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1. Introduction

Pandemics force households, firms, and governments to make cruel choices between

unhappy alternatives. Much economic activity is enhanced by close person-to-person contact.

Unfortunately, this kind of contact typically allows viruses to be more easily transmitted

from person to person. Much of the economic literature on epidemics studies the trade-

offs between the losses to economic activity associated with limiting contact and the gains

from reduced transmission of the virus, including reduced healthcare costs, lower strains on

hospitals, and fewer deaths. The response to the coronavirus epidemic in most Western

countries has been to limit contacts by limiting economic activity. Some countries—most

notably, South Korea, Singapore, Hong Kong, and Taiwan—have limited economic activity

to a lesser extent and have supplemented the modest limitations with aggressive policies of

targeted testing, contact tracing, and isolation. In this paper, we develop a version of a fairly

standard macroeconomic model of epidemics, incorporate testing and isolation policies into

it, and ask to what extent testing policies of targeted testing and isolation can achieve better

outcomes. In a quantitative version of our model, we find that even a policy of targeted

testing and isolation that is substantially less aggressive than that conducted in South Korea

can yield substantial welfare gains. If testing and isolation policies are optimally designed,

economic activity must be curtailed to a much more limited extent, and the number of deaths

is substantially smaller than if testing and isolation policies are not available. We argue that

relative to no testing, untargeted testing yields only modest benefits. We also argue that,

even if testing resources are not available, targeted isolation without testing yields about

two-thirds of the welfare gains from a targeted testing and isolation policy.

This paper develops a simple dynamic economic model of epidemic transmission. The

model is designed to be consistent with widely used SIR biological models of the transmission

of epidemics (see Atkeson (2020b) for a primer), while incorporating economic benefits and

costs as well. We choose a formulation that makes it possible to analyze the benefits and costs

of various policies. The main stand we take is that social proximity has benefits by allowing for

economic activity to take place. We have in mind that certain types of production activities

require groups of people to work in close proximity to one other. The obvious example of

such an activity is assembly line production. In other activities, individuals derive value from



social proximity in consumption. Examples of such activities are watching live performances

of plays or rock concerts. While substitutes are available for production and consumption with

social proximity (artisanal production as opposed to assembly line production, or televised

rock concerts versus live ones), revealed preference shows that people value social proximity

in many aspects of production and consumption. Social proximity has costs when such

proximity allows viruses to be transmitted relatively easily.

The standard SIR model in epidemiology has three types of agents: susceptible (or not

yet infected) agents, infected agents, and recovered agents (who may be alive or dead). To

allow for testing, we extend the model to allow for two types of infected agents: those known

to be infected and those not known to be infected. In our economic model, agents engage in

a variety of economic activities. Each economic activity is associated with a given number

of “meetings” with other agents. These activities are combined to produce a final output

good. The virus is transmitted with an exogenous activity-specific probability in a meeting

between an infected and susceptible agent. We assume that activities with low transmission

probabilities also have low economic value.

The planner seeks to maximize the present discounted utility of consumption net

of costs of treating infected agents and of death costs. In our model, absent any testing,

the planner excludes agents who are known to be infected from any activity and allocates

some of the agents whose types are not known to the activity with the lowest probability of

transmission. Since the lowest probability of transmission activity has the lowest economic

value, this policy tends to reduce output, but it saves lives. The quantitative version of our

model generates output declines and death reductions broadly similar to those in Eichenbaum

et al. (2020b) and Glover et al. (2020). We measure the welfare gains from optimal policy

as the permanent percentage increase in consumption that would give the planner the same

utility as under no policy. For reference, we note that the loss in welfare in the no-intervention

economy relative to the no-pandemic economy is 6.66%. We show that the optimal policy

yields a welfare gain of roughly .6% relative to no intervention. We then introduce a costly

testing technology. The planner can choose to test a fraction of the population whose types

are not known. We assume the test perfectly reveals whether an agent is infected. We show

that optimal policy with this type of untargeted testing yields a welfare gain of .7% relative
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to no intervention. That is, untargeted testing delivers gains of only .1% relative to welfare

under optimal policy with no testing.

We allow for targeted testing by assuming that each agent whose type is not known is

associated with a signal that he is infected. We think of this signal as combining information

from a variety of sources. One example is contact tracing, which involves tracing people an

infected person has come into contact with, persons whom these contacts contacted, and so

on. This signal is informative in the sense that the probability of receiving the signal is higher

for infected agents than for susceptible agents. We assume the signal is not perfectly revealing

in that the probability an infected person receives the signal is strictly less than one. Out of

these agents with the signal, the planner chooses the fraction to test. We choose the signal

probabilities to be consistent with data from South Korea. That data suggests that 38%

of infected people and 0.44% of susceptible people are associated with the signal. We show

that the welfare gain from optimal policy with targeted testing relative to no intervention is

roughly 3% of consumption forever. That is, targeted testing allows for a dramatic gain in

welfare relative to a no-intervention policy.

In our model, targeted testing allows the planner to very precisely target some agents

in order to isolate them. We separate out the effects of isolation from the informational

gains to testing by considering a version of the model in which the planner cannot test after

receiving the signal.1 The planner simply chooses the fraction of individuals with a signal

to isolate. We show that under optimal isolation, the welfare gains are 2% of consumption

forever. That is, roughly 2/3 of the gains from optimal testing can be realized by forgoing

testing and simply isolating agents suspected of being infected.

We conduct a variety of sensitivity exercises by varying the probability of receiving the

signal. We show that if 60% of infected agents and 3% of susceptible agents are associated

with the signal, the welfare gains relative to no intervention are about 5.5%. That is, the

welfare loss from the pandemic is only about 1% of consumption. We also show that if a

relatively small fraction of infected agents receives the signal, then the welfare gains are also

smaller.

1Testing can, of course, be very valuable in learning about the current state of the system and the
parameters governing its evolution. Our focus here is on testing to isolate infected individuals, rather than
testing as a learning device.
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These findings provide additional quantitative support for the policies advocated by

Romer and Garber (2020), Romer (2020), and Holtemöller (2020).

Relation to other recent papers.

Here, we present a discrete-time version of the standard continuous-time SIR (Suscepti-

ble, Infected, Recovered) epidemiology model outlined (for economists) by Atkeson (2020b).2

A long (and growing) list of papers emphasizes the trade-offs between the losses from re-

strictions on economic activity and the losses from allowing the virus to spread. See, among

many others, Alvarez et al. (2020), Atkeson (2020b), Atkeson (2020a), Azzimonti et al. (2020),

Baqaee et al. (2020), Bodenstein et al. (2020), Eichenbaum et al. (2020b), Farboodi et al.

(2020), Garriga et al. (2020), Guerrieri et al. (2020), Hall et al. (2020), Jones et al. (2020),

Kaplan et al. (2020), Krueger et al. (2020), Moser and Yared (2020), Rampini (2020), and

Toxvaerd (2020). While none of these papers focuses on the role of testing, some other recent

papers do. See, for example, Eichenbaum et al. (2020a), Berger et al. (2020), Acemoglu et al.

(2020), and Piguillem et al. (2020). Our findings complement the results in this literature

regarding the desirability of testing. In particular, Eichenbaum et al. (2020a) and Piguillem

et al. (2020) also emphasize the critical role of isolation.

2. An Economic Model with SIR Contagion

Consider a discrete time infinite horizon model with a continuum of individuals on the

unit interval. At any date, an individual is either susceptible S, infected I (and thus conta-

gious), or recovered R, (where recovered can be either dead or alive). Of the infected, I − Ĩ

agents are known to be infected, and Ĩ agents are not known to be infected (hereafter un-

known infected). Let (St, It, Ĩt, Rt) denote the fraction of agents who are susceptible, infected,

unknown infected, and recovered (dead or alive) at date t. We assume that the planner knows

which agents are recovered and which are known to be infected, but the planner cannot tell

apart susceptible and unknown infected agents.

An infected person dies with probability γδ, stays alive with probability γ(1 − δ),

and stays infected with probability (1 − γ). We assume, as is conventional in much of the

2Atkeson (2020b), like other models in epidemiology, allows also for an Exposed state. Such models are
referred to as SEIR models.
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literature, that infection confers permanent immunity so that a recovered person always stays

recovered—again, either dead or alive. If S0 + I0 = 1 (all individuals start as susceptible or

infected), this assumption ensures that, for all t, (1 − δ)Rt fraction of initially alive people

are alive and δRt fraction of initially alive people are dead.

In our model, economic activity is associated with meetings or interactions. Our

economy has N types of intermediate goods labeled i ∈ {1, . . . , N}. Good i is produced using

activity i. Each activity of type i requires Mi meetings for each person engaged in that

activity. The technology for producing good i is given by

(1) yit = biL̄it,

where yit is the amount of good i, bi is a technology parameter that depends on activity i and

the number of meetings, and L̄it is the amount of effective labor allocated to good i. Type S

and type R agents each supply one unit of effective labor, and infected agents supply ξ units

of effective labor. The intermediate goods are combined into a final consumption good by a

CES aggregator, so that the amount of the final good Yt produced in period t is

(2) Yt =
∑

i
(y

σ−1
σ

it )
σ
σ−1 .

In the presence of a pandemic, meetings also lead to type-specific transmission of

the virus. The purpose of indexing meetings by type i and allowing the transmission rate

to depend on meeting type i is to allow the framework to consider multiple types of policy

interventions, such as prohibiting or decreasing particular types of meetings. For instance, the

probability of transmission while chatting on a sidewalk can depend on whether both people

are wearing masks. Meeting while wearing masks can be considered a different type of meeting

than meeting while not wearing masks. Meetings that occur only after each participant has

had his temperature checked can be considered a different type of meeting from meetings

where such temperature checks do not occur. Further, we later consider the costs of various

policy interventions. While the rate of transmission for two workers standing next to each

other might be the same regardless of what they are producing, the cost to society of reducing

such meetings may very well depend on whether they are producing ventilators or academic
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papers (since the latter can be more easily moved online). In such a case, these two activities

would be considered different types of meetings.

Model with No Testing

To make the exposition easier, we begin by considering a version of the model with no

testing and then introduce testing. In our model, economic activity induces infections and

thereby the resulting laws of motion for the state variables. Let Lit denote the mass of people

assigned to activity i, λit denote the fraction of agents assigned to activity i whose types are

unknown (these consist of S and Ĩ type agents), and µit the fraction of recovered agents who

are assigned to activity i. We assume that agents who are known to be infected are assigned to

activity N . Each activity i is characterized by the probability that a susceptible person who

meets an infected person gets infected, pi. Within an activity, meetings are independently

drawn. Since the mass of people assigned to activity i is Lit, and the mass of infected people

assigned to activity i is λitĨt, a susceptible person in a single meeting meets an infected person

with probability λitĨt/Lit and gets infected with probability piλitĨt/Lit. The probability of

being infected in Mi meetings is then

(3) 1−

(
1− pi

λitĨt
Lit

)Mi

,

where

(4) Lit = λit(St + Ĩt) + µitRt.

Since the mass of susceptible people assigned to activity i is λitSt, the law of motion for the

mass of susceptible people in the population is

(5) St+1 = St −
∑
i

λitSt

1−

(
1− pi

λitĨt
Lit

)Mi

 .
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Taking a Taylor series expansion of this law around Ĩt = 0, we obtain a law of motion similar

to that in the SIR models, given by

(6) St+1 =

[
1−

∑
i

(
λitπi

λitĨt
Lit

)]
St,

where πi = piMi. We use this approximation in our quantitative assessment of policies.

In terms of the law of motion for Ĩ , we assume that a person of type Ĩ becomes known

to be infected with exogenous probability τ̃ . Since an infected person stays infected with

probability 1− γ, the law of motion for Ĩ is

(7) Ĩt+1 = (1− γ) (1− τ̃)Ĩt + St
∑
i

(
λitπi

λitĨt
Lit

)
,

and the law of motion for R is

(8) Rt+1 = Rt + γ (1− St −Rt) .

Together with the adding up constraint that is St + It +Rt = 1, the system of equations, (5),

(7), and (8) describe the dynamics of the system. This dynamical system has a continuum of

steady states, indexed by S, the steady state fraction of susceptible individuals, with R, the

steady state fraction of recovered individuals equal to 1−S (and thus I = 0). For expositional

convenience, we describe the problem the planner solves below.

Given an initial state of the system (Ĩ0, R0, S0) and the policy variables λit and µit,

the approximate dynamical system, with (5) replaced by (6), is identical to the familiar

SIR models from epidemiology. A key variable in these models is R0,t — the number of

new infections per susceptible person per infected person, multiplied by the mean number

of periods an infected person is infected. (The variable R0,t is not to be confused with Rt,

the fraction of recovered people in the population.) From equation (6), using the observation
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that the mean number of periods infected is 1/γ, we have

(9) R0t ≈
1

γ
St

∑
i

(
λitπi

λitĨt
Lit

)
ItSt

.

Model with Testing

Next, we introduce testing into the model. At the beginning of each period, each

person whose type is not known is associated with a public signal that he is infected. Let θX ,

X ∈ {S, Ĩ} denote the probability this signal is received regarding an individual of type X.

That is, the signal is useful information to the extent that θI > θS. With this formulation, the

mass of agents who are associated with a signal of infection is θSS+θII. The planner chooses

to test the fraction τ of these individuals. We assume the test perfectly reveals whether an

agent is infected. The planner then isolates all those who test positive. Thus, the law of

motion for Ĩ is now

(10) Ĩt+1 = (1− τθI)

[
(1− γ) (1− τ̃)Ĩt + St

∑
i

(
λitπi

λitĨt
Lit

)]
,

where Lit is given by

(11) Lit = λit

(
St + (1− τθI) Ĩt

)
+ µitRt,

and output in activity i is given by

(12) yit = biL̄it = bi

(
λit(St + (1− τθI) ξĨt) + µitRt

)
.

The cost of testing is C(τ t(θSSt + θIIt)), where C(·) is the testing cost function. The role

of testing is to remove some of the infected agents whose type is not known from current

and future economic activity until they recover. This policy of removing some of the infected

agents prevents them from infecting others, in both current and future periods. In addition to

the testing cost, removing these agents is costly since they cannot engage in useful economic

activity.

Aggregate consumption is given by Yt−C(τ t(θSSt + θIIt)). The planner’s preferences
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over consumption are given by
∑∞

t=0 β
tU(Yt − C(τ t(θSSt + θIIt)). In addition, infection is

associated with a utility cost ZIt, where Z denotes the healthcare and related costs of being

infected, and deaths are associated with a utility cost DγδIt, where we note that the mass of

agents who die in period t is γδIt, and the parameter D measures the cost of a life.

The planning problem is then to choose a testing policy τ t and labor allocation policies

λit and µit to solve

max
∞∑
t=0

βt [U (Yt − C (τ t (θSSt + θIIt)))− Zt (It)−Dt (γδIt) , ]

subject to (1), (2), (4), (6), (8), (10), given the initial conditions (S0, I0, Ĩ0, R0). We

will refer to the version of the model with θI = θS = 1 as the model with untargeted testing

and the model with θI > θS as the model with targeted testing. Note that the programming

problem for the model without testing is simply this programming problem with τ t = 0 for

all t.

In order to understand how policy can be used to affect the course of the infection,

consider a simple version of the model with two activities, work and home. Suppose that work

produces higher output but is also associated with higher infection than the home activity,

so that bwork > bhome = 0 and πwork > πhome = 0. Without any testing, it is optimal in

general to assign some agents whose types are not known to stay home. This policy reduces

economic activity but also reduces the rate of transmission of the virus. We refer to this

policy as indiscriminate isolation, since the policy does not discriminate between infected

and susceptible agents. Consider next the role of targeted testing in this simple model.

Targeted testing allows the planner to isolate some of the infected agents by requiring them

to stay at home. In this sense, targeted testing allows for a form of targeted isolation.

Model with Isolation and No Testing

As before, agents receive signals at the beginning of the period. In this version of the

model, however, the planner does not test but simply isolates some fraction of the agents

who have received signals in the current period. In particular, we assume that the planner

does not use past signals in isolating individuals. This assumption implies that welfare under
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the policy is a lower bound for a more elaborate policy that uses the entire history of past

signals. The law of motion for Ĩ is now

(13) Ĩt+1 = (1− γ) (1− τ̃)Ĩt + (1− τθS)St
∑
i

(
λitπi

λit (1− τθI) Ĩt
Lit

)
,

where Lit is now given by

(14) Lit = λit

(
(1− τθS)St + (1− τθI) Ĩt

)
+ µitRt,

and output in activity i is given by

(15) yit = biMi

(
λit

(
(1− τθS)St + (1− τθI) ξĨt

)
+ µitRt

)
.

Note that as in the case with testing, the role of isolation is to remove some fraction of the

infected people from economic activities where these people may infect others. One advantage

of this policy is that it does not require the use of testing resources. A disadvantage of this

policy is that some fraction of susceptible people is also removed from productive economic

activities. Throughout our analysis of isolation policies we will assume that θI > θS.

Since it is always possible to set τ = 0 with either testing or isolation, it immediately

follows that welfare is higher than it is when these instruments are not available. In our next

result, we show that isolation and testing are policies that are typically used in their entirety

before the planner resorts to reducing labor allocation in productive economic activities with

high rates of infection. In order to understand this result, it is useful to consider a special

case with only two activities: work and home. Suppose that bwork = 1, bhome = 0, πwork >

0, πhome = 0. In this case, absent a pandemic, all agents would be assigned to the work

activity. With a pandemic and no testing or isolation, it can be optimal to assign some of

the workers of unknown type to stay at home. The trade-off of this policy is that assigning

a larger number of agents to stay home reduces output but also reduces the rate at which

the virus spreads. If only isolation policies are available, then it is possible to show that it

is optimal to exhaust all isolation possibilities before assigning any workers of unknown type

to stay home. We formalize this result in the following proposition.
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Proposition 1. Suppose that πhome = 0, bhome = 0 and ξ = 1. Then if S > Ĩ, λwork < 1

only if τ = 1.

The proof of this result is in the appendix. This result also implies that if the cost of

testing is sufficiently small, it is optimal to exhaust all testing possibilities. By continuity it

follows also that if πhome and bhome are not too different from zero, the same result applies.

In summary, these results imply that in general, welfare under a regime with testing

or isolation will be higher than welfare under a regime with no testing or no isolation.

Returns to Testing: A Simple Example

To illustrate the sense in which the gains from targeted testing are potentially large,

consider the following simple example. Suppose there are two activities, home and work,

and bhome = 0. Suppose also that the transmission rate of the virus at home is zero. For

simplicity, assume that the utility function is linear. A planner who desires to reduce R0

from its unrestricted value of 2.5 to a value of 1 can do so by setting λwork = 0.4. Note here

bworkλwork is GDP per time period. If a time period is two weeks, the cost of this policy is

0.6× $800B = $480B per two-week period.

If one could identify 60% of the infected agents and assign them all to stay at home,

then R0 drops from 2.5 to 1 without reducing GDP very much. One method to do this would

be to test 60% of the population every week, if possible, and require those who test positive

to stay home. It is straightforward to show that this indiscriminate method has a break-even

cost of $1200 per test. If we could instead achieve the same 60% reduction in the number of

infected people in the workplace by testing z × 0.6 fraction of population (contact tracing,

testing targeted in areas of outbreaks), the break-even cost becomes $1200/z.

3. Dynamics and the Effects of Social Distancing

In this section, in order to obtain intuition about the trade-offs that optimal policy

must confront, we illustrate the behavior of our dynamical system for some simple cases.

Suppose now that the fraction of agents who are known to be infected relative to the mass of

infected agents is constant. Let this fraction be denoted by q = 1 − Ĩ/I. Suppose also that

λit = µit = 1/N for all t. Then, it is easy to show that the law of motion for the mass of
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infected agents is given by

(16) It+1 = It (1− γ) + St

(
1− 1

N

∑
i

(
1− pi

(1− q) It
St + (1− q) It +Rt

)Mi

)
,

and that for the mass of susceptible people is given by

(17) St+1 = St − St

(
1− 1

N

∑
i

(
1− pi

(1− q) It
St + (1− q) It +Rt

)Mi

)
.

In Figure 1, we display the evolution of this dynamical system in state space form,

with It on the y-axis and St on the x-axis. Note that equation (17) implies that if It > 0,

St+1 − St < 0. That is, S moves to the left, or west, in Figure 1. To see how It evolves,

we partition (S, I) space into those points to the right and left of the upsloping locus of

(S, I) points such that I is constant. We derive this locus by setting It+1 = It = I, St = S,

delivering

(18) γI =

(
1− 1

N

∑
i

(
1− pi

(1− q) I
1− qI

)Mi

)
S.

Note that this locus intersects the horizontal axis at

lim
I→0

γI(
1− 1

N

∑
i

(
1− pi (1−q)I1−qI

)Mi

) =
γ

(1− q) 1
N

∑
i piMi

=
1

R0

,

as indicated in the figure. To the right of this locus, the dynamics of the system are north-

west. That is, St+1 < St from (17) and I > 0, and It+1 > It from S being greater than that

associated with I being constant (and It+1 being an increasing function of St in (16)). To the

left of this locus, the dynamics of the system are south-west. Here, again, St+1 < St when

It > 0, and It+1 < It from S being less than that associated with I being constant.

This implies that if the initial (S0, I0) is to the left of the locus, (St, It) converges to

a steady state on the horizontal axis following a south-west path. If the initial (S0, I0) is

to the right of the locus, (St, It) converges to a steady state on the horizontal following an

arc-pattern, with It increasing as St decreases until (St, It) crosses the locus, converging again
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Figure 1: (S, I) Phase Diagram
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to a steady state on the horizontal axis. Note that this implies all steady states reachable

from an initial state with I0 > 0 have S < 1/R0. That is, assuming I0 > 0, regardless of

the initial state, the system converges to a steady state where, at most, 1/R0 agents avoid

infection. In particular, as R0 →∞, the fraction of individuals who never get infected goes

to zero (and the fraction of individuals who eventually become infected goes to one). Figure

2 presents some computed examples of (St, It) paths starting from (S0, I0) = (0.999, 0.001)

with only two activities, home and work, and under the assumption that phome = 0, q = 0,

γ = 1/18, and M ∈ {25γ, 16.6667γ, 12.5γ, 10γ}, pwork is chosen so that the corresponding

R0 ∈ {2.5, 1.67, 1.25, 1.0}. Here, we show the effect of reducing R0 by decreasing M from

a high of M = 25γ (implying R0 = 2.5, or approximately what epidemiologists consider

R0 to be without social distancing) to a low of M = 10γ (implying R0 = 1). For the high

M = 25γ, I increases very quickly, and in a short number of periods, almost all people have

recovered, or (S, I) ≈ (0.1, 0). For the low M = 10γ, I and S decrease slowly, and the system

approaches a steady state with nearly all people having never been infected.
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Figure 2: The Effects Differing Constant Economic Lockdowns For One Year
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4. Lifting a Lockdown

The previous example gives rise to the sobering possibility that a lockdown must go on

forever, otherwise the system returns to one where R0 is high and I0 > 0, although S0 < 1.

The following example starts with (S0, I0) = (0.999, 0.001) and has M = 10γ (and thus

R0 = 1) for 365 periods (or one year, assuming a one day period length), then permanently

relaxes the lockdown to M = 25γ (and R0 = 2.5). Here, the path after lifting the lockdown

is essentially the same as if the lockdown had never been enforced. Figure 3 shows the result

of this exercise in (S, I) space, and Figure 4 graphs the same exercise showing the infection

rate, It, over time.
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Figure 3: The Effect of a One Year Lockdown in (S, I) Space.
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Figure 4: The Effect of a One Year Lockdown in (S, I) Space.
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5. Calibration

We assume that the utility function U is the log function. We parameterize the testing

cost function as c(T )1+ν/(1 + ν). We assume that the economy has two activities: work and
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home. This formulation allows us to relate our results to those in the literature, particularly

Eichenbaum et al. (2020b) and Glover et al. (2020).

We set the parameter values to be very similar to equivalent parameter values in

Eichenbaum et al. (2020b) and Glover et al. (2020). The parameter values are reported in

Table 1. We set the time period to be one week and set the discount factor β assuming that

the vaccine is expected to arrive in 18 months and the annualized discount rate for the planner

is 4%. We set the exit rate γ assuming that the expected length of infection of recovery is 18

days. We set the exogenous rate at which unknown infected people become known, τ̃ , using

the observation that infected agents are asymptomatic for the first five days of the infection

and roughly half of all infected agents never display symptoms (see Glover et al. (2020)). We

set the productivity of infected people ξ, following Eichenbaum et al. (2020b). The mortality

rate δ is set at 0.5%; see Ferguson et al. (2020). We set the elasticity of substitution at 2 and

normalize the productivity in the work sector to be 1 and that in the home sector be 0.1. We

set the curvature parameter on the testing cost function, ν, at 1 and choose the parameter c

so that the marginal cost of testing is $50 if 1% of the population is tested. We follow Glover

et al. (2020) in setting the cost of treating the infected, Z, so that the cost of treating an

infected person is $7500 over the course of infection. We set the cost of death parameter, D,

so that the value of a life is equal to the present discounted value of 15 years of consumption.

We set πhome = 0.01 and set πwork so that the reproduction rate R0 without any policy has

an average value of approximately 3 in the first four weeks.

Since the main focus of our analysis is the role of testing and isolation, we experimented

with a number of values for the signal probabilities, θS and θI . For our baseline calibration,

we set θI = 0.38 and θS = 0.0044. To arrive at these numbers, we start with the view that

South Korea was particularly effective at pursuing an aggressive test, trace, and isolate policy.

In South Korea, about 1.8% of tests return a positive result, compared with a population

infection rate of 0.021%. That is, conditional on having a reason to be tested (a signal in

our model), a South Korean had a probability of testing 86 times higher than if tests were

done randomly. Thus, the South Korean data suggest a value of θI/θS = 86, implying a very

informative signal. In the South Korean data, 1.2% of the population has been tested. Since
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Table 1: Model Parameters

β Discount rate Weekly model. Vaccine arrival 18 months 0.99
γ Exit rate 18 day infection period 7/18
τ̃ Prob. of becoming symptomatic 5 day incubation, 1/2 asymptomatic 13

18
× 1

2

b1 Productivity of work 1
b2 Productivity of home 0.1
ξ Infected productivity loss Eichenbaum et al. (2020b) 0.8
δ Death rate Ferguson et al. (2020) 0.05%
σ CES parameter 2
ν Testing cost parameter 1
c Testing cost parameter MC of testing $50 when 1% tested 4.17
Z Treatment cost Glover et al. (2020) 6.25
D Death cost Value of life 2.8 million dollars 1.84
π1 Infection rate at home 0.01
π2 Infection rate at work R0 with no policy 2.5 1.5
θI Signal prob. infected θI/θS = 86 and 1.2% tested (SK) 0.38
θS Signal prob. susceptible θI/θS = 86 and 1.2% tested (SK) 0.0044

we initially set the proportion of infected at 2%, we find θI = 0.38 and θS = 0.0044 as the

solution to

θSS + θII = 0.012, I = 0.02,
θI
θS

= 86.

6. Findings

Here, we report on the findings from our quantitative model. Our measure of welfare

is the standard compensating variation in consumption widely used in the macroeconomics

literature. Specifically, we ask what permanent percentage increase in consumption relative to

the no-intervention economy would give the planner the same utility as under our experiments.

We report all welfare calculations relative to the no-intervention economy. For reference, we

note that the loss in welfare in the no-intervention economy relative to the no-pandemic

economy is 6.66%. The welfare changes in our experiments relative to the no-policy case

arise from changes in the time paths of output, testing costs, infection costs, and death costs.

In Table 2, we report on the welfare measure in our experiments as well as a partial
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decomposition of the change in welfare induced by changes in output and death costs. To

measure the change in welfare induced by the changes in output, we compute the annuity

value of the present discounted value of output in our experiments. To measure the changes

in welfare induced by death, we report the cumulative fraction of the population that dies

at the end of 52 weeks. In Figures 5, 6, and 7, we report on the time paths of the fraction

of the population infected It, the fraction of population susceptible St, cumulative deaths,

the reproduction rate R0t, the fraction of the population infected but not known to be so Ĩt,

consumption, the mass tested, and the marginal cost of testing.

We begin by comparing outcomes in the no-policy case, optimal policy with no testing,

and optimal policy with untargeted testing. We see that optimal policy with no testing

yields a welfare gain of roughly 0.6%, and an optimal policy with untargeted testing yields

a welfare gain of 0.7% relative to no intervention. That is, untargeted testing delivers very

modest welfare gains. From Figure 5, we see that in all 3 cases, the economy goes through a

severe recession that lasts about 3 months. We see that optimal policy reduces output at its

trough by roughly 40% and by about 20% with no policy intervention. The primary gains to

welfare relative to no policy come from a sharp reduction in the cumulative number of deaths.

With no policy intervention, roughly 0.5% of the population dies, while with optimal policy,

roughly 0.35% of the population dies. In all three experiments, the population eventually

reaches herd immunity, though the steady state fractions are very different with and without

optimal policy. The figure also shows that the main mechanism by which optimal policy

reduces the cumulative death rate is by inducing a sharper recession, which in turn reduces

the effective reproduction rate R0t below 1 and thereby induces a reduction in the proportion

of the population that is infected. The findings regarding optimal policy with no testing are

broadly similar to the findings in Eichenbaum et al. (2020b) and Glover et al. (2020). Figure

5 also shows that with untargeted testing, as much as 15% of the population is tested. Note

that at its peak, the marginal cost of testing is roughly $800. In this sense, a relatively small

fraction of aggregate resources is allocated to testing. The main reason is that untargeted

testing is not very valuable.

Next, we compare outcomes in our benchmark targeted testing model with outcomes

under optimal policy with no testing and untargeted testing. Table 2 shows that the welfare
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gains to targeted testing are substantial. In particular, welfare rises by 2.5% relative to

optimal policy with no testing and 3% relative to no policy. This table also shows that the

cumulative deaths are about 0.15% lower once we allow for targeted testing and that the

output loss is moderated by about 0.8% relative to no testing. Figure 6 shows that welfare

rises dramatically mainly because a targeted testing policy ensures an initial decline in the

effective reproduction rate R0t and then keeps that rate at around 1. This way of controlling

the reproduction rate ensures that the cumulative death rate is substantially lower. Figure 6

shows that even at the peak of targeted testing, only about 1.5% of the population is tested.

The marginal cost of testing, even at its peak, is only about $70. These results show that

relative to untargeted testing, targeted testing is both inexpensive and immensely valuable.

Next, we compare outcomes under our benchmark targeted testing model with our

benchmark targeted isolation model. We see that targeted isolation alone generates roughly

two-thirds of the welfare gains that come from targeted testing. In this sense, targeted

isolation is a very valuable tool if testing is not available.

We also conduct sensitivity analyses to the values of our signal probabilities. Table

3 shows that if θI = 0.6, then welfare rises by about 5.7% relative to the no-policy case.

Recalling that the pandemic with no policy delivers a welfare loss of 6.7%, we see that if the

technology for tracking infected individuals is sufficiently effective, the welfare loss from the

pandemic is only about 1%. For this parameter value we also see that the cumulative deaths

are reduced very significantly to 0.04% from 0.35%. Figure 7 also shows that the recession

that arises from the pandemic is mild. Table 3 also shows that if the technology for tracking

infected individuals is much less effective than our benchmark case (θI = 0.15), then the

welfare, output, and death gains are modest relative to no targeted testing. The message of

these findings is that the returns to improving the technology for tracking infected individuals

can be exceptionally large.

Finally, we conduct sensitivity analyses (available upon request) on the initial fraction

of infected agents I0. We find the relative gains of testing and isolation policies continue to

be substantial. We view this finding as suggesting that even if the pandemic is well under

way and testing and isolation policies have not so far been conducted, it is not too late to

implement such policies.
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Table 2: Results on welfare, deaths, and output loss

Experiment Welfare gain
relative to

no-intervention

Cumulative deaths Output loss

No intervention 0 0.48% 1.3%
Opt policy: no testing 0.59% 0.35% 1.94%

Opt policy: untargeted testing 0.71% 0.3% 2.06%
Targ Test (θs = .0044, θI = .38) 3.07% 0.15% 1.28%

Targ Isolation (θs = .0044, θI = .38) 2.12% 0.26% 1.66%

Figure 5: Time paths for no policy, no testing, and untargeted testing
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Table 3: Sensitivity analysis with respect to signal parameters

Experiment Welfare gain
relative to

no-intervention

Cumulative deaths Output loss

Targeted Test (θs = .03, θI = .4) 3.39% 0.14% 1.10%
Targeted Isolation (θs = .03, θI = .4) 1.75% 0.28% 1.79%

Targeted Test (θs = .03, θI = .6) 5.7% 0.04% 0.19%
Targeted Isolation (θs = .03, θI = .6) 3.99% 0.09% 1.56%

Targeted Test (θs = .03, θI = .15) 0.78% 0.3% 2.03%
Targeted Isolation (θs = .03, θI = .15) 0.71% 0.34% 1.99%

Figure 6: Time paths for no testing, untargeted testing, and targeted testing
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Figure 7: Time paths for untargeted testing, targeted testing, and isolation
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7. Conclusion

We have argued that testing and isolation policies can deliver substantial welfare gains

in the presence of pandemics. These welfare gains come from a reduced number of cumulative

deaths and a shallower recession. Our model can readily be extended to allow for exogenous

inflows of agents, some of whom may be infected. Such an extension is useful because we

think of our model as one of a particular region or state, rather than of the world. In this

context, inter-regional and international migration then introduces new sources of infections.

In many situations, the new entering agents can be identified, and the testing and isolation

of these agents is clearly valuable. Our findings also suggest that even if a pandemic is well

under way, testing and isolation policies are very valuable.
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Appendix

Proof of Proposition 1

Consider the recursive formulation of the programming problem in the model with

isolation:

V
(
Ĩ , S, R

)
= max

λiµi,τ

{
log Y − Z

(
I − Ĩ

)
−D (γδI) + βV

(
Ĩ ′, S ′, R′

)}
subject to

(19) Ĩ ′ = (1− τ̃) (1− γ) Ĩ + (1− τθS)S
∑
i

(
λiπi

λi (1− τθI) Ĩ
Li

)

(20) S ′ =

[
1− (1− τθS)

∑
i

(
λiπi

λi (1− τθI) Ĩ
Li

)]
S,

where R′ is given by (8), Li is given by (14), Y is given by the CES aggregator over yi given

by (15), and I = 1− S −R.

Clearly, the continuation value is decreasing in Ĩ ′. We will use this result in the proof.

Let λ = λwork. Suppose, by way of contradiction, that λ < 1 and τ < 1. We will construct

a variation that increases λ and τ while keeping current output constant. We will show that

this variation reduces Ĩ ′ and thereby raises welfare. This contradiction establishes the proof.

To this end, totally differentiate output with respect to τ and λ holding all other variables

fixed. We have that

(21) dλ = dτ
λ
[
Sθs + θI Ĩ

]
[
S (1− τθs) + [1− τθI ] Ĩ

] .
Note that since ξ = 1, output equals L. Since output is held constant, the rate of infections

is now determined solely by

(1− τθs)λ2 (1− τθI) .

Differentiating this expression, substituting from (21), and simplifying, we get that the sign
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of the rate of infections is given by the sign of

λ2dτ[
S (1− τθs) + [1− τθI ] Ĩ

] (1− τθs) (1− τθs) [θI − θs]
[
−S + Ĩ

]
,

which is negative. Q.E.D.
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