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1 Introduction

Allocating time is an important aspect of many economic decisions. Since Becker
(1965), economists have used the labor-leisure trade-off to measure people’s value of
time. Credible measures of the value of time are useful for a variety of important policy
decisions. For instance, they are a critical input to infrastructure planning, particularly
in the transportation sector. A unique empirical challenge in measuring the value of
time is that in many economic settings — unlike in labor markets — time is not always
directly priced. In this paper we use data from auctioned cab rides to overcome this
empirical challenge, allowing us to estimate how the value of time is distributed across
individuals, across places, and across time-of-day within a large urban area.

Transportation markets are generally revealing of the value of time: consider, for
instance, the various decisions involved in the daily commute from home to work
(Domencich and McFadden, 1975). In this context they might trade off cheaper-yet-
slower off-peak trains against more expensive express trains; choose to leave earlier
than their work requires to beat the rush hour; or choose between different service tiers
in a ride-hailing platform, which involve different waiting times and prices. The choices
made when faced with such tradeoffs are therefore informative about the value of time,
or the opportunity cost of time spent traveling.

We use detailed consumer choice data from Liftago, a large European ride-hailing
application. This platform uses a unique mechanism to allocate each ride through a
rapid auction process in which nearby drivers bid on ride requests and requesting con-
sumers choose between bids based on various characteristics. Most importantly, bids
often involve tradeoffs between price and waiting time, or the time it would take the
taxi to pick up the customer. Contrast this with platforms like Uber and Lyft that em-
ploy “surge” pricing to equilibrate demand and supply so that consumers do not get
to directly express their preferences over prices and waiting times within the platform.
We are able to observe both consumers’ individual choice sets as well as their ultimate
selection for 1.9 million ride requests and 5.2 million bids.

The first contribution of this paper is to provide a direct and clean measurement of
consumers’ willingness-to-pay to reduce waiting times. We use the variation in choice
sets and choices to estimate a demand system that depends both on prices and waiting
times. Such measures are of first-order importance for the provision of public trans-
portation infrastructure as well as for the ride hail industry where price and waiting
time are the two key variables on which firms compete. Our setting allows us to over-
come some of the empirical challenges in measuring preferences over both prices and
waiting-time.
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Our second contribution, building on the work of Small (1982), is to provide a con-
ceptual framework to interpret the disutility of waiting and to demonstrate how the
willingness-to-pay for waiting-time reductions can be used to recover the value of time.
When consumers choose a shorter wait time over a lower price, they reveal that the
value of their time at a particular destination and time-of-day is greater than the value at
the original location. Intuitively, the willingness to pay for lower wait times is simply
the difference between the value of time at the destination and the value of time at the
origin. In keeping with this interpretation we will refer to the willingness to pay for
waiting time reductions as the net value of time (abbreviated as nvot). We formalize
this mapping, demonstrate that the spatial distribution of the value of time is identified
and show how it can be recovered with a simple moment-based estimator. Our frame-
work, therefore, leverages high-resolution choices in transportation markets to recover
a summary measure of the value of economic activity across place, individuals, and
time of day. The example of satellite data on night lights demonstrates that alternate
measures of economic activity have often sparked fruitful new lines of research and
filled in gaps where other data sources are not available or deficient (Henderson et al.,
2012). The types of data required for our framework is increasingly made available by
platforms in the transportation sector. Although our approach relies in part on unique
features of our platform, we believe that it could be easily adapted to conduct a similar
study within the US context, for example, with data from Uber or Lyft. Our measure-
ment is complementary to other long-run measures of spatial economic activity such as
real estate prices.

The demand results show that consumers respond substantially to changes in both
price and waiting time. We find that the consumers average nvot is $10.80, meaning
that on an hourly basis they would be willing to pay that much to reduce wait times.
Price elasticities are about three times higher than waiting-time elasticities, however,
there is large variation in these measures within the day and across space. This het-
erogeneity underscores the importance of the context in which price and time tradeoffs
are made. From the overnight hours to the mid-day, the willingness to pay for lower
wait times approximately doubles. Geographic differences are estimated to have an or-
der of magnitude difference from one extreme to another. Because our data includes
panel identifiers of both passengers and drivers we are also able to credibly identify
the individual specific heterogeneity in both the elasticities and the implied nvot. We
recover heterogeneity across passengers both in their utility of income and dis-utility to
wait times. We rank individuals by their relative sensitivity to prices and wait times and
find that the top quartile have nvot measures about 3.5 times higher than the bottom
quartile.
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We use our estimates to investigate the sources of variation in the value of time and
determine how much is driven by differences across people, locations, and times of day.
Our approach is similar to a branch of the labor literature which decomposes differences
in wage into firm and worker specific variation (Abowd et al. (1999)). This exercise
provides a number of important insights. First, we find that almost eighty percent of the
variation in the value of time is driven by differences across people. Once individual-
specific variation is taken into account, differences across places play a relatively small
role. We also find that people who express a higher vot are not necessarily doing so for
the same places. In fact, the relationship between high value of time people and high
value of time places is slightly negative. This finding is interesting in light of recent
evidence of positive sorting of high earners in the long run residential housing market
(e.g., Bayer et al. (2007)). A small survey of passengers reveals that the estimated value
of time during the starting time of a typical work day is very close to the mean wage
in the survey sample. This finding provides evidence that our results may be credibly
extrapolated to other contexts.

When people are traveling they forgo valuable time at origin or destination. We can
therefore use our value of time measures to quantify the opportunity cost of traffic con-
gestion. Building on this, we use our estimates to quantify the cost of congestion for
the population of riders on the app and, under additional assumptions, for the entire city
of Prague, which has 1.3 million residents. We find that the cost of traffic congestion,
counting only work days, is about $0.5 million per day and $75 annually for each vehi-
cle driver on the road. This provides, to our knowledge, the first city-wide estimates of
the opportunity cost of congestion directly derived from observed choices in a market
setting.

Related literature The paper contributes mainly to four strands of literature, which
we describe below.

The first strand is the literature on the opportunity cost of time. While the standard
labor-leisure choice model implies that an extra hour of leisure should be valued at the
shadow wage, the literature starting from the seminal work of Becker (1965) recog-
nizes that an agent’s time is also an input to other non-market activities. Recent papers
in this literature have used a variety of widely available micro-data to study the trade-
off between market goods and time (see, for instance, Aguiar and Hurst (2007); Aguiar
et al. (2012); Nevo and Wong (2019)). Though these studies utilize rich and compre-
hensive datasets of consumption behavior (for example, household scanner data), they
are only able to measure the opportunity cost of time indirectly through other market
transactions. A related question is to what extent workers value flexible work schedules.
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Mas and Pallais (2017) investigate preferences for such flexibility in an experiment with
call-center workers, Bloom et al. (2015) study work-from-home preferences and perfor-
mance differences among workers in a large travel agency, and Chen et al. (2017) study
the value of work hours flexibility among Uber drivers.1 Our work contributes to this
literature in a number of ways. First, we extend the analysis of the opportunity cost of
time outside of the workplace and study how this value varies across individuals, space,
and time. Second, our data allows us to directly measure consumers’ opportunity costs
of time and to disaggregate these measures along various dimensions.

The second strand is the emerging literature that utilizes high resolution spatial data
to shed light on urban sorting and segregation (Athey et al., 2019; Davis et al., 2017;
Couture et al., 2019; Kreindler and Miyauchi, 2019; Almagro and Domınguez-Iino,
2019).2 Kreindler and Miyauchi (2019) use people’s commuting flows to estimate a
gravity model where consumers choose where to work, as a function of where they live
and wage values. The model yields estimates of the relative desirability of locations.
They then show that the implied values from the estimation correlate well with the
empirical distribution of wages and night lights in the city. In contrast, since we directly
observe how people trade-off waiting time and monetary savings when choosing to
move from one location to another, we can obtain a direct measure of their value of
spending time at a specific location. Our approach allows us to perform a number
of important quantifications that would be hard to do based on GPS data alone. For
instance, we demonstrate in our application how our measures can be used to quantify
the cost of traffic congestion.

The third strand is the literature in transportation economics and industrial organiza-
tion, dating to the pioneering work of Daniel McFadden (McFadden, 1974; Domencich
and McFadden, 1975), on the value of travel time savings. While the rich spatial nature
of our data allows us to link consumers’ willingness to pay for reductions in waiting
time to the value of time across locations, the studies in this strand measure the benefits
of travel time savings through surveys or revealed preference analysis based on mode
choice. Small (2012) reviews the travel time literature and presents stylized facts sug-
gesting that the value of personal travel time is about 50% of the gross wage rate and
that the value of travel time increases less than proportionally with income/hourly wage
— with elasticity estimates ranging from 0.5 to 0.9. Couture et al. (2018) study the de-
terminants of driving speed and the deadweight loss of travel, where hours in traffic are
valued at half the average wage. In contrast, our study directly uses our vot measure as

1The taxi industry has long provided a laboratory for empirical work on flexible work hours. See, e.g., Camerer et al. (1997),
Farber (2005), Farber (2008), Crawford and Meng (2011), Thakral and Tô (2017).

2While not using high resolution spatial data, the work of Su (2018) is also related to this strand. The author studies the causal
link between the value of time and gentrification. He argues that the increase in the value of time of high-wage workers led them
to seek living areas with shorter commuting times, which then leads to gentrification of former poor, but close to downtown, areas.
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the opportunity cost of lost time due to congestion. Bento et al. (2020) use commuter
tollway choices to infer consumers’ urgency from their willingness-to-pay for travel
time savings. Hall (2018) analyzes the benefits of choice over toll and non-toll lanes.3

Finally, a recent literature studies equilibrium outcomes resulting from transportation
infrastructure. This includes studies that analyze the impact of new roads on driving
behavior (Duranton and Turner, 2011), the impact of transit on urban development and
spatial sorting (Heblich et al., 2018), the welfare effect of transportation improvements
(Allen and Arkolakis, 2019), and the design of optimal transportation networks (Fa-
jgelbaum and Schaal, 2017). Our study complements this literature by showing how
transportation options and choices are related to the opportunity cost of time, an impor-
tant component of the overall welfare of transit. We also provide quantification of the
baseline costs associated with transit externalities in a specific setting.

Fourth, our estimates are relevant to the literature that studies taxi and ride hail
markets. Recent papers analyze the supply side in ride-hail markets. Buchholz (2018)
quantifies the impact of uniform pricing regulation and search frictions on the spatial
allocation of drivers and passengers in the NYC taxi market; Frechette et al. (2018)
assess the effect of entry restrictions and market thickness on efficiency in the NYC
taxi market.4 In these papers, the demand for taxis is estimated either as a function of
prices (Buchholz (2018)) or waiting times (Frechette et al. (2018)). Cohen et al. (2016)
and Castillo (2019) estimate demand for rides on the Uber platform, and in particular
Castillo (2019) also estimates the demand for both waiting-time and price. His paper
has a different focus and quantifies the benefit of surge pricing whereas we provide a
conceptual framework to link the disutility of waiting-time to the spatial distribution of
the value of time. In terms of the setting, ours has the benefit that we observe a direct
and salient choice that includes a price waiting-time trade-off and also a panel-structure
for riders, which provides a convincing way to estimate the population heterogeneity.

3There are a host of other studies. For example, the US department of transportation distinguishes in its guidance on Valuation
of Travel Time between ‘on-the-clock’ business travelers and personal travel (Belenky, 2011). For the former the valuation of travel
time is assigned to be the nationwide median gross compensation based on the 2015 BLS National Occupational Employment and
Wage Estimates. For personal travel, estimates are based on survey results from Miller (1989). Like Miller (1989) many studies that
estimate time valuations are situated within the transportation literature, largely based on stated preference reports (see Abrantes
and Wardman (2011) for the UK and Cirillo and Axhausen (2006) for Germany). Jara-Diaz et al. (2008) combines detailed data
(travel diaries and interviews) from Chile, Germany and Switzerland with a theoretical model in the spirit of Becker (1965) to
estimate people’s value of leisure time. They find that the marginal valuation of leisure is 65.9% of the average hourly wage in
Chile, 119.8% in Germany and 87.8% in Switzerland. Borjesson et al. (2012) study two identical surveys given to car commuters
in Sweden in 1994 and 2007 and find that people with below median income have elasticity of travel time with respect to income
indistinguishable from zero, and those with above median income have elasticity close to 1. Lam and Small (2001) use survey of
California commuters on Route 91 which includes free lanes and tolled “express lanes.” The value of time is estimated at $22.87
- that is at 72% of the average wage during their sample period. Fosgerau et al. (n.d.) study data collected from interviews with
over 6,000 Danish people and obtain estimates of the value of time being about 67% of the mean after-tax wage. In a long study
Significance Quantitative Research (2007) find that the value of time in the Netherlands is about e 8.76, with business trips valued
at e 24 per hour. Kreindler (2018) evaluates the welfare effect of congestion pricing using both travel behavior data and a field
experiment.

4In a similar vein, Liu et al. (2019) and Hall et al. (2019) study various aspects of the design of DiDi and Uber, respectively.
These papers, however, do not estimate demand.
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The rest of this paper proceeds as follows. Section 2 describes the institutional set-
ting and our data. Section 3 describes the conceptual framework which motivates our
analysis. Section 4 lays out the model of consumer choice and the details of identifica-
tion and estimation. We present the results of our estimation in Section 5, counterfactu-
als in Section 6 and conclude in Section 7.

2 Setting and Data

2.1 The Platform: A Unique Approach to Matching and Price Dis-
covery

Liftago is a ride-hail platform, which was founded in 2015 and services rides through
licensed taxi drivers. In Prague, all taxis need to be operated by licensed drivers. More-
over, taxis need to be equipped with a separate meter, which captures the number of
kilometers traveled in the “occupied” mode together with the billed amount.5 A licensed
driver may find fares by searching for street-hail passengers or by choosing to partic-
ipate in a dispatch service. Among dispatch options, there are traditional telephone-
based dispatch services and, more recently, the app-based ride-hail platform that we
study. Note that this regulatory environment is different from most U.S. municipalities,
in which there is nearly free entry into the ride-hail market through firms such as Uber
and Lyft. Uber has also been present in Prague since 2014, but its presence is not as
large as in a typical US city of similar size, partially since it is still fighting several legal
battles due to various licensing and taxation issues.6

Drivers pay a percentage fee for each ride that is booked through the platform. By
tracking both the taxi’s GPS and the time of the trip, it provides an approximate fare
both before the trip begins and after its completion. While the platform has a strong
presence in the Czech Republic, it is still less well known in other countries. This has
the advantage that few riders are tourists, making it easier to interpret our estimates in
light of local economic quantities.7

Importantly, drivers and passengers are matched by a combination of a dispatch
algorithm and an auction. Whenever a passenger requests a ride, the system looks for
nearby available cars and sends requests to a certain number of them, typically four, to
elicit an offer. A cab driver who receives a request observes the details of the trip —

5Licensing requires both a fee and an exam. Meters needs to be certified every two years by a state agency. Each meter
records the aggregate numbers of kilometers billed together with the revenues.

6Since the EU court’s decision from December 2017, Uber is viewed as a transportation company and hence its drivers need
to be properly licensed.

7This is also reflected in the relatively small fraction of airport rides, which comprise about 2 percent of total trips.
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the location of the passenger, the destination, passenger rating and payment via cash
or credit. A taxi driver who is interested in performing the job submits a bid, which
is chosen from a set of pre-programmed tariffs.8 A tariff consists of a flag fee, a per-
minute waiting fee and a per-kilometer fee with a regulatory cap at CZK 36 (≈ $1.41).
The platform takes any tariff bids and combines them with a query to Waze, a real-time
traffic mapping service and Google subsidiary, which provides estimated trip time and
distance information. The tariff bids are then translated into a single expected price for
a trip. The passenger then observes bids as final trip prices together with other bid-
specific attributes: the waiting time until the taxi arrives (ETA), the make and model of
the car, and the driver’s rating. Importantly, these non-price attributes are automatically
attached to the bids; in the case of waiting time, the Waze query also determines the
expected ETA of each bidder to reach the passenger. The passenger may select one of
the bids, in which case the ride occurs, or else may decline all bids. When the ride
is completed, the passenger pays the fare shown on the meter.9 Figure 14 shows the
interface that riders see on the app before the request and after the request arrives.

A noteworthy consequence of Liftago’s mechanism is that it allows for variation in
both prices and waiting times: a driver with a high ETA may submit a lower bid than a
driver with a low ETA, and vice-versa. Contrast this with traditional taxi services, where
prices are fixed so that the market clears through adjustments in waiting time, and with
other ride-hail platforms, where prices are adjusted to keep waiting times stable.

2.2 Data

Our dataset covers 1.9 million trip requests and 1.1 million actual trips on the platform
between September 30, 2016 and June 30, 2018. For each request, we observe the time
of the request, pick-up and drop-off location, trip price bids and estimated waiting times
from each driver, and which bid the passenger chose, if any. In addition, we observe
a unique identifier for each driver and passenger. There are 1,455 unique drivers and
113,916 unique passengers over the sample period.

For each ride request we complement the data with geospatial and public transporta-
tion data from Google Places and Transit Matrix APIs, based on the GPS addresses for
each point of origin and destination in the Liftago data. The API data provide alternative
public transit times and routes as well as a measure of over 90 types of businesses and

8When starting the ride, the driver selects a tariff among the options he has pre-programmed on the meter. This is also why
the bidding is not completely unrestricted: a typical driver has only about 5 fare combinations on his meter, but there are notable
exceptions. Some drivers who specialize in Liftago trips have over 20 different tariffs. Note that neither the passengers nor the
other drivers observe tariffs that were not chosen.

9The app and an email receipt from Liftago only display an estimated amount. However, if the actual amount diverges from
the estimated amount, customers are encouraged to report the discrepancy. Drivers can be banned from the platform if they are
found regularly overcharging.
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Table 1: Bid, Order, and Daily Summary Statistics

Variable P10 Mean P90 S.D.

Panel A: Order Summary (N = 1, 874, 409)
Price of Trip (USD, across-auction) 5.65 11.66 19.75 6.261
Wait Time (minutes, across-auction) 3.00 6.8 12.00 3.816

Panel B: Bid Summary (N = 5, 229, 724)
Number of Bids (within-auction) 1.00 2.79 4.00 1.087
Price of Trip (USD, within-auction ) 5.04 9.85 16.16 1.059
Wait Time (minutes, within-auction) 3.50 6.85 11.25 1.856

Panel C: Daily Summary (N = 638)
Number of Requests 1961 2938.3 4098 956.67
Number Rides 1160 1786.2 2470 557.15
Number Drivers 411 499.23 585 97.372
Note: The table shows summary statistics at the bid level (Panel A), the auction level (Panel B) and for en-
tire days (Panel C). P10 refers to the 10th percentile and P90 to the 90th percentile of the respective variable.

local amenities within both 100m and 1km radii around pickup and drop-off locations.10

Furthermore, we use hourly rainfall data to attach prevailing weather characteristics to
each ride.11 Finally, we use data on GPS-specific land values and land zoning types
from GIS coded data.12

Table 1 summarizes the daily activity of the platform. There are on average about
3, 000 trip requests each day, of which 61% become rides. The average bid is $11.66
and the average waiting time is 7 minutes. In addition, about one third of the drivers in
the sample were active each day. The average number of drivers bidding in each auction
is 2.8, and except in rare cases there are no more than four bids.13

2.3 Preferences over Time and Money: Intra-daily Patterns

In this section we describe spatial and inter-temporal patterns in prices, waiting times,
and choices. Those patterns show that there is large and interpretable heterogeneity in
consumer choices on which our model estimates build. Figure 1, panels (a) and (b) show
the average trip price and wait times by day of the week and time of the day. We see
that prices are lower during the weekday afternoons and higher during the weekends,
while wait times tend to be substantially higher during the day hours compared with
overnight hours, across both weekday and weekend.

10For more information see https://developers.google.com/places/supported_types.
11We obtain this from https://www.noaa.gov/.
12Those are available at http://www.geoportalpraha.cz.
13We discard auctions with more than four bids, representing only 0.33% of the sample.
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Figure 1: Prices and Waiting Times by Hour and Day
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(b) Average Wait Times

Consumers in our data often face a non-trivial trade-off between price and waiting
time when choosing among bids. A trade-off implies that there exist options such that
one has a lower waiting-time but a higher price and vice-versa. Depending on the time
of day about 58-70 percent of auctions involve a trade-off between waiting less and
paying more.14

Figure 2 shows how consumers solve the trade-off between time and monetary costs
at different times of the day. At all times of day, consumers are more likely to pick
the minimum price option than the minimum waiting time option. The elasticities that
we back out from our model are very much in line with this observation. Moreover, the
magnitudes of these differences vary throughout the day. We see that during work hours,
there is a a significant dip in the likelihood to choose the lowest price option and an
even larger and significant increase in the likelihood to choose the lowest wait option.15

This pattern can be attributed to some combination of preference heterogeneity across
customers as well as within-customer heterogeneity across the day. Since we observe
customer identifiers, our model leverages the variation across consumers in the timing
of trips and the choices within trips.

14Figure 15 in Appendix A shows how the fraction of auctions with a trade-off varies hy hour of day.
15Note that those two do not have to add up to one since a consumer might, for example, choose a driver with the highest rating

and that driver offers neither the lowest price nor provides the lowest wait time.
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Figure 2: Tradeoffs and Choices by Hour
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Note: The graph shows the mean probability that a customer who faces trade-offs between price and waiting time chooses either
the lowest price or lowest waiting time. 95% confidence intervals for each series are also shown.

We next show how choices differ by locations. Instead of using administrative
boundaries to arrive at a partition into smaller locations we prefer a data driven ap-
proach. We employ a clustering approach using exact GPS locations of trip origins and
destinations. The partitioning is done according to a simple k-means procedure on lat-
itude and longitude with the number of locations set to A = 30. We chose the value
k = 30 to balance modeling the richness of spatial preference heterogeneity against
sacrifices due to sample size. The resulting map is shown on Figure 17.

Figure 3 compares choices over price and wait times by location. The figure shows,
within each pickup location, the probability that customers choose the lowest price
and/or wait time among all available bids, computed only within auctions where a trade-
off between the choices is present. Locations are sorted by the probability of choosing
the lowest price. Like Figure 2, Figure 3 demonstrates that consumers exhibit pref-
erences for lower prices and waiting times. It shows that minimum prices are chosen
about 2-3 times more often than minimum waiting times, but there is substantial hetero-
geneity across locations. Those differences will eventually allow us to infer the different
values that riders assign to different locations. We will also decompose how much of
this variation is coming from place-innate characteristics and how much is driven by
differences across people who travel between different locations.
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Figure 3: Choices and Bids by Pickup Location
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Note: This figure shows the mean probability that a customer who faces trade-offs between price and waiting time chooses either
the lowest price or lowest waiting time. The locations in each are sorted by the probability on price. 95% confidence intervals for
each series are also shown.

3 Conceptual Framework

We now describe the conceptual framework that shows how the choices that we observe
are related to the underlying value of time at different locations. A consumer’s day is
characterized by an allocation of time to various activities in different locations. Those
activities (e.g., leisure or family time at home versus production at work) have different
productivities or different intensity of pleasure at different times. Comparing her options
at any given point in time, a consumer thus decides whether to move to a different
location and spend her time there. Moving between locations is costly, both in terms of
money and time, and a consumer has a choice between various transportation options.
Liftago’s auction mechanism allows us to observe a particularly clean set of decisions
about these transitions.

Figure 4 illustrates how the decision to accept a particular bid affects the time allo-
cation between the origin and the destination. A consumer requests a ride at time t to
the destination. She receives two bids. Since both drivers are supposed to take the same
optimal route, the time from the pickup to the destination is the same and given by ∆.
The two bids differ in the estimated time of arrival of the driver. The second bid leads
to a longer wait time w2. By accepting bid 1, the passenger decides to spend w2 − w1
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Figure 4: Origin Destination Trade-Off in Waiting Time Choice
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Note: This figure shows the trade-off between two rides and how the choice of longer wait implies a trade-off between where to
spend time.

less time at the origin and w2 − w1 more time at the destination.
Assume that the value of time for one unit at the origin is given by voto

a and the
value of time at the destination is votd

â. The subscripts denote an area a ∈ A and the
superscripts d and o indicate whether this area serves as a destination or as an origin.
Thus when comparing both trips, the consumer is comparing voto

a · (w2 − w1) against
votd

â ·(w2−w1). Letting the difference between w2 and w1 be one minute, the willingness
to pay for waiting time reductions, which we call the net value of time, can be expressed
as:

nvota→â = votd
â − vot

o
a (1)

Different people will assign different values to places. Going forward, all the objects
that we describe above will have i-subscripts to reflect the fact that we recover a distri-
bution of the value of time (votd

â,t,i and voto
a,t,i) which will give rise to a distribution of

the net value of time (nvota→â,t,i).16

Since our empirical setting entails choices similar to the one we describe above we
are able to observe distributions of the net value of time but not directly the underlying
value of time. In Appendix C we formally derive the conditions under which the distri-
butions of voto

a,t,i and votd
a,t,i are identified from observed distributions of the net value

of time. The result requires one location normalization either for the origin or destina-
tion. To achieve non-parametric identification the result relies on known deconvolution
techniques and for parametric identification (normal distribution) on a straightforward
rank condition.

16Our data would also allow us to estimate a non-linear relationship between the origin and destination value of time. For
instance, arriving ten minutes late to an appointment could be more than twice as damaging than arriving five minutes late. We
have experimented with such non-linear relationships but abandoned them for the conceptual clarity of a linear specification.
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3.1 Model of Travel Choice

So far, nvota→â was treated as directly observed. This section describes how to recover
nvota→â from a standard discrete choice framework. In the next section we describe
how decompose the nvot into the the location-specific vots.

There is a set of locations A = {1, ..., A} indexed by a and a set of consumers
I = {1, . . . , I}, indexed by i. When presented with a menu of bids (or offers) for a
ride between a and â, the consumer makes a discrete choice between J options. Each
alternative j ∈ J = {1, . . . , J} is characterized by a tuple consisting of price, wait time,
route-characteristics such as distance, characteristics of the car (model, year, color),
driver (ratings and name) and the stochastic part εi, j,t. We capture observable trip differ-
ences with xi, j,t. We also have to account for an additional term, ξa,â,t, that captures un-
observed conditions affecting demand on a particular route, such as big sporting events,
holiday travel, etc. We discuss endogeneity concerns in the estimation section. With
this setup, the indirect utility from option j can be written as:

ui, j,t = βw
i,ht ,a,â · w j,t + β

p
i,ht
· p j,t + βx

i,ht
· xi, j,t + ξa,â,t + εi, j,t, (2)

where βp
i,ht

and βw
i,ht

reflect preferences over waiting time and price; the subscripts ht, a,
and â in βw

· indicate that we allow preferences over waiting time to vary with the hour
of the day as well as by origin and destination. Finally, the coefficient βx

i,ht
captures

preferences for other ride- j-specific characteristics (distance, driver’s rating, car type,
etc.) as well as environmental conditions common to all j: hour-of-day, public transit
availability, traffic speeds, trip distance and time, rainfall, origin and destination neigh-
borhoods, and whether the order is placed on the street or in a building. Note that the
latter set of variables allow us to richly condition on many determinants of the outside
option.

We can then map the preference parameters in Equation 2 into nvots for different
locations and different times of day. These nvot’s are obtained via the following equal-
ity, which compares the utility of choice j with the utility of some hypothetical option
j′ that adds a single minute to waiting time, but otherwise has the same characteristics.
The price difference p j,t − p j′,t that solves the equation reflects the additional units of
money needed to make consumers, on average, indifferent between paying or waiting
more:

β
p
i,ht
· p j,t + βw

i,ht
· w j,t = β

p
i,ht
· p j′,t + βw

i,ht
· (w j,t + 1) (3)

This implies that a minute of time at destination â relative to its value at the origin a
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is valued as

nvota→â,ht ,i = p j,t − p j′,t =
βw

i,ht ,a,â

β
p
i,ht ,a,â

. (4)

Equation 4 demonstrates that individual estimates of the Net Value of Time can be
recovered directly from the estimated demand model by taking a ratio of coefficients.

4 Estimation

This section discusses the details of the estimation, which involves two steps. Based
on observing the individual choices over bids on the app, we first estimate a likelihood
based model. To capture time- and location-specific heterogeneity in time values, we
leverage the panel nature of our data to compute random coefficients on the waiting-
time using an MCMC procedure. We then use the coefficient estimates from the first
step to estimate the nvot, as we outline above, and a moment-based estimator to recover
the distribution votd

â (the value of time) separately. For clarity in exposition and the
interpretation of work and non-work hours, the analysis hereafter utilizes weekday data
only.

4.1 Mixed Logit Discrete Choice Model

Under the assumption that εi, j,t are independently and identically distributed according
to a Type I extreme value distribution, choosing the maximum among J alternatives
with utilities given by Equation 2 reduces to the standard logit. The probability that an
alternative j will be chosen depends on its relative mean utility and is given by:

l(w j,t, p j,t, xi, j,t; θ) =
exp(βw

i,ht ,a,â
· w j,t + β

p
i,ht ,a,â

· p j,t + βx
i,ht
· xi, j,t)

exp(−ξa,â,t) +
∑

j exp(βw
i,ht
· w j,t + β

p
i,ht ,a,â

· p j,t + βx
i,ht
· xi, j,t)

, (5)

Endogeneity concerns: For bid-specific attributes we the econometrician are on al-
most equal footing with consumers because we observe all relevant bid attributes up
to the drivers’ names and photos. These unobserved features are therefore part of εi, j,t.
However, because drivers might condition their bids on ξa,â,t, bids could still be cor-
related with unobservable demand conditions and thereby bias the price coefficients.
To deal with this concern, we exploit persistent differences in bids among different
drivers.17 These differences might, for example, come from pre-programmed bid incre-
ments in the meter. However, a straightforward GMM implementation is not feasible

17This approach is similar to a literature that exploits different leniency standards of judges and known as the judge design.
See Waldfogel (1995) for the first such strategy.
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since our model relies on individual choice data and is likelihood-based. This prevents
us from using standard inversion techniques to isolate ξa,â,t and directly instrument.
To get around this we, instead, concentrate ξa,â,t out using a control function approach
(Petrin and Train, 2010). This step consists of a simple regression of trip prices on a set
of driver fixed effects, from which we recover a residual which then enters the likelihood
as a control. In Figure 16 in Section Appendix A we show the resulting distribution of
fixed effects, which demonstrates that there is large and persistent variation in driver
bids. The interquartile range is $1.9 or 20% of the average fare and the range from
the 10th to the 90th percentile is $4 or 43% of the average fare. Without the control
function we find smaller price and waiting time elasticities resulting in an overall mean
nvot which is 19% lower than with the control function.

Control variables: We specify ht as follows: the price coefficient is allowed to vary
across work hours (defined to be 9am-6pm) and non-work hours, and the waiting time
coefficient is allowed to vary across five blocks of time. The omitted category is the
midnight hour, 12am to 1am. The remaining blocks are 1am to 5am, 6am to 9am, 10am
to 3pm, 4pm to 6pm, and 7pm to 12am. We also control for drivers’ quality ratings,
car type, traffic speed and the distance of the trip. Further, we add controls rain. In
Equation 2, βx

i,ht
captures preferences for other ride- j-specific characteristics, which are

the distance, the driver’s rating, the car type, and environmental conditions common to
all j.

Outside option: We allow the outside option to vary spatially at the level of each
specific order in the data. This includes controlling for the environmental conditions
(such as weather), and whether or not the trip was ordered from within a building or
outside on the street. We also incorporate detailed public transit data including the time-
of-day-specific presence of public transit availability within walking distance between
each individual order’s origin and destinations points. These characteristics impact the
value of the outside option available to consumers, which is earned by choosing no
alternative from J . We normalize the value of the outside option to zero during 12pm
and 1am at a location without any nearby public transit option, when it is not raining
and when the order is place inside a building. Note that this specification allows for
spatial (across different origin-destination pairs) and time-of-day variation in the outside
option.

Estimation details: The estimation exploits the panel structure of our data to capture
the full heterogeneity in time values in a tractable way. In particular, we opt for a
hierarchical Bayes mixed-logit model to obtain individual specific estimates for the dis-
utility of waiting via an MCMC method using data augmentation of latent variables as
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in Tanner and Wong (1987). In this approach the unobserved random coefficients are
simulated and then these simulations are treated as data, which sidesteps the need to
evaluate multidimensional integrals by sampling from a truncated Normal distribution
instead. We follow techniques described in Rossi and Allenby (2003), Rossi et al.
(2005) and Train (2009) and now describe the particular version of the Gibbs sampler
that we construct.

We assume that the waiting time and price coefficients for each individual are ad-
ditive in time of day, location, and an individual specific shifter that is normally dis-
tributed.

βw
i,ht ,a,â = βw

i + βw
a + βw

â + βht (6)

β
p
i,ht ,a,â

= β
p
i + βw

a + βw
â + βht (7)

Suppose that βi ∼ N(µ,Σ), where βi = (βw
i , β

p
i ), the vector of coefficients that vary

at the individual level. The matrix Σ denotes the variance of the individual specific
components of the coefficients as well as their covariance. The covariance σw,p tells
us whether ot not people who are more elastic to waiting times are also more elastic
to price. We would expect this to be true as the utility of income should be related to
opportunity costs. However, one can also imagine segments of the population who are
wealthy and yet have an abundance of disposable time, such as individuals who may be
well-off and retired.

Σ =

 σw σw,p

σw,p σp

 (8)

We assume that µ ∼ N(µ0,Σ0), where Σ0 is a diffuse prior (unboundedly large
variance). We assume that the hyper-parameters of the variance are Inverse-Wishart,
Σ0 ∼ IW(v0, S 0). One can then iteratively update the βi-coefficient vector, the mean
of the coefficients as well as the standard deviations. The specific assumptions on the
priors lead to conjugate distributions where the posterior mean of βi is itself normal
and the variance again in the family of inverse gamma distributions. To describe the
updating algorithm, let µl be the sample mean of coefficients of iteration l in the chain
and S l be the sample variance of the Inverse-Wishart.

The key simplification exploited in the Gibbs sampler is that one does not have to ob-
tain an analytical expression for the posterior distribution of the βi’s, which instead only
needs a proportionality factor that can be easily computed at each step. In particular,

17



we have

K(βi|µ
l,Σl, yi) ∝ Π

Ti
t l(yti;βi) · φ(βi|µ

l,Σl) (9)

where yi is the vector of choices and covariates observed for passenger i with Ti

observations and l(yti;βi) is the likelihood contribution of a particular choice.

1. Draw a new posterior mean µl for the distribution of coefficients from N(µl−1, W
N ).

2. Draw Σl from IW(K + N, S l), where S l = K·I+N·S 1
K+N , and S 1 = 1

N ·
∑N

i (βl−1
i − µ

l−1) ·
(βl−1

i − µ
l−1)′.

3. For each i, draw βl
i, according to the Metropolis Hastings algorithm, with new

proposal βpl
i starting from βl−1

i using density φ(βi|µ
l,Σl).

Such an MCMC procedure is known to be slow for a large dimensional parameter
space. To avoid slow convergence we, therefore, first estimate the model without the
random coefficients using standard maximum likelihood and then employ the above
Gibbs sampler to obtain the distribution of random coefficients separately, starting from
the maximum likelihood estimates.

4.2 Moment Estimator to Recover Time-Location Valuations

In this section we describe how we recover the place flow values of different locations
from the nvoti,t estimates. We use a simple moment estimator that decomposes nvot
measures into location flow values. Theorem 1 in Appendix C provides the conditions
for identification on which this estimator is based. Equation 10 relates the known nvot
measure that we back out from our logit-model estimates to a specific parametrization
of location flow values.

nvoti,ht ,a→â = votd
i,â,ht︸  ︷︷  ︸

value of destination

− voto
i,a,ht︸  ︷︷  ︸

value of origin

(10)

We build the following moments, which are the empirical counterparts to the simple
difference equation above:

gi,h,a,â(θ) =
1

Ni,h,a,â

∑
i,t

nvoti,t − (votd
i,â,ht
− voto

i,a,ht
) (11)

18



The optimization is then given by the following linear program with with inequality
constraints:18

min
θ

gi,h,a,â(θ)′ · Ω̂ · gk,h,a,â(θ) (12)

s.t. voto
i′,a′,h′ = K and votd

i,â,h ≥ 0 voto
i,a,h ≥ 0 ∀a, i, h (13)

We maintain our previous decomposition of time of day into six bins and there are
thirty different locations. We further allow the place values to depend on whether the
car is ordered from inside or outside the building and by whether it rains or not. To-
gether with the thirty locations we have more than twenty-thousand time dependent
origin-destination pairs within which we could observe each passenger. This curse of
dimensionality means that we can not perform the above decomposition for all pas-
sengers in our data separately. We therefore sort passengers along the ratio βp

i /β
w
i and

group them in five percent bins of this ratio. This grouping preserves most of the rich
variation in the value of time across people and gives us enough data per bin to perform
the above decomposition.

5 Results

We first present the results from the logit-demand model and the implied waiting time
and price elasticities. We then present the results on the value of time.

5.1 Logit Model Results

Table 2 shows the coefficients and standard errors that we obtain from the demand
model. The dis-utility of money is higher and almost identical across working and
non-working hours. The intra-daily coefficients on waiting time vary over time-of-day,
increasing in absolute magnitude (more negative) into the mid-day peak and declining
into the evening. In addition to the time dimension, an important component of our
subsequent analysis is to what extent the willingness to pay for waiting time reductions
scales both with the origin and destination. In addition, there is a large amount of origin-
and destination-specific heterogeneity in utility. Due to the large number of coefficients
we show those separately in Figure 19.

The outside option is chosen about 33% of the time. Several coefficients measure
an interaction effect between waiting time and additional factors related to the outside
option: public transit availability, whether the trip is ordered on the street or not, and the

18We estimate the model based on Equation 12 as a linear program in JuMP (Dunning et al. (2017)).
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presence of rain. Since the latter two of these interact with waiting time their net effects
are not immediately apparent. We compute marginal effects to see the impact: rainfall
confers a 0.59% increase in choosing the outside option. On-street ordering leads to a
0.16% increase. Within the auction, consumers prefer drivers with higher ratings and
better cars. They prefer taxis for longer distance trips.

Table 2: Model Coefficient Estimates

Description Coefficient Std Error

Price 6pm-6am -1.183 0.002
Price 6am-6pm -1.175 0.003

Waiting Time 1am-5am -0.018 0.011
Waiting Time 6am-9am -0.081 0.011
Waiting Time 10am-3pm -0.089 0.01
Waiting Time 4pm-6pm -0.062 0.01
Waiting Time 7pm-11pm -0.031 0.01

Waiting × On-Street Order -0.036 0.002
Waiting × Raining 0.015 0.004
Waiting Time Squared -0.006 0.0

Driver Rating 11.063 0.097
Car: Mid Quality 0.248 0.005
Car: High Quality 0.708 0.009
Trip Speed -0.051 0.002
Alt. Transit Available 0.044 0.007
Order on Street 0.211 0.014
Rain -0.148 0.034
Trip Distance 5.65 0.071
Waiting × Pickup Location FE 1-30

Omitted - See Figure 19
Waiting × Dropoff Location FE 1-30
Pickup Location FE 1-30
Dropoff Location FE 1-30
Hour FE
Note: This table shows coefficient estimates and standard errors of the logit demand model for each con-
sumer type. The final 120 rows are omitted for exposition. These parameter estimates comprise outside
option shifters and waiting time preference interactions with each of 30 pickup and dropoff locations as
defined in Section D.1. The omitted results are instead depicted graphically in Figure 19.

Table 3 show the elasticities of price and waiting time, computed as the percent
change in selecting the bid with respect to a percent change in price and waiting time,
respectively.

The table shows a set of bid-level elasticities, which measure the competitiveness of
alternative bids, as well as a set of order-level elasticities, which measure the competi-
tiveness of the outside option. We see a general pattern that consumers are much more
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price elastic than waiting-time elastic: price elasticities range from four to eleven times
higher, with starker differences in the evening compared to the day time.

In column 2 we use the estimated joint distribution of random coefficients to cate-
gorize four types of individuals as high (H) and low (L) sensitivity to price and waiting
times. High price-sensitivity individuals have below median βp

i , meaning they experi-
ence the highest disutility from price. Likewise, high waiting-time-sensitivity individu-
als have below median βw

i . Consumers have highly heterogeneous elasticities: between
the two extreme groups both price and waiting time elasticities differ by about a factor
of four. We estimate a modest positive correlation between the sensitivity to price and
waiting times: more price-sensitive passengers are also more waiting time sensitive,
and vice-versa.

These elasticity estimates convey that both price and waiting time are important
factors in the consumer decision and that waiting time elasticities vary throughout the
day in ways that reflect the varying value of work and non-work related tasks.19

Table 3: Estimated Elasticities

Time of Day Individual Type Bid Level Elasticities Order Level Elasticities
Price Waiting Time Price Waiting Time

Daytime
6am-6pm

Overall -4.37 -1.01 -3.9 -0.89
H Price, H Wait Sensitivity -8.59 -1.81 -7.36 -1.53
H Price, L Wait Sensitivity -2.86 -0.85 -2.8 -0.76
L Price, H Wait Sensitivity -5.1 -1.04 -4.47 -0.96
L Price, L Wait Sensitivity -2.03 -0.52 -2.06 -0.51

Evening
6pm-6am

Overall -5.49 -0.5 -4.9 -0.49
H Price, H Wait Sensitivity -8.72 -0.8 -7.48 -0.75
H Price, L Wait Sensitivity -3.4 -0.37 -3.43 -0.37
L Price, H Wait Sensitivity -6.16 -0.52 -5.39 -0.52
L Price, L Wait Sensitivity -2.49 -0.22 -2.63 -0.24

Note: This table shows the demand elasticity of price and waiting time across daytime and evening hours and individual type
groupings. We distinguish as high (H) price sensitivity individuals who have below median values for βp

i and low (L) price sen-
sitivity individuals as those with above median values for βp

i , and similarly for waiting time sensitivity. The first two columns
show these elasticities among competing bids, reflecting the change in demand due to a 1% change in price or waiting time on a
single bid. The second two columns show them with respect to choosing the outside option, reflecting a change in demand due
to a 1% change in price or waiting time on all bids.

The estimated model fits the data well. In Appendix Section E.3, we show quality
of our model fit on both aggregate moments and specific choices.

19We can also decompose elasticities by trip origins and destinations as with Table 9 and Table 10. Broadly similar patterns
between demand types are revealed, though we see that there are large differences in each elasticity measure from one location to
another. In general, price elasticities are more variable than waiting time elasticities.
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5.2 The Net Value of Time

We now present results for the willingness-to-pay for waiting time reductions implied
by our estimates, which we refer to as the net value of time or nvot, scaled to USD
per hour. nvot represents the difference between the value of time attainable at a des-

tination from the value of time attainable at the trip origin, given the activities and
features of each location at each time for each person. They are computed using the
above coefficients together with Equation 4, where we account for all trip-specific and
environmental factors that affect valuations of the trip and the outside option, such as
public transit and rainfall.

Table 4 summarizes the nvot results. The overall mean value is $13.47 per hour,
an average nvot across all trips and individuals. The most prominent source of het-
erogeneity is between individuals. We again report four groups of individuals, those
with above- and below-median random coefficient estimates on both price preferences
and waiting time preference. The low price sensitivity and high waiting time sensitivity
group exhibits nvot nearly twice the overall average at $23.39 per hour, while indi-
viduals with low sensitivity to price and high sensitivity to waiting time have average
nvot of $5.00. All groups have similar time-of-day patterns, with the highest values
in the morning hours between 6am and 9am. Going forward, to be able to extrapolate
form our specific context, we will interpret our vot measure during this time of day as
the wage rate. Not only is this the highest vot measure during the day it is also most
plausibly the value assigned to work related activities. Supporting evidence for this in-
terpretation comes from a small survey that we conducted among passengers together
with Liftago. We find that that wage rate among these survey participants is $15.23,
very close to our measurement of the vot during work hours, which is $15.44.

The individual-specific parameters reveal stark differences in valuation, but there is
also substantial heterogeneity by time-of-day as well as place. We see that late morning
to mid-day hours have estimated values that are approximately 50% higher compared
to evening and overnight hours. Finally, we divide Prague’s spatial regions into core

and non-core, where core regions are the locations including and adjacent to regions 11
and 20 as depicted in Figure 17. In Table 4 we label as urban core trips any trip that
involves one of these regions as origin or destination. We find that nvot in core regions
are on average 41% higher than non-core trips.

One important application of these results is that they provide insight into the in-
terpretability of geographic (GPS) time-use data, such as cell phone location data. In
several studies,for example Kreindler and Miyauchi (2019), authors use this type of
data and interpret aggregate location decisions as a measure of place-specific amenities
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Table 4: Net Value Of Time Estimates

Subsample Net Value of Time (NVOT)
12a-6a 6a-9a 10a-2p 3p-6p 7p-12a All Hours

All Types 12.56 16.38 16.63 13.91 10.96 13.47

H Price, H Wait Sensitivity 14.44 17.29 17.46 15.53 13.52 15.03
H Price, L Wait Sensitivity 4.34 6.76 7.08 5.19 3.82 5.0
L Price, H Wait Sensitivity 22.51 26.21 26.44 23.96 20.01 23.39
L Price, L Wait Sensitivity 8.99 12.41 12.91 9.85 2.33 10.02

Urban Core Trips 12.96 17.1 17.31 14.37 11.4 13.97
Non-Core Trips 9.93 11.78 9.61 10.57 7.6 9.94
Note: This table shows nvot estimates implied by the logit demand model. All estimates are presented in US dollars.

or productive capacity.
Our analysis is, to our knowledge, the first to pair highly granular spatial data, that

records where people go within a city, with direct nvot measures, the latter of which
capture the relative attractiveness of locations as per our illustration in Figure 4. A nat-
ural question is, therefore, how close binary measures of time spent are to our direct
measures of the relative attractiveness of locations. To answer this question we corre-
late our WTP for waiting time reductions for going from a to â with the fraction of all
trips that go from a to â. The two different measures line up well but not perfectly. Fig-
ure 5 shows a scatter plot of the nine hundred different directional data points as well
as the binscatter points on top. As the plot illustrates, the two are highly significantly
correlated with a correlation coefficient of 0.56 and t-statistic of 20.46. We can further
condition this analysis on different times of day. We find that at 0.43 this correlation is
highest during the middle of the day, which falls into work hours (10am-3pm), and low-
est during midnight at 0.38. Both of these correlations are significant at all conventional
levels.

These results convey a number of important insights. First, travel flows appear to be
a good but not perfect measure of time valuations. The variation in those correlations
throughout the day gives further guidance on when those travel flows align better with
place-specific time valuations. Time valuations that are based on revealed preferences
in transportation markets can therefore serve as an additional important quantification
of the relative attractiveness of locations. In the next section, we explore this idea
further by estimating the model outlined in Section 3, which micro-founds the expressed
willingness to pay to reduce waiting times through place specific values of time.
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Figure 5: Relationship between Travel Flows and the nvot
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Note: This graph shows the scatter (transparent round dots) and binscatter (white diamonds) relationship between the nvot for an
origin-destination pair and the respective traffic flow (as a fraction of total).

5.3 The Value of Time

Economists have devoted considerable attention to measuring the long run effect of
place of residence on individual outcomes (Chetty et al., 2018; Couture et al., 2019).
However, place of residence might be an imperfect measure of the extent to which peo-
ple benefit from the resources that different places have to offer. For example, a study
of “experienced segregation” based on GPS data reveals that time use across different
spatial regions is less segregated than residential locations (Athey et al., 2019). Another
example is Davis et al. (2017) who use Yelp data to show that restaurant consumption
is only half as segregated as residences.

We complement this literature by providing a direct measure of the monetary value
that people assign to spending time at different places in the short-run. Our estimates
further allow us to study whether or not different strata of society value different places
differently. We exploit the fact that our data contain a panel of riders in which we can
observe the same rider making decisions about time allocations across many different
places. If we found that most of the variation in the value of time is driven by places
and not people, this would suggest that place-specific factors accrue equally to different
people. For example, there might be differences in the provision of public goods across
places, which are typically equally available to all people. On the other hand, differ-
ences in the value of time might be predominantly driven by differences across people.
This would be true, for example, if wealthy people with productive jobs enjoy activities
that are equally exclusive across different places.

To address these questions we first provide several summary measures of our esti-
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mates and then a full variance decomposition that separates time-, place-, and individual-
specific variation in the value of time.20

An important consideration for our measurement is that time at a destination might
be more valuable per-se than time at an origin. Such differences might arise from plan-
ning and other coordinated activities. For example, people may travel to a particular
destination location to be productive and then later exit the location when their produc-
tive task is completed, so that the location becomes an “origin”. While we are unable
to directly observe plans, our decomposition allows us to estimate the value of time at
a location both for when it serves as an origin and as a destination. We are able to do
this because we observe riders going in both directions and can recover both nvota→â

and nvotâ→a. With this data we can construct a reduced form measure that captures
differences in productivity of time use across origin and destination.21 To this end, let
us rewrite the relationship between the nvot and vot as follows:

nvota→â = votd
â−vot

o
a = votd

â−
votd

a

votd
a
·voto

a = votd
â−δa ·votd

a = votâ−δa ·vota (14)

This measure is denoted as δa and given by the ratio of voto
â to votd

â. Following Equa-
tion 14, we interpret votd

a as the inherent place value and δa as a depreciation factor due
to less (or more) productive time use at origin. From now on we drop superscripts o and
d.

Figure 6 shows the unconditional distribution of the value of time va (USD/hour) that
we back out. The histogram reveals large variation. The interquartile range goes from
$6.8/h to $16.3/h. The tenth percentile of the distribution is $3.7/h and the ninetieth
percentile is $21.3/h.

How do our value of time estimates compare to other quantities that capture spatial
differences in economic activity? To answer this question we correlate our vot mea-
sures with property prices. A binscatter plot of the relationship is shown in Figure 7.
There is a strong positive relationship between real estate prices and our vot measures.
However, the “returns” to higher land values are diminishing. From a regression of log-
vot on log land-values we measure an elasticity of 0.25 (p < 0.001). So for every 1%
higher land value we measure a value of time that is 0.25% higher. On the one hand,
this strong positive relationship serves as a validation of our measures since we have

20The place specific estimates should not necessarily be interpreted as deep structural parameters that are inherent to a place.
They could capture certain agglomeration effects, such as the taste for meeting certain people who typically can be found at a given
place.

21In the empirical specification we use additional data that is informative about the extent of planning. We obtained the exact
location of the customer when a ride was ordered. This allows us to address how much a trip was planned in advance, since we
can distinguish, for example, if a customer is standing outside of the building at the time of placing the order and hence is likely to
have only limited value for her extra time at the origin.
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Figure 6: Histogram vot
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Note: This graph shows the unconditional distribution of the values of time that we back out.

not used land values at any point in the estimation. On the other hand, we find that with
an R2 of less than 0.02 that real estate prices can only explain a very small percentage
of the variation in vot. This re-emphasizes the point that the value of time is a useful
complementary measure of short run economic activity across space.

Figure 7: vot by Group and Time

$11

$12

$13

$14

$15

$500 $1,000 $1,500
Land Value per sq−meter

Va
lu

e 
of

 T
im

e 
pe

r 
H

ou
r

Note: The x-axis orders the thirty locations by their average value. The y-axis in the left panel shows the values of both types
during work times and right panel during non-work times.

Figure 8 conditions the value of time estimates on work and non-work time as well
as the bottom 50% and top 50% in terms of vot. The histograms shows that both groups
express a higher value of time during work hours.
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Figure 8: vot by Group and Time

Bottom 50% Top 50%

O
ff−

w
ork

W
ork

$0 $10 $20 $30 $0 $10 $20 $30

0.00

0.03

0.06

0.09

0.00

0.03

0.06

0.09

Location Value of Time $/Hour

Note: The x-axis orders the thirty locations by their average value. The y-axis in the left panel shows the values of both types
during work times and right panel during non-work times.

Table 5: Summary Statistics of Value of Time

Work Time (USD) Non Work Time (USD) Non Work Time vot
Mean STD Mean STD Work Time vot (%)

Location Values (vi,a,ht )
All 15.44 9.71 13.18 10.11 0.87
vot < median(vot) 20.73 10.68 18.06 10.6 0.81
vot ≥ median(vot) 10.0 3.97 8.14 6.46 0.85

Note: This table shows summary statistics on the estimates that capture how much less productive
time at the origin is relative to the destination separate by type. The last column shows the relative
magnitude of the non work-time vot over the work-time vot in percent.

Table 5 gives an overview of means and standard deviations for the top and bottom
50% in the distribution of vot. During both work and non-work time, the top 50%
exhibit a vot that is almost twice that of the bottom part of the population. Within type,
however, the difference between work-time and non-work-time is modest. Fot the top
50% the value of time is 15% higher during work than during non work times. For the
bottom 50% the discrepancy is larger, their value of time is 19% higher during work
hours.

Figure 9 shows vot heterogeneity by location. Going from the lowest-value location
to the highest-value location implies a difference of $11.58 in the hourly value of time.
This corresponds to a 54.5% increase in percentage terms. However, the interquartile
range is already substantially smaller with a difference of $2.51, which in percentage
terms is 16.5%. This suggests a relatively small contribution of places to the variance
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Figure 9: Map of vot Estimates in Prague
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15.60 - 16.10
16.10 - 21.00

Note: This figure depicts each GPS destination point in the Liftago data shaded by the average value of time in that destination, or votd
a across places a ∈ {1, ..., 30} within the city limits of Prague. White lines

depict the city’s street map. The bold black line delineates the boundaries which we specify as the urban core in presenting results.
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in the value of time. However, both the location breakdown and the person-specific
breakdown mask the variation from the respective other source. For example, to the
extent that they are correlated one may mistake variation in the value of time in the
spatial dimension for person-specific variation and vice versa. To separate out the
respective sources of variation and investigate their relationship in more detail we now
turn to a variance decomposition. A variance decomposition will allow us to investigate
whether people with high average vot spent more time in places with high average vot.
The extent of such sorting effects has been of long standing interest in the economics of
marriage markets (Becker (1973)), labor markets, (Abowd et al., 1999; Eeckhout and
Kircher, 2018; Shimer and Smith, 2000) and housing markets (Couture et al. (2019)).
Our approach is similar to the labor literature that tries to decompose wages into firm
specific components and worker specific components, most importantly Abowd et al.
(1999). For the variance decomposition we derive an accounting equation from the
following regression model:

voti,a,ht = αi + ηht + γa + εi,t, (15)

where αi is a person fixed effect ηht is a time-period fixed effect, γa is a place fixed
effect, and εi,t is a residual. Due to the curse of dimensionality, we run this specification
by replacing individual values with the percentile means, so that i becomes an indi-
cator of the percentile bin.22 This regression then gives rise to the following variance
decomposition.

Var(vot) = Var(α) + Var(η) + Var(γ)+

2 ·Cov(α, η) + 2 ·Cov(α, γ) + 2 ·Cov(γ, η) + Var(ε) (16)

Table 6 shows the results from this exercise. At 78%, by far the largest contributor to
the observed variance of the vot are differences across people. In comparison, place-
specific variance is small and accounts for 10% of the total. Intra-daily changes in the
vot contribute another 9%.

Moreover, the covariances show that high vot people do not spend more time in
high vot places. With a covariance of −0.4 we measure a slightly negative sorting
effect. Similarly, there is a negative correlation between people who express a high
value of time the times of day with higher average vot.23

22Our panel is not long enough to observe a given individual in all possible combinations of origin, destination and time of
day.

23We have also repeated this same exercise with the nvot as opposed to vot.Location fixed effects in this exercise are defined
over directional pairs since the net value of time is defined over those. Under this alternative exercise, we come to a very similar
conclusion. Most of the variation is driven by differences across people instead of differences across places. This should dissuade
any concern that our results are driven by specific aspects of the decomposition that we perform.
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Table 6: Variance Decomposition of the Value of Time

Var(αi) Var(ηht ) Var(γa) 2 ·Cov(αi, γa) 2 ·Cov(αi, γht ) 2 ·Cov(γa, ηht ) Var(εi,t)

27.7 3.25 3.5 -0.4 -0.1 0.3 1.6
0.78 0.09 0.1 -0.01 -0.002 0.008 0.04

Note: The first row of this table shows the variances of each of the components of the model
above. The second row shows the variance of each of the components divided by the total
variance, which can loosely be interpreted as fractions of the total variance.

We next discuss our estimates of differentially effective time use at origin and desti-
nation, as measured by δi,a,ht . Table 7 gives an overview. Across the entire population,
unplanned time at the origin is only 31% as valuable as time at the destination during
work hours while it is 36% as valuable during non-work time. Holding the location
fixed, meetings and other types of work-required planning therefore lead to a larger
discrepancy in the value of planned and unplanned time. Moreover, we find that there
is a large difference in δ within the population. Not surprisingly, people that we have
labeled as more time sensitive (βw

i > median(βw)) have a larger discrepancy in the value
of planned and unplanned time. This shows that higher willingness to pay for lower
waiting times is driven both by a larger inherent value of time at any given location and
also a bigger discrepancy between planned and unplanned time.

Table 7: Summary Statistics for δi,a,ht

Work Time Non Work Time
Mean STD Mean STD

Location Values (voti,a,ht ) in USD
All 0.19 0.2 0.22 0.31
βw

i > median(βw) 0.12 0.1 0.11 0.1
βw

i ≤ median(βw) 0.29 0.34 0.44 0.74

Note: This table shows summary statistics on the estimates that capture
how much less productive time at the origin is relative to the destination
separate by type.

To summarize our results, we find large differences in the value of time across in-
dividuals and also large differences in differentially productive time use across origin
and destination. Most of the variation in the value of time comes from person-specific
heterogeneity as opposed to place specific heterogeneity. Interestingly, this suggests
that, in the short run, different places do not confer benefits that are equally valued by
everyone. These results are an important short-run complement to the recent debate
around the importance of place-specific factors for long-run outcomes. Another inter-
esting implication lies in the finding that the value of time of high types can, in part,
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be explained by a larger necessity for planning as measured by the ratio between origin
and destination flow values for the same area. This suggests that high vot types depend
to a larger extent on complementary inputs with whom a need for coordination arises.
For example, high skilled work places might require more meetings and coordination
with others to use time productively.

6 Application: The Time Cost of Traffic Congestion

Traffic congestion is a growing phenomenon across the globe. The 2019 Urban Mobil-
ity report estimates that the average urban commuter in the United States spent an extra
54 hours of travel time on roads as a result of congestion.24 INRIX reports a similar
global measure taken across 220 cities among 38 countries to estimate that congestion
increases traffic time on average by 108 hours in 2018, a 1% increase over the previ-
ous year.25 This problem has the attention of regulators. Large metropolitan cities are
experimenting with a variety of policy instruments including congestion pricing, vari-
able tolling and stricter limits to parking. While congestion is a salient problem for
commuters and businesses alike, the costs are normally difficult to quantify precisely
because commuters’ opportunity costs in traffic are hard to measure. In this section, we
use our framework to quantify the opportunity cost of congestion in Prague.

Our approach has two ingredients. First, we use time and distance data from the
1.9 million trips in our sample to measure average traffic speed by time of day and
route. We find the hour of day at which average traffic speeds are highest and denote
this as the free-flowing or un-congested traffic speed. By comparing each observed trip
time against the counterfactual trip time under un-congested conditions, we compute a
measure of extra travel time due to congestion. Figure 10 panel (a) plots average excess
travel times by hour across Prague. During peak times, trips take an extra 5-6 minutes
or about 25% longer. In evening and overnight hours, congestion falls substantially as
average traffic speeds become close to the free-flowing speeds.

The second ingredient is our measure of time cost. Our time of day and place-
specific vot estimates serve as these measures and can be interpreted as a summary of
the value of activities at certain places throughout the day. When we estimate a positive
WTP for transiting from one place to another, this reveals that the destinations must
be higher valued than the origins at that time. Thus, the time cost of congestion will
depend on whether congestion reduces time spent at a productive destination (vota,ht ,i)
or a less productive origin (δa,ht ,i ·vota,ht ,i). One feature of our value of time estimates is

24See Schrank, Lomax and Eisele (2012).
25See https://inrix.com/scorecard/.
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that we can distinguish between anticipated and unanticipated congestion cost. Antic-
ipated congestion costs, such as during an hour in which a road is typically congested,
will induce travelers to leave early and thereby sacrifice time at the origin instead of
the destination. Conversely, unanticipated congestion costs will cost travelers time at
their destinations, which are most often higher valued. To compute congestion costs,
we simply multiply the number of excess minutes in traffic by the value of time at origin
or destination, depending on whether congestion is anticipated or unanticipated. We as-
sume that the value of time spent in a vehicle is zero, consistent with our normalization
of time spend waiting at an airport. Figure 10 panel (b) combines trip-specific excess
travel times and their associated vot measures to plot the cost of congestion. We find
congestion cost patterns that mirror the daily commute. If this were completely antici-
pated by travelers, then an average rush-hour trip would impose around $0.25 − $0.30
of time cost as passengers would choose to replace less valuable time at origins with
time in congested traffic. When delays are unanticipated, however, the average per-trip
cost to travelers is between $1.00 − $1.30 during rush-hour.

Figure 10: Excess Time in Traffic and Estimated Congestion Costs
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The above figures make clear that congestion costs are borne most heavily in the
rush-hour periods, and, when traffic accidents and other shocks to commute time impose
unanticipated delays, the costs can grow five-fold. We now explore congestion cost
heterogeneity across space. Higher congestion costs in core sections of urban areas has
led some municipalities to implement zone-based congestion pricing, as London did
in 2003.26 Figure 11 and Figure 12 separate trips by urban core or non-core. Urban
core designates routes that begin or end in the high density center of Prague (Locations
including and adjacent to 11 and 20 and in Figure 17).

26Similar programs are being planned for New York City. See http://www.mta.info/press-release/
bridges-tunnels/mta-announces-selection-transcore-build-nation-leading-central.
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Figure 11: Excess Travel Time in Center and Periphery
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Figure 11 shows that, on average, the extra time spent driving relative to time in
free-flowing traffic is larger by a factor of 2-3 throughout the day on routes connecting
to the urban core. Trips in the city periphery exhibit similar time of day patterns, but
with less extreme differences across night and day. In Figure 12 we show congestion
costs across core and non-core routes. Unexpected congestion costs (Panel (a)) in the
urban core are mostly higher during the day time, but evening congestion is more costly
outside of the urban core. This is consistent with our finding that vot at peripheral
destinations, which are largely residential, are higher valued than core origins in the
evening hours. This is because anticipated Panel (b) shows anticipated congestion costs
in and out of the core over the day. Since peripheral residential areas outside of the
urban core tend to have higher values as origin-locations than non-residential areas, we
see that anticipated costs, which impose costs on origin time rather than destination
time, are higher on average outside the core.

Figure 12: Planned and Unplanned Congestion Cost in Center and Periphery
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Individual heterogeneity in vot can induce disparate impacts of congestion. We
denote high-vot individuals, denoted as individuals with above-median WTP for wait-
ing time reductions, as time-sensitive types. The remaining individuals are denoted
time-insensitive types. Figure 12 Panel (b) shows that unanticipated congestion costs
for time-sensitive individuals are slightly more than double that of time-insensitive in-
dividuals, with average rush-hour costs up to $2.02 per trip. Anticipated congestion
costs both types nearly the same amount, which suggests that travelers’ time costs in
unproductive states (i.e. periods in which anticipated time costs can be borne more
cheaply) is much more equal than in productive states. These differences are relevant
because many solutions to urban congestion involve pricing through tolls, zone-pricing,
or automotive taxes. Nevertheless, this distinction suggests that price-based solutions
to congestion will result in time-sensitive drivers and passengers choosing to pay while
time-insensitive drivers exit the road.

Figure 13: Estimated Hourly Congestion Costs by Individual Differences
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Finally, we ask what our congestion cost measures imply for traffic in Prague as a whole.
The 2016 Prague Transportation Yearbook uses survey data to estimate that 1, 646, 600
automobile trips occur during each workday.27 This study also provides estimates of
the volume of traffic across each workday hour, each day of week and each month as
well as average vehicle occupancy rates.

To determine the total costs of congestion, we first note that the population within
Prague from which our estimates are drawn (i.e., taxi passengers) is likely to be se-
lected on high-vot individuals compared with the average Prague commuter. In order

27See http://www.tsk-praha.cz/static/udi-rocenka-2016-en.pdf.
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to extrapolate from our hourly congestion cost estimates, we first adjust these costs to
reflect opportunity cost of car commuters who are not on the Liftago platform. To do
this we make the assumption that at 9:00am, a typical workday starting time, our vot
estimate is equal to users’ average wage. This value is equal to $13.78 per-hour. The
mean wage among Prague residents, however, is $9.15 per-hour. Using this, we specify
an adjustment factor α = 9.15/13.78 = 0.67 and scale all vot results by α. A second
assumption we make is that the spatial distribution of trips in each hour is the same
between Liftago users and car commuters. Combining these assumptions allows us to
infer, for example, that at 5pm when Liftago riders face an unanticipated congestion
cost of $1.50 per trip, the average car commuter would face a cost of $1.00 per trip.

We can now combine our hourly congestion costs with the hourly distribution of all
traffic provided by the Prague Transportation Yearbook. We assign the annual number
of car trips in Prague to each hour given by the yearbook, and multiply the number of
trips per hour by the α-scaled average congestion costs. We again scale these measures
by the average occupancy rate in Prague of 1.30. Finally, we determine how much
congestion is anticipated by computing the mean traffic speeds by day of week and
hour and treated any trip in which actual trip time is at or below the time implied by
this expectation as a trip faced with anticipated congestion. Any additional trip time is
treated as unanticipated.

Table 8 summarizes the results. Panel A compares the distributions of Liftago rides
and all Prague car trips and shows that most car trips occur in the same hours in which
our speed data imply the greatest congestion, as shown in Panel B. The next two pan-
els compare congestion costs that can be planned ahead (Panel C) with those that are
unplanned (Panel D). The last row of panel D shows that between 11 and 15 percent of
congestion time is unplanned. The last row, Panel E, combines the data above to esti-
mate total congestion costs of $482,955 during each workday in Prague. At 254 work
days per year, this implies that Prague drivers face $123 million in annual congestion
costs or about $75 per driver.28

Our congestion cost estimates only incorporate the cost of time. We do not quantify
the added cost of pollution, noise, accidents or other costs. This estimate also averages
over potentially important heterogeneity; a driver who only commutes into the city core
at 9:00am and leaves at 6:00pm on each workday would face average annual costs of
about $281 over 46.7 lost hours. If we were to restrict attention to high congestion
routes only, this number would likely grow further.

The ability to draw insights from market behavior to quantifying the cost of conges-
tion can be valuable for local policy makers and regulators in a variety of contexts. For

28Statistics on work-days per quarter come from the European Commission’s Eurostat data for the Czech Republic.
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Table 8: Estimated Congestion Costs

Time-of-Day Aggregate
3:00am 6:00am 9:00am 12:00pm 3:00pm 6:00pm 9:00pm 12:00am Total

A. Trip Volume Density∗
Liftago 0.08 0.08 0.1 0.08 0.09 0.15 0.17 0.27 1.0
All Vehicles 0.02 0.02 0.18 0.18 0.18 0.21 0.15 0.06 1.0

B. Mean Excess Travel Time/Trip (min.)
All 0.9 0.9 5.43 4.31 5.0 5.62 2.1 1.16 3.29
Core-Locations 0.77 0.77 5.35 4.33 4.95 5.69 2.01 1.06 3.22
Non-Core 1.95 1.95 5.89 4.24 5.27 5.14 2.73 1.98 3.77

C. Anticipated Congestion Costs/Trip (USD)
All 0.04 0.04 0.23 0.16 0.19 0.23 0.07 0.04 0.13
Core-Locations 0.54 0.54 1.26 0.95 1.18 1.07 0.5 0.33 0.12
Non-Core 0.13 0.13 0.32 0.23 0.3 0.29 0.14 0.1 0.21
High-VOT Types 0.03 0.03 0.22 0.15 0.18 0.22 0.07 0.03 0.12
Low-VOT Types 0.04 0.04 0.2 0.15 0.17 0.21 0.07 0.03 0.12

D. Unanticipated Congestion Costs/Trip (USD)
All 0.22 0.22 1.24 1.0 1.16 1.23 0.39 0.19 0.72
Core-Locations 0.21 0.21 1.27 1.05 1.2 1.29 0.39 0.18 0.74
Non-Core 0.03 0.03 0.22 0.15 0.18 0.23 0.07 0.03 0.8
High-VOT Types 0.23 0.23 1.67 1.35 1.56 1.68 0.54 0.27 0.97
Low-VOT Types 0.16 0.16 0.8 0.65 0.74 0.76 0.21 0.09 0.45
Unanticipated Delays Fraction 0.11 0.11 0.14 0.15 0.15 0.15 0.12 0.11 0.13

E. Daily Estimated Congestion Costs ($ ,000)∗
All Prague Traffic 3.14 3.14 103.36 87.18 101.81 129.66 39.35 11.18 482.95

Note: This tables reports a summary of our hourly congestion cost estimates. Each column aggregates results into three-hour bins
so that, for example, 3:00pm refers to the period between 12:01am-3:00am. The final column reports means across all hours, except
for panels indicated with an asterisk (*), in which the final column reports the sum over all hours.

example, suppose a city needs to write a procurement contract for road repairs which
specifies bonus payments to contractors for timely completion. In order to determine
what incentives to offer, our method could be used to measure the costs of congestion
due to each additional day of construction, as long as anticipated delay time estimates
for the particular project were available. Another use for congestion cost estimates is
in determining the value of new infrastructure itself, such as the benefits to adding a
new lane to a road, upgrading an intersection, or adding public transportation services.
In each of these cases we would need to have information about the specific project to
explicitly characterize its impact on traffic speeds and any spillover effects to nearby
roads, but such an analysis remains feasible with our approach.

7 Conclusion

The trade-off between time and money is at the heart of many important economic
decisions. In this project we use data from a large European ride share platform that
offers menus with explicit trade-offs between time and money. We use this unique
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feature to estimate a demand model based on choices from these menus. This allows
us to recover riders’ preferences and demand elasticities over time and money as well
as their implied willingness-to-pay to reduce waiting time. Building on ideas in Small
(2012) we then provide a framework to translate the estimates from this demand model
into the implied value of time across different locations, times and types of individuals.

Our demand model reveals noteworthy patterns in how individuals value time and
money. Consumers are about four times more price elastic than waiting time elastic.
There are also large differences in willingness to pay for waiting time reductions in the
population of riders. The top fifty percent of riders are willing to pay on average $17.14
per hour of waiting time reduction, compared to $4.54 for the bottom fifty percent. We
show how these differences vary over the day, and we find that work hours lead to higher
willingness-to-pay compared to evening hours. We also find that the origin-destination-
specific WTP measures are highly correlated with the fraction of travel flows across the
same routes, lending insight into studies using travel flows as a proxy for place-specific
values.

We decompose the demand model estimates to quantify the value of time. We es-
timate the average value of time in Prague at $14.48 per hour during work hours and
$12.55 per hour during non-work hours. We again find substantial heterogeneity by
place, time and individuals. A variance decomposition reveals that 85% of the overall
heterogeneity is driven by individual differences. Only a small fraction of the varia-
tion is due to place and time of day, once individual differences are accounted for. The
model also allows us to distinguish between the value of time in planned and unplanned
activities. We find that there are large differences in the population of riders in terms of
the ratio of planned and unplanned time values and these differences are again increas-
ing during work time. This finding suggests that more time-elastic demand might be
driven by the need to coordinate with coworkers and other complementary production
factors at work.

There are several qualitative insights that arise from our model. First, it provides
a measure of the short-run value of places due to their set of features, amenities and
activities, as it is based on directly observed decisions about same-day time allocation.
Using other common methods to measure the value of places, such as housing prices,
will risk confounding the short-run valuations with the long-run expectations that make
up real estate demand. In contrast with literature on residential sorting, our results
suggest that people with a higher value of time do not sort into places with a higher value
of time. This suggests that the use of places may be more egalitarian than residential
choices. Finally, our approach shows that data generated by ride hail companies and
other transportation services can be exploited to better understand urban infrastructure
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and potentially be used to detect and evaluate missing transport links.
To demonstrate how our estimates can be used in a policy context, we quantify the

cost of traffic congestion in Prague. This is done by combining our high-resolution
traffic speed data with our measures of planned and unplanned time costs. By recovering
per-trip time costs across each hour of the day, we estimate that congestion imposes
approximately $483 thousand per day in time costs.

38



Bibliography

Abowd, John M, Francis Kramarz, and David N Margolis, “High wage workers and
high wage firms,” Econometrica, 1999, 67 (2), 251–333.

Abrantes, Pedro AL and Mark R Wardman, “Meta-analysis of UK values of travel
time: An update,” Transportation Research Part A: Policy and Practice, 2011, 45

(1), 1–17.

Aguiar, Mark and Erik Hurst, “Life-cycle prices and production,” American Eco-

nomic Review, 2007, 97 (5), 1533–1559.

, , and Loukas Karabarbounis, “Recent developments in the economics of time
use,” Annu. Rev. Econ., 2012, 4 (1), 373–397.

Allen, Treb and Costas Arkolakis, “The welfare effects of transportation infrastructure
improvements,” Technical Report, National Bureau of Economic Research 2019.

Almagro, Milena and Tomás Domınguez-Iino, “Location Sorting and Endogenous
Amenities: Evidence from Amsterdam,” 2019.

Athey, Susan, Billy Ferguson, Matthew Gentzkow, and Tobias Schmidt, “Experi-
enced Seggregation,” 2019.

Bayer, Patrick, Fernando Ferreira, and Robert McMillan, “A unified framework for
measuring preferences for schools and neighborhoods,” Journal of political economy,
2007, 115 (4), 588–638.

Becker, Gary S, “A Theory of the Allocation of Time,” The Economic Journal, 1965,
pp. 493–517.

, “A theory of marriage: Part I,” Journal of Political economy, 1973, 81 (4), 813–846.

Belenky, Peter, “Revised departmental guidance on valuation of travel time in eco-
nomic analysis,” US Department of Transportation. Washington, DC, 2011.

Bento, Antonio, Kevin Roth, and Andrew R Waxman, “Avoiding traffic congestion
externalities? the value of urgency,” Technical Report, National Bureau of Economic
Research 2020.

Bloom, Nicholas, James Liang, John Roberts, and Zhichun Jenny Ying, “Does
working from home work? Evidence from a Chinese experiment,” The Quarterly

Journal of Economics, 2015, 130 (1), 165–218.

39
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A Omitted Graphics

Figure 14: Picture of the Liftago App

Note: description here.
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Figure 15: Trips with Price/Waiting Tradeoff
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The graph shows the proportion of trips that involve an option to spend more and wait less.

Figure 16: Driver Fixed Effects
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B Relation to the model in Small (1982)

We explain in this section how the model we use in the main body relates to the model
in Small (1982), which is inspired by the work of Vickrey (1969), and in particular, to
its microfoundation by Tseng and Verhoef (2008).
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In Tseng and Verhoef (2008), a rider is defined by the value he assigns to being at
the origin at time t, ṽO(t), the value he assigns to being at the destination at time t, ṽD(t),
and the value he assigns to being on a ride at time t, ṽR(t). This, in turn, define a net
value of being at the origin and at the destination at time t, votO(t) = ˜votO(t)− ˜votR(t)
and vD(t) = ˜votD(t) − ṽR(t), respectively.

The rider has an ideal arrival time at the destination, which is the time t? at which
votO(t?) = votD(t?). However, moving from the origin to the destination involves
some travel time and the time waiting for the ride. Letting ∆ denote the length of the
trip29, tO the time at which the ride is requested, and w the waiting time, the rider arrives
at his destination at time tO + w + ∆.

Thus, the time cost of the trip is given by:

cT (tO + w, tO + w + ∆) =

∫ tO+w+∆

tO+w
votO(t)dt

+ 1[tO + w + ∆ < t?]
∫ t?

tO+w+∆

(votO(t) − votD(t))dt

+ 1[tO + w + ∆ > t?]
∫ tO+w+∆

t?
(votD(t) − votO(t))dt, (17)

The cost of time consists of three components: (i) the time on the ride could have been
spent at the origin so that its cost is the foregone value at the origin, (ii) if the rider
arrives before her ideal arrival time, then she foregoes the value of being at the origin
(which is higher since tO + w + ∆ < t?), and (iii) if the rider arrives after her ideal
arrival time, then she foregoes the value of being at the destination (which is higher
since tO + w + ∆ > t?).

Now suppose a ride compares two different trips associated with two different wait-
ing times with expected trip length ∆. It is clear that the first term drops out of the
expression.

cT (tO + w1, tO + w1 + ∆) − cT (tO + w2, tO + w2 + ∆) (18)

Since the disutility of travel plays no role in the decisions that we study, we are
dropping this term from our expression. Since we are holding ∆ constant, any early
arrival relative to t? implies an additional unit at the destination and one unit less at
the origin relative to the plan. Similarly, any late arrival implies one unit less at the
destination and one unit more at the origin relative to the plan. This means that the cost
of early arrivals is given by:

29Recall that we assume that it is independent of the starting time.
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∫ t?

tO+w
votD(t) − votO(t)dt i f t? > tO + w

and the cost of late arrivals by:∫ tO+w

t?
votO(t) − votD(t)dt i f t? < tO + w

Small (1982) considers a special case of the above model where votO, votD are
constant in time, so that Equation 17 can be written as:

cT (tO + w, tO + w + ∆) = α∆ + βmax{t∗ − tO − w − ∆, 0} + γmax{tO + w + ∆ − t?, 0}, (19)

where α = votO, β = votO − votD, and γ = votD − votO. This version of the model,
where over the relevant time intervals, votO and votD are constant, is the one to which
the model in the main body of the paper maps to. Whereas Small (1982), assumes that
votO, votD are constant everywhere, it is important to note that this is not the case in the
exercise that we carry out. Indeed, we only assume that this holds over [tO, tO + w + ∆];
however, we allow these values to vary across different times of day, different locations,
and different types of riders.

C Identification of Location Values

The following are the three assumptions that will be used in our main theorem below.

Assumption 1. (Independence across locations) F
(
V i,k

a ,V
i,k′
a′

)
= Fi,a,k (V) · Fi,a′,k′ (V)

∀(a, a′) ∈ J2 and (k, k′) ∈ {o, d}2

The following assumption imposes the existence of at least one location where the
mean of the values is known either when this location is the destination or it is the
origin. For example, the mean (local) wage per minute might be a good approximation
of the mean value per minute for trips originating in a typical business area.

Assumption 2. (Location Normalization) ∃a ∈ A, k ∈ {o, d} : E
[
vk

i,a

]
= µ0.

While we will establish non-parametric identification of the value distributions, for
the empirical application it will be useful to consider a special case of normal distribu-
tions.

Assumption 3. (Normal Distributions) Vk
i,a ∼ N

(
µk

a, σ
k
a

)
∀i, a ∈ A, k ∈ {o, d}), iid

across (i, a, k).
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With these assumptions we can state the following identification result. The first part
is straightforward, but requires the knowledge of a subset of trips, such that one of the
two values in the difference Vd

i,a − Vo
i,a′ is a known constant. The second part imposes

a potentially weaker requirement: only that we know the mean value at one location
(whether it is the origin or the destination) and that one part of difference can be held
constant across a subset of observations. The last part is a special case, which imposes
more parametric structure.

Theorem 1. (Sufficient Conditions for Identification)

1. Under Assumption 1, if ∃
(
Xo, Xd, a

)
⊂ X × X × A : Pr

[
Vk

i,a = v̂k|Xk, a
]

= 1 for

k ∈ {o, d}, then Fa,k (v) is identified ∀a ∈ A, k ∈ {o, d}.

2. Under Assumptions 1 and 2 , when either ∃k ∈ {o, d} : vk
i,a,t = vk

i′,a,t∀(i, i′, a, t) or

∃k ∈ {o, d} : vk
i,a,t = vk

i,a,t′∀(i, a, t, t′), then Fa,k(v) is identified ∀a ∈ A and k ∈ {o, d}

whenever |A| ≥ 3.

3. Under Assumptions 2 and 3,
(
µk

a, σ
k
a

)
is identified ∀a ∈ A, k ∈ {o, d} whenever

|A| ≥ 3.

Proof: See Appendix C. The theorem says that we can identify the distributions
of valuations non-parametrically whenever (1) values are independent across locations
and we can isolate cases for which the value either at the origin or at the destination is
known to be equal to some constant, (2) when values are independent and are location-
and time-, but not individual-specific either at the origin or at the destination (e.g.,
everyone has the same value of spending a minute in a residential area) or values are
location and individual, but not time-specific (e.g., an individual has always the same
value of a minute of being at his business location at 8am every Monday), we know
the mean value in at least one location and there are at least 3 locations. Given the
previous result, we can of course also identify the values parametrically. However, this
approach is particularly easy when the values are iid normal, when there are at least
3 locations and we have one location normalization for both mean and variance. (1)
follows from restricting attention to cases where one part of the difference is known to
be a constant, and hence the distribution can be fully recovered from the distribution of
the differences. (2) follows from a deconvolution argument as in Li and Vuong (1998)
since under the hypothesis of the theorem we can construct a sample in which we hold
one part of the difference fixed. By applying the Kotlarski Lemma, one can then recover
the distributions of both pieces of the difference (up to the location). The additional
location normalization pins down the means separately. (3) follows since adding an
additional location to the existing set of L locations comes with 4 new parameters (two
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means and two standard deviations) and generates 2 · (L − 1) additional equations and
hence one needs L ≥ 3 together with the two normalizations.

Proof. (1) Restricting attention to Xo and trips originating in a going to destination a′

identifies FD,a′(v) trivially from the observed distribution of the differences by shifting
the distribution of the data by the relevant constant, v̂O. Similarly, FO,a′(v) is identified
from using only data from Xd and trips that originated in a and went to a′.

(2) Consider |A| = 3 and the case vo
i,a,t = vo

i′,a,t∀(i, i′, a, t),i.e., that values at a given
origin and time are the same for all individuals i. Since values at origin are the same,
the deconvolution argument identifies (using variation over time) the distribution of
values at origin and the distribution of the values at each destination (using variation
across individuals going to each destination) - up to a location normalization, i.e., the
two means cannot be identified separately directly.30 With 3 locations we can setup
the following system of 6 equations in 6 unknowns (in the means of values at origin
and at destination), where the objects on the LHS are recovered from the deconvolution
argument: µ12 = −µo

1 + µd
2, µ13 = −µo

1 + µd
3, µ21 = −µo

2 + µd
1, µ23 = −µo

2 + µd
3, µ31 =

−µo
3 + µd

1, µ32 = −µo
3 + µd

2. This system is not identified since the matrix of coefficients
has a rank of 5. Substituting equation from Assumption 2 for one of the equations
including that mean restores the full rank of the coefficient matrix. For any additional
location, 2 new parameters and L − 1 new equations are introduced, but the rank is still
(2L-1). Substituting equation from Assumption 2 brings the rank to 2L, and we have
L · (L − 1) equations. Hence we can simply keep any subset with rank 2L as at true
parameters all of these equations will hold simultaneously.

The case vo
i,a,t = vo

i,a,t′∀(i, a, t, t′), is analogous, except variation over individuals is
used for the deconvolution argument and the distribution of values at origin and desti-
nation is identified using variation within individuals as they go to different destinations.
The means are then recovered as above.

(3) Since sum of two normally distributed random variables is also normally dis-
tributed with mean being the sum of means and the variance being the sum of the vari-
ances, the means can be recovered directly by using the argument in (2). However,
the system of equations involving the variances is also less than full rank - and hence to
identify these directly, one needs another location normalization (such as the knowledge
of the variance at some location) or one needs to appeal to case (2), which establishes
that the variances are identified non-parametrically.

�

30In the measurement literature setup Y1 = X + ε1,Y2 = X + ε2, the distributions F(X),G(ε) are identified from H(Y1,Y2)
whenever the usual iid assumption holds, when the characteristic functions of F and G are non-vanishing everywhere and when
E(ε) = 0.
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D Data Details

D.1 Locations

Using the exact GPS points of trip origin, we partition our data into 30 locations. Fig-
ure 17 shows these locations together with an index value for comparing results in Sec-
tion 5. The partitioning is done according to a simple k-means clustering procedure on
the requested pickup locations with k = 30. This procedure minimizes the straight-line
distance between each point and the weighed center of all points within the same clus-
ter, with the constraint that each cluster has an equal number of points. The depicted
locations are close approximations, displayed as Voronoi cells that contain the clus-
tered points. This process allows location definitions to be independent of any political
boundaries and better representative of places in which demand is concentrated.

Figure 17: Locations in Prague

Note: This figure maps the boundaries of the city of Prague with locations defined by a kmeans-clustering procedure on GPS-
locations of trip origins and depicted as Voronoi cells that contain the clustered points. Displayed index values correspond to
indices used in the paper.

D.2 Market Time Series Summary

Figure 18, panels (a) and (b) summarize the week-over-week trends in prices. Begin-
ning 2017 the ridership and drivers stop to grow and enter a relatively stationary period,
although there are some large swings in the number of passengers towards the end of
2017. It shows the relationship between labor supply and price during the sample pe-
riod. As expected, price decreases as supply increases during the winter holiday seasons
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and increases as supply falls during the summer. The second panel shows how average
waiting time and average price evolve during the sample period.

Figure 18: Weekly Waiting Times and Number of Drivers Compared to Prices
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(b) Price and Driver Count

E Estimation Details

E.1 Recovering Latent Types: Conditional K-Means-Clustering Pro-
cedure

The clustering procedure allocates passengers to initial latent classes using a “k-means++”
algorithm and then reallocates passenger types to best explain individual choices after
controlling for observable features of the environment. This approach is based on Bon-
homme et al. (2017) and uses Julia’s Clustering package implementation of k-means++.
Our discussion here is mainly based on the two.

E.2 Location Parameter Estimates

Here we offer additional details on location-specific parameter estimates. Figure 19
plots these estimates across origins and destinations.

E.3 Model Fit

Figure 20 illustrates the model’s ability to fit the observed choices in the data. For
each trip and corresponding driver bids, we use our estimates to predict whether each
customer will pick the outside-option and plot the average prediction for each week.

Figure 21 Demonstrates the model’s ability to correctly predict specific choices
across auctions. We do this in two ways: first we use our estimates to predict which

51



Figure 19: Location-Specific Coefficient Estimates

5 10 15 20 25

0.05

0.10

0.15

0.20

Location Index

C
oe

ff
ic

ie
nt

Pickup
Dropoff

(a) Waiting Times × Locations
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(b) Location Means

Note: This figure shows coefficient estimates for 120 location-specific parameters omitted from Table 2. Standard errors are
depicted as bars around each point. Location indices may be cross-references with Figure 17. Panel (a) displays results for the
coefficients on the interaction between waiting time and location, and Panel (b) displays results for the coefficients on location
indicators, which can be interpreted as location-specific utility shifters relative to location index 1.

Figure 20: Model Fit On Outside Option Selection
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option each customer will pick inclusive of simulated draws of εi, j,t. Because the εi, j,t

represent unobservable attributes associated with each choice, this simulation will tend
to add additional noise to our choice predictions. We also make the same predictions
but set εi, j,t = 0 for all i, j, t, which improves our predictions by about 10%.

E.4 Elasticities by Area

See Table 9 and Table 10 below.
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Table 9: Bid Level Elasticities by Origin Area

High VOT-Type Elasticities Low VOT-Type Elasticities
Origin Area Price Waiting Time Price Waiting Time

1 -4.82 -0.98 -5.22 -0.93
2 -2.71 -0.37 -3.66 -0.3
3 -3.98 -0.56 -4.26 -0.46
4 -2.95 -0.38 -3.79 -0.29
5 -4.47 -0.37 -4.53 -0.38
6 -5.05 -0.59 -5.37 -0.57
7 -9.64 -0.27 -9.7 -0.22
8 -10.0 -0.55 -9.75 -0.48
9 -2.78 -0.46 -3.38 -0.41
10 -2.62 -0.33 -3.7 -0.25
11 -2.41 -0.36 -3.19 -0.26
12 -5.26 -0.47 -5.55 -0.43
13 -7.81 -0.47 -7.58 -0.44
14 -3.95 -0.51 -4.34 -0.44
15 -3.45 -0.49 -3.69 -0.44
16 -3.69 -0.38 -4.54 -0.31
17 -2.79 -0.34 -3.89 -0.24
18 -6.75 -0.78 -6.45 -0.7
19 -5.63 -0.56 -5.93 -0.53
20 -2.52 -0.31 -3.43 -0.22
21 -5.48 -0.52 -5.41 -0.47
22 -5.06 -0.7 -5.45 -0.6
23 -6.9 -0.64 -7.09 -0.6
24 -10.31 -0.44 -9.6 -0.38
25 -5.82 -0.44 -6.17 -0.41
26 -2.98 -0.39 -3.59 -0.34
27 -3.89 -0.56 -4.33 -0.5
28 -6.66 -0.43 -6.56 -0.39
29 -2.84 -0.36 -3.64 -0.29
30 -4.98 -0.57 -5.2 -0.51

Note: This table shows price and waiting time elasticities across the thirty differ-
ent origin places separated by high and low VOT types. Figure 17 shows location
indices on a map of Prague.
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Table 10: Bid Level Elasticities by Destination Area

High VOT-Type Elasticities Low VOT-Type Elasticities
Destination Area Price Waiting Time Price Waiting Time

1 -4.3 -0.47 -4.44 -0.42
2 -2.45 -0.47 -3.09 -0.45
3 -3.6 -0.32 -3.88 -0.26
4 -2.67 -0.45 -3.31 -0.47
5 -4.16 -0.43 -4.39 -0.32
6 -4.75 -0.28 -4.96 -0.21
7 -9.35 -0.38 -8.33 -0.39
8 -8.75 -0.32 -8.48 -0.28
9 -2.64 -0.37 -3.16 -0.36
10 -2.52 -0.44 -3.29 -0.45
11 -2.32 -0.35 -2.87 -0.35
12 -4.81 -0.34 -4.69 -0.24
13 -7.02 -0.26 -7.06 -0.21
14 -3.55 -0.32 -3.93 -0.27
15 -3.18 -0.32 -3.51 -0.3
16 -3.18 -0.41 -3.75 -0.37
17 -2.57 -0.45 -3.41 -0.46
18 -5.86 -0.3 -5.98 -0.24
19 -5.24 -0.33 -5.13 -0.26
20 -2.42 -0.48 -3.26 -0.5
21 -5.04 -0.33 -5.3 -0.28
22 -4.27 -0.31 -4.37 -0.23
23 -6.14 -0.19 -5.77 -0.17
24 -8.21 -0.38 -7.69 -0.31
25 -5.42 -0.36 -5.51 -0.28
26 -2.84 -0.41 -3.24 -0.37
27 -3.35 -0.35 -3.46 -0.29
28 -6.0 -0.37 -5.84 -0.27
29 -2.72 -0.36 -3.19 -0.34
30 -4.58 -0.33 -4.67 -0.26

Note: This table shows price and waiting time elasticities across the thirty different desti-
nation places separated by high and low VOT types. Figure 17 shows location indices on
a map of Prague.
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Figure 21: Model Fit On Outside Option Selection
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E.5 Estimation Results Omitting Control Function

Table 11 below presents the price and waiting time elasticity estimates in which the
control function is omitted.

Table 11: Estimated Elasticities

Time of Day Individual Type Bid Level Elasticities Order Level Elasticities
Price Waiting Time Price Waiting Time

Daytime
6am-6pm

Overall -1.83 -0.63 -1.74 -0.64
H Price, H Wait Sensitivity -4.08 -1.18 -3.83 -1.09
H Price, L Wait Sensitivity -0.95 -0.51 -1.04 -0.53
L Price, H Wait Sensitivity -2.15 -0.6 -2.05 -0.68
L Price, L Wait Sensitivity -0.65 -0.3 -0.75 -0.38

Evening
6pm-6am

Overall -2.58 -0.25 -2.4 -0.28
H Price, H Wait Sensitivity -4.32 -0.39 -4.12 -0.4
H Price, L Wait Sensitivity -1.25 -0.2 -1.33 -0.22
L Price, H Wait Sensitivity -3.09 -0.26 -2.87 -0.31
L Price, L Wait Sensitivity -1.04 -0.15 -1.12 -0.18

Note: This table shows the demand elasticity of price and waiting time across daytime and evening hours and individual type
groupings. This table replicates Table 3 except that the model is estimated with no control function. We distinguish as high (H)
price sensitivity individuals who have below median values for βp

i and low (L) price sensitivity individuals as those with above
median values for βp

i , and similarly for waiting time sensitivity. The first two columns show these elasticities among competing
bids, reflecting the change in demand due to a 1% change in price or waiting time on a single bid. The second two columns
show them with respect to choosing the outside option, reflecting a change in demand due to a 1% change in price or waiting
time on all bids.
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