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macroeconomic growth rates.
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1 Introduction

Prices in asset markets reflect a combination of investor beliefs and their risk preferences.

Researchers, as well as policymakers, look to asset market data as a barometer of public

beliefs. Derivative claims prices potentially enrich what we can infer about conditional

probability distributions of future events, but events of interest often entail components

of macroeconomic uncertainty for which there will be a paucity of information along some

dimensions. Moreover, since a central tenet of asset pricing is that investors must be

compensated for exposure to macroeconomic shocks that are not diversifiable, beliefs about

the macroeconomic performance are paramount to understanding asset prices.

To disentangle the contributions of risk aversion from beliefs, many empirical approaches

in the last few decades have focused on models of investor preferences by assuming rational

expectations. Using the implied moment conditions of the investor’s portfolio choice prob-

lem in conjunction with this restriction gives a directly applicable and tractable approach

for estimating and testing alternative model specifications. This approach, however, often

leads to large risk prices in some time period, an arguably extreme level of estimated risk

aversion, or a statistical rejection of the model. As a consequence, some researchers have

explored mechanisms that could account for this evidence via a different channel, namely

beliefs which differ from rational expectations. In particular, this has led to a reexami-

nation of early models of investor beliefs such as extrapolative expectations proposed by

Metzler (1941) and adaptive expectations proposed by Nerlove (1958). It is sometimes ar-

gued, but typically not justified formally, that these alternatives are small departures from

rational expectations. These “belief distortions” relative to rational expectations alterna-

tively could reflect the lack of investor confidence about how to go about the assignment of

probabilities to future events. This has been modeled and captured formally as ambiguity

aversion or concerns about model misspecification.

A substantively distinct, but mathematically related, literature studies the martingale

decomposition of the stochastic discount factor. This decomposition expresses the stochas-

tic discount factor as the product of a martingale component and a transitory component.

The martingale component can be interpreted as a change of probability measures that

imposes risk neutrality in valuation over long investment horizons. Kazemi (1992) and

Alvarez and Jermann (2005) show that the reciprocal of the gross holding period return on

a long-term bond is the stochastic discount factor net of a martingale component. Omit-

ting the martingale component is mathematically equivalent to an incorrect assumption of
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rational expectations.

This paper proposes a formal methodology for analyzing moment restriction models

where the moment restrictions are presumed to hold under a distorted probability measure.

With observations on a complete set of asset prices and a known stochastic discount factor,

we could identify uniquely the belief distortion. Given our interest in macroeconomic

risk compensation, we presume a more modest set of data is available to use as empirical

inputs. As a consequence, even with a known stochastic discount factor, there may be

an extensive family of beliefs that is consistent with the underlying pricing restrictions

expressed as conditional moments. Rather than estimating and testing a specific model of

distorted beliefs, we study families of probabilities that are restricted to be close to rational

expectations in accordance to a statistical measure of divergence.

In contrast to some earlier research applied to so-called “risk neutral probabilities,” we

do not view a minimal distortion computation as a way to identify beliefs. Instead, we use it

as an input into characterizing families of beliefs that have similar statistical divergences.

We will be led to characterize the implications in terms of bounds. A common way to

represent a probability distribution of a random vector is through how it assigns expecta-

tions to functions of that random vector. Since we have multiple probability distributions

in play, we characterize our bounds by building what is called a “nonlinear expectation”

that minimizes expectations over members of the family of probability distortions that we

identify.

When the moment restrictions are indexed by unknown parameters, instead of con-

structing “confidence sets” as in standard statistical analyses, we build “misspecification

sets” of parameters that i) require distorted beliefs to satisfy the moment restrictions, and

ii) among the permissible belief distortions are the ones that satisfy a pre-specified di-

vergence bound from the rational expectations. Thus, our results feature the estimation

of sets of models with similar magnitudes of belief distortions. The “least misspecified”

specification of beliefs is a special case of our analysis.

Our paper builds on popular methods of estimation in moment restriction models such as

generalized method of moments (GMM) and generalized empirical likelihood (GEL). GEL

estimates parameters and probabilities jointly in hopes of improving higher-order statistical

efficiency over GMM estimates. Rather than improving the statistical performance of a

correctly specified moment restrictions model, we entertain and in fact feature a form of

model misspecification: investor beliefs diverge from rational expectations premise that

the data generating process is known to investors. In addition, some of the popular GEL
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divergence criteria such as the empirical likelihood and Hellinger divergence are problematic

for our analysis even though they have been used extensively for other applications of

statistical approximation.1 Moreover, we extend the use of divergence measures to be

applicable to a misspecified dynamic setting pertinent to macroeconomic and financial

economic applications.

In summary, we view our methodology as a way to (i) extract information on investor

beliefs from asset market and survey data and (ii) to provide revealing diagnostics for model

builders that embrace specific formulations of belief distortions.

1.1 Literature Review

There is a long intellectual history exploring the impact of expectations on investment

decisions. As was well-appreciated by economists such as Pigou, Keynes, and Hicks, in-

vestment decisions are in part based on people’s views of the future. Alternative approaches

for modelling expectations of economic actors were suggested including static expectations,

Metzler’s extrapolative expectations, Nerlove’s adaptive expectations, or appeals to data

on beliefs; but these approaches leave open how to proceed when using dynamic economic

models to assess hypothetical policy interventions. A productive approach to this modeling

challenge has been to add the hypothesis of rational expectations. Motivated by long histo-

ries of data, this hypothesis pins down beliefs by equating the expectations of agents inside

the model to those of the data generating distribution. This approach to completing the

specification of a stochastic equilibrium model was initiated by Muth (1961) and developed

fully in Lucas (1972).

Recently there has been a renewed interest in alternative belief distortions within the

asset pricing literature. See for example, Fuster et al. (2010), Hirshleifer et al. (2015), Bar-

beris et al. (2015), Adam et al. (2016), and Bordalo et al. (2019). The Adam et al. (2016)

reference, in particular, points to “small departures” from rational expectations. Lead-

ing contributors to the characterization and study of martingale components of stochastic

discount factors are Alvarez and Jermann (2005), Hansen and Scheinkman (2009), Bakshi

and Chabi-Yo (2012), Borovička et al. (2016) Some of these contributions emphasize the

explicit connection to a change in probability measure.

Our choice to focus on bounds on the potential belief distortions allows us to build on

the approach of Hansen and Jagannathan (1991) and its extensions to produce meaningful

1Schennach (2007) also demonstrates a problematic aspect of empirical likelihood but with a substan-
tially different aim than ours.
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bounds on a multiplicative component of stochastic discount factors. Precursors to our

exploration of asset pricing under model misspecification include Back and Brown (1993),

Stutzer (1995), Hansen and Jagannathan (1997), Luttmer et al. (1995), Almeida and Garcia

(2012), Hansen (2014) and Ghosh et al. (2017). While there are overlapping ideas and

motivations in this literature, there is a substantially novel component to the methods we

develop.

Generalized empirical likelihood (GEL) estimators for over-identified moment restriction

models have been advocated as alternatives to generalized method of moments (GMM) es-

timators. See, for example, the empirical likelihood alternative by Qin and Lawless (1994),

and the relative entropy alternative by Imbens (1997) and Kitamura and Stutzer (1997).

Both are special cases of a larger class of GEL methods based on discrepancies suggested

by Cressie and Read (1984), Smith (1997) and Imbens et al. (1998). These GEL methods

proceed by allowing for distortions of the empirical distribution that satisfy the moment

conditions in sample, and selecting the distortion that minimizes some divergence mea-

sure. Econometricians and statisticians have defended GEL methods by showing that the

resulting parameter estimators have higher-order asymptotic efficiency gains over common

implementations of GMM estimators; see Newey and Smith (2004). But such methods pay

little attention to enhancing our understanding of the often encountered empirical finding

that there is substantial evidence against the moment conditions.2 While there is an overlap

between our analysis and these earlier statistics and econometrics literatures, we adopt a

rather different perspective by openly acknowledging the potential global misspecification,

using the implied belief distortions as barometers of private sector belief distortions, and

recasting the analysis within a dynamic setting. As we will show, these differences matter

in important ways.

Our approach to measuring misspecification differs in an essential way from the measures

of Shanken (1987) and Hansen and Jagannathan (1997) motivated explicitly by asset pricing

applications. Within the setting of linear factor models, Shanken (1987) quantifies the

expected return errors induced by using misspecified proxies for a market return. Relatedly,

Hansen and Jagannathan (1997) compute maximal pricing errors relative to mean-square

norms of the asset payoffs. In the case of linear factor models, their measure collapses

to the maximum of the expected return errors (the α’s) relative to the return standard

2When the moment conditions are misspecified, the existing GEL literature typically features the es-
timation of a pseudo-true parameter value, but not properties of the probabilities needed to repair the
models.
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deviations. In both cases, first and second moments are computed using historical data.

Our analysis is different by allowing for investors to use probabilities distinct from those

governing the data-generating process.

1.2 Outline of the Paper

Section 2 introduces the framework used in this paper posed as the moment restrictions

implied by an asset pricing model. Section 3 studies the problem of bounding beliefs using

statistical divergence constraints. We follow the GEL literature by using the Cressie and

Read (1984) family of divergences between probability measures. We illustrate how some

divergences may be problematic for identifying (global) misspecification. Using relative

entropy divergence, we propose a nonlinear expectation functional for bounding investor

expectations subject to model-implied and a divergence constraint. We also give dual

representations that make evaluating the nonlinear expectation computationally tractable.

Section 4 discusses the implied minimum divergence as a measure of model misspecification,

and how to construct sets of parametric models consistent with small statistical divergence.

We also explore the interaction of our nonlinear expectation functional with parameter

identification. Section 5 gives a dynamic version of the divergence constraint motivated by

large deviation theory and gives a recursive dual formulation to the corresponding nonlinear

expectation. Section 6 presents an empirical illustration of our methodology. Section 7

concludes.

2 Asset Pricing with Distorted Beliefs

In standard economic applications, moment conditions are justified via an assumption of

rational expectations. This assumption equates population expectations with those used

by economic agents inside the model. These expectations are therefore presumed to be

revealed by the Law of Large Numbers applied to time series data.

Let pΩ,G, P q denote the underlying probability space and I Ă G represent information

available to investors. The original moment equations under rational expectations are of

the form

E rfpX, θq | Is “ 0. (1)

where the function f captures the parameter dependence (θ) of either the payoff or the

stochastic discount factor along with variables (X) observed by the econometrician and
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used to construct the payoffs, prices, and the stochastic discount factor.

A typical asset pricing example is as follows: Let R denote an n-dimensional vector of

gross returns corresponding to payoffs on financial or physical assets over some investment

horizon, let S denote the corresponding stochastic discount factor for this horizon, and let

I denote the investor information set. The underlying asset pricing equation is

ErSR ´ 1n|Is “ 0

where 1n is an n-dimensional vector of ones. Both the stochastic discount factor and the

return vector R may depend on unknown parameters, giving rise to (1).3

2.1 Market beliefs

We allow for the beliefs that are revealed by the market to differ from the rational expec-

tations beliefs implied by (infinite) histories of data. We represent what we call “market

beliefs” by introducing a positive random variable M with a unit conditional expectation.

Thus, we consider moment restrictions of the form:

E rMfpX, θq | Is “ 0. (2)

The random variable M provides a flexible change in the probability measure, and is

sometimes referred to as a Radon-Nikodym derivative or a likelihood ratio. The dependence

of M on random variables not in the information captured by I defines a relative density

that informs how rational expectations are altered by market beliefs. By changing M ,

we allow for alternative densities. Notice that we are restricting the implied probability

measures to be absolutely continuous with respect to the original probability measure. That

is, we restrict the market beliefs so that any event that is in the conditioning information set

(measurable with respect to Iq, has probability measure zero under the original distribution

will continue to have probability zero under this change in distribution. We will, however,

allow for investors to assign probability zero to events that actually have positive probability

under rational expectations.

The introduction of M into the analysis is seemingly an innocuous change in formulating

the observable implications. But it has rather dramatic consequences for econometric

3The vector of returns can be parameter dependent when the investment is in a physical asset with an
unobserved return.
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analyses. Equation (1) under rational expectations may not have solutions for any θ under

rational expectations. That is, equation (1) may be misspecified. Once we relax rational

expectations by introducing M , equation (2) will in general be satisfied for an infinite

dimensional set of possible M ’s for each value of θ. Thus, the parameter vector θ and the

corresponding M fail to be identified in a rather spectacular way. The characterizing of

the set of M ’s associated with a given value of θ will be of particular interest to us.

Two classes of asset pricing models that have received considerable attention provide

motivation for our analysis. One is that subjective beliefs differ from those implied by

rational expectations because of “market psychology.” Alternative models of expectations

from behavioral finance imply alternative specifications of M . Another class of asset pric-

ing models include investors that are ambiguity averse. Associated with many such models

are belief specifications that emerge as altered probabilities encoded in asset prices. These

distortions reflect some form of caution depending on modeling details. While both lit-

eratures derive counterparts to M , our methods put very modest structure on the beliefs

beyond potentially small statistical departures from rational expectations and can provide

revealing diagnostics for assessing models that impose specific distortions in expectations.

2.2 Incorporating survey evidence

When constructing our moment conditions, we could also include direct data on investor

expectations to help inform the direction and magnitude of the subjective belief distortion

from historical evidence. This would entail augmenting the moment conditions used to

constrain beliefs to include the variable being forecasted minus the observed forecast all

scaled by M .

Suppose we have data on beliefs B that reflect subjective expectations of rX. This could

include data survey responses or analyst forecasts. We may include this in our analysis by

imposing the conditional moment condition:

E
´

M rX | I
¯

“ B. (3)

In words, this restriction says that B is the best forecast of rX under the subjective belief

measure. Note that we can incorporate probabilistic forecasts into our framework by letting
rX be an indicator function.4

4See Manski (2018) and the published comments for an overview and discussion of the use of survey
data in macroeconomics and Bordalo et al. (2020) for a probe into the impact of heterogeneity in the study
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Remark 2.1. Time series of survey data are often shorter relative to data on returns or 
macroeconomic variables. This can be accommodated in our framework provided that there 
is sufficient time series variation for these data to add nontrivial incremental information to 
the analysis.

2.3 Risk-neutral pricing

Under risk-neutral pricing, the reciprocal of the gross one-period riskless return acts as a 
stochastic discount factor. Thus, in this case:

MS “ MpRf 
q
´1.

Stutzer (1996) and Avellaneda (1998) target the M ’s with the smallest divergence to use 
in pricing derivative claims. We map this type of problem into our analysis by viewing the 
empirically relevant distribution as the “correct distribution” and the risk neutral transfor-

mation as a way to correct for model misspecification. As in Stutzer (1996) and Avellaneda 
(1998), the measures of particular interest to us are the ones with a small divergence, al-

though we explore more probabilities than just the M with the minimal divergence. While 
not our primary motivation, the methods we develop in this paper allow the user to obtain 
robust bounds on risk neutral expectations of macroeconomic variables that incorporate 
information embedded in asset prices.

2.4 Martingale component to an SDF process

A stochastic discount factor process compounds the one-period stochastic discount factors. 
Many structural models of asset pricing have stochastic discount factor processes with 
martingale components that dominate risk prices over long investment horizons. These 
components can reflect permanent shocks to the macroeconomy or forward-looking com-

ponents to valuation. These components are present when investors have recursive utility 
preferences in which the intertemporal composition of risk matters or when they are averse 
to ambiguity in assigning probabilities to future events.

Since the work of Alvarez and Jermann (2005), the martingale component is referred to 
as the permanent component to the cumulative stochastic discount factor process. In pro-

viding a more formal mathematical characterization, Hansen and Scheinkman (2009) and

of over-reaction.
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Qin and Linetsky (2020) find it more revealing to appeal to probabilistic characterization

of this component. As emphasized by Borovička et al. (2016), the probability measure as-

sociated with the martingale absorbs long-term risk adjustments for stochastically growing

cash flows.5

To relate this to our analysis, suppose that this martingale component is missing from

the model specification. In such circumstances, Kazemi (1992) justifies the use of the

reciprocal of the gross holding period return on a long-term bond, Rh, as the stochastic

discount factor: S “ pRhq´1. When there is a martingale component, Alvarez and Jermann

(2005) advocated bounding its magnitude by, in effect, using this return reciprocal as a

misspecified stochastic discount factor. For this application, we use

S “MpRh
q
´1

as the stochastic discount factor where M ą 0 has conditional expectation equal to one and

thus induces a change of a probability measure that absorbs long-term risk adjustments.

Our methods applied to this problem complement and extend those of Alvarez and Jermann

(2005) and Bakshi and Chabi-Yo (2012).

2.5 Recursive utility

Consider a recursive utility model as in Kreps and Porteus (1978) and Epstein and Zin

(1991). While much of the asset pricing literature appeals to a large risk aversion coefficient,

we impose γ “ 1 and instead explore belief distortions as an alternative expectation. We

follow Campbell (1993) by allowing for market segmentation and avoid the direct use of

consumption data. We then ask what implications asset market data have for predicted

consumption growth rates.

Let Rw denote a presumed observable return on wealth. As noted by Epstein and

Zin (1991), the one-period stochastic discount factor under rational expectations is the

reciprocal of the gross return on wealth. Thus, under distorted beliefs represented by M ,

S “MpRw
q
´1

where S is the one-period stochastic discount factor under rational expectations. We use

this setup for our illustration in section 6.

5 It is also the measure that Ross-recovery algorithm as given in Ross (2015) produces.
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Our subsequent analysis seeks to measure divergence bounds on the family of M ’s that

satisfy the model-implied moment conditions. We show pitfalls with some of the measures

used previously, and we add methodological rigor to the associated empirical investigations.

3 Bounding beliefs

For any parameter vector θ in equation (2), there are typically many specifications of beliefs

M that will satisfy the model implied moment conditions. Rather than imposing ad hoc

assumptions to resolve this identification failure, we will characterize the multiplicity by

using bounds on statistical divergence. A statistical divergence quantifies how close two

probability measures are. In our analysis, one of these probability measures governs the

data evolution while the other governs the investment decisions or the equilibrium pricing

relations. We define a range of allowable probability measures, and we consider a family

of divergences commonly used in the statistics literature. We then study which of these

divergences are most revealing for assessing misspecification in asset pricing models. Proofs

and supporting analyses for this section are given in appendix A.

For the moment, fix θ and write fpXq. Initially we will also abstract from the role of

conditioning information, but the expectations can be interpreted as being conditioned on

sigma algebra I. Later we will investigate the role of conditioning information explicitly.

Introduce a convex function φ defined on R` for which φp1q “ 0. As a scale normalization

we will assume that φ2p1q “ 1. The corresponding divergence of a belief M from the

underlying data generation is defined by ErφpMqs. By Jensen’s inequality, we know that

ErφpMqs ě φp1q “ 0

since ErM s “ 1. The family of divergences Erφp¨qs are known as f -divergences. Special

cases include:

(i) φpmq “ ´ logm (negative log likelihood)

(ii) φpmq “ 4 p1´
?
mq (Hellinger distance)

(iii) φpmq “ m logm (relative entropy)

(iv) φpmq “ 1
2
pm2 ´mq (Euclidean divergence).
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These four cases are widely used in the GEL literature, and are nested in the family of

f -divergences introduced by Cressie and Read (1984) defined by

φpmq “

#

1
ηp1`ηq

rpmq1`η ´ 1s η ă 0
1

ηp1`ηq
rpmq1`η ´ms η ě 0

(4)

For η “ ´1, 0, we can apply L’Hôpital’s rule to obtain cases (i) and (iii) respectively.

The divergence corresponding to η “ ´1
2

is equivalent to the Hellinger distance between

probability densities. Empirical likelihood methods use the η “ ´1 divergence. This

same divergence is also featured in the analysis of Alvarez and Jermann (2005) in their

characterization of the martingale component to stochastic discount factors. Two cases of

particular interest to us are η “ 0 and η “ 1. We refer to the divergence for η “ 0 as

relative entropy. We refer to the η “ 1 case as a quadratic or Euclidean divergence, which

is known to have close links to GMM.

Given our interest is in sets of belief distortions, our method is distinct from those de-

signed for estimation under correct specification. In particular, our motivation and assump-

tions differ substantially from the literature on GEL methods. The so-called pseudo-true

parameter value that is often the centerpiece of misspecification analysis in the econometrics

literature plays a tangential role in our analysis as does point identification.

3.1 Problematic divergences

For the purposes of misspecification analysis, we show that monotone decreasing divergence

functions are problematic. For instance, the Cressie and Read divergences defined by (4)

and used in the GEL literature are decreasing whenever η ă 0. Our finding that the

empirical likelihood pη “ ´1qand Hellinger (the case η “ ´1
2
) divergences are problematic

under model misspecification is noteworthy, as both have been widely used in statistics and

econometrics.6 Our negative conclusion about monotone decreasing divergences leads us

to focus on divergences for which η ě 0 as robust measures of probability distortions.

To understand why monotone decreasing divergences are problematic, we study the

corresponding population problem:

Problem 3.1.

inf
Mą0

ErφpMqs

6In particular, Hellinger distance has been used for the purpose of local robustness under misspecifica-
tion.
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subject to

ErM s “ 1

ErMfpXqs “ 0.

When the constraint set is empty, we adopt the convention that the optimized objective is

8. We call a model misspecified if

E rfpXqs ‰ 0.

When f depends on an unknown parameter θ, we presume this inequality applies for all θ

in a prespecified parameter space. This leads us to ask if this inequality is revealed by a

strictly positive minimized objective in problem 3.1.

For a divergence to be of interest to us, the greatest lower bound on the objective

should inform us as to how big of a statistical discrepancy is needed to satisfy equation

(2). Therefore the infimum should be strictly positive whenever ErfpXqs ‰ 0. Conversely,

notice that under correct specification, ErfpXqs “ 0, and M “ 1 is in constraint set of

problem 3.1. By the design of a divergence measure, for M “ 1 the minimized objective

for problem 3.1 is zero.

Theorem 3.2. Assume that φpmq is decreasing in m, ErfpXqs ‰ 0, fpXq is absolutely

continuous w.r.t. the Lebesgue measure on Rd, and there exists a convex cone C Ă Rd such

that fpXq has strictly positive density on C and ´ErfpXqs P intpCq. Then for any κ ą 0

there exists a belief distortion M such that i) M ą 0 on supprfpXqs; ii) ErM s “ 1; iii)

ErMfpXqs “ 0; iv) ErφpMqs ă κ.

Theorem 3.2 shows dramatically that when the vector fpXq has unbounded support,

problem 3.1 can become degenerate. The infimized divergence can be equal to zero even

though ErfpXqs ‰ 0 so the model is misspecified. In this case the infimum is not attained

by any particular M , but can be approximated by sequences that assign small probability

to extreme realizations of fpXq.7 We view the assumption of unbounded support as empiri-

cally relevant, since moment conditions coming from asset pricing typically have terms that

7An explicit construction of such sequences is given in appendix A. Heuristically, we perturb the original
distribution of fpXq by shifting a very small amount of probability mass into an extreme tail so that the
moment condition ErMfpXqs “ 0 is satisfied. These perturbed distributions will converge weakly to the
original distribution, and the divergence will approach zero.
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are multiplicative in the returns. Note that gross returns have no a priori upper bound,

and excess returns have no a priori upper or lower bounds.

The condition in Theorem 3.2 that φpmq is decreasing in m is crucial to the degeneracy.

As we noted, this condition is satisfied for the Cressie-Read family whenever η ă 0.

To further understand the degeneracy for η ă 0 it is helpful to consider the associated

dual problem to problem 3.1. The dual problem is typically easier to solve than the primal

problem, and is often the starting point for generalized empirical likelihood estimation.

Consider:

sup
λ,ν

inf
Mą0

E rφpMq `Mλ ¨ fpXq ` ν pM ´ 1qs (5)

where λ and ν are Lagrange multipliers. Minimizing over M leads us to the dual problem:

Problem 3.3.

supλ,ν ´
1

1`η
E
”

p´η rλ ¨ fpXq ` νsq
1`η
η

ı

´ 1
ηp1`ηq

´ ν if η P p´1, 0q

supλ,ν E plogrλ ¨ fpXq ` νsq ` 1´ ν if η “ ´1

provided that λ ¨ fpXq ` ν ě 0.

The optimized objective from problem 3.3 is necessarily less than or equal to that of

the original primal problem 3.1. When the solution to the dual problem:

M˚
“ p´η rλ˚ ¨ fpXq ` ν˚sq

1
η

is feasible for the primal problem, then the two optimized objectives will coincide. The

support restriction on λ ¨ fpXq ` ν can be problematic under misspecification, sometimes

leading to a degenerate solution of the form λ˚ “ 0 and ν˚ “ 1 with the implied M˚ not

being feasible.

Remark 3.4. Previously Schennach (2007) demonstrated problematic aspects of empirical

likelihood estimators under misspecification. She showed that the pseudo-true parameter

estimator obtained by solving the empirical likelihood estimator computed using the dual

problem may fail to be root-T consistent under model misspecification, where T is the sample

size. She also discusses when population dual problem may have a zero objective even though

the model is misspecified. In relation to this, we showed that the primal problem may also

fail to detect misspecification for any monotone decreasing divergence. This includes the

η “ ´1 divergence used in empirical likelihood methods. As we emphasized previously, the
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methods we develop are not concerned with the point identification of pseudo-true parameter

values.

3.2 Robust Bounds

We derive a nonlinear expectation functional that summarizes conveniently bounds on

expectations in the presence of a divergence constraint on the probability distortion. We

focus primarily on the case in which η “ 0 (relative entropy divergence), although we

discuss briefly the corresponding result for η “ 1 (quadratic divergence).

Formally we study constrained optimization problems that will allow us to character-

ize either bounds on expectations of functions of the data or the divergence implied by

pre-specified bounds. We initially pose these problems without reference to unknown pa-

rameters and conditioning information. We discuss both of these important extensions

later in our investigation.

3.2.1 Minimal divergence

An important input into our calculations is the minimum divergence, which we now show

how to compute. Formally, we solve:

Problem 3.5.

κ “ inf
Mą0

E rM logM s

subject to:

E rMfpXqs “ 0,

E rM s “ 1.

Instead of solving this problem directly, we investigate the conjugate or dual problem.

By standard arguments, the maximized objective of the dual problem is less than or equal

to the minimizing solution for problem 3.5. When the M implied by the dual problem

satisfies the constraints for problem 3.5, the two optimized objectives coincide and this

same M solves problem 3.5.

To formulate the dual problem, introduce two Lagrange multipliers pλ, νq on the respec-

tive constraints.

sup
λ,ν

inf
Mą0

E rM logM `Mλ ¨ fpXq ` ν pM ´ 1qs .
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As known from a variety of sources and reproduced in the appendix, the dual problem

reduces to:

Problem 3.6.

sup
λ
´ logE pexp r´λ ¨ fpXqsq .

The first-order conditions for this problem are ErM˚fpXqs “ 0 where M˚ is constructed

using

M˚
“

exp r´λ˚ ¨ fpXqs

E pexp r´λ˚ ¨ fpXqsq
. (6)

where λ˚ is the maximizing choice of λ.

For this candidate M˚ to be a valid solution, we restrict the probability distribution

of fpXq. Notice that ψpλq ” Epexpr´λ ¨ fpXqsq, when viewed as a function of ´λ, is the

multivariate moment-generating function for the random vector fpXq. We include `8 as

a possible value of ψ in order that it be well defined for all λ. The negative of its logarithm

is a concave function, which is the objective for the optimization problem that interests

us. A unique solution to the dual problem exists under the following restrictions on this

generating function.

Restriction 3.7. The moment generating function ψ satisfies:

(i) ψ is continuous in λ;

(ii) lim|λ|Ñ8 ψpλq “ `8.8

A moment generating function is infinitely differentiable in neighborhoods in which it

is finite. To satisfy condition (i) of restriction 3.7, we allow for ψ to be infinite as long

as it asymptotes to `8 continuously on its domain. In particular, ψ does not have to be

finite for all values of λ. Condition (ii) requires that ψ tends to infinity in all directions.

Restriction 3.7 is satisfied when the support sets of the entries of fpXq are not subsets

of either the positive real numbers or negative real numbers. More importantly for us,

restriction 3.7 allows for fpXq to have unbounded support.

Theorem 3.8. Suppose that restriction 3.7 is satisfied. Then problem 3.6 has a unique

solution λ˚. Using this λ˚ to form

M˚
“

expr´λ˚ ¨ fpXqs

E pexpr´λ˚ ¨ fpXqsq
,

8This condition rules out redundant moment conditions as well as fpXq’s which only take on nonnegative
or nonpositive values with probability one.
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this choice of M˚ satisfies the two constraints imposed in problem 3.5. Thus the optimized

objective for both problems is

κ
.
“ ´ logE expr´λ˚ ¨ fpXqs

with M˚ as the implied solution for M .

The minimal relative entropy κ will be a core ingredient in computations that interest

us.

3.2.2 Bounding expectations

To construct misspecified sets of expectations, we use κ ą κ to bound the divergence of be-

lief misspecification. This structure will allow us to explore belief distortions other than the

one implied by minimal divergence. While we represent alternative probability distributions

with alternative specifications of the positive random variable M with unit expectation, we

find it most useful and revealing to depict bounds on the resulting expectations. Larger

κ’s will lead to bigger sets of potential expectations.

Given a function g of X, we consider the following problem:

Problem 3.9.

Kpgq .“ min
Mě0

E rMgpXqs

subject to the three constraints:

E rM logM s ď κ

E rMfpXqs “ 0,

E rM s “ 1.

As before we can solve this problem using convex duality.9 The function g could define

a moment of an observed variable of particular interest or it could be the product of the

stochastic discount factor and an observed payoff to a particular security whose price we

seek to bound.

9There is an extensive literature studying the mathematical structure of more general versions of this
problem including more general specifications of entropy. Representatives of this literature include the
insightful papers Csiszar and Matus (2012) and Csiszar and Breuer (2018). We find it pedagogically
simpler to study the dual problem directly rather than to verify regularity conditions in this literature.
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Consider now the set B of bounded Borel measurable functions g to be evaluated at

alternative realizations of the random vector X. The mapping K from B to the real line

can be thought of as a “nonlinear expectation,” as formalized in the following proposition.

Proposition 3.10. The mapping K : B Ñ R has the following properties10:

(i) if g2 ě g1, then Kpg2q ě Kpg1q.

(ii) if g constant, then Kpgq “ g.

(iii) Kprgq “ rKpgq, for a scalar r ě 0

(iv) Kpg1q `Kpg2q ď Kpg1 ` g2q

All four properties follow from the definition of K. Property (iv) includes an inequality

instead of an equality because we compute by solving a minimization problem, and the

M ’s that solve this problem can differ depending on g.

Remark 3.11. While Kpgq gives a lower bound on the expectation of gpXq, by replacing

g with ´g, we construct an upper bound on the expectation of gpXq. The upper bound will

be given by ´Kp´gq. The interval

rKpgq,´Kp´gqs

captures the set of possible values for the distorted expectation of gpXq consistent with

divergence less than or equal to κ.

Next we give a dual representation of Kpgq as justified in appendix A:

sup
ξą0

max
λ
´ξ logE

ˆ

exp

„

´
1

ξ
gpXq ` λ ¨ fpXq

˙

´ ξκ. (7)

Notice that conditioned on ξ, the maximization over λ does not depend on κ because ´ξκ

is additively separable.

It is convenient to explore the supremum over λ for each ξ ą 0. Write:

pKpξ; gq .“ sup
λ
´ξ logE exp

„

´
1

ξ
gpXq ´ λ ¨ fpXq



. (8)

10The first two of these properties are taken to be the definition of a nonlinear expectation by Peng
(2004). Properties piiiq and pivq are referred to as “positive homogeneity” and “superadditivity”.
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We deduce ξ and the resulting moment bound by solving:

Kpgq “ sup
ξě0

pKpξ; gq ´ ξκ. (9)

Remark 3.12. For sufficiently large values of κ used to constrain relative entropy, it is

possible that this constraint actually does not bind. The additional moment restrictions

by themselves limit the family of probabilities, and might do so in ways that restrict the

implied entropy of the probabilities. Appendix A gives sufficient conditions under which

the relative entropy constraint will bind, and provides examples suggesting that the relative

entropy constraint may bind in many cases of interest even for arbitrarily large choices of

κ.

3.2.3 Alternative formulation

There is a closely related problem that is sometimes more convenient to work with. We

revert back to a minimum entropy formulation and augment the constraint set to include

expectations of gpXq subject to alternative upper bounds. We may then deduce how

changing this upper bound impacts the relative entropy objective. Stated formally,

Problem 3.13.

Lpϑ; gq “ inf
Mą0

E rM logM s

subject to:

E rMfpXqs “ 0,

E rMgpXqs ď ϑ

E rM s “ 1.

Notice that Lpϑ; gq increases as we decrease ϑ because values of ϑ make the constraint

set more limiting. By imitating our previous logic for the minimum divergence problem

subject to moment conditions, the corresponding dual problem is:

Problem 3.14.

sup
ρě0,λ

´ logE pexp r´ρgpXq ´ λ ¨ fpXqsq ´ ϑρ.

The variable ρ is a Lagrange multiplier on the moment restriction involving g. We may hit

a relative entropy target varying ϑ.
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A natural starting point is to take the tilted solution M˚ from problem 3.5 and compute

ug “ E rM˚gpXqs .

By setting ϑ “ ug, the solution to problem 3.14 sets ρ “ 0 and λ “ λ˚. This choice satisfies

the first-order conditions. Lowering ϑ will imply a binding constraint:

E rMgpXqs ´ ϑ “ 0.

The optimized objective gives an implied relative entropy. Given the binding constraint, we

may view problem 3.13 as an extended version of problem 3.5 with an additional moment

restriction added. This leads us to state following analog to theorem 3.8.

Theorem 3.15. Suppose

i) ϑ ă ug;

ii) restriction 3.7 is satisfied for the random vector:
”

gpXq fpXq1
ı1

.

Then problem 3.14 has a unique solution pρ˚, λ˚q for which

M˚
“

exp r´ρ˚gpXq ´ λ˚ ¨ fpXqs

E rexp r´ρ˚gpXq ´ λ˚ ¨ fpXqss
,

this choice of M˚ satisfies ErM˚s “ 1, ErM˚fpXqs “ 0, and ErM˚gpXqs “ ϑ. Thus

objectives for problems 3.13 and 3.14 coincide.11

The relative entropy objective for problem 3.13 increases as we decrease ϑ. For instance,

by decreasing ϑ in this way we could hit the relative entropy threshold of problem 3.9. Both

approaches feature the same intermediate problem in which we initially condition on ξ or

ρ and optimize over λ. For computational purposes we deduce the implied expectation of

gpXq and relative entropy by tracing out both as functions of the scalars ξ or ρ.

3.2.4 Bounding conditional expectations

Consider an event Λ with PpΛq “ Er1Λs ą 0 where 1Λ is the indicator function for the

event A. Given a function gpXq of the data X, we can extend our previous arguments to

11While ρ˚, λ˚,M˚ depend on the choice of ϑ, to simplify notation we leave this dependence implicit.
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produce a bound on the conditional expectation. Instead of entering E rMgpXqs ď ϑ as an

additional moment condition in problem 3.13, we include

E pM1Λ rgpXq ´ ϑsq ď 0

in the constraint set and vary ϑ to attain an entropy target. In practice, we solve the dual

problem 3.6 as a function of ϑ tracing out the family of implied relative entropies.

3.3 Quadratic Divergence

While the η “ 0 divergence has many nice properties, it imposes restrictions on thinness of

tails of the probability distribution of fpXq that may be too severe for some applications.12

As an alternative, we now consider the quadratic or Euclidean divergence obtained when

we set η “ 1. We will not repeat the analysis of alternative bounds. Since a key input

is the dual to a divergence bound problem, we will characterize the resulting solution for

bounds and leave the extensions to the appendix. We study the counterpart to problem

3.9.

We impose two assumptions to ensure non-degenerate bounds.

Restriction 3.16. fpXq and gpXq have finite second moments.

Restriction 3.17. There exists an M ą 0 such that ErM s “ 1, E rMfpXqs “ 0 and
1
2
ErM2 ´M s ď κ.

The problem of interest is:

Problem 3.18.

Qpgq .“ inf
Mě0

ErMgpXqs

subject to:

1

2
E
“

M2
´M

‰

ď κ

ErMfpXqs “ 0

ErM s “ 1.

12For instance, if we specify S as an exponential-affine model of the form S “ exppψ ¨Z `Z 1ΨW q where
W is a conditionally Gaussian shock, then restriction 3.7 may be violated.
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We allow M to be zero with positive probability for mathematical convenience. Since

there exists an M ą 0 for which E rMfpXqs “ 0, we can form a sequence of strictly

positive M ’s with divergences that are arbitrarily close to bound we derive. Solving this

problem for alternative bounded g’s gives us a nonlinear expectation function Q satisfying

the properties in Proposition 3.10.

Problem 3.19.

pQpgq .“ sup
ξě0,ν,λ

´
ξ

2
E

»

–

˜

„

1

2
´

1

ξ
rgpXq ` λ ¨ fpXq ` νs

`
¸2

fi

fl´ ξκ´ ν.

Proposition 3.20. Assume that restrictions 3.16 and 3.17 hold and that the supremum

in problem 3.18 is attained with ξ˚ ą 0. Then Qpgq “ pQpgq. Furthermore, the solution

pξ˚, ν˚, λ˚q to problem 3.19, corresponds to the belief distortion

M˚
“

„

1

2
´

1

ξ˚
rgpXq ` λ˚ ¨ fpXq ` ν˚s

`

which satisfies the constraints of problem 3.18 with equality, and attains the infimum, i.e.

ErM˚gpXqs “ Qpgq.

Proposition 3.20 follows from theorem 6.7 of Borwein and Lewis (1992). It characterizes

the solution to problem 3.18 when the divergence constraint binds. Otherwise, we can

obtain the expectation bound by solving problem 3.19 for a fixed sequence of ξ’s converging

to zero where we maximize with respect to λ and ν given any ξ in this sequence.

4 Parameter misspecification regions

This section extends our earlier analysis to accommodate parameters θ that reside in a

space Θ. In our previous analysis, we took the parameter θ as given. While some of the

applications we mentioned have pre-specified stochastic discount factors, many applications

use stochastic discount factors that depend on unknown parameters. Moreover, in some

investment-based asset pricing models, there may be unknown parameters in the implied

physical or intangible returns.

Since the parameter θ now enters in the function f , we write fpX, θq explicitly. The

expectation bounds we deduced in section 3 depended implicitly on θ. Moreover, when the
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expectation g is meant to be a price bound on a hypothetical asset, the function g itself

may depend on θ if it is constructed using the parameterized stochastic discount factor.

Alternatively, g may simply select a parameter of interest that we seek to bound.

We extend the definitions of κ to denote the dependence of θ P Θ. We use this notation

regardless of whether fpX, θq satisfies restriction 3.7. When for a given θ there are no

M ą 0’s in the constraint set of problem 3.9, we adopt the convention commonly used in

the convex analysis literature that Kpg; θq “ 8 and similarly for Lpθq.

4.1 Divergence bound

We start by deducing a lower bound on the divergence applicable to the entire parameter

space. The entropy bound κ now depends on θ. Incorporating unknown parameters gives

us the divergence bound is

inf
θPΘ

κpθq. (10)

Let Θ be the set of minimizers. Since we now minimize over θ P Θ, we do not need for

there to be a solution to the dual problem for all θ, just for a subset of such θ’s. We

could interpret Θ as the set of “pseudo-true” parameter values coming from the relative

entropy procedure proposed by Imbens (1997) and Kitamura and Stutzer (1997). Note

that while the existing econometrics literature typically assumes a unique “pseudo-true”

parameter value, this identification is of little concern to us. The estimation and inference

on the relative entropy bound (10) and the set of minimizers Θ could be done by applying

results on partially identified nonlinear programs (or constrained M-estimation problems),

see, e.g., Shapiro (1991), Chernozhukov et al. (2007), Chen et al. (2018), among others.

4.2 Parameter Uncertainty and Implied Expectations

Once we entertain the possibility of model misspecification, there is no a priori reason

to focus only on the minimal divergence. For us, the minimum divergence problem is

merely a starting point as we explore implications when κ ą κ, and we find it revealing to

characterize implications with a nonlinear expectation operator. This leads to extend our

previous construction of a nonlinear expectation to accommodate parameter uncertainty

by constructing:

Kpgq “ inf
θPΘ

Kpg; θq.

There is a special case of this construction that warrants special comment. Suppose
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that g depends only on θ and not on X. While bounding gpθq for a given θ is trivial,

the computation of Kpgq remains interesting as the minimum divergence conditioned on

an arbitrary θ may fail to be less than or equal to κ. Notice that the dual formulation of

Kpg; θq simplifies to be:

sup
ξą0

max
λ

gpθq ´ ξ logE exp r´λ ¨ fpX, θqs ´ ξκ.

Given the linearity in ξ persists even after we maximized over λ, the outer sup problem

merely checks the relative entropy constraint is satisfied or not for each θ returning an

objective of `8 if it is not. This is equivalent to solving:

max
λ̂
´ logE exp

”

´λ̂ ¨ fpX, θq
ı

for each θ ascertaining if the relative entropy constraint is satisfied or not.

Proceeding in this manner amounts to restricting a scalar function of the parameter 
vector θ that can be rationalized by beliefs with divergence less than some threshold. To 
provide a more complete characterization of a divergence set, set gpθq “ ˘θ1 where θ1 is 

the first coordinate of θ. First deduce lower and upper bounds for θ1, say θ1 and θ̄1. For 
any fixed θ1 in the interval pθ1, θ̄1q produce upper and lower bounds for θ2 in an analogous 
manner.

4.3 Econometric inference

While we will develop and justify formal econometric methods in subsequent research, we 
now discuss briefly some similarities and differences with other econometric problems that 
have been studied formally. Since our starting point is belief distortion from rational expec-

tations, we pose the estimation and inference problems differently than what researchers 
would under rational expectations. In contrast to some recent work in econometrics and 
operations research. Specifically, we take a global view of misspecification rather than 
a local view. Thus inferential characterizations of this misspecification are of particular 
interest. In contrast, for example, Duchi et al. (2018) use some very similar methods to 
construct robust confidence intervals for targets of estimation while localizing the impact 
of divergence. In light of our global perspective, inferences on the Lagrange multipliers are 
of particular interest as these objects are important for characterizing belief distortions 
that attain or approximate our bounds. These multipliers inform us how we must reshape
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the historical distribution to match the moment model implications.

Second, we are interested in the implications across a set of parameter values rather

than targeting a so-called pseudo-true parameter value that is often done when studying

misspecification. This opens the door to connections with the extensive econometric re-

search on set identification. For instance, we conjecture that Monte Carlo or bootstrapping

techniques could provide tractable and defensible approaches for inferences. For instance,

Chamberlain and Imbens (2003) and Lee (2016) propose bootstrapping methods for setups

related to ours, but without a particular focus on set-based inferences. Chernozhukov et al.

(2007) and Chen et al. (2018) justify Monte Carlo approximations to statistical inferences

that are valid for applications with set identification. Extending such techniques to account

for weakly dependent data provides a promising direction for future research.

Third, blocking approaches are often advocated as way to allow for temporal dependence

when applying GEL-type methods. See, for instance, Smith (1997) and Kitamura and

Stutzer (1997). It is not evident, however, that these methods are directly applicable to

the problems that interest us. Blocking requires special consideration in our setting because

it alters the implied measure of relative entropy; but it does in ways that are potentially

interpretable. In applications, however, it is typically the distorted conditional distributions

or conditional moments that are of interest. As we will see in the next section, this leads

us to an extension that applies recursive methods of optimization familiar from dynamic

programming as an alternative way to confront the time series structure in the data.

5 Intertemporal Divergence

Asset pricing models imply conditional moment restrictions. This leads us to explore

formally the impact of conditioning. In this section we propose and justify a dynamic

extension that a) accommodates conditioning and b) uses the recursive structure of multi-

period likelihoods.

The most direct extension of our static formulation in section 3, would simply apply

the analysis in the section 3 conditioned on sigma algebra I including both the objective

and the constraints. However, there are two interrelated limitations to this approach.

First, the minimum divergence will depend on the conditioning information as well as the

entropy constraints once we push away from the minimum. Second, the only probabilities

that would be distorted are the conditional probabilities and not the probabilities over

the conditioning information. In a dynamic environment, distorting one-period transition
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probabilities also alters the probabilities of conditioning information in the next period in

ways that are inconsistent with probabilities over conditioning information in the current

period. This inconsistency leads us to pose a dynamic counterpart to the analysis in

Section 3 that imposes consistency requirements between conditional probabilities that

govern transitions and the probabilities of the future conditioning information.

In this section we construct and use the dynamic counterpart to the statistical diver-

gence constraint. By focusing initially on the case in which η “ 0, we adopt a notion of

relative entropy which frequently arises in the analysis of large deviations of stochastic pro-

cesses with temporal dependence.13 As we will show, our application of relative entropy as

formulated in this section has a direct interpretation in terms of statistical discrimination

for broad classes of temporally dependent processes. In particular, it can be viewed as

the rate at which the two probability measures become statistically discernible. We also

describe briefly how to extend other divergences in analogous ways.

5.1 Data generation

While the applications that interest us use Markov formulations, we relax this assumption in

order to entertain non-Markov distortions. For this reason, we initially consider a stationary

and ergodic formulation that nests stationary, ergodic Markov processes.

We start with a baseline probability triple pΩ,G,Pq and a measurable one-to-one trans-

formation U which is measure-preserving and ergodic under P. We use U to construct

stochastic processes and filtrations.14

Let I0 Ă G depict information available at date zero. We use the transformation U to

capture the information available at future dates via the recursion:

It “
 

Λ P G : U´1Λ P It´1

(

“
 

Λ P G : U´tΛ P I0

(

We presume that information accumulates:

It Ă It`1,

which in turn implies that tIt : ´8 ă t ă `8u is a filtration. Similarly, for any random

13See, for instance, Donsker and Varadhan (1975) or Dupuis and Ellis (1997).
14A common specification of U is the shift transformation applied to the space of infinite sequences of

vectors of real numbers.
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variable B0 that is I0 measurable, we form Bt recursively

Btpωq “ Bt´1 rUpωqs “ B0

“

Ut
pωq

‰

.

Thus for each initial random vector B0, there is a corresponding stochastic process tBt :

t ě 0u that is adapted to the filtration tIt : t ě 0u. Since U is measure-preserving, the

process tBt : t ě 0u is stationary.

5.2 Alternative probabilities

Let Q denote an alternative probability distribution on pΩ,Gq that is measure-preserving

and ergodic, and let Qt be the restriction of Q to It. We consider only Q’s for which there

exists an N1 ě 0 that is I1 measurable and satisfies:

ż

B1dQ1 “

ż

E pN1B1 | I0q dQ0 (11)

for all bounded I1 measurable random variablesB1. ThisN1 necessarily satisfies E pN1 | I0q “

1.

Form the product

MT “

T
ź

t“1

Nt.

Then under Q, the date T conditional expectation of a bounded, IT random variable BT is

E pMTBT | I0q .

We think of MT as a relative likelihood between two models over horizon T constructed

recursively through the familiar likelihood factorization. We further restrict Q to imply

stochastic stability:

Definition 5.1. We say that Q induces stochastic stability if for any B0 that is I0

measurable and satisfies
ş

|B0|dQ0 ă 8,15

lim
TÑ8

E pMTBT | I0q “

ż

B0dQ0.

15Stochastic stability as defined here is satisfied when the process is beta-mixing (or absolutely regular);
see, e.g., Theorem 3.29 in Bradley (2007).
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Definition 5.2. The set N contains all N1’s for which they correspond a probability Q

satisfying (11) and is stochastically stable.

We presume that N1 “ 1 is in this set and hence P is stochastically stable.

5.3 Likelihoods

We represent the expected log-likelihood ratio as a sum of contributions for each date by

using the recursive structure of a relative likelihood:

E pMT logMT | I0q “ E

˜

MT

T
ÿ

t“1

logNt | I0

¸

ě 0.

Dividing by T and taking limits gives:

RpN1q
.
“ lim

TÑ8

1

T
E pMT logMT | I0q “ lim

TÑ8

1

T
E

˜

MT

T
ÿ

t“1

logNt | I0

¸

“

ż

E pN1 logN1 | I0q dQ0,

which is the measure of relative entropy that we will use in our analysis. Notice that there is 
an explicit connection between N1 and Q0, which gives rise to a restriction that we impose 
when computing bounds.

Remark 5.3. The relative entropy measure RpN1q is the discrete-time analog to the relative 
entropy measure that is used in the Donsker-Varahadan large deviation theory applied to 
Markov processes.16

Remark 5.4. Using positive random variables, MT , to depict alternative probabilities for 
date T events imposes absolute continuity (conditioned on date zero information). This 
same absolute continuity will not be true over the infinite future. Our division by T when 
constructing relative entropy purposefully allows for the altered probability to have different 
Law of Large Numbers limits.

5.4 Moment bounds

In formulating the computation, we will borrow an idea from the robust control literature.

(See, for instance, Petersen et al. (2000) and Hansen and Sargent (2001). ) We will initially 
solve a problem with a relative entropy penalty indexed by a parameter ξ ą 0 and show

 16See Dupuis and Ellis (1997) and Varadhan (2008) and Dembo and Zeitouni (2009) (see chapter 3).
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how to solve a problem given ξ. We will then treat ξ as a Lagrange multiplier and trace

out the implied relative entropies for each such ξ. In this way, ξ may be chosen to enforce

a constraint. For notational simplicity we suppress the parameter dependence.

Problem 5.5.

µ “ min
N1PN

E pN1 rgpX1q ` ξ logN1 ` v1s |I0q ´ v0

subject to the constraint:

E rN1fpX1q | I0s “ 0

where v1pωq “ v0rUpωqs and v0 is I0 measurable and µ is a real number. This equation

determines the constant µ and the random variable v0 up to a translation by a constant.

While we posed this problem in terms of date zero and date one, given our presumed

stationary data generation the problem could equivalently be stated in terms of date t and

date t` 1 for t ą 0. The following objects are of interest from this problem:

• the moment bound:
ş

E rN˚
1 gpX1q|I0s dQ

˚
0 ;

• the corresponding conditional moment: E rN˚
1 gpX1q|I0s;

• the implied relative entropy:
ş

E rN˚
1 logN˚

1 |I0s dQ
˚
0

where N˚
1 solves problem 5.5 and Q˚0 is an implied stationary distribution.

There are two features of problem 5.5 that require further comment. First, the min-

imization problem includes continuation value adjustments depicted by v0 and its next

period counterpart v1 along with the numerical value µ. Second, ξE pN1 logN1 | I0q acts

as a per period relative entropy penalty, but we may equivalently think of ξ as a Lagrange

multiplier and subsequently maximize over ξ. We elaborate on both of these points in the

discussion that follows.

We motivate the µ and v0 in functional equation in problem 5.5 as follows. Let N˚
1 be

the solution and write:

µ˚ “ E pN˚
1 rgpX1q ` ξ logN˚

1 ` v
˚
1 ´ v

˚
0 s |I0q .

Let Q˚0 be the implied stationary measure, and

M˚
T “

T
ź

t“1

N˚
t .
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By iterating on functional equation, we find that

Tµ˚ “ E

˜

M˚
T

T
ÿ

t“1

rgpXtq ` ξ logN˚
t s | I0

¸

` E pM˚
Tv
˚
T | I0q ´ v

˚
0 .

Provided that gpXtq ` ξ logN˚
t has a finite unconditional expectation under Q, then the

same is true of v˚0 , and

lim
TÑ8

E pM˚
Tv
˚
T | I0q “

ż

v˚0dQ
˚
0 .

It follows that

lim
TÑ8

1

T
E

˜

M˚
T

T
ÿ

t“1

rgpXtq ` ξ logN˚
t s | I0

¸

“

ż

E pN˚
1 rgpX1q ` ξ logN˚

1 s | I0q dQ
˚
0 “ µ˚.

Thus µ˚ is the mean of rgpXtq ` ξ logN˚
t s under the distorted probability measure. This

minimization problem aims to make µ˚ as small as possible where N1 is restricted to satisfy

the conditional moment conditions.

To compute the bound µ˚ requires that we take into account that the choice of N1 has

implications for future time periods. We capture this by the continuation values v1 and v0

represented as random variables. If we subtract this mean, we obtain a more refined result:

v˚0 ´

ż

v˚0dQ
˚
0 “ lim

TÑ8
E

˜

M˚
T

T
ÿ

t“1

rgpXtq ` ξ logN˚
t ´ µ

˚
s | I0

¸

.

Notice that the random variable v˚0 is only determined up to a translation. We incorporate

v1 in the minimization because the choice of N1 has implications for the beliefs about future

values of the objective function that are present when we solve the expectational difference

equation forward.

While we formulated problem 5.5 in terms of the parameter ξ, as we noted previously,

we may interpret it as a Lagrange multiplier. Thus, we use ξ to index alternative problems

that penalize the increment to relative entropy. The value µ of this objective depends on

ξ leading us to write µ˚pξq. To impose a specific relative entropy constraint κ, we solve

sup
ξě0

µ˚pξq ´ ξκ.

Alternatively, we can back out the implied κ for each ξ by computing the derivative dµ˚

dξ
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or by computing directly the relative entropy associated with N1
˚. To determine the ξ 

sensitivity, many versions of the optimization problem could be solved in parallel using the 
dual approach that we next describe.

5.5 Dual problem

We pose the dual problem as a principal eigenvalue problem. This gives a revealing rep-

resentation of the distorted measures that underlies the bounds and a revealing link to 
large deviation theory.

By imitating our earlier application of duality,

µ “ max
λ0
´ξ logE

ˆ

exp

„

´
1

ξ
gpX1q ` λ0 ¨ fpX1q ´

1

ξ
v1



| I0

˙

´ v0

where λ0 is restricted to be I0 measurable. Let ε “ exp
´

´
µ
ξ

¯

and e0 “ exp
´

´v0
ξ

¯

. Then

a equivalent statement of the dual problem is:

ε “ min
λ0

E
ˆ

exp

„

´
1

ξ
gpX1q ` λ0 ¨ fpX1q

ˆ

e1

e0

˙

| I0

˙

.

In this optimization problem λ0 is again restricted to be a I0 measurable random vector

and e0 is restricted to be positive as is the real number ε.

When the state space is not discrete, this eigenvalue problem can have multiple solu-

tions. While there could be multiple solutions to this eigenvalue problem, at most one of

these is of interest to us.

Lemma 5.6. When there are multiple positive eigenvalue solutions for a given λ0, at most

one of them induces a probability measure that is stochastically stable.

See appendix B for a proof.17

Proposition 5.7. Problem 5.5 can be solved by finding the solution to:

ε “ min
λ0

E
ˆ

exp

„

´
1

ξ
gpX1q ` λ0 ¨ fpX1q

ˆ

e1

e0

˙

| I0

˙

17Hansen and Scheinkman (2009) prove a counterpart to this result for continuous-time specifications in
a Markovian environment. Qin and Linetsky (2020) extend their analysis by, among other things, relaxing
the Markov assumption.
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where

µ “ ´ξ log ε

v0 “ ´ξ log e0.

In this optimization problem, the random vector λ0 is restricted to be a I0 measurable

random vector, the random variable e0 is restricted to be I0 measurable and positive, and

e1pωq “ e0rUpωqs with probability one. The real number ε is positive. The implied solution

for the probability distortion is:

N˚
1 “

exp
”

´1
ξ
gpX1q ` λ

˚
0pZ0q ¨ fpX1q

ı

e˚1

ε˚e˚0

where λ˚0 is the optimizing choice for λ0 and pε˚, e˚0q are selected so that the resulting Q

induces stochastically stable. The conditional expectation implied by the bound is

E rN˚
1 gpX1q | I0s ,

which in turn implies a bound on the unconditional expectation equal to

ż

E rN˚
1 gpX1q | I0s dQ

˚
0 .

The implied relative entropy is

ż

E pN˚
1 logN˚

1 | I0q dQ
˚
0 .

Formally, the computed bound is for the unconditional expectation of gpX1q, although

we find the conditional expectation, E rN˚
1 gpX1q | I0s that is a central part of the calcula-

tion, to be of interest in its own right. Alternatively, given a discrete representation of the

conditioning information, we could produce a bound analogous to that in section 3.2.4.

In our statement of problem 5.5, we suppressed the parameter dependence. Provided

that we can compute the solution of the dual problem quickly, we can assess parameter

sensitivity along the lines we mentioned previously by perhaps solving this problem many

times in parallel.
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5.6 Markov specification

To proceed in a tractable way, we impose Markovian restrictions on the underlying data

generating processes. Specifically we presume that tXt : t ě 0u is a time invariant function

of Markov process, appropriately restricted.

Assumption 5.8. tpXt, Ztq : t “ 0, 1, ....u is a first-order Markov process for which the

joint distribution of pXt`1, Zt`1q conditioned on pXt, Ztq depends only on Zt.

Given this assumption, the tZtu process by itself is a first-order Markov process. We view

both Xt and Zt as observable. The triangular structure for the dynamic evolution allows

us to use a more sparse representation of the conditioning information. The alternative

probabilities that we explore are not restricted to be Markov, but the solution to the

minimization problem will be, for reasons that are familiar from dynamic programming.

With the Markov specification, we solve the recursion

εepzq “ min
λ

E
ˆ

exp

„

´
1

ξ
gpX1q ` λpzq ¨ fpX1q



epZ1q | Z0 “ z

˙

(12)

where by an abuse of notation, we now let e and λ be functions of the Markov state Zt

with z denoting a potential realized value. While the primal problem “imposed” stochastic

stability, if suffices to verify the stability of the process that we obtain as our candidate

solution. Since it is Markovian, this restriction is satisfied when the process tZtu is aperiodic

and Harris recurrent.

5.7 Connections to large deviation theory

Our characterization is reminiscent of the results from large deviation theory for Markov

processes. Large deviation theory also includes dynamic optimization in conjunction with

a Laplace principle, making the two literatures closely related. As in our analysis, large

deviation theory studies an undiscounted limiting problem. See, for instance, Dupuis and

Ellis (1997) and Varadhan (2008) for a valuable treatise on large deviation theory.18

We investigate a more substantive link to large deviations that helps us interpret the

relative entropy bounds that we input into our analysis. Suppose we use the empirical

probability to detect potential departures from the baseline model. There is typically a

18In particular, the analysis in Chapters 7 and 8 in Dupuis and Ellis (1997) features discrete-time Markov
specifications and large sample approximation in the formulation of a Laplace principle.
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positive probability that the empirical distribution mistakenly detects a departure. For a

fixed criterion, the probability of this mistake becomes increasingly small as the sample size

gets large. Large deviation theory characterizes this rate. Under some additional regularity

conditions, remarkably, the decay can be made to be arbitrarily close to the minimum

relative entropy bound that we compute. More generally, relative entropy provides what

is called a “rate function.” Of particular interest to us, it computes the small excursions,

represented probabilistically, that make decay rate as small as possible. See appendix B

for an elaboration.

While we draw on insights from large deviation theory, our ultimate aim is quite different

from that theory. We characterize families of probabilities that correct the misspecification

induced by imposing a constraint on the divergence from rational expectations. This is in

contrast to the large deviation ambition of characterizing the most likely excursions from

a baseline probability measure.

5.8 Alternate divergences

So far, we have imposed the relative entropy divergence. Relative entropy limits tail behav-

ior of the probability distributions. For this reason we consider other divergences, choices

of η ą 0 and, in particular, η “ 1. Indeed problem 5.5 has a counterpart when η ą 0, but it

requires some qualification and a dynamic extension that continues to exploit the recursive

structure implied by the likelihood factorization.

Specifically, the analysis extends when we use:

R “ lim
TÑ8

1

T

T
ÿ

t“1

E pMtE rφpNt`1q | Its | I0q .

where φ is a convex function used as a discrepancy for the one-period transition probability.

The limiting version of this measure as implied by the Law of Large Numbers for stationary,

ergodic processes is:

E rφpN1q | I0s dQ.

With this construction, our analysis for the η “ 0 case extends.

Problem 5.9. Find a pair pµ, vq that satisfy

µ “ min
N1PM

E pN1 rgpX1q ` v1s ` ξφpN1q | I0q ´ v0
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subject to:

E rN1fpX1q | I0s “ 0

where N1 is I1 measurable and v1 “ v0 ˝ U.

As before, this problem can be solved with convex duality methods.19

Remark 5.10. Eckstein (2019) has extended the Laplace principle from Large Deviation

theory include a class of intertemporal divergences that include the ones we use here. While

he poses his problem with sufficient generality that constraints could be included, his for-

mulation does not nest the restrictions of interest to us.

6 Illustration

Consider a recursive utility model as in Epstein and Zin (1991) with risk aversion γ “ 1.

We impose a moderate risk aversion and instead explore belief distortions to explain the

observed heterogeneity in expected returns. Let Rw denote a presumed observable return

on wealth. As noted in section 2.5, under distorted beliefs represented by M ,

S “MpRw
q
´1 (13)

where S is the one-period stochastic discount factor under rational expectations.

Epstein and Zin (1991) note the additional consumption Euler equation20

E rM logRw
| Is “ ´ log β ` ρE rM logG | Is

where G is the ratio of consumption growth over two adjacent time periods. By deducing

bounds on the left-hand side, we may infer bounds on ρ times the market expectation

of consumption growth of equity market participants expressed in logarithms. Recursive

utility preferences are specified in terms of continuation values that determine the rankings

of prospective consumption processes. As a rough approximation, when ρ ă 1 the wealth is

positively related to the continuation value, where both are relative to current consumption.

19Problems 5.5 and 5.9 are closely related to the value-function recursions coming from moment-
constrained variational preferences proposed by Hansen (2020).

20See equations (17) and (18) of Epstein and Zin (1991) except that we allow for more general expecta-
tions.
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Conversely, they are negatively related when ρ ą 1.21 Thus for this model of investor

preferences, whether ρ is larger or smaller than one impacts how we interpret the evidence

based on conditioning information.

In our illustration, we draw on the literature that suggests returns can be predicted

from dividend-price ratios. While there have been debates on how fragile this evidence

is, we step aside from that discourse and take the predictability evidence on face value to

illustrate our method. Given our direct use of dividend-price measures, we purposefully

choose a very coarse conditioning of information and split the dividend price ratios into

three bins using the three empirical terciles. We take the dividend-price terciles to be a

three-state Markov process. Dividend-price ratios are known to be persistent, and this will

be evident in our calculations.22

We implement our approach using quarterly data from 1954-2016. We proxy for the

return on wealth using the return on CRSP value-weighted index. For asset returns, we use

the return on a 3-month treasury bill, and the three Fama-French factor excess returns. We

impose moment conditions for each return implied by equation (13), each scaled by three

indicator functions for the terciles of the dividend-price ratio, giving a total of 12 moment

conditions. All returns are converted from nominal to real returns using the deflator for

nondurables consumption obtained from the BLS. We then apply the methods described

in section 5 to bound functions of the return on wealth as measured by the value-weighted

return.

In figure 1, we report the bounds on the beliefs about the expected log return, which

under the assumption of unitary risk aversion coefficient are approximately proportional to

the consumption growth rate belief when the subjective discount factor β is very close to

one. The conditional expectation of log returns and the unconditional counterpart are all

lower than their empirical counterparts. This observation follows by comparing the ‚’s with

the boxes where the top and bottom of the boxes are the upper and lower bounds with a

relative entropy constraint imposed at a magnitude that is twenty percent higher than the

minimum. The minimum relative entropy rate implies a half-life of about 24 quarters for

reducing the probability by fifty percent of mistakenly rejecting the rational expectations.

Increasing this by twenty percent, reduces the half-life by the same percentage to about 20

quarters. Interestingly, it is when we condition on the low value of the dividend-price ratio

21This follows by taking an approximation of the logarithm of the wealth-consumption ratio around
ρ “ 1.

22As an alternative starting point, we could use the regime probabilities from Markov switching models
of Maheu and McCurdy (2000) as possible states along with the implied return distributions.
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Figure 1: Expected log market return. The ‚’s are empirical averages and the boxes give
the imputed bounds when we inflated the minimum relative entropy by 20%. The minimum
relative entropy is .0284 with a half-life of 24.4 quarters.

we find the box with the largest height (biggest difference between the upper and lower

bounds). Also, the bounds on the unconditional distorted expectations are very similar to

those we found for the low dividend-price ratio.

Not only are conditional means distorted, but so are the transition probabilities as re-

ported in table 1. While the implied stationary probabilities are fairly evenly distributed

over the three dividend-states, essentially by construction, the minimal entropy proba-

bilities down-weight substantially the high dividend-price ratio state and up-weight the

low-dividend price state. The high dividend-price state, in particular, has a very small sta-

tionary probability under the minimum distorted stationary distribution. Consistent with

this, the transition probabilities into this state are lower under the distortion and they are

higher for exiting this state. The opposite happens for transitions in and out of the low

dividend-price state. Thus, a hypothetical process that behaves in accordance with the

minimum entropy distorted Markov transition matrix is likely to spend substantially more

time in the low expected log return state and much less time in the high expected log-

return state. When we increase the relative entropy bound by twenty percent, the implied

distorted transition matrices are quite similar to the implied transition matrix recovered

by the minimizing relative transition and depart from the empirical transition matrix in

comparable ways.

There is a substantial asset pricing literature that studies time-varying risk compensa-

tion, often appealing to high values of risk aversion. Belief distortions can imitate compo-
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empirical min entropy

transition
matrix

¨

˝

.96 .04 0

.05 .88 .07
0 .08 .92

˛

‚

¨

˝

.98 .02 0

.08 .88 .04
0 .17 .83

˛

‚

stationary
probabilities

“

.42 .31 .27
‰ “

.76 .20 .04
‰

Table 1: Empirical and distorted transition probabilities.

Figure 2: Proportional risk compensations computed as logERw ´ logERf scaled to an
annualized percent. The ‚’s are the empirical averages and the boxes give the imputed
bounds when we inflated the minimum relative entropy by 20%. The minimum relative
entropy is .0284 with a half-life of 24.4 quarters.

nents of this risk aversion. Thus, consider the bounds on the implied risk compensations

when we restrict the risk aversion parameter to one. We report proportional risk premium

using the ex-post real return on Treasury bills, Rf , as our riskless benchmark in figure 2.

To construct these results, we compute bounds on logERw ´ logERf by extending the

approach of section 5 as described in the appendix C. Not surprisingly, restricting investor

risk aversion allows for belief distortions to capture the fluctuating empirical compensations

for exposure to uncertainty.

Putting aside the empirical debate on return predictability, we see two possible con-

clusions from these results. One possibility is that the statistical divergence (measured as

relative entropy) for the distortions are high enough to challenge a “bounded rationality”
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view of the recursive utility model with a unitary risk aversion. The other possibility is that

this divergence is defensible, in which case our dynamic implementation reveals the most

statistically plausible distortions on the evolution of the dividend-price ratios. It remains

a judgement call as to when the resulting statistical bounds we find here are implausible.

Researchers that embrace rational expectations do not consider belief distortions, while

behavioral finance researchers seldom consider the implied statistical divergence of their

modeled beliefs. Neither practice uses tools for assessing statistical approximation as we

have done in this paper.

7 Conclusion

In this paper, we developed new methods designed to extract information on investor beliefs

from data on asset prices and investor surveys. Our approach presumes an econometric

model of investor risk aversion, one that could be misspecified under rational expectations.

We illustrated how limiting the statistical discrepancy between investor beliefs and ratio-

nal expectations implies bounds on investors’ expectations. Formally, we represented this

relationship through a nonlinear expectation function and derived its dual representation.

Additionally, we showed how to use the implied minimal statistical divergence as a measure

of model misspecification, and discussed how to estimate sets of parametric models that

can be rationalized by small statistical departures from rational expectations.

Our implementation uses empirical distributions in analogous manners as GMM and

GEL methods with sparse clustering of conditioning information. Sieve methods could

open the door to richer specifications of this information. For instance, our approach

could also be applied in vector autoregressive settings using log-linear or even higher order

approximation of structural models. Macroeconomic researchers sometimes introduce ad

hoc belief distortions relative to rational expectations to repair the structured models.

Alternatively, reduced-form models with hidden Markov processes could be taken as the

empirical starting point.

Going forward, we see two types of applications of our methods. Deducing market

expectations about the future from forward-looking asset prices is a common practice in

both the public and private sectors. But this is typically done either informally or by

targeting so-called risk neutral probabilities that confound beliefs and risk preferences. Our

method provides a formal way to compute and represent information on investor beliefs

constrained by a model of risk aversion along with a measure of statistical divergence.
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Alternatively, we could use our approach to provide diagnostics for model misspecifica-

tion under rational expectations. The bounds we deduce will help assess alternative models

of subjective beliefs or ambiguity aversion. Implied belief bounds for small or moderate

restrictions on the statistical divergence can give suggestive results for model-builders as to

how to repair potentially misspecified models. By comparing models of subjective beliefs

or ambiguity aversion supported by belief distortions to the implied bounds, applied re-

searchers could assess whether such departures from rational expectations could be easily

discerned from limited data.

Future applications of our methodology could incorporate information from survey data

on investor beliefs. One approach would be to include survey data directly as additional

moment conditions when constructing expectation bounds. Another approach would be to

compare survey-implied expectations to expectation bounds on the corresponding variables

formed without using the survey data as information. The latter approach would provide

a check on how plausible the survey data are as a representation of investor beliefs used in

decision-making.

While our paper makes reference to prior inferential results that can be used, we believe

it will be fruitful to develop these links more formally in future research. Of particular

interest are inferential methods for the nonlinear expectation function implied by the dy-

namic relative entropy constraint using flexible conditioning information. In this regard,

inferential methods for sieve-type estimation as surveyed by Chen (2007) could be adapted

or extended to our setting. For instance, Christensen (2017) has applied this approach to

the estimation of principal eigenvalues and eigenfunctions, and extensions could be applied

to our dual formulation in a dynamic setting. In a different vein, the extended version

of GMM estimation developed in Gagliardini et al. (2011) allows for applied problems in

which a researcher wishes to use cross-sectional richness from asset markets in some of

the observed time periods. Modifying this approach to allow for investor belief distortions

would be another fruitful avenue to explore.
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Online Appendix

A Proofs and Derivations for Section 3

A.1 Proof of Theorem 3.2

Construct a sequence πj Œ 0 such that πj ă
1
2

for all j. Then choose rj P Rd such that

p1´ πjqErfpXqs ` πjrj “ 0

i.e.

rj “ ´

ˆ

1´ πj
πj

˙

ErfpXqs

Let Bpr, εq denote an open ball with center r and radius ε. Since ´ErfpXqs P intpCq there

exists an ε ą 0 such that the open ball Bp´ErfpXqs, εq Ă C. Since C is a cone and πj ă
1
2

it follows that Bprj, εq Ă C. Write vpεq “ volrBp0, εqs ą 0.23 Now, construct a sequence of

belief distortions Mj as follows:

Mjpxq “ p1´ πjq ` πj
1

vpεqh0rfpxqs
1tfpxq P Bprj, εqu

where h0pyq is the density of the random variable Y “ fpXq under the objective probability

measure P . By construction, we have that for all j P N

• Mj ą 0

• ErMjs “ 1

• ErMjfpXqs “ 0.

Additionally note that Mj ě p1 ´ πjq with probability one. Since φp¨q is decreasing, we

have that φpMjq ď φp1 ´ πjq with probability one. By continuity, φp1 ´ πjq Ñ φp1q “ 0.

By monotonicity of expectations we see that

0 ď ErφpMjqs ď Erφpp1´ πjqqs “ φp1´ πjq Ñ 0.

The statement follows immediately.

23Here we use the definition volpSq “
ş

1py P Sqdy.
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A.2 Derivation of Problem 3.3

By standard duality arguments, the dual formulation of problem 3.1 is the saddlepoint

equation

sup
λ,ν

inf
Mą0

E rφpMq `Mλ ¨ fpXq ` ν pM ´ 1qs (14)

where λ and ν are Lagrange multipliers.

The objective function is separable over the realized values of M , and this leads us to

minimize:

φpMq `Mλ ¨ fpXq ` ν pM ´ 1q

The first-order condition for optimizing over M is:

1

η
Mη

` λ ¨ fpXq ` ν “ 0.

Thus the minimizing M is

M “ p´η rλ ¨ fpXq ` νsq
1
η

Substituting the minimizing M back into (5) leads us to

´

ˆ

1

1` η

˙

Mη`1
´

1

ηp1` ηq
´ ν “ ´

ˆ

1

1` η

˙

p´η rλ ¨ fpXq ` νsq
η`1
η ´

1

ηp1` ηq
´ ν

as in dual problem 3.3.

A.3 Proof of Theorem 3.8

The negative of a log moment generating function is strictly concave. Conditions (i) and

(ii) guarantee that the function ψ is continuous and coercive. It follows from (Ekeland

and Témam, 1999, Proposition 1.2, Ch. II.1, p.35) that the supremum in Problem 3.6

is attained uniquely at vector we denote λ˚. Since ψ is differentiable, λ˚ is determined

uniquely by solving the first-order conditions. Moreover, from known results about moment

generating functions we may differentiate inside the expectation to conclude that the first-

order conditions with respect to λ imply

E
„

exppλ˚ ¨ fpXqq

Erexppλ˚ ¨ fpXqqs
fpXq



“ ErM˚fpXqs “ 0.
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This can be seen directly via the dominated convergence theorem. Thus M˚ is feasible for

Problem 3.5.

To verify that M˚ solves Problem 3.5, note that for any other M ě 0 with ErM s “ 1,

ErMplogM ´ logM˚
qs ě 0,

and thus

ErM logM s ě ErM logM˚
s.

The first expression is nonnegative because it is the entropy ofM relative toM˚.24 Compute

ErM logM˚
s “ ErMpλ˚ ¨ fpXqqs ´ logE rexp pλ˚ ¨ fpXqqs .

Thus if ErMfpXqs “ 0,

ErM logM˚
s “ ´ logE rexp pλ˚ ¨ fpXqqs .

We conclude that

inf
B
ErM logM s ě ´ logE rexp pλ˚ ¨ fpXqqs

where B “ tM P L1pΩ,G, P q : ErM s “ 1,ErMfpXqs “ 0u. Furthermore, the right-hand

side is attained by setting M “ M˚ and that other M P B that attains the infimum is

equal to M˚ with probability one.

A.4 Derivation of equation (7)

By standard duality arguments, the dual formulation of problem 3.9 is the saddlepoint

equation

sup
ξą0,λ,ν

inf
Mě0

E rMgpXq ` ξpM logM ´ κq ` λ ¨MfpXq ` νpM ´ 1qs (15)

where ξ, λ and ν are Lagrange multipliers. Since the objective function is separable in M ,

we minimize

MgpXq ` ξpM logM ´ κq ` λ ¨MfpXq ` νpM ´ 1q

24Formally ErMplogM ´ logM˚qs “ ErM˚φpM{M˚qs with φpxq “ x log x, so the expectation is non-
negative by Jensen’s inequality.
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with respect to M . The first-order condition is

gpXq ` ξ ` ξ logM ` λ ¨ fpXq ` ν “ 0.

Thus,

M “

exp
´

´1
ξ
rgpXq ` λ ¨ fpXqs

¯

E
”

exp
´

´1
ξ
rgpXq ` λ ¨ fpXqs

¯ı .

Substituting back into equation (15) gives equation (7).

We can connect these results to our earlier analysis of dual Problem 3.6 by defining an

alternative expectation pE using a relative density:

exp
”

´1
ξ
gpXq

ı

E exp
”

´1
ξ
gpXq

ı

Then write the objective as

pKpξ; gq .“ sup
λ
´ξ log pE exp r´λ ¨ fpXqs ´ ξ logE exp

„

´
1

ξ
gpXq



.

Since the last term does not depend on λ, we may appeal to Theorem 3.8 for the existence

of a solution where Restriction 3.7 is imposed under the change of measure.25

A.5 When will the relative entropy constraint bind?

We first a give high-level sufficient condition under which the relative entropy constraint

in problem 3.9 binds. Write

Kpg; ξq “ max
λ
´ξ logE

„

exp

ˆ

´
1

ξ
gpXq ` λ ¨ fpXq

˙

´ ξκ.

Let λpg; ξq denote the maximizer in the definition of Kpg, ξq, and define

M1pg; ξq “
exp

”

´1
ξ
gpXq

ı

E
´

exp
”

´1
ξ
gpXq

ı¯

25For computational purposes, there may be no reason to use the change of measure.
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M2pg; ξq “
exp

”

´1
ξ
gpXq ` λpξqfpXq

ı

E
´

exp
”

´1
ξ
gpXq ` λpξqfpXq

ı¯

Restriction A.1.

lim
ξÓ0

E rM1pg; ξqgpXqs ´ E rM2pg; ξqgpXqs ą 0

Proposition A.2. Under restriction A.1,

lim
ξÓ0

B

Bξ
Kpg; ξq “ 8

and therefore the relative entropy constraint in problem 3.9 binds for any value of κ ą κ.

Proof. An application of the Envelope Theorem gives that

B

Bξ
Kpg; ξq “ ´ logE

ˆ

exp

„

´
1

ξ
gpXq ` λpg; ξq ¨ fpXq

˙

´
1

ξ
ErM2pg; ξqgpXqs ´ κ

“
1

ξ
Hpg; ξq ´ κ

where

Hpg; ξq “ ´ξ logE
ˆ

exp

„

´
1

ξ
gpXq ` λpg; ξqfpXq

˙

´ ErM2pg; ξqgpXqs.

Applying L’Hôpital’s rule, we see that

lim
ξÓ0

Hpg; ξq “ lim
ξÓ0

E rM1pg; ξqgpXqs ´ E rM2pg; ξqgpXqs ą 0.

The result follows.

Restriction A.1 is difficult to verify in practice. To make things more concrete, we give

two somewhat general examples under which the relative entropy constraint will bind.

Example A.3 establishes that the relative entropy constraint will bind in problem 3.9

whenever the target random variable gpXq has a lower bound g with arbitrarily small

probability near that bound.

Example A.3. For simplicity, omit the moment condition ErMfpXqs “ 0. Suppose that
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(i) ess infrgpXqs “ g ą ´8,

(ii) limεÑ0 P
 

gpXq ď g ` ε
(

“ 0,

Then for any κ ą 0, the relative entropy constraint in Problem 3.9 will bind.

Example A.3 rules out indicator functions for the choice of g. Bounding such functions

may be of interest if the econometrician wishes to consider bounds on distorted probabilities.

We consider a version that allows for these in example A.4

Example A.4. We consider a scalar moment condition with a support condition and con-

sider bounds on indicator functions of the moment function. Suppose

(i) fpXq is a scalar random variable;

(ii) ess suppfpXqq “ u ă 8,

(iii) limεÑ0 P tfpXq ě u´ εu “ 0.

(iv) gpXq “ 1tfpXqě´ru for r ą 0;

Then for any κ ą 0, the relative entropy constraint in Problem 3.9 will bind.

The statement that the relative entropy constraint binds for any κ ą 0 in examples A.3

and A.4 follows immediately from lemmas A.5 and A.6 respectively. These two examples

suggest that the relative entropy constraint will bind in many cases of interest even for

arbitrarily large choices of κ.

A.6 Auxiliary results

Lemma A.5. Let g “ ess inf gpXq and assume that

lim
εÑ0

P
 

gpXq ď g ` ε
(

“ 0.

Then for any κ ą 0, there exists a constant ζ ą g such that for any belief distortion M

satisfying M ě 0, ErM s “ 1, and ErMgpXqs ď ζ, we must have that ErM logM s ą κ.
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Proof:

Write

hpεq “ P
 

gpXq ď g ` ε
(

and observe that hpεq ą 0 and hpεq Ñ 0 as εÑ 0. Define an event Apεq by

Apεq “
 

gpXq ď g ` ε
(

Now, let ζ “ g ` ε
2
. Then for any M satisfying the constraints, we have that

g `
ε

2
ě ErMgpXqs

“ E
“

MgpXq1Apεq
‰

` E
“

MgpXq1Apεqc
‰

ě g E
“

M1Apεq
‰

` pg ` εqE
“

M1Apεqc
‰

ě g ` εE
“

M1Apεqc
‰

“ g ` ε p1´Qpε;Mqq

where Qpε;Mq “ E
“

M1Apεq
‰

. Rearranging, we obtain the bound

1

2
ě 1´Qpεq

which simplifies to

Qpεq ě
1

2
.

It follows that

E rM |Apεqs “
ErM1Apεqs

E
“

1Apεq
‰ “

Qpεq

hpεq
ě

1

2hpεq
.

Additionally, since M ě 0 we have the trivial inequality

E rM |Apεqcs ě 0.

Now, let Fpεq denote the σ-algebra generated by the event Apεq. Applying Jensen’s in-

equality conditional on Fpεq to the relative entropy, we obtain

ErM logM s ě E rErM |Fpεqs log pErM |Fpεqsqs

“ hpεq
Qpεq

hpεq
log

„

Qpεq

hpεq



` r1´ hpεqs

ˆ

´
1

e

˙
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ě
1

2
log

„

1

2hpεq



´
1

e

where the second term comes from the fact that the function φpmq “ m logm is bounded

from below by ´e´1. Choosing ε sufficiently small so that the lower bound exceeds κ gives

the desired result.

Lemma A.6. Let fpXq be a scalar random variable. Assume that M ě 0, ErM s “ 1,

ErMfpXqs “ 0 and that P tfpXq ď uu “ 1. Then for any r ą 0

ErM1pfpXq ď ´rqs ď
u

u` r

Proof.

0 “ ErMfpXqs

“ E
“

MfpXq1tfpXqď´ru
‰

` E
“

MfpXq1tfpXqą´ru
‰

ď ´rE
“

M1tfpXqď´ru
‰

` uE
“

M1tfpXqą´ru
‰

ď ´pu` rqE
“

M1tfpXqď´r`uu
‰

.

Rearranging gives the desired result.

Note that this upper bound is sharp so long as X has strictly positive density near x and

´r. It can be approximated by letting M approach a two-point distribution with a point

mass at x with probability π “ x
x`r

and a point mass at ´r with probability 1´ π “ r
x`r

.

Lemma A.7. Let u “ ess sup fpXq and assume that

lim
εÑ0

PpfpXq ě u´ εq “ 0

Then for any κ ą 0 and r ą 0 such that PtfpXq ď ´ru ą 0, there exists a constant δ ą 0

such that for any belief distortion M satisfying M ě 0, ErM s “ 1, ErMfpXqs “ 0 and

ErM1tfpXqď´rus ě
u

u` r
´ δ,

we must have that ErM logM s ą κ.

Proof. Write

hpεq “ P pfpXq ě u´ εq
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and observe that hpεq ą 0 and hpεq Ñ 0 as εÑ 0.

Now, take ε P p0, u` rq and define the following events

A “ tfpXq ď ´ru

Bpεq “ t´r ă fpXq ă u´ εu

Spεq “ tfpXq ě u´ εu.

Observe that A, Bpεq and Spεq are mutually exclusive. Using the fact that 1Bpεq “ 1´1A´

1Spεq with probability one, we obtain

0 “ ErMfpXqs

“ ErMfpXq1As ` ErMfpXq1Bpεqs ` ErMfpXq1Spεqs

ď ´rErM1As ` pu´ εqErM1Bpεqs ` uErM1Spεqs

“ ´rErM1As ` pu´ εqErMp1´ 1A ´ 1Spεqqs ` uErM1Spεqs

ď pu´ εq ´ pu` r ´ εqErM1As ` εErM1Spεqs.

Rearranging, we obtain the lower bound

ErM1Spεqs ě
pu` r ´ εq

ε

ˆ

ErM1As ´
u´ ε

pu` r ´ εq

˙

Now, for any M such that

ErM1As ě
u

u` r
´
ε

2

r

pu` rqpu` r ´ εq

we have that

ErM1Spεqs ě
pu` r ´ εq

ε

ˆ

u

u` r
´
ε

2

r

pu` rqpu` r ´ εq
´

u´ ε

pu` r ´ εq

˙

ě
pu` r ´ εq

ε

ˆ

ε

2

r

pu` rqpu` r ´ εq

˙

ě
1

2

r

u` r

It follows that

ErM |Spεqs “
ErM1Spεqs

Er1Spεqs
ě

1

2hpεq

r

u` r
.
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Now, let Fpεq denote the σ-algebra generated by the event Spεq. Applying Jensen’s in-

equality conditional on Fpεq to the function φpmq “ m logm, we obtain

ErM logM s ě E rErM |Fpεqs log pErM |Fpεqqs

ě hpεq
ErM1Spεqs

hpεq
log

ˆ

ErM1Spεqs

hpεq

˙

` p1´ hpεqq

ˆ

´
1

e

˙

ě
1

2

r

u` r
log

ˆ

1

2hpεq

r

u` r

˙

´
1

e
.

Now choosing ε sufficiently small so that the lower bound exceeds κ gives the desired

result.

B Proofs and derivations for section 5

This appendix expands on results presented in section 5.

B.1 Perron-Frobenius problem

For an arbitrary λ0

εe0 “ E
ˆ

exp

„

´
1

ξ
gpX1q ` λ0 ¨ fpX1q



e1 | I0

˙

is recognizable as a Perron-Frobenius problem with eigenfunction e0 and eigenvalue ε. The

eigenfunction e0 is in fact a random variable that is measurable with respect to I0 and only

well-defined up to a positive scale factor. Notice that

N1 “

ˆ

1

ε

˙

exp

„

´
1

ξ
gpX1q ` λ0 ¨ fpX1q

ˆ

e1

e0

˙

is positive and has conditional expectation equal to one.

While this construction leads to a change in the one-period conditional expectation, this

new probability measure does not necessarily satisfy the conditional moment restriction.

The first-order conditions for minimizing with respect to λ0, however, imply that

N˚
1 “

ˆ

1

ε˚

˙

exp

„

´
1

ξ
gpX1q ` λ

˚
0 ¨ fpX1q

ˆ

e˚1
e˚0

˙
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satisfies:

E pN˚
1 fpX1q | I0q “ 0

Without imposing additional regularity conditions, there may be multiple solutions to

Perron-Frobenius problems. We now show that there is at most one that is pertinent to

our analysis.

Lemma B.1. When there are multiple positive eigenvalue solutions for a given λ0, at most

one of them induces a probability measure that is stochastically stable.

Proof. By way of contradiction, we consider two possible solutions pε̃, ẽ0q and pε̂, ê0q where

ẽ0{ê0 is not constant and ε̃ ě ε̂. Construct the corresponding rN1 and ĂMT and let rQ be a

measure-preserving probability consistent with rN1 and is stochastically stable. Since,

rN1 “

ˆ

1

ε̃

˙

exp

„

´
1

ξ
gpX1q ` λ0 ¨ fpX1q

ˆ

ẽ1

ẽ0

˙

,

it follows that

E
„

rN1

ˆ

ê1

ẽ1

˙

|I0



“

ˆ

ε̂

ε̃

˙ˆ

ê0

ẽ0

˙

Consider two cases.

First suppose that ε̃ “ ε̂. Then

E
„

rN1

ˆ

ê1

ẽ1

˙

|I0



“
ê0

ẽ0

implying that ê0
ẽ0

is perfectly forecastable. Iterating on this relation implies that

E
„

ĂMT

ˆ

êT
ẽT

˙

|I0



“
ê0

ẽ0

This contradicts the presumption that rQ is stochastically stable since the left-hand side

does not converge to the corresponding unconditional expectation.

Next suppose that ε̃ ą ε̂. Then

E
„

rN1

ˆ

ê1

ẽ1

˙

|I0



“

ˆ

ε̂

ε̃

˙ˆ

ê0

ẽ0

˙
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Since ε̂{ε̃ ă 1, by iterating this conditional expectation operator it follows that

E
„

ĂMT

ˆ

êT
ẽT

˙

|I0



Ñ 0

which is contraction since ê{ẽ is strictly positive and cannot have a zero expectation.

B.2 Problem solution

As in section 3, we solve the dual problem and verify that this satisfies the constraints for

the primal problem. A comprehensive treatment of existence is beyond the scope of this

paper. We will, however, provide two verification results, one for the dual and one for the

primal problem.

Recall the functional equation for the dual problem:

ε “ min
λ0

E
ˆ

exp

„

´
1

ξ
gpX1q ` λ0 ¨ fpX1q

ˆ

e1

e0

˙

| I0

˙

.

Lemma B.2. Let λ˚0 solve the dual problem for the eigenvalue-eigenfunction pair pε˚, e˚0q.

Moreover, suppose that the probability measure consistent with

N˚
1 “ exp

„

´
1

ξ
gpX1q ` λ

˚
0 ¨ fpX1q

ˆ

e˚1
ε˚e˚0

˙

and

M˚
T “

T
ź

t“1

N˚
t

induces stochastic stability. Also let λ̂ denote another choice of λ. Then

1 ď lim inf
TÑ8

pε˚q´T E

˜

exp

«

T
ÿ

t“1

´
1

ξ
gpXtq ` λ̂t´1 ¨ fpXtq

ff

ˆ

e˚T
e˚0

˙

| I0

¸

Proof. Note that for all T ě 1,

M˚
T exp

«

T
ÿ

t“1

´

λ̂t´1 ´ λ
˚
t´1

¯

¨ fpXtq

ff

“ pε˚q´T exp

«

T
ÿ

t“1

´
1

ξ
gpXtq ` λ̂t´1 ¨ fpXtq

ff

ˆ

e˚T
e˚0

˙
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Since λ˚0 solves the dual problem,

1 ď pε˚q´1 E
ˆ

exp

„

´
1

ξ
gpX1q ` λ̂0 ¨ fpX1q

ˆ

e˚1
e˚0

˙

| I0

˙

“ E
´

N˚
1 exp

”´

λ̂0 ´ λ
˚
0

¯

¨ fpX1q

ı

| I0

¯

(16)

Iterating on inequality (16) for T time periods gives

1 ď E

˜

N˚
T exp

«

T
ÿ

t“1

´

λ̂t´1 ´ λ
˚
t´1

¯

¨ fpXtq

ff

| I0

¸

.

Thus

1 ď lim inf
TÑ8

E

˜

N˚
T exp

«

T
ÿ

t“1

´

λ̂t´1 ´ λ
˚
t´1

¯

¨ fpXtq

ff

| I0

¸

with probability one.

Remark B.3. Suppose that λ˚0 is essentially unique. Then (16) is satisfied with a strict

inequality holding with positive probability. Under geometric ergodicity of process induced

by the ˚ probability, the right-hand-side converges to limit that is strictly greater than one.

Next consider the primal problem.

µ “ min
N1PN

E pN1 rgpX1q ` ξ logN1 ` v1s |I0q ´ v0

subject to the constraint:

E rN1fpX1q | I0s “ 0

To use the dual problem to construct a solution, we must verify that the first-order con-

ditions for λ0 are satisfied. This in turn implies that the candidate solution from the dual

problem satisfies the constraint.

Lemma B.4. Let pµ˚, v˚0 , N
˚
1 , λ

˚
0 , ν

˚
0 q be constructed by solving the dual problem where

N˚
1 satisfies the constraint and ν˚0 is the multiplier on the constraint E pN˚

1 | I0q “ 1.

Suppose that v˚0 is bounded. Let N̂1 be some other change of probability measure that

induces stochastic stability. Then

µ˚ ď E
´

pN1

”

gpX1q ` ξ log pN1 ` v
˚
1

ı

| I0

¯

´ v˚0 .
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Proof. From the dual problem:

µ˚ ď E
´

pN1

”

gpX1q ` ξ log pN1 ` λ
˚
0 ¨ fpX1q ` v

˚
1 ` ν

˚
0

ı

| I0

¯

´ v˚0 ´ ν
˚
0 (17)

Since Np1 satisfies the conditional moment restriction and has conditional expectation one, 

the Lagrange multiplier contributions drop out of:

µ˚ ď E
´

pN1

”

gpX1q ` ξ log pN1 ` v
˚
1

ı

| I0

¯

´ v˚0 . (18)

Let

xMT “

T
ź

t“1

pNt.

Iterating on relation (18) gives:

Tµ˚ ď E

˜

xMT

«

T
ÿ

t“1

gpXtq ` ξ log pNt

ff

` xMTv
˚
T | I0

¸

´ v˚0 .

Dividing by T and taking limits implies that

µ˚ ď lim
TÑ8

E

˜

xMT
1

T

«

T
ÿ

t“1

gpXtq ` ξ log pNt

ff

| I0

¸

` lim
TÑ8

1

T

”

E
´

xMTv
˚
T | I0

¯

´ v˚0

ı

“

ż

E
´

pN1

”

gpX1q ` ξ log pN1

ı

| I0

¯

d pQ0

which follows since v˚0 is bounded and the ˆ̈ probability induces stochastic stability.

Remark B.5. For the Markov specification, v˚0 is a time-invariant function of only Z0.

For a bounded support set for Z0, bounding v˚0 would seem to be widely (but not always)

applicable. On the other hand, we suspect that there are weaker restrictions that would be

of particular interest when the support set of Z0 is not bounded.

Remark B.6. Suppose that equation (17) is satisfied with strictly positive probability. Then

we may write

µ˚ ď E
´

pN1

”

gpX1q ` ξ log pN1 ` v
˚
1

ı

| I0

¯

´ v˚0 ´ b0

where the random variable b0 ě 0 is strictly positive with positive probability. Provided that
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b0 remains strictly positive with positive probability under the ˆ̈ probability measure,

µ˚ ă

ż

E
´

pN1

”

gpX1q ` ξ log pN1

ı

| I0

¯

d pQ0.

For the Markov specification b0 can be written as a function of Z0 only, so any change

in measure that preserves the support of Z0 will result in a strict inequality. This support

restriction will be satisfied provided that the distorted Markov process is irreducible.

B.3 Statistical discrimination

In what follows, we briefly consider large deviation theory applied to empirical averages

constructed in Markov settings. Consider the joint distribution of pXt, Zt, Zt´1q which is

replicated over time in accordance with a stationary and ergodic Markov process. Under the

rational expectations E rfpXtq | Zt´1s “ 0, but without rational expectations this restriction

could be violated. To assess the empirical plausibility of this restriction, select a λpZt´1q

and note that

E rλpZt´1q ¨ fpXtqs “ 0.

We could form a test of this restriction by checking if

1

T

T
ÿ

t“1

λpZt´1q ¨ fpXtq ď ´c ă 0. (19)

Of course, other tests are also possible including ones that look across a family of λpZt´1q’s

and other empirical averages that include gpXtq.

For a finite sample, the event (19) has positive probability under P. But the probability

of this event will decline as the sample size becomes arbitrarily large. In other words, it

will be increasingly rare that the expectation implied by the empirical distribution will be

less than ´c. Large deviation theory informs us about the limit

1

T
logP

#

T
ÿ

t“1

λpZt´1q ¨ fpXtq ă ´c

+

,

telling us how quickly these probabilities decay to zero.

The initial version of this is the type of large deviation approximation applied to em-

pirical distributions is due to Sanov (1957) for iid sequences. It has been extended to
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Markov processes as discussed by Dupuis and Ellis and Varadhan. Under some additional

regularity conditions, remarkably, the decay can be made to be remarkably close to the

minimum relative entropy over the set of possible probability measures relative to P used

for representing the evolution of the pXt, Ztq. In terms of this literature, relative entropy

serves as what is called a “rate function”.

We now turn to our dual formulation (12). When ξ is sufficiently large, the contribution

of g effectively drops out of our analysis. Dropping g, gives the minimal entropy bound

needed to satisfy the conditional moment restrictions. For the moment, fix λ. Large

deviation theory studies the limit

1

T
logP

#

T
ÿ

t“1

λpZt´1q ¨ fpXtq ě 0 | Z0 “ z

+

Following Donsker and Varadhan, we compute the decay rate in this by solving

εepzq “ min
rą0

E pexp rrλpZ0q ¨ fpX1qs epZ1q | Z0 “ zq

The decay rate bound is ´ log ε̃ where pε̃, ẽq solve this problem. Instead of minimizing

over this scalar random variable, we have multiple conditional moment conditions, and this

leads us to minimize by choice of the vector function λ of the Markov realization z as a

convenient way of enforcing the conditional moment restriction. The ´ log ε˚ that solves

this functional equation

εepzq “ min
λ

E pexp rrλpZ0q ¨ fpX1qs e1pZ1q | Z0 “ zq

is the minimal relative entropy bound for dynamic time series evolution. When the decay

rate, ´ log ε˚, is small, we view the conditional moment conditions to be particularly hard

to reject.

C Bounding risk premia

To compute the lower and upper bounds on risk premium that we report in section 6, we

extend our previous approach as follows.

• set gpxq “ Rw ´ ζRf where ζ is a “multiplier” that we will search over;
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• for alternative ζ, deduce N˚
1 pζq and Q˚0pζq as described in the paper;

• compute:

log

ż

E rN˚
1 pζqR

w
| I0s dQ

˚
0pζq ´ log

ż

E
“

N˚
1 pζqR

f
| I0

‰

dQ˚0pζq

and minimize with respect to ζ;

• set gpxq “ ´Rw ` ζRf , repeat, and use the negative of the minimizer to obtain the

upper bound;

Two observations:

i) the objective is not globally convex;

ii) a similar approach may be used to deduce upper and lower bounds on other functions

of moments such as volatility.
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