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ABSTRACT

This paper proposes a new methodology for estimating teacher value-added.  Rather than 
imposing a normality assumption on unobserved teacher quality (as in the standard empirical 
Bayes approach), our nonparametric estimator permits the underlying distribution to be estimated 
directly and in a computationally feasible way.  The resulting estimates fit the unobserved 
distribution very well regardless of the form it takes, as we show in Monte Carlo simulations.  
Implementing the nonparametric approach in practice using two separate large-scale 
administrative data sets, we find the estimated teacher value-added distributions depart from 
normality and differ from each other.  To draw out the policy implications of our method, we first 
consider a widely-discussed policy to release teachers at the bottom of the value-added 
distribution, comparing predicted test score gains under our nonparametric approach with those 
using parametric empirical Bayes.  Here the parametric method predicts similar policy gains in 
one data set while overestimating those in the other by a substantial margin.  We also show the 
predicted gains from teacher retention policies can be underestimated significantly based on the 
parametric method.  In general, the results highlight the benefit of our nonparametric empirical 
Bayes approach, given that the unobserved distribution of value-added is likely to be context-
specific.
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1 Introduction

Measuring the impact of teachers on student achievement has been a longstanding preoccu-

pation in applied research – naturally so, given the vital role that teachers play in education

production. As observable characteristics tend to do a poor job when predicting teacher

performance,1 researchers have proposed influential fixed effects methods as a means to cap-

ture a teacher’s overall quality, taking advantage of large-scale matched student-teacher data

sets that are increasingly accessible – see pioneering studies by Rockoff (2004) and Rivkin,

Hanushek, and Kain (2005). In turn, fixed effects methods have prompted the develop-

ment of teacher value-added (‘VA’) estimators for measuring the impact of teachers that are

both transparent and easy to implement.2 Given the appeal of such estimators, teacher VA

estimates now feature ever more widely in the policy sphere, particularly in consequential

teacher retention, promotion and pay decisions. Indeed, by the end of 2017, fully thirty

nine states required VA measures to be incorporated into teacher evaluation scores (as one

indicator of this phenomenon).

The use of VA methods in high-stakes decision making raises important challenges. Not

least, such methods need to be able to recover teacher quality on the basis of relatively few

teacher-year observations, particularly so for teachers new to the profession. The standard

approach to this issue involves using empirical Bayes methods to reduce measurement error

in VA estimates, ‘shrinking’ less reliable estimates back toward the mean (Kane and Staiger,

2008; Kane et al., 2008; Jacob and Lefgren, 2008; Harris and Sass, 2014; Chetty et al.,

2014a,b). In order to apply these methods, papers estimating teacher VA have typically

used the parametric empirical Bayes (‘PEB’) estimator, first proposed by James and Stein

(1961). This is attractive given its analytic convenience and also because it is the feasible

version of the optimal Bayes rule for estimating teacher quality when unobserved quality is

normally distributed.3

1For instance, Kane, Rockoff, and Staiger (2008) show that among teachers with identical experience and
certification status, there are large and persistent differences in teacher effectiveness.

2See Koedel, Mihaly, and Rockoff (2015) for a recent review.
3To be precise, it is the feasible version of the parametric Bayes estimator – the optimal Bayes rule under
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In practice, unobserved teacher quality may not follow a normal distribution. Given this

possibility, we do not have a clear sense of how the resulting VA estimates might be affected

by departures from normality, nor of the implications that such departures could have for

policies based on VA estimates. The analysis in this paper seeks to shed light on both these

relevant issues.

The central contribution of our paper is to set out a feasible new methodology for estimat-

ing teacher VA – one that does not impose any parametric assumptions on the unobserved

heterogeneity in teacher quality. Following a standard setup in which residualized test scores

equal underlying teacher quality (the heterogeneous teacher VA of interest) plus noise, we

show first that the teacher quality distribution can be identified nonparametrically – see

Theorem 1 below.4 Next, we derive the nonparametric Bayes estimator for teacher VA (see

Theorem 2), drawing on a path-breaking 1956 paper in statistics by Herbert Robbins.5 This

nonparametric estimator is optimal in the sense of minimizing the mean squared error of indi-

vidual teacher quality estimates regardless of the true underlying distribution of unobserved

teacher quality.

In terms of shrinkage, both the parametric and nonparametric Bayes estimators can

be written as functions of teacher fixed effects. Whereas the standard parametric Bayes

estimator shrinks the teacher fixed effect linearly, our nonparametric Bayes estimator features

a non-linear shrinkage rule, allowing the amount of shrinkage applied to each teacher fixed

effect to be non-monotonic. This estimator is infeasible, however, given it involves the

unknown teacher VA distribution, denoted F . We obtain a feasible version by applying a

two-step approach, described in Section 3.6 Doing so yields the nonparametric empirical

quadratic error loss in the case where unobserved teacher quality follows a normal distribution.
4In Appendix A, we provide a general deconvolution proof of nonparametric identification in the case of

teacher VA. In the main analysis, for tractability, we make the assumption that the noise component in the
residualized test score model is independent of underlying teacher quality and has a known distribution, as-
sumed to be normal with a common variance. To assume that unobserved teacher quality in this formulation
also follows a normal distribution involves an over-parameterization.

5In the words of Efron (2003), “There seems to be a good chance that Robbins was 50 years ahead of his
time and that a statistical theory of the 1950s will shine in the 21st century.” (See page 377.)

6In essence, we first estimate the teacher VA distribution F , using nonparametric maximum likelihood, to
get F̂ , and second, plug this into the first equation in Theorem 2 (the theorem defining the nonparametric
Bayes estimator).
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Bayes (‘NPEB’) estimator used in the main analysis.

Implementing the Robbins nonparametric Bayes approach in large-scale empirical ap-

plications has only recently become viable, following important computational advances by

Koenker and Mizera (2014).7 We leverage those advances in the current study, showing first

that the NPEB approach performs very well in Monte Carlo simulations in an environment

that mimics typical administrative data sets closely, being responsive to the true underlying

VA distribution. This contrasts with the standard PEB approach, which becomes less reliable

when departures from normality are more pronounced, as the simulations demonstrate.

Next we apply the methodology using observational data, estimating teacher VA in two

separate large-scale administrative data sets. One covers the entire state of North Carolina

and the other, the Los Angeles Unified School District (LAUSD) – the second largest school

district in the United States. The estimated teacher VA distributions differ both from the

normal distribution assumed in the prior literature and from each other. In North Carolina,

the estimated distribution has a relatively similar shape to the normal, although with fatter

tails;8 in the LAUSD, our estimated teacher distribution is skewed, with a much thinner left

than right tail. In each instance, the deviations from normality are statistically significant,

as indicated by a new diagnostic test we develop (see Appendix E).

Given the deviations from normality in both settings, we then evaluate the policy rele-

vance of our methodology. To the extent that the normality assumption is misplaced, our

approach will improve the prediction of the total gains of a particular policy (relative to the

standard PEB method); such gains could then be weighed by decision-makers against total

costs in trying to determine optimal policy. First we consider the total gains of a widely dis-

cussed proposal to release teachers. The literature has focused on teachers in the bottom five

percent of the estimated teacher value-added distribution, as outlined by Hanushek (2009,

2011) and evaluated in Chetty et al. (2014b).9 Accordingly, we compare the predicted test

7Other applications in economics include analyses of earnings dynamics – see Gu and Koenker (2017b),
for instance.

8This finding aligns with Goldhaber and Startz (2017) who find that the distribution of teachers in North
Carolina is not Gaussian, but the differences from the normal distribution tend to be small.

9Because empirical Bayes seeks to minimize prediction error, we focus on the out-of-sample predictions of
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score gains of students using our method with an approach that imposes normality on the

underlying teacher quality distribution, supposing the bottom five percent of teachers (based

on estimated VA after three years of observation) are released and replaced by teachers of

average quality.

In North Carolina, we find only minor differences between the two approaches: the

PEB method overstates test score gains of the policy by around five percent relative to our

methodology. In contrast, the skewness of the distribution of teacher value-added in the

LAUSD leads to large differences in the estimated policy benefit, with PEB overstating test

score gains of the policy by over a quarter.

More broadly, we are able to simulate the aggregate test score effects of policies that

release any given percentage of teachers from the bottom of the VA distributions under the

two approaches. We also include classroom fixed effects, and repeat the estimation and the

policy analyses on that basis. Doing so reduces the variance in the VA estimates, as one

would expect, and lowers the extent to which PEB overstates the test score gains of teacher

release policies. Still, using LAUSD data, PEB overstates the gains by 16 percent under

the benchmark ‘5 percent cutoff’ policy. When we consider ‘teacher retention’ policies, in

contrast, we show that PEB can underestimate policy gains, the underestimation becoming

more severe in North Carolina when including classroom fixed effects.

At a general level, our analysis underscores the plausible notion that the true underlying

distribution of teachers is likely to be context-specific, and so estimated policy gains when

invoking normality may well differ substantially from the true policy gains in some settings.

Here, our data-driven methodology offers policymakers a flexible means to understand the

benefits of implementing the same reform in different environments. Further, given the

computational feasibility of our approach, analytical convenience need no longer weigh on

the side of assuming normality. This opens up new possibilities for empirical research, not

policies that are relevant to understanding how many teachers to release. Given empirical Bayes does not
seek to minimize teacher ranking errors, it is less useful for studying teacher rankings – that is, deciding
whom to release. Indeed, we will find that the choice of estimators – whether fixed effect, parametric, or
nonparametric empirical Bayes – has little appreciable impact on teacher rankings in either our simulations
(see Tables F.1(a)-F.1(c)) or empirical applications (see Section 6.1).
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least as the nonparametric empirical Bayes methodology is applicable in a variety of other

contexts where parametric empirical Bayes methods have already been used.

The rest of the paper is organized as follows: The next section presents the methodology,

Section 3 then sets out the computationally feasible estimator we use, and Section 4 conducts

simulations comparing our methodology with the standard PEB approach in the literature.

We then apply it in practice: Section 5 introduces the data, Section 6 describes the estimates

of teacher VA using the two administrative data sets, and Section 7 presents the policy

analysis. Section 8 concludes, considering the broader applicability of the approach.

2 Methodology

This section presents our methodology for estimating teacher value-added with reference to

existing approaches in the literature.

2.1 Student Achievement and the Contribution of Teachers

We consider a standard model of student achievement in which education inputs (includ-

ing the contribution of teachers) are additive in their effects. The achievement of a student

i taught by teacher j in year t is written as:

ỹijt = X ′ijtβ + αj + εijt, i = 1, 2, . . . , njt, (2.1)

where ỹijt is the student’s observed test score (to be contrasted with yijt below, purged of co-

variates), and Xijt are observed characteristics of the student (demographics, past academic

performance, and family background) and the teacher (including her experience). Our pa-

rameter of interest, αj, is the time-invariant teacher’s contribution, or simply VA. We assume

that teachers are each assigned to one class per year (with j’s class size in year t being njt)

and that conditional on Xijt, the assignment is as good as random;10 the error term εijt is

10Rothstein (2017) and Chetty et al. (2017) discuss the validity of this assumption in the context of teacher
value-added models. Our contribution to the value-added literature focuses on the empirical Bayes procedure,
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assumed to be iid normal with variance σ2
ε .

11

The standard approach to estimating teacher VA starts from a regression that purges

the effects of observed covariates from ỹijt. This leaves a noisy measure of the teacher’s

contribution, denoted

yijt = αj + εijt . (2.2)

From here, several different estimators are available in order to estimate VA.

2.2 The Fixed Effect Estimator

Given (2.2), we can construct the maximum likelihood estimator (sometimes referred to

as the fixed effect estimator) for the unobserved αj. We will denote this by

yj =
∑
t

hjtyjt/
∑
t

hjt =
∑
t

njtyjt/
∑
t

njt , (2.3)

where yjt = 1
njt

∑njt
i=1 yijt is the teacher-year specific sample average for teacher j in year t.

Taking a weighted average of {yjt} across all the classes taught by teacher j over time, using

weights hjt ≡ njt/σ
2
ε , gives the teacher fixed effect (‘FE’) for that teacher in (2.3). Together

with the assumption that εijt follows a normal distribution, model (2.2) then implies that

the teacher FE has the following distribution:

yj ∼ N (αj, σ
2
ε/
∑
t

njt). (2.4)

Given the expression for the variance, if the total sample
∑

t njt → ∞ in the denominator,

then fixed effect yj converges to the true teacher VA, αj, in probability, and so is a consistent

estimator for the desired object. In practice, however, the VA literature does not use the

fixed effect estimator, primarily because of finite sample considerations. These imply that

rather than gauging bias in value-added measures due to potential non-random assignment.
11This normality assumption is made to simplify the following discussion. It is not necessary. In Appendix

A, we present a general framework demonstrating the nonparametric identification of the error distribution.
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the fixed effect estimator is a noisy estimator, especially for teachers beginning their careers.

Shrinkage estimators (considered next) account for this feature.12

2.3 The Parametric Empirical Bayes Estimator

The current state-of-art estimator for VA – the parametric empirical Bayes (‘PEB’) es-

timator introduced first by Kane and Staiger (2008) and further developed by Chetty et al.

(2014a) – responds to the finite-sample considerations just referred to. It does so by lever-

aging the insight that if the teacher effect follows a normal distribution, then it is possible

to modify poor-quality estimates for some teachers based on observations for other teachers.

The PEB estimator is the feasible version of the parametric Bayes (‘PB’) estimator, which

is the minimizer of the Bayes risk, E[ 1
J

∑J
j=1(δj −αj)2], given (2.4) as well as the parametric

assumption that the VA for all teachers is an independent and identically distributed draw

from a normal distribution with mean zero and variance σ2
α. The latter estimator takes the

following form:

δPBj = yj
σ2
α

σ2
α + σ2

ε/
∑

t njt
. (2.5)

Several remarks about the parametric Bayes estimator in (2.5) are due:

1. When αj ∼ N (0, σ2
α), the posterior distribution of αj conditional on observing

the teacher’s performance yj also follows a normal distribution, given by αj|yj ∼

N (yj
σ2
α

σ2
α+σ2

ε /
∑
t njt

,
σ2
ασ

2
ε /

∑
t njt

σ2
α+σ2

ε /
∑
t njt

), where the posterior mean of αj given the FE yj is

the best linear predictor of αj.

2. The ‘shrinkage’ factor, σ2
α

σ2
α+σ2

ε /
∑
t njt

is always smaller than 1, which implies that the

parametric Bayes estimator δPBj shrinks the fixed effect estimator yj towards zero.

Given this, the direction of shrinkage only depends on the sign of yj (not its magnitude).

12They can be assessed by their distance from the true VA quantity, αj , using a common distance measure

– the so-called L2 loss. This is denoted L(δ̂,α) ≡ 1
J

∑J
j=1(δ̂j −αj)2, where δ̂j is some estimator of true VA,

αj .
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3. The shrinkage factor is the same for all teachers with a given total sample size nj ≡∑
t njt (summing across all classrooms in all relevant time periods): the bigger the

total sample size, the closer the shrinkage factor is to 1.

4. There is built-in symmetry in the Bayes estimator in the sense that, for individual

teachers who have the same total sample size nj, the amount of shrinkage imposed

on yj only depends on its absolute value. Thus teachers with both very large yj (for

example, teachers in the right tail, who have large positive fixed effects) and with small

yj (e.g., left-tail teachers) are shrunk towards zero by the same magnitude as long as

their overall sample sizes and absolute magnitudes are the same.

5. The estimator δPBj is infeasible since it involves unknown parameters (σ2
α, σ

2
ε ). The em-

pirical counterpart to δPBj , the PEB estimator defined as δPEBj = yj
σ̂2
α

σ̂2
α+σ̂2

ε /nj
, replaces

these unknown parameters with their consistent estimates, either through maximum

likelihood or method of moments.

These observations serve to highlight two key features of the PEB estimator. First, by

construction, the estimator δPEBj is linear in yj; hence it scales the fixed effect estimator in

the same symmetric fashion towards zero for all teachers who have the same overall sample

size nj. Second, for teachers who have very large nj relative to σ2
ε , the PEB estimator is

almost the same as the fixed effect yj. This confirms the intuition from above that if nj

is large, the fixed effect will provide an accurate estimator for the true value-added, so the

shrinkage estimator δj leaves it relatively unmodified. In contrast, teachers with a smaller

total sample size (new teachers, for example) receive greater shrinkage towards zero.

The PEB estimator has a simple linear form and is easy to compute, which helps to

account for its popularity in the literature. Crucially, however, it relies on the parametric

assumption that true teacher VA, αj, follows a normal distribution. If this assumption is

misplaced, the quality of the shrinkage estimator may deteriorate,13 perhaps significantly,

13See Bonhomme and Weidner (2019) for a discussion of the robustness properties of the EB estimator
when the normality is locally misspecified.
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and it raises the further possibility that one might be able to find an alternative estimator

that has a smaller Bayes risk.

2.4 The Nonparametric Bayes Estimator

Next we show that, for model (2.2), the distribution of teacher VA is nonparametrically

identified (Theorem 1 below). This result implies that the data contain enough information

about the distribution of the true VA measure, and the normality assumption applied to

unobserved teacher quality involves an over-parameterization. In the theorem, we continue

to assume a normally distributed error, although doing so is not necessary (as we show in

Appendix A, drawing on Kotlarski (1967)). Imposing normality will, however, be convenient

for estimation purposes. We then introduce the nonparametric Bayes (‘NPB’) estimator for

teacher VA (see Theorem 2). This estimator involves the unknown VA distribution, which

we replace by an empirical counterpart (see Section 3), referring to that as the nonparametric

empirical Bayes (‘NPEB’) estimator.

Theorem 1 Consider the model yijt = αj + εijt, with εijt ∼iid N (0, σ2
ε ). If αj is independent

of εijt for all i and t, and αj follows some probability distribution F , then F is nonparamet-

rically identified.

Proof. Under the assumption that αj and εijt are independent random variables for all i

and t, we have for any s ∈ R,

φyijt(s) =

∫
eisy

∫
1√

2πσ2
ε

e
− (y−α)2

2σ2ε dF (α)dy

=

∫
eisz

1√
2πσ2

ε

e
− z2

2σ2ε dz

∫
eisαdF (α)

= e−σ
2
ε s

2/2φα(s) ,

where φX(·)

is the characteristic function of random variable X and i denotes the imaginary unit

(as distinct from the student index i). Since we observe yijt, the characteristic function

9



φα(t) is identified from the data for all s ∈ R. Given the one-to-one mapping from the

characteristic function to the distribution function of a random variable, the distribution F

is nonparametrically identified.

Next, we present the nonparametric Bayes estimator, using teacher fixed effects (yj) and

the model (2.4) as inputs:

Theorem 2 Given the model yj = αj + νj, with αj being independent from νj, αj ∼ F and

νj ∼ N (0, σ2
ε/nj), then the estimator of αj that minimizes the Bayes risk under L2 loss, α̃j,

takes the form

δNPBj =

∫
αϕj(yj − α)dF (α)∫
ϕj(yj − α)dF (α)

, (2.6)

with ϕj(·) being the density function of the normal distribution with mean zero and variance

σ2
ε/nj. The estimator can be further simplified to

δNPBj = yj +
σ2
ε

nj

∂

∂y
log gj(y)|y=yj , (2.7)

with gj(·) being the marginal density of yj.

Proof. The first part of proof follows from the fact that the minimizer of the Bayes risk

under L2 loss is the posterior mean of αj conditional on yj. For the second part, since

gj(y) =

∫
ϕj(y − α)dF (α),

then straightforward calculations show that

σ2
ε

nj

∂

∂y
log gj(y)|y=yj =

∫
(α− yj)ϕj(yj − α)dF (α)∫

ϕj(yj − α)dF (α)
= E[α|yj]− yj .

Therefore,

δNPBj = E[α|yj] = yj +
σ2
ε

nj

∂

∂y
log gj(y)|y=yj .
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Theorem 2 presents two expressions for the nonparametric Bayes estimator. The expression

in (2.7) is known in the literature as “Tweedie’s formula” (see Efron (2011)). Several remarks

about it are due, compared with the parametric Bayes estimator in (2.5):

1. The parametric Bayes estimator is a special case of the nonparametric Bayes estima-

tor.14

2. Tweedie’s formula retains the feature that if σ2
ε/nj is very small, then the nonpara-

metric estimator δNPBj will not deviate much from the fixed effect estimator yj.

3. In general, for any distribution F other than the normal distribution, the quantity

∂
∂y

log gj(y)|y=yj in Theorem 2 introduces a non-linearity into the shrinkage rule with

respect to yj.

4. Unlike the parametric Bayes formula, Tweedie’s formula does not automatically ‘shrink’

the fixed effect estimator towards zero. Inspection of the formula shows that the fixed

effect and the adjustment factor are additively separable, and the adjustment factor

can be positive or negative. The direction and magnitude of the shrinkage depend on

the distribution of latent teacher quality and also the magnitude of the fixed effect

estimate yj, and hence is likely to be context-specific. (An illustrative example is

provided below to give intuition.)

Given these observations, it is worth highlighting an important contrast: unlike the PEB

estimator, individuals with higher variances will not necessarily shrink the most towards

zero under Tweedie’s formula. This feature turns out to be empirically relevant. Suppose

a new teacher j who has a small total sample size nj relative to σ2
ε happens to have a high

yj – for example, a teacher who performs very promisingly in her early years in the school

system. Under the parametric shrinkage rule, this teacher will be heavily discounted in that

her VA measure will shrink significantly towards zero. This is simply because the normal

14Specifically, when F = N (0, σ2
α), we have gj(·) becoming the density function of a normal distribution with

mean zero and variance σ2
α+σ2

ε /nj and thus ∂
∂y log gj(y)|y=yj = − yj

σ2
α+σ

2
ε/nj

and δNPBj = δPBj = yj
σ2
α

σ2
α+σ

2
ε/nj

.
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distribution, which dictates that there must be a thin tail, deems it unlikely for this teacher

to have a high VA αj; instead, the large yj arises purely by chance due to the associated high

variance. In contrast, under the nonparametric shrinkage rule, depending on the features of

the distribution of true value-added, her VA estimate may remain very close to her estimated

fixed effect, yj, and conceivably be even higher.15

Example: We now provide an example to illustrate the ways in which shrinkage may operate

under the nonparametric Bayes estimator as compared with the PEB estimator, depending

on the underlying distribution of teacher VA. Specifically, we consider the Bayes estimator

under two different assumptions about the true teacher VA distribution. In the first case,

assume αj ∼ N (0, 0.05).16 Here, we draw on the fact that the nonparametric Bayes and

parametric Bayes estimators will coincide. In the second case, suppose the true teacher VA

has distribution F , which takes the following form:

F = 0.98N (0, θ1) + 0.01N (−1, θ2) + 0.01N (1, θ3) . (2.8)

This mixed normal distribution has the built-in feature that at both tails, there is a small

probability mass concentrated around the values −1 and 1, while the majority of the proba-

bility mass follows a normal distribution centered at zero; as such, this will help to highlight

the operation of nonlinear shrinkage. Here, we calibrate the above parameters (θ1, θ2, θ3)

such that F has the same mean and variance as in the first case. In both, we set σ2
ε = 0.25,

which is roughly the same as in the North Carolina mathematics score data.

Figure 1 compares the amount of shrinkage for the parametric and nonparametric Bayes

estimators, respectively. It does so for a hypothetical teacher j with total sample size nj = 20

with a fixed effect estimate, yj, in the range of [−2, 2]. As noted, the parametric Bayes

15A similar thought experiment can be conducted for a teacher who shows very poor observed performance
(that is, who has a large negative yj) and has a relatively small total sample size. Under the parametric
shrinkage rule, this teacher would be regarded as more similar to the mean quality teacher, while the
nonparametric rule does not adjust in a mechanical way, but allows for a range of possibilities that are
informed by the data.
16Looking ahead, this will roughly coincide with the parametric empirical Bayes estimates obtained using

the North Carolina data on mathematics scores.
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estimator shrinks estimates linearly and symmetrically toward zero, with the direction of

the shrinkage depending only on the sign of y and not its magnitude. In contrast, the

nonparametric Bayes estimator (in equation (2.7)) is a nonlinear function of y and the

direction of shrinkage depends not only on the sign of y but also its magnitude.

The figure makes clear that differences in the amount of shrinkage between the two

estimators are especially pronounced at the mass points of 1 and −1. On one hand, the

parametric Bayes estimator does not account for the presence of these mass points (as they

are assumed away by normality) and so shrinks them towards zero. The NPB, on the other

hand, adapts to the true underlying distribution – we discuss why below – and pulls fixed

effects nearby to these two mass points, accounting for the non-negligible probability that

the true quality of some teachers may take values of these mass points.

The nonparametric Bayes estimator δNPBj , specified in equation (2.6), is infeasible in

practice since it involves the unknown quantity σ2
ε and the distribution F . We develop a

feasible version of the nonparametric estimator next.

3 A Feasible Nonparametric Bayes Estimator

This section sets out the feasible version of the nonparametric Bayes estimator, which we

refer to as the nonparametric empirical Bayes (or NPEB) estimator, the primary focus for

the remainder of the analysis.

By way of overview, we take an approach that shares the same spirit as the parametric

empirical Bayes method. For the unknown parameter σ2
ε , we use its maximum likelihood

estimator (see Appendix D), while we estimate the distribution F directly from the data

(instead of assuming it belongs to a parametric distribution family). This then yields the

NPEB estimator (see equation (3.2) below).
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3.1 Nonparametric Maximum Likelihood Estimation of the Dis-

tribution F

Our approach to recovering the teacher VA distribution F is based on methods proposed

in Jiang and Zhang (2009), Koenker and Mizera (2014) and Gu and Koenker (2017b). Those

papers set out a general framework for estimating unobserved heterogeneity in cross-sectional

and longitudinal data settings without imposing any parametric assumptions on the unob-

served heterogeneity, drawing on the seminal contribution by Robbins (1956), referenced

above. As the methodology fits many contemporary ‘Big Data’ applications, the revival

in the use of nonparametric empirical Bayes methods for large-scale inference is natural,17

reflected in several recent applications in statistics and economics.18 The teacher VA applica-

tion fits into this general framework well, as teacher quality can be thought of as unobserved

heterogeneity in a model of test scores that accounts for test score variation unexplained

after controlling for all observed heterogeneity through covariates Xijt.

We denote the distribution of αj in a general way as F , rather than assuming αj ∼

N (0, σ2
α). The distribution F is not observed by the researcher, but can be estimated non-

parametrically from the data via the following optimization:

F̂ ≡ argmax
F∈F

{
J∑
j=1

log

∫
ϕj(yj − α)dF (α)

}
(3.1)

where ϕj is a normal density with mean zero and variance σ2
ε/nj, as in (2.4), and the space

F is the set of all probability distributions on R. The resulting F̂ is the nonparametric

maximum likelihood estimator (hereafter ‘NPMLE’) for F .

Kiefer and Wolfowitz (1956) established consistency of the NPMLE for the mixing dis-

tribution F . A viable computational strategy for the estimator was not available until the

17See Efron (2010) for a survey. A recent simulation comparison across different machine learning methods
is provided in Abadie and Kasy (2019), highlighting the advantages of the nonparametric empirical Bayes
method for high-dimensional settings.
18These include predicting baseball batting averages (Gu and Koenker, 2017a), studying earning dynamics

(Gu and Koenker, 2017b), analyzing treatment effect heterogeneity (Gu and Shen, 2017), and estimating
the impact of neighborhood effects on intergenerational mobility (Abadie and Kasy, 2019).
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appearance of the EM algorithm by Laird (1978), and the EM algorithm has remained the

standard approach for its computation ever since.19 However, EM has notoriously slow con-

vergence in nonparametric EB applications, especially with large data sets, and this fact has

inhibited the widespread implementation of the NPMLE.

Koenker and Mizera (2014) recently proposed an alternative computational method for

the NPMLE that circumvents these issues. They show that for a broad class of mixture prob-

lems, the Kiefer-Wolfowitz estimator can be formulated as a convex optimization problem

and solved efficiently by modern interior point methods. Quicker, more accurate computa-

tion of the NPMLE in turn opens up a much wider range of applications of the method for

models with heterogeneity.20 Here, the large-scale data involved in teacher VA estimation

make it likely to benefit from the scalability of the new computational method.

The difficulty in estimating equation (3.1), as pointed out in Koenker and Mizera (2014),

is that F is an infinite dimensional object and so there is an infinite number of constraints.

To make computation feasible and maintain the convexity of the problem, they propose

a finite-dimensional convex approximation. Formally, let M be a positive integer and let

FM be the class of probability distribution functions supported on M grid points given by

minj{yj} < α1 < α2 < · · · < αM < maxj{yj}. The NPMLE is then defined to be the

maximizer of equation (3.1), replacing F by FM . The resulting NPMLE F̂ thus takes the

form of a discrete distribution.21 Note that the size of the grid M is not a tuning parameter.

When M is reasonably large, increasing it further does not improve the likelihood; Dicker

and Zhao (2016) show that taking M to be roughly the square-root of the sample size renders

a good approximation.

19Heckman and Singer (1984) constitutes an influential econometric application.
20Models with unobserved heterogeneity beyond the normal mixture are discussed in Koenker and Gu

(2017).
21For the data sets we apply this method to, the sample size is around 35,000 for the North Carolina data

and 11,000 for the LAUSD data, and in both cases, we take M = 5000.

15



3.2 The Plug-in Nonparametric Empirical Bayes Estimator for

VA

With the NPMLE F̂ , we can construct the NPEB VA estimator as:

δNPEBj =

∫
αϕj(yj − α)dF̂ (α)∫
ϕj(yj − α)dF̂ (α)

. (3.2)

The estimator defined in equation (3.2) is the feasible version of the posterior mean defined

in equation (2.6) in Theorem 2. Once we obtain the NPMLE for F based on (3.1), evaluating

(3.2) only involves matrix operations, since F̂ already takes a discrete form (as noted).

We focus on constructing a feasible version of the NPB estimator based on (2.6) directly,

rather than its equivalent reformulation (2.7) in Theorem 2, for two reasons. First, equa-

tion (2.7) suggests that the nonparametric Bayes estimator δNPBj does not depend on the

teacher quality distribution F directly, but rather on the marginal density of the fixed effect

estimator. Therefore, in principle we could focus on constructing a feasible estimator for

the marginal density. In practice, this becomes challenging when individual teachers have

heterogeneous variances.22

Second, kernel-based estimators for the marginal density do not incorporate the model

information that the fixed effect estimator is induced by an underlying normal mixture

model; hence the resulting shrinkage estimator may lose some important properties of the

NPB estimator, such as monotonicity with respect to yj for fixed variances.23 In contrast,

both the construction of the NPMLE of F and the NPEB in (3.2) make use of the mixture

model structure, and so automatically satisfy the monotonicity property.24

22Brown and Greenshtein (2009) proposes a kernel method to estimate the marginal density of yj directly
when variances of yj are all the same – when all teachers have the same associated sample sizes, for example.
When variances are homogeneous, the kernel estimator for the marginal density is easy to construct since
we have J independent and identically distributed observations (y1, . . . , yJ) from this marginal density. Yet
when individual teachers have heterogeneous variances, it is difficult to apply these methods to construct
(2.7), given the observations (y1, . . . , yJ) are no longer identically distributed.
23See Koenker and Mizera (2014) for a monotonized version of the Brown and Greenshtein (2009) estimator.
24We can motivate the proposed estimator (3.2) on the grounds that it makes use of both the information

from the data (to learn about F ) and from the model (using the normal mixture structure). Saha and
Guntuboyina (forthcoming) recently showed that the NPEB estimator δNPEBj constructed via the NPMLE
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The newly proposed estimator δNPEBj has the potential to improve on the linear PEB

estimator (in the sense of having a smaller average squared error) when the underlying

distribution F cannot be approximated well by the normal distribution. The magnitude of

this change can be evaluated through simulations, where the distribution F used to generate

the data is known. We conduct such illustrative simulations next.

4 Simulations

In this section, we use simulations to compare the performance of three estimators: the

fixed effects estimator, the PEB estimator, and our NPEB estimator. We do so relative to

a benchmark – infeasible in practice – in which the researcher knows the true underlying

teacher quality distribution, and can therefore use the optimal Bayes rule.

We consider the performance of these candidate estimators on the basis of their mean

squared error under three candidate distributions – normal, mixed normal, and chi-squared.

Simulated data are generated using equation (2.2) for 10,000 individual teachers with εijt ∼

N (0, 0.25), set to mimic what we estimate using data later. For comparison, we consider both

a homogeneous class size case where every teacher has a class size of 20, and a heterogeneous

class size case where class size is drawn randomly from the set {20, 40} with equal probability.

The Teacher Quality Distribution is Normal: Table 1(a) displays the simulation re-

sults when teacher quality is normally distributed according to F ∼ N (0, 0.05). Here, the

normality assumption already built into the EB estimator is correct, and so it performs

identically to the infeasible estimator where the distribution is known. We see that the PEB

estimator improves on the mean squared error of the fixed effects estimator substantially.

At the same time, it only outperforms our NPEB estimator by a very small margin: mean

squared error is less than one percent higher under NPEB – striking given the NPEB does

of F performs similarly to the infeasible NPB estimator δPEBj defined in (2.6). The proposed estimator
achieves this satisfactory approximation to the infeasible estimator, despite of the well-known fact that the
NPMLE of F has a slow convergence rate (Fan, 1991), because the nonparametric Bayes rule is a smooth
functional of F , which can be estimated at a much better rate than the distribution F itself.
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not make any parametric assumption about the distribution F .

The Teacher Quality Distribution is Non-Normal: Tables 1(b) and 1(c) show simula-

tion results when teacher quality is not normally distributed. Specifically, in Table 1(b), true

teacher quality follows the mixed normal distribution F ∼ 0.98N (0, 0.03)+0.01N (−1, 0.03)+

0.01N (1, 0.03), as in equation (2.8), while in Table 1(c), true teacher quality follows F ∼ χ2
1.25

Here, it is clear that our NPEB estimator outperforms both the PEB estimator and the

fixed effects estimator substantially in terms of mean squared error. Even more noteworthy

is the fact that our NPEB estimator achieves a mean squared error very close to that of the

infeasible estimator (which assumes the true distribution is known): our NPEB estimator

has mean squared error less than one percent higher than the infeasible estimator for both

distributions considered. In contrast, the mean squared errors of the PEB and fixed effect

estimator are 15-60 percent higher. Of note, the PEB estimator performs worse as the

underlying distribution deviates further from normality; thus its efficacy is particularly poor

for the chi-squared distribution, as shown in Table 1(c).

In sum, as these simulations indicate, our proposed approach has an appealing versa-

tility in that it can adapt to any distribution. Despite being a nonparametric method, it

performs similarly to the PEB estimator when the true distribution is normal. When the

true distribution is not normal, our approach is able to outperform the PEB estimator by a

substantial margin, performing almost as if the true distribution were known. Given there

is no a priori reason to believe that teacher quality follows some specific distribution, the

simulation evidence we have presented buttresses the view that our method can adapt to,

and help recover, any underlying distribution of teacher quality. Next, we take the method

to observational data.

25For comparability, the mixed normal distribution has the same mean and variance as the normal distri-
bution in Table 1(a).
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5 Data

Our data are drawn from two administrative data sets, each providing detailed information

about students and teachers, including enrollment history, test scores and teacher assign-

ments. The data from both sources cover similar time periods, grades, and demographic

information, although there are important differences. For that reason, we discuss each data

source separately; a more detailed description is provided in Appendix B.

North Carolina: Our first administrative data set covers all public school students in

North Carolina for third through fifth grade – specifically, third grade from 1996-97 to 2008-

09 and for fourth and fifth grades from 1996-97 to 2010-11.26 These data cover around 1.85

million students with 4.5 million student-year observations. We also have detailed demo-

graphic information including parental education (1996-97 through 2005-06), economically

disadvantaged status (1998-99 through 2010-11), ethnicity, gender, limited English status,

disability status, academically gifted status, and an indicator for grade repetition.

We make several restrictions to construct the sample used for estimating teacher VA,

following Clotfelter et al. (2006) and subsequent research using North Carolina data. Specif-

ically, we require that all students are matched to a teacher, and that students have a valid

lagged test score in the relevant subject. After the sample restrictions, our final sample con-

sists of approximately 2.7 million student-year observations, covering 1.4 million students

and 35,000 teachers.

Table 2 provides summary statistics for the main variables used in calculating VA. Col-

umn (1) reports these for the entire North Carolina sample, and column (2) for the VA

analysis data set. While the sample restrictions eliminate approximately forty percent of the

observations, we see only minor differences between the two samples, with the VA sample

showing slightly higher performance levels and being drawn from moderately higher socioe-

conomic backgrounds on average.

26Our analysis is restricted to students in those grades since our data set records the test proctor, and the
test proctor is typically the teacher who taught the students throughout the year in these grades. Data for
third grade ceases after 2008-09 because the third grade pretest was discontinued after that year.
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Los Angeles Unified School District: Our second data source comes from the Los

Angeles Unified School District (LAUSD). The data set spans third grade from 2003-04

to 2012-13 and fourth and fifth grade from 2003-04 to 2012-13 and 2015-16 to 2016-17.27

It covers roughly 800,000 students with 1.7 million student-year observations. Detailed

demographic data include economically disadvantaged status, ethnicity, gender, age, limited

English status, and a grade repetition indicator, and parental education (missing for thirty

percent of sample).

Similar to the North Carolina data set, we make several sample restrictions, dropping

students who cannot be matched to a classroom teacher, and students who do not have a

valid lagged test score in the relevant subject. Our VA sample for LA consists of 1.3 million

student-year observations, covering roughly 660,000 students and 11,000 teachers.

Columns (3) and (4) of Table 2 provides summary statistics for the LAUSD data. Column

(3) reports these for the entire sample, while column (4) does so for the VA analysis data

set. Similar to the North Carolina case, we find that our VA sample is moderately positively

selected, with student test scores being about 0.06 standard deviations higher than the full

sample.

Comparing the two administrative data sets, clear differences in samples become appar-

ent. While North Carolina has a majority-white student body with a large black minority,

the LAUSD is majority-Hispanic. The LAUSD sample is also drawn from students with

significantly more disadvantaged backgrounds, with students being almost twice as likely

to be free or reduced price lunch-eligible and nearly three times as likely to come from a

household where parents are high school dropouts. These differences may attract particular

teachers, potentially giving rise to a different underlying distribution of teachers in these two

settings.

27Third grade data are missing for 2013-14 and 2014-15 due to a change in the statewide testing regime
that occurred in 2013-14, which resulted in no test score data that year and also eliminated the second grade
test thereafter. As lagged test scores are required when computing value-added, we drop academic years
2013-14 and 2014-15 from the dataset as well as third grade after 2012-13.
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6 Results

This section reports estimates of teacher VA using our proposed NPEB methodology, along-

side those using the PEB approach. We describe results for North Carolina and the LAUSD

separately, highlighting differences in the estimated teacher quality distributions. Then we

discuss how these differences will be relevant for the policy analysis in Section 7, and also

compare the out-of-sample performance of our NPEB estimator relative to the PEB estima-

tor.

6.1 VA Estimates

North Carolina: Figure 2(a) displays a boxplot of teacher fixed effects for teachers who

appear once, twice, three times or more than three times, respectively, in our North Carolina

data set. This shows that teachers appearing for more periods – typically, more experienced

teachers – exhibit less dispersion as the fixed effect for these teachers is estimated with a

larger effective sample size than teachers appearing less frequently. At the same time, the

average fixed effect is similar, regardless of how often teachers appear in the data (conditional

on teacher experience). Bayesian shrinkage is then applied to these fixed effects, serving to

shrink fixed effect estimates for teachers with small sample sizes back towards the mean. The

boxplot in Figure 2(c) shows the magnitude of shrinkage applied by our NPEB estimator.

As expected, only small amounts of shrinkage arise for teachers with more than three years

of data, while teachers who appear less frequently and thus have smaller effective sample

sizes are shrunk towards zero in a more pronounced way.

The estimated teacher VA distribution used for our NPEB (estimated using equation

(3.1)) is shown in Figure 3(a). At first glance, it appears to be approximately normal,

although policymakers are particularly interested in the tails of the distribution. Given that

focus, Figure 3(b) takes the cube root of the distribution in order to enhance the tails.

Having done so, we can see that the teacher quality distribution exhibits a fat right tail

relative to the Gaussian distribution. In light of this, one might anticipate that applying our
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NPEB methodology in North Carolina would mostly agree with the PEB method (which

assumes normality), except for the right tail.

Next, we compare our estimator with the PEB estimator. To do so, we start by estimating

the distribution of teacher VA under the normality assumption using maximum likelihood.28

Based on mathematics scores from all North Carolina school districts, we find that teacher

VA is distributed N (0, 0.047), implying a standard deviation of 0.217, and that σ̂2
ε = 0.248.

Figure 4(a) then compares the VA estimates obtained from the PEB and NPEB estimators

for representative teachers with a class size of twenty students but who may have different

fixed effect estimates (shown on the horizontal axis). In accord with expectations, teacher VA

is nearly identical across the two methods for teachers with fixed effect estimates below 95th

percentile of its distribution (indicated by the vertical dashed line to the right) of the figure.

There is some disagreement between the two methodologies in the right tail, with the NPEB

estimator not shrinking teachers who have a fixed effect in the far right tail as markedly as

the PEB estimator. This can be seen with the NPEB estimates (shown by the curved line)

being substantially above those estimated using the PEB methodology (the dashed upward-

sloping straight line) and closer to the 45 degree line. Intuitively, this misalignment occurs

because our nonparametric methodology finds a distribution with a fatter right tail than

the normal distribution assumed under the parametric method, and so the NPEB estimator

shrinks teachers less aggressively if they have noticeably large fixed effect estimates.

LAUSD: Figures 2(b) and 2(d) present information for LAUSD – boxplots of teacher fixed

effects and the magnitude of shrinkage that our NPEB estimator applies according to how

often teachers appear in the data. These figures are similar to those for North Carolina,

although the LAUSD exhibits a higher variance in teacher fixed effects, which leads to

higher dispersion in VA in the district.

Our estimated teacher VA distribution using NPEB is shown in Figure 3(c). It is more

dispersed and skewed than the corresponding distribution for North Carolina. Enhancing

28This is the Chetty et al. (2014a) no-drift estimator. Maximum likelihood is used as it is the most efficient
estimator: results are similar if we use method of moments instead.
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the tails in Figure 3(d) draws attention to other compelling differences: the VA distribution

has a much thinner left than right tail. Our NPEB methodology should therefore mostly

agree with the PEB method, except in the two tails.

Using parametric EB, we find teacher VA is distributed as N (0, 0.0977), implying a

standard deviation of 0.3126, and that σ̂2
ε = 0.2596, which is considerably higher than the

variance we found in North Carolina. Comparing the VA estimates obtained from the two

empirical Bayes estimators, again for representative teachers with a fixed class size of twenty

students, Figure 4(b) indicates that teacher VA is very similar for teachers with their fixed

effect estimates in the 5-95th percentile of its distribution, but deviates in both tails, and

especially in the left tail. Our nonparametric method shrinks them far more strongly back

toward the mean when the fixed effect estimates take a value below the 5th quantile while

shrinking them less aggressively when the fixed effect estimates take a value above the 95th

quantile, in order to adapt to the skewness of the distribution.

Implications for Policy: These differences in the tails of the VA distribution relative

to a normal distribution can drive large differences in policy calculations between the two

empirical Bayes methodologies. On the one hand, the normality assumption is particularly

misspecified in the right tail for North Carolina. Given the set of teachers affected by

interventions targeting high-VA teachers, we expect that the gains from such policies – e.g.,

retention bonuses – will be understated in the PEB methodology since it shrinks high-VA

teachers back towards the mean too strongly.

On the other hand, the normality assumption is misspecified in the left tail for the

LAUSD, which is important for policies targeting low-VA teachers, such as teacher release

policies. Here, the PEB methodology is likely to overstate the benefit of such policies since

it does not shrink these low-VA teachers sufficiently back toward the mean.

Teacher Rankings: A natural question arises whether the choice of estimator influences the

ranking of teachers. Consider misclassification rates of teachers in the bottom five percent
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in terms of both Type I and Type II errors.29 With homogeneous class sizes, the PEB and

NPEB estimators are both monotone functions of teacher fixed effects (Guarino et al., 2015;

Bitler et al., 2019), guaranteeing that teacher rankings (and thus misclassification rates)

are identical across the fixed effect estimator and PEB and NPEB estimators. Once we

allow class size to be different, however, the EB and NPEB estimators are no longer order-

preserving with respect to teacher fixed effects, raising the possibility that misclassification

rates may differ depending on the estimator used, in turn making it unclear which estimator

should (in principle) be used to determine whom to replace.30

In practice, we find that the choice of empirical Bayes method has little appreciable

impact on teacher rankings. In both data sets, a very small fraction of teachers ranked

in the bottom five percent of the teacher quality distribution under PEB is not ranked in

the bottom five percent according to NPEB. (The exact numbers of teachers ranked in the

bottom five percent under PEB but not under NPEB for our two datasets are: 34 out of

1753 for North Carolina and 33 out of 554 for the LAUSD, respectively.) This is in line with

our simulation results, which reveal nearly identical misclassification rates across the three

estimators – see Tables F.1(a)-F.1(c).

6.2 Out-of-Sample Predictions

Given our estimates of VA described above, we now evaluate the performance of our

NPEB estimator relative to the fixed effect and PEB estimators. A natural way of evaluating

the estimators is on the basis of their ability to predict future outcomes. For instance, suppose

that school boards or policymakers observe a teacher’s past performance and wish to predict

future outcomes for that teacher. We can measure the performance of this prediction via

the squared error distance, (yj,t+1 − ŷj,t+1)2, where yj,t+1 is the true outcome of teacher j in

period t+ 1 and ŷj,t+1 is its predictor, utilizing all past information relating to her teaching

29In this context, a Type I error occurs when a teacher is ranked below 5% while her true quality ranking
is above 5%; conversely, a Type II error occurs when a teacher is ranked above 5% when her true quality is
below 5%.
30For instance, Mehta (2019) finds that policymakers should not use the empirical Bayes correction under

certain systematic relationships between teacher quality and class size.
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performance, starting when the teacher first appeared in the sample up until the t-th period.

This prediction exercise faces one inherent difficulty in that the class sizes of teachers

in period t + 1 differ. Thus, even if we had a perfect estimator for a teacher’s quality αj,

since yi,t+1 ∼ N (αj, σ
2
ε/nj,t+1), the larger the class size, the less variability there would be in

outcomes the following year, given by yj,t+1, making teacher quality easier to predict for the

corresponding teacher. To account for this, we use the following two measures of prediction

accuracy proposed in Brown (2008): normalized mean squared error (NMSE) and total mean

squared error (TMSE). NMSE is given by:

NMSE =
1

K

∑
j∈I

(
nj,t+1(yj,t+1 − ŷj,t+1)2

)
, (6.1)

where I is the set of teachers whose performance is being predicted and K is the size of that

set. The NMSE is the usual sum of squared errors with an adjustment term nj,t+1 (where

the adjustment term serves to scale back the contribution of teachers with large classes sizes,

who have higher precision by construction, by the size of their class, nj,t+1). Alternatively,

TMSE is given by:

TMSE =
1

K

∑
j∈I

(
(yj,t+1 − ŷj,t+1)2 − σ2

ε

nj,t+1

)
. (6.2)

Without the adjustment term σ2
ε

nj,t+1
, the quantity is just the usual sum of squared errors;

the adjustment term is introduced to account for the effect of different class sizes on the

variance.

Tables 3(a) and 3(b) report NMSE and TMSE using the North Carolina and LAUSD

data for three different estimators: NPEB, parametric EB, and fixed effects. Each row in

the table represents the number of prior years of teacher j’s performance used to make the

prediction.31 The empirical Bayes methods (reported in the first two columns) substantially

outperform the fixed effects method when only a few years of prior data are used, the extra

31To predict the performance of teacher j using t years of data, we restrict the sample to include teachers
who appear t+1 times.
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gain being substantial when information about a teacher is scarce. As more and more years

of data become available, the gain from using empirical Bayes diminishes in comparison with

the fixed effect estimator.

Comparing the two empirical Bayes estimators, the NPEB outperforms the PEB esti-

mator under both prediction accuracy measures, except when only using one prior year of

information with the LAUSD data set. When 2-5 years of data are used, the prediction per-

formance of the NPEB estimator surpasses that of the PEB by the greatest margin. With

many years of data, the NPEB continues to outperform the parametric EB, although both

methods begin approaching the performance of the fixed effect estimator, given teacher-

specific sample sizes have become large enough such that estimates are no longer shrunken

materially. Of note, teacher tenure decisions are often made in practice during the time

window when our nonparametric methodology outperforms that of the PEB by the greatest

margin (namely using 2-5 years of data per teacher).32

7 Policy Analysis

This section performs policy calculations for policies that target the bottom and top of

the teacher quality distributions, respectively. We pay particular attention to differences in

policy calculations found using our nonparametric method relative to those using the PEB

methodology. (Standard errors for our policy calculations are bootstrapped – see Appendix

C for details.)

7.1 Policy Experiment I: Lay-off Policies

One policy recommendation that has gained considerable traction focuses on replacing

poor-quality teachers with mean-quality teachers. The specific proposal made by Hanushek

(2009, 2011) and further explored by Chetty et al. (2014b) involves releasing teachers in the

32Among the five most populous states, for instance, Texas, Pennsylvania and Florida award teacher tenure
after three years, while California and New York award tenure after two and four years, respectively.
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bottom 5% of the estimated VA distribution, replacing them with those who are of average

quality. Here, we calculate the policy gains from (more generally) replacing the bottom

q% of teachers, although we pay particular attention to the ‘bottom 5%’ cutoff, given its

prominence both in the literature and policy debate.

Under parametric EB, the policy gain of replacing the bottom q% of teachers is calculated

based on the assumption that teacher VA is normally distributed. Since teachers are assumed

to be drawn from α ∼ N (0, σ2
α), replacement teachers who are at the mean of the distribution

are those with α=0. In addition, since a one-unit increase in α (meaning VA) leads to a one

SD test score gain, the marginal gain in test scores from such a policy, denoted as MR(q),

is:

MR(q) ≡ −E[α | α < Φ−1(q)] , (7.1)

where Φ is the cdf of N (0, σ2
α) and q is the cutoff percentage. Further, under the assumption

that α ∼ N (0, σ2
α), it is straightforward to show that

MR(q) = −
∫ Φ−1(q)

−∞ αϕ(α)dα∫ Φ−1(q)

−∞ ϕ(α)dα
, (7.2)

with ϕ(α) being the pdf of N (0, σ2
α). Similarly, the total gain in test scores for a policy that

deselects the bottom q% of teachers, denoted TR(q), is:

TR(q) ≡ E[α1{α ≥ Φ−1(q)}] , (7.3)

where 1{α ≥ Φ−1(q)} takes the value one if the teacher’s quality is greater than the cutoff

value Φ−1(q) and zero otherwise. Again, under the assumption that α ∼ N (0, σ2
α), this can

be written:

TR(q) =

∫ +∞

Φ−1(q)

αϕ(α)dα . (7.4)
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The normality assumption embedded in the PEB estimator is likely misspecified, however,

given the distributions we estimated nonparametrically in Section 6. Based on our estimated

distributions, replacement teachers remain mean zero (i.e., α=0) since VA is always centered.

The marginal and total test score gains from a policy laying off the bottom q percent of

teachers with our estimated distribution are instead given by:

MR(q) = −
∫ F−1(q)

−∞ αf(α)dα∫ F−1(q)

−∞ f(α)dα
, (7.5)

TR(q) =

∫ +∞

F−1(q)

αf(α)dα , (7.6)

where F (α) and f(α) are the true cumulative probability distribution and density functions

of unobserved teacher VA, respectively.

The distribution F is identified from the data (appealing to Theorem 1), so we can

evaluate the policy under two distributions of VA: (i) the normal distribution with a standard

deviation estimated from the data, and (ii) the distribution F estimated using the same data

set. To begin, we assume that the policymaker can observe true teacher VA, an assumption

we relax below.

Figure 5 compares the policy gains under the PEB methodology (where it is assumed

that α ∼ N (0, σ2
α)) with those found using our NPEB method (where α ∼ F ). For North

Carolina, the PEB methodology overestimates policy gains, although not substantially. The

picture is very different for LAUSD, however, with the PEB methodology overestimating the

policy gains considerably (see the bottom two panels).

Table 4(a) quantifies these differences by reporting test score gains under the PEB

methodology and our NPEB methodology respectively for a policy that releases the bot-

tom q% of teachers for both North Carolina and the LAUSD. The bolded row indicates

our benchmark policy that releases bottom-ventile (i.e., bottom-5 percent) VA teachers.

Columns (1) and (2) indicate that the PEB method overstates the policy gains by about five

percent relative to our NPEB method in North Carolina and so the normality assumption
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appears reasonably well-founded in that context for policies targeting the left tail. In con-

trast, the PEB method overstates the policy gains by twenty-four percent in the LAUSD.

While the differences in test score gains comparing the PEB and NPEB methods are highly

statistically significant in both cases, the normality assumption is clearly far more misplaced

in the LAUSD data, highlighting the benefit of using the flexible method we propose. The

method adapts to the underlying distribution, which is unknown a priori.

Accounting for the Fact that VA is Estimated: The above policy analysis is based on

the presumption that we know true teacher VA and thus can distinguish teachers accurately

based on their quality. In reality, teacher VA is estimated. To account for this, we replace

the test score gains in equations (7.2) and (7.5) with their sample analogs.33 These sample

analogs are calculated via Monte Carlo simulation, assuming that we estimate both Φ̂α̂ and

F̂α̂ using three years of data for each teacher and assuming teachers all have class sizes of

twenty.

Under the PEB methodology, first we sample 40000 observations from N (0, σ2
α). Sec-

ond, for each sample observation, we generate the noisy data yj = αj + εj assuming

εj ∼ N (0, σ2
ε/(k · n)), where n represents yearly class sizes (set at 20) and k represents

the number of years of data for each teacher (set at 3). Third, we use the PEB estimator to

obtain an estimated VA, δPEBj , and calculate 1
40000

∑
j αj1{δPEBj > Φ̂−1

α̂ (q)} as an estimator

for T̂R(q), the sample analog of equation (7.4). By the law of large numbers, this produces

a consistent estimator for T̂R(q). Analogously, we sample VA from the distribution F , use

the NPEB method to obtain an estimator δNPEBj , and calculate T̂R(q) in a similar fashion.

Results based on these simulations are presented in Figure F.1. The policy gains fall

when using estimated rather than true VA since some teachers with true VA below the

fifth percentile are retained. The decrease in test score gains is relatively modest, however,

33For example, the marginal and total test score gains under α ∼ F (equation (7.5)) become:

M̂R(q) = −EF [α|α̂ < F̂−1
α̂ (q)] ,

T̂R(q) = EF [α1{α̂ ≥ F̂−1
α̂ (q)}] ,

where F̂α̂ is the empirical CDF for the estimated α̂.
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and is similar for both the PEB and NPEB methodologies. This is unsurprising since the

methodologies do not substantially affect the ranking of teachers (as discussed in Section

6.1) and so using estimated rather than true VA should affect them in a similar manner.

Table 4(b) reports these policy gains when true teacher VA is unobserved. Results are

very similar to the case when VA is observed by the policymaker: the PEB method overstates

the policy gains by seven percent in North Carolina and by fully twenty-seven percent in the

LAUSD data.

7.2 Policy Experiment II: Retention Policies

Next we consider policies that focus on high-VA teachers in the right tail of the dis-

tribution. Specifically, we examine policies that seek to retain these high-quality teachers,

who might otherwise leave the profession. We assume that if a high-quality teacher is not

retained, she is replaced with an average quality teacher (with a VA of zero). The total test

score gains from a policy that retains teachers whose VA is greater than or equal to the 1−q

percentile of the quality distribution are given by:

TR(q) = −
∫ F−1(1−q)

−∞
αf(α)dα . (7.7)

(Computational details are analogous to those for the ‘teacher release’ policy above.)

Tables 5(a) and 5(b) compare the policy gains for North Carolina and the LAUSD when

true teacher quality is observable and unobservable (respectively) to the policymaker. Anal-

ogously, Figure F.2 plots these gains. Here, at the far right tail of the distribution (i.e.,

the top three percent of teachers), the PEB methodology underestimates the policy gains

of targeting high-VA teachers by about five percent in North Carolina when true teacher

VA is unobserved (see columns (3) and (4)). Intuitively, this underestimation comes from

the fact that North Carolina’s teacher VA distribution features a fat right tail and so the

PEB method ‘believes’ there are fewer right-tail teachers than there actually are. As we

move away from the extreme right tail of the distribution (to around the fifth percentile),
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the tail becomes thinner and so the PEB methodology begins to overestimate the policy

gains of targeting high VA teachers. A similar story holds in the LAUSD data, although the

underestimation of the PEB estimator in the far right tail is less pronounced.

7.3 Extensions

With our data structure, according to which each teacher teaches one class of students

each year – a feature common in many education data sets – our methodology can be

extended to allow for either class-level shocks or drift in teacher quality. We note, however,

that our data structure does not allow us to account for both simultaneously.34 We focus

on extending our model to allow for class-level shocks rather than drift since the amount of

drift in both our data sets appears limited, consistent with prior research using these data

sets.35 That is, classroom shocks are quantitatively more important in our data.

Class-level Shocks: These are common shocks affecting everyone in a given classroom.

The proverbial example involves a dog barking outside the classroom window on test day,

lowering the test scores of all students in that class. Because teachers are unable to control

the dog barking in this example, these class-level shocks should not be attributed to the

teacher. Accounting for them acts to reduce dispersion in teacher VA estimates, as they

subsume some of the class-year variation that was previously attributed to teachers. Since

the variance of VA estimates falls once these shocks are incorporated, the policy gains from

targeting the tails of the teacher VA distribution are likely to decrease as teachers in the

tails are pulled closer to the mean. Our results below are consistent with this pattern.

Given that classrooms in our data are identified by unique teacher-year pairs, we rewrite

34To include both class-level shocks and drift, one would need data in which teachers taught multiple
classrooms in each year, as in Chetty et al. (2014a). Those authors are able to allow for class-level shocks
and drift for middle school teachers, observed to teach multiple classes each year.
35The small amount of drift (relative to Chetty et al. (2014a)) has been noted by Bacher-Hicks et al. (2014)

for the LAUSD data and by Rothstein (2017) for the North Carolina data.
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our model given by equation (2.2) as:

yijt = αj + θjt + εijt, i = 1, 2, . . . , njt, (7.8)

where yijt is student i’s residual test score, αj is teacher j’s VA, and θjt represent the class-

level shocks, which are independent of the student-level shocks, εijt.

Assuming classroom shocks are distributed normally with variance σ2
θ , it follows that the

teacher-year specific sample mean can be modeled as yjt = αj+νjt where νjt ∼ N(0, σ2
θ+ σ2

ε

njt
).

The teacher-specific fixed effect estimator yj is then constructed as before (see equation (2.3)),

except the weights hjt now become
(
σ2
θ + σ2

ε

njt

)−1

. The NPEB estimator, parallel to the result

in Theorem 2, can be expressed as follows:

Theorem 3 Given the model yjt = αj + νjt, with αj ∼ F , and νjt ∼ N (0, σ2
θ + σ2

ε/njt), the

fixed effect estimator for αj takes the form

yj =
∑
t

hjtyjt/
∑
t

hjt

with hjt =
(
σ2
θ + σ2

ε

njt

)−1

, and the estimator of αj that minimizes the Bayes risk under L2

loss takes the form

δNPBj = yj +
(∑

t

(
σ2
θ +

σ2
ε

njt

)−1)−1 ∂

∂y
log gj(y)|y=yj ,

where gj(·) is the marginal density of yj.

Proof. The proof is very similar to that of Theorem 2 and follows from the fact that the

fixed effects {yj} take the form yj = αj + νj, and νj ∼ N (0, (
∑

t hjt)
−1).

The above theorem assumes a normal distribution for both the classroom and student-

level shocks (i.e, θjt ∼ N (0, σ2
θ) and εijt ∼ N (0, σ2

ε )). Once again, we show that this is

not necessary in Appendix A.2, although it is imposed for estimation purposes, with the
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parameters σ2
θ and σ2

ε being estimated using maximum likelihood (as described in Appendix

D.2).

Results: We incorporate classroom shocks in our estimation of the distribution of teacher

quality. As expected, the addition of classroom shocks reduces the variance of our estimated

distribution, with this reduction being more pronounced in the LAUSD data relative to the

NC data. The reduction in variance is also larger when using the PEB methodology relative

to our nonparametric method.

Revisiting the policy evaluation, Figure F.3 displays the policy gains from releasing the

bottom q percent of teachers according to VA under both our nonparametric method and

the PEB methodology when teacher quality is observed, then unobserved, respectively. As

in the case without classroom shocks, the PEB methodology only overestimates policy gains

by a small margin in North Carolina, but substantially overestimates them in the LAUSD.

Relative to the model without classroom shocks, however, the overestimation in both data

sets is reduced. This occurs since the addition of classroom shocks reduces the variance in

the PEB methodology by more than in the NPEB methodology, and the q percent of teachers

being released under a low-variance distribution will tend to be of higher quality relative to

a high variance distribution.

Tables F.2(a) and F.2(b) report the estimated policy gains (along with their standard

errors) when true teacher VA is observed and unobserved to the policymaker, respectively.

When teacher VA is unobserved by the policymaker, the PEB method does not overestimate

policy gains in North Carolina under our benchmark policy that releases bottom-ventile

teachers (made bold in Table F.2(b)). In the LAUSD, however, policy gains are still overes-

timated by over sixteen percent.

Similarly, Tables F.3(a) and F.3(b) report the policy gains for teacher retention under the

classroom shocks model. Specifically, the PEB method underestimates policy gains (as for

the case without classroom shocks), with the degree of underestimation being higher than in

the model without classroom shocks (as the decreased variance in the PEB relative to NPEB
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methodology exacerbates the underestimation). Here, the PEB methodology underestimates

the policy gains of retention policies targeting top-ventile teachers by around 15-20 percent

(with this underestimation being more pronounced in the North Carolina data).

8 Conclusion

In this paper, we have proposed a new approach to estimating teacher VA that relaxes

the normality assumption embedded in the popular parametric Empirical Bayes method.

Our nonparametric Empirical Bayes approach is appealing in that it allows the underlying

distribution of teacher quality to be estimated directly, and in a computationally feasible

way using large data sets.

We applied the methodology to two separate administrative data sets in education, show-

ing that the estimated teacher VA distributions differed from each other and departed from

normality. We then explored the implications of these departures from normality in a range

of policy evaluations, showing that the benefits of teacher lay-off policies may be overstated

to a large degree (at least, in one of the two settings) and that the benefits of retention

policies may be overstated (in the other setting).

The nonparametric approach to estimation has broader applicability to other areas of

education research, where the underlying heterogeneity of students, teachers and schools is

intrinsic. For example, looking beyond the current application, our methodology is well-

suited to capturing dynamic policy-driven changes in underlying teacher quality distribu-

tions. Here, suppose that policymakers implemented a policy releasing teachers in the bot-

tom of the teacher VA distribution every year. Under such a policy, the left tail of the

teacher quality distribution would necessarily become truncated. When imposing a normal-

ity assumption in this case, ‘fitting the data’ would then require lowering the VA of teachers

near the truncation point to ‘create’ a left tail, thereby underestimating the VA of teachers

at the bottom of the distribution, in turn likely overestimating the gains of continuing the

policy. Given that our method estimates such changes in the underlying teacher quality
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distributions flexibly, it should provide sharper predictions regarding the continuing policy

gains associated with implementing such dynamic reforms.

Our analysis has served to underline the notion that analytical convenience need no

longer weigh on the side of assuming normality when applying empirical Bayes methods.

The NPEB approach is relevant in a variety of other settings where parametric empirical

Bayes methods have been used. These include, to date, the estimation of non-cognitive

teacher effects (Jackson, 2018; Petek and Pope, 2018), school quality (Angrist et al., 2017;

Bruhn, 2020), neighborhood effects (Chetty and Hendren, 2018), discrimination (Goncalves

and Mello, 2018), physician effects (Fletcher et al., 2014), and hospital effects (Chandra

et al., 2016; Hull, 2020). As large-scale panel data sets become more widely available in

various fields, so the range of feasible applications using the nonparametric empirical Bayes

approach is likely to increase. To that end, we have written, and are making available, code

that will allow researchers to implement the NPEB method in other contexts.
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Figure 1: Example of Shrinkage under Parametric and Nonparametric Empirical Bayes
Estimators
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Notes: This figure plots the amount of Bayesian ‘shrinkage’ as a function of the fixed effect estimates for the PB and NPEB

estimators respectively. The shrinkage rule for the PB estimator is given by
σ2
α

σ2
α+σ2

ε/
∑
t njt

from equation (2.5); for the NPB

estimator, it is given by the second term in equation (2.7). It does so for the mixed normal distribution specified in equation
(2.8), given by αj ∼ 0.98N (0, 0.03) + 0.01N (−1, 0.03) + 0.01N (1, 0.03). The total class size for each teacher is set at twenty
and σ2

ε is set at 0.25. Fixed effects take values in the range [−2, 2]. The horizontal dashed line represents no shrinkage being
applied, while the vertical dashed lines represent the mass points in the distribution at −1 and +1.
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Figure 2: Boxplots of Fixed Effects and Shrinkage under Nonparametric Empirical Bayes

Fixed Effect Boxplots
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(b) LAUSD
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Nonparametric Empirical Bayes (NPEB) Shrinkage Boxplots

(c) North Carolina
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(d) LAUSD
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Notes: Figures 2(a) and 2(b) give the raw fixed effect estimates by the number of times a teacher appears in the data.
Specifically, each panel displays a boxplot of fixed effect estimates for teachers who appear once, twice, three times or more
than three times in our North Carolina and LAUSD datasets, respectively. Figures 2(c) and 2(d) then show boxplots of the
amount of shrinkage applied by our NPEB estimator to teachers who appear once, twice, three times or more than three times
in our North Carolina and LAUSD datasets, respectively. (Boxplots use the box to indicate the interquartile range between the
first and third quartile and use whiskers to indicate the first (respectively, third) quartile minus (plus) the interquartile range
multiplied by 1.5. Outliers beyond this range are shown with dots.)
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Figure 3: Estimated Teacher Quality Distributions using Nonparametric Empirical Bayes

North Carolina

(a) Estimated VA Distribution
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(b) Cube Root of Estimated VA Distribution

−1.0 −0.5 0.0 0.5 1.0 1.5

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Teacher Value-Added (α)

C
u
b
e
 R

o
o
t 
o
f 
N

P
M

L
E

 D
e
n
s
it
y
 o

f 
T

e
a
c
h
e
r 

V
a
lu

e
 -

A
d
d
e
d
 D

is
tr

ib
u
ti
o
n
 (

F
1
/3
)

^

LAUSD

(c) Estimated VA Distribution
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(d) Cube Root of Estimated VA Distribution
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Notes: Figures 3(a) and 3(c) display the estimated distribution of teacher quality (VA), F̂ , for North Carolina and the LAUSD,
respectively. These distributions are estimated nonparametrically using equation (3.1). In order to better see tail behavior,
Figures 3(b) and 3(d) take a cube root of the estimated VA distribution to boost the tails of the distribution for North Carolina
and the LAUSD, respectively.
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Figure 4: Empirical Bayes ‘Shrinkage’ for Fixed Class Size
(class size = 20)

(a) North Carolina
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(b) LAUSD
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Notes: Figures 4(a) and 4(b) show fixed effect estimates relative to the Bayes estimates for both the parametric (PEB) and
nonparametric empirical Bayes (NPEB) methodologies. The dotted line represents the 45 degree line and indicates where the
fixed effect and empirical Bayes estimates agree. Since the amount of Bayes ‘shrinkage’ applied depends on the total number
of students taught by the teacher, we display the rule for a representative teacher who has taught a total class size of twenty
students. The vertical dashed lines represent the 5th and 95th percentiles of teacher VA estimates according to the fixed effect
estimates to delineate the tails of the value-added distribution.
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Figure 5: Test Scores Gains from Replacing the Bottom q Percentile of Teachers

North Carolina

(a) Marginal Test Score Gain
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(b) Total Test Score Gains
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(c) Marginal Test Score Gain
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(d) Total Test Score Gains
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Notes: Figures 5(a) and 5(b) show the marginal and total test score gains of a policy that releases the bottom q% of teachers
in North Carolina, while figures 5(c) and 5(d) do the same for the LAUSD. The dotted lines indicate the policy gains expected
under the PEB methodology assuming that α ∼ N (0, σ2

α), where σ2
α is estimated from the data. The solid lines denote the

policy gains expected under our NPEB methodology where we allow α ∼ F , with F being estimated directly from the data
using equation (3.1). Policy gains reported here assume that policymakers observe true underlying value-added; Figure F.1
presents the estimated gains if value-added is estimated rather than observed.
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Table 1(a): Simulation – True Distribution is Normal

Homogeneous Class Sizes Heterogeneous Class Sizes
(Class Size of 20) (Class Size 20-40)

Infeasible NPEB PEB FE Infeasible NPEB PEB FE

Mean Squared
10.81 10.87 10.81 12.50 11.03 11.07 11.03 12.84

Error

Table 1(b): Simulation – True Distribution is Mixed Normal

Homogeneous Class Sizes Heterogeneous Class Sizes
(Class Size of 20) (Class Size 20-40)

Infeasible NPEB PEB FE Infeasible NPEB PEB FE

Mean Squared
9.08 9.14 10.82 12.51 7.14 7.18 8.29 9.36

Error

Table 1(c): Simulation – True Distribution is Chi-Squared

Homogeneous Class Sizes Heterogeneous Class Sizes
(Class Size of 20) (Class Size 20-40)

Infeasible NPEB PEB FE Infeasible NPEB PEB FE

Mean Squared
7.44 7.45 10.82 12.51 5.79 5.79 8.30 9.37

Error

Notes: The panels in this table report simulation results comparing (across the columns) the performance of the three candidate
estimators against an infeasible benchmark on the basis of mean squared error. The infeasible benchmark is the optimal estimator
when the true distribution is known to the econometrician (although unknown in practice). The three candidate estimators
are: the nonparametric empirical Bayes (NPEB) estimator, which estimates the underlying distribution nonparametrically; the
parametric empirical Bayes (PEB) estimator, which assumes that the underlying distribution is normal; and the fixed effect
(FE) estimator, which applies no empirical Bayes shrinkage. In Table 1(a), teacher VA is normally distributed with mean zero
and variance 0.05 (i.e., F ∼ N (0, 0.05)). In Table 1(b), true teacher quality follows F ∼ 0.98N (0, 0.03) + 0.01N (−1, 0.03) +
0.01N (1, 0.03) (as in the example given by equation (2.8)). The normal and mixed normal distributions have the same mean
and variance for comparability. In Table 1(c), teacher value-added follows F ∼ χ2

1. The simulations average results from 500
repetitions with 10,000 individual teachers setting σ2

ε = 0.25. Results are reported on the left side of each panel ((a)-(c)) for
homogeneous class sizes (where every teacher has a class size of twenty) and on the right side, for heterogeneous class sizes (where
class sizes are drawn randomly from the set {20, 40} with equal probability).
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Table 2: Summary Statistics

North Carolina LAUSD

Full Value-Added Full Value-Added
Sample1 Sample Sample2 Sample

(1) (2) (3) (4)

Mean of Student Characteristics

Math Score (σ) 0.00 0.05 0.00 0.07

Reading Score (σ) 0.00 0.03 0.00 0.06

Lagged Math Score (σ) 0.01 0.03 0.03 0.08

Lagged Reading Score (σ) 0.01 0.03 0.03 0.07

% White 57.8 60.1 9.3 9.1

% Black 28.8 27.9 9.9 8.6

% Hispanic 7.4 6.5 74.0 75.5

% Asian 2.0 1.9 4.3 4.4

% Free or Reduced Price Lunch3 46.3 44.6 77.9 78.2

% English Learners 4.3 3.5 28.0 28.9

% Repeating Grade 1.5 1.5 1.5 0.4

Parental Education:4

% High School Dropout 11.5 10.6 34.5 34.4

% High School Graduate 47.31 47.0 27.6 27.8

% College Graduate 25.4 25.9 20.1 20.0

Teacher Experience:5

0-2 Years of Experience 18.6 18.8 4.9 4.8

3-5 Years of Experience 15.3 15.6 10.5 10.3

# of Students 1,847,615 1,386,555 810,753 664,044

# of Teachers 76,503 35,053 15,267 11,078

Observations6 4,457,812 2,680,027 1,707,459 1,280,569
(student-year)

Notes:
1 North Carolina data coverage: grades 4-5 from 1996-97 through 2010-11 and grade 3 from 1996-97

through 2009-10. The difference in sample sizes between columns (1) and (2) is because we drop 1.37
million student-year observations who we cannot match to their classroom teacher (see Appendix B for
more detail).

2 Los Angeles Unified School District (LAUSD) data coverage: grades 4-5 from 2003-04 through 2012-13
and 2015-16 through 2016-17 school years and third grade from 2003-04 through 2012-13.

3 For North Carolina this variable is missing for school years 1996-97 through 1997-98.
4 The omitted category is ‘Some College,’ and ‘College Graduate’ also incorporates those with graduate

school degrees. For North Carolina, parental education data are missing after the 2005-06 school year,
while thirty percent of observations in the LAUSD are missing parental education data or have parental
education recorded as “Decline to Answer.”

5 The omitted category is ‘Greater than 5 Years of Experience.’ For the full sample, teacher experience
data are missing for about twenty and fifteen percent of observations for North Carolina and LAUSD,
respectively.

6 Data are missing for some observations. For North Carolina (full sample), test scores are missing for
three percent of observations, lagged test scores for twelve percent, with most other other demographic
variables missing for about one percent of observations. For the LAUSD (full sample), lagged test scores
are missing for about six percent of observations with data coverage for all other variables near one
hundred percent. 48



Table 3(a): Predicted Performance of Nonparametric Empirical Bayes (NPEB), Parametric
Empirical Bayes (PEB) and Fixed Effects – North Carolina Data

NMSE TMSE

# of Prior
NPEB

PEB Fixed
NPEB

PEB Fixed

Years Used Effects Effects

t = 1 1.0096 1.0098 1.2236 0.0378 0.0378 0.0486

t = 2 0.8613 0.8715 0.9397 0.0304 0.0309 0.0343

t = 3 0.7784 0.7872 0.8229 0.0261 0.0265 0.0283

t = 4 0.7704 0.7767 0.7998 0.0259 0.0262 0.0273

t = 5 0.7651 0.7708 0.7857 0.0257 0.0260 0.0267

t = 6 0.7532 0.7573 0.7687 0.0250 0.0252 0.0258

t = 7 0.7255 0.7294 0.7372 0.0240 0.0242 0.0245

t = 8 0.7123 0.7161 0.7240 0.0236 0.0238 0.0242

Table 3(b): Predicted Performance of Nonparametric Empirical Bayes (NPEB), Parametric
Empirical Bayes (PEB) and Fixed Effects – LAUSD Data

NMSE TMSE

# of Prior
NPEB

PEB Fixed
NPEB

PEB Fixed

Years Used Effects Effects

t = 1 1.6205 1.6180 1.7975 0.0631 0.0630 0.0714

t = 2 1.4030 1.4084 1.4634 0.0526 0.0529 0.0554

t = 3 1.3865 1.3902 1.4138 0.0510 0.0512 0.0523

t = 4 1.3929 1.3970 1.4138 0.0513 0.0514 0.0522

t = 5 1.3852 1.3869 1.3978 0.0505 0.0506 0.0511

t = 6 1.4984 1.4999 1.5066 0.0538 0.0538 0.0541

t = 7 1.5209 1.5221 1.5306 0.0539 0.0539 0.0543

t = 8 1.4249 1.4254 1.4331 0.0496 0.0496 0.0499

Notes: Smaller values indicate better prediction performance, with NMSE (see equation (6.1)) and TMSE (equation (6.2))
representing normalized mean squared error and total mean squared error, respectively. Tables 3(a) and 3(b) report out-of-
sample prediction errors in the North Carolina and LAUSD datasets for three different estimators: nonparametric empirical
Bayes (NPEB), parametric empirical Bayes (PEB) and fixed effects. To deal with the variation in class size that teachers face
across years, we use NMSE and TMSE as proposed by Brown (2008). The prediction performance is calculated by calculating
the squared error distance (plus an adjustment term for class size) between the true outcome of teacher j in period t+1 and
the outcome predicted for teacher j utilizing all past information relating to her teaching performance from period t minus the
number of prior years used up until the t-th period. For each row, we subset the data so that each teacher is observed for at
least t+1 periods.
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Table 4(a): Test Scores Gains from Releasing Bottom q% of Teachers
True VA Observed

North Carolina Data LAUSD Data

% Teachers Test Gain Test Gain Test Gain Test Gain

Released under F under Normal under F under Normal

(q) (NPEB) (EB) (NPEB) (EB)

(1) (2) (3) (4)

1 0.0058 0.0058 0.0066 0.0083

(0.0001) (0.0000) (0.0002) (0.0001)

3 0.0142 0.0147 0.0171 0.0213

(0.0002) (0.0001) (0.0003) (0.0002)

5 0.0212 0.0224 0.0261 0.0323

(0.0002) (0.0001) (0.0004) (0.0002)

7 0.0272 0.0291 0.0342 0.0420

(0.0003) (0.0001) (0.0004) (0.0003)

9 0.0326 0.0352 0.0415 0.0508

(0.0003) (0.0002) (0.0005) (0.0004)

Table 4(b): Test Scores Gains from Releasing Bottom q% of Teachers
True VA Unobserved

North Carolina Data LAUSD Data

% Teachers Test Gain Test Gain Test Gain Test Gain

Released under F under Normal under F under Normal

(q) (NPEB) (EB) (NPEB) (EB)

(1) (2) (3) (4)

1 0.0056 0.0059 0.0064 0.0086

(0.0001) (0.0001) (0.0001) (0.0001)

3 0.0137 0.0145 0.0166 0.0213

(0.0003) (0.0002) (0.0003) (0.0002)

5 0.0203 0.0219 0.0254 0.0322

(0.0003) (0.0003) (0.0003) (0.0003)

7 0.0261 0.0284 0.0332 0.0417

(0.0004) (0.0004) (0.0004) (0.0004)

9 0.0312 0.0342 0.0405 0.0503

(0.0005) (0.0005) (0.0005) (0.0005)
Notes: Table 4(a) displays the estimated gains in mathematics scores in terms of student-level standard deviations of a policy
that releases the bottom q% of teachers and replaces them with mean quality teachers when true teacher quality is observed
by the policymaker. Reported policy gains are those also plotted in Figure 5. ‘Test score gain under F ’ reports the test
score gain of the policy when teacher quality is distributed according the distribution F – nonparametrically estimated using
equation (3.1) – and applying the NPEB estimator to calculate value-added. ‘Test score gain under normal’ reports the test
score gain when teacher quality is normally distributed and the PEB estimator is used to calculate teacher value-added. Table
4(b) repeats the exercise when the true teacher quality is unobserved to the policymaker and so teacher releases are based on
estimated (rather than true) value-added. These gains are the same as those in Figure F.1 and are calculated via Monte Carlo

simulation with 40,000 observations under the assumption that we estimate Φ̂α̂ and F̂α̂ using three years of data for each
teacher and assuming teachers all have class sizes of twenty. The bolded line indicates the widely-analyzed release bottom five
percent teachers policy. Standard errors are calculated using bootstrap as described in Appendix C.
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Table 5(a): Test Scores Gains of Policy Retaining Top 1−q Percentile Teachers
True VA Observed

North Carolina Data LAUSD Data

% Teachers Test Gain Test Gain Test Gain Test Gain

Retained under F under Normal under F under Normal

(1− q) (NPEB) (EB) (NPEB) (EB)

(1) (2) (3) (4)

1 0.0061 0.0058 0.0084 0.0083

(0.0001) (0.0000) (0.0002) (0.0001)

3 0.0147 0.0148 0.0206 0.0213

(0.0002) (0.0001) (0.0003) (0.0002)

5 0.0219 0.0224 0.0307 0.0323

(0.0002) (0.0001) (0.0005) (0.0002)

7 0.0281 0.0291 0.0394 0.0420

(0.0003) (0.0001) (0.0005) (0.0003)

9 0.0335 0.0352 0.0473 0.0508

(0.0003) (0.0002) (0.0006) (0.0004)

Table 5(b): Test Scores Gains of Policy Retaining Top 1−q Percentile Teachers
True Value-Added Unobserved

North Carolina Data LAUSD Data

% Teachers Test Gain Test Gain Test Gain Test Gain

Retained under F under Normal under F under Normal

(1− q) (NPEB) (EB) (NPEB) (EB)

(1) (2) (3) (4)

1 0.0060 0.0052 0.0084 0.0076

(0.0001) (0.0001) (0.0002) (0.0001)

3 0.0143 0.0137 0.0204 0.0202

(0.0003) (0.0002) (0.0004) (0.0002)

5 0.0212 0.0210 0.0302 0.0309

(0.0003) (0.0003) (0.0005) (0.0003)

7 0.0271 0.0274 0.0388 0.0404

(0.0004) (0.0004) (0.0005) (0.0004)

9 0.0324 0.0333 0.0465 0.0490

(0.0005) (0.0005) (0.0006) (0.0004)
Notes: Tables 5(a) displays the estimated gains in mathematics scores in terms of student level standard deviations of a policy
that retains the top q% of teachers rather than having them leave teaching and be replace by a mean quality teacher when
true teacher quality is observed by the policymaker. ‘Test score gain under F ’ reports the test score gain of the policy when
teacher quality is distributed according the distribution F – nonparametrically estimated using equation (3.1) – and applying
the NPEB estimator to calculate value-added. ‘Test score gain under normal’ reports the test score gain when teacher quality
is normally distributed and the PEB estimator is used to calculate teacher value-added. Table 5(b) repeats the exercise when
the true teacher quality is unobserved to the policymaker and so teacher retentions are based on estimated (rather than true)
value-added. These gains are calculated via Monte Carlo simulation with 40,000 observations under the assumption that we
estimate Φ̂α̂ and F̂α̂ using three years of data for each teacher and assuming teachers all have class sizes of twenty. Reported
policy gains in both tables are identical to those shown in Figure F.2. Standard errors are calculated using bootstrap as
described in Appendix C.
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A General Deconvolution Proof with Panel Data

This appendix sets out the general deconvolution proof for the teacher VA model, first

without, then with, classroom shocks.

A.1 Teacher VA model without classroom shocks

Assumption 1 Y1 = α + ε1 and Y2 = α + ε2 where Y1 and Y2 are random variables with

joint pdf f(·, ·), α is a random variable with pdf g(·), and ε1 and ε2 are random variables

from the same pdf h(·) with mean zero.

Assumption 2 α, ε1, and ε2 are mutually independent.

Assumption 3 The characteristic functions φα(·) and φε(·) of α and ε are nonvanishing

everywhere.

Lemma 1 (Kotlarski (1967)) Under Assumption 1-3, the pdf ’s of α and ε are uniquely

determined by the joint distribution of (Y1, Y2). In particular, let ψ(u, v) be the characteristic

function of the random vector (Y1, Y2), φα(t) the characteristic function of α, and φε(t) the

characteristic function of ε, then

φα(t) = exp

∫ t

0

∂ψ(0, v)/∂u

ψ(0, v)
dv

φε(t) =
ψ(t, 0)

φα(t)
=
ψ(0, t)

φα(t)
.

Proof. Using equation (2.64) in Rao (1992), we have

log φα(t) = iE[α]t+

∫ t

0

∂

∂u

(
log

ψ(u, v)

ψ(u, 0)ψ(0, v)

)
u=0

dv.
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where i is the imaginary root. Using the fact that

∂

∂u

(
log

ψ(u, v)

ψ(u, 0)ψ(0, v)

)
u=0

=
∂ψ(0, v)/∂u

ψ(0, v)
− ∂ψ(0, 0)/∂u

ψ(0, 0)

and that ∂ψ(0,0)/∂u
ψ(0,0)

= iE(Y1), we have

log φα(t) = iE[α]t+

∫ t

0

∂ψ(0, v)/∂u

ψ(0, v)
dv − iE(Y1)t =

∫ t

0

∂ψ(0, v)/∂u

ψ(0, v)
dv,

where the second equality holds because ε1 has mean zero under Assumption 1.

Additionally, under Assumptions 1- 3, we have

ψ(u, v) = φα(u+ v)φε(u)φε(v).

Let u = 0, then φε(v) = ψ(0, v)/φα(v); and letting v = 0, then φε(v) = ψ(u, 0)/φα(u).

We note that Assumption 1 can be relaxed further to allow ε1 and ε2 to have differ-

ent pdf’s. (Recently, a relaxation of Assumption 3 is discussed in Evdokimov and White

(2012).) Li and Vuong (1998) proposed a nonparametric plug-in estimator for φα(t) and

φε(t) through the nonparametric estimator for ψ(·, ·), based on J independent observations

{(y1j, y2j)}j=1,...,J of (Y1, Y2), defined as

ψ̂(u, v) =
1

J

J∑
j=1

exp(iuy1j + ivy2j)

where, again, i is the imaginary unit. We then apply the inverse Fourier transform on φα(t)

and φε(t), yielding the density functions of α and ε.

Corollary 4 Consider the general repeated measurement model,

Yjs = αj + εjs, j = 1, 2, . . . , J and s = 1, 2, . . . , nj,
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where α is a random variable with pdf g(·) and the εs (with s = 1, 2, . . . , nj) are random vari-

ables from the same pdf h(·) with mean zero. If nj ≥ 2, α and εs are mutually independent,

and the characteristic functions φα(·) and φε(·) are nonvanishing everywhere, then the pdf’s

of α and ε are nonparametrically identified.

The above corollary applies for the teacher value-added model without classroom shocks,

with j indexing teachers and nj being the total number of students taught by teacher j. We

can naturally construct the nonparametric estimator for ψ(·, ·) as

ψ̂(u, v) =
1

J

J∑
j=1

1

nj(nj − 1)

∑
1≤s1 6=s2≤nj

exp(iuyjs1 + ivyjs2).

A.2 Teacher VA model with classroom shocks

The above reasoning can be extended to the case where we allow for classroom shocks.

To that end, we make three further assumptions:

Assumption 4 Y11 = α+θ1+ε11, Y21 = α+θ1+ε21, Y12 = α+θ2+ε12, and Y22 = α+θ2+ε22

where Y11, Y21, Y12, and Y22 are random variables with joint pdf f(·, ·, ·, ·), α is a random

variable with pdf g(·), θ1 and θ2 are random variables from the same pdf q(·) with mean zero

and ε11, ε12, ε21, and ε22 are random variables from the same pdf h(·) with mean zero.

Assumption 5 α, θ1, θ2, ε11, ε12, ε21, and ε22 are mutually independent.

Assumption 6 The characteristic functions φα(·), φθ(·) and φε(·) of α, θ and ε are nonva-

nishing everywhere.

Lemma 2 Under Assumptions 4 - 6, the pdf’s of α, θ and ε are uniquely determined by the

joint distribution (Y11, Y12, Y21, Y22).

Proof. We use Lemma 1 three times. First, denote Z1 = α + θ1 and Z2 = α + θ2. Lemma

1 implies that the joint distribution (Y11, Y21) uniquely determines the pdf of Z1 and ε and
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the joint distribution (Y12, Y22) uniquely determines the pdf of Z2 and ε. Now letting the

characteristic function of (Y11, Y12) be denoted as ψY11Y12(t1, t2), we have

ψY11Y12(t1, t2) = E[exp[i(t1(Z1 + ε11) + t2(Z2 + ε12))]]

= φZ1Z2(t1, t2)φε(t1)φε(t2),

where φZ1Z2(·, ·) is the characteristic function of the random vector (Z1, Z2). The second

equality holds under Assumption 4.

Since we have already identified the characteristic function φε, the characteristic function

of (Z1, Z2) is therefore identified. Now apply Lemma 1 again on

Z1 = α + θ1

Z2 = α + θ2

to identify the densities of α and θ.

Lemma 2 applies to the more general teacher value-added model with classroom shocks:

yijt = αj + θjt + εijt,

where i now indexes students, j indexes teachers and t indexes the academic year. With

E[θjt] = 0 and E[εijt] = 0 and assuming that α, θjt, and εijt are mutually independent of

each other, the pdf’s of α, θ, and ε are nonparametrically identified.
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B Construction of the Teacher Value-Added Sample

This appendix describes the construction of the final sample of students and teachers

used for teacher VA estimation in both of our administrative data sets. Sample selection

follows prior work (for instance, Chetty et al. (2014a,b)), the main requirements for inclusion

in the sample being that the student has a valid score in a given subject both in the current

and prior period, and can be matched to a teacher in that subject.

B.1 North Carolina

For North Carolina, we follow Clotfelter et al. (2006) and subsequent research using

North Carolina data to construct our sample. We start with the entire enrollment history

of students in North Carolina for grades 4-5 over the 1996-97 through 2010-11 school years

and grade 3 over the 1996-97 through 2009-10 school years.36 These data cover roughly 1.85

million students with 4.5 million student-year observations.

For demographics, we have information about parental education (six education groups,

1996-97 through 2005-06 only), economically disadvantaged status (1998-99 through 2010-

11 only), ethnicity (six ethnic groups), gender, limited English status, disability status,

academically gifted status and grade repetition. Besides the missing data in some years for

parental education and economically disadvantaged status our demographic data cover over

99 percent of all student-year observations. Whenever demographic information is missing,

we create a missing indicator for that variable.

We then make several sample restrictions. First, we drop the 1.37 million student-year

observations we identify as having an invalid teacher. This is by far our biggest sample

restriction and comes from the fact that we assign teachers to students based on the person

recorded as proctoring the student’s exam. To ensure the teacher proctoring the exam

is the same as the classroom teacher, we confirm that the proctor is teaching a primary

36Our analysis is restricted to students in third through fifth grade since our data records the test proctor
and the teacher recorded as the test proctor is typically the teacher who taught the students throughout the
year in these grades. Data for grade 3 stops after 2008-09 because the grade 3 pretest was discontinued after
that year. Grade 3 students in 2005-06 are also omitted due to a lack of the pre-test in the administrative
data for that year.
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grade mathematics and English class. If the teacher is not, we drop the observations as we

are no longer confident of matching classes to teachers correctly. Second, we drop charter

school classrooms and special education classrooms, leading to a loss of an additional 70,000

student-year observations. Third, we drop 16,000 observations where we lack data on teacher

experience. Fourth, we exclude 380,000 observations that lack a valid current or lagged test

score in that subject, with half of this loss coming from a lack of third grade mathematics

pretest data in 2005-06 and third grade English pretest data in 2007-08 due to a statewide

test update.37 Fifth, we only include classes with more than seven but fewer than forty

students with valid current and lagged test scores in that subject, creating a loss of 10,000

observations.38 Our final sample consists of roughly 2.7 million student-year observations,

covering 1.4 million students and 35,000 teachers.

B.2 Los Angeles Unified School District (LAUSD)

For the LAUSD, we start with the entire enrollment history of students in the district

for grades 4-5 over the 2003-04 through 2012-13 and 2015-16 through 2016-17 school years

and third grade from 2003-04 through 2012-13. These data cover roughly 800,000 students

with 1.7 million student-year observations.

For demographics, we have information about parental education (five education groups),

economically disadvantaged status, ethnicity (seven ethnic groups), gender, limited English

status, age, and an indicator for skipping or repeating a grade. Demographic coverage is ap-

proximately one hundred percent for all demographic variables with the exception of parental

education, which is missing for twenty-nine percent of the sample. Whenever parental edu-

cation is missing, we create a missing indicator for that variable.

We then make several sample restrictions. First, we drop 100,000 student-year observa-

tions that cannot be matched to a teacher. Second, we drop 180,000 observations where we

lack data on teacher experience. The data we drop here are over-represented in early years

37The third grade pretest is a test given to students at the start of third grade.
38As the last two restrictions are subject-specific, our sample for English value-added has 50,000 fewer

student-year observations.
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since we only have teacher experience data from 2007-08 onwards.39 Third, we only include

classes with more than seven but fewer than forty students with valid current and lagged test

scores in that subject, losing 11,000 observations. Fourth, we exclude 70,000 observations

that lack a valid current or lagged test score in that subject.40 Our final sample is roughly

1.3 million student-year observations, covering roughly 660,000 million students and 11,000

teachers.

Constructing Value-Added: With both samples in hand, we construct VA estimates for

each teacher by running the following regression:

yigt = f1g(yi,t−1) + f2(ej(i,g,t)) + φ1Xigt + φ2X̄c(i,g,t) + vj + εigt .

We follow Chetty et al. (2014a,b) and parametrize the control function for lagged test

scores f1g(yi,t−1) with a cubic polynomial in prior-year scores in mathematics and English

and interact these cubics with the student’s grade level. When prior test scores in the other

subject are missing, we set the other subject prior score to zero and include an indicator

for missing data in the other subject interacted with the controls for prior own-subject test

scores.

We parametrize the control function for teacher experience f2(ej(i,g,t)) using dummies for

years of experience from 0 to 5, with the omitted group being teachers with 6 or more years

of experience. The student-level control vector Xigt consists of the respective demographic

variables in each dataset. The class-level control vector X̄c(i,g,t) includes (i) class size, (ii)

cubics in class and school-grade means of prior-year test scores in mathematics and English

each interacted with grade, (iii) class and school-year means of all the individual covariates,

Xigt, and (iv) grade and year dummies.

39We assume teacher experience for teachers before 2007-08 is given by their experience in 2007-08 minus
the number of years until 2007-08, but we cannot get teacher experience data for any teacher who left before
2007-08. We lose approximately 30% of observations in 2003-04, 25% in 2004-05, 17% in 2005-06, 10% in
2006-07. Every year thereafter we continue to lose about 3-5% of observations due missing values for teacher
experience.
40As the last two restrictions are subject-specific, our sample for English VA has 4,000 fewer student-year

observations.
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C Bootstrapping the Standard Errors

This appendix discusses the bootstrapped standard errors generated for the policy eval-

uations. The uncertainty of the policy analysis, test score gains under teacher release or

retaining policy, stems from the fact that the distribution of the teacher quality – either

nonparametrically identified from the data or under the parametric assumption of Gaussian

– requires estimation using the data. We apply the bootstrap method in Laird and Louis

(1987) to construct standard errors for these policy evaluation estimates.

For policy estimates under general distribution F , the following steps describe the boot-

strap procedure: (1) Draw a new independent sample of teacher quality of the same size as

the original sample from distribution F̂ and generate a bootstrap sample of the fixed effect

estimates y
(b)
j for j = 1, 2, . . . , n based on model (2.4); (2) Estimate the nonparametric MLE

of F̂ (b) based on the bootstrap sample y(b) and calculate the marginal and total test score

gains based on F̂ (b). Repeat these steps for B = 800 times and calculate the standard error

based on these bootstrap estimates of policy outcomes.

If the teacher quality is assumed to be unobserved and thus the cutoff for the bottom or

top q percentile of quality needs to be found from the empirical quantiles of the estimates

of the teacher value added, for each bootstrap distribution F̂ (b) conduct step (3): take an

independent sample of teacher quality of size 40000 from distribution F̂ (b) and generate data

based on model (2.4) with total class size equal to sixty. Construct the NPEB estimator of

the value added and apply the policy of releasing or retaining based on empirical quantiles

of the NPEB estimates of the teacher VA.

If we assume the quality distribution is normal, the following steps are taken to construct

the bootstrap standard errors: (1) Draw a new independent sample of teacher quality of

the same size as the original sample from N (0, σ̂2
α) where σ̂2

α is the maximum likelihood

estimator of variance of the normal distribution based on the respective dataset from North

Carolina and the LAUSD. Then generate a bootstrap sample of the fixed effect estimates y
(b)
j

based on model (2.4); (2) Estimate σ̂
2(b)
α using the maximum likelihood estimator applied

to the bootstrapped sample y
(b)
j and calculate the marginal and total test score gains based
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on N (0, σ̂
2(b)
α ). If teacher quality is assumed to be unobserved, conduct step (3): take an

independent sample of teacher quality of size 40000 from N (0, σ̂
2(b)
α ) and generate data based

on model (2.4) with total class size equals to sixty. Construct the EB estimator of the value

added and apply the policy of releasing or retaining teachers based on empirical quantiles of

the EB estimates of teacher VA.
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D Maximum Likelihood Estimation of Variance Pa-

rameters

D.1 Without Classroom Shocks

Our model without classroom shocks is specified as:

yijt = αj + εijt ,

with i indexing students, j indexing teachers and t indexing the years for which teachers

appear in the sample. We assume that εijt ∼iid N (0, σ2
ε ) and εijt is independent of αj. We

have i = 1, 2, . . . , njt, j = 1, . . . , J and t = 1, . . . , Tj (i.e., an unbalanced panel of teachers).

Denote the teacher-year fixed effect yjt = 1
njt

∑
i yijt. The estimator commonly used in

the literature is the following method of moment estimator proposed by Kane and Staiger

(2008) under the additional assumption that αj ∼ N(0, σ2
α). In particular, they propose the

following method of moment estimator for the variance parameters:

σ̂2
α = ĉov(yjt, yjt−1)

σ̂2
ε = V̂ (yijt)− σ̂2

α

This is also the estimator used by Chetty et al. (2014a) for teacher VA without drift. The

main shortcoming of the method of moment estimator for the variance parameters is that

it requires all individual teachers to have shown up in the sample for at least 2 years;

otherwise, they will be dropped from the covariance calculation. For North Carolina data,

teachers who only appear for one year consist of around 30% of the whole sample. This

induces a sample selection issue for the estimation of σ2
α. We therefore propose the following

maximum likelihood estimators for the variance parameters.

Maintaining a general distribution F for α, denote the vector ~yjt = (y1jt, y2jt, . . . , ynjtjt)
′,

the likelihood of observing residual test outcome ~yjt for teacher j in period t can be written
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as

L(~yjt) =

∫ ( 1√
2πσ2

ε

)njt
exp

(
−
∑
i

(yijt − yjt + yjt − αj)2/2σ2
ε

)
dF (αj)

=
( 1√

2πσ2
ε

)njt ∫
exp

(
−
∑
i

(yijt − yjt)2/2σ2
ε

)
exp

(
− (yjt − αj)2

2σ2
ε /njt

)
dF (αj)

=
1
√
njt

( 1√
2πσ2

ε

)njt−1

exp(−
∑
i

(yijt − yjt)2/2σ2
ε

)∫ 1√
2πσ2

ε /njt
exp

(
− (yjt − αj)2

2σ2
ε /njt

)
dF (αj)

≡ L1(~yjt|yjt, σ2
ε )

∫
L2(yjt|σ2

ε , αj)dF (αj)

When F is assumed to be the normal distribution with variance σ2
α, then the second com-

ponent involving the integral becomes

∫
L2(yjt|σ2

ε , αj)dF (αj) =
1√

2π(σ2
α + σ2

ε/njt)
exp

(
−

y2
jt

2(σ2
α + σ2

ε/njt)

)
:= L̃2(yjt|σ2

ε , σ
2
α)

Therefore, under the normality assumption, the maximum likelihood estimator for (σ2
ε , σ

2
α)

can be obtained by maximizing
∏

j

∏
t L1(~yjt|yjt, σ2

ε )L̃2(yjt|σ2
ε , σ

2
α) numerically. Unlike the

method of moment estimator, here all individuals, including those only have one period of

data, are accounted for.

When F is a general distribution not indexing by any parameters, we can obtain an

estimator for σ2
ε through

σ̂2
ε =

∑
j

∑
t

∑
i(yijt − yjt)2∑

j

∑
t(njt − 1)

.

D.2 With Classroom Shocks

Our model with classroom shocks is specified as:

yijt = αj + θjt + εijt ,

with i indexing students, j indexing teachers and t indexing years for which teachers appear

in the sample. We assume that θjt ∼ N (0, σ2
θ) and εijt ∼ N (0, σ2

ε ) and mutual independence

between αj, θjt and εijt. We again have i = 1, 2, . . . , njt, j = 1, . . . , J and t = 1, . . . , Tj (i.e.,
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an unbalanced panel of teachers).

The corresponding method of moment estimator proposed by Kane and Staiger (2008) is

σ̂2
ε = V̂ (yijt − yjt)

σ̂2
α = ĉov(yjt, yjt−1)

σ̂2
θ = V̂ (yijt)− σ̂2

ε − σ̂2
α

Again, the method of moment estimator excludes individual teachers who appear for only

one period in the sample. As an alternative, we propose the following maximum likelihood

estimator for the variance parameters.

Parametric EB: Under PEB, the VA of teacher j is assumed to be distributed according

to αj ∼ N (0, σ2
α). Denoting the vector ~yjt = (y1jt, . . . , ynjtjt)

′, the likelihood of ~yjt can be

written as

L(~yjt) =

∫
(2π)−njt/2|detΣ|−1/2exp(−1

2
(~yjt − αj)>Σ−1(~yjt − αj))dF (αj) ,

where Σ = σ2
ε I + σ2

θ1njt1
′
njt

with I being an identity matrix of dimension njt× njt and 1n is

a vector of 1’s with length n. Some algebra shows that

detΣ =
[
njtσ

2
θ + σ2

ε

]
(σ2

ε )
njt−1 ,

and

Σ−1 =
1

σ2
ε

I − σ2
θ

(σ2
ε + njtσ2

θ)σ
2
ε

1njt1
′
njt
.
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Now, defining yjt := 1
njt

∑
i yijt gives us

(~yjt − αj)′Σ−1(~yjt − αj)

=
1

σ2
ε

∑
i

(yijt − αj)2 − σ2
θ

(σ2
ε + σ2

θnjt)σ
2
ε

(∑
i

(yijt − αj)
)2

=
1

σ2
ε

∑
i

(yijt − yjt + yjt − αj)2 − σ2
θ

( σ
2
ε

njt
+ σ2

θ)
σ2
ε

njt

(
yjt − αj

)2

=
1

σ2
ε

∑
i

(yijt − yjt)2 +
1

σ2
ε

njt
+ σ2

θ

(yjt − αj)2 ,

and then the likelihood of observing the vector ~yjt for teacher j at period t (conditional on

αj) becomes

L(~yjt|αj) = (2π)−njt/2|detΣ|−1/2 exp
(
−
∑
i(yijt − yjt)2

2σ2
ε

)
exp

(
− (yjt − αj)2

2(
σ2
ε

njt
+ σ2

θ)

)
= (2π)−

njt−1

2 |detΣ|−1/2 exp
(
−
∑
i(yijt − yjt)2

2σ2
ε

)( σ2
ε

njt
+ σ2

θ

)1/2 1√
2π(

σ2
ε

njt
+ σ2

θ)
exp

(
− (yjt − αj)2

2(
σ2
ε

njt
+ σ2

θ)

)

= (2π)−
njt−1

2 n
− 1

2
jt (σ2

ε )−
njt−1

2 exp
(
−
∑
i(yijt − yjt)2

2σ2
ε

) 1√
2π(

σ2
ε

njt
+ σ2

θ)
exp

(
− (yjt − αj)2

2(
σ2
ε

njt
+ σ2

θ)

)
.

Note that yjt|αj ∼ N(αj, σ
2
θ + σ2

ε

njt
) and so the second piece of the likelihood is of itself

a proper likelihood for yjt conditional on αj and the first piece of the likelihood does not

depend on αj or σ2
θ . If αj ∼ N(0, σ2

α), then yjt ∼ N(0, σ2
α + σ2

θ + σ2
ε

njt
). Then the marginal

likelihood of all the data (unconditional on αj) becomes

L =
∏
j

∏
t

{
(2π)−

njt−1

2 n
− 1

2
jt (σ2

ε )−
njt−1

2 exp
(
−
∑
i(yijt − yjt)2

2σ2
ε

) 1√
2π(σ2

θ + σ2
α +

σ2
ε

njt
)

exp
(
−

y2jt

2(σ2
θ + σ2

α +
σ2
ε

njt
)

)}

The maximum likelihood estimator for (σ2
α, σ

2
θ , σ

2
ε ) can be solved by maximizing L nu-

merically.

NPEB: Under NPEB, we have that αj ∼ F . We start by estimating σ2
ε from the first piece

of the likelihood over (j, t), that is

σ̂2
ε = argmax

σ2
ε

∑
j

∑
t

−njt − 1

2
log σ2

ε −
∑

i(yijt − yjt)2

2σ2
ε

,
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which leads to

σ̂2
ε =

∑
j

∑
t

∑
i(yijt − yjt)2∑

j

∑
t(njt − 1)

.

Now to estimate σ2
θ , consider the model yjt|αj ∼ N(αj, σ

2
θ + σ2

ε

njt
). The likelihood for the

vector (yj1, . . . , yjTj) can be written as

L(yj1, . . . , yjTj |αj) =
[ Tj∏
t=1

1√
2π(σ2

θ + σ2
ε

njt
)

]
exp

(
− 1

2

∑
t

(yjt − αj)2

σ2
θ + σ2

ε

njt

)
.

Letting νjt = σ2
θ + σ2

ε

njt
, define

yj =

∑
t
yjt
νjt∑

t
1
νjt

.

We then have yj|αj ∼ N(αj,
1∑
t

1
νjt

) and the likelihood of L(yj1, . . . , yjTj |αj) factorizes into

[ Tj∏
t=1

1√
2π(σ2

θ +
σ2
ε

njt
)

]
exp

(
− 1

2

∑
t

(yjt − yj)2

νjt

)√
2π

1∑
t

1
νjt

1√
2π 1∑

t
1
νjt

exp
(
− 1

2
(yj − αj)2

∑
t

1

νjt

)
,

where the second piece forms the density of yj conditional on αj. We estimate σ2
θ by

maximizing the following likelihood

∏
j

{[ Tj∏
t=1

1√
2π(σ2

θ + σ̂2
ε

njt
)

]
exp

(
− 1

2

∑
t

(yjt − yj)2

σ2
θ + σ̂2

ε

njt

)√√√√2π
1∑

t
1

σ2
θ+

σ̂2ε
njt

}
.

There is no closed-form solution for σ̂2
θ , but numerical estimates can be easily obtained.
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E Specification Test for Normality

We propose the following specification test for normality. Suppose the data are generated

from the model

yj = αj + εj, j = 1, 2, . . . , n ,

with εj ∼ N (0, σ2
j ) and where σ2

j is known. We are interested in testing the hypothesis that

αj ∼ N (0, σ2
α). One natural diagnostic test is the likelihood ratio test, with the test statistic

given by

Ln = 2
(

sup
F∈F

`n(F )− sup
σ2
α

`n(σ2
α)
)
,

where F is the set of probability measures on the domain of α, `n(F ) is the likelihood

of the sample {v̄1, . . . , v̄n} with α ∼ F , and `n(σ2
α) is the likelihood of the sample with

α ∼ N (0, σ2
α). To obtain a critical value for the test based on Ln, we use the parametric

bootstrap, drawing on McLachlan (1987) and Gu et al. (2018). This involves the following

steps:

1. Compute σ̂2
α as the maximizer of `n(σ2

α).

2. For b = 1, . . . , B, generate data α
(b)
1 , . . . , α

(b)
n from N (0, σ̂2

α).

3. For b = 1, . . . , B, generate data y
(b)
j from N (α

(b)
j , σ

2
j ) for j = 1, 2, . . . , n.

4. For b = 1, . . . , B, denote by Ln,b the test statistic Ln computed from the sample

y
(b)
1 , . . . , y

(b)
n . Compute the τ -quantile qn,τ of Ln,1, . . . , Ln,B.

The likelihood ratio test statistic computed from the data takes the form Ln = 2(`n(F̂ ) −

`n(σ̂2
α) where F̂ is the NPMLE defined in the main text and σ2

α is the maximum likelihood

estimator under the assumption that αj ∼ N(0, σ2
α). Details are given in Appendix D in the

paper. We reject the null hypothesis of a normal distribution for the teacher quality α at

level τ when Ln exceeds the bootstrap-based critical value qn,1−τ .

We report the size and power performance of the proposed parametric bootstrap test in

Table E.1 below with the following data generating process: Fix the sample size at n = 1000,
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and for a grid values of h ∈ {0, 0.4, 0.6, 0.8, 1}, sample individual αj’s from the following

three-component normal distribution:

0.025N (−h, θh) + 0.95N (0, θh) + 0.025N (h, θh)

with θh = 0.1− 0.05h2. The design of θh is such that the variance of α is always 0.1; this is

roughly the variance of the teacher effects in the LAUSD data. When h = 0, the latent effect

αj follows a normal distribution, and the bootstrap test should reject with probability equal

to nominal size. As the magnitude of h increases, we deviate from the normal distribution,

and the parametric bootstrap test should be able to detect this deviation from the null

hypothesis of normality and reject with a higher probability. Conditional on αj, the data

yj is generated from a normal distribution with mean αj and variance σ2
j , where the σj’s

are generated from a random sample of size 1000 from the inverse gamma distribution with

parameters (6, 0.05), in order to capture teacher heterogeneity. These parameters are chosen

so that the distribution of σ2
j mimics those for the individual variances in the LAUSD data.

Results in Table E.1 are based on bootstrap sample size B = 500 and 500 simulation

repetitions. Table E.1 shows that the parametric bootstrap test controls size well for h = 0,

and that the power increases quickly as h increases.

Table E.1: Size and Power Performance of the
Parametric Bootstrap Test for Normality

τ = 10% τ = 5% τ = 1%

h = 0 0.116 0.058 0.01

h = 0.4 0.148 0.082 0.028

h = 0.6 0.57 0.442 0.234

h = 0.8 1 1 0.99

h = 1 1 1 1

Notes: τ measures the nominal sizes fixed at 10, 5, 1% and we re-
port the proportion of rejection out of 500 simulation repetitions for
different values of h and τ .

We apply the parametric bootstrap likelihood ratio test of normality for both NC and

LAUSD data. For the NC data, the likelihood ratio test statistic Ln is 1326.3 with the
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corresponding bootstrap critical values at (1 − τ) ∈ {90%, 95%, 99%} being respectively

{58.45, 61.67, 70.4}, which implies that the normality hypothesis is significantly rejected at

1% level. For LAUSD data, the likelihood ratio test statistics Ln is 667.5 and the correspond-

ing bootstrap critical values at τ ∈ {90%, 95%, 99%} being respectively {73.8, 78.1, 90.1} and

hence we also reject the null hypothesis of normality at 1% level.

Other tests for normality is also possible. For instance, if α indeed follows a normal

distribution N(0, σ2
α), then the logrithm of its characteristic function takes the form

log φα(t) = −t2/σ2
α ,

which implies that the first-order derivative with respect to t is of the form −t/σ2
α which is

a linear function of t. Since the distribution of α is identified (as established in Theorem

1), we can construct a consistent estimator for φα(t) and inspect linearity of the derivative

of its logarithm transformation. Another specification test is also proposed in Bonhomme

and Weidner (2019). We leave to future research a power comparison involving different

specification tests.
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F Appendix Figures and Tables
Figure F.1: Gains from Replacing Bottom q Percentile of Teachers when VA is Estimated

North Carolina
(a) Marginal Test Score Gain
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(b) Total Test Score Gains

0 15

0
.0

0
0

.0
1

0
.0

2
0

.0
3

0
.0

4
0

.0
5

5     10 

Percent of Teachers Released

T
o

ta
l 
T
e

s
t 
S

c
o

re
 G

a
in

s

Parametric EB
Parametric EB (Quality Unobserved)
Nonparametric EB
Nonparametric EB (Quality Unobserved)

LAUSD

(c) Marginal Test Score Gain
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(d) Total Test Score Gains
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Notes: Figures F.1(a) and F.1(b) show the marginal and total test score gains of a policy that releases the bottom q% of
teachers in North Carolina, while Figures F.1(c) and F.1(d) do the same for the LAUSD. The solid lines indicate the policy
gains expected under the PEB and NPEB methodology when true teacher VA is observed and are identical to those presented
in Figure 5. The dashed lines represent the policy gains when VA is estimated. These gains are calculated via Monte Carlo
simulation with 40,000 observations under the assumption that we estimate Φ̂α̂ and F̂α̂ using three years of data for each
teacher and assuming teachers all have class sizes of twenty. Details of the simulation are provided in Section 7.1. Results in
the figures are the same as those reported in Tables 4(a) and 4(b).
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Figure F.2: Test Scores Gains from Retaining Top 1−q Percentile Teachers when VA is
Estimated

(a) North Carolina
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(b) LAUSD

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

80
08

5 
  9

0
95

Total Test Score Gains

Pe
rc

en
ta

ge
 o

f T
ea

ch
er

s 
R

et
ai

ne
d

Parametric EB
Parametric EB (Quality Unobserved)
Nonparametric EB
Nonparametric EB (Quality Unobserved)

Notes: Figures F.2(a) and F.2(b) display the total test score gains from retaining teachers above the 1−qth percentile of the
value-added distribution in North Carolina and the LAUSD, respectively. The solid lines indicate the policy gains expected
under the PEB and NPEB methodology when true teacher VA is observed. The dashed lines represent the policy gains when
VA is estimated. These gains are calculated via Monte Carlo simulation with 40,000 observations under the assumption that
we estimate Φ̂α̂ and F̂α̂ using three years of data for each teacher and assuming teachers all have class sizes of twenty. Details
of the simulation are provided in Section 7.2. Results in the figures are identical to those reported in Tables 5(a) and 5(b).
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Figure F.3: Classroom Shocks Model: Test Scores Gains from Replacing Bottom q
Percentile of Teachers when VA is Estimated

(a) North Carolina
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(b) LAUSD
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Notes: Figures F.3(a) and F.3(b) show the total test score gains under the classroom shocks model presented in equation (7.8)
of a policy that releases the bottom q% of teachers in North Carolina and LAUSD, respectively. The solid lines indicate the
policy gains expected under the PEB and NPEB methodology when true teacher value-added is observed. The dashed lines
represent the policy gains when value-added is estimated. These gains are calculated via Monte Carlo simulation with 40,000
observations under the assumption that we estimate Φ̂α̂ and F̂α̂ using three years of data for each teacher and assuming teachers
all have class sizes of twenty. Details of the simulation are provided in Section 7.1. Results in the figures are identical to those
reported in Tables F.2(a) and F.2(b). 71



Table F.1(a): Simulation (True Distribution is Normal)

Homogeneous Class Sizes Heterogeneous Class Sizes
(Total Class Size of 20) (Total Class Size 20-40)

Infeasible NPEB PEB FE Infeasible NPEB PEB FE

Mean Squared
10.81 10.87 10.81 12.50 11.03 11.07 11.03 12.84

Error

Teacher ranked in bottom (top) 5% when true VA above (below) 5% (Type I error)
(Type I error=Type II error by definition)

Bottom 5% 152.5 152.5 152.5 152.5 153.5 153.6 153.5 153.9

Top 5% 152.6 152.6 152.6 152.6 153.6 153.5 153.6 154.1

Table F.1(b): Simulation (True Distribution is Mixed Normal)

Homogeneous Class Sizes Heterogeneous Class Sizes
(Total Class Size of 20) (Total Class Size 20-40)

Infeasible NPEB PEB FE Infeasible NPEB PEB FE

Mean Squared
9.08 9.14 10.82 12.51 7.14 7.18 8.29 9.36

Error

Teacher ranked in bottom (top) 5% when true VA above (below) 5% (Type I error)
(Type I error=Type II error by definition)

Bottom 5% 126.9 126.9 126.9 126.9 111.8 111.9 111.7 113.7

Top 5% 126.0 126.0 126.0 126.0 111.4 111.5 112.0 114.0

Table F.1(c): Simulation (True Distribution is Chi-Squared)

Homogeneous Class Sizes Heterogeneous Class Sizes
(Total Class Size of 20) (Total Class Size 20-40)

Infeasible NPEB PEB FE Infeasible NPEB PEB FE

Mean Squared
7.44 7.45 10.82 12.51 5.79 5.79 8.30 9.37

Error

Teacher ranked in bottom (top) 5% when true VA above (below) 5% (Type I error)
(Type I error=Type II error by definition)

Bottom 5% 431.3 431.3 431.3 431.3 425.5 425.6 427.5 428.6

Top 5% 66.4 66.4 66.4 66.4 56.8 56.9 57.4 57.0
Notes: This table adds type I and type II error rates to Tables 1(a), 1(b) and 1(c); given this mean squared error is the same as in
those tables. The table uses simulation to compare the performance of four estimators when the distribution of teacher value-added
follows a normal, mixed normal and a chi-squared distribution, respectively. Specifically, Table 1(a) has teacher value-added being
normally distributed with mean zero and variance 0.05 (i.e., F ∼ N (0, 0.08)), while Table 1(b) has true teacher quality following
F ∼ 0.98N (0, 0.03) + 0.01N (−1, 0.03) + 0.01N (1, 0.03) (as in the example given by equation (2.8)). The normal and mixed normal
distributions have the same mean and variance to create a suitable comparison. Teacher value-added follows F ∼ χ2

1 in Table
1(c). The infeasible estimator is the optimal estimator given that the true distribution is known to the econometrician (which is
infeasible as it is unknown in practice), the nonparametric emiprical Bayes (NPEB) estimator which nonparametrically estimates
the underlying distribution, the parametric empirical Bayes (PEB) estimator which assumes that the underlying distribution is
normal, and the fixed effect (FE) estimator which applies no empirical Bayes shrinkage. The simulation averages results from 500
repetitions with 10,000 individual teachers setting σ2

ε =0.025. Results are reported for homogeneous class sizes where every teacher
has a class size of twenty students and heterogeneous class sizes where class sizes of teachers are a random draw from the set {20, 40}
with equal probability. Note that teacher rankings are identical for the three methods under homogeneous class sizes. Only Type
I error (teacher ranked in bottom (top) 5% when true VA above (below) 5%) is reported as it is identical to that of Type II error
(teacher ranked above (below) 5% when true VA below (above) 5%).
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Table F.2(a): Classroom Shocks Model: Test Scores Gains of Policy Releasing Bottom q%
Teachers (True Value-Added Observed)

North Carolina Data LAUSD Data

% Teachers Test Gain Test Gain Test Gain Test Gain

Released under F under Normal under F under Normal

(q) (NPEB) (PEB) (NPEB) (PEB)

(1) (2) (3) (4)

1 0.0049 0.0046 0.0058 0.0066

(0.0001) (0.0000) (0.0002) (0.0001)

3 0.0121 0.0117 0.0149 0.0168

(0.0002) (0.0001) (0.0004) (0.0001)

5 0.0179 0.0177 0.0225 0.0256

(0.0003) (0.0001) (0.0005) (0.0002)

7 0.0230 0.0230 0.0297 0.0332

(0.0004) (0.0001) (0.0006) (0.0003)

9 0.0275 0.0279 0.0365 0.0402

(0.0004) (0.0001) (0.0006) (0.0003)

Table F.2(b): Classroom Shocks Model: Test Scores Gains of Policy Releasing Bottom q%
Teachers (True Value-Added Unobserved)

North Carolina Data LAUSD Data

% Teachers Test Gain Test Gain Test Gain Test Gain

Released under F under Normal under F under Normal

(q) (NPEB) (PEB) (NPEB) (PEB)

(1) (2) (3) (4)

1 0.0044 0.0042 0.0048 0.0063

(0.0003) (0.0001) (0.0001) (0.0001)

3 0.0105 0.0104 0.0129 0.0154

(0.0004) (0.0002) (0.0003) (0.0002)

5 0.0155 0.0155 0.0200 0.0231

(0.0005) (0.0003) (0.0004) (0.0003)

7 0.0199 0.0201 0.0263 0.0300

(0.0006) (0.0004) (0.0004) (0.0004)

9 0.0239 0.0242 0.0323 0.0361

(0.0007) (0.0004) (0.0005) (0.0004)
Notes: Table F.2(a) and displays the estimated gains using our model that includes classroom shocks (see equation (7.8))
in mathematics scores in terms of student level standard deviations of a policy that releases the bottom q% of teachers and
replaces them with mean quality teachers when true teacher quality is observed by the policymaker. ‘Test score gain under F ’
reports the test score gain of the policy when teacher quality is distributed according the distribution F – nonparametrically
estimated using equation (3.1) – and applying the NPEB estimator to calculate value-added. ‘Test score gain under normal’
reports the test score gain when teacher quality is normally distributed and the PEB estimator is used to calculate teacher
value-added. Table F.2(b) repeats the exercise when the true teacher quality is unobserved to the policymaker and so teacher
releases are based on estimated (rather than true) value-added. These gains are calculated via Monte Carlo simulation

with 40,000 observations under the assumption that we estimate Φ̂α̂ and F̂α̂ using three years of data for each teacher and
assuming teachers all have class sizes of twenty. The bolded line indicates the widely-analyzed release bottom five percent
teachers policy. Reported policy gains for both tables are identical to those shown in Figure F.3. Standard errors are calculated
using a bootstrap (as described in Appendix C). 73



Table F.3(a): Classroom Shocks Model – Test Scores Gains of Policy Retaining ‘Top 1−q
Percentile’ Teachers (True VA Observed)

North Carolina Data LAUSD Data

% Teachers Test Gain Test Gain Test Gain Test Gain

Retained under F under Normal under F under Normal

(1− q) (NPEB) (PEB) (NPEB) (PEB)

(1) (2) (3) (4)

1 0.0056 0.0046 0.0079 0.0066

(0.0001) (0.0000) (0.0002) (0.0001)

3 0.0134 0.0117 0.0193 0.0168

(0.0002) (0.0001) (0.0004) (0.0001)

5 0.0199 0.0177 0.0286 0.0256

(0.0003) (0.0001) (0.0005) (0.0002)

7 0.0254 0.0230 0.0368 0.0332

(0.0003) (0.0001) (0.0006) (0.0003)

9 0.0303 0.0279 0.0442 0.0402

(0.0004) (0.0001) (0.0007) (0.0003)

Table F.3(b): Classroom Shocks Model – Test Scores Gains of Policy Retaining ‘Top 1−q
Percentile’ Teachers (True VA Unobserved)

North Carolina Data LAUSD Data

% Teachers Test Gain Test Gain Test Gain Test Gain

Retained under F under Normal under F under Normal

(1− q) (NPEB) (PEB) (NPEB) (PEB)

(1) (2) (3) (4)

1 0.0053 0.0036 0.0074 0.0054

(0.0003) (0.0001) (0.0003) (0.0001)

3 0.0123 0.0097 0.0179 0.0145

(0.0004) (0.0002) (0.0004) (0.0002)

5 0.0178 0.0149 0.0265 0.0221

(0.0005) (0.0003) (0.0005) (0.0003)

7 0.0227 0.0195 0.0340 0.0291

(0.0006) (0.0004) (0.0006) (0.0004)

9 0.0268 0.0237 0.0407 0.0353

(0.0007) (0.0004) (0.0007) (0.0004)
Notes: Table F.3(a) displays the estimated test score gains (in student-level SDs) of a policy that retains the top q% of teachers,
rather than having them leave teaching and be replace by a mean quality teacher, when true teacher quality is observed by
the policymaker. It uses a variant of our model that includes classroom shocks (see equation (7.8)) in mathematics scores.
The columns headed ‘Test Score Gain under F ’ report the policy gain when teacher quality is distributed according the
distribution F , estimated nonparametrically using equation (3.1) and applying the NPEB estimator to calculate value-added.
The columns headed ‘Test Score Gain under Normal’ report the policy gain when teacher quality is normally distributed and
the PEB estimator is used to calculate teacher value-added. Table F.3(b) repeats the exercise when the true teacher quality
is unobserved to the policymaker and so teacher retention is based on estimated (rather than true) value-added. These gains

are calculated via Monte Carlo simulation with 40,000 observations under the assumption that we estimate Φ̂α̂ and F̂α̂ using
three years of data for each teacher and assuming class sizes of twenty. Standard errors are calculated using a bootstrap (as
described in Appendix C).

74


	Introduction
	Methodology
	Student Achievement and the Contribution of Teachers
	The Fixed Effect Estimator
	The Parametric Empirical Bayes Estimator
	The Nonparametric Bayes Estimator

	A Feasible Nonparametric Bayes Estimator
	Nonparametric Maximum Likelihood Estimation of the Distribution F
	The Plug-in Nonparametric Empirical Bayes Estimator for VA

	Simulations
	Data
	Results
	VA Estimates
	Out-of-Sample Predictions

	Policy Analysis
	Policy Experiment I: Lay-off Policies
	Policy Experiment II: Retention Policies
	Extensions

	Conclusion
	General Deconvolution Proof with Panel Data
	Teacher VA model without classroom shocks
	Teacher VA model with classroom shocks

	Construction of the Teacher Value-Added Sample
	North Carolina
	Los Angeles Unified School District (LAUSD)

	Bootstrapping the Standard Errors
	Maximum Likelihood Estimation of Variance Parameters
	Without Classroom Shocks
	With Classroom Shocks

	Specification Test for Normality
	Appendix Figures and Tables



