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1 Introduction

There is a large debate in the epidemiology literature regarding the question of how

deadly is COVID-19.1 Is the fatality rate 1% or 0.1% or somewhere in between? If

we envision that 2/3 of all Americans will eventually get the disease absent sustained

mitigation measures, then this range of estimates in fatality rates results in a range

of cumulative deaths from 2.2 million at the high end and 220,000 at the low end.

What is the nature of this debate? Absent reliable data on the number of active

infections and/or the number of people who are now recovered from and resistant

to the disease, we are not able to directly compute the fatality rate from COVID-19

from observed deaths. That lack of data leaves us reliant on the use of models to

attempt to infer the fatality rate of the disease based on incomplete measurement.

Unfortunately, simple epidemiological models are not that helpful in this dimension

in the early phase of an epidemic. Absent accurate measurement of disease incidence,

one does not learn the true fatality rate until the deaths occur. That observation is

the focus on this note.

Specifically, I use a simple SIR model to examine why it is difficult to estimate

the fatality rate from the disease and how long we might have to wait to resolve this

question absent a large-scale randomized testing program. I focus on uncertainty

over the joint distribution of the fatality rate and the initial number of active cases

at the start of the epidemic around January 15, 2020. I show how the model with a

high initial number of active cases and a low fatality rate gives the same predictions

for the evolution of the number of deaths in the early stages of the pandemic as the

same model with a low initial number of active cases and a high fatality rate. I then

show that the problem of distinguishing these two parameterizations of the model

becomes more severe in the presence of effective mitigation measures.

1See, for example this Op-Ed in the Wall Street Journal from March 24 https:
//www.wsj.com/articles/is-the-coronavirus-as-deadly-as-they-say-11585088464 or this
news article in Science from March 25 https://www.sciencemag.org/news/2020/03/
mathematics-life-and-death-how-disease-models-shape-national-shutdowns-and-other
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The points that I make here regarding the properties of simple SIR models are

essentially identical to those made by the epidemiological team at Oxford University

in Lourenco et al. (2020)2 and are closely related to those in Stock (2020). The

presentation of the argument here is intended simply as a pedagogical tool. The

model applied to Wuhan in Wang et al. (2020)3 is a useful framework for modeling the

uncertainties discussed here. Toda (2020)4 presents and regularly updates estimates

of a SIR model applied to the United States.5. Chowell G (2007) is a useful discussion

of methods for estimating the transmission rate of an epidemic applied to the 1918-19

Spanish Flu.6.

I make no effort to survey the literature on the measurements available of disease

incidence. This is a rapidly developing literature.7 Hopefully we will obtain sufficient

evidence to resolve the debate about the fatality rate of COVID-19 sooner than is

implied we might from this model.

In the remainder of this note, I present the model, lay out the measurement as-

sumptions used, and then show model results.

2 The SIR Model

The population is set to N .

At each moment of time, the population is divided into three categories that sum

to the total of N . These are susceptible (no immunity) S, infected I, and resistant

2available here https://www.medrxiv.org/content/10.1101/2020.03.24.20042291v1
3available here https://www.medrxiv.org/content/10.1101/2020.03.03.20030593v1
4available here https://arxiv.org/abs/2003.11221
5see here for updated estimates https://sites.google.com/site/aatoda111/misc/covid19
6available here https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2358966/
7See for example this article from March 22 in the South

China Morning Post https://www.scmp.com/news/china/society/article/
3076323/third-coronavirus-cases-may-be-silent-carriers-classified or this com-
mentary by Luigi Zingales from March 17 https://promarket.org/
why-mass-testing-is-crucial-the-us-should-study-the-veneto-model-to-fight-covid-19/
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(recovered or dead) R.

These fractions of the population evolve over time as follows

dS/dt = −βt
S

N
I

dI/dt = βt
S

N
I − γI

dR/dt = γI

βt = Rtγ

The parameter γ governs the rate at which agents who are infected become resis-

tant (either recover or die) and hence stop transmitting the disease. The parameter

βt is the rate at which infected agents spread the virus to others that they encounter.

This parameter is a reduced form parameter that is impacted by the biological dis-

ease transmission mechanism, the rate at which agents bump into each other, and

the extent to which agents use prophylactics in their meetings. This parameter can

thus be impacted by mitigation measures such as social distancing and the use of

masks, etc.

The parameter Rt = βt/γ is the normalized transmission rate. This parameter

corresponds to the parameter cited in many news and academic studies. Note that

we can restate the equations of the model in terms of this parameter as

dS/dt = −Rtγ
S

N
(1)

dI/dt =

(
Rt
S

N
− 1

)
γI (2)

dR/dt = γI (3)

We denote the fatality rate from the disease by ν. That is, ν is the fraction of

agents who are resistant who are so because they died. Thus, cumulative deaths are
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given by D = νR. The death rate per unit time is given by

dD/dt = νdR/dt

The initial conditions of the model are R = 0, I = I0 and S = N − I0 at date 0.

Note that in this model I abstract from the distinction between the time it takes to

stop being infections (γ) and the time it takes to die from the disease. As discussed in

the Oxford study, this distinction can be important for the quantitative implications

of the model.

2.1 Model Properties:

The following properties of the model are standard.

1. Model steady-states have I = 0. If I = 0, then any combination of S and R

that sum to N is a steady-state.

2. If I > 0, then dI/dt <= 0 if and only if Rt
S
N
≤ 1. Thus, the steady-states

reached from an initial value of I > 0 must have S/N ≤ 1/Rt.

3. The growth rate of the log of the number of active cases is given by

d log I

dt
=

(
Rt
S

N
− 1

)
γ (4)

4. The growth rate of the log of the total number of cases is given by

d log(I +R)

dt
= Rtγ

S

N

I

1− S
(5)

5. Under the assumption of a constant mortality rate, the growth rate of the log

of the cumulative number of deaths is equal to the growth rate of the log of
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the cumulative number of recovered cases and is given by

d logD

dt
=
d logR

dt
= γ

I

R
(6)

When Rt is constant, an analytical solution of the model is available.8

3 Measurement:

Assume that we have data on deaths D. That is, assume that we can measure both

the level and the growth rate of D. Note that this is a controversial assumption,9

but we make this assumption here to illustrate the problem of estimating ν in this

simple model in a stark manner.

Assume that we have a plausible range of estimates of γ, denoted by γ̃ ∈ [γmin, γmax],

taken from clinical measurements of the progress of the disease. (Much of the uncer-

tainty here is about how soon cases become infectious and whether there are unmea-

sured cases that have different properties of disease progression). In the illustrations

that I consider, I will set γ = 1/7.

Consider now measurement of the number of resistant individuals R. Clearly, if

we had accurate measures of the number of cases recovered R and the number of

deaths due to the disease D, it would be straightforward to estimate the fatality

rate ν = D/R. Hence, given accurate data on deaths, a large scale testing program

that would allow us to identify those who have had the disease and an accurate

count of those who died from the disease would allow for direct estimation of the

fatality rate ν. (See, for example, the plan in Germany to test 100,000 people at

8See https://advanceseng.com/exact-analytical-solutions-susceptible-infected-recovered-sir-epidemic-model-sir-model-equal-death-birth-rates/
9See, for example concerns about the measurement of deaths due

to COVID-19 in Italy here https://www.corriere.it/politica/20 marzo 26/
the-real-death-toll-for-covid-19-is-at-least-4-times-the-official-numbers-b5af0edc-6eeb-11ea-925b-a0c3cdbe1130.
shtml
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random for antibodies to the disease.10) For the remainder of this note, I assume

that independent measures of R are not available. That is, I assume that measures

of R are derived by tracking confirmed active cases as these cases are resolved as is

done on this website.11

Consider next measurement of the number of active infections I. Note that if one

had accurate measures of the number of people actively infected, I, then one could

use data on the growth rate of the log of deaths and an estimate of the parameter

γ to infer the number of resistant individuals R using equation 6. I assume that an

accurate count of the number of actively infected individuals is not available. In-

stead, I assume that we have data on active infections up to a constant, proportional

measurement error. That is, assume that we observe Ĩ = ηII where the proportional

measurement error ηI is unknown. This assumption that we observe active cases

up to a constant, proportional, measurement error is likely an overstatement of the

data available as testing policies have been constantly changing. Again, we make

this assumption here to illustrate the problem of estimating ν in this simple model

in a stark manner.

Consider now the measurement of Rt. Under the assumption that we observe the

number of active infections up to proportional measurement error, we can measure

the growth of the log of infections but not the level of infections. Note then from

equation 4, we can estimate Rt in the earliest phase of the epidemic when we know

that S/N is close to 1 if we have an estimate of the parameter γ from clinical data.

For the purposes of the illustrations here, we assume that Rt in the earliest phase of

the epidemic without mitigation is equal to 2.5.

I now consider the difficulty of measuring the fatality rate ν in the early phase of

the epidemic given reasonable uncertainty over the initial condition I0.

Assume that we have a plausible range of initial cases introduced into the United

10https://www.dailymail.co.uk/news/article-8170903/Germany-100-000-people-coronavirus-antibody-tests.
html

11See, for example, the statistics at https://www.worldometers.info/coronavirus/
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States due to people returning from abroad with infections Ĩ0 ∈ [I0,min, I0,max]. Start

the model on January 15. In the illustrations that I consider, I will set I0 equal to

either 330 active cases on January 15 or, alternatively 3300 active cases on January

15. This uncertainty would correspond to difficulties of measuring infections among

returning travelers and initial bursts of infection occurring in super-spreading events.

I now solve the model to demonstrate that the model’s implications for cumulative

deaths in the early phase of the epidemic are very similar under the assumption that

I0 = 330 and the fatality rate ν = 0.01 (1%) or the alternative assumption that

I0 = 3300 and the fatality rate ν = 0.001 (1/10 of 1%) despite the fact that these

two alternative parameter assumptions have an order of magnitude difference in their

implications for cumulative deaths over the long term.

I refer to the parameter combination of I0 = 330 and ν = 0.01 as the high fatality

case and the combination of I0 = 3300 and the fatality rate ν = 0.001 as the low

fatality case.

I consider two computational experiments in the next two sections. In the first,

I compute the implications of the model for deaths and active infections under the

high and low fatality cases with the normalized transmission rate Rt held constant

at 2.5. I then consider the implications of the model under the high and low fatality

cases under the assumption that the normalized transmission rate Rt drops rapidly

from 2.5 to 1.25, corresponding to a 50% reduction in transmission due to mitigation.

4 Model Experiment 1: Constant Rt

Let us now look at the model implications for the evolution of I, R, and deaths D

under the assumption that I0 = 330 and the fatality rate ν = 0.01 (1%) and the

alternative assumption that I0 = 3300 and the fatality rate ν = 0.001 (1/10 of 1%)

when we set Rt = 2.5 for all t.

In Figure 1, I show the path for the cumulative number of deaths in the high and
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low fatality cases with Rt constant at 2.5. We see clearly in this figure that these two

alternative parameter configurations have dramatically different implications for the

long-run number of deaths — something close to 3 million in one case and 300,000

in the other.

In Figure 2, I zoom in on the implications of the model for the first 180 days. I plot

the log of the cumulative number of deaths in the high and low fatality cases with

Rt constant at 2.5. I omit data from the first 20 days as the initial number of deaths

is so low that taking logs is problematic. We see in this figure that the implications

of the model for deaths in the high and low fatality cases are virtually impossible to

distinguish in the first 45-50 days. After 60 days, the non-linearities in the model

begin to kick in to allow the two cases to be distinguished. (Note that in this initial

phases of the epidemic between days 20 and 40, the doubling time of deaths with

these parameters is on the order of 3.3 days regardless of the death rate).
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Figure 1: Cumulative Deaths over 18 months with ν = 1% and ν = 0.1%
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Figure 2: Log of Cumulative Deaths over 120 days with ν = 1% and ν = 0.1%

How is it that the model gives such similar implications for deaths in the early phase

of the epidemic under these dramatically different assumptions about the fatality rate

of the disease? The answer has to do with the differences in the model’s implications

for the number of active cases I and resistant population R.

In figure 3, I show the cumulative number of cases and the number of actively

infected under the high and low fatality scenario. Because, under the high fatality

scenario, the initial condition for I0 is higher, cumulative cases and active infections

in that case lead those in the low fatality scenario. Around day 45 of the epidemic,
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the differences in the model implications for R+ I and I under these two alternative

parameter configurations is enormous. After day 100, this difference has completely

disappeared. As a result, the fatality rate ν becomes obvious after that date simply

because the deaths do not materialize in the low fatality case.

In Figure 4, I show the logarithm of active infections I and cumulative cases R+ I

under the two parameter configurations considered. We see in this figure that the

ratio of I to I + R behaves very similarly across the two parameter configurations

during the period from 20 to 45 days. We see clearly that the series across the two

parameter configurations are simply proportional shifts of each other. Thus, data

on active infections and cumulative cases would not be helpful in distinguishing the

two cases if we do not have information about the proportional measurement error

of active infections ηI .

To gain rough intuition for the results here, consider the evolution of the model

under the simplifying assumption of no congestion in the transmission of the disease.

That is, consider an approximation to our model in the early phase of the epidemic

in which S/N is close to one. Then we have

dI/dt ≈ (Rt − 1) γI

dR/dt = γI

As these equations make clear, the level of R at any date in the initial phase of the

epidemic simply scales in the initial condition I0 and thus the model implications for

the fatality rate

ν̃ = D/R

varies inversely with the initial condition I0. It becomes possible to distinguish the

high and low fatality cases only when the non-linearities induced by the congestion

term S/N kick in.
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Figure 3: Cumulative cases and active infections under the high and low fatality cases
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Figure 4: The log of cumulative cases and active infections under the high and low fatality cases

5 Model Experiment 2: Falling Rt

Let us now look at the model implications for the evolution of I, R, and deaths D

under the assumption that I0 = 330 and the fatality rate ν = 0.01 (1%) and the

alternative assumption that I0 = 3300 and the fatality rate ν = 0.001 (1/10 of 1%)

when we set Rt = 2.5 to start and then have it fall rapidly to Rt = 1.25 due to

long-lasting mitigation measures. Again, we refer to the parameter combination of

I0 = 330 and ν = 0.01 as the high fatality case and the combination of I0 = 3300
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and the fatality rate ν = 0.001 as the low fatality case.

In Figure 5, I show the path for the cumulative number of deaths in the high

and low fatality cases with Rt starting at 2.5 and then falling permanently to 1.25

due to long-term mitigation measures. We see clearly in this figure that mitigation

lowers the cumulative deaths under these two alternative parameter configurations,

but these two configurations still have dramatically different implications for the

long-run number of deaths — something close to 1.2 million in one case and 120,000

in the other.
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Figure 5: Cumulative Deaths over 18 months with ν = 1% and ν = 0.1%

14



In Figure 6, I zoom in on the implications of the model for deaths in the first 180

days. I plot the log of the cumulative number of deaths in the high and low fatality

cases with Rt starting at 2.5 and then falling rapidly to 1.25 and remaining at that

level permanently. I omit data from the first 20 days as the initial number of deaths

is so low that taking logs is problematic. We see in this figure that the implications

of the model for deaths in the high and low fatality scenarios are virtually impossible

to distinguish in the first 120 days. Clearly, aggressive mitigation makes the problem

of estimating the fatality rate of the disease more severe.

The rough intuition for this result is that with a lower transmission rate, it takes

longer for the model non-linearities due to congestion in transmission (S/N) to kick

in.

15



0 20 40 60 80 100 120 140 160 180
days

3

4

5

6

7

8

9

10

11

Figure 6: Log of Cumulative Deaths over 120 days with ν = 1% and ν = 0.1%

6 Conclusion:

This note serves only as an illustration of the difficulties of measuring the fatality rate

COVID-19 (or any other disease) in the early phases of the epidemic absent accurate

measurement of either resolved cases R or active infections I. The obvious policy

conclusion, made by many others, is that widespread testing is needed to understand

this disease. Absent that testing, we may simply have to wait to see whether lots

of people die to get an accurate estimate of the danger of this disease. Let us hope
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that the data from the German testing program becomes available soon.
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