probability of just two
states (ω2 and ω3) as the third is constrained to be the remainder. For example, the revealed
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posterior for action a1 in frame f gives a likelihood of zero to these states, so it puts all
likelihood on state ω1.

As a consequence of Lemma 4, if the revealed posteriors for neither frame fall within the
convex hull of the revealed posteriors of the other frame, then neither frame can be revealed to
have better informed actions. Clearly, this is true for this example. The revealed posterior
for action a1 in frame f , which is perfectly informed, cannot be expressed as a convex
combination of the less than fully informed revealed posteriors in frame g and the revealed
posteriors for actions a2 and a3 in frame g cannot be expressed as a convex combination of
revealed posteriors in frame f as they are better informed about the matching states.

5.2 Problems with Distinct Prizes

Next, we consider a common class of decision problems in which every action yields a distinct
prize in every state, so that x(a, ω) 6= x(b, ν) if a 6= b or ω 6= ν. We estimate that for the
3 action and 3 state version of this decision problem, roughly 6.5% of rationalizable data
sets Pf and Pg reveal that one frame has a robustly higher value of information even though
neither frame is revealed to have better informed actions.

One example of this is given by

Pf =

ω1 ω2 ω3


24
72 0 0 a1

0 16
72

8
72 a2

0 8
72

16
72 a3

& Pg =

ω1 ω2 ω3


12
72

6
72

6
72 a1

6
72

5
72

13
72 a2

6
72

13
72

5
72 a3

Like the tracking example, these data sets will reveal that the DM prefers the prize obtained
when choosing action a1 when the state is ω1, prefers the prizes obtained when choosing a2

and a3 in the other states, and is perfectly informed when taking action a1. Once again, it
is as if in frame f the DM gets a signal realization that is perfectly informative of whether
the state is ω1, so knows to take action a1 if the state is ω1 and not to choose action a1

otherwise.

However, unlike the tracking example, this Pf and Pg reveal that the utility obtained
from taking actions a2 and a3 is the same in every state.18 This follows from the fact that
the NIAS-F inequalities for a2 chosen over a3 and a3 chosen over a2 hold with equality in
both frames, which is a consequence of Lemma 2. Lemma 2 states that an NIAS-F inequality
is equal to zero if and only if the prize lottery representing that NIAS-F inequality can be
expressed as a non-positive combination of the prize lotteries representing other NIAS-F

18This example can also be generalized to any version of this problem with arbitrarily many actions and
at least as many states as actions.

24



inequalities.19 For example, the prize lottery representing the NIAS-F inequality for a2

chosen over a3 in frame f is 16
72(u(a2, ω2) − u(a3, ω2)) and 8

72(u(a2, ω3) − u(a3, ω3)).20 The
negative of this can be obtained by simply adding together the prize lotteries from the NIAS-
F inequalities for a3 chosen over a2 in frame f , for a2 chosen over a3 in frame g, and for a3

chosen over a2 in frame g.

Given that the NIAS-F inequalities for a2 chosen over a3 and a3 chosen over a2 hold with
equality in frame f , the utility differences between a2 and a3 in ω2 and the utility differences
between a2 and a3 in ω3 are both equal to 0 because those NIAS-F inequalities say

16
72 (u(a2, ω2)− u(a3, ω2)) + 8

72 (u(a2, ω3)− u(a3, ω3)) = 0

and
− 8

72 (u(a2, ω2)− u(a3, ω2))− 16
72 (u(a2, ω3)− u(a3, ω3)) = 0

which is only possible if u(a2, ω2) − u(a3, ω2) = 0 and u(a2, ω3) − u(a3, ω3) = 0. Likewise,
given that the NIAS-F inequalities for a2 chosen over a3 and a3 chosen over a2 hold with
equality in frame g, the utility difference between a2 and a3 in ω1 is also equal to 0. Thus,
the utility from taking a2 is the same as the utility from taking a3 in every state.

Given this, the revealed value of information is higher in frame f if
12
72(u(a1, ω1)− u(a2, ω1))

+ 6
72(u(a2, ω2)− u(a1, ω2) + u(a2, ω3)− u(a1, ω3)) ≥ 0

To show that this holds, we first note that u(a1, ω1) ≥ u(a2, ω1) (the DM preferring to
take action a1 in state ω1) follows directly from the NIAS-F inequality for a1 chosen over
a2 in frame f . Second, because a2 and a3 give the same utility in every state, the NIAS-F
inequalities for a2 chosen over a1 and a3 chosen over a1 in frame f yield

16
72(u(a2, ω2)− u(a1, ω2)) + 8

72(u(a2, ω3)− u(a1, ω3)) ≥ 0

and
8
72(u(a2, ω2)− u(a1, ω2)) + 16

72(u(a2, ω3)− u(a1, ω3)) ≥ 0

Adding these together gives

u(a2, ω2)− u(a1, ω2) + u(a2, ω3)− u(a1, ω3) ≥ 0

With this, we have that frame f is revealed to have a robustly higher value of information.
19The equality of NIAS-F inequalities is a fairly common occurrence in this class of decision problems. We

estimate that for the 3 action and 3 state version of this decision problem, at least one NIAS-F inequality
holds with equality for roughly 25% of all rationalizable data sets.

20Given that there are no common prizes across states and actions in this decision problem, we will shorten
u(x(a, ω)) to u(a, ω).
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Figure 3: Revealed posteriors for distinct prize example. Blue ovals give revealed posteriors
for frame f , red dots give revealed posteriors for frame g, and dashed lines provided the
convex hull of the revealed posteriors for each frame.
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However, frame f is not revealed to have better informed actions. The revealed posteriors
in frame f are

γa1
f =


1 ω1

0 ω2

0 ω3
& γa2

f =


0 ω1

16
24 ω2
8
24 ω3

& γa3
f =


0 ω1

8
24 ω2
16
24 ω3

and the revealed posteriors in frame g are

γa1
g =




12
24 ω1
6
24 ω2
6
24 ω3

& γa2
g =




6
24 ω1
5
24 ω2
13
24 ω3

γa3
g =




6
24 ω1
13
24 ω2
5
24 ω3

These revealed posteriors are presented in Figure 3. Once again, actions cannot be revealed
to be better informed in either frame because the revealed posteriors in neither frame fall
within the convex hull of the revealed posteriors in the other frame.

Also, the revealed posteriors for actions a2 and a3 can be better informed about different
states in frames f and g because the DM does not care if action a2 or a3 is taken if the state
is not ω1, as both actions yield the same higher expected utility. This is also why being
relatively better informed in frame g when taking actions a2 and a3 (conditional on the state
not being ω1) does not alter the welfare order over frames.

5.3 Problems with Two Types

Finally, we consider a third class of decision problems in which every action yields two types
of outcomes. Formally, there are two possible prizes associated with each action (as in the
tracking problem), so that

|{x(a, ω)|ω ∈ Ω}| = 2 for all a ∈ A

and in which no actions yield the same prize (as in the distinct prize problem), so that

x(a, ω) 6= x(b, ν) if a 6= b or ω 6= ν

An example of an economic setting that can have this structure is one in which each option
is distinct but of uncertain quality, such as choosing between a Value PPO and a Premium
PPO when both plans can have better doctor availability or worse.

The 3 action version of this decision problem can be represented as a matrix where actions
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a1 to a3 are given in the rows and states ω1 to ω8 are given in the columns:

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8
x1 x1 x1 x1 x2 x2 x2 x2 a1

x4 x3 x4 x3 x3 x4 x3 x4 a2

x6 x6 x5 x5 x6 x5 x5 x6 a3

This matrix shows that action a1 yields two types of outcomes (x1 and x2), action a2 yields
two other types of outcomes (x3 and x4), action a3 yields yet two other types of outcomes
(x5 and x6). It also shows that any combination of outcomes is possible in some state.

We estimate that for this decision problem, roughly 43% of rationalizable data sets Pf
and Pg reveal that one frame has a robustly higher value of information even though neither
frame is revealed to have better informed actions. Again we describe in detail such a Pf and
Pg, which are given by

Pf =

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8


6
48

6
48

6
48

6
48 0 0 0 0 a1

0 0 0 0 4
48

2
48

3
48

3
48 a2

0 0 0 0 2
48

4
48

3
48

3
48 a3

Pg =

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8


4
48

4
48

4
48

4
48

2
48

2
48

2
48

2
48 a1

1
48

1
48

1
48

1
48 0 4

48
2
48

2
48 a2

1
48

1
48

1
48

1
48

4
48 0 2

48
2
48 a3

These data sets will reveal that for action a1, odd-numbered prizes are “good” and even-
numbered prizes are “bad” in the sense that odd-numbered prizes give higher utility. They
will also reveal that the utility difference between odd-numbered prizes and even numbered
prizes for actions a2 and a3 sum to zero, so that the choice probabilities of these actions do
not factor into the welfare ranking of frames.

Frame f is revealed to have a robustly higher value of information if

8
48 (u(x1)− u(x2))− 3

48 (u(x3)− u(x4))− 3
48 (u(x5)− u(x6)) ≥ 0

for all u that rationalize Pf and Pg. As before, this can be substantially simplified by showing
that the NIAS-F inequalities for a2 chosen over a3 and a3 chosen over a2 hold with equality
in both frames as a consequence of Lemma 2.21

21We estimate that for the 3 action and 8 state version of this decision problem, at least one NIAS-F
inequality holds with equality for roughly 8% of all rationalizable data sets.
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Given that the NIAS-F inequalities for a2 chosen over a3 and a3 chosen over a2 hold with
equality in frame f , we get

4
48u(x3) + 8

48u(x4) = 8
48u(x5) + 4

48u(x6) (2)

and
8
48u(x3) + 8

48u(x4) = 4
48u(x5) + 8

48u(x6)

Adding these together, we get

u(x3)− u(x6) = u(x5)− u(x4)

Substituting this into 2 gives
4
48 (u(x3)− u(x6)) = 8

48 (u(x3)− u(x6))

Hence, u(x3)− u(x6) = 0 and u(x5)− u(x4) = 0.

Thus, frame f is revealed to have a robustly higher value of information if
8
48 (u(x1)− u(x2)) ≥ 0

From the NIAS-F inequalities for a1 chosen over a2 and a1 chosen over a3 in frame f , we
know that

24
48u(x1) ≥ 12

48 (u(x3) + u(x5))

and from the NIAS-F inequalities for a3 chosen over a1 and a2 chosen over a1 in frame f , we
know that

12
48 (u(x3) + u(x5)) ≥ 24

48u(x2)

Together, these inequalities confirm that u(x1) ≥ u(x2), so frame f is revealed to have a
robustly higher value of information.

However, frame f is not revealed to have better informed actions. The revealed posteriors
in frame f are

γa1
f =





6
24 ω1
6
24 ω2
6
24 ω3
6
24 ω4

0 ω5

0 ω6

0 ω7

0 ω8

& γa2
f =





0 ω1

0 ω2

0 ω3

0 ω4
4
12 ω5
2
12 ω6
3
12 ω7
3
12 ω8

& γa3
f =





0 ω1

0 ω2

0 ω3

0 ω4
2
12 ω5
4
12 ω6
3
12 ω7
3
12 ω8
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and the revealed posteriors in frame g are

γa1
g =





4
24 ω1
4
24 ω2
4
24 ω3
4
24 ω4
2
24 ω5
2
24 ω6
2
24 ω7
2
24 ω8

& γa2
g =





1
12 ω1
1
12 ω2
1
12 ω3
1
12 ω4

0 ω5
4
12 ω6
2
12 ω7
2
12 ω8

& γa3
g =





1
12 ω1
1
12 ω2
1
12 ω3
1
12 ω4
4
12 ω5

0 ω6
2
12 ω7
2
12 ω8

The revealed posteriors for actions are not revealed to be better informed in either frame
because the revealed posteriors for neither frame fall within the convex hull of the revealed
posteriors for the other frame. The revealed posterior for action a1 in frame f , which is
certain of the state being ω1, ω2, ω3, or ω4 (perfectly informed about action a1 yielding the
good prize), cannot be expressed as a convex combination of the less than fully informed
revealed posteriors in frame g and the revealed posteriors for actions a2 and a3 in frame g
cannot be expressed as a convex combination of revealed posteriors in frame f . This occurs
because while the revealed posterior for action a2 is better informed about state ω5 in frame
f , but it is relatively better informed about state ω6 in frame g, conditioning on the state
not being ω1, ω2, ω3, or ω4.

6 Application to Health Care Plan Choice

In this section, we revisit the choice setting discussed in the introduction in which individuals
choose between a low-premium, high-deductible health care plan (“Value PPO”) and high-
premium, low-deductible plan (“Premium PPO”).

6.1 Mapping Into Our Framework

Around half the time, the company offers a version of the Premium PPO that has better
doctor availability than the Value PPO, but the plans are otherwise identical. They are
presented in two different ways. One framing uses a standard description of options, and the
other framing uses a plain language description of deductibles.

To map this into our framework, we need to define actions, states, prizes, and frames.
In this choice setting, an action is selecting a health care plan. Let action aP be choosing
the Premium PPO and action aV be choosing the Value PPO. As discussed previously, the
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labeling of these actions (“Value” and “Premium”) might be considered to be part of the
frame if they were varied across decision problems in an effort to impact choice.

We define the states as the characteristics of plans that are varied. Let ωS be the state
where the Premium PPO has the same doctor availability, and ωB be the state where it
has better doctor availability. The prizes are the actual health care coverage received from
selecting a health care plan when it has certain characteristics. Let prize xPS be the Premium
PPO coverage when it has the same doctor availability, prize xPB be the Premium PPO
coverage when it has better doctor availability, and prize xV be the Value PPO coverage.

The map between actions, states, and prizes for this decision problem can be represented
as a matrix where actions aP and aV are given in the rows and states ωS and ωB are given
in the columns:

ωS ωB( )
xPS xPB aP
xV xV aV

Finally, we define frames as the features of the presentation that are varied. Let N be
the normal framing and PL be the plain language framing. Together, these framed decision
problems are given by A = {aP , aV }, Ω = {ωS, ωB}, X = {xPS, xPB, xV }, and a frame
h ∈ {N,PL}.

For these framed decision problems, we use data sets PN and PPL to rank frames N
and PL in terms of their welfare and informativeness. In this choice setting, the ranking of
frames based on welfare and the ranking of frames based on informativeness are identical. It
can be shown that for simple decision problems, which have just two actions and states,22 a
frame having been revealed to have better informed actions is both necessary and sufficient
for that frame to have been revealed to have a robustly higher value of information whenever
there are more than two prizes. Thus, we can rank frames N and PL either if FIAS is
satisfied or if there is a garbling of revealed experiments.

However, as a precondition for ranking frames, we need first that the data sets PN and
PPL are rationalizable, which is true if NIAS-F is satisfied. Using the MATLAB programs
provided, we estimate that approximately 50% of the possible data sets PN and PPL are
rationalizable. This means that for all such PN and PPL, there exists a utility function u

where

Ph(aP , ωS)u(xPS) + Ph(aP , ωB)u(xPB) ≥ Ph(aP )u(xV )
22Such decision problems play a key role in Frankel and Kamenica (2018), who show any decision problem

with a binary state space induces the same measure of uncertainty as a collection of simple decision problems.
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and

Ph(aV )u(xV ) ≥ Ph(aV , ωS)u(xPS) + Ph(aV , ωB)u(xPB)

for h ∈ {N,PL} and with one inequality strict. Given Lemma 2, determining whether such
a utility function exists corresponds to finding the solution to a system of linear inequalities
and linear equations, so it is simple to check in practice.

Of the data sets PN and PPL that are rationalizable, we estimate that approximately 66%
satisfy FIAS, which means that the value of information is revealed to be robustly higher for
one of the frames. For FIAS to be satisfied, there must exist a weighting function th such
that the prize lottery gained from being in one frame instead of the other can be represented
as a non-negative combination of the prize lotteries gained by not switching away from any
action in either frame. For instance, the prize lottery gained from choosing in frame PL
instead of frame N is simply:

PPL(aP , ωS)− PN(aP , ωS) chance of xPS
PPL(aP , ωB)− PN(aP , ωB) chance of xPB

PPL(aV )− PN(aV ) chance of xV

Thus, FIAS for frame PL requires that this is equal to:∑
h∈{N,PL} Ph(aP , ωS)th(aP , aV )− Ph(aV , ωS)th(aV , aP ) chance of xPS∑
h∈{N,PL} Ph(aP , ωB)th(aP , aV )− Ph(aV , ωS)th(aV , aP ) chance of xPB∑

h∈{N,PL} Ph(aP )th(aP , aV )− Ph(aV )th(aV , aP ) chance of xV

Whether a th exists that satisfies FIAS corresponds to finding whether there is a solution to
a system of linear equations, so it is also simple to check in practice.

When applying our framework and testing these conditions more broadly, two natural
issues arise: how to generate the stochastic choice data sets and how to account for sampling
error. In regards to the first issue, stochastic choice data sets are widely employed across
the social sciences and are typically estimated by pooling together the decisions of multiple
individuals or one individual over time. Either way, this process introduces the possibility
of both observable heterogeneity and unobservable heterogeneity in information and utility.
When implementing our framework, it would be natural to use stochastic choice data sets
that are separately estimated for different groups based on observable characteristics. This
opens up the potentially interesting and important possibility that the welfare orderings over
frames might differ across groups. In other words, a frame that makes one group better off
might not make another group better off. In addition, the testable content of our model can
be brought to bear on this issue. If the NIAS-F inequalities are not satisfied for a group,
then that level of aggregation is not suitable for our model.
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The second issue is highly related to the first. When estimating a stochastic choice data
set using many individual observations, there is the possibility of sampling error. One way
to account for this possibility is to use bootstrapping to estimate many possible stochastic
choice data sets and see if the welfare ordering over frames remains consistent across each
draw.

6.2 Accounting for Clear Dominance

In this choice setting, we assumed that the Value PPO was more cost effective no matter an
individual’s health outcomes, so when the Premium PPO has the same doctor availability, the
Value PPO is clearly dominant. Formally, we know that u(xV ) ≥ u(xPB) for all rationalizing
utility functions. As discussed previously, this extra restriction can easily be incorporated
into NIAS-F and FIAS.

First, this restriction on utility can be incorporated into NIAS-F by adding the following
extra linear inequality to the system of NIAS-F inequalities:

u(xV )− u(xPB) ≥ 0

This extra inequality does not impact the ease of testing NIAS-F, but it does reduce the set
of admissible utility functions. For this decision problem, we estimate that this additional
restriction reduces the proportion of possible data sets PN and PPL that satisfy NIAS-F by
half.

Second, this restriction can be incorporated into FIAS by requiring that, in addition to
the weighting function th, there is exists a non-negative t that accounts for the prize lottery
given by this extra restriction. For example, FIAS for frame PL would require that the prize
lottery gained from choosing in frame PL instead of frame N is equal to:

−t+∑
h∈{N,PL} Ph(aP , ωS)th(aP , aV )− Ph(aV , ωS)th(aV , aP ) chance of xPS∑

h∈{N,PL} Ph(aP , ωB)th(aP , aV )− Ph(aV , ωS)th(aV , aP ) chance of xPB
t+∑

h∈{N,PL} Ph(aP )th(aP , aV )− Ph(aV )th(aV , aP ) chance of xV

The only change to the prize lottery given previously is to subtract a t chance of xPS and
add a t chance of xV . Because t can equal zero, this can increase the proportion of data sets
that satisfy FIAS. However, for this decision problem, this additional restriction does not
noticeably improve our ability to rank frames. Once again, we estimate that approximately
66% of rationalizable data sets satisfy FIAS.
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7 Conclusion and Discussion

In this paper, we provide a framework for determining whether one of two frames gives
higher welfare. While in practice policymakers often select between one of two frames – for
instance, the choice between sticking with the current framing or moving to a new one –
our framework can be readily extended to provide a ranking over many frames. In a setting
with many frames, the statement of NIAS-F would be the same, but with h ∈ {f1, f2, ..., fn}
instead of h ∈ {f, g}. Likewise, when assessing the relative ranking of two frames, the
statement of FIAS would remain the same beyond the same change to the set of frames that
the weighting function must cover. To have a complete ranking of frames, there would need
to exist a non-negative weighting function that satisfies FIAS for every pair of frames. One
potential advantage to considering rich variation in frames is that it could provide tighter
bounds on the value of information in each frame.

Another natural extension of our framework is to account for information costs in the
welfare assessment of frames. In an experiment by Beshears, Choi, Laibson, and Madrian
(2009), subjects chose between investment portfolios with just the raw information about
stocks or a short summary of this information in the form of a Summary Prospectus. They
found that accounting for the costs of information was essential because “the principal welfare
gain from the Summary Prospectus comes from allowing investors to spend less time and
effort to arrive at the same portfolio decision they would have come to after reading only the
statutory prospectus.” The presence of information costs is likely to reduce the gap between
the welfare order and the informativeness order because if there is little value to learning
about states when taking some actions (as in our examples provided in Section 5.2), then
that information is unlikely to be obtained when information is costly.
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8 Appendix

Proof of Theorem 1:

Proof. 1) Exists a BEU (u, µ, πf , πg, σf , σg) ⇒ u that satisfies NIAS-F. For any h ∈ {f, g},
a, b ∈ A, and γ ∈ Γ(πh) s.t. σh(a|γ) > 0, substituting the Bayesian restriction into the
Maximization restriction gives∑

ω∈Ω
µ(ω)πh(γ|ω)u(x(a, ω)) ≥

∑
ω∈Ω

µ(ω)πh(γ|ω)u(x(b, ω))

Multiplying both sides by the probability of choosing action a for posterior γ given decision
rule σh yields

σh(a|γ)
∑
ω∈Ω

µ(ω)πh(γ|ω)u(x(a, ω)) ≥ σh(a|γ)
∑
ω∈Ω

µ(ω)πh(γ|ω)u(x(b, ω))

Since this holds for all γ ∈ Γ(πh) s.t. σh(a|γ) > 0, summing across all γ ∈ Γ(πh) and
rearranging summations yields∑

ω∈Ω
µ(ω)

∑
γ∈Γ(πh)

πh(γ|ω)σh(a|γ)u(x(a, ω)) ≥
∑
ω∈Ω

µ(ω)
∑

γ∈Γ(πh)
πh(γ|ω)σh(a|γ)u(x(b, ω))

Finally, substituting the Data Matching restriction into this inequality yields the NIAS-
F inequality for h ∈ {f, g} and a, b ∈ A. Also, by the steps above, we can directly show
that the NIAS-F inequality must hold strictly for the h ∈ {f, g} and a, b ∈ A in which the
Maximization restriction holds strictly.

2) Exists a u that satisfies NIAS-F ⇒ Exists a BEU (u, µ, πf , πg, σf , σg). In addition to
the u that satisfies NIAS-F, we construct µ, πf , πg, σf , and σg from the data in such a way
that together they form a BEU.

First, we define µ(ω) = ∑
a∈A Pf (a, ω) = Pf (ω). Next, we construct an information

structure for frame f that puts positive probability on the revealed posterior γaf for each
action a ∈ A. This posterior corresponds to the distribution of states when action a is taken
according to Pf , so is given by

γaf (ω) = Pf (a, ω)∑
ν∈Ω Pf (a, ν) = Pf (a, ω)

Pf (a)

Because the same distribution of states can occur when more than one action is taken, we
partition the set of possible actions into Ef ≤ J sets Aef for e ∈ {1, ..., Ef} with identical γef
within each such set. Using this, we define

πf (γ|ω) =
∑
b∈Ae

f

Pf (b, ω)
Pf (ω) if γ = γef for some e ∈ {1, ..., Ef}
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and equal to 0 otherwise.

To complete the construction, we define σf (a|γ) as

σf (a|γ) = Pf (a)∑
b∈Ae

f
Pf (b) if γ = γef for some e ∈ {1, ..., Ef}

and equal to 0 otherwise. We define γag (ω), Eg Aeg, πg(γ|ω), and σg(a|γ) analogously.

First, we show that this constructed BEU satisfies the Data Matching restriction for Pf .
Because πf (γ|ω) is only non-zero for posteriors s.t. γ = γef for some e ∈ {1, ..., Ef}, the
constructed BEU gives

µ(ω)
∑

γ∈Γ(πf )
πf (γ|ω)σf (a|γ) =Pf (ω)

Ef∑
e=1

∑
b∈Ae

f

Pf (b, ω)
Pf (ω)

Pf (a)∑
b∈Ae

f
Pf (b)

=
Ef∑
e=1

∑
b∈Ae

f
Pf (b, ω)Pf (a)∑
b∈Ae

f
Pf (b)

(3)

Because a, b ∈ Aef if and only if γaf (ω) = γbf (ω) for all ω ∈ Ω, for any a ∈ Aef and ω ∈ Ω,

∑
b∈Ae

f

Pf (b) =
∑
b∈Ae

f

Pf (b, ω) Pf (a)
Pf (a, ω) (4)

Substitution of equation (4) into equation (3) yields,

µ(ω)
∑

γ∈Γ(πf )
πf (γ|ω)σf (a|γ) =

Ef∑
e=1

∑
b∈Ae

f
Pf (b, ω)Pf (a)∑

b∈Ae
f
Pf (b, ω) Pf (a)

Pf (a,ω)

= Pf (a, ω)
Ef∑
e=1

∑
b∈Ae

f
Pf (b, ω)Pf (a)∑

b∈Ae
f
Pf (b, ω)Pf (a) = Pf (a, ω)

Thus, the Data Matching restriction holds for frame f , and the same steps can be used to
show that it holds for frame g.

Next, we show that the constructed BEU satisfies the Bayesian Updating restriction for
all γ ∈ Γ(πf ). For all e ∈ {1, ..., Qf}, a ∈ Aef , and ω ∈ Ω, by Data Matching (and given that
action a is only chosen with positive probability at posterior γef ) we have that

γef (ω) = Pf (a, ω)∑
ν∈Ω Pf (a, ν) =

µ(ω)πf (γef |ω)σf (a|γef )∑
ν∈Ω µ(ν)πf (γef |ν)σf (a|γef )

=
µ(ω)πf (γef |ω)∑
ν∈Ω µ(ν)πf (γef |ν)

Thus, all posteriors in Γ(πf ) satisfy the Bayesian Updating restriction, and the same steps
can be used to show that it holds for all posteriors in Γ(πg).

Finally, we show that the constructed BEU satisfies the Maximization restriction for all
a, b ∈ A and γ ∈ Γ(πf ) s.t. σf (a|γ) > 0. For any e ∈ {1, ..., Ef}, a ∈ Aef , and b ∈ A, dividing
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both sides of the NIAS-F inequality for frame f and a, b ∈ A by Pf (a) > 0 and then directly
substituting for γef (ω) gives∑

ω∈Ω
γef (ω)u(x(a, ω)) ≥

∑
ω∈Ω

γef (ω)u(x(b, ω))

Thus, for any e ∈ {1, ..., Ef}, a ∈ Aef , and b ∈ A, the Maximization restriction holds because
by definition γef (ω) ∈ Γ(πf ) and σ(a|γef (ω)) > 0. Also, because all a ∈ A belong to Aef for
some e ∈ {1, ..., Ef}, this holds for all a, b ∈ A. The same logic holds for any e ∈ {1, ..., Eg},
a ∈ Aeg, and b ∈ A.

Proof of Lemma 1:

Proof. The NIAS-F inequality for frame h ∈ {f, g} and actions a, b ∈ A can be expressed
as a 1 by M row vector ~dh(a, b) where element m of this vector gives the difference in the
probability of receiving prize xm from taking action a and from taking action b with the
same probability. This is given by∑

ω∈Ω
Ph(a, ω)(1{x(a,ω)=xm} − 1{x(b,ω)=xm})

where 1{x(a,ω)=xm} is an indicator function that takes a value of 1 when the prize from taking
action a in state ω yields prize xm.

Stacking the row vectors for all NIAS-F inequalities for frame h ∈ {f, g} produces a J2

by M matrix Dh where

Dh =



~dh(a1, a1)
~dh(a1, a2)

...
~dh(aJ , aJ−1)
~dh(aJ , aJ)


and stacking the matrix of NIAS-F inequalities for both frames produces a 2 ∗ J2 by M

matrix D where

D =
Df

Dg


Based on this matrix D, NIAS-F can be restated as the M by 1 column vector u ∈ RM

satisfying Du ≥ 0 with Du(m) > 0 for some m ∈ {1, ...,M}.

In addition, the requirement for frame f to be revealed to have a robustly higher value
of information than frame g can be expressed as a 1 by M row vector ~d where element m
gives the expected gain in prize xm from being in frame f instead of frame g, which is given
by ∑

a∈A

∑
ω∈Ω

(Pf (a, ω)− Pg(a, ω))1{x(a,ω)=xm}
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Given that NIAS-F is satisfied, f %W g can be restated as ~du ≥ 0 for all u ∈ RM that satisfy
NIAS-F. With this notation, both directions of the lemma follow from Farkas lemma.
1) Exists t ∈ R2∗J2

+ s.t. DT t = (~d)T ⇒ For all u ∈ RM satisfying NIAS-F, ~du ≥ 0. Assume
not. Take u ∈ RM such that NIAS-F is satisfied, so that Du ≥ 0, but ~du < 0. By Farkas
lemma, there cannot exist a t ∈ R2∗J2

+ s.t. DT t = (~d)T , which is a contradiction.
2) For all u ∈ RM satisfying NIAS-F, ~du ≥ 0 ⇒ Exists t ∈ R2∗J2

+ s.t. DT t = (~d)T .
Assume there does not exist t ∈ R2∗J2

++ such that DT t = (~d)T . By Farkas lemma, there must
exist a u ∈ RM satisfying NIAS-F and with ~du < 0, which is a contradiction.

Proof of Lemma 2:

Proof. First, for any u that satisfies NIAS-F,

∑
x∈X

N∑
n=1

wn ∗

∑
ω∈Ω

Phn(an, ω)(1{x(an,ω)=x} − 1{x(bn,ω)=x}

 ≥ 0

for any collection of triples (h, a1, b1) for h1, ..., hN ∈ {f, g}, a1, ..., aN ∈ A, and b1, ..., bN ∈ A
with (hn, an, bn) 6= (h, a, b) and non-negative weights w1, ..., wN . Assuming that equation (1)
holds, for any u that satisfies NIAS-F,

−1 ∗
∑
x∈X

∑
ω∈Ω

Ph(a, ω)(1{x(a,ω)=x} − 1{x(b,ω)=x}

u(x) ≥ 0

For any u that satisfies NIAS-F,

∑
x∈X

∑
ω∈Ω

Ph(a, ω)(1{x(a,ω)=x} − 1{x(b,ω)=x}

u(x) ≥ 0

as well, so it must equal 0. Second, if it equals 0 for all u that satisfy NIAS-F, then it must
be that a collection of other NIAS-F inequalities imply

−1 ∗
∑
x∈X

∑
ω∈Ω

Ph(a, ω)(1{x(a,ω)=x} − 1{x(b,ω)=x}

u(x) ≥ 0

for all u that satisfy NIAS-F, so there does not exist a u that satisfies NIAS-F and

−1 ∗
∑
x∈X

∑
ω∈Ω

Ph(a, ω)(1{x(a,ω)=x} − 1{x(b,ω)=x}

u(x) < 0

By Farkas lemma, there must exist non-negative weights on that collection of NIAS-F in-
equalities that give equation (1), completing the proof.
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Proof of Lemma 3:

Proof. Take any S that gives f %B. This allows us to express ∑ω∈Ω Pg(a, ω)1{x(a,ω)=x} in
terms of Pf :

∑
ω∈Ω

Pg(a, ω)1{x(a,ω)=x} =
∑
ω∈Ω

1{x(a,ω)=x}Pg(a, ω) =
∑
ω∈Ω

1{x(a,ω)=x}
Pg(a, ω)
Pg(ω) Pg(ω)

=
∑
ω∈Ω

1{x(a,ω)=x}
∑
c∈A

Pf (c, ω)
Pf (ω) S(c, a)Pg(ω) =

∑
ω∈Ω

1{x(a,ω)=x}
∑
c∈A

Pf (c, ω)S(c, a)

Starting from the NIAS-F inequalities, we have

∑
x∈X

∑
ω∈Ω

Ph(a, ω)(1{x(a,ω)=x} − 1{x(b,ω)=x}

u(x) ≥ 0

and

∑
x∈X

∑
ω∈Ω

1{x(a,ω)=x}
∑
c∈A

Pf (c, ω)S(c, a)−
∑
ω∈Ω

1{x(b,ω)=x}
∑
c∈A

Pf (c, ω)S(c, a)
u(x) ≥ 0

for every a, b ∈ A and one strict in some frame.

For any a, b ∈ A, multiplying both sides of the NIAS-F inequality for frame f by S(a, b)
gives

∑
x∈X

∑
ω∈Ω

1{x(a,ω)=x}Pf (a, ω)S(a, b)−
∑
ω∈Ω

1{x(b,ω)=x}Pf (a, ω)S(a, b)
u(x) ≥ 0

This holds for all a, b ∈ A, so we can sum over both, which gives

∑
x∈X

∑
a∈A

∑
b∈A

∑
ω∈Ω

1{x(a,ω)=x}Pf (a, ω)S(a, b)−
∑
a∈A

∑
b∈A

∑
ω∈Ω

1{x(b,ω)=x}Pf (a, ω)S(a, b)
u(x) ≥ 0 (5)

The difference in the expectation of prize x from switching to frame f from frame g is
given by

∑
a∈A

∑
ω∈Ω

1{x(a,ω)=x}Pf (a, ω)−
∑
a∈A

∑
ω∈Ω

1{x(a,ω)=x}
∑
c∈A

Pf (c, ω)S(c, a)

Hence, we want to show that for every utility function u that satisfies NIAS-F,

∑
x∈X

∑
a∈A

∑
ω∈Ω

1{x(a,ω)=x}Pf (a, ω)−
∑
a∈A

∑
ω∈Ω

1{x(a,ω)=x}
∑
c∈A

Pf (c, ω)S(c, a)
u(x) ≥ 0 (6)
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Because ∑b∈A S(a, b) = 1, Pf (a, ω) is equivalent to ∑b∈A Pf (a, ω)S(a, b), so 6 is equal to

∑
x∈X

∑
a∈A

∑
b∈A

∑
ω∈Ω

1{x(a,ω)=x}Pf (a, ω)S(a, b)−
∑
a∈A

∑
ω∈Ω

1{x(a,ω)=x}
∑
c∈A

Pf (c, ω)S(c, a)
u(x) ≥ 0

By relabeling c and b, it becomes

∑
x∈X

∑
a∈A

∑
b∈A

∑
ω∈Ω

1{x(a,ω)=x}Pf (a, ω)S(a, b)−
∑
a∈A

∑
b∈A

∑
ω∈Ω

1{x(a,ω)=x}Pf (b, ω)S(b, a)
u(x) ≥ 0

Relabeling b and a in a similar way gives

∑
x∈X

∑
a∈A

∑
b∈A

∑
ω∈Ω

1{x(a,ω)=x}Pf (a, ω)S(a, b)−
∑
a∈A

∑
b∈A

∑
ω∈Ω

1{x(b,ω)=x}Pf (a, ω)S(a, b)
u(x) ≥ 0

So equation (5) implies equation (6) as desired.

Proof of Lemma 4:

Proof. Take any S with S(c, a) ∈ R+ and ∑
c∈A S(c, a) = 1 such that for all a ∈ A and

ω ∈ Ω,
Pg(a, ω)
Pg(ω) =

∑
c∈A

Pf (c, ω)
Pf (ω) S(c, a)

Multiplying both sides by Pg(ω) or Pf (ω) gives

Pg(a, ω) =
∑
c∈A

Pf (c, ω)S(c, a)

Dividing both sides by Pg(a) gives

Pg(a, ω)
Pg(a) =

∑
c∈A

Pf (c, ω) 1
Pg(a)S(c, a)

or
Pg(a, ω)
Pg(a) =

∑
c∈A

Pf (c, ω)
Pf (c)

Pf (c)
Pg(a)S(c, a)

Define
T (c, a) = Pf (c)

Pg(a)S(c, a)

So that
S(c, a) = Pg(a)

Pf (c)
T (c, a)
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Thus,

Pg(a, ω)
Pg(a) =

∑
c∈A

Pf (c, ω)
Pf (c)

Pf (c)
Pg(a)S(c, a)

=
∑
c∈A

Pf (c, ω)
Pf (c)

Pf (c)
Pg(a)

Pg(a)
Pf (c)

T (c, a)

=
∑
c∈A

Pf (c, ω)
Pf (c)

T (c, a) =
∑
c∈A

γcf (ω)T (c, a)

as desired. It remains to show that∑c∈A T (c, a) = 1 for all a ∈ A. Summing up the definition
of T (c, a) gives

∑
c∈A

T (c, a) =
∑
c∈A

Pf (c)
Pg(a)S(c, a)

This is equivalent to showing that

Pg(a) =
∑
c∈A

Pf (c)S(c, a)

This is true because f %B g means for each a ∈ A and ω ∈ Ω

Pg(a, ω) =
∑
c∈A

Pf (c, ω)S(c, a)

and summing over states provides the desired relationship.
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