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ABSTRACT

International trade economists made seminal contributions to general equilibrium theory, moving 
away from an emphasis on existence of equilibrium to algebraic formulations which enabled us to 
characterize key relationships between parameters and variables, such as that between tariffs and 
domestic factor prices and welfare. But the analysis remained limited in value for policy 
evaluation: the analysis was local, it provided only qualitative results, it was limited to very small 
models, and strictly interior solutions had to be assumed. The contribution of this paper is 
pedagogic and methodological, providing a primer for those wishing to do or teach general-
equilibrium counterfactuals on (for example) structural models. I show how the tools from early 
local comparative statics analyses can be generalized via the use of Shepard’s lemma, duality, 
complementarity and the Karush-Kuhn-Tucker theorem into a global, quantitative analysis of 
large changes in high-dimension models which also allows for regime changes and corner 
solutions. I then show how the resulting non-linear complementarity problem directly translates 
into a numerical model using GAMS (general algebraic modeling system).
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1. Introduction 
 
 Simulation analysis of general equilibrium models used to be the territory of applied 
general-equilibrium modelers (also called computable general equilibrium) and members of this 
group were largely disjoint from international trade theorists and indeed empiricists using the 
tool kit of econometrics. I think it is fair to say that there was even some hostility among these 
groups. I regret not keeping some of the referees’ reports on my early papers using numerical 
simulation as a theory tool in models far too complex for traditional paper-and-pencil analytical 
methods. But reading journals and attending conferences today makes it clear that, slowly but 
surely, simulation analysis has moved into the mainstream of international economics and other 
fields. Yet we lack a standard approach or template for formulating general-equilibrium models 
and, in my view, this has led some researchers to proceed on an ad hoc basis that does not allow 
transparency and verifiability (e.g., is the model correctly computing general-equilibrium 
comparative statics).  
 

The purpose of this paper is to provide such a template, and to show how it easily 
translates into a computable numerical simulation model. As such, the paper is pedagogic and 
methodological. It makes no claim to offer original theoretical insights or results, but rather 
shows how familiar existing tools and well-known mathematical results combine to produce a 
simple, clear and consistent modeling framework. But first, a little history of thought about how 
we got here.   
 

International trade economists’ early contributions in formalizing our basic general-
equilibrium model were a seminal contribution that reworked how we think about general 
equilibrium (GE). Early articles such as Jones (1956, 1965, 1967) remained standard readings for 
graduate students for decades. Jones moved us away from focusing on issues of existence, 
uniqueness and stability of equilibrium to a more useful concentration on the actual properties of 
GE that we might be interested in as applied microeconomists in fields like international trade 
and public economics. How does, for example, a trade tariff affect the internal distribution of 
income in an economy? GE analysis focusing on existence of equilibrium and fixed-point 
algorithms is of little practical value for applied questions. 
 

That having been said, the theoretical analysis of GE was paralleled by the development 
of applied general equilibrium analysis (AGE; also called computable general equilibrium).  
This was initiated by the algorithm of Scarf (1967) with the first large-scale implementations by 
Shoven and Whalley (1973, 1974). This algorithm and its refinements did use an iterative fixed-
point procedure to solve complex high-dimension models. But there were a number of inherent 
limitations in this approach and eventually AGE analysis went in another direction that was 
closer to the intellectual foundations of analytical trade theory. 

 
One particularly important development by Jones was to provide early versions of what 

we would now call duality analysis. I will have more to say on this below, but basically it moved 
us from looking at production and utility functions to using cost functions which embody 
optimizing behavior at the level of firms and households. Then a general-equilibrium model can 
be built up, embodying the optimal choices for individual agents in the equations and inequalities 
of the model. This methodology for modeling GE is essentially what Jones was doing with his 
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local comparative statics’ analysis in his seminal 1965 JPE paper.   
 

These contributions to general equilibrium modeling were pathbreaking and remain 
important today. But there are of course limitations to the usefulness of the approach. Without in 
any way disparaging the importance of analytical contributions, some of these are as follows.  
First, the analysis is local and cannot easily be extended to large changes. Second, the results are 
qualitative, giving signs buy not magnitudes of effects in comparative-statics experiments.  
Third, the techniques cannot give even sign predictions past very simple cases such as a two-
good, two-factor economy. Fourth, the comparative-statics methods cannot easily handle corner 
solutions in which parameter changes lead countries to change the set of goods they actual 
produce, switch technologies used to produce some goods, or cause changes in which trade links 
are active and inactive. 

 
The purpose of my paper is to indicate how local analysis can be extended to a global 

analysis, which allows for the quantitative evaluation of large parameter changes and permits 
changes in trade and production specialization patterns (e.g., which production sectors and which 
trade links are active or inactive). I will show how this global analysis is rigorously built up from 
several key results from mathematics and economic theory. These generalizations are hugely 
important in the evaluation of large policy changes such as BREXIT, or economic shocks such as 
covid-19 where qualitative local analyses of small-dimension models are of no practical value.  
 

In Jones’ seminal 1965 paper, he considers a two-good, two-factor economy facing 
(initially) fixed commodity prices. Let us focus on this simple case so that we have a smooth 
continuity between his analysis and that in the present paper.   
 
 
2. From local to global analysis 
  

Let X and Y be two goods with fixed world prices px and py. There are two factors of 
production in fixed supply, denoted L and K with prices w and r respectively. Let 𝑎𝑎𝐼𝐼𝐼𝐼denote the 
optimal, or cost minimizing, amount of factor i needed to produce one unit of good j. Cost 
minimization implies that the 𝑎𝑎𝐼𝐼𝐼𝐼 are themselves functions of w and r.   
 

In a simple case with fixed world prices and fixed factor endowments, production is 
determined independently of demand. General equilibrium can be described by just four 
equations in four unknowns assuming that there is an interior solution in which both goods are 
produced (non-specialization). The four unknowns are X, Y, w, and r. Two equations are the 
competitive zero-profit conditions for X and Y: unit cost equals price. Henceforth, we will just 
refer to these equations (later weak inequalities) as pricing equations. The second two equations 
require that the demands for capital and labor from the X and Y sectors sum up to total factor 
endowments, henceforth called market-clearing equations. These four are given by 

 
𝑎𝑎𝐿𝐿𝐿𝐿𝑤𝑤 + 𝑎𝑎𝐾𝐾𝐾𝐾𝑟𝑟 = 𝑝𝑝𝑥𝑥    (1) 

pricing equations   
𝑎𝑎𝐿𝐿𝐿𝐿𝑤𝑤 + 𝑎𝑎𝐾𝐾𝐾𝐾𝑟𝑟 = 𝑝𝑝𝑦𝑦   (2) 
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𝐿𝐿 = 𝑎𝑎𝐿𝐿𝐿𝐿𝑋𝑋 + 𝑎𝑎𝐿𝐿𝐿𝐿𝑌𝑌   (3) 
market-clearing equations 

𝐾𝐾 = 𝑎𝑎𝐾𝐾𝐾𝐾𝑋𝑋 + 𝑎𝑎𝐾𝐾𝐾𝐾𝑌𝑌   (4) 
 

These four equations illustrate nicely the duality between prices and quantities, and become the 
basic starting point for Jones’ analysis in the 1965 paper and others to follow.  This duality 
structure also illustrates why it is that if the Stolper-Samuelson theorem is valid then the 
Rybczynski theorem must be as well. The former is the effect of exogenous commodity price 
changes on the endogenous factor prices, and the latter is the effect of changes in the exogenous 
endowments on the endogenous commodity outputs, holding commodity prices constant.  
 

I noted above the limitations of this approach for tasks such as the economy-wide 
evaluation of large policy changes or shocks.  The analysis is local, qualitative (signs of 
derivatives, not magnitudes), limited to small-dimension models, and generally limited to interior 
solutions. 

 
These limitations of the traditional comparative-statics approach thus calls for a broader 

and more comprehensive method for formulating and solving general-equilibrium models.  This 
is the task to which we now turn.  But it will be clear that the Jones approach is nevertheless the 
foundation of new techniques and that the latter are not a radical departure from the older 
tradition.   
 

We begin by drawing on traditions that were partly implicit in Jones’ work, and 
developed further later on in books explicitly focusing on duality such as Takayama and 
Woodland (1980), Woodland (1980, 1982) and Dixit and Norman (1980).  The trick is to first 
move from production and utility functions to cost functions, with those cost functions 
embodying not just technologies but also the optimizing behavior of individual firms and 
households.  These can be termed ‘value functions’: the endogenous choices of inputs and 
outputs by firms and households are solved for by standard optimization methods and then 
inserted back into cost equations to get the minimum cost of producing goods or utility as a 
function of exogenous prices only.   
 

In our 2x2 case outlined above, we can derive four value functions by standard 
optimization methods which use the Karush-Kuhn-Tucker theorem as the underlying 
methodology (Karush, 1939; Kuhn and Tucker, 1951)..  Making the usual assumption that 
production and utility exhibit constant returns to scale, unit cost and expenditure functions 
depend only on prices and not on output levels.  These four are given as follows. 
 

𝑐𝑐𝑥𝑥 = 𝑐𝑐𝑥𝑥(𝑤𝑤, 𝑟𝑟),  𝑐𝑐𝑦𝑦 = 𝑐𝑐𝑦𝑦(𝑤𝑤, 𝑟𝑟)  unit cost functions for X and Y  (5) 
 

𝑒𝑒 = 𝑒𝑒�𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦�     unit cost (expenditure) function (6) 
 

𝑣𝑣 = 𝑣𝑣�𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦, 𝐼𝐼�  indirect utility function (7) 
 

The next crucial step is also provided by theory.  Shephard’s lemma, which follows 
from the envelope theorem, implies that the partial derivatives of these value functions give us 
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the optimal choices of inputs and outputs given prices for goods and factors.    
 

∂𝑐𝑐𝑥𝑥
∂𝑤𝑤

= 𝑎𝑎𝐿𝐿𝐿𝐿  optimal amount of labor per unit of X output   (8)  
 

∂𝑐𝑐𝑥𝑥
∂𝑟𝑟

= 𝑎𝑎𝐾𝐾𝐾𝐾  optimal amount of capital per unit of X output  (9) 
 

∂𝑒𝑒
∂𝑝𝑝𝑥𝑥

= ℎ𝑋𝑋  consumer’s demand for X per unit of utility (Hicksian)   (10) 
 
− ∂𝑣𝑣

∂𝑝𝑝𝑥𝑥
/ ∂𝑣𝑣
∂𝐼𝐼

= 𝑑𝑑𝑋𝑋 consumer demand for X per unit of income (Marshallian) (11) 
 
with corresponding equations for the sector Y cost function and Y demand.  The last of the 
results shown is generally referred to as Roy’s identity.  Though it is obvious and well-known 
to most readers, note that the expenditure function is just a cost function under a different name: 
it gives the minimum cost at existing commodity prices needed to purchase one unit of utility. 
 

There is one final property that we don’t really need, but it will show how the more 
modern approach matches with Jones’ contributions in a natural way.  If the production and 
utility functions are characterized by constant returns to scale, then these value functions are also 
homogeneous of degree one, and they can be written as the sum of their partial derivatives each 
times the value of the input variable.  For example, the cost function for X can be written as: 
 

 𝑐𝑐𝑥𝑥(𝑤𝑤, 𝑟𝑟) = ∂𝑐𝑐𝑥𝑥
∂𝑤𝑤

𝑤𝑤 + ∂𝑐𝑐𝑥𝑥
∂𝑟𝑟
𝑟𝑟 = 𝑎𝑎𝐿𝐿𝐿𝐿𝑤𝑤 + 𝑎𝑎𝐾𝐾𝐾𝐾𝑟𝑟  (12) 

 
 
This is, of course, Jones’ equation for the unit cost of producing good X. 
 

The more modern approach to AGE modeling uses these tools as the building blocks for 
a global analysis.  In addition to having the ability to evaluate large changes such as large-scale 
trade liberalization or tax reform, the newer approach permits corner solutions in which some 
production activities or trade links can switch from inactive to active and vice versa as a 
consequence of parameter changes.  This requires us to detour into complementarity, a concept 
that follows directly from the Karush-Kuhn-Tucker (KKT) theorem.   
 
 
3. General equilibrium and complementarity 
 

Equilibrium is modeled as a set of weak inequalities, each with a complementary non-
negative (lower bounded) variable.  Pricing inequalities such as those above are written as unit 
cost greater than or equal to price, with output of that activity (industry, trade flow, etc.) being 
the complementary variable.  If the activity is unprofitable in equilibrium (strict inequality), it is 
not used and the complementary output variable is zero.  If supply exceeds demand in 
equilibrium, the price is zero (it is a free good).  Note that pricing inequalities have quantities as 
complementary variables, quantity (market clearing) inequalities have prices as complementary 
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variables. The KKT theorem introduces added Aslack@ or complementary variables so that the 
weak inequalities become equations, which then allows solver algorithms to use iterative 
methods to solve the system of equations.   
 

Market clearing inequalities such as (3) and (4) above (strict equalities in Jones’ model) 
are strictly speaking not KKT optimization conditions, but rather equilibrium conditions.  Yet 
they can be handled in a way closely equivalent to KKT conditions.  A market clearing 
inequality is written as supply greater than or equal to demand, with price being the 
complementary variable.  For example, if the supply of pollution permits exceeds demand in 
equilibrium, the market price of a permit is zero. 

 
The strong microeconomic foundations of duality and complementarity via the KKT 

theorem eventually led modelers to move away from fixed point methods for constructing and 
solving GE models to instead treating general equilibrium as a sequence of complementarity 
problems at the level of industries and households.  Notable in this development were 
contributions by Mathiesen (1985) and Rutherford (1995). Rutherford’s MPS/GE (mathematical 
programming for general equilibrium) allowed for the easy calibration and implementation of the 
complementarity approach.  An early example of this is Harrison, Wooton, Rutherford (1989).  

 
Now let us look at an actual implementation using the Jones’ model.  We stick with our 

two-good, two-factor model from above, but introduce a representative consumer to make it a 
closed economy model.  First, we use the Marshallian demand formulation for the consumer.  
A seven inequality, seven variable model is as follows.  There are two pricing inequalities, four 
market-clearing inequalities, and one income-balance equation. 

_____________________________________________________________ 
𝑎𝑎𝐿𝐿𝐿𝐿𝑤𝑤 + 𝑎𝑎𝐾𝐾𝐾𝐾𝑟𝑟 ≥ 𝑝𝑝𝑥𝑥  ⊥ 𝑋𝑋     (13) 

pricing (zero-profit) inequalities 
𝑎𝑎𝐿𝐿𝐿𝐿𝑤𝑤 + 𝑎𝑎𝐾𝐾𝐾𝐾𝑟𝑟 ≥ 𝑝𝑝𝑦𝑦  ⊥ 𝑌𝑌     (14) 

      ______________________________________________________________ 
 

𝐿𝐿 ≥ 𝑎𝑎𝐿𝐿𝐿𝐿𝑋𝑋 + 𝑎𝑎𝐿𝐿𝐿𝐿𝑌𝑌  ⊥ 𝑤𝑤     (15) 
 

𝐾𝐾 ≥ 𝑎𝑎𝐾𝐾𝐾𝐾𝑋𝑋 + 𝑎𝑎𝐾𝐾𝐾𝐾𝑌𝑌  ⊥ 𝑟𝑟     (16) 
market-clearing inequalities 

𝑋𝑋 ≥ 𝑑𝑑𝑥𝑥𝐼𝐼   ⊥ 𝑝𝑝𝑥𝑥     (17) 
 

𝑌𝑌 ≥ 𝑑𝑑𝑦𝑦𝐼𝐼   ⊥ 𝑝𝑝𝑦𝑦     (18) 
      _____________________________________________________________ 
 

𝐼𝐼 = 𝑤𝑤𝑤𝑤 + 𝑟𝑟𝑟𝑟   ⊥ 𝐼𝐼 income balance   (19) 
 ____________________________________________________________ 

 
Note that the first four weak inequalities are the Jones’ equations from above: if the prices of X 
and Y are fixed by world markets (small open economy assumption), then these four can be 
solved on their own for the four complementary variables.   
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After solving this model, the utility and price index for the representative consumer can 
be calculated.  All alternative procedure, especially useful when there are multiple household 
types or countries is to use a Hicksian formulation.  This treats utility as if it were a produced 
good: commodities are inputs into the production of a utility good, and the expenditure function 
is the minimum cost of producing one unit.  There is also a (virtual) market for the utility good, 
with a market clearing equation and complementary variable: the price of a unit of utility.  This 
is what we generally label as the consumer price index.  This model is a little more 
complicated, but it computes utility and the price index for each household type or country as 
part of the solution.  Denote U as utility and pu as the price index.  Our extended Hicksian 
model is given by nine weak inequalities in nine unknowns.   

________________________________________________________ 
 
𝑎𝑎𝐿𝐿𝐿𝐿𝑤𝑤 + 𝑎𝑎𝐾𝐾𝐾𝐾𝑟𝑟 ≥ 𝑝𝑝𝑥𝑥  ⊥ 𝑋𝑋     (20) 

 
𝑎𝑎𝐿𝐿𝐿𝐿𝑤𝑤 + 𝑎𝑎𝐾𝐾𝐾𝐾𝑟𝑟 ≥ 𝑝𝑝𝑦𝑦  ⊥ 𝑌𝑌 pricing (zero profit) inequalities  (21) 

 
ℎ𝑥𝑥𝑝𝑝𝑥𝑥 + ℎ𝑦𝑦𝑝𝑝𝑦𝑦 ≥ 𝑝𝑝𝑢𝑢  ⊥ 𝑈𝑈     (22) 
________________________________________________________ 

 
𝐿𝐿 ≥ 𝑎𝑎𝐿𝐿𝐿𝐿𝑋𝑋 + 𝑎𝑎𝐿𝐿𝐿𝐿𝑌𝑌  ⊥ 𝑤𝑤     (23) 

 
𝐾𝐾 ≥ 𝑎𝑎𝐾𝐾𝐾𝐾𝑋𝑋 + 𝑎𝑎𝐾𝐾𝐾𝐾𝑌𝑌  ⊥ 𝑟𝑟     (24) 

 
𝑋𝑋 ≥ ℎ𝑥𝑥𝑈𝑈   ⊥ 𝑝𝑝𝑥𝑥 market-clearing inequalities (25) 

 
𝑌𝑌 ≥ ℎ𝑦𝑦𝑈𝑈   ⊥ 𝑝𝑝𝑦𝑦     (26) 
 
𝑈𝑈 ≥ 𝐼𝐼/𝑝𝑝𝑢𝑢   ⊥ 𝑝𝑝𝑢𝑢     (27) 
________________________________________________________ 

 
𝐼𝐼 = 𝑤𝑤𝑤𝑤 + 𝑟𝑟𝑟𝑟   ⊥ 𝐼𝐼 income balance   (28) 
________________________________________________________ 

 
Following earlier comments, the strength of this approach is that it computes equilibria  

for large changes in parameters and high-dimension models, it will give quantitative results, and 
it allows for corner solutions in which some variables switch from slack (equal to zero) to 
positive or vice versa.  However, there are also some limitations.  First, an implementation 
requires explicit functional forms for production and utility.  Furthermore, quantitative analysis 
requires that numerical parameter values must be chosen for those functional forms.  I and 
others using numerical models as a theory tool acknowledge this tradeoff, but note that insisting 
on analytical models only often requires the modeler to simplify the model so much that the 
interesting parts of the problem are discarded.1 

 
1The complementarity approach is adaptable to very complex economies.  For models with 

increasing returns to scale, imperfect competition, endogenous markups, and endogenous firm location 
decisions, see Markusen (2002, paperback 2004).  Examples of these techniques used in very large 
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4. A numerical implementation 

 
 We can now look at an actual implementation of our model, and stick with the 
Marshallian formulation since it is a bit simpler.  We use Cobb-Douglas functions for the three 
activities so that it is simple and straightforward for readers to see exactly where the equations 
and inequalities are coming from.  There is no attempt to base parameter values on any real-
world equivalents, they are chosen to provide maximum transparency.  Goods in the utility 
function get equal shares of 0.5. The representative consumer’s utility function and the implied 
expenditure function are given as follows.   
 

𝑈𝑈(𝑋𝑋,𝑌𝑌) = 2 ∗ 𝑋𝑋0.5𝑌𝑌0.5 => 𝑒𝑒�𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦� = 𝑝𝑝𝑥𝑥0.5𝑝𝑝𝑦𝑦0.5 (29) 
 
Using a textbook Lagrangean optimization formulation of KKT, Marshallian and Hicksian unit 
demand functions are as follows. 
 

𝑑𝑑𝑥𝑥 = 0.5/𝑝𝑝𝑥𝑥   𝑑𝑑𝑦𝑦 = 0.5/𝑝𝑝𝑦𝑦   ℎ𝑥𝑥 = 0.5 ∗ 𝑝𝑝𝑥𝑥−0.5𝑝𝑝𝑦𝑦0.5   ℎ𝑦𝑦 = 0.5 ∗ 𝑝𝑝𝑥𝑥0.5𝑝𝑝𝑦𝑦−0.5 (30) 
 
X is (arbitrarily) capital intensive: a capital share of 0.75, a labor share of 0.25.   
 

𝑐𝑐𝑥𝑥(𝑤𝑤, 𝑟𝑟) = 𝑤𝑤0.25𝑟𝑟0.75       (31) 
 
𝑎𝑎𝐿𝐿𝐿𝐿 = 0.25 ∗ 𝑤𝑤−0.75𝑟𝑟0.75 = 0.25 ∗ (𝑟𝑟/𝑤𝑤)0.75 (32) 
 

 𝑎𝑎𝐾𝐾𝐾𝐾 = 0.75 ∗ 𝑤𝑤0.25𝑟𝑟−0.25 = 0.75 ∗ (𝑤𝑤/𝑟𝑟)0.25    (33) 
 
Y is labor intensive with the opposite ordering of shares. 
 

𝑐𝑐𝑦𝑦(𝑤𝑤, 𝑟𝑟) = 𝑤𝑤0.75𝑟𝑟0.25      (34) 
 
𝑎𝑎𝐿𝐿𝐿𝐿 = 0.75 ∗ 𝑤𝑤−0.25𝑟𝑟0.25 = 0.75 ∗ (𝑟𝑟/𝑤𝑤)0.25 (35) 
 

 𝑎𝑎𝐾𝐾𝐾𝐾 = 0.25 ∗ 𝑤𝑤0.75𝑟𝑟−0.75 = 0.25 ∗ (𝑤𝑤/𝑟𝑟)0.75    (36) 
 

Let 𝐿𝐿� (LBAR) and 𝐾𝐾� (KBAR) denote economy’s fixed endowments of labor and capital.  
We now have a complete numerical model with only two parameters to be chosen which are the 
endowment quantities.  We do not need to expand the X and Y cost functions using the 
homogeneity property discussed above, we can just use the unit cost functions.  Here then is the 
implemented model.     

 
𝑤𝑤0.25𝑟𝑟0.75 ≥ 𝑝𝑝𝑥𝑥      ⊥ 𝑋𝑋 (37) 
 

 
theory models, see Markusen and Venables (2007) (29,000 non-linear inequalities and unknowns) and 
Markusen (2013) (36,000 non-linear inequalities and unknowns). 
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𝑤𝑤0.75𝑟𝑟0.25 ≥ 𝑝𝑝𝑦𝑦      ⊥ 𝑌𝑌 (38) 
 
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 ≥ 0.25 ∗ (𝑟𝑟/𝑤𝑤)0.75𝑋𝑋 + 0.75 ∗ (𝑟𝑟/𝑤𝑤)0.25𝑌𝑌  ⊥ 𝑤𝑤 (39) 
 
𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 ≥ 0.75 ∗ (𝑤𝑤/𝑟𝑟)0.25𝑋𝑋 + 0.25 ∗ (𝑤𝑤/𝑟𝑟)0.75𝑌𝑌  ⊥ 𝑟𝑟 (40) 
 
𝑋𝑋 ≥ 0.5𝐼𝐼/𝑝𝑝𝑥𝑥        ⊥ 𝑝𝑝𝑥𝑥 (41) 
 
𝑌𝑌 ≥ 0.5𝐼𝐼/𝑝𝑝𝑦𝑦       ⊥ 𝑝𝑝𝑦𝑦 (42) 
 
𝐼𝐼 = 𝑤𝑤 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑟𝑟 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾      ⊥ 𝐼𝐼 (43) 

 
 

While any values of LBAR and KBAR will produce a solution, it is a good practice to start 
with a calibrated solution as a check on the modeler’s consistency.  This is generally referred to 
as the Areplication check@: running the model should yield the initial calibrated values as a 
solution, otherwise something is wrong.  If we choose LBAR = 100 and KBAR = 100, then due 
to the symmetry in production and consumption shares, we should get a solution in which X = Y 
= 100, I = 200, and all prices equal one.   
 

One of the principal objectives of this paper is pedagogic: demonstrate how to move from 
a traditional algebraic model used for local comparative-statics experiments to more robust and 
useful global comparative statics.  According, I will show an actual numerical model.  The 
code is available from me on request.  I hope that by showing the code, I can help aspiring 
modelers to get a big head start in seeing that global general-equilibrium analysis is relatively 
easy to do.   
 

By far the preferred software for implementing and solving this model is GAMS (general 
algebraic modeling system).  GAMS is an algebraic language and thus it is intuitive and 
relatively easy to master.  Equations are written exactly as they are done here in the text, and 
there are no weird symbols or characters that need to be memorized in order to do 
straightforward things.  In addition, the solvers in GAMS are constructed on the basis of theory 
(KKT), particularly the MCP (mixed complementary problem) solver called PATH which uses a 
generalization of Newton’s method.     
 

A quick note: as a consequence of Walras Law, there is an indeterminacy of the price 
level in the model, so one price is chosen as numeraire and fixed at one.  The complementary 
equation is then automatically dropped by GAMS from the model. The price of good Y (py) is 
chosen as numeraire and its price fixed at one.2

 
2In GAMS, PY.FX denotes fixing the variable PY; then the equation complementary to that 

variable is automatically dropped from the model.  PY.L is the notation for setting the initial value or 
level of variable PY, but that variable is not held fixed.  Setting initial values of variables is important 
for the solver to solve the model and solve efficiently in all non-linear problems. 
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$TITLE: IJET model, James Markusen, University of Colorado, Boulder 
* two goods, two factors, one consumer, closed economy 
* Marshallian approach 
 
PARAMETERS 
 LBAR     labor endowment 
 KBAR     capital endowment; 
 
LBAR = 100; 
KBAR = 100; 
 
NONNEGATIVE VARIABLES 
 
 X       activity level for X production 
 Y       activity level for Y production 
 
 PX      price of good X 
 PY      price of good Y 
 W       price of labor 
 R       price of capital 
 
 I       income of the representative consumer; 
 
EQUATIONS 
 
 PRF_X   zero profit for sector X 
 PRF_Y   zero profit for sector Y 
 
 MKT_X   supply-demand balance for commodity X 
 MKT_Y   supply-demand balance for commodity Y 
 MKT_L   supply-demand balance for primary factor L 
 MKT_K   supply-demand balance for primary factor K 
 
 INC_I   income balance; 
 
 
*       Zero profit inequalities 
 
PRF_X..      W**0.25 * R**0.75 =G= PX; 
 
PRF_Y..      W**0.75 * R**0.25 =G= PY; 
 
*       Market clearance inequalities 
 
MKT_X..      X =G= 0.5*I/PX; 
 
MKT_Y..      Y =G= 0.5*I/PY; 
 
MKT_L..      LBAR =G= 0.25*(R/W)**0.75*X + 0.75*(R/W)**0.25*Y; 
 
MKT_K..      KBAR =G= 0.75*(W/R)**0.25*X + 0.25*(W/R)**0.75*Y; 
 
*       Income balance equation 
 
INC_I..      I =E= LBAR*W + KBAR*R;   
 
*       declare a model - list of equation names, dot, then the  
*       associated complementary variable 
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MODEL TWOxTWO /PRF_X.X, PRF_Y.Y, 
               MKT_X.PX, MKT_Y.PY, MKT_L.W, MKT_K.R, INC_I.I /; 
 
*       Chose a numeraire: price of labor 
 
PY.FX = 1; 
 
*       Set initial values of variables: 
 
X.L=100; Y.L=100; I.L=200; 
PX.L=1; PY.L=1; R.L=1; W.L=1; 
 
SOLVE TWOxTWO USING MCP; 
 
*       Counterfactual: double the endowment of labor 
 
LBAR = 200; 
SOLVE TWOxTWO USING MCP; 
 
*       Counterfactual: double the endowment of capital 
 
LBAR = 100; 
KBAR = 200; 
SOLVE TWOxTWO USING MCP; 
 
*       Counterfactual: double the endowment of labor and capital 
 
LBAR = 200; 
KBAR = 200; 
SOLVE TWOxTWO USING MCP; 
 
 
*       Convert the model to a small open economy 
*       Fixing commodity prices will automatically drop market clearing equations 
*       for X and Y. 
 
MODEL SOE /PRF_X.X, PRF_Y.Y, MKT_L.W, MKT_K.R, INC_I.I/; 
 
PX.FX = 1; PY.FX = 1; 
LBAR =100; 
KBAR = 100; 
 
SOLVE SOE USING MCP; 
 
 
*        demonstrate the Rybsczynski theorem 
 
LBAR = 200; 
SOLVE SOE USING MCP; 
 
*        demonstrate the Stolper-Samuelson theorem 
 
LBAR = 100; 
PX.FX = 1.5; 
SOLVE SOE USING MCP; 
 
*        show a corner solution - economy specializes in X 
 
LBAR = 100; 
PX.FX = 2.0; 
SOLVE SOE USING MCP; 
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Tables 1 and 2 show results for eight runs of the model.  Table 1 gives results for the 
closed economy, Table 2 for a small open economy.  The first column in each Table is the 
calibrated benchmark replication.  In Table 1, the second column gives results for doubling the 
labor endowment to LBAR = 200.  Production shifts toward the labor-intensive good Y, the 
relative price of Y falls, labor’s wage falls relative to both commodity prices and the return to 
capital rises. This second column of Table 1 also illustrates what we could call aggregate 
diminishing returns.  Doubling the endowment of one factor, which is fifty percent of income in 
the benchmark, increases total production of X and Y by less than fifty percent evaluated at initial 
prices.  Welfare (not shown) increases from 200 in the benchmark to 283.  
 

Column three of Table 1 gives a cautionary note about interpreting price changes, 
because I have seen authors make some misleading or simply wrong statements about this.  
Column three reverses the experiment of column 2, doubling the endowment of capital instead of 
labor.  Because of the symmetry of X and Y in demand and because factor intensities are mirror 
imagines of each other in X and Y, the changes in the outputs of the two goods are the mirror 
imagines of those in column 2.  But the price changes and income look quite different.  This is 
entirely due to the choice of numeraire: the relative prices of X and Y and L and K are inverses of 
column 2.  Welfare is the same in both columns (equal to indirect utility: px-0.5py-0.5 I = 283). 
General equilibrium modelers need to take care to note how measures of income change are 
sensitive to the choice of numeraire, though welfare is not.  Column 4 of Table 1 is a simple 
demonstration of the consequences of homogeneity of degree one in production and homothetic 
preferences.  Doubling both factors of production just doubles both outputs and leaves all prices 
unchanged. 
 

Table 2 is intended to be close to Jones’ (1965) analysis and that of the standard 
Heckscher-Ohlin model.  Commodity prices are fixed at one to represent a small open economy 
(endowments are returned to their original level).  The first column is the benchmark 
replication.  The second column doubles the endowment of labor, results contrasting to Table 1 
where prices change.  Holding commodity prices constant, column 2 of Table 2 illustrated the 
Rybczynski theory and Jones’ magnification effect.  Production of the labor intensive good 
more than doubles and the production of the capital intensive good shrinks.  Unlike doubling 
labor in the closed economy, there are no aggregate diminishing returns: the added labor is 
absorbed without a fall in w by changing the composition of production. 
 

Column 3 of Table 2 returns labor endowment to its original value and raises the relative 
(world) price of px to 1.5, a terms-of-trade improvement.  X is capital intensive, and so the price 
increase results in the price of capital increasing by more than both commodity prices and the 
price of labor falls in terms of both commodity price.  Regardless of consumption preferences, 
capital is better off and labor is worse off.  This is the Stolper-Samuelson theorem. 
 

I have included the last column of Table 2 to make another point about the limitations of 
local comparative statics that assumes an interior solution before and after a parameter change 
versus global analysis in a complementarity framework.  If px is increased from its benchmark 
value of 1 to px = 2, the economy becomes specialized in X.  Any further increase in px will 
continue to increase welfare, but it will have no effect on relative factor prices since all factors 
are employ in X.  Stolper-Samuelson only works under the assumption of non-specialization. 
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5. Summary  
 

Trade economists made fundamental contributions to general equilibrium analysis by 
formulating models using the building blocks of what we now call duality techniques.  These 
produced models which were far more useful for the analysis of practical questions of the type 
asked by trade and public-economics economists than earlier analyses focusing on existence, 
uniqueness, and stability of equilibria.  Local comparative statics analysis is used to ask 
questions about changing factor endowments, changing technologies, changing world prices and 
changing trade and domestic taxes.  This immensely improved our ability to understand such 
things as the relationship between world commodity prices and domestic income distribution.   
 

Limitations remained of course.  The analysis was for small changes only, results were 
qualitative (signs and some relative magnitudes) and the method was generally restricted to 
interior solutions only in which initially positive variables could not go to zero or vice versa.  
What this paper shows however, is that the use of duality tools such as converting production 
functions and utility functions to cost and expenditure functions paved the way for a more 
complete global analysis using complementarity built on the foundations of the Karush-Kuhn-
Tucker theorem.  I show how key tools and theorems lead naturally to a formulation that allows 
large changes, yields quantitative results needed by policy makers, and allows corner solutions to 
emerge or disappear in response to changing parameters such as technologies, trade costs or 
tariffs.   
 

The newer global analysis comes at some costs.  Specific functional forms are needed 
and indeed specific parameter values for those functions.  But specific functional forms are 
always needed if one wants quantitative results.  In models with scale economies and imperfect 
competition, even qualitative results cannot be obtained without specific functional forms.  
Often parameters can be drawn from literature estimates or estimated econometrically as part of 
the analysis at hand.  Sensitivity analysis can indicate which parameters have major or minor 
effects on the results.  But global simulation analysis has indeed improved our ability to provide 
some answers to important public policy questions.   
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Table 1:  Closed economy results         
         
         
   Benchmark  Double labor  Double capital  Double both labor   
         endowment  endowment  and capital  
Variable         
         
X       100.00       118.92        168.18       200.00  
Y       100.00       168.18        118.92       200.00  
PX    1.00         1.41          0.71         1.00  
PY    1.00         1.00          1.00         1.00  
W    1.00         0.84          1.19         1.00  
R    1.00         1.68          0.59         1.00  
I       200.00       336.36        237.84       400.00  
         
Notes to Table 1:   Column 2 illustrates aggregate diminishing returns   

   Column 3 illustrates need for care interpreting results dependent on 
                      numeraire      

              Column 4 illustrates homogeneity of the economy under constant 
            returns in production and homothetic preferences 
     

              
Table 2:  Small open economy results         
 
         
         
 Benchmark      Double labor     Increase price of          Increase price of                    

       endowment        good X by 50%     good X by 100% 
         
Variable         
         
X     100.00      50.00       156.50           175.48  
Y     100.00     250.00        30.62    
PX       1.00       1.00         1.50             2.00  
PY       1.00       1.00         1.00             1.00  
W       1.00       1.00         0.82             0.88  
R       1.00       1.00         1.84             2.63  
I     200.00     300.00       265.36           350.95  
         
Notes to table 2:  Column 2 illustrates the Rybczynski Theorem  

 Column 3 illustrates the Stolper-Samuelson Theorem   
Column 4 illustrates the importance of not ruling out corner 

  solutions (specialization) 


