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1 Introduction

How to average over the past is one of the most basic questions that arises in a

variety of economic fields. Our particular focus is on a classic public economic

issue – how to average income for the tax purposes – but the answer is broadly

applicable to many other topics. The question of income averaging is typically

attributed to Vickrey (1939) and can be summarized as follows.1 Consider a

progressive tax system and two taxpayers with the same income over a period

of time. The person with the constant income pays a lower total amount

of taxes than the person with the fluctuating income. Averaging income to

equalize the tax burden then may be desirable.2

In this paper, we want to abstract from the desirability of averaging. Our

goal is to formalize the question of averaging and to propose a small set of

reasonable axioms that an averaging mechanism may possess. Given this set

of the axioms, we are interested in what averaging functions may arise. More

broadly, the question of averaging over the past, given a small set of assump-

tions, may be of use in a variety of other applications such as behavioral

economics or dynamic contracting.

We chose two main axioms that the averaging function that weights in-

come at different periods should satisfy. The first is recursivity – averaging

should treat various scales of smoothing in a unified way. In this context, the

assumption implies that averaging at some scale and then at another scale is

equivalent to averaging at the combined scale. This condition ensures that

all these outcomes agree: there is no difference in averaging over, say, a year,

twelve units of a month or 52 weeks. Alternatively, one can think of this as-

sumption as stating that no scale of averaging is singled out and all of them are

treated equally. It is natural that a reasonable multiscale averaging method

has the scales connected with this intrinsic compatibility condition. The sec-

ond is a continuity or locality assumption that requires that the very distant

1See also Simons (1938).
2A related issue is the choice of the reference period for taxation. Most commonly the

taxes are assessed on the annual basis. However, in principle, a government may use a
shorter or a longer accounting period.
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incomes do not play a disproportionate role in averaging. We also need to pos-

tulate how we treat the present, that is, to set the boundary condition of the

averaging rule. In addition, we impose some other, less essential conditions,

such as various normalizations.

In principle, many weighting functions are possible: equal weights for all

income, assigning lower weights to the more distant past, singling out some

incomes, etc. We show that the small number of assumptions that we make re-

sult in a definite general weighting scheme. Specifically, the smoothed incomes

and the weighting function are a solution to the second order parabolic partial

differential equation. The easiest way to describe the intuition behind this re-

sult is using a probabilistic argument. One can think of averaging being done

using a stochastic process. Fix a given time and consider a stochastic process

originating in that period. The probability of the process reaching some other

time is then the weight that the averaging assigns to that income. The recur-

sivity (or semi-group) assumption implies that such a process is Markovian.

The locality assumption implies that the process has continuous paths. The

classic result is that the process is a diffusion. Since we are averaging over the

past and given the behavior on the boundary, the resulting process is then a

reflected Brownian motion with a drift. The weighting function is the density

of this process. The smoothed incomes in turn satisfy a second order parabolic

partial differential equation.3

The density of such process that defines a weighting function is known in

a simple closed form. From the point view of present, the averaging function

has particularly meaningful properties. Consider averaging over the very short

period in the past. In this case, the drift does not have any substantial effect

and the averaging is done mainly via the normal density with the nonzero

mean determined by the drift. Consider now averaging over the long horizon.

A remarkable fact in probability theory is that for any constant positive drift,

the weighting function converges to an exponential. For all the averaging

scales in between these two, there is an explicit solution that interpolates

3In fact, we do not have to run average on the pre-tax income and could rather consider
smoothing or averaging the tax contributions or the post tax income directly.

3



between them. We also show that the smoothed income has a particular

strong smoothing structure of a gradient flow.

Finally, we want to remark that our work connects the economic ques-

tion of averaging to two literatures that previously have not been represented

in economics. The first is the mathematical imaging and vision literature

that considers representation of images over various smoothing scales (see,

e.g. Aubert and Kornprobst 2006 and Lindeberg 2013). The second, is the

Schönberg’s theory of variation diminishing transformations and Polya’s fre-

quency functions (Schönberg 1948, Steinerberger 2019).4 Our results nest and

interpolate between the results on averaging obtained in these two approaches.

2 Literature

The question of Vickrey’s income averaging is classic and familiar to any stu-

dent of public finance. While this mechanism is not widely used in fiscal

practice today (there are some provisions for income averaging for artists and

farmers), it was extensively employed in the past. Great Britain applied a pro-

gressive tax schedule to the average of the individual income of the previous

three years from 1799 to 1926. Between 1923 and 1938 Australia used a five-

year moving average of income over the past five years (Holt 1949). Gordon

and Wen (2018) describe a more recent experience the summary of which we

present: The United States introduced general income averaging in 1964 and it

was repealed in the 1986 Tax Reform Act. In Canada, a similar policy to that

in the United States was introduced in 1972 together with forward averaging

of the income-averaging annuity contracts and had been in effect until 1988.

The impact of progressive tax rates on realized capital gains was one reason

for setting of low tax rates on capital gains. There are also several prominent

recent proposals to reintroduce income averaging. Batchelder (2003) proposes

targeted averaging for the poor in the context such as EITC in the US. In

Canada, Mintz and Wilson (2002) for primarily retirement savings plans and

4The literature on total positivity that builds on this work (Karlin 1968) is used more
extensively in economics.
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Gordon and Wen (2018) more broadly argue for income averaging.

The question of averaging regularly appears in models of dynamic taxation

in which agents experience idiosyncratic shocks. The Mirrlees review (Mir-

rlees and Adam 2010) that analyzes the theoretical foundations behind the

practical tax design devotes a signficant amount of space to the question of

lifetime earning variability and lifetime income as the tax basis. Diamond

(2009) discusses Vickrey’s income averaging in the context of design of pen-

sions systems. Huggett and Para (2010) study optimal lifetime tax in a model

of social insurance. Kapicka (2017) extends the model of Heathcote, Storeslet-

ten, and Violante (2014) to allow for history-dependent taxes. He finds that

the optimal weights on past incomes decline geometrically at a rate equal to

the discount rate and that the gains from the history dependence are large.

Jacobs (2017) reviewing digitization and taxation states increased feasibility

of practical implementation of the income averaging rules.

There are relatively few recent studies of the empirical effects of income

averaging.5 The most comprehensive is Gordon and Wen (2018) which also

contains a review of the older literature on the topic. For the Canadian data,

they find that while fluctuation penalty is low on average, 10 percent of tax-

payers faced annual tax penalties of 1 percentage point of their income and

1 percent of taxpayers paid 4 percentage points. That is, those in the top 1

percentile of the penalty paid 4 percent of their average annual income more

in taxes per year if they had been able to perfectly average. The highest

percentile is composed largely of the self-employed or those with the realized

capital gains. What is more, 57 percent of taxpayers located between the 95th

and 100th percentiles of the penalty are from the bottom income quintile. Sim-

ilarly, in the US, Batchelder (2003) finds that families the bottom quartile of

families ranked by the annual income faced an additional effective tax rate of

2.0 percentage points higher under annual income measurement than it would

be if income were fully averaged, whereas for the top quartile’s rate it is only

0.5 percentage points higher. Bargain, Trannoy, and Pacifico (2017) examine

5In terms of the assessment of the practical implementation of income averaging, there
is an extensive literature in law (see, e.g., a summary in Buchanan 2005).
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French administrative data and show that increasing the tax frequency can

lead to substantial social welfare gains, coming to an important degree from

the bottom of the income distribution.6

There are two related answers in the mathematical literature to the ques-

tion of averaging.

The first is given by the literature on scale-space in mathematical imaging

and vision analysis (see e.g., books by Aubert and Kornprobst 2006 and Lin-

deberg 2013). This literature studies image representations at various scales

– from the finest scale that represents the original image to the coarser scales

of the smoothed versions of the images. Smoothing is conducted at various

scales which are tightly related to each other. The analysis there is mainly

concerned with two-sided averages and derives a deep and substantial result

– a Gaussian kernel arises as a unique averaging object based on a small set

of assumption when averaging is done over the whole line. The Gaussian ker-

nel has many properties and appears in a variety of fields of mathematics: in

the scale-space literature it is derived primarily using two main assumptions:

varying forms of smoothing and the semigroup (recursivity) structure.7 For

example, Lindeberg (1997) writes “A notable coincidence between the differ-

ent scale-space formulations that have been stated is that the Gaussian kernel

arises as a unique choice for a large number of different combinations of under-

lying assumptions (scale-space axioms).” This is very important point: given

a variety of reasonable assumptions you make (there is quite a lot of natural

things one could assume), you usually end up with the Gaussian. At the same

time, the one-sided question of averaging over the past is much less studied

and the answer is less canonical in that literature.8

6Saez (2002) considers the question for understanding the optimal period for computing
the time liability.

7The literature identified also some other possible results where under different assump-
tions one may get the stable distributions from probability theory (see e.g., Pauwels, Van
Gool, Fiddelaers, and Moons 1995) or a nonlinear diffusion (see e.g., Alvarez, Guichard,
Lions, and Morel 1993) as the averaging principle – yet the Gaussian is a canonical and
most widely used answer.

8See Fagerström (2005), Lindeberg and Fagerström (1996), Lindeberg (2011), and Salden,
ter Haar Romeny, and Viergever (1998).
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The second literature (Steinerberger 2019) considers one-sided averages

without the semi-group property. The main insight is based on the Schönberg’s

theory of variation diminishing transformations and Polya’s frequency func-

tions (Schönberg 1948). The variation diminishing property (total positivity)

is a particular way to define uniform smoothing at all scales, and it requires

that the number of the function’s crossings at any levels is decreased.9 The sec-

ond assumption that is imposed is monotonicity where the more recent past is

weighed heavier than the more distant path. Steinerberger (2019) shows that

total positivity and monotonicity on the half line lead to the unique weighting

given by the exponential distribution. That is, the “exponential smoothing”

classical in time series analysis (Brown 1957 and Holt 1957 ) arises from a

small set of axioms.

Our result can generate the conclusions of both of these approaches from a

reasonable set of assumptions as well as a range of intermediate results. This

leads to the weighting scheme that interpolates between the Gaussian (similar

in spirit to the scale-space theories) for a short horizon of averaging and the

exponential smoothing for a positive drift case if one considers the long time

horizon.

3 A question of averaging

In this section, we define a question that we aim to study. Let a bounded

measurable income function f : R → R be defined on time x ∈(−∞,∞).

That is, f (x) is income at time x. We are interested, at a given time, in

finding the average of the income in the past. We want this process to be

translation invariant: the way we average over the past should not depend on

whether it is, for example, currently January or July. Moreover, we would

like the process to be linear in the income: the sum of two averaged incomes

should be the average of the sum of the two incomes. The canonical setting

9Karlin (1968) shows the unique averaging kernel that is variation diminishing and is a
semigroup on the whole line is the Gaussian.
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for this is to average by

g(x) =

∫ ∞
0

f(x− y)h(y)dy,

where h : [0,∞)→ R is a (not necessarily continuous) weighting function,

assigning weight h (y) to the income y units of time in the past. Many different

weighting functions are conceivable. For example, one could simply average

the income incurred over the last a units of time - this would correspond to h

being a step function on [0, a] having constant value 1/a.

Our main question is what kind of averaging functions would arise given

a small number of reasonable axioms. We emphasize that while we give one

possible answer to this question under reasonable axiomatic assumptions, we

believe that this question is well worth of further study. In particular, it is

quite conceivable that other sets of assumptions would lead to other natural

functions h(y). We recall that in the mathematical imaging literature, the

Gaussian arises naturally from a wide variety of very different assumptions. No

such analogous way of forming averages seems to be known for the cases of one-

sided averages; both the one-sided Gaussian and the exponential distribution

appear in very different settings but the existing literature is very sparse and

not as comprehensive as the two-sided case. We believe this to be an exciting

avenue for further work.

The second question, that we are interested in, is the issue of scale. We

would like the weighting function and averaging to apply at different scales.

That is, we want the function h to be in fact a family of functions parame-

terized by a scale parameter t. Intuitively, the scale parameter measures both

the range of averaging (the effective length of the time period of averaging)

and, as it will turn out, the degree of smoothing.10 The reason for considering

this parameter is that income fluctuations may occur at different time scales

– from the weekly earnings of a restaurant worker to multi-year royalties of

a songwriter. Having a range of scale parameters allows to consider different

10That is, considering longer intervals allows for overall smoother averages – if I take my
daily income, it may fluctuate significantly; if I average over a week, it will be smoother;
and if I average over a year it will be smoother still.
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averaging requirements that varying circumstances necessitate. If no assump-

tions are made on the range of income fluctuations a priori then all scales

should be considered simultaneously. A challenge is to model and understand

the representation of averaging not as an unrelated rules for different scales

but rather to have a unifying principle that operates at all scales.11

Without loss of generality, we fix the initial time to 0 and call it the present.

Let x ∈ (−∞, 0] denote some time in the past and f(x) denote income at time

x. We further introduce another parameter – scale t. We are interested in

the transformations of the income function f (x)x∈(−∞,0] at different scales t:

u (t, x). The function u (t, x) is the smoothed income at time x where the scale

of smoothing is t. Specifically,

u(t, x) =

∫ 0

−∞
f(y)pt(x, y)dy, (1)

where pt(x, y) ≥ 0 is an averaging or weighting function.12

The scale t in what follows also determines the intensity of smoothing. For

a given scale t, this operation takes an initial income function f and transforms

it into a new function u(t, x)x∈(−∞,0] by convolving with the function pt. That

is, for a given x, u(t, x) is a weighted average of incomes f(y) with the weights

pt(x, y). We are particularly interested in the value of smoothed income at the

present time x = 0 at various scales t:

g(0) = u(t, 0) =

∫ 0

−∞
f(y)pt(0, y)dy.

11This is exactly the foundations of the scale-space theory in mathematical imaging and
vision where an image has to be represented at different scales simultaneously – from the
minute details at the close inspection to the outlines of the main features when viewed from
a distance (see, e.g., Koenderink 1994 and Lindeberg 2013).

12Instead of making the assumptions on the form of (1) we could have more abstractly
considered a family of linear operators Tt acting on bounded and continuous functions
f (x)x∈(−∞,0]. Riesz-Markov-Kakutani representation theorem implies that a (positive) con-

tinuous linear functional f → Ttf is represented by a measure Ttf (x) =
∫ 0

−∞ f (y)Pt (x, dy).
Further assuming Tt1 = 1 implies that Pt (x, dy) is a probability measure.

9



4 Main Assumptions

At this stage, the weighting function pt(x, y) and the corresponding smoothed

income u(t, x) can be very general, and we now state further assumptions that

allow us to specifically determine it.

A natural condition, that is often not even mentioned, is that if the income

function is constant, f(x) ≡ c, then the averaged income function should also

be constant and equal to the same numerical value. We also normalize the

weighting function: for all x, t∫ 0

−∞
pt(x, y)dy = 1.

The natural averaging after 0 units of time have passed is to simply return

the original value at the point since nothing has yet happened. We assume then

the initial condition that p0(x, ·) = δx, where δx is the Dirac delta function.

Assumption 1. [Recursivity] For any x, y ∈ (−∞, 0] and t, s ≥ 0,

pt+s(x, y) =

∫ 0

−∞
ps(x, z)pt(z, y)dz.

This is a natural assumption that connects different scales of averaging.13

It is similar to many other recursive formulations common in economics. In

this context, the assumption implies that averaging at the scale s and then at

the scale t is equivalent to averaging at scale t+s. Alternatively, one can think

of this assumption as stating that no scale of averaging is singled out and all

of them are treated equally. One could thus interpret it as a statement about

the internal consistency: if such an averaging method were to be implemented,

then a citizen could conceivably ask to have their income averaged twelve times

over the scale of a month as well as over the scale of a year and then pick the

more favorable outcome. This condition ensures that all these outcomes agree:

there is no difference in averaging over a year, twelve units of a month or 52

13More abstractly, we could have posed the semi-group property of the operator (Tt) :
T0f = f, Ts ◦ Tt = Ts+t, for all s, t ≥ 0.
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weeks. It is natural that a reasonable multiscale averaging method has the

scales connected with this intrinsic compatibility condition.

We now turn to the third assumption – locality.

Assumption 2. [Locality] For each x ∈ (−∞, 0) and ε > 0∫
|y−x|>ε

pt(x, y)dy = o(t).

Furthermore, there exist the infinitesimal characteristics a and r:∫
|y−x|≤ε

(y − x)pt(x, y)dy = rt+ o (t) ,

∫
|y−x|≤ε

(y − x)2pt(x, y)dy = at+ o (t) .

In essence, this assumption states a form of continuity for the averaging

operator that for a given x, only the local values y matter for the resulting

average (for small t). There is also an additional assumption built in here

– time and scale independence of the coefficients – which we chose not to

state separately. We could have instead assumed that a(t, x) and r(t, x) with

the results straightforwardly extending.14 There is also one symmetry and,

without loss of generality, we can set a = 1. 15

There is also a probabilistic interpretation of this assumption. One can

think of the weight pt (x, y) as the probability that a process travels from x

to y in time t. The first part of the above assumption then states that the

probability of non-local jumps is vanishingly small in time. This assumption

together with the recursivity assumption then ensures the continuity of the

paths of the stochastic process (see, e.g., Feller 1954).

Finally, we need an assumption on the behavior of the weighting function

pt(x, y) at the boundary. There are two canonical ways of dealing with a

14More broadly, it may be of interest to also incorporate some assumptions related to the
time-value of money which would determine the value of r(x).

15Different a would correspond to speeding up the time; however, since time will actually
be one of the parameters in our solution formula, it can be recovered from there.
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boundary: to impose Dirichlet or Neumann conditions. Dirichlet conditions

are not suitable for our application because we would not want to impose a

zero weight being assigned to the present income at x = 0.16 This leaves

Neumann conditions as a natural choice:17

Assumption 3. [Boundary Conditions] For any y < 0,

∂

∂x
pt(x, y)

∣∣
x=0

= 0.

Remark. Finally, it is important to note that clearly there are many possible

choices for the assumptions on averaging. One goal of our work is to formal-

ize the question and open the venues to exploring possibly other choices of

assumptions.

5 Results

We now state the result characterizing the weighting function pt (x, y).

Proposition. The evolution equation that follows from Assumptions 1-3 is

∂

∂t
pt(x, y) =

1

2

∂2

∂x2
pt(x, y) + r

∂

∂x
pt(x, y). (2)

Furthermore, pt(x, y) has an explicit closed form given by the probability dis-

tribution function of the Reflected Brownian Motion:

pt(x, y) = 2re2ryΦ

(
rt+ x+ y√

t

)
+

1√
t
φ

(
−rt− x+ y√

t

)
+
e2ry√
t
φ

(
rt+ x+ y√

t

)
,

(3)

16Also Dirichlet condition contradicts the fact that the total mass is preserved.
17There are also Robin conditions that one could impose, these are of the form

pt(x, y) + α
∂

∂x
pt(x, y)

∣∣
x=0

= 0 for some fixed α ∈ R.

However, since this also involves the value of the function at the boundary (the quantity of
interest), it seems unnatural to force it to be of any particular form.
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where r ∈ R, x, y < 0, φ is the probability density function of the standard

N (0, 1) Gaussian distribution, and Φ is its cumulative density function.

The first part of the result follows from the classic paper of Kolmogorov

(1931) on the connection of the diffusion processes with the second order

parabolic partial differential equations. The assumptions of the recursivity

(semigroup) and locality (continuity) assure that the associated process is a

diffusion with the density characterized by (2).18

This particular partial differential equation 2 is actually quite simple and is

easy to solve on the whole line R. What is different in our setting is that we are

working on the half-line R≤0 and have reflecting boundary conditions which is

more challenging. For any fixed x < 0 and any t > 0, we can interpret pt(x, ·)
as a probability distribution function. This probability distribution describes

the position of a Brownian particle started in x and moving with constant

drift in direction r (which points towards the origin for r > 0 and away from

the origin for r < 0). Specifically, the relevant process Zt is defined as follows

– this is the Skorohod reflection problem (Skorohod 1961, 1962). Let (Bt)t≥0

be a Brownian motion, and consider the process

Xt = x+ rt+Bt.

There exists a unique increasing continuous function Lt such that L0 = 0,

Zt = Xt − Lt ≤ 0 and Lt grows only at the points where Zt = 0. Precisely,

Lt = sup0≤s≤tX
+
s .

The second part of the result and the explicit form of weighting pt(x, y)

function in (3) follows from the results in the queueing theory of Harrison

(2013, p. 48) and Glynn and Wang (2018).

18In fact, one would need a weaker set of assumptions to ensure that pt(x, y) is represented
by a second-order differential equation. Specifically, assuming that the operator Tt is a semi-
group, preserves unity (Tt1 = 1), and is non-negative (f ≥ 0⇒ Ttf ≥ 0) would suffice. This
can be proven modifying Stroock (2008, Lemma 1.1.6, p.2) and is a consequence of a more
general result of Peetre (1959) that local operators are differential operators of finite order.
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Moreover, the smoothed income at scale t

u(t, x) =

∫ 0

−∞
pt(x, y)f(y)dy

is the solution u(t, y) of the initial-boundary value problem

∂

∂t
u(t, x) =

1

2

∂2

∂x2
u(t, x) + r

∂

∂x
u(t, x) in (−∞, 0),

∂

∂x
u(t, 0) = 0;u(0, x) = f(x).

In particular, the primary object of our interest – smoothed income at the

present time (x = 0) at scale t is given by

g(0) = u(t, 0) =

∫ 0

−∞
pt(0, y)f(y)dy

This is the setting that we originally set out to study, and we have identified

an averaging function h(t, y) = pt(0, y).

We now derive two important properties of the probability distribution

function function pt (x, y) – the behavior at the small and large scales.

Lemma. We have:

(1) for any fixed x < 0 and y < 0

pt (x, y) ∼ 1√
t
φ

(
y − x− rt√

t

)
, t→ 0.

(2) if r > 0, then, for all x < 0 and y < 0, we have

lim
t→∞

pt(x, y) = 2re2ry,

if r < 0, then pt(x, ·) converges to 0 on every compact interval as t→∞.

Proof.

Part (1): Smoothing at small scale: t→ 0.

14



For any x, y < 0 consider the ratio

pt (x, y)

1√
t
φ
(

y−x−rt√
t

) = 1 +

√
t2re2ryΦ

(
y+x+rt√

t

)
φ
(

y−x−rt√
t

) + e2ry
φ
(

y+x+rt√
t

)
φ
(

y−x−rt√
t

) .
We observe that, as t→ 0,

φ
(

y+x+rt√
t

)
φ
(

y−x−rt√
t

) = exp

(
(y − x− rt)2 − (y + x+ rt)2

2t

)

= exp

(
−2y(x+ rt)

t

)
→ 0

Also, as t→ 0,

Φ
(

y+x+rt√
t

)
φ
(

y−x−rt√
t

) = e
(y−x−rt)2

2t

∫ y+x+rt√
t

−∞
e−u

2/2du

≤
√
π

2
exp

(
(y − x− rt)2 − (y + x+ rt)2

2t

)
→ 0.

So, for all x, y < 0 and t→ 0,

pt (x, y)

1√
t
φ
(

y−x−rt√
t

) → 1.

and the equivalence pt (x, y) ∼ 1√
t
φ
(

y−x−rt√
t

)
, t→ 0, is established.

Part (2): Smoothing at large scale: t→∞. This result shows that for the

positive drift (towards the origin) at large scale t → ∞, the function pt(x, y)

converges to a universal (not depending on time x) limiting object

pt(x, y)→ 2re2ry

which is a negative of the exponential distribution. We consider the steady-
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state for the Kolmogorov forward equation:

1

2
f ′′(y) = rf ′(y).

Clearly,

f(y) = Ae2ry +B

Boundary condition f ′(0) = 2rf(0) implies that B = 0. Normalization to the

mass equal to one gives A = 2r.

The lemma above has the following meaning. Part (1) considers averaging

over small time, that is, over a very short effective range. The main idea is that

we average over very short windows of time, the boundary condition has no

effect, the drift is still presented and we get averaging with the (non-centered)

Gaussian distribution). Part (2) is in fact a rather remarkable fact in probabil-

ity theory. The dynamical situation is as follows: we have a Brownian particle

on R≤0 that is reflected at the origin. A particle such as this would slowly start

exploring the space and be spread out more and more (roughly at scale ∼
√
t

after t units of time). Without the drift r (or with the drift away from zero,

r < 0), there is no interesting limit as t → ∞, the probability distribution

function of Brownian motion goes to 0 (because the particles are spread out

more and more). Here (when r > 0), we have a slightly different situation

resulting in a very different outcome: we have a constant drift (of strength

r) moving the particles back to the origin. As time becomes large there is a

limiting profile resulting as the balance of two forces: the constant drift trying

to move everything to the origin and the Brownian particle moving around

randomly. This limiting profile is given by the exponential distribution (which

we encountered previously for very different reasons). The parameter r > 0,

drift towards the origin, can be thought of modeling a form of monotonicity

where from the point of view of the present x = 0 the more recent observations

receive a higher weight.

The explicit form for the density pt(x, y) in equation (3) thus gives an inter-

polation of the weighting function between the Gaussian and the exponential

16



distribution. We plot it in Figure 1.

Figure 1: Weighting function pt(0, y) interpolates between Gaussian and ex-
ponential distributions (r > 0).

Figure 2 plots smoothed income g(x) at different scales t. Higher scales

imply a larger effective range of averaging and result in smoother profile of

income.

Figure 2: Smoothed income, g(x), at different scales t.

Finally, we are interested in the smoothing properties of the weighting

function that we found. Specifically, we are interested in knowing whether our

equation
∂

∂t
u (t, x) =

1

2

∂2

∂x2
u (t, x) + r

∂

∂x
u (t, x)
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arises as a gradient flow on some space. The gradient flow is the analogue of

the usual gradient descent process but for the space of the functions. That is,

we evolve the whole function in the direction of the steepest increase in some

objective function.19

Consider the Hilbert space L2((−∞, 0], µ), where µ(dx) = e2rxdx. Let

M be the subspace consisting of all continuously differentiable functions u :

(−∞, 0]→ R, such that u′(0) = 0. On M we define a functional

I(u) =

∫ 0

−∞
u2xdµ,

where µ = e2rxdx.

The corresponding gradient flow is a function u : [0,∞) → M such that

∂tu = −∇I(u),where ∇I is the gradient of the functional I. We compute the

gradient:

I(u+ εv)− I(u) =
ε

2

∫ 0

−∞
u′(x)v′(x)e2rxdx+ o(ε).

So,

(∇I(u), v) =
1

2

∫ 0

−∞
u′(x)v′(x)e2rxdx

= −1

2

∫ 0

−∞
v(x)(u′′(x) + 2ru′(x))e2rxdx.

It follows that

∇I(u) = −1

2
u′′(x)− ru′(x),

and the gradient flow coincides with the equation

∂

∂t
u (t, x) =

1

2

∂2

∂x2
u (t, x) + r

∂

∂x
u (t, x) .

Let us consider u(t + ε, x) = u(x) + εv(x). We then construct the flow in

19See Steinerberger and Tsyvinski (2019) for a detailed description of gradient flows arising
in the context of optimal taxation.
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the direction opposite to the gradient of I. From this point of view, the PDE

smoothes functions as it reduces the L2((−∞, 0], µ)-norm of the derivative in

x)

∫ 0

−∞
(ux + εvx)2dµ =

∫ 0

−∞
(ux + εvx)2e2rxdx

=

∫ 0

−∞
u2xe

2rxdx+ 2ε

∫ 0

−∞
uxvxe

2rxdx+O(ε2)

At the same time, integration by parts (and applying Neumann conditions on

the boundary) results in

2ε

∫ 0

−∞
uxvxe

2rxdx = −2ε

∫ 0

−∞
v
∂

∂x

(
uxe

2rx
)
dx.

We have

∂

∂x

(
uxe

2rx
)

= uxxe
2rx + 2uxre

2rx = (uxx + 2rux)e2rx

Therefore,

−2ε

∫ 0

−∞
v
∂

∂x
(uxe

rx) dx = −2ε

∫ 0

−∞
v(uxx + 2rux)e2rxdx

= −4ε

∫ 0

−∞
v(

1

2
uxx + rux)dµ

By L2−duality (or Cauchy-Schwarz), this quantity is made as small as possible

when

v =
1

2
uxx + rux.

That is, 1
2
uxx + rux is the gradient flow that maximally smoothes income

in the sense of maximally decreasing the present value of the sum of u2.
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6 Conclusion

We examine a classic public finance question from a new perspective and

propose an averaging rule based on a small set of assumptions.

Anticipating potential criticism, we now address some of the broad issues

with this approach. First, the assumptions that we used, while reasonable, are

certainly not the only ones one can use and, hence, derive a different averaging

and smoothing rule. A good parallel to make is a discussion in the mathemat-

ical imaging literature that examines how various sets of assumptions generate

different smoothing mechanisms. Moreover, the focus there is exactly the one

we take here – how a small set of assumptions generate reasonable results and

what the consequences are of relaxing or changing some of those. In particu-

lar, we believe it could be quite desirable to have the same question addressed

from various different perspectives and see what kind of averaging methods

may arise from completely different sets of axioms. A fascinating question is

whether the universal appearance of the Gaussian in the two-sided case has

an analogous "universal" averaging scheme. Both the half-sided Gaussian and

the exponential distribution are natural candidates. Second, the question of

the practicality of the results. While the exponential weighting, Gaussian and

the explicit form of the density of the reflected Brownian motion for the inter-

mediate case are simple mathematically, it is more difficult (with the exception

of the exponential case) to imagine them being implemented in practice. The

abstract formulation of the problem and the explicit solution that we derive

allow, however, to both precisely state and solve the question rather than rely

on the perhaps more useful heuristics. At the same time, with increased dig-

itization one can imagine that some of the theoretical insights presented here

to be implemented in practice. This is the main point of an excellent discus-

sion of the broad range of practical implementation topics of the theoretical

taxation literature, including income averaging, in Jacobs (2017).
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