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1 Introduction.

Vector autoregressions (VARs) offer a convenient tool for summarizing the dynamic correla-

tions among a set of observed variables and are easily estimated by OLS regressions. In order

to draw structural conclusions from those OLS regressions, we need to bring in some additional

prior information about the economic structure. This paper reviews recent advances in how

to do this.

We distinguish between exact and inexact prior information. We define exact prior infor-

mation as suffi cient knowledge about the economic structure that would enable us to estimate

structural magnitudes of interest with certainty if we had a large enough sample of data. Exact

prior information is typically referred to as identifying assumptions. Inexact prior information

is also informative about the structural parameters, but if the information is inexact we would

still have some uncertainty about structural magnitudes even if we had an infinite sample of

observations. These two approaches are often analyzed and applied as separate alternatives.

The result is that the insights of one approach are often overlooked by users of the other. A

key goal of our review is to bring these insights together for a unified perspective on the use

of prior information for structural analysis. In the process we also make a number of new

contributions.

Section 2 begins by discussing inference with exact prior information using the familiar

example of instrumental-variables estimation of the parameters of a demand equation. We

show how maximum likelihood estimation of an exactly identified Gaussian structural VAR

can be interpreted as an application of the principle of instrumental variables to obtain as-

ymptotically optimal estimates of any structural magnitude of interest. We also comment on

the role of parameterization, noting that maximum likelihood estimates of any magnitude in a

fully identified structural VAR are invariant with respect to how the model is parameterized.

This is in contrast with the assumption of some researchers that the questions one can or

should answer from the data depend on how the model is parameterized.

One of the new contributions that results from this analysis is to identify a common error

among applied researchers in trying to estimate a behavioral elasticity from the ratio of the

estimated impacts of a single structural shock on different variables. We show that this

procedure in general leads to inconsistent estimates even if the prior information is exact and

correct. For models in which only the effects of a single structural shock are identified, we

develop a new closed-form equation that could be used to estimate consistently the parameters

of that structural equation by combining knowledge of the effects of the structural shock with

the observed covariance matrix of the reduced-form residuals.

We illustrate these ideas in a 3-variable VAR that is identified using a recursive structure

(commonly called Cholesky identification). We note that if the demand equation is ordered

last in the system, the identifying assumptions imply that the parameters of the demand
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equation can be estimated by an OLS regression of price on current quantity and income and

lagged values of the variables. We suggest that the implausibility of the resulting estimate

of the demand elasticity raises doubts about the reliability of the identifying assumptions in

that example.

Section 3 explores the use of inexact prior information. We propose that the Bayesian

approach to inference offers an appealing way to incorporate doubts that researchers may

have about prior information and to acknowledge that the prior information is inexact. We

review the algorithm developed by Baumeister and Hamilton (2015) for Bayesian analysis

of structural VARs that takes advantage of natural conjugate distributions for a Gaussian

structural VAR. We show that the traditional approach to identification can be viewed as a

special case of Bayesian inference in which the researcher was certain before seeing the data

that some of the parameters were zero but had no useful information about the remaining

parameters. We show that a Bayesian approach can generalize the traditional approach to

identification, using for illustration the case of a researcher who was extremely confident (but

not completely certain) of the identifying information. We show how the inference changes as

we move along the continuum from exact prior information to prior information in which the

researcher has less confidence.

We propose that rather than claiming to have exact or extremely precise information about

a few parameters, a better approach is to bring in inexact information from a variety of sources.

We discuss how this can be done. We again note that the core issue is not how the model is

parameterized but rather what aspects of the model we have prior information about.

Section 4 examines the relation between our recommended approach and structural vector

autoregressions that are only set-identified on the basis of sign restrictions. We raise concerns

about the common practice of users of sign-restricted VARs who highlight a single number as

if it were the best estimate of some structural magnitude of interest and report error bands

as if they summarized confidence in such estimates. We observe that there is a Bayesian

interpretation of the procedure that would justify this practice if the analysts’prior information

about the structural model took a particular form, but note that published studies fail to

articulate or defend the source of this prior information. We find a frequentist interpretation

of the procedure to be even more problematic. The confidence bands used by practitioners

are much too narrow from the perspective of a frequentist who is unpersuaded by the implicit

prior information that underlies the popular methods.

Finally, we raise a caution about the algorithms often used in sign-restricted VARs. In

models where a large number of restrictions are imposed, it is sometimes the case that of

the millions of draws generated only a handful are deemed suitable for inference. This raises

questions about the effi ciency and accuracy of the algorithm in such applications. We illustrate

this using a prominent paper from the literature, demonstrating that if one simply changes

the value of the seed from which the researchers’random numbers were generated, some of
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the key conclusions of the study would appear to be reversed.

2 Structural inference with exact identifying informa-

tion.

In this section we discuss structural inference in the case when researchers have available

identifying information that is exact in the sense that if we observed a large enough sample

of data we could know structural parameters with certainty. We will illustrate some of the

methods and issues using a simple example of the world oil market, taking one of the goals of

the researcher being to estimate the price elasticity of the demand for crude oil.

2.1 Estimation by instrumental variables.

We follow every economics textbook in defining the price elasticity of demand as the response

of buyers of the product to an increase in the price with other variables that influence demand

held constant. Consider for example a dynamic demand equation in which qt is a measure of

the quantity of oil purchased, pt is a measure of the real price of oil, and yt is a measure of

real income:

qt = δyt + βpt + b′dxt−1 + udt . (1)

In this equation, β is the short-run price elasticity of demand, δ is the short-run income

elasticity of demand, udt is a shock to demand, xt−1 = (1,y′t−1,y
′
t−2, ...,y

′
t−m)′ is a vector

consisting of a constant term and m lags of each of the three variables with yt = (qt, yt, pt)
′,

and bd characterizes the response of demand to lagged values of the variables. The demand

curve could be considered as part of a dynamic structural system that also describes the

behavior of oil producers and the determinants of income:

qt = γyt + αpt + b′sxt−1 + ust (2)

yt = ξqt + ψpt + b′yxt−1 + uyt . (3)

Here for example α is the short-run price elasticity of oil supply, ust is a shock to oil production,

and ψ is the contemporaneous effect of oil prices on economic activity.

We can write this structural model in vector form as

Ayt = Bxt−1 + ut (4)

A =

 1 −γ −α
−ξ 1 −ψ
1 −δ −β

 (5)
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ut = (ust , u
y
t , u

d
t )
′

B =

 b′s

b′y

b′d

 .
As in most applications, we assume that the structural shocks have mean zero and are serially

uncorrelated as well as uncorrelated with each other,

E(utu
′
s) =

{
D for t = s

0 for t 6= s
,

with D diagonal.

Premultiplying (4) by A−1 results in the reduced-form VAR associated with the dynamic

structural model:

yt = Πxt−1 + εt (6)

Π = A−1B (7)

εt = A−1ut (8)

E(εtε
′
t) = A−1D(A−1)′ = Ω. (9)

Expression (8) establishes why we cannot estimate the demand elasticities δ and β by OLS

estimation of (1). From (8) and (6), when udt goes up, it changes yt and pt. Thus although the

demand shock udt is uncorrelated with xt−1, it is correlated with the contemporaneous values

of yt and pt. To estimate the parameters in (1) we need two instruments in addition to xt−1

that are correlated with yt and pt but uncorrelated with udt .

Note that since the structural shocks are uncorrelated with each other, if we had consistent

estimates of the other two structural shocks in the system ûst and û
y
t , these could serve as valid

instruments for estimating the demand equation, since they are correlated with yt and pt but

uncorrelated with udt .
1 IV estimates of the short-run demand elasticities could then be obtained

from [
δ̂IV

β̂IV

]
=

[ ∑T
t=1û

s
t ε̂
y
t

∑T
t=1û

s
t ε̂
p
t∑T

t=1û
y
t ε̂
y
t

∑T
t=1û

y
t ε̂
p
t

]−1 [ ∑T
t=1û

s
t ε̂
q
t∑T

t=1û
y
t ε̂
q
t

]
(10)

where ε̂t denote the residuals from OLS estimation of (6).

How could we get consistent estimates of the structural shocks ûst and û
y
t ? One answer

would be if we had exact prior knowledge of the true values of the structural parameters γ, α, ξ,

1By consistency here we mean that if θ̂T denotes an estimate of parameters based on a sample of size T,
ûit(θ̂T )− uit

p→ 0 and T−1
∑T

t=1û
i
tû
j
t
p→ E(uitu

j
t ).
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and ψ. In this case we could use [
ûst

ûyt

]
= Γε̂t

Γ =

[
1 −γ −α
−ξ 1 −ψ

]
.

This allows (10) to be expressed as

ΓΩ̂η̂IV = 0 (11)

for η = (1,−δ,−β)′; for details, see Appendix A.

2.2 Estimation by full-information maximum likelihood.

If we assume that the structural shocks are distributed N(0,D), the log likelihood of the

observed data Y = (y′T ,y
′
T−1, ...,y

′
1)′ conditional on the pre-sample observations x0 is given

by

log f(Y|A,B,D,x0) = −(Tn/2) log(2π)− (T/2) log
∣∣A−1D(A−1)′

∣∣
− (1/2)

∑T

t=1
(yt −A−1Bxt−1)′

[
A−1D(A−1)′

]−1
(yt −A−1Bxt−1).

(12)

If the VAR is stationary and the structural parameters A,B,D are identified, the values of

ÂMLE, B̂MLE, D̂MLE that maximize (12) give the asymptotically optimal parameter estimates.

Under these assumptions, the question of how to estimate the demand elasticity β has an

unambiguous answer —we should use β̂MLE, which is given by the negative of the (3,3) element

of ÂMLE.
2

The likelihood could also be written in terms of the reduced-form parameters Π and Ω:

log f(Y|Π,Ω,x0) = −(Tn/2) log(2π)− (T/2) log |Ω|

− (1/2)
∑T

t=1
(yt −Πxt−1)′Ω−1(yt −Πxt−1). (13)

The maximum likelihood estimates for this representation are given by

Π̂MLE =
(∑T

t=1ytx
′
t−1

)(∑T
t=1xt−1x

′
t−1

)−1

(14)

Ω̂MLE = T−1
∑T

t=1ε̂tε̂
′
t (15)

2Under departures from the above assumptions — for example, in the presence of heteroskedasticity or
structural breaks —other estimates could be much better than those obtained by maximization of (12). In
that case the ideal procedure would be to model these features directly in the specification of the likelihood
function and maximize the likelihood function that accurately characterizes the data.
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ε̂t = yt − Π̂MLExt−1.

The structural model is said to be just-identified if for any {Π,Ω} there exists a unique
{A,B,D} satisfying (7), (9), and the structural restrictions imposed by the identifying as-
sumptions. When the model is just-identified, the maximum likelihood estimates of A and D

are related to the MLE of Ω as

D̂MLE = ÂMLEΩ̂MLEÂ′MLE; (16)

see Hamilton (1994, equation [11.6.33]). For the 3-equation example in Section 2.1 we can

write

A
(3×3)

=

 Γ
(2×3)

η′
(1×3)

 .
Since D is diagonal, the (1,3) and (2,3) elements of (16) state that

Γ̂MLEΩ̂MLEη̂MLE = 0. (17)

Comparing (17) with (11), it is clear that maximum likelihood estimation of the structural

model (4) subject to the identifying restrictions is just a generalization of the familiar idea of

estimation by instrumental variables.3 MLE is the optimal application of the IV idea for the

case when all the structural parameters are just-identified.

Other researchers prefer to use a representation in which structural shocks have unit vari-

ance, writing the system as

yt = Πxt−1 + Hu∗t (18)

with E(u∗tu
∗′
t ) = In. In this representation, we are summarizing the structural shocks u∗t in

terms of how they influence the reduced-form residuals εt:

εt = Hu∗t .

The structural shocks u∗t are interpreted to be identical to the structural shocks ut in a system

like (4) but scaled to have unit variance: u∗t = D−1/2ut. For example, u∗t1, u
∗
t2, u

∗
t3 represent

one-standard-deviation shocks to the supply, income, and demand equations respectively. The

two representations are related by the identity

H = A−1D1/2. (19)

Note that the A parameterization is naturally normalized as a result of the structural labels

3To our knowledge, Shapiro and Watson (1988) were the first to point out the IV interpretation of maximum
likelihood estimation of structural VARs.
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given to the equations; for example, the (1,1), (2,2), and (3,1) elements of (5) are all unity.

Since diagonal elements of D1/2 are all positive, this implies sign restrictions on H, which

analysts who write the model in the form of (18) impose directly on H in order to give the

shocks in that representation a structural interpretation.

For the H representation, the log likelihood is

log f(Y|Π,H,x0) = −(Tn/2) log(2π)− (T/2) log |HH′|

− (1/2)
∑T

t=1
(yt −Πxt−1)′(HH′)−1(yt −Πxt−1).

If the model is just-identified, the MLE of H is characterized by

ĤMLEĤ′MLE = Ω̂MLE. (20)

Although this is a different parameterization, the concept of a demand elasticity as the

response of buyers to an increase in price with income held constant is the same regardless

of how we choose to represent the system. Recalling (19), if hij denotes the row i column j

element of H−1, the maximum likelihood estimate of the short-run demand elasticity is

β̂MLE = −ĥ33
MLE/ĥ

31
MLE. (21)

For a just-identified model, this will be numerically identical to the estimate of this magnitude

coming from the (A,B,D) parameterization, which, as we noted above, is the optimal way to

use observation of Y to estimate this magnitude.

2.3 A common error in estimating elasticities.

It has recently become a common practice among some applied researchers to report estimates

of structural elasticities not on the basis of the inverse of H as called for in (21), but instead

by calculating a ratio of elements of a single column of H without inverting the matrix. In

the 3-equation example (1)-(3), the claim would be that we could estimate the elasticity of

oil demand from the ratio of the change in oil consumption to the change in price that results

from a shock to the supply of oil, that is, β̂ = ĥ11/ĥ31 where hij denotes the row i, column j

element of H. Studies that have reported a ratio of elements of a single column of the impact

matrix H as if it were an estimate of a structural elasticity include Kilian and Murphy (2012,

2014), Güntner (2014), Riggi and Venditti (2015), Kilian and Lütkepohl (2017), Ludvigson

et al. (2017), Antolín-Díaz and Rubio-Ramírez (2018), Basher et al. (2018), Herrera and

Rangaraju (2020), and Zhou (2020).

It is instructive to calculate the consequences of this procedure for the 3-equation example
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presented in Section 2.1. For that model, H = A−1D1/2 with

A−1 = |A|−1

 −β − δψ αδ − βγ α + γψ

−ψ − βξ α− β ψ + αξ

δξ − 1 δ − γ 1− γξ

 . (22)

Thus
h11

h31

=
−β − δψ
δξ − 1

. (23)

In general, expression (23) is not the demand elasticity β. The reason is that if there is a

one-standard-deviation shock to ust , not only will it change the price pt, but it will also change

income. The size of the change in price is
√
d11|A|−1(δξ − 1) and the size of the change in

income is
√
d11|A|−1(−ψ − βξ). From the demand curve, the change in price will lead to a

change in quantity demanded of β times the change in price, namely β
√
d11|A|−1(δξ − 1).

Likewise the change in income will lead to a change in quantity demanded of δ times the

change in income, namely δ
√
d11|A|−1(−ψ− βξ). The observed change in quantity demanded

in response to the shock in supply is the sum of these two terms,

β︸︷︷︸
response to price

√
d11|A|−1(δξ − 1)︸ ︷︷ ︸
change in price

+ δ︸︷︷︸
response to income

√
d11|A|−1(−ψ − βξ)︸ ︷︷ ︸
change in income

=
√
d11|A|−1(−β − δψ)︸ ︷︷ ︸

total change

.

Dividing this by the magnitude of the change in price that results from the supply shock,
√
d11|A|−1(δξ − 1), produces the result (23).

In the special case when demand does not respond to income (δ = 0), expression (23) would

simplify to the correct answer β. But in general, expression (23) reflects a combination of the

sensitivity of demand to price, the sensitivity of demand to income, and the contemporaneous

effects of an oil supply shock on those two variables.

Note that the correct calculation of elasticity that we gave in (21) is based on the ratios

of elements in a row of the inverse of H, not ratios of elements in a column of H itself.

Expression (23) does not summarize the characteristics of demand but instead characterizes

the equilibrium impact of the structural shock. This is a fundamental problem for any study

that attempts to calculate structural elasticities from the ratios of the effects of a particular

structural shock.

Kilian (2022) makes the argument that researchers can use the expression “elasticity of

demand”to refer to any object they like, and are free simply to define the elasticity of demand

to be the magnitude given in equation (23) and find some expression other than demand

elasticity to refer to the magnitude β. He writes on page 8,

One could quibble that perhaps one should refer to this alternative definition [ex-

pression (23)] by a name other than “elasticity”, but this question seems moot,
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given that the literature has chosen to call these objects elasticities.

One obvious concern with this suggestion is that in a VAR with n > 2 variables, using the

concept in expression (23) would result in n − 1 separate definitions and n − 1 potentially

conflicting estimates for each individual elasticity.4 For example, Kilian and Murphy (2014)

considered a 4-equation model in which there were two different kinds of demand shocks.

These authors calculated the short-run price elasticity of supply in two different ways, first as

η1, the ratio of the change in quantity to the change in price resulting from the first demand

shock, and second as η2, the ratio of the change in quantity to the change in price resulting

from the second demand shock. Kilian and Murphy (2014) supposed that either of these

magnitudes could be regarded as estimates of the supply elasticity. In practice they will be

two different numbers,5 and neither corresponds to the usual understanding of what we mean

by the supply elasticity, which is the parameter α in the structural equation (2).

An empirical investigation by Braun and Brüggemann (forthcoming) illustrates the poten-

tial importance of this issue. They investigated a model similar to that in Kilian and Murphy

(2014) using Kilian’s (2008) series on exogenous supply shocks as an instrument to assist with

identification. They then estimated Kilian and Murphy’s (2014) two concepts of supply elas-

ticity as two different magnitudes. They found the posterior median of η1 to be 0.115 and the

posterior median of η2 to be 0.032. Since a core assumption of Kilian and Murphy (2014) was

that both of these numbers had to be less than 0.0258, the empirical discrepancy between the

different concepts in this example turns out to be economically important.

Kilian (2022) defends his approach in his footnote 26 as follows:

A practical difference is that Baumeister and Hamilton’s approach ensures by

construction a unique estimate of the oil supply elasticity, whereas Kilian and

Murphy’s approach produces two estimates of the oil supply elasticity that need

not be identical, one in response to the flow demand shock and one in response to

the storage demand shock. Given that these estimates in practice tend to differ

only by one second decimal point, however, there is little loss in generality in

reporting an average estimate as in Table 4.

4Specifically, we could “define” the price-elasticity of demand to be the ratio of the change in quantity
consumed divided by the change in price that results from any of the n− 1 shocks other than the shock to the
demand equation.

5Running the code for Kilian and Murphy (2014) that is publicly posted in the Journal of Applied Econo-
metrics data archive generates 5 million draws for the vector of possible parameters, of which the code discards
all but 25,887 for reasons other than the supply elasticity. The code then calculates both η1 and η2 and throws
out the draw unless both η1 < 0.0258 and η2 < 0.0258. The median value of η1 across the 25,887 draws is
is 0.1174, while the median value of η2 is 0.6207. Only 16 draws remain that satisfy both restrictions. The
copy of the original replication code for Kilian and Murphy (2014) that we downloaded from the Journal of
Applied Econometrics data archive as well as code that calculates the numbers in this footnote are available
at https://drive.google.com/uc?export=download&id=1vOW1jaKuiAt0BDvJO7XtNdoZgRN71odX.
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As we noted in our footnote 5, when η1 and η2 are estimated using the exact same code and

data as Kilian and Murphy (2014) but without imposing the constraints 0 < ηj < 0.0258, the

median estimates of η1 and η2 differ by a factor of five with an absolute difference of 0.50. The

estimates arrived at by Braun and Brüggemann (forthcoming) differ by a factor of more than

three. Perhaps when Kilian (2022) claims that η̂1 and η̂2 differ by less than 0.01 he is referring

to “estimates”that impose 0 < ηj < 0.0258, for which a difference of less than 0.01 is almost

ensured by construction. Proposing that we can use an expression like (23) as a definition of

an elasticity in a general structural VAR, or even in the context of the specific application in

which Kilian (2022) tries to defend its use, is problematic.

2.4 Illustration: Cholesky identification.

We illustrate these results in a three-equation model of the world oil market of the form of (4)

with yt = (qt, yt, pt)
′ for qt the monthly growth rate of world oil production, yt the monthly

growth rate of world industrial production, and pt the monthly growth rate of the dollar price

of West Texas Intermediate crude oil deflated by the U.S. CPI.6 The reduced form in (6) can

be conveniently written as

yt = Πxt−1 + εt = c + Φ1yt−1 + Φ2yt−2 + · · ·+ Φmyt−m + εt.

We estimated these reduced-form coeffi cients by OLS using (14) and (15) for t = 1959:M2

to 2019:M12. The reduced-form impulse-response function Ψs = ∂yt+s/∂ε
′
t was estimated by

iterating on

Ψ̂s = Φ̂1Ψ̂s−1 + Φ̂2Ψ̂s−2 + · · ·+ Φ̂mΨ̂s−m for s = 1, 2, ... (24)

starting from Ψ̂0 = In and Ψ̂s = 0 for s < 0.

For the structural model in this subsection we follow Kilian (2009) in assuming that the

short-run income and price elasticities of supply (γ and α) as well as the contemporaneous

coeffi cient relating oil prices to economic activity (ψ) are all zero. Under these structural

assumptions, A and H = A−1D1/2 are both lower triangular, and the MLE of H is given by

the Cholesky factorization of Ω̂MLE:

ĤMLE =

 1.4334 0 0

0.0298 0.5458 0

−0.2059 0.6366 6.9352

 . (25)

The estimated effects on yt+s of a one-standard-deviation increase in one of the structural

shocks at date t are then given by the matrix Ψ̂s,MLEĤMLE.

6The data are described in more detail in Baumeister and Hamilton (2019a) and are posted at
https://drive.google.com/uc?export=download&id=1pZdTM0IDimUAl-O2ergXm93QiJZIDAfJ.
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We calculated standard errors for these estimates by generating draws ofΩ from an inverse-

Wishart distribution with scale matrix T Ω̂MLE and T degrees of freedom. We then used thisΩ

to draw vec(Π′) in (6) from a N(vec(Π̂′),Ω⊗ [
∑T

t=1xt−1x
′
t−1]) distribution and also calculated

the values ofΨs×chol(Ω) associated with this draw. This Normal-inverse-Wishart distribution

can be motivated as the Bayesian posterior distribution if before seeing the data the Bayesian

had very weak initial information; see for example Uhlig (2005, p. 410). It can alternatively

be motivated as an approximation to the asymptotic frequentist distribution. Sims and Zha

(1999) argued that this is also one of the best methods for approximating the small-sample

frequentist distribution of impulse-response functions.

We plot estimates of the structural impulse-response functions along with 68% and 95%

confidence bands in Figure 1. For comparability with earlier published studies, rows in the

figure correspond to columns of ΨsH, and we report the effects of an oil-supply shock in terms

of a one-standard-deviation decrease in oil production (−1 times the first column of ΨsH).

The first row of Figure 1 shows that a decrease in oil production is followed by slower growth

of world economic activity and a higher real price of oil. The (2,3) panel shows that higher

economic activity is another factor that also leads to an increase in the real price of oil. Panel

(3,3) shows that an increase in oil demand also leads to an increase in price.

We can also calculate the price elasticity of oil demand implied by this structural model.

Inverting the matrix in (25) and using expression (21), we find7

β̂MLE = −5.9562. (26)

Again this estimate is invariant with respect to parameterization. Indeed, the easiest way to

obtain the MLE is to divide equation (1) by β and write the result as8

pt = β−1qt − (δ/β)yt − β−1b′dxt−1 − β−1udt

= β̃qt + δ̃yt + b̃′dxt−1 + ũdt . (27)

Note that under the assumed recursive structural model, the error term in (27) is uncorrelated

with any of the explanatory variables. The parameters can thus be immediately obtained by

OLS, yielding β̃MLE = −0.167893 which implies the identical estimate for β̂ = 1/β̃ as (26).

This estimated elasticity is astonishingly large. It implies that a 10% increase in the price

of oil with no change in income would result in a 60% drop in consumption within the month.

Monthly increases in oil prices of this magnitude are seen quite often, but monthly changes in

consumption anywhere near 60% have never been observed. Baumeister and Hamilton (2019a)

noted that surveys of hundreds of studies using a wide range of methodologies systematically

7If one instead tried to estimate the elasticity using the incorrect formula (23) the result would be −6.96.
8We could not estimate β from an OLS regression of the form of (1) with qt on the left-hand side because

udt is correlated with pt.
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estimate the price elasticity of demand to be at least an order of magnitude smaller than this.

Although a huge elasticity would be the conclusion we could draw from these data under these

identifying assumptions, its implausibility might be one reason to doubt the validity of the

identifying assumptions.

The assumption in the Cholesky identification that α = 0 plays a key role in the conclusion

that we could estimate the parameters of the demand equation by OLS estimation of (27). If

instead it were the case that α > 0, an increase in demand (ũdt > 0) would result in an increase

in price and thus an increase in the quantity of oil produced qt. This would mean a positive

correlation between the residual and the explanatory variable in (27). A positive correlation

between ũdt and qt would bias the OLS estimate of β̃ in (27) upward; in other words, the plim

of the OLS estimate would exceed the true β̃ by some positive number k. Since the true β̃

is negative, this makes the estimated β̃ closer to zero than it should be and thus biases the

estimated demand elasticity β̂ = β̃−1 toward a larger absolute value. Thus if the assumption

in the Cholesky identification that α = 0 is wrong, this could explain why when we impose

this restriction that α = 0 we get such an unreasonable estimate of the demand elasticity.

2.5 Inference when only a subset of parameters is identified.

Next we discuss inference when the researcher has exact prior information that would allow

us to consistently estimate some but not all of the structural parameters. We illustrate this

with a generalization of the example in the previous subsection in which we no longer impose

a zero short-run response of supply to current income. However, in this subsection we will

continue to assume zero short-run elasticities of supply and economic activity with respect to

price. Thus the model we now consider is described by

A =

 1 −γ 0

−ξ 1 0

1 −δ −β

 . (28)

The complete structural model is no longer identified, since there are 7 unknown structural

parameters in (9), namely γ, ξ, δ, β, d11, d22, d33 but only 6 unique elements in the estimable

symmetric matrix Ω. However, the elements of the third row of A can still be estimated. We

can see this by noting that as long as the (1,3) and (2,3) elements of (28) are zero, the error in

(27) is uncorrelated with qt and yt meaning we can still estimate (27) by OLS. The maximum

likelihood estimates of β and δ are identical to those that were obtained in the fully identified

case. The third column of A−1 still has two zeros in the first two rows, and the third column

of Ĥ will be identical to the third column of (25), with ĥ33 the square root of the average

squared residual from OLS estimation of (27) —the identical value as in the fully identified

13



case.9

Thus consistent estimates of some parameters can still be obtained even if we relax the

assumption that γ = 0, and in fact these estimates turn out to be numerically identical to

those that resulted when we imposed γ = 0. However, the problem remains that if the short-

run supply elasticity α is positive rather than zero, estimating the parameters of the demand

equation by OLS results in an estimated short-run response of demand to the price that is

biased in the direction of implying too large an absolute value for the elasticity.

2.6 Inference when only a single column of H is identified.

Is there a way to estimate the demand elasticity if we only have information about the ef-

fects of a single structural shock, and have no information at all, even imperfect or inexact

information, about anything else in the system? This may arise for example in applica-

tions of the instrumental- or proxy-variable methods proposed by Stock and Watson (2012)

and Mertens and Ravn (2013) when we only have available a proxy for one of the structural

shocks. The effects of the single shock are easy to estimate using the instrument in local pro-

jections (Plagborg-Møller and Wolf (2021)). Stock and Watson (2016, Section 4.1.1.6) showed

that if one has an estimate of the jth column of H = A−1D1/2, then the jth row of H−1 is

also identified.10 Here we develop a closed-form equation for implementing this and comment

on the information it uses.

Let hj = ∂yt/∂u
∗
jt denote the contemporaneous effect of structural shock j on the n

observed variables yt in the system; that is, hj is the jth column of the matrix H in (18). If

we have a proxy or instrumental variable for the jth structural shock u∗jt, then the methods

of Stock and Watson (2012) or Mertens and Ravn (2013) allow us to estimate hj up to

an unknown constant of proportionality λj; that is, the methods give us an estimate v̂j of

λjĥj. We now show how to use this estimate v̂j along with the estimated variance matrix Ω̂

of the reduced-form residuals to obtain an estimate of the jth row of A under any chosen

normalization.

Suppose as a first example that we normalize the structural shocks to have a unit variance;

that is, we define A∗ = H−1 and our goal is to estimate the jth row of A∗, denoted â∗′j .

Note that expression (20) implies H−1 = H′Ω−1. Thus this definition of A∗ implies the

normalization A∗ΩA∗′ = In and

A∗ = H′Ω−1.

9Another illustration of this result is that if we ordered the variables as (yt, qt, pt) instead of the original
(qt, yt, pt) the third column of the Cholesky factor would be numerically identical. This point was originally
made by Bernanke (1986) and Christiano, Eichenbaum, and Evans (1999).
10We are indebted to Matthew Read for first calling this point to our attention. An anonymous referee also

noted that if one has an estimate of the jth structural shock ûjt, one way to estimate the jth row of H−1 is
with an OLS regression of yjt on xt−1, ûjt and the other elements of yt.
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The jth row of this equation states that

a∗′j = h′jΩ
−1.

The estimates ĥj = λ−1
j v̂jand Ω̂ thus give us an estimate

â∗′j = λ−1
j v̂′jΩ̂

−1.

We can then express this in the A∗ normalization by choosing λj so that â∗′j Ω̂â
∗
j = 1, that

is,11

â∗′j = (v̂′jΩ̂
−1v̂j)

−1/2v̂′jΩ̂
−1. (29)

Alternatively, if our goal is to estimate the coeffi cients of the jth structural equation using

a normalization such as expression (4), we would choose λj so that the appropriate element of

âj was equal to unity. For example, to estimate the parameters δ and β in the demand curve

(the third row of (5)), we would set λ3 equal to the first element of v̂′3Ω̂
−1 and estimate δ and

β from the negative of the resulting second and third elements of λ−1
3 v̂′3Ω̂

−1.

For the Cholesky example of Section 2.4, we would set v̂j equal to the third column of (25)

and Ω̂ the matrix in (15). For these values, expression (29) gives the estimates of parameters

of the demand equation under the A∗ normalization as

â∗′3 =
[

0.024209 −0.168200 0.144193
]
.

This is a third way to obtain the identical estimate β̂ = −0.144193/0.024209 = −5.9562 that

we earlier arrived at using either expression (21) or (27).

Note that our recommended approach for using the effects of a single structural shock

to estimate parameters of a structural equation differs in two fundamental respects from the

approach we criticized in Section 2.3. First, our expression (29) makes use of the covariance

matrix of the reduced-form residuals Ω̂ in addition to a single column of H, whereas an

expression like (23) claims to be able to find the answer from hj alone. Second, our expression

uses knowledge of the effects of a demand shock to estimate the parameters of the demand

equation, whereas (23) claims to be able to estimate the parameters of the demand equation

based on the effects of a supply shock.

11Note that (29) satisfies â∗′j Ω̂â
∗
j = (v̂′jΩ̂

−1v̂j)
−1/2v̂′jΩ̂

−1Ω̂Ω̂
−1

v̂j(v̂
′
jΩ̂
−1v̂j)

−1/2 = 1.
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3 Structural inference with inexact identifying informa-

tion.

In the previous section we took the view that prior to seeing the data, the analyst had exact

prior information about some aspects of the structural model. For example, in Section 2.5 we

assumed we knew with certainty that α = ψ = 0. Bayesian analysis offers a natural way to

incorporate doubts about the reliability of this kind of prior information into the conclusions

we draw from the data.

3.1 Calculating the Bayesian posterior distribution in structural

vector autoregressions.

Let ψ be a vector of parameters containing the unknown elements of (A,D,B). Whereas a

frequentist would summarize prior information about ψ in the form of some restrictions on the

parameters that we know with certainty must hold, the Bayesian represents prior information

in the form of a probability density p(ψ). This density is higher for values of ψ that economic

theory or analysis of previous data sets led us to think are more plausible, and lower for

values that are less consistent with earlier findings. The goal of the researcher is to use the

distribution of the data given those parameters (that is, the likelihood f(Y|ψ)) along with

Bayes’Law to evaluate the plausibility of different parameters after having seen the data.

This is summarized in terms of a posterior density p(ψ|Y):

p(ψ|Y) =
p(ψ)f(Y|ψ)∫
p(ψ)f(Y|ψ)dψ

.

Numerical advances in principle allow us to calculate p(ψ|Y) for an arbitrary prior p(ψ) and

likelihood function f(Y|ψ). But given the large numbers of parameters in VARs, it is helpful

to use distributions that allow us to perform most of the calculation analytically.

Baumeister and Hamilton (2015) suggested one way to do this. The ith row of (4) states

a′iyt = b′ixt−1 + uit (30)

with uit ∼ N(0, dii) independent across i and t. If we knew the value of A, this would be a

standard Gaussian regression model of a′iyt on xt−1 for which analytical results for Bayesian

inference about dii and bi are well known. Specifically, given A, if the prior for (dii,bi) was

described by a Normal-inverse-gamma distribution independent across i, then the posterior

distribution of (dii,bi) conditional on A is in the same class of distributions and known ana-

lytically. This allows us to concentrate the numerical part of the inference on A alone, which

has at most n2 − n unknown elements.
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Baumeister and Hamilton’s (2015) approach allows the prior distribution for the contem-

poraneous structural coeffi cients p(A) to be represented by any proper density that can be

evaluated numerically up to a possibly unknown multiplicative constant. Values of A that

prior evidence or theory suggests are more plausible are associated with a bigger value for

p(A) and values that can be ruled out altogether are represented by p(A) = 0.

Baumeister and Hamilton (2015) suggested using an inverse-gamma distribution for the

prior on diagonal elements of D conditional on A:

p(d−1
ii |A) =

τκii
Γ(κi)

(d−1
ii )κi−1 exp(−τid−1

ii ) for d−1
ii ≥ 0.

This turns out to be the natural-conjugate prior in the sense that if the prior is of this form,

then the posterior distribution turns out also to be of this form. The confidence in this prior is

governed by the parameter κi. In the illustrations in this paper, we use κi = 0.5 which weights

the prior as equivalent to the information that would come from a single observation on yt.

The value of τi/κi represents the value of dii that we might have anticipated before seeing

the data. We follow Doan, Litterman, and Sims (1984) in basing this on the average squared

residuals from univariate autoregressions for the individual elements of yt.
12

Baumeister and Hamilton (2015) used a prior for the ith row of B conditional on A and D

that is Normally distributed with mean mi(A) and variance diiMi. Thus mi(A) summarizes

the value of bi that we expected before seeing the data and Mi summarizes our confidence

in this guess, with smaller diagonal elements of Mi corresponding to more confidence in the

prior information about that parameter. This again is the natural-conjugate prior. We use

the “Minnesota prior” in Doan, Litterman, and Sims (1984) and Sims and Zha (1998) to

characterize the mean mi(A) and variance diiMi of this distribution. In the applications

in this paper we set the parameter that governs the overall scale of Mi at λ0 = 109, which

represents an essentially uninformative prior distribution for B. The complete prior is then

p(A,D,B) = p(A)p(D|A)p(B|A,D).

Conditional on A, the posterior distributions of D and B can be calculated using well

known formulas. Given a value for A, define

syyi (A) = a′i
∑T

t=1yty
′
tai + mi(A)′M−1

i mi(A)

syxi (A) = a′i
∑T

t=1ytx
′
t−1 + mi(A)′M−1

i

sxxi =
∑T

t=1xt−1x
′
t−1 + M−1

i

ζ∗i (A) = syyi (A)− syxi (A)(sxxi )−1syxi (A)′

12Specifically, let v̂it be the residuals from an OLS regression of yit on (1, yi,t−1, ..., yi,t−m)′. Collect these in
an (n× 1) vector v̂t and calculate Ŝ = T−1

∑T
t=1v̂tv̂

′
t. As in (16), we set d̄ii to be the ith diagonal element of

AŜA
′
and τi = κid̄ii.
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τ ∗i (A) = τi(A) + (1/2)ζ∗i (A)

m∗i (A) = (sxxi )−1syxi (A)′

M∗
i (A) = (sxxi )−1.

These expressions could be calculated if desired using a standard regression package. For

example, m∗i (A) can be written as (X̃′iX̃i)
−1X̃′iỹi where X̃i is a (T +k)×k matrix whose first

T rows contain the values of x′t−1 and whose last k rows are given by Pi which denotes the

Cholesky factor of M−1
i . Likewise ỹi is a (T + k) × 1 vector whose first T elements are the

values of a′iyt and whose last k elements are mi(A).

Using these expressions, Baumeister and Hamilton (2015) showed that the posterior dis-

tribution of A conditional on the data Y and the presample observations x0 is

p(A|Y,x0) ∝ p(A)[det(AΩ̂MLEA′)]T/2∏n
i=1[(2/T )τ ∗i (A)]κ

∗
i

∏n
i=1τi(A)κi . (31)

This can be calculated for any given A, allowing us to use numerical Bayesian methods to find

the posterior Bayesian distribution of A. Since this has at most n2 − n unknown elements,
this greatly reduces the dimensionality of the problem. Baumeister and Hamilton (2015) used

a random-walk Metropolis Hastings algorithm to generate draws of the unknown elements of

A from the distribution in (31).

The posterior distribution of diagonal elements of D conditional on A turns out to be

inverse-gamma with parameters κ∗i = κi+T/2 and τ ∗i (A) given in the expression above. Thus

given a draw for A from the distribution in (31) we can generate a draw from p(D|A,Y,x0)

analytically. The posterior distribution for the ith row of B conditional on A and D turns

out to be N(m∗i (A),diiM
∗
i ), which can again be done analytically. Baumeister and Hamilton’s

(2015) algorithm to generate draws from the posterior distribution of parameters p(A,D,B|Y)

and the complete structural impulse-response function p
(
{ΨsA

−1}∞s=0

∣∣Y) is publicly posted
at both Baumeister (2018) and Baumeister and Hamilton (2019b).

This algorithm is closely related to that of Sims and Zha (1998). They combined the

elements of A and D into a single matrix (A0 in their notation) and used as we did the known

distribution of B conditional on A0 and Y to derive an analytical expression for the marginal

posterior p(A0|Y) in their equation (10). By breaking A0 separately into A and D, our

algorithm further exploits a known proper prior distribution for D conditional on A and the

known posterior distribution of D conditional on A and Y to arrive at equation (31) above.

This results in fewer parameters that need to be sampled by numerical methods, handles the

issue of sign normalization noted below equation (19), and is computationally simpler than

Sims-Zha equation (10). Sims and Zha (1998) did not claim that their algorithm could be

applied to models with inexact identification, and no one has demonstrated the feasibility of

such an application.
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3.2 Optimal Bayesian estimates.

Statistical decision theory can be used to summarize the posterior distributions in terms of

point estimates of any magnitudes of interest. The goal of the analyst is taken to be to choose

as an estimate of some magnitude of interest θ the value that minimizes expected posterior

loss,

θ̂ = arg min
g

∫
`(θ, g)p(θ|Y)dθ,

where `(θ, g) denotes the cost of relying on g as an estimate when the true value is θ.

It is well known that with a quadratic loss function the optimal estimate is the posterior

mean while with an absolute-value loss function the optimal estimate is the posterior me-

dian; see for example Robert (2007, Section 2.5). In the context of a vector autoregression,

Baumeister and Hamilton (2018) demonstrated that if the analyst has a quadratic loss func-

tion defined over the full impulse-response function, `(θ, g) = (θ − g)′W(θ − g) for θ =

vec
([

Ψ0A
−1 Ψ1A

−1 · · · ΨhA
−1
])
and W any positive semidefinite matrix, the opti-

mal estimate of the ith element of θ is obtained from the point-by-point average value of θi
across draws from p(θ|Y). Alternatively, if the loss function is any weighted sum of the ab-

solute values of individual elements (θi − gi) with nonnegative weights, the optimal posterior
estimate of the impulse-response function is obtained by calculating the point-by-point median

values of draws from the posterior distribution of the structural impulse-response function.

Fry and Pagan (2011) suggested that when a researcher reports an estimate of an impulse-

response function, it is desirable that every element in the reported function should result

from the same value for the triple (A,D,B). Inoue and Kilian (forthcoming) tried to give this

claim a decision-theoretic foundation by introducing a loss function that takes on the value of

infinity unless every element of θ comes from a single value (A,D,B). It is far from clear what

decision a user of research would ever have to make that would involve a payoff function of this

form. The elements of θ are different functions of (A,D,B) and there will be different levels of

posterior uncertainty associated with those different elements. In general, the optimal estimate

of α2 is not the square of the optimal estimate of α. For most loss functions, the optimal

estimate g of the vector θ = (α, α2)′ will not have the property that the second element of g

is the square of the first. Insofar as the goal of Fry and Pagan’s criterion is to achieve internal

consistency, this the standard Bayesian approach accomplishes by construction. The Bayesian

describes the data with a single, internally consistent model, namely the likelihood function

f(Y|A,D,B), and summarizes prior information about A,D,B using a single, internally

consistent density in the form of the prior p(A,D,B). Bayes’Law allows us to characterize our

uncertainty after seeing the data in the form of a unique and well-defined posterior distribution

p(A,D,B|Y). With this posterior distribution we can characterize our posterior uncertainty

about any function of A,D,B such as θ(A,D,B). This fully internally consistent posterior

distribution is exactly what is generated by Baumeister and Hamilton’s (2015) algorithm.
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3.3 A Bayesian interpretation of the traditional approach to iden-

tification.

A large literature has explored the conditions under which Bayesian inference can encompass

the methods used by frequentists as a special case; see for example Phillips (1991), Chao and

Phillips (2002), and Kleibergen and Zivot (2003). These treatments assume that the Bayesian

accepts the same identifying restrictions used by the frequentist and in addition brings in

information about other structural parameters in the form of a Bayesian prior distribution. A

typical result is that encompassing obtains if the prior distribution takes the form suggested

by Jeffreys (1946). The numerical algorithm described in Section 3.1 does not include the

Jeffreys prior as a special case. Our algorithm assumes that the prior distribution is a proper

density that integrates to unity, which the Jeffreys prior does not.

Here we discuss a different sense in which the traditional approach to identification can be

viewed as a special case of Bayesian inference. The assumptions that are traditionally imposed

in order to identify structural parameters impose prior information about the structural model,

namely, features of the structural model that the analyst claims to know with certainty before

seeing the data. A generalization of this approach is that these restrictions are very likely

true, but we are not completely certain.

The idea of using Bayesian prior distributions as a generalization of hard identifying as-

sumptions has been proposed in a number of different contexts. The first to express this

possibility may have been Lindley (1972). Shiller (1973) suggested that a smoothness prior

on distributed lag coeffi cients was more appealing than imposing the restriction that coef-

ficients had to be characterized by an exact polynomial function. Litterman (1986) argued

that a Bayesian prior belief that the coeffi cients on lag k in a VAR were unlikely to be far

from zero was preferable to the conventional approach of insisting that the coeffi cient on lag

k had to be zero. Poirier (1998) and Gustafson (2009, 2015) explored using Bayesian priors

to generalize hard identifying assumptions in a number of contexts, and both Drèze (1975)

and Poirier (1998) examined the particular case of simultaneous equations models. However,

to our knowledge the idea did not see much use by applied econometricians until the work of

Baumeister and Hamilton (2015). In this section we follow Baumeister and Hamilton (2019a)

in showing how we can interpret the traditional approach to identification as a special case of

Bayesian inference.

To simplify the comparison between Cholesky and Bayesian identification, we parameterize

the third structural equation as in (27):

Ã =

 1 −γ −α
−ξ 1 −ψ
−β̃ −δ̃ 1

 .
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The Cholesky identification in Section 2.4 could be described as the inference of a Bayesian

who had no useful prior information about the (2,1), (3,1), and (3,2) elements of Ã, but was

certain before seeing the data (and therefore will remain certain after seeing the data) that

the (1,2), (1,3), and (2,3) elements of Ã are all zero. We implemented this using the Bayesian

algorithm described in Section 3.1 in which the prior distribution allowed zero possibility

that the (1,2), (1,3), or (2,3) values could be nonzero. The prior for the (2,1), (3,1) and (3,2)

elements of Ã was represented by independent Student t distributions with location parameter

0, scale parameter 100, and 3 degrees of freedom. This prior for the unknown elements of Ã

is essentially flat over any conceivable range for these parameters. We also use relatively

uninformative priors for p(D|Ã) and p(B|Ã,D) as described in Section 3.1.

We summarize the posterior distribution of the response of pt+s to a one-standard-deviation

shock to ust , u
y
t , or ũ

d
t in the first column of Figure 2. The horizontal axis plots the horizon s

and the height of the solid blue line is the median of the posterior distribution of the response

at that horizon. Bands display 68% and 95% credibility sets of the posterior distribution.

Not surprisingly, these are identical to the results in the third column of Figure 1, which

represented inference of a frequentist econometrician who relied on Cholesky identification.

For ease of comparison, we plot the Cholesky maximum likelihood estimates from Figure 1 as

dotted red lines in Figure 2. These coincide exactly with the Bayesian posterior medians in

solid blue. Thus we could describe the traditional approach to identification as a special case

of Bayesian inference in which the analyst has exact prior knowledge about some elements of

the structure, in this case, exact knowledge that γ, α, and ψ are all zero, but no useful prior

knowledge about any other elements of the structure.

The first panel of Figure 3 plots the posterior distribution of the demand elasticity β =

1/β̃ that results from Bayesian inference using this prior. This distribution assigns a 17.5%

probability to a positive value (i.e., to the claim that an increase in price leads to an increase

in the quantity demanded) and a 97% probability to a value greater than two in absolute

value (i.e., a 10% increase in price leads to more than a 20% change in quantity demanded).

These outcomes are highly implausible, but are allowed because the Bayesian prior used in

this subsection makes no use of any prior information about β. This highlights a striking

asymmetry in the Cholesky approach to identification. Cholesky identification claims that we

know with certainty the value of the supply elasticity (which we surely do not) and yet know

nothing at all about the value of the demand elasticity (which we surely do).

3.4 A Bayesian generalization of the traditional approach to iden-

tification.

We now discuss Bayesian inference in the case when we have some doubts about the validity

of the identifying assumptions. We use as an example an analyst who may not be com-
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pletely certain that the short-run supply elasticity α is exactly zero. Consider the following

generalization of the Cholesky specification:

Ã =

 1 0 −α
−ξ 1 0

−β̃ −δ̃ 1

 . (32)

We assume as in the previous example that the econometrician has no useful prior information

about the value of ξ or the demand parameters β̃ and δ̃. In contrast to the previous example,

the analyst now has inexact but potentially still highly informative prior information about

the value of α. We assume that the analyst knows with certainty that the supply elasticity

cannot be negative nor greater than some upper bound α0, with the prior distribution uniform

over α within these bounds. Thus the prior density for this example is

p(Ã) ∝


[
1 + 1

ν

(
ξ
σ

)2
]− ν+1

2

[
1 + 1

ν

(
β̃
σ

)2
]− ν+1

2
[
1 + 1

ν

(
δ̃
σ

)2
]− ν+1

2

if α ∈ [0, α0]

0 otherwise
(33)

with ν = 3 and σ = 100.

Note that this is a strict generalization of Cholesky identification, getting arbitrarily close

to the traditional recursive model as α0 → 0. For example, Kilian and Murphy (2012) argued

that the supply elasticity cannot be any larger than 0.025, meaning that a 10% increase in

price would lead to an increase in production that is less than 0.25%. The second column

of Figure 2 summarizes the Bayesian posterior distribution of the impulse-response functions

when the prior distribution is given by (33) with α0 = 0.025. These are very similar to the

full Cholesky case in column 1 because the upper bound α0 is so close to zero. However, a

researcher who allowed some possibility of a very small positive supply elasticity would assign

a higher posterior probability to bigger price effects of oil supply disruptions than the analyst

who was certain that α = 0.

Although the graphs in the first two columns of Figure 2 appear similar to each other,

there is one important conceptual distinction. The error bands in the first panel reflect only

estimation uncertainty about the reduced-form VAR parameters Π and Ω. As the sample size

T goes to infinity, we would be able to estimate these parameters without error. Since the

mapping from Π and Ω to the structural parameters (A,D,B) is also known with certainty

for the specification in the first column, the error bands in the first column would collapse to

the point estimates as the sample size becomes infinite. In the second column, by contrast,

even if the sample size T were infinite and we knew the values of Π and Ω with certainty, we

would still not have complete confidence in our knowledge about structural magnitudes like

the effects of a supply disruption because we have some uncertainty about the identification

itself. Unlike the first column of Figure 2, the error bands in the second column of Figure
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2 reflect both estimation uncertainty and uncertainty about the identification. The latter

uncertainty would remain even if the sample size were infinite.

The second panel of Figure 3 displays the posterior distribution of the demand elasticity

that results from this less dogmatic prior on the supply elasticity. Interestingly, although

the prior for the demand elasticity is just as uninformative as in the first case, relaxing the

dogmatic prior on the supply elasticity results in a significantly more reasonable posterior dis-

tribution for the demand elasticity. The posterior probability that the demand elasticity could

be positive is now only 2.9% (not visible given the scale of the figure), and the probability of

a value greater than two in absolute value is down to 56%. Though clearly an improvement

on the first panel, a demand elasticity greater than two in absolute value is still highly im-

plausible. The asymmetry between claiming to have very precise prior information about the

supply elasticity and having no prior information at all about the demand elasticity remains

stark.

What about an analyst who is less confident that the supply elasticity has to be so small?

If we instead use an upper bound of α0 = 0.075, 68% posterior confidence bands for the effect

of an oil supply shock on price no longer include the Cholesky point estimate, as seen in the

(1,3) panel of Figure 2.

The prior in (33) assumes that we can rule out any value above some threshold α0 with

certainty but regard values right below the threshold as being just as plausible as any other.

A more natural representation of prior information is that we are quite confident that the

value is small and associate lower probability (but not zero) with larger values. We could do

this for example with a Student t distribution with location 0.01, scale parameter 0.03, and

truncated to be positive. In the fourth column of Figure 2 we replaced (33) with

p(Ã) ∝


[
1 + 1

ν

(
ξ
σ

)2
]− ν+1

2

[
1 + 1

ν

(
β̃
σ

)2
]− ν+1

2
[
1 + 1

ν

(
δ̃
σ

)2
]− ν+1

2
[
1 + 1

ν

(
α−cα
σα

)2
]− ν+1

2

if α > 0

0 otherwise

with ν = 3, σ = 100, σα = 0.03, and cα = 0.01. Dropping the certainty that the supply elas-

ticity must be below some threshold α0, even though the density remains quite concentrated

around extremely small values, leads to further upward expansion in the likely set of price

consequences of an oil supply shock.

3.5 Sources of prior information.

The examples in Figure 2, while generalizing the Cholesky specification, all relied on quite

tight prior information that the supply elasticity is very small. Kilian and Murphy (2012)

arrived at the bound α0 = 0.025 that we used for illustration in Figure 2 based on analysis

of a single historical episode. Caldara, Cavallo, and Iacoviello (2019) generalized Kilian and
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Murphy’s (2012) approach to a broader set of historical events and arrived at an instrumental-

variables estimate of the short-run supply elasticity of 0.081 with a standard error of 0.037.

However, if we relax the confidence in the prior information to be consistent with estimates

like these, the posterior credibility sets would widen substantially and we would be left with

little basis for drawing structural conclusions.

There is, however, an obvious remedy suggested by Figure 3. In addition to knowledge

about the supply elasticity, we also have useful prior information that rules out the extremely

large absolute values for the demand elasticity that are implied by all of the examples in

Figure 3. By bringing in prior information that the demand elasticity must be negative and is

unlikely to be large in absolute value, we can compensate for some of the uncertainty that is

introduced when we relax the confidence in the prior information about the supply elasticity.

We would argue that the extreme asymmetry represented by the Cholesky example —exact

information about the supply elasticity, no information at all about the demand elasticity

—is essentially an artifact to which economists have been led by the need to come up with

identifying restrictions. In practice, the motivation for a specification like (25) is all too often,

“I need three zeros, and well, here are three.”

The Bayesian approach to identification formulates a prior based not on what we “need

to assume”, but instead on what we know, and importantly, what we do not know. The

conclusions from economic models and previous data sets should be represented using priors

that are tightly concentrated for magnitudes for which we have very good evidence but with

larger variances for magnitudes about which we are less certain. We would argue for bringing

in inexact prior information from multiple sources rather than claiming to have exact prior

knowledge about a few parameters. Baumeister and Hamilton (2019a) illustrated how prior

information from multiple sources can be used to inform a four-equation model of the world

oil market that includes a role for oil inventories.

We would also like to comment on the role of parameterization. We have represented the

structural model in terms of values of A, B, and D in a system of equations of the form of

(4). Other researchers often parameterize the structural model in terms of the impacts of

structural shocks H as in (18). Uhlig (2017) has argued that the H parameterization is to be

preferred since from the perspective of policy, what we often care about are the equilibrium

effects of possible interventions. None of the points we have been making depend on whether

the structural model is parameterized as (4) or (18). Whether one is interested in A or H, the

principles are the same and the method of estimation is the same. Prior information about

A and D can be translated into exactly equivalent prior information about H using equation

(19) and the change-of-variables formula for densities. Bayesian inference, whether aboutH or

about A, will be the same regardless of parameterization whenever the same prior information

used for the different parameterizations reflects the same economic content.

The issue is not whether elements ofA or elements ofH are the objects of interest. The real

24



question is, what are the structural objects about which the researcher has prior information?

Often we would have useful information about bothA andH.Many microfounded models take

the form of a system like (4), in which individual equations represent the actions of different

agents such as consumers, firms, or government, rather than knowledge about the general

equilibrium impacts of the actions of individual actors. Prior information about A can come

from looking at previous findings about: elasticities (Baumeister and Hamilton (2019a), Brinca

et al. (2021), Aastveit et al. (forthcoming), Valenti et al. (2020)); policy rules (Baumeister

and Hamilton (2018), Nguyen (2019), Belongia and Ireland (2021)); behavioral equations

from economic theory (Aruoba et al. (forthcoming), Lukmanova and Rabitsch (2021)); and

responses of agents to permanent changes (Baumeister and Hamilton (2015)). Typically these

are most naturally represented as information about A, not H, even though they all have

implications for prior information about H. Even researchers who relied exclusively on prior

information about H often turned out to be interested what their results tell us about A.

Examples include the studies mentioned at the start of Section 2.3 that reported estimates of

structural elasticities, and also Arias, Caldara, and Rubio-Ramírez (2019) who examined the

implications of their analysis for the coeffi cients of a monetary policy rule. Clearly information

about A could be a very helpful source of prior information. We would argue that the primary

reason that most of the sign-restriction literature has used prior information about H but not

A is because the techniques people were relying on did not allow them to use information

about A. We hope that the contributions summarized here help fill this gap.

Notwithstanding, researchers may also have some useful information about the equilibrium

impacts of structural shocks H in addition to information about A. For example, extremely

large impacts of policy changes on broad macroeconomic variables may be regarded as un-

likely, or we may claim to know a priori the signs of certain elements ofH. Can we incorporate
potentially conflicting information that comes from a variety of sources? Suppose for illus-

tration as in Baumeister and Hamilton (2018, p. 56) that we have two different sources of

prior information about the value of a single parameter µ. The first is based on the fact that

the sample mean from a sample of T1 observations drawn from a N(µ, σ2
1) distribution was

observed to be X̄1.
13 The second comes from the observation that the sample mean was X̄2 in

a separate sample of T2 observations drawn from a N(µ, σ2
2) distribution. Based on these con-

flicting estimates, should the mean of the prior distribution of µ be X̄1, X̄2, or something else?

The answer in this case is transparent: a single unified prior that combines the two sources

of information is given by p(µ) = p1(µ)p2(µ) where pj(µ) is the N(X̄j, σ
2
j/Tj) density. In this

case, we can see analytically that p(µ) is theN(m,Q) density forQ = [(σ2
1/T1)−1+(σ2

2/T
−1
2 )]−1

and m = Q[(σ2
1/T1)−1X̄1 + (σ2

2/T2)−1X̄2].

For this example, the distribution implied by the two sources of prior information p1(µ)

13Note that from the perspective of a Bayesian, observation of this previous sample is mathematically
equivalent to having a prior distribution for the parameter µ that is N(X̄1, σ

2
1/T1).
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and p2(µ) can easily be calculated analytically. In more complicated settings, we can simply

enter the product numerically and let the algorithm correctly generate draws from the posterior

distribution that is implied by the single unified prior p(µ) = p1(µ)p2(µ). For example, suppose

that in the system represented by (5) and its implication (22) we had prior information about

both the price elasticity of supply p1(α) and the impact effect of a supply shock on income

p2(|A|−1(−ψ − βξ)). Then we could use the product p(A) ∝ p1(α)p2(|A|−1(−ψ − βξ)) as a
composite prior for A. The applications in Baumeister and Hamilton (2018, 2019a), Grisse

(2020), Valenti et al. (2020), Lukmanova and Rabitsch (2021), Baumeister and Derdzyan

(2021), and Aruoba et al. (forthcoming) all incorporate prior information about both A and

A−1 in this way.

Might these sources of prior information be inconsistent? In the example where prior

information comes from two previous samples, the fact that X̄1 6= X̄2 does not mean that one

of the sources of prior information is wrong. For example, observation that the sample mean

X̄1 = 1 in a sample of T1 = 10 observations from a N(µ, 1) distribution is perfectly compatible

with observation that the sample mean X̄2 = 5 in a different sample of T2 = 1 observation

from a N(µ, 10) distribution. The question of compatibility in that example is not whether

the prior means are the same, but rather whether the prior variances accurately reflect the

quality of each source of information.

Del Negro and Schorfheide (2008) noted that even if a marginal distribution of the prior

accurately reflects prior information about that aspect of the model, the resulting joint prior

could potentially assign substantial mass to unreasonable outcomes. This is another reason

to be cautious about claiming too much confidence in individual elements of the prior. Good

practice is to examine the combined implications of the composite prior for key magnitudes

of interest. Illustrations of how to do this are provided by Baumeister and Hamilton (2018,

Section 3.6), Baumeister and Hamilton (2019a, Table 2), and Watson (2019, Figure 5).14

Another important question is whether the prior distributions for different structural para-

meters are independent of each other. In the case of supply and demand elasticities, these are

conceptually different magnitudes that result from the decisions of different actors and about

which our evidence typically comes from different sources. In such a case, it seems reasonable

to represent our joint prior information about the supply elasticity α and the demand elas-

ticity β in the form of the product p(α, β) = p(α)p(β). In other applications, there may be

clear connections between the structural parameters. For example, Baumeister and Derdzyan

(2021) examined a model with separate demand elasticities for crude oil and gasoline, and

represented the correlation between these magnitudes by specifying a prior distribution of the

oil demand elasticity conditional on the gasoline demand elasticity. Alternatively, even if the

14The codes irf_implied_prior.m posted publicly in Baumeister (2018) and table2.m posted publicly in
Baumeister and Hamilton (2019b) allow researchers to calculate all details of the complete impulse-response
function implied by the composite prior distribution.
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demand and supply elasticity are conceptually separate, we may have prior information about

the nature of how they interact to produce a market equilibrium and overall price volatility,

which we would represent as described above as information about both A and A−1.

A very promising development in structural interpretation of VARs is the use of external

instruments developed by Stock and Watson (2012, 2018) and Mertens and Ravn (2013).

Here the prior information that the econometrician is relying on is the assumption that the

instrument is correlated with a structural shock of interest and uncorrelated with the other

structural shocks. For example, Gertler and Karadi (2015) suggested that the change in

interest rates within 30 minutes of a policy announcement by the Federal Reserve is correlated

only with a shock to monetary policy. Although this is an attractive idea, Campbell et al.

(2012) and Nakamura and Steinsson (2018) presented evidence that the Fed announcements are

also revealing information about economic fundamentals, which would make them correlated

with other structural shocks. Just as with any other identifying assumptions, one could

consider a Bayesian generalization of the usual approach to using instrumental variables in

structural VARs, as represented by the prior information that the correlation between the

instrument and other structural shocks is likely to be small, although the analyst may not

be 100% certain that the correlation is zero. Nguyen (2019) provided an illustration of this

approach.15

4 Set identification using sign restrictions.

The concerns we have raised about traditional approaches to identification such as Cholesky

are widely shared by many researchers today. This led Uhlig (2005) and Rubio-Ramírez,

Waggoner, and Zha (2010) to develop approaches that rely not on zero restrictions on A or H

but instead on prior knowledge about the signs of effects of structural shocks. In the oil-market

example, Kilian and Murphy (2012) assumed that the signs of impacts are given by

sign(H) =

 − + +

− + −
+ + +

 . (34)

15Other studies that examine the use of external instruments in Bayesian SVARs include Arias, Rubio-
Ramírez, and Waggoner (2021). They allowed for a general Normal-inverse-Wishart prior for the reduced-form
parameters but required the matrixQ that relates the reduced-form covariance matrix to the contemporaneous
impact matrix H to come from a particular distribution discussed in the next section. Thus their approach
does not allow for prior information about the structure itself that has been the focus of our review. Cal-
dara and Herbst (2019) developed a more general approach, but like Arias, Rubio-Ramírez, and Waggoner
(2021) they assumed that the instruments were known with certainty to be exogenous. Braun and Brügge-
mann’s (forthcoming) Bayesian analysis of proxy SVARs allowed the possibility of endogenous instruments,
but achieved this by imposing certain knowledge about the contributions of different structural shocks to the
overall variance.
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The first column of (34) says that an oil supply shock lowers production, lowers economic

activity, and raises the price of oil. The second column indicates the effects of shocks to

economic activity and the third column the effects of shocks to oil demand.

4.1 Description of the Rubio-Ramírez, Waggoner, and Zha (2010)

algorithm.

The Rubio-Ramírez, Waggoner, and Zha (2010) algorithm for estimating structural impulse-

response functions ΨsH using sign restrictions for identification proceeds as follows. We

generate a draw for Ω from an inverse-Wishart distribution with scale matrix T Ω̂MLE and

T degrees of freedom, and use this Ω to generate a draw for vec(Π′) from a N(vec(Π̂′),

Ω ⊗ [
∑T

t=1xt−1x
′
t−1]) distribution. Note that this is exactly the same distribution that was

used in Section 2.4 to calculate standard errors for the impulse-response functionΨs calculated

in (24). There we noted that the distribution can be motivated either as an approximation

to the frequentist distribution of the reduced-form parameters (Ω,Π) or as a characterization

of the Bayesian posterior distribution of these parameters if the researcher began with an

uninformative prior as in Uhlig (2005).16 Next the researcher draws an (n×n) matrix Q that

is calculated from a QR decomposition of an (n× n) matrix of independent N(0, 1) variables

that the researcher generates. The QR decomposition means that every generated value for

Q is an orthonormal matrix (Q′Q = In). Baumeister and Hamilton (2015) showed that the

(i, j) element of Q generated by this algorithm has a density given by

p(qij) =

{
Γ(n/2)

Γ(1/2)Γ((n−1)/2)
(1− q2

ij)
(n−3)/2 if qij ∈ [−1, 1]

0 otherwise
. (35)

Let P denote the Cholesky factor of a generated draw for Ω. Researchers then calculate

H = PQ′ and check whether this proposed value for H satisfies the desired sign restrictions

such as those in (34). If it does, the draw is retained, and if it does not, then the draw is

rejected and a new draw is generated. Researchers then typically report the median of the

retained set of values for the row i column j element of ΨsH, which we denote ζijs, as if it

was a point estimate of the effect of a one-standard-deviation shock to structural disturbance

j on the ith element of y after s periods, and report 68% or 95% of the set of retained draws

for ζijs as if they represented a confidence interval.

16One could also use more informative priors for the reduced-form coeffi cients such as the Minnesota prior,
but the vast majority of applications follow Uhlig (2005).
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4.2 A frequentist critique of the typical sign-restricted VAR appli-

cation.

If the only prior information available to a frequentist was information about signs as in

(34), the structural model would only be set-identified. This means that there is a set of

possible values for ζijs that are all associated with the single value for (Ω̂, Π̂) that maximizes

the likelihood function and that are all consistent with all the prior information that the

econometrician has about the structure. One simple algorithm17 for finding the upper and

lower bounds for this set is to use the fixed MLE Π̂ to calculate Ψ̂s, the fixed MLE Ω̂ to find

its Cholesky factor P̂P̂
′

= Ω̂, and use the algorithm in Section 4.1 to generate a very large

number of draws of Q.We calculate ζijs from the (i, j) element of Ψ̂sP̂Q
′
for each draw of Q,

retain the draw if {Ψ̂sP̂Q
′}Hs=0 satisfies the sign restrictions, and calculate the maximum and

minimum of values of ζijs across all of the retained draws (not just 95% of the retained draws).

As the number of draws of Q goes to infinity these would converge to the range of values of ζijs
that are all consistent with the maximum likelihood estimates of the reduced-form parameters.

Denote these maximum likelihood estimates of the boundaries of the set of possible values for

ζijs by (ζ̂
ijs
, ζ̂ ijs). A frequentist would want further to account for uncertainty about the

estimation of Π and Ω, resulting in a confidence set that is strictly broader than (ζ̂
ijs
, ζ̂ ijs)

as described for example by Gafarov, Meier, and Montiel Olea (2018). Moon and Schorfheide

(2012), Baumeister and Hamilton (2015, 2018), Watson (2019), and Giacomini and Kitagawa

(2021) sharply criticized the practice of users of the Rubio-Ramírez, Waggoner, and Zha (2010)

algorithm to report 68% or 95% error bands that are strictly smaller than (ζ̂
ijs
, ζ̂ ijs).

4.3 A Bayesian critique of the typical sign-restricted VAR applica-

tion.

Every value for the structural impulse response ζijs that is in the set (ζ̂
ijs
, ζ̂ ijs) maximizes

the likelihood function of the observed data and is consistent with all the restrictions implied

by (34). If a Bayesian were to report that the values ζ̂
ijs
or ζ̂ ijs are relatively unlikely and

fall outside of a 68% or 95% credibility set, the basis for this exclusion must be more than

something that is observed in the data and more than the information embodied in the sign

restrictions in (34). One possible justification for doing this would be if the distribution in (35)

was interpreted as Bayesian prior information, specifically, information the econometrician

had about the structural model before seeing the data and in addition to the information

represented by (34).

The usual motivation for the distribution in (35) is that it can be viewed as a uniform

17For a discussion of this and alternative algorithms to estimate (ζ̂
ijs
, ζ̂ijs) see Giacomini, Kitagawa, and

Read (2021b).

29



measure over the set of orthonormal matrices. The argument is that because this measure

weights all orthonormal matrices equally, it does not influence the statistics that the Bayesian

reports. This does not answer the question of the source of the information that led us to

conclude that ζ̂
ijs
or ζ̂ ijs are relatively unlikely values for ζijs. If that conclusion did not come

from prior information about Q, then from where did it come? The distribution assumed for

Q incontrovertibly played a role in the conclusions reported if it led a researcher to report

that ζ̂
ijs
is outside the set of values that are plausible given the data.

A separate issue is what one means by the claim that a distribution puts equal weight on

all the possibilities. When n = 2, the set of orthornormal matrices can be indexed by an angle

of rotation or reflection θ.18 The distribution in (35) implies that all angles are equally likely,

that is, a distribution for θ that is uniform over (0,2π). If the researcher intends to draw an

inference about this angle θ, then the prior could correctly be said to weight all possibilities

equally.

But a distribution that is uninformative about one function of the parameters (such as the

angle of rotation θ) is of necessity informative about other functions of parameters (such as

the value of qij = cos(θ)). Nobody reports the angle of rotation associated with Q as if it were

a structural magnitude of interest. Instead applied researchers report for example elements of

PQ′, which are interpreted as the impacts of one-standard-deviation structural shocks. From

the (1,1) element of PQ′ we see that the effect on variable 1 of a one-standard-deviation shock

to the first structural equation is given by p11q11.

Figure 4 shows what the distribution of individual elements of Q looks like. If there are

n = 3 variables in the VAR, then all values in (−1, 1) are equally likely. By contrast, when

n = 2, values near ±1 are more likely, and when n > 3 values near zero are more likely.

When n = 2, the procedure amounts to prior knowledge that the effect of the first structural

shock on the first variable is more likely to be large than small. What is the basis for this prior

information? How is it something we know before seeing the data, regardless of what kind

of data we consider, and regardless of the economic content of the first structural equation?

Users of the sign-restriction methodology never defend such an interpretation, never explain

the basis for excluding values like ζ̂
ijs
as implausible, and typically do not claim to have relied

on any prior information other than the information about the signs of impacts. In the absence

of prior information about Q, there is no basis for reporting a point estimate of a structural

magnitude that is only set-identified, and no basis for claiming that we have 95% confidence

that the true value lies in some subset of the draws generated by the algorithm.

When identification is inexact, analysts end up labeling a linear combination of the true

structural shocks as if it was purely a single structural shock of interest. In choosing this linear

18Any orthonormal (2 × 2) matrix Q can be written as either
[

cos θ − sin θ
sin θ cos θ

]
or
[

cos θ sin θ
sin θ − cos θ

]
for

some θ ∈ (0, 2π).
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combination, Wolf (2020) noted that the prior distribution implied by (35) automatically puts

more mass on the structural shocks that have the biggest variance. He demonstrated that

in theoretical macroeconomic models such as those in Galí (2008), Woodford (2003), and

Smets and Wouters (2007), the prior ends up heavily favoring the interpretation of linear

combinations of supply and demand shocks as if they were shocks to monetary policy.

4.4 Robust Bayesian inference.

Giacomini and Kitagawa (2021) argued that the credibility of the information represented by

the prior is particularly important for structural VARs identified by sign restrictions because

for this class of models, the influence of the prior does not vanish as the sample size goes to

infinity. Giacomini and Kitagawa (2021) considered the range of possible posterior means that

could be arrived at from some prior distribution for Q, and showed that asymptotically this

corresponds to the MLE of the identified set (ζ̂
ijs
, ζ̂ ijs). They described the inference that

would result from the full set of possible priors as “robust Bayesian inference.”They showed

that this approach can reconcile the contradiction between claiming to have used no prior

information and yet reporting a confidence interval that is more narrow than that coming from

a frequentist perspective. Giacomini and Kitagawa (2021) proved that the robust Bayesian

posterior credibility set that results from their algorithm corresponds asymptotically to the

frequentist confidence set and thus offers a convenient algorithm for finding the frequentist

confidence set and reconciling the Bayesian and frequentist approaches. By construction, both

the robust Bayesian posterior credibility set and the frequentist confidence set are strictly

broader than (ζ̂
ijs
, ζ̂ ijs).

One reason researchers may often be reluctant to report correctly calculated confidence

intervals is that the true intervals can be embarrassingly wide. This prompted Antolín-Díaz

and Rubio-Ramírez (2018) to propose also making use of prior information about the sign or

magnitude of particular structural shocks for particular historical dates, such as the knowledge

that there was a contractionary monetary policy shock in October 1979. Giacomini, Kitagawa,

and Read (2021a) noted that the distortionary effects of an implicit prior of the form of (35)

could be quite dramatic in such settings, and argued that in such settings it was particularly

important either to use a prior distribution that was grounded in solid evidence or to use a

robust Bayesian inference consistent with an asymptotic frequentist approach.

Giacomini, Kitagawa, and Uhlig (2019) explored the use of multiple priors in a neighbor-

hood of a benchmark prior as a way to incorporate the useful information from the benchmark

prior while allowing for the possibility that the benchmark prior could be misspecified in an

unknown way. Giacomini, Kitagawa, and Volpicella (2022) extended the idea of Bayesian

model averaging to applications that consider a range of possible identifying or set-identifying

assumptions. They demonstrated that the robust Bayesian approach allows researchers to
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formalize the popular approach to sensitivity analysis of seeing how estimates vary under al-

ternative identifying assumptions. In a case where the identifying information comes from a

variety of sources, Baumeister and Hamilton (2018) noted that researchers can report the con-

sequences if any individual component of the prior information was not used in the estimation

as another form of sensitivity analysis.

4.5 Main takeaway.

The main takeaway from the above discussion is this: if the claim of the researcher is to have

used no prior information other than the signs of certain magnitudes, we see no justification

for either a Bayesian or a frequentist to report the median, mode, or any other single summary

statistic of the retained draws as if it were an optimal estimate of some magnitude of interest,

nor to report 68% or 95% of the retained draws around the median as if that range summarizes

our confidence in the estimate. We recommend that if a researcher is implicitly relying on prior

information (as anyone who reports posterior medians or modes or 68% or 95% credibility sets

implicitly is), it is desirable to state and defend this prior information.

4.6 Computational considerations.

Here we highlight another aspect of sign identification as typically implemented: as researchers

impose more restrictions, the number of accepted draws shrinks. For example, Kilian and

Murphy (2014) imposed sign restrictions as well as the restriction that the supply elasticity had

to be in (0, 0.025) and employed a number of other criteria for discarding values ofH generated

by the algorithm. The code for their paper posted at the Journal of Applied Econometrics

data archive generates 5 million draws for the vector of possible parameters of which only 16

satisfy all the authors’criteria.

Uhlig (2017) argued that when so many draws are rejected, the identification is sharp and

that this is a good thing. We have several concerns about this. The first is the question we

discussed in Section 3.4, which is whether restrictions such as the claim that the supply elastic-

ity must be less than 0.025 are completely credible. Andrews and Kwon (2019) and Kédagni,

Li, and Mourifié (2021) noted the possibility that the true values of the reduced-form VAR —

that is, the plim of the unrestricted VAR estimates —may not satisfy all the restrictions that

researchers are attempting to impose. In such a case, the model is fundamentally misspecified

and a narrow range of accepted draws could be a spurious indicator of estimation precision.

Second is the practical issue of what to conclude from the 16 retained draws, and whether for

example these form an adequate basis for making statements about the identified set or other

magnitudes of interest.

Kilian and Murphy (2014) did not offer a Bayesian interpretation of their procedure. The

method that they used in their paper to report a single estimate from the set of 16 retained
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draws was to select the draw that had an “impact price elasticity of oil demand in use clos-

est to the posterior median of that elasticity among the admissible structural models” (p.

464). Results from running their code as publicly posted, which incorporates this criterion for

selecting a representative draw, are plotted as the dotted red lines in our Figure 5.19 These

show the effects of what Kilian and Murphy (2014) called a speculative demand shock on their

measure of real economic activity and on the real price of oil. This figure reproduces two of

the panels shown in Figure 1 of their article. A researcher who ran this code and looked at

this output might describe the findings as Kilian and Murphy (2014) did on pages 464-465:

a positive speculative demand shock is associated with an immediate jump in the

real price of oil. The real price response overshoots, before declining gradually.

The effects on global real activity and global oil production are largely negative,

but small.

We reran their posted code making only one change. In the original code, the seed used

in the random number generator is 316. We reran the same code using instead a seed for

the random number generator of 613. The blue solid lines in Figure 5 show the structural

estimates that result when this different seed for the random number generator is used. A

researcher who ran their code using a random number seed of 613 instead of 316 might describe

the findings as follows:

a positive speculative demand shock is associated with an immediate large drop in

economic activity and a small positive effect on price.

Using a random number seed of 613 thus leads to completely different policy implications

compared to a seed of 316.

A much better algorithm in settings like this is the direct sampling approach proposed by

Amir-Ahmadi and Drautzburg (2021). This imposes all the sign restrictions before drawing a

candidate for Q instead of generating unrestricted values of Q and then discarding millions of

draws. The problems noted in this section are also avoided by the algorithm in Section 3.1. The

results in Baumeister and Hamilton (2018, 2019a) are all based on 1 million retained draws.

This allows us to characterize accurately the posterior distribution that results from explicit

prior structural information and use a standard loss function to summarize any properties of

interest of this known distribution.
19The copy of the original replication code for Kilian and Murphy (2014) that we downloaded from the

Journal of Applied Econometrics data archive as well as code that generates Figure 5 in our paper are available
at https://drive.google.com/uc?export=download&id=1vOW1jaKuiAt0BDvJO7XtNdoZgRN71odX.

33



5 Conclusion.

Whether the goal is applied research or policy guidance, there is a clear answer to the question

of how to use a vector autoregression to estimate any structural magnitude of interest. The

likelihood function summarizes everything the data could tell us about parameters. If our

prior information about the structure is exact, we can use maximum likelihood estimation

to obtain estimates that are asymptotically optimal from a frequentist perspective and are

invariant with respect to how the model is parameterized. If the prior information is inexact,

we should summarize that prior information in the form of a probability distribution and

use Bayes’Law to characterize uncertainty about structural magnitudes that remains after

observing the data.

34



Appendix A: Derivation of equation (11).
Expression (10) can be rewritten[ ∑T

t=1û
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s
t ε̂
q
t∑T

t=1û
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(36)

from which (11) follows from the definitions of Γ,η, and Ω̂.
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Figure 1. Impulse-response functions for 3-variable oil market model under traditional Cholesky identification. Blue  
solid lines: maximum-likelihood estimate; shaded regions: 68% error bands; blue dashed lines: 95% error bands. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Figure 2. Responses of the real price of oil after an oil supply shock, an aggregate demand shock and an oil-specific demand shock under 
different priors for the short-run price elasticity of supply as indicated in the header. Red dotted lines: maximum-likelihood estimates 
under Cholesky identification; blue solid lines: median of Bayesian posterior distribution; shaded regions: 68% posterior credibility set; 
blue dashed lines: 95% posterior credibility set. 
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Figure 3. Posterior distributions of the short-run price elasticity of oil demand under different priors for the oil supply elasticity as 
indicated in the headers. 



 

Figure 4. Distribution of elements of the matrix Q generated by the sign-restriction algorithm for three different values of n. 

  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Effects of speculative oil demand shock for the Kilian and Murphy (2014) specification and data set using two different seeds 
for the random number generator. Left panel: effect on real activity. Right panel: effect on real price of oil. Red dotted lines: seed = 316, 
which was the original seed used by Kilian and Murphy (2014) and which reproduces panels (3,2) and (3,3) in Kilian and Murphy’s 
(2014) Figure 1. Blue solid lines: seed = 613. 
 

 


